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Abstract. These are informal notes on how one can prove the existence and

asymptotics of the heat kernel on a compact Riemannian manifold with bound-

ary. The method differs from many treatments in that neither pseudodiffer-
ential operators nor normal coordinates are used; rather, the heat kernel is

constructed directly, using only a first (Euclidean) approximation and a Neu-
mann (Volterra) series that removes the errors.
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1. Introduction

The theorem of Minakshisundaram-Pleijel on the asymptotics of the heat kernel
states:

Theorem 1.1. Let M be a compact Riemannian manifold without boundary. Then
there is a unique heat kernel, that is, a function

K ∈ C∞((0,∞)×M ×M)

satisfying
(∂t −∆x)K(t, x, y) = 0,

lim
t→0+

K(t, x, y) = δy(x).(1)

For each x ∈M there is a complete asymptotic expansion

(2) K(t, x, x) ∼ t−n/2(a0(x) + a1(x)t+ a2(x)t2 + . . . ), t→ 0.

The aj are smooth functions on M , and aj(x) is determined by the metric and its
derivatives at x.

Here, ∆x is the Laplace-Beltrami-Operator acting in the variable x. In local
coordinates it is given by1

(3) ∆ =
n∑

i,j=1

gij(x)∂xi
∂xj

+
n∑

i=1

bi(x)∂xi
.

The limit in the initial condition is to be understood in the weak sense; that is,
for each f ∈ C∞(M), the function2 u(t, x) =

∫
M
K(t, x, y)f(y)dy is continuous up

to t = 0 and satisfies u(0, x) = f(x). The aj can be computed explicitly.
The asymptotic expansion holds uniformly in x (this is also part of the theo-

rem), so that one can integrate it over x ∈ M , and – together with the spectral
representation of K – this gives the result, central in inverse spectral theory, that∑

j

e−tλj ∼ t−n/2
∞∑

i=0

αit
i, t→ 0+, αi =

∫
M

ai,

where the λj are the eigenvalues of the Laplacian.
The purpose of these notes is to give a proof of this theorem (and then, incre-

mentally, of its generalizations to manifolds with boundary, manifolds with conical
singularities...) which uses as little machinery as possible, and is conceptually nat-
ural from an analyst’s point of view. The proofs in standard references use either
Riemannian normal coordinates ([1], [2],[4])3, or the theory of pseudodifferential
operators with parameter ([6],[10]).

The central considerations in our treatment are those of homogeneity and local-
ity: The basic homogeneity of the heat equation is that x scales like

√
t, at least

1It will not be needed for the main part of these notes, but for completeness recall what the

coefficients mean: (gij) is the inverse matrix of the matrix (gij) which describes the metric tensor

locally, and bi = 1√
g

∑n
j=1 ∂xj (gij√g), where g = det(gij).

2Throughout these notes, all integrations will be with respect to the Riemannian measure,

which will be denoted dx, although in local coordinates it is
√
gdx. This just simplifies matters a

little, allowing us to avoid thinking about densities.
3I admit that I like this proof since it’s very quick, and quite natural geometrically; our purpose

here is to show that this geometry is actually not needed! In Section 2.5.3(2) this proof is described
shortly.
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in the leading terms (i.e. forgetting the terms imvolving bi in (3)). This, along
with the initial condition, leads one to expect that K(t, x, y) should be expressible
’nicely’ in terms of the new variable X = (x − y)/

√
t, in local coordinates. This

expectation is supported by the well-known formula

(4) E(t, x, y) =
1

(4πt)n/2
e−|x−y|2/4t

for the heat kernel on Rn, with the Euclidean metric.4 Locality is the rapid decay
of E as function of (x− y)/

√
t.

We will define spaces of functions, Ψα
H(M), α ∈ −N0/2, which reflect this ho-

mogeneity and locality of E. The ’order’ α encodes the leading power of t, and is
normalized so that E ∈ Ψ−1

H (Rn). The existence part of Theorem 1.1 will follow
from the construction of a heat kernel K ∈ Ψ−1

H (M). The letter Ψ is supposed to
show the close analogy of our approach to the parametrix construction for elliptic
operators in the pseudodifferential calculus. In fact, the procedure is exactly the
same, except that here in the heat equation context the details are much easier!5.

The reader is not assumed to be familiar with the pseudodifferential calculus.
Neither will she learn it here. But still she will learn some of the main ideas involved
in it, without having to bother with technicalities like distributions or oscillatory
integrals.

The approach followed here was inspired by the treatment of R. Melrose in [13],
Sections 7.1-7.3. We deviate from his treatment by proving a composition formula
and using the Volterra series directly, instead of using a recursive procedure (which
we also describe shortly in Section 2.5). Our purpose is to explain this method
in simple terms, avoiding the somewhat arcane language used in Melrose’s book.6

However, the interested reader should definitely consult that book!7

The boundary value problem is then treated in a similar manner. It is remark-
able that, after initial basic homogeneity and locality considerations, only minor
modifications are needed to treat this more general case. The treatment of the
boundary value problem by this method seems to be new. (The ’b’ in ’b-calculus’,
as treated in [13], Sections 7.4-7.5, also refers to a manifold with boundary, but
to a different class of metrics (infinite cylindrical ends), which yields a different
analysis.)

Generalizations: The method presented here works with any elliptic (in a
suitable sense) operator replacing the Laplacian. That is, one can treat higher
order operators and systems (i.e. operators acting between vector bundles) in the

4Actually, the heat kernel on Rn is only unique if one imposes certain growth conditions for

x − y → ∞. The homogeneity holds precisely in Rn, and means that if K(t, x, y) satisfies (1)

then so does λnK(λ2t, λx, λy) for any λ > 0 (recall that δ(λx) = λ−nδ(x)). Set λ = t−1/2 and

use uniqueness to see that K equals t−n/2 times a function of x/
√
t, y/

√
t. Similarly, translation

invariance shows that the latter is actually a function of (x− y)/
√
t, and rotation invariance that

it is a radial function; putting this into (1) one obtains an ordinary differential equation for this

function, which can be solved easily.
5In particular, this approach is more direct and simpler than the more standard approach

in which first a parametrix for the resolvent is constructed as pseudodifferential operator with

parameter, and then an inverse Laplace transform is applied to obtain the heat kernel.
6But keep in mind that we are doing this in hopes that a similar treatment is possible for

’singular manifolds’, and for these it may well be advantageous to use this language!
7Essentially the same method of proof is used by McKean and Singer [12] (with many details

missing).
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same way. In particular, self-adjointness is not needed. See Section 2.5. (This is
true at least for the part without boundary, and, with more modifications, also
for boundary problems). See also [7], which has a quick treatment (in the case
without boundary) using pseudodifferential operators (and a not so quick one with
boundary).

Also, one can deal with limited smoothness, since the Volterra series only in-
volves integrations. To determine the minimal smoothness required in the proof
of existence, and to have a given number of terms in the expansion, is left as an
exercise.
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2. Manifolds without boundary

In this section we give a detailed analysis of the heat kernel on a compact Rie-
mannian manifold without boundary. This will imply the theorem of Minakshisundaram-
Pleijel.

2.1. Outline of the proof. Our basic strategy in the proof of Theorem 1.1 follows
the following standard pattern:

(1) Construct an approximate heat kernel (parametrix) K1, in the sense that

(∂t −∆x)K1(t, x, y) = R(t, x, y)

lim
t→0+

K1 = δy(x)(5)

with R ’small’ in a sense to be specified later.
(2) Correct K1 to an exact heat kernel, by summing a convergent series (the

Volterra series). This proves existence of a heat kernel, satisfying the
asymptotics (2).

(3) Uniqueness can be derived from existence via duality (using self-adjointness),
or proved via an energy estimate.

The obvious candidate for a first approximation is given by the Euclidean heat
kernel (4). More precisely, if one wants the approximation to be good near x = y
(and near t = 0), for each y, then one should use the metric g(y) here8. That is, if

(6) E(g)(t, x, y) =
1

(4πt)n/2
e−|x−y|2g/4t,

|x|g :=
∑n

i,j=1 gijxixj , denotes the heat kernel for the ’constant’ metric g = (gij),
gij ∈ R, on Rn, then one may hope that

(7) K1(t, x, y) = E(g(y))(t, x, y)

(in local coordinates onM , and then suitably patched together) is an approximation
to the true heat kernel. Indeed, an easy calculation (see Proposition 2.7) shows
that (∂t−∆x)K1 equals t−n/2−1/2 times a smooth function of t, (x−y)/

√
t, y. This

is ’good’ since ∂tK1 and ∆xK1 separately would have the more singular factor9

t−n/2−1.
The simple argument for the second step, how to ’iterate away the error terms’,

will be recalled in Section 2.3. This works most easily, and is standard, if R in (5)
remains bounded as t→ 0. But we just saw that R can definitely not be expected
to be bounded if K1 is taken as in (7)! So we need

(1) either a better parametrix in the first step,

8It is in this refinement in the very first step that, in the analogous construction of a parametrix
for an elliptic operator, the pseudodifferential technique differs from (and improves upon) the

classical method of (i) freezing coefficients at points in an ε-net on M , (ii) inverting the resulting

constant coefficient operators in Rn and transferring the solutions to ε-neighborhoods of these
points, and (iii) patching these local approximate solutions together. This method yields an error

term of type ’small norm (for small ε) operator plus lower order operator’. In contrast, the ΨDO

parametrix yields only a lower order, hence compact, error. While the classical method suffices
to prove discreteness of the spectrum, for example, the ΨDO method is superior if one wants to

obtain more refined quantitative information, for example the Weyl asymptotics with error term.
9We will see that, for this to be true, K1 essentially (i.e. up to lower order terms) has to be

chosen as in (7). So there is no guessing involved here, really!
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(2) or a proof that the Volterra series works also with errors as are obtained
from K1 in (7).

We will do (2). This gives (1) also since we will show that finite partial sums of the
Volterra series give arbitrarily good parametrices.

Therefore, the proof of (the existence and asymptotics part of) Theorem 1.1
boils down to defining

K = K1 −K1 ∗R+K1 ∗R ∗R− . . .

(where K1 is (7), R = (∂t − ∆x)K1, and ∗ is defined in (15)) and proving the
convergence of this series, and that it gives the desired asymptotics. The basics for
this are developed in Section 2.2 (more than is really needed, but it seemed worth
it to do things systematically), the convergence is proved in Section 2.3, and the
proof is put together in Section 2.4. More remarks, for example on how to compute
the ai, follow in Section 2.5.

2.2. The heat calculus.

2.2.1. The definition. The salient features of the Euclidean heat kernel (4) and of
the first approximation (7) are:

• the prefactor t−n/2

• the exponential factor, which is a smooth function of X = (x− y)/
√
t and

y, exponentially decaying as |X| → ∞.
It is quite clear, and we will compute it momentarily, that (∂t − ∆x)K1 will

have the same form, except for a different power of t in front. This motivates the
following definition. We will use the following notation:

C∞([0,∞)1/2)

consists of functions f(t) which are smooth as functions10 of
√
t, for t ≥ 0. The

symbol Dγ√
t,X,y

means differentiations in
√
t,X, y, their number given by the mul-

tiindex γ.

Definition 2.1. Let M be a manifold and α ≤ 0. The space Ψα
H(M) is the set of

functions A on (0,∞)×M2 satisfying:
(a) A is smooth,
(b) if x 6= y then Dγ

t,x,yA(t, x, y) = O(t∞) as t → 0, for all γ, (’off diagonal
decay’) 11

(c) for any p ∈M there is a local coordinate system U 3 p and

(8) Ã ∈ C∞([0,∞)1/2 × Rn × U)

so that for x, y ∈ U one has

(9) A(t, x, y) = t−
n+2

2 −αÃ(t,
x− y√

t
, y).

Furthermore, Ã is rapidly decaying in the second variable:

(10) |Dγ√
t,X,y

Ã(t,X, y)| = O(|X|−∞), |X| → ∞,

10that is, there is g ∈ C∞(R) such that f(t) = g(
√
t) for all t ≥ 0.

11We write ’O(t∞)’ instead of ’O(tN ) for all N ’. This condition is a little more natural in our

method than requiring exponential decay, O(e−c/t) for some c, which would also work (with the

corresponding change in (10)).
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for all γ, uniformly for bounded t and y.

Note that (c) implies (b) for x, y ∈ U .
Clearly, Ψα

H ⊃ Ψα−1/2
H .

Remark: The funny normalization of the order α (leading to the unpleasant
exponent of t in (9)) is motivated by the fact, proved below, that only with this
normalization will the orders add under convolution (defined below) of such func-
tions. Very negative α correspond to ’very smooth’ (at t = 0) kernels; this is chosen
to parallel the usual notion of order in the pseudodifferential calculus.

It will be useful to have:

Definition 2.2. Let A ∈ Ψα
H(M). Given coordinates as in Definition 2.1(c), the

leading term of A, denoted12 Φα(A), is the function

(X, y) 7→ Ã(0, X, y),

with Ã given in (9).

Note that Ã is not defined uniquely by A: If t > 0 then (x− y)/
√
t assumes only

a bounded set of values! But whenever X
√
t is sufficiently small then

(11) Ã(t,X, y) = t(n+2)/2+αA(t, y +X
√
t, y),

so at least Φα(A) is uniquely defined.
The definition of leading term depends on the choice of local coordinates (since

Ã does). We now analyze how.

2.2.2. Coordinate invariance.

Lemma 2.3. (a) If condition (c) in Definition 2.1 holds in one coordinate
system then it holds in any.

(b) The leading term Φα(A) is defined invariantly as a function on the tangent
bundle, rapidly decaying in the fiber direction:

(12) Φα(A) ∈ C∞S(fibers)(TM).

Proof. (a) Suppose ψ(x) = x̄ is a coordinate change, and condition (c) holds in the
x̄-coordinate patch Ū , with a function ¯̃A(t, X̄, ȳ) satisfying (8), (10). We need to
find a function Ã with the same properties, and satisfying

(13) Ã(t,
x− y√

t
, y) = ¯̃A(t,

ψ(x)− ψ(y)√
t

, ψ(y))

for all x, y near p. This is easy: Choose a smooth, matrix-valued function h satis-
fying

ψ(x)− ψ(y) = h(x, y)(x− y)
and13 h(y, y) = dψ|y, and a cutoff function χ ∈ C∞0 (Ū), equal to one near p, and
then set

(14) Ã(t,X, y) = ¯̃A(t, h(y +X
√
t, y)X,ψ(y))χ(y +X

√
t),

which is clearly equivalent to (13), for y, y +X
√
t near p.

12The letter Φ is supposed to reflect the German ’Führender Term’. Melrose calls this the

normal operator.
13h(x, y) =

∫ 1
0 dψ|y+t(x−y)dt will do
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(b) From (14) and h(y, y) = dψy we have Ã(0, X, y) = ¯̃A(0, dψy(X), ψ(y)), which
was to be shown.14

Note that even if ¯̃A was smooth in t (rather than
√
t) then Ã would still be

only smooth in
√
t. So for a coordinate invariant definition we need to allow

√
t-

dependence. Below we will see why in the final result, Theorem 1.1, only integral
powers appear.

The higher order derivatives ∂m√
t
Ã(0, X, y) are also determined by A, but depend

on the choice of coordinates in a more complicated way. We won’t need these here.

2.2.3. Short exact sequence. The following lemma is quite obvious, but central to
any type of ’step by step improvement’ argument:

Lemma 2.4. (a) Let A ∈ Ψα
H . Then Φα(A) = 0 iff A ∈ Ψα−1/2

H .
(b) Given a function F ∈ C∞S(fibers)(TM), and α ∈ R, there is A ∈ Ψα

H(M)
having F as leading term.

In other words, one has an exact sequence, for each α,

0 → Ψα−1/2
H (M) → Ψα

H(M) Φα→ C∞S(fibers)(TM) → 0.

2.2.4. Composition. We now prove that Ψα
H behaves well under composition of

operators. As we will see in Section 2.3, the appropriate notion of composition here
is:

Definition 2.5. The convolution product of two smooth functions A, B on (0,∞)×
M2 is the function, on the same space,

(15) (A ∗B)(t, x, y) =
∫ t

0

∫
M

A(t− s, x, z)B(s, z, y) dzds,

whenever the integrals are absolutely convergent.

If one considers functions A(t, x, y) as Schwartz kernels of time-dependent fami-
lies of operators via (A(t)f)(x) =

∫
M
A(t, x, y)f(y) dy, and if one sets A(t) = 0 for

t < 0 then this is just the usual convolution of functions on R valued in a ring (the
ring of operators). Equivalently, if one associates with A(t, x, y) the operator on
R×M whose Schwartz kernel is (s, t, x, y) 7→ A(t− s, x, y)H(t− s) (where H is the
characteristic function of the positive half line) then ∗ is just composition on the
level of such Schwartz kernels.

Proposition 2.6. Let A ∈ Ψα
H(M), B ∈ Ψβ

H(M), with α, β < 0, and assume
M is compact. Then A ∗ B is defined and lies in Ψα+β

H (M). The leading terms
a = Φα(A), b = Φβ(B), a ∗ b := Φα+β(A ∗B) satisfy
(16)

(a ∗ b)(X, y) =
∫ 1

0

∫
Rn

(1− σ)−(n+2)/2−ασ−(n+2)/2−βa(
X − Z√

1− σ
, y)b(

Z√
σ
, y) dZdσ.

14One could have defined the leading term without reference to coordinates, as follows: Let
X ∈ TyM be the equivalence class of a curve γ, that is γ(0) = y, γ′(0) = X. Then Φα(A)(X, y) =

limt→0 t(n+2)/2+αA(t, γ(
√
t), y).
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Proof. First, consider x, y in a coordinate patch U , where A,B have representations
as in (9) (note that we use invariance here!), and consider the part of the convolution
product with z near y, that is

(17)
∫ t

0

∫
Rn

A(t− s, x, z)B(s, z, y)χ(z) dzds

where χ ∈ C∞0 (U) is equal to one near y. We replace the integration variables by
σ = s/t, Z = (z − y)/

√
t and introduce the new variable X = (x − y)/

√
t instead

of x. Then (17) becomes t−(n+2)/2−α−βC̃(t,X, y) where C̃(t,X, y) equals

(18)
∫ 1

0

∫
Rn

(1− σ)−(n+2)/2−ασ−(n+2)/2−β ·

Ã(t(1− σ),
X − Z√

1− σ
, y + Z

√
t)B̃(tσ,

Z√
σ
, y)χ(y + Z

√
t) dZ dσ.

Convergence and rapid decay as |X| → ∞ follow for the part σ ≤ 1/2 by introducing
the variable W = Z/

√
σ for Z, then the power of σ is −1 − β, so the integral

converges since β < 0, and rapid decay as |X| → ∞ can be easily seen from
|X−W

√
σ√

1−σ
| ≥ ||X| − |W || and rapid decay of Ã, B̃. The part σ ≥ 1/2 is treated

similarly. If χ is replaced by 1− χ then the result is rapidly decaying as t→ 0, as
can easily be seen from the rapid decay of B(1− χ) as s→ 0.

Formula (16) follows immediately from (18).
Similar arguments also show smoothness and rapid decay of A ∗B for x 6= y.

The following is the central calculation for the whole heat kernel construction,
and the reader should try to do it herself before (or instead of) reading the proof.

Proposition 2.7. (1) Let A ∈ Ψα
H(M), α ≤ −1. Then (∂t−∆x)A ∈ Ψα+1

H (M).
(2) If a = Φα(A) and r = Φα+1((∂t −∆x)A) then

(19) r(X, y) =
[
−n+ 2

2
− α− 1

2
X∂X −∆0,y

X

]
a(X, y).

Here, X∂X :=
∑

iXi∂Xi
, and ∆0,y

X =
∑

ij g
ij(y)∂Xi

∂Xj
is the leading part of

the Laplacian, with coefficients frozen at y, acting in X.

We will only use a consequence of (19): When computing the leading term of
(∂t − ∆x)A at y one may forget the lower order part of the Laplacian, the x-
dependence in its leading term, and the t-dependence of Ã.

Proof. Write A(t, x, y) = t−lÃ(t, x−y√
t
, y), l = n+2

2 + α. We have

∂tA = −l t−l−1Ã− t−l x− y

2t3/2
∂XF + t−l∂tÃ

= t−l−1(−l − 1
2
X∂X)F +R1,

and R1 is in Ψα+1/2
H (M) since ∂t = 1

2
√

t
∂√t.
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Next, ∂xi
(t−lÃ) = t−l−1/2∂Xi

Ã, and this gives

∆xA = t−l−1
∑
i,j

gij(x)∂Xi
∂Xj

Ã+ t−l−1/2
∑

i

bi(x)∂Xi
Ã

= t−l−1
∑
i,j

gij(y)∂X1∂X2Ã+R2.

The remainder R2 arises from two sources: First, we Taylor expand gij(x) =
gij(y) + hij(x, y)(x − y), with smooth matrix-valued hij , and rewrite the second
term as

√
thij(y+X

√
t, y)X. Second, it contains the lower order part of ∆x, where

we rewrite bi(x) = bi(y + X
√
t). This shows that R2 ∈ Ψα+1/2

H , in particular it
does not contribute to the leading term. Putting these together we obtain the
Proposition.

2.2.5. Evaluation at t = 0. In order to deal with the initial condition, we need:

Lemma 2.8. (a) Let A ∈ Ψ−1
H (M) and f ∈ C∞(M). Then Af , defined by

Af(t, x) =
∫

M
A(t, x, y)f(y) dy, is in C∞([0,∞)√t ×M), and

(20) Af(0, x) = f(x)
∫

TxM

Φ−1(A)(X,x) dX.

(b) If A ∈ Ψα
H(M), α < −1, then Af(0, x) = 0.

The measure on TxM in (20) is the one coming from the scalar product g(x).

Proof. (a) It is clear that, for t → 0, only points y near x contribute. So we can
write, with a cutoff χ supported in a coordinate patch around x, and equal to one
near x,

Af(0, x) = lim
t→0+

t−n/2

∫
Rn

Ã(t,
x− y√

t
, y)f(y)χ(y) dy

= lim
t→0+

∫
Rn

Ã(t,X, x−X
√
t)f(x−X

√
t)χ(x−X

√
t) dX,

and this equals (20) since the limit can be put inside the integral by the dominated
convergence theorem.

(b) Write A = t−α−1B, B ∈ Ψ−1
H , and use (a).

2.3. The Volterra series. It is one of the convenient features of the heat equation
that there is a very simple procedure to obtain an exact solution from a parametrix.

We first state ’Duhamel’s principle’ which shows how the convolution product
arises:

Lemma 2.9. Suppose K1 ∈ Ψ−1
H satisfies (5), and S ∈ Ψβ

H with β < 0. Then

(∂t −∆x)(K1 ∗ S) = S +R ∗ S,
lim

t→0+
K1 ∗ S = 0.(21)

Proof. Formally, this is easy: Just apply the formula ∂t

∫ t

0
h(t, s) dt = h(t, t) +∫ t

0
∂th(t, s) ds to the integral defining K1 ∗ S and put the ∆x under the integral

sign.
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Really, one should be a little careful about convergence, interchanging differen-
tiation and integration and such things. This is left as an exercise. 15 The initial
condition follows from Lemma 2.8(b).

In particular, for R = 0 this says: From a solution of the initial value problem (1),
with the homogeneous equation, one may obtain a solution of the inhomogeneous
equation, with zero initial condition, using the convolution product. The advantage
of translating to the latter problem here is that an operator of the form (Identity
plus small) may be inverted explicitly using the ’geometric series’, which in this
context is sometimes called the Volterra series.16

Denote R∗N = R ∗R ∗ · · · ∗R, with N factors.

Proposition 2.10. Assume K1 ∈ Ψ−1
H satisfies (5) with R ∈ Ψ−1/2

H .
(a) Then

(22) K := K1 −K1 ∗R+K1 ∗R ∗R− . . .

converges in C∞((0,∞)×M2), and K ∈ Ψ−1
H (M).

(b) K is a heat kernel, that is, it satisfies (1).
(c) The series (22) is an asymptotic series as t→ 0. More precisely, K1∗R∗N ∈

Ψ−1−N/2
H (M).

Proof. (c) is obvious from the composition theorem, Proposition 2.6, and (b) is clear
once convergence is proven, since Duhamel’s principle gives (∂t−∆x)(K1 ∗R∗m) =
R∗m +R∗(m+1), so the sum telescopes. Also, the initial condition is not affected by
the terms involving R, by Lemma 2.8(b).

Let us show uniform convergence first: Let S = R∗N , for a fixed N ≥ n/2 + 1.
Then S ∈ Ψ−n/2−1

H , so S is bounded for bounded t. This gives

(23) S∗m(t, x, y) =
∫

0≤t1≤···≤tm−1≤t

∫
Mm−1

S(t− t1, x, z1)S(t1 − t2, z1, z2) . . .

. . . S(tm−2 − tm−1, zm−2, zm−1)S(tm−1, zm−1, y) dz1 . . . dzm−1 dt1 . . . dtm−1.

The integrand is bounded by Cm, if C is an upper bound for |S| on (0, t) ×M2,
the volume of the domain of integration in the zi-variables is (volM)m−1, and the
volume in the ti-variables is tm−1/(m− 1)!, so we get

|S∗m(t, x, y)| ≤ tm−1(volM)m−1Cm

(m− 1)!
.

Clearly, then, |K1 ∗ Ri+mN | has the same bound for i = N, . . . , 2N − 1 and
m = 1, 2, 3, . . . , and this proves convergence in C0. Similar estimates hold with
l derivatives, for any fixed l, if N is chosen as n/2 + 1 + l instead. This proves
convergence in C∞. To show K ∈ Ψ−1

H , note that we have, from the estimates

15Note that part of the statement is that R ∗ S makes sense. This does not follow from

Proposition 2.6 since R ∈ Ψ0
H only! (We are not assuming anything about the form of K1,

although this generality is not needed here.) A more careful analysis shows that R ∗ S is defined

for R ∈ Ψ0
H if

∫
Rn R̃(0, X, y) dX = 0 for each y, and that this is satisfied for R arising as derivative.

16In [12], this is called Levi’s sum. A Volterra series is very similar to a Neumann series;

both invert an operator I − R as I + R + R2 + . . . . But for the Neumann series one ascertains

convergence by assuming the norm of R to be less than one (in a suitably chosen space). For the
Volterra series no norm estimate is needed, the convergence follows rather from a sort of ’negative

order’ and ’Volterra’ (i.e., the integral kernel vanishes above the diagonal) condition on R.
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just proven, that for any l and N there is KN ∈ Ψ−1
H with K = KN + O(tN )

in Cl. Clearly, this gives (a) and (b) in Definition 2.1. If one sets K̃(t,X, y) =
tn/2K(t, y + X

√
t, y)χ(y + X

√
t) = K̃N (t,X, y) + O(tN+n/2)χ(y + X

√
t), with a

cutoff function χ supported near y, then X ≤ Ct−1/2 on the support of χ, so one
gets (c) also.

2.4. Proof of the Theorem of Minakshisundaram-Pleijel.

2.4.1. Existence of a heat kernel in Ψ−1
H (M). By Lemma 2.4(b), we can find K1 ∈

Ψ−1
H with leading term (X, y) 7→ (4π)−n/2e−|X|2g(y)/4 (one choice for this is (7)).

By Lemma 2.8(a), this satisfies the initial condition in (5). Next, by Proposition
2.7 and the remark following it17 R := (∂t − ∆x)K1 is in Ψ0

H with leading term
Φ0(R) = 0, so actually R ∈ Ψ−1/2

H by Lemma 2.4(a). Therefore, the Volterra series,
Proposition 2.10, gives a heat kernel.

2.4.2. Locality of the heat kernel coefficients. Instead of the leading term of A ∈
Ψα

H(M) one can consider the leading l-jet for l ≥ 0; locally, this is given by the first
l terms of the Taylor expansion of Ã(t,X, y) at

√
t = 0. (It is harder to define this

invariantly, but not important here.) Then it is clear from (18) that the leading
l-jet of A ∗B is determined (explicitly, bilinearly) by the leading l-jets of A and B.
(Of course, it would be easy to be more precise here.) The leading l-jet of K1 at
(X, y) is of the form p(X, y)e−|X|2g(y)/4 with p a polynomial in X of degree 2l whose
coefficients are derivatives of g up to order l, taken at y. Since only finitely many
terms in the Volterra series contribute to a given jet order of K, it follows that the
l-jet of K(t, x, x) is determined by finitely many derivatives of g at x.

2.4.3. Only integral powers of t appear in the heat trace asymptotics. Call an ele-
ment K ∈ Ψα

H(M), α ∈ −N0/2, even if the following is true: If

(24) K̃(t,X, y) ∼
∞∑

j=0

kj(X, y)tj/2

is the Taylor series for K̃ (defined in (9)) at t = 0 then kj is even in X if j/2+α ∈ Z,
and odd otherwise18. This condition is independent of the choice of coordinates
since in (14)

√
t only occurs in the combination X

√
t.

Furthermore, it is clear that ∂t and ∂xi
and multiplication by smooth functions

of x map even elements to even elements, and that the convolution of even elements
is even. Also, the leading term of K1 is even, so clearly K1 can be chosen even.

Therefore, the heat kernel constructed above is even. In particular, kj(0, y) = 0
for j odd. This proves Theorem 1.1.

Note that we have proved more than Theorem 1.1, since we also have information
on K for x 6= y.

2.4.4. Uniqueness. For a nice argument using duality, see [13], page 271.

2.5. More remarks: Formulas, generalizations etc.

17In fact, if one hadn’t ’guessed’ K1, one could easily derive it from solving [−n/2−1/2X∂X−
∆0,y

X ]F (X, y) = 0, for any fixed y, using the Fourier transform in X. This has a unique Schwartz

solution, up to a constant factor which can be determined from the initial condition.
18Even: kj(−X, y) = kj(X, y); odd: kj(−X, y) = −kj(X, y).
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2.5.1. Recursion instead of Volterra series. Instead of using the Volterra series right
from the beginning, one may proceed recursively to obtain a parametrix to any
order, as follows:

Determine successively Ki ∈ Ψ−1
H , i = 1, 2, . . . , with Ri := (∂t−∆x)Ki ∈ Ψ−i/2

H ,
as follows: Determine K1 as before, so that R1 ∈ Ψ−1/2

H . Then suppose we have
obtained Ki so that Ri ∈ Ψ−i/2

H . We then wish to determine Ti of suitable order so
that Ki+1 := Ki + Ti satisfies Ri+1 ∈ Ψ−(i+1)/2

H where Ri+1 = Ri + (∂t −∆x)Ti.
Since Ri is only in Ψ−i/2

H , we require Ti ∈ Ψ−i/2−1
H and to be chosen such that

Φ−i/2(Ri+1) vanishes. By Proposition 2.7 this is equivalent to

(25) (−n+ 2
2

+
i

2
− 1

2
X∂X −∆0,y

X )Fi(X, y) = −Φ−i/2(Ri)

for the leading term Fi of Ti. This can easily be solved using the Fourier transform
(see [13], page 268). Alternatively, one may translate it back to an inhomogeneous
heat equation on Rn, with constant coefficients, and solve this using the standard
heat kernel and Duhamel’s principle.

This gives a parametrix to any order, and then the standard Volterra series (with
bounded remainder) may be used to get rid of the error term.

2.5.2. Analogies to the standard pseudodifferential calculus. The essential proper-
ties of the spaces Ψα

H(M) which were used in the proof are also the standard
properties of the pseudodifferential calculus:

• The Ψα
H , α ∈ −N/2, form a filtered algebra, that is Ψ−1/2

H ⊃ Ψ−1
H ⊃ . . . and

Ψα
H ∗Ψβ

H ⊂ Ψα+β
H .

• One has a notion of ’leading term’. This corresponds to the principal symbol
in the pseudodifferential calculus.

• One has a short exact sequence connecting the filtration and the symbol
map.

Here one could also include the principle of asymptotic summation. We avoided
this since the Volterra series already converges in the usual sense.

We did not introduce operators of positive order in the heat calculus. This
would be possible, and then Propositions 2.6 and 2.7 would be special cases of one
composition formula, but at the expense of having to deal with distributions. (Not
really a problem, but also nice to avoid.)

2.5.3. Calculation of the coefficients. It is clear from an inspection of the proof that
the coefficients ai(x) are determined polynomially by the gij and their derivatives
at x. It is of interest, especially in view of the inverse spectral problem, to find
these expressions explicitly, or have some systematic understanding of them. There
are various ways of doing this:19

(1) Simply evaluate the Volterra series. Say you want to find the aj(0) in a
fixed coordinate system. For this, simply replace all x, y, z variables by
x =

√
tξ, y =

√
tη, z =

√
tζ; Taylor develop K1 in (7) with respect to

√
t

around t = 0, this gives

K1(t, x, y) ∼ t−n/2
∞∑

k=0

pk(ξ, η)tk/2e−|ξ−η|2/4,

19Though I am quite sure that the last word has not been spoken on this problem!
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if gij(0) = δij , say, with polynomials pk of degree 2k. A similar formula will
hold for R = (∂t−∆x)K1 = −(

∑
ij(g

ij(x)−gij(y))∂xi
∂xj

+
∑

i bi(x)∂xi
)K1,

with the power t−n/2−1/2 in front. Putting this into the convolution product
K1 ∗R∗(m−1) (compare (23)), setting τi = (ti−1 − ti)/t, i = 1, . . . ,m (with
t0 := t, tm := 0), and wi = ζi−1−ζi (with ζ0 = ζm = 0), one gets an explicit
linear combination of polynomials in the gij , g

ij and their derivatives whose
coefficients are of the form∫

Σ

∫
H

σγ
m∏

i=1

(W δi
i e

−|Wi|2/4σi) dWdσ

where Σ = {(σ1, . . . , σm) : σi ≥ 0,
∑

i σi = 1} and W = {(W1, . . . ,Wm) :
Wi ∈ Rn,

∑
iWi = 0} and γ ∈ (Z/2)m, δi ∈ Nn

0 are multi-indices. The
W -integral is just a multiple convolution evaluated at zero and can be
evaluated to be (

∑
i σi)−n/2 times a polynomial in the

√
σi, for example

by use of Fourier transform. Then the σ-integral can easily be evaluated in
terms of the Gamma function.

(2) Recall that only the leading term of K1 was determined, so one might try
a different K1 with the same leading term. Instead of (7) one may try the
more geometric Kgeom

1 (t, x, y) = (4πt)−n/2e−dist (x,y)2/4t, where dist is the
Riemannian distance function. This turns out to be better since then R is
of order −1 instead of only −1/2. Then the integrality of t-powers in the
expansion is clear from the start, and the calculations become shorter.

Also, one may find K by making the ansatz

K(t, x, y) ∼ Kgeom
1 (t, x, y)(b0(x, y) + tb1(x, y) + t2b2(x, y) + . . . ),

plugging this into the heat equation and solving recursively for the bj (in
normal polar coordinates).20

(3) The coefficients may sometimes be found using invariant theory. This works
as follows: First, a careful look at the recursions (or the Volterra series)
shows how many factors and derivatives of the metric can occur in ai. Next,
ai is given by a polynomial expression in these derivatives, and the resulting
number must be the same no matter which coordinate system was chosen to
begin with. This restricts the set of possible polynomials enormously (to a
vector space of quite low dimensions, for small i), and reduces the problem
to the calculation of a few undetermined coefficients. These may then be
determined by explicit calculation of some example manifolds (since they
are universal, i.e. independent of the manifold). See [6], for example.

(4) In the heat equation approach to the Index Theorem one needs to compute
the an/2-term (i.e. the coefficient of t0), not for the Laplacian on functions,
but for a ’generalized Laplacian’ (arising from certain Dirac operators), for
which the asymptotics still holds. From what was said above, the computa-
tion of this seems exceedingly hard unless n is small, but a careful analysis
allows to extract the information that is needed by an additional scaling
argument, for any n. See [2], [13].

(5) There are amazing explicit formulas found by Polterovich [14] and later
simplified (both the formula and the proof, which fits on a few lines) and

20This is sometimes called the Hadamard parametrix in the mathematical literature, and the

De Witt expansion in the physics literature, see [1],[2],[4], [5], for example.
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generalized by Weingart [15]:

ak(y) =
k∑

l=0

(
− 1

4

)l
(
k + n

2

k − l

) [
(−1)k+l

(k + l)!
∆k+l

x (
1
l!

dist2l(x, y) )
]
|x=y

.

(6) There are other approaches to the computation. See for example the book
[10], which also contains many examples.

2.5.4. Generalization to other elliptic operators. If the Laplacian is replaced by any
elliptic differential operator P, of order d > 0, acting on a vector bundle, essentially
the same procedure works to show the existence and uniqueness of a corresponding
’heat kernel’, as long as the ’model solutions’ (generalizing (6)) are rapidly decaying
off the diagonal. Since these can be obtained using Fourier transform from the
leading part of P , with coefficients frozen at y, this translates to a condition on the
principal symbol of P 21. The minor adjustments are:

√
t should be replaced by

t1/d everywhere. K takes values in homomorphisms from the fiber over y to the
fiber over x, so the leading term has values in Endomorphisms of the fiber over y.
In the uniqueness argument, the dual operator must be used.

21The condition is that all eigenvalues of the principal symbol (which takes values in endomor-

phisms of the bundle) have negative real part; sometimes this is called Petrovski-ellipticity.
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3. Manifolds with boundary

Our next goal is to prove an analogue of Theorem 1.1 for the case of a compact
manifold with boundary. We will impose Dirichlet boundary conditions; other
boundary conditions (Robin, Neumann) could be treated in the same way.

Because of the local nature of the heat kernel at small times one expects, and
it is indeed the case, that at any interior point the expansion (2) still holds. The
new phenomenon is that the expansion does not hold uniformly as x approaches
the boundary. This is not just a matter of being pedantic. It has a very tangible
consequence: The asymptotics of the heat trace,

∫
M
K(t, x, x) dx, now has terms

of the form t−n/2+j/2 for each j ∈ N0, not just for even j.
We will derive this from a detailed analysis of the heat kernel uniformly near the

boundary.
In particular, we will prove:

Theorem 3.1. Let M be a compact Riemannian manifold with boundary. Then
there is a unique Dirichlet heat kernel, that is, a function

K ∈ C∞((0,∞)×M ×M)

satisfying

(∂t −∆x)K(t, x, y) = 0,

K(t, x, y) = 0 whenever x ∈ ∂M,

lim
t→0+

K(t, x, y) = δy(x).
(26)

The smoothness of K(t, x, x) as t→ 0 may be described as follows:

(27) K(t, x, x) = t−n/2 (A(t, x) +B(t, x))

with A ∈ C∞([0,∞) × M) and B supported near the boundary, where in local
coordinates (x′, xn) ∈ U ′ × [0, ε) ⊂M , U ′ ⊂ Rn−1 open, one has

(28) B(t, x) = b(t, x′, xn/
√
t), b ∈ C∞([0,∞)√t × U ′ × R+)

with b(t, x′, ξn) rapidly decaying as ξn →∞.

We use the notation [0,∞) for the time interval, while R+, which is also [0,∞),
is used for the spacial variable xn.

Note that M2, [0,∞)×M and [0,∞)×U ′×R+ are manifolds with corners, i.e.
locally of the form Rk

+×Rl (with k ≤ 2 here). By definition, a function on Rk
+×Rl

is smooth if it can be extended smoothly to a neighborhood of this set in Rk+l. This
is easily seen to be invariant under diffeomorphisms of Rk+l that preserve Rk

+ ×Rl

and is therefore well-defined on a manifold with corners.
Note that, by the rapid decay of B, (27) and the smoothness of A give the

’old’ asymptotic expansion of K(t, x, x) for x a fixed interior point (simply take
the Taylor series of A around t = 0). In fact, the Taylor coefficients of A at t = 0
are given by the same polynomial expressions in the metric coefficients and their
derivatives as in the case without boundary.

We will actually prove more: We will describe the behavior of K not only on
the diagonal, but also nearby, in a similar manner as was done in the case without
boundary.
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Corollary 3.2. The heat trace has an asymptotic expansion22

(29)
∫

M

K(t, x, x) dx ∼ t−n/2
(
α0 + α1/2t

1/2 + α1t+ . . .
)
.

Our proof of Theorem 3.1 follows the same pattern as that of Theorem 1.1:
Starting from homogeneity considerations and decay properties of explicit model
solutions, a ’calculus’, that is a class of functions expected to contain the heat
kernel and its approximations, is constructed. This is shown to be closed under
composition and to have a notion of leading term, whose vanishing characterizes an
element’s being of lower order (i.e. it has a short exact sequence). These properties,
together with the model solutions and a simple Volterra series argument, already
suffice to construct the heat kernel.

It is remarkable that exactly the same program works in the case with boundary,
with only minor details added at most steps, once one has guessed the form of
the calculus. The main difference is that now there are two models: At interior
points the model is Euclidean space, and at boundary points the model is Euclidean
half space. So the main initial effort lies in understanding exactly which functions
have the two corresponding model behaviors simultaneously, and how the transition
between them works. This also leads to the leading term being a pair of functions
satisfying a certain compatibility condition. Once this is accomplished, everything
is automatic.

Here are a few references for alternative approaches: The Hadamard (= De Witt)
Ansatz (see Section 2.5.3(2)) was generalized to the case with boundary in [11]; M.
Kac in his famous article [9] gives a nice method for finding the first two coefficients
in the case of a plane convex domain. This was refined in [12] to the third coefficient;
an interesting observation here was that the Volterra series works also with very
low regularity metric, so can be used for the double of a manifold with boundary. A
quite different approach uses the technique of boundary layers, see [3] for example.
Related is the reduction to the boundary used by Greiner [7], who considers general
elliptic differential operators (instead of the Laplacian) and uses pseudodifferential
operators. Grubb gives in [8] a systematic study of pseudodifferential boundary
value problems (Boutet-de-Monvel’s calculus) and proves the heat asymptotics for
these.

3.1. The boundary heat calculus.

3.1.1. Motivation. In the case of manifolds without boundary we were guided by the
homogeneity of the heat equation (which suggested looking at functions of x/

√
t),

the (approximate) translation invariance of the initial condition (which suggested
looking at functions of (x−y)/

√
t instead), and the exponential decay of the model,

i.e. the Euclidean heat kernel on Rn. The definition of the heat calculus reflected
precisely these ideas.

What is new in the case of a manifold with boundary? The only really new point
is that the boundary condition breaks part of the translation invariance: For points
’very near’ the boundary, one has translation invariance only in directions tangent

22For the proof it suffices to consider the integral
∫
B(t, x)χ(x) dx for a smooth cutoff function

χ supported in a coordinate patch where (28) is valid. Introducing the new variable ξn = xn/
√
t

one sees that this equals
√
t
∫

Rn−1×R+
b(t, x′, ξn)χ(x′, ξn

√
t) dx′dξn which clearly converges and

is smooth in
√
t by the smoothness and rapid decay of b.
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to the boundary. This means that, at least near the boundary, we should expect
the heat kernel to be a function of t, (x′− y′)/

√
t, xn/

√
t and yn/

√
t and y′, where

here and always we use coordinates near the boundary

(30) (x′, xn) ∈ U = U ′ × [0, ε) ⊂M, U ′ × {0} = U ∩ ∂M, U ′ ⊂ Rn−1.

This expectation is supported by the explicit formula for the Dirichlet heat kernel
on the Euclidean half space Rn−1 × R+:

(31) E∂(t, x, y) = (4πt)−n/2
(
e−|x−y|2/4t − e−|x

∗−y|2/4t
)
, x∗ := (x′,−xn),

which may be rewritten

(32) E∂(t, x, y) = (4πt)−n/2e−|X
′|2/4

(
e−(ξn−ηn)2/4 − e−(ξn+ηn)2/4

)
where

(33) X ′ =
x′ − y′√

t
, ξn =

xn√
t
, ηn =

yn√
t
.

Apart from this new feature, we would like to proceed essentially as in the
case without boundary. That is, we would like to define a class of functions on
(0,∞)×M2, to be called the boundary heat calculus, which:

• reflects the homogeneity and decay properties of the model heat kernels on
Rn−1 × R+ and on Rn,

• has a notion of ’order’,
• has a notion of leading part, with a corresponding short exact sequence,

and
• has a composition theorem.

One way to look at (31) is this: E∂ is the sum of a ’direct’ term, which equals
the Rn heat kernel E, and a reflected term. The reflected term is chosen to satisfy
the heat equation (with zero initial condition) and with boundary data precisely
cancelling the restriction of the direct term to the boundary. From the principle
of locality it is to be expected, and can be read off from formula (32), that the
reflected term decays rapidly on the scale of

√
t as x or y leaves the boundary. In

particular, E∂ reduces to E plus O(t∞) as soon as either x or y stays away a fixed
distance from the boundary.

In addition to this we will need to look at E∂ as one basic object, rather than
as the difference of two. This is imposed on us by our method: Only this allows
for a reasonable notion of leading part. Also, it is motivated by the homogeneity
considerations above23.

This motivates the following definition.

3.1.2. Definition of the calculus.

Definition 3.3. Let M be a manifold with boundary. The boundary heat calculus,
denoted Ψα

H,∂(M), is, for each α ≤ 0, the space of functions A on (0,∞) ×M2

satisfying properties (a), (b) of Definition 2.1, property (c) for interior points p,
and in addition:

23and by the expectation that only this changed perspective allows generalization to other

geometries, for example conical singularities where the reflection principle is not available.
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(d) for each p ∈ ∂M there is a coordinate neighborhood as in (30) and functions

Ãdir ∈ C∞([0,∞)√t × Rn × U)(34)

Ãrefl, Ãbd ∈ C∞([0,∞)√t × Rn−1 × R2
+ × U ′)(35)

so that for x, y ∈ U , t > 0 one has

A(t, x, y) = t−
n+2

2 −α

(
Ãdir(t,

x− y√
t
, y)− Ãrefl(t,

x′ − y′√
t

,
xn√
t
,
yn√
t
, y′)

)
,

=: t−
n+2

2 −αÃbd(t,
x′ − y′√

t
,
xn√
t
,
yn√
t
, y′)

(36)

with rapid decay for Ãdir as in (10) and

(37) Ãrefl(t,X ′, ξn, ηn, y
′) = O((ξn + ηn + |X ′|)−∞),

together with all derivatives, uniformly for bounded t.

Note that Ãrefl depends on the same number of variables as Ãdir (and as A), as
it should.

One may be tempted to include the boundary condition in the calculus (A(t, x, y) =
0 whenever x ∈ ∂M), but this is not a good idea since applying ∆x would get us
out of the calculus.

Let us check that (d) implies (c) for y near an interior point of U : Simply set
Ã(t,X, y) = Ãdir(t,X, y)− Ãrefl(t,X ′, Xn + yn/

√
t, yn/

√
t, y′), then (36) is exactly

(9), and smoothness at
√
t = 0 follows from yn > 0 and (37). Also, one sees that

(38) Ã = Ãdir for t = 0, yn > 0.

For future reference let us rewrite the second equality of (36) in rescaled coordi-
nates:

(39) Ãbd(t,X ′, ξn, ηn, y
′) = Ãdir(t,X ′, ξn − ηn, y

′, ηn

√
t)− Ãrefl(t,X ′, ξn, ηn, y

′).

We need to define the ’leading term’. Recall that this must be done so that
the vanishing of the leading term of an element of Ψα

H,∂ characterizes its being in

Ψα−1/2
H,∂ .
Looking at (36), we are led to:

Definition 3.4. Let A ∈ Ψα
H,∂(M). Given coordinates in the interior of M , define

the interior leading term, Φint
α (A) just like the leading term in Definition 2.2.

Given coordinates near the boundary as in Definition 3.3(d), define the boundary
leading term, Φbd

α (A), as the function
(40)
Φbd

α (A)(X ′, ξn, ηn, y
′) = Ãbd(0, X ′, ξn, ηn, y

′) for X ′ ∈ Rn−1, ξn, ηn ∈ R+, y
′ ∈ U ′.

Again, Ãbd is not defined uniquely by A, but still its values at t = 0 are, as can
be seen from simply rearranging (36) into

(41) Ãbd(t,X ′, ξn, ηn, y
′) = t(n+2)/2+αA(t, y′ +X ′√t, ξn

√
t, y′, ηn

√
t).

Again, the highest priority is to analyze how these things depend on the choice
of coordinates.
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3.1.3. Coordinate invariance. We proceed similarly to the boundaryless case. But
first we need to define a bundle which will turn out to carry the boundary leading
part. Define the vector bundle E → ∂M with fiber over a point p ∈ ∂M given by

Ep = (TpM × TpM)/Tp∂M, where(42)

u ∈ Tp∂M acts on (v, w) ∈ TpM × TpM as (u+ v, u+ w).(43)

(43) makes sense since Tp∂M ⊂ TpM naturally. Note that Ep has dimension n+1.
One has a vector bundle map defined for p ∈ ∂M by

βp : Ep → TpM, [v, w] 7→ v − w,

with [v, w] denoting the equivalence class of the pair (v, w).
Define the inward pointing part of E by

E+
p = (T+

p M × T+
p M)/Tp∂M,

where T+
p M ⊂ TpM is the closed half space of vectors pointing into the interior of

M , or tangent to ∂M . Clearly, this makes sense since Tp∂M ⊂ T+
p M , and E+

p is
a conical subset 24 of Ep. Also, the total space E+ is a manifold with corners (of
codimension two). So the space C∞S(fibers)(E

+) of smooth functions on E+ which
decay rapidly in the fibers is well-defined. Then set

C∞bd(E+) := {φbd ∈ C∞(E+) :φbd = β∗φdir − φrefl for some

φdir ∈ C∞S(fibers)(T∂MM), φrefl ∈ C∞S(fibers)(E)}.

(44)

Given local coordinates on M near a boundary point, all of this looks as follows:
Let (∂xi)i=1,...,n be the local frame on TM defined by the coordinates, and let
(∂yi)i=1,...,n be a second copy of it (so the ∂xi , ∂yi are a local frame for TM ⊕TM).
Then the collection (

1
2
(∂xi − ∂yi)

)
i=1,...,n−1

, ∂xn , ∂yn

may be taken as frame in E. We denote the corresponding coordinates by X ′ =
(X1, . . . , Xn−1), ξn, ηn. Clearly, E+ is characterized by ξn ≥ 0, ηn ≥ 0. With these
coordinates on E, and with natural coordinates on TM , one has β(X ′, ξn, ηn, y

′) =
(X ′, ξn − ηn, y

′). A function φbd on E+ is in C∞bd(E+) iff, in coordinates, it is the
sum of a function in the variables X ′, ξn − ηn, y

′, rapidly decaying in (X ′, ξn − ηn),
and a function in X ′, ξn, ηn, y

′, rapidly decaying in (X ′, ξn, ηn). Roughly speaking,
this means that rapid decay is not required when going off to infinity along the
’diagonal’ in E+. This corresponds precisely to the decomposition in (39).

Lemma 3.5. (a) If condition (d) in Definition 3.3 holds in one coordinate
system then it holds in any.

(b) The interior leading term Φint
α (A) is defined invariantly as a function on

the tangent bundle which is smooth up to the boundary and rapidly decaying
in the fiber direction:

(45) Φint
α (A) ∈ C∞S(fibers)(TM).

24that is, α ∈ E+
p , r > 0 imply rα ∈ E+

p
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(c) The boundary leading term Φbd
α (A) is defined invariantly as a function on

the bundle E+ → ∂M defined above. Furthermore,

(46) Φbd
α (A) ∈ C∞bd (E+).

Proof. (a) Assume ψ(x) = x̄, ψ = (ψ′, ψn) is a coordinate change, and condition (d)
holds in the x̄-coordinate patch Ū , with functions ¯̃Adir(t, X̄, ȳ), ¯̃Arefl(t, X̄ ′, ξ̄n, η̄n, ȳ

′)
satisfying the smoothness assumptions (34), (35) and the decay (10), (37). We
choose Ãdir as in the boundaryless case, see (14), and therefore only need to find
Ãrefl with the same properties as ¯̃Arefl, and satisfying

(47) Ãrefl(t,
x′ − y′√

t
,
xn√
t
,
yn√
t
, y′) = ¯̃Arefl(t,

ψ′(x)− ψ′(y)√
t

,
ψn(x)√

t
,
ψn(y)√

t
, ψ′(y′, 0))

for all x, y near p. This works almost the same way as for Ãdir: We have

ψ′(x)− ψ′(y) = h′′(x, y)(x′ − y′) + h′n(x, y)(xn − yn)

for a smooth (n − 1) × (n − 1) matrix h′′ and (n − 1) × 1-matrix h′n, satisfying
h′′(y, y) = d′ψ′y, h′n(y, y) = dnψ

′
y. Also, since ψn(x) = 0 for xn = 0 we have

ψn(x) = xnϕn(x)

for a smooth function ϕn satisfying ϕn(x′, 0) = dnψn|(x′,0) > 0. Then set
(48)
Ãrefl(t,X ′, ξn, ηn, y

′) = ¯̃Arefl(t, h′′X ′ + h′n(ξn − ηn), ϕn(x)ξn, ϕn(y)ηn, ψ
′(y′, 0))χ

where h′′ and h′n are evaluated at (x, y), and χ is evaluated at x, with y = (y′, ηn

√
t)

and x = (y′ + X ′√t, ξn
√
t). This is clearly equivalent to (47) for x, y near p, and

satisfies the required decay.
(b) This is clear as in the boundaryless case. Smoothness up to the boundary

follows from (38) and smoothness of Ãdir up to the boundary.
(c) Setting t = 0 in (48) we get

Ãrefl(0, X ′, ξn, ηn, y
′) = ¯̃Arefl(0, d′ψ′X ′ + dnψ

′(ξn − ηn), dnψnξn, dnψnηn, ψ
′(y′, 0)),

with all differentials evaluated at (y′, 0), and this is easily seen to be the transfor-
mation rule for functions on E, with respect to the coordinates introduced above.
The same holds for Ãdir by (b), so we are done.

3.1.4. Short exact sequence. Before we can state the short exact sequence we need
to analyze which function pairs can occur as leading terms. The new aspect
here is that there are compatibility conditions: It is clear that, in (39), Ãbd at
t = 0 determines Ãdir at t = 0, yn = 0, for example via Ãdir(0, X ′, Xn, y

′, 0) =
limr→∞ Ãbd(0, X ′, Xn + r, r, y′), and this should coincide with the boundary values
of the interior leading term.

To put this invariantly, observe that in (44) φdir is determined uniquely by
φbd ∈ C∞bd(E+) via φdir(X, p) = limw φ

bd([X + w,w], p), where the limit is over
w ∈ T+

p M with its class in TpM
+/Tp∂M tending to infinity.
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Definition 3.6. The space of leading terms, C∞Φ,∂(M), is the subspace of C∞S(fibers)(TM)×
C∞bd (E+) given by pairs25 (φint, φbd) satisfying

(49) φint
|T∂M M = φdir

where φdir is determined by φbd as explained above.

Lemma 3.7. The sequence

0 → Ψα−1/2
H,∂ (M) → Ψα

H,∂(M) Φα→ C∞Φ,∂(M) → 0

is exact.

Proof. This is clear except possibly at C∞Φ,∂(M). To prove surjectivity of Φα we may
clearly work locally near the boundary, so suppose we have functions φint, φbd =
β∗φdir − φrefl satisfying (49). Then set, locally,

A(t, x, y) = t−(n+2)/2−α

(
φint(

x− y√
t
, y)− φrefl(

x′ − y′√
t

,
xn√
t
,
yn√
t
, y′)

)
.

This has interior leading part φint since φrefl is rapidly decaying in X ′, ξn, ηn, and
has boundary leading part φbd because of (49).

3.1.5. Composition.

Proposition 3.8. Let A ∈ Ψα
H,∂(M), B ∈ Ψβ

H,∂(M), with α, β < 0, and assume
M is compact. Then A ∗ B is defined and lies in Ψα+β

H,∂ (M). The interior leading
term is calculated as in (16), and the boundary leading terms satisfy

(50) (a ∗ b)bd(X ′, ξn, ηn, p) =
∫ 1

0

∫
Rn−1

∫
R+

(1− σ)−(n+2)/2−ασ−(n+2)/2−β

abd
(

(X ′ − Z ′, ξn, ζn)√
1− σ

, p

)
bbd

(
(Z ′, ζn, ηn)√

σ
, p

)
dζndZ

′dσ.

(The formula for the leading term will not be used.)

Proof. As in the proof of the case without boundary, it is enough to consider x, y in a
coordinate patch U . Furthermore, we may assume that U = U ′×[0, ε) is a boundary
coordinate patch, where A,B have representations as in (36), and to consider the
localized integral (17). We replace the integration variables by σ = s/t, Z ′ =
(z−y)/

√
t, ζn = zn/

√
t and introduce new variables X ′ = (x′−y′)/

√
t, ξn = xn/

√
t,

ηn/
√
t instead of x′. xn, yn. Then (17) becomes t−(n+2)/2−α−βC̃bd(t,X ′, ξn, ηn, y

′)
where C̃bd(t,X ′, ξn, ηn, y

′) equals

(51)
∫ 1

0

∫
Rn−1

∫
R+

dζn dZ
′ dσ(1− σ)−(n+2)/2−ασ−(n+2)/2−β ·

Ãbd(t(1−σ),
(X ′ − Z ′, ξn, ζn)√

1− σ
, y′+Z ′

√
t)B̃bd(tσ,

(Z ′, ζn, ηn)√
σ

, y′)χ(y′+Z ′
√
t, ξn

√
t).

We need to check convergence and rapid decay properties for each of the four
terms arising from splitting up Ãbd, B̃bd as sums of direct and reflected terms (as
in (39)). The product of direct terms is done as in the case without boundary.

25that the leading term is a pair of functions corresponds to the two symbol levels in the

Boutet-de-Monvel calculus, see [8]
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We claim that the other three terms are all in C∞S(fibers)(E
+), that is, they decay

rapidly in all the variables X ′, ξn, ηn. For example, let us look at the direct term
Ãdir and the reflected term B̃refl. In the region σ ≤ 1/2 introduce the variables
W ′ = Z ′/

√
σ for Z ′ and ρn = ζn/

√
σ for ζn. Then the power of σ is −1− β, so the

integral converges since β < 0, and the integrand of the dρndZ
′ integral is bounded

by (||X ′| − |W ′|| + |ξn − ρn|)−N (|W ′| + ρn + ηn/
√
σ)−N for any N , from which

convergence and rapid decay of the integral is easily seen. Derivatives, the region
σ ≥ 1/2 and the other cases are treated similarly.

Formula (50) follows immediately from (51).

We also have the analogue of Proposition 2.7:

Proposition 3.9. (1) Let A ∈ Ψα
H,∂(M), α ≤ −1. Then (∂t − ∆x)A ∈

Ψα+1
H,∂ (M).

(2) The interior leading terms of A and R = (∂t−∆x)A are related as in (19),
and the boundary leading terms abd = Φbd

α (A) and rbd = Φbd
α+1(R) satisfy

(52) rbd(X ′, ξn, ηn, p) = [−n+ 2
2

− α− 1
2
X ′∂′X

− 1
2
ξn∂ξn

− 1
2
ηn∂ηn

−∆0,p
X′,ξn

]abd(X ′, ξn, ηn, p).

Here, ∆0,p
X′,ξn

=
∑

ij g
ij(p)∂Xi

∂Xj
(with Xn replaced by ξn).

Again, formula (52) will not be used directly.

Proof. In the interior, this follows from Proposition 2.7. Near a boundary point
write A(t, x, y) = t−lÃbd(t, x′−y′√

t
, xn√

t
, yn√

t
, y′), l = n+2

2 +α, then the calculation is the
same as in the case without boundary, except thatXn is replaced by ξn in the formu-
las, in the t-derivative one has an extra term −t−l yn

2t3/2 ∂ηn
Ãbd = −t−l−1 1

2ηn∂ηn
Ãbd,

and in the computation of ∆xA there is an additional contribution to the re-
mainder R2 from writing gij(y) = gij(y′, 0) + hij

1 (y)yn, where the second term
is
√
t hij

1 (y′,
√
tηn)ηn and thus lower order.

3.1.6. Boundary conditions. Let

Ψα
H,Dir(M) = {A ∈ Ψα

H,∂(M) : A(t, x, y) = 0 whenever x ∈ ∂M}.

The following lemma is obvious:

Lemma 3.10. (a) Let A ∈ Ψα
H,Dir, B ∈ Ψβ

H,∂ , where α, β < 0. Then A ∗ B ∈
Ψα+β

H,Dir.
(b) There is a short exact sequence for Ψα

H,Dir, with boundary leading parts
vanishing at the ’left’ boundary (ξn = 0) of E+.

3.1.7. Evaluation at t = 0. Lemma 2.8 carries over directly, mutatis mutandis; that
is, in (20) one uses the interior leading part of A, and the boundary leading part
plays no role.
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3.2. The Volterra series. We restate Proposition 2.10 in the present context:

Proposition 3.11. Assume K1 ∈ Ψ−1
H,∂ satisfies

(∂t −∆x)K1 = R ∈ Ψ−1/2
H,∂ ,

K1(t, x, y) = 0 whenever x ∈ ∂M, (soK1 ∈ Ψ−1
H,Dir)

lim
t→0+

K1(t, x, y) = δy(x).
(53)

(a) Then

(54) K := K1 −K1 ∗R+K1 ∗R ∗R− . . .

converges in C∞((0,∞)×M2), and K ∈ Ψ−1
H,Dir(M).

(b) K is a Dirichlet heat kernel, that is, it satisfies (26).
(c) The series (54) is an asymptotic series as t→ 0. More precisely, K1∗R∗N ∈

Ψ−1−N/2
H,Dir (M).

The proof carries over from Proposition 2.10 with almost no changes. Only in
the last sentence in its proof one should use, near the boundary, a cutoff χ(x)χ(y) =
χ(y′ +X ′√t, ξn

√
t)χ(y′, ηn

√
t) instead, on whose support |X ′|+ ξn + ηn ≤ Ct−1/2,

which gives the required exponential decay in the reflected term.

3.3. Construction of the heat kernel.

Theorem 3.12. Let M be a compact Riemannian manifold with boundary. Then
there is a unique Dirichlet heat kernel K, and it lies in Ψ−1

H,∂(M).
Furthermore, K may be split K = Kint+Kbd where tn/2Kint(t, x, x) ∈ C∞([0,∞)×

M) and Kbd(t, x, y) = O([d(x)/
√
t + d(y)/

√
t]−∞), with d(x) the distance of x to

the boundary.

Proof. After all this preparation, this works just the same as in the case without
boundary, except that the initial step is modified since there are two models.

Define (φint, φbd) ∈ C∞Φ,∂(M) by

φint(X, p) = (4π)n/2e−|X|2g(p)/4, p ∈M

φbd([v, w], p) = (4π)n/2
(
e−|v−w|2g(p)/4 − e−|v−w∗|2g(p)/4

)
, p ∈ ∂M

where the ’reflected’ vector w∗ of w ∈ TpM , for p ∈ ∂M , is defined as follows:
Write w = wbd + wn with wbd tangential to the boundary and wn normal to it,
with respect to the metric g(p); then w∗ := wbd − wn. 26 With this definition it
is clear that |w| = |w∗|, so φbd satisfies the boundary condition in Lemma 3.10(b).
Also, it is clear that φint, φbd satisfy the compatibility condition (49), so there is
K1 ∈ Ψ−1

H,Dir with Φ−1(K1) = (φint, φbd).

26A little care is needed here: It would not work to choose any boundary adapted coordinates

(as before) and then, with w = (η′, ηn), set w∗ = (η′,−ηn), since the ’cross terms’ in |v−w∗ |2g , of

the form ginXi(ξn + ηn) with i ≤ n− 1 would not equal the corresponding terms ginXi(ξn − ηn)
in |v − w|2 at ξn = 0, so the boundary condition would be violated by φbd unless gin = 0 for all

i ≤ n − 1. Therefore, only coordinates in which the xn direction is orthogonal to the tangential

directions can be used here, and our definition reflects precisely this, in a coordinate-free way.
(Such choice of coordinates, called ’coordinates normal with respect to the boundary’ exist, but
are not needed here.)
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By Proposition 3.9 the remainder R = (∂t − ∆x)K1 is in Ψ0
H,∂ with leading

term27 Φ0(R) = 0, so actually R ∈ Ψ−1/2
H,∂ , and then the Volterra series gives a heat

kernel. Uniqueness can be proved in the same way as before.
Note that K(t, x, y) = 0 for y ∈ ∂M also since this is true for K1, hence for R,

hence for K.
The last claim is clear from the definition of ΨH,∂ , except for the smoothness of

K int(t, x, x) with respect to t (rather than
√
t). The latter follows in the same way

as the corresponding statement in the case without boundary, see the discussion
after (24).

27again, this could be computed from formula (52), or concluded directly from the fact that
this formula says that the leading part can be computed by freezing coefficients and forgetting
lower order terms.
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