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1. Introduction and Summary

The anomalous potential of the earth is described as a gaussian stoch-
astic process &(f, w) where teMpg, the space of points outside a sphere
concentric with the earth and with a radius R, so that it is contained in
the interior of the earth. The mean value function is set to be identically
zero and the covariance function has to be estimated.

It is shown that, in order to ensure that the sample functions of the
process are elements of some Hilbert space of harmonic functions, it is
necessary and sufficient that the covariance function r has the expression

M6 1) = 3 Anea(s)en(t) (1)
7 =1

oo
with A, 2 0, > A < + « and (en, n€ N) a complete orthonormal sy-
n=1
stem in the actual Hilbert space.

If (1) is satisfied, the process defines a gaussian measure on this
Hilbert space. From the gaussian measure the covariance properties of
different linear functionals are derived in a very convenient way.

It is shown that the covariance function depends only on the spherical
distance between s and ¢ if, and only if, sets of potentials that can be
carried into each other by means of a rotation of space around the origin
have equal probability.

Furthermore, the process is shown to be non-ergodic, i.e.

ry) = f £ (50 )& (10, 0) dP (@) + f Es,w)E(rw)dsdt ()
Ve, ta =Y Ys,t =¥
w € 2 sEKR
and that the variance of the random variable on the right side of (2)
is fairly large. ‘
It is therefore needless to try to determine the covariance function
very exactly, as this is impossible.
As an alternative, it is suggested to use a simple expression as e.g.




0 A R2 n+1
r(s,t) mn gg(n D2 (f‘s f‘z) Pyu(cos0) 3)

which is easy to handle and which fits the empirical covariance function
well indeed.
Predictions of a few linear functionals from others are carried through.
To derive the above results it has proved extremely useful to deal
with the following mathematical concepts:

1) gaussian measures on Hilbert spaces,
2) reproducing kernel Hilbert spaces,
3) unitary representations of groups,

and of course standard results from functional analysis and probability
theory.

I have tried to formulate the theory in a general language, mainly
because it has been easier for myself not to be disturbed by irrelevant
facts as “the functions are twice differentiable” and similar things.

I am now aware that it would have been more adequate to work only
in complex Hilbert spaces and derive the results for the real Hilbert
spaces from those. I never made up my mind during the work, and as
a result you will find the word ‘“‘unitary” used in situations, where
“orthogonal” would be more appropriate.

The sections 2 and 4 contain only well known results and are included
to introduce various notations.

Section 3 is mostly an “explanation” of the importance of a probabil-
istic study of the problem. ]

Sections 5, 6.1 and 7 contain a summary of the most important results
on the subjects treated, which may be unknown to the reader.

Sections 6.2 and 8 contain results that I have not seen in the literature
before, and the concept of a homogeneous random functional is probably
new, although it is nothing but an obvious generalization of stationarity.

In section 9, the theoretical results are applied to build the model
for the potential.

Section 10 is devoted to the problem of estimating the covariance
function, i.c. it is here shown that the estimator in no sense converges
towards the true value. Instead a closed expression of a covariance
function which seems to fit data quite well is found.

Section 11 contains a non-serious attempt to predict different linear
functionals from others, just to show that the method is not quite insane.




2. Some Fundamental Concepts of Potential Theory

This section is written for the benefit of readers, who know nothing
or almost nothing about the potential of the earth, and may be omitted
by others. A heuristic exposition of the theory is contained in Heiskanen
& Moritz (1967), and Sternberg & Smith (1946) gives a more detailed
treatment of the mathematics behind.

2.1. The Potential of the Earth and Harmonic Functions

The potential of the earth can be considered as a real-valued function
on the space outside the earth. It can be partitioned into the potential of
rotation and the potential of mass, the first of which is due to the earth’s
rotation about its own axis, and the second to the shape of the earth
and the distribution of mass in its interior. The potential of rotation is
very well known, and we shall here simply denote the potential of mass
as the potential, if the opposite is not especially remarked.

This potential # is a harmonic function outside the earth, which means
that it satisfies Laplace’s equation:

Au =10 (1)
0% a2 02

where 4 = — + —— + — is the Laplacian operator. Furthermore, the
0x2 0yr 0z

potential is regular at infinity, which means that lim ru exists and r2Du
¥ o> 00

is bounded; here r = (x2 + y2 + z2)!/2 in usual rectangular coordinates, and
D, is any of the three partial derivatives of first order. The quantity

m = lim ru is denoted as the mass of the potential and coincides with
 — 00

the earth’s mass in the usual sense.

Example 1.1.
The function u: R®\{ 0 } >R defined as

1
u(x,y,2) = = = (P +yiaz)
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is a regular potential with mass 1; in fact:

2 O

= — x(x%+ p% 4+ 2%~ 12,
ox

r

which is certainly bounded by —1 and 1;

Iim ru = 1;
¥ > 0

0%u 2x2— y? — z?
0x2  (x24y%+z2)b/2”

and by symmetry you will easily see that u satisfies Laplace’s equation.
This potential is the potential of the mass 1, situated at the origin of
the coordinate system.

As the shape of the earth is in no sense ideal, neither flat, nor spherical
or cllipsoidal, and as we know neither the exact shape, nor the distribu-
tion of mass in its interior, we are unable to determine the potential
by mathematical methods, but will have to search for it among a large
class of harmonic functions. We do not even know the domain in which
the potential has to be defined.

We shall not consider these difficulties in detail, but a way to over-
come them (Krarup, 1969) is to search for the potential among functions,
regular and harmonic, outside a sphere which is contained in the earth’s
interior, the so-called Bjerhammar sphere, Of course, this does not solve
the problem, but because of the very important theorem of Runge (see
e.g. Krarup, 1969) we can in this way find an approximation to the
potential, which in some sense is arbitrarily good.

(We can make the usual compactification of R3, adding the point .
If we then remove the earth from this compact space, we get a locally
compact metric space M, so that the potentials are continuous functions
on M. The sct of functions harmonic outside the Bjerhammer sphere is
then dense in the set of harmonic functions on M in the topology of
uniform convergence on compact subsets of M).

We shall now examine some of the properties of the class of regular
harmonic functions outside a sphere with radius R. Let now in the
following Mg = {(x,y,2) e R®|(x2 +y*+22)1/2 > R}. (2)
It can be shown (Sternberg & Smith, 1946) that every regular harmonic
function on an open subset M of three-dimensional euclidean space R®




il

is analytic in M, i.e. can be represented by an absoluie convergent power
series.

w32 = 5SS dyr(x— X0 -y -2k (3)

i=07=0 k=0
where (xo, o, Z0) € M and

1 ai'i'_?"l'ku
i1jlk! Oxtoyiozk

4)

dijp =
(x,¥,2) = (To, Yo, %)

An important class of harmonic functions consists of the spherical
harmonics. By a spherical harmonic of degree n we mean a homogeneous
polynomial of degree n in x, y and z, which satisfies Laplace’s equation:

Kn(x,y,2z) = 2. dpgrXPyez’ (5)
ptgt+r=mn

AKy = 0. (6)

It is not difficult to show (Sternberg & Smith, 1946) that there exist
exactly 2n+ 1 linearly independent spherical harmonics of degree n.
This means that there are functions Kpm, m = —n, ..., -1, 0,1, ..., n,
so that any spherical harmonic of degree » has a unique representation as

K
Kp = Z AnmKnm, (7

m=—"n

where an,m are real numbers.
We shall now introduce spherical coordinates (r, 0, ), determined by

x = r sinficosZ

y = rsinfsini (8)

z = r cosl ,
or equivalently

ro=(x2+y2+ 292

(xz +}.2)1/2
f = Arctan ————
z )
A= Arctan—J—}
X

(see fig. 1).
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Fig. 1.
6 is polar distance — A is geocentric longitude — r is distance to origin

It can now be shown that the functions

Knm(r,e,a) == F”an(e,ﬂu) = r”an(COSB)COSInﬂ.

10
m=20,1, (10)
and
an(r,a,)b) = rnSn'm(G,ll) = r“an(COSQ) Sinm/l ] (11)
m=1,...,n J

together constitute 2z + 1 linearly independent spherical harmonics of
degree n. P are the associated Legendre functions, given by

gﬂzdeﬂa)
Pum(t) = (1-1%2 e

(12)
where P, are the well known Legendre polynomials. The functions R
and Spm in (10) and (11) are called surface spherical harmonics.

It can be shown that a function is harmonic inside the unit sphere
if, and only if, it can be represented by a series in spherical harmonics:

u(r,0,1) = Z P ( 2 Anm Rum (0,2) -+ menSﬂ,m(B A)). (13)
% =0 =0

The series converges absolutely and uniformly on any closed subset
contained in the interior of the unit sphere.
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Similarly, any function is harmonic and regular in the region Mg, if,
and only if, it can be represented by a series

n=0\% m =0 m=1

o ’R n+l/ p n
u(,0,2) = 3 (—) ( 2, anm Ram(0,4) + 2, bnmSnm(G,ft)>, (14)

which converges absolutely and uniformly on any set of the form

{(r,B,l) [r= ro} with r, > R.
The functions:

Rug(0,2) = [/2n+1Ppo(cost) = |/2n+ 1 Pn(cosf) = Ruo(0)
Rum (0,7 Rum(6,2)
_ (15)
=l/v(2 +1)( ! ,m=1,...,n
(n+m)!
Sum (6,1) Saum (0,4)

are often called fully normalized surface spherical harmonics.
The following addition formula is very useful:

Pr(cosy) = Pup{cost)Py(cost’) l
+ 2 % (” — )’Pﬂm(cosﬂ)an(cosﬁ yeosm(A— 4'), (16)
=1 (n )

where cosy = cosficost’ +sinfsinf’ cos(A —1") is the spherical distance
between the points (1,6,4) and (1,6°,4"). If # = 6" and 1 = 1" we get

Eo(n-—-m)!
Pn(l) = [P)?,(COSG) Z )T[an(cose)]z (17)
and as | P(¢) | £ 1 we get the useful inequality:
+ !
 Pam(cost) | 5 (18)
(n—m)!

which is valid for all #» and m. It is possible to introduce various inner
products in subclasses of harmonic functions in such a way that they
become Hilbert spaces. We shall in the next part of this section consider
an example.
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2.2. A Hilbert Space of Potentials

From now on we shall denote a point in R® with a small letter, e.g.
t and its spherical coordinates with (r4,0:,4¢).
As proved for example by Weyl (1931) the following relations hold:

»

1 - _

-—_ an(G,;b).R}gl(B,Z) = 6]{;1’2, 6mz

47 J
g

- 0,)54(6,2) = 0

Z;';d nm\l, EI\U,A) = | (1)
a

1 (. _

— | Sam(0,4)Sk1(0,4) = dpnbm

4%;

where f denotes the integral over the unit sphere in R3, and
a
Lifj=k
(5_-;‘1.? = X
0ifj+k

is the Kronecker symbol. It is because of these relations that R, and
Snm are denoted fully normalized. They constitute a complete ortho-
normal system in the Hilbert space of all square-integrable real func-
tions on the unit sphere.

If we define the functions €] for neN, m = —n,...,—1,0,1,..., n

n+l
<—> an, (6;,1;) for m g 0

m re
en (t) - R n+1 B (2)
<_ Sn|ml(6¢,/1t) fOI‘ m <0
Ft
we get
1 m 1
47 R2 €n €y = aknalm? (3)

OR

where f denotes integration over the sphere with radius R and center at
OR

origin.

If we now by U, denote all finite real linear combinations of the func-

tions e’
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N n \
U, = { > > dynen ! NeN,a, €R (4)

=1 Mm=—n J,

the functions in U, will all be regular and harmonic in Mz. We can
define an inner product on U, {,», by:

{u, vy = ! fuv. (5)

U= Zl 2 Gnmb’?
n=1 m=—n
N n (6)
V= Z Z bnmega
=1 m=—n
then
n 7
u, vy = Z Z anmbnm‘ (7
n=1 m=-n
It is obvious that, if we define the norm || ||, by
)| = Gud'l?, (&)

U, becomes a pre-Hilbert space.

If we by U denote the completion of U, with respect to the norm
(8), U becomes a Hilbert space. This Hilbert space can be shown to
consist of all functions, regular and harmonic in Mg, for which the limit

o |

lim u? 9

e o0 4nR? , ( )
TR+ &

exists and is finite, The inner product {,> on U becomes

{u,vyp = lim uv. (10)
g0
OR+¢

Obviously U is a real, separable Hilbert space and (ell'| m, ne N,

| m| £ n) is a complete orthonormal system in U. We shall later show
that U has a reproducing kernel, but because this is a general property
of Hilbert spaces consisting entirely of harmonic functions, we shall not
discuss this property until section 4. In the same section we shall also

consider other Hilbert spaces of potentials relevant to our problem.
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2.3. The Disturbing Potential

The potential W is often divided into a normal potential N and a
disturbing potential T:
W= N+T. (1)

The normal potential N is in a way a first approximation to the potential,
and the problem of determining the potential is then formulated as
determining the disturbing potential 7.

In choosing the coordinate system in such a way that the origin is
situated at the gravity center of the earth, the z-axis coincides with the
first principal axis of inertia, and so that we get a righthanded coordinate
system, it is possible to deduce that the coefficients to €™ forn = 1, n = 2
and m =1, —1 in a series expansion of the potential must be zero
(Heiskanen & Moritz, 1967). The constant term in the series expansion
of W is the mass of the earth and is so well known that we can include
it entirely into the normal potential, which means that ir will not occur
in the expansion of the disturbing potential. We shall therefore formulate
the problem of determining the disturbing potential as finding a harmonic
function in the corresponding closed subspace of a Hilbert space of
potentials. But as a closed subspace of a Hilbert space is again a Hilbert
space, this will be of no importance for the theoretical considerations.
Throughout the years many versions of the normal potential have been
used, but a detailed description of this problem cannot be given here.
The reader is referred to different books on physical geodesy, e.g.
Heiskanen & Moritz (1967).

2.4. Linear Functionals

It is physically impossible to measure the value of the potential in any
point of space. But it is possible to get some information about the
potential by measuring different linear functionals of the disturbing
potential as gravity anomalies, deflections of the vertical and others.
We shall later see that these functionals are bounded i.e. continuous in
ail the relevant Hilbert space topologies.

Example 4.1. Gravity anomalies

The gravity anomaly in a point #, € My, Zg(t,), corresponding to the
disturbing potential 7, can be found as




L7

0T (1)
ar

2
Ag(ty) = - “’T;T(to) (H

t =ty
(Heiskanen & Moritz, 1967). If T has the series expansion
oo n
T = Z Z D ‘97?(;0)’ (2)

=1 m=—n

(1) can easily be transformed to

] = n
Ag(fo) = Z Z (” - 1)anmega(r0)' (3)
f'to =1 m=-n
If we define
n-—1 "
bum(te) = ¢ (2o)s 4)
tﬂ

and use the inequality (18) in part 1 of this section, we get

(n _ 1)2 R 2n 42
bn'm,(t(])z é . (""""'“‘ 2(2!’1 + 1) (5)
rt, Fi,
and the sum
[es) n
2. 2. bam(to)? (6)
n=1 m=—=n
will then converge because — < 1.
Fe

L]

If we then by g: denote the element of the Hilbert space U defined in
the previous part of this section with coefficients b,,,(¢,) to €7, it is
obvious from (3) that

Ag(lo) = <Ts gtu>' (7)

From the Frechét-Riesz theorem on representation of bounded linear
functionals on Hilbert spaces we then have that all the functions mapping
a disturbing potential into the corresponding gravity anomaly in a point
to € My are bounded linear functionals on U, i.e. elements of the dual
space to U, U*,




3. Remarks Concerning Stochastic Models for the
Variation of the Potential and Gravity Field of the Earth

3.1. Historical Remarks

The severe difficulties of determining the potential of the earth and
the irregular behaviour of the gravity anomalies made Kaula (1959), in
stead of determining the value of the gravity anomalies by interpolation
between measured values, try to describe the gravity anomalies as a
second-order homogeneous random field on a sphere, i.e. as a family of
random variables {Ag(t), ri = r} with finite second-order moments,
constant mean value function equal to zero, and a covariance function
invariant with respect to the group of rotations of three-dimensional
space around the origin:

E{dg(t)dg(s)} = 5 o2P,(cosp(s,1)), (1)

where y(s,7) is the spherical distance between s and f. The coefficients
o2 to the Legendre polynomials in (1) are known as “degree variances”.
(It has been shown by Obukhov (1947) that any rotation invariant positive
definite continuous function on a sphere must be of the form (1)).

Kaula tried to estimate the first 30 values of ¢, by means of a harmonic
analysis of an empirical covariance function. Usual linear least squares
prediction was then applied to predict the gravity anomalies in areas
without measurements. The 1959 paper by Kaula was nothing but an
“ad hoc”’-adaption of time series analysis techniques, but contains many
relevant ideas and valuable results.

Among other authors, H. Moritz (1963) developed a systematic theory
for the statistical treatment of gravity measurements especially with
respect to prediction of gravity anomalies. Moritz pointed out the very
close analogy between interpolation and prediction. However, the ap-
proach of Moritz was not theoretically exact as regards the probabilistic
background of the model, which we shall discuss later.
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In later articles (e.g. Kaula 1963, 1966) several attempts were made
to improve the values of the degree variances, and some of the basic
theoretical concepts were discussed.

Although the physical and mathematical relationship between poten-
tial, gravity anomalies, deflections of the vertical and other functionals
has been known among geodesists for years, Krarup (1969) was the first
to exploit this in connection with the statistical analysis of these measure-
ments in such a way that it became possible to treat all these functionals
simultaneously.

In “A Contribution” Krarup points out that, in order to make sure
that the predicted potential is a potential, it is not enough to model the
process on a sphere, but you must define the process on the space outside
a Bjerhammar sphere. Krarup considers the values of the potential as the
Jundamental process and the gravity anomaly and other processes as results
of some linear operation on the potential process. Krarup proves that, if
the predicted potential should be a potential, any rotation invariant
covariance function must be of the form

o R2\" +1

cls,t) = > A,(2n-+ 1)( ) Py (cosy(s, 1)), (2)
n=0 Fsti

Krarup draws the attention to the fact that the probabilistic background

has not been treated in a satisfactory way. I think that Krarup is the

first to mention the word probability measure! Among other things,

Krarup points out that in the definition of the covariance function as

cw) - | | deagyanas 3)

Yis,t)=9 Op

there is an implicit assumption of the process to be ergodic, as integration
with respect to a probability measure has been changed by an integration
with respect to the Haar measure on the rotation group, which by no
means is a trivial assumption. In fact we shall prove that it is wrong!

Tscherning (1970) has made an attempt to apply the methods outlined
by Krarup to the prediction of deflections of the vertical in Denmark
from gravity data. Tscherning tries to specify some of the probabilistic
assumptions and uses the interesting work of Parzen (1959) to describe

the theoretical statistical ideas behind the analysis.
2*
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Finally, we shall mention the work of Gaposchkin and Lambeck (1970),
where some improvements of the degree variances were made using
satellite data.

3.2. Motivating Remarks

It is the main purpose of this work to build a stochastic model, which
is theoretically exact, i.e. in which all the assumptions are explicitly
stated and examined in a way that the model should be without contra-
dictions and approximations where this is not necessary. I shall also try
from the theoretical analysis to draw some consequences about the
statistical analysis of the data, i.e. estimation and prediction.

It is my opinion that, in order to get a good model, we must try to
use all information about the mathematical and physical properties of
the potential.

It must then be very important to find a necessary and sufficient
condition of the covariance function, which ensures that the sample
functions are almost certain to be elements of some Hilbert space of
potentials.

As it could be interesting to try to search for the potential outside
another figure than a Bjerhammar sphere, e.g. an ellipsoid, 1 shall try
to build up a general model which applies to any Hilbert space of
harmonic functions.

We shall also describe the relation between measure-preserving trans-
formations and rotation invariance because this gives an intuitively better
understanding of the invariance assumptions of the model.

In this connection we shall investigate the ergodic properties of a
similar process in order to deal with estimation problems.

First of all, however, we have to use an awful lot of mathematics.
Maybe I will sometimes generalize more than necessary to solve the most
relevant problems, but I think that it often gives a better understanding
of the model.




4. Reproducing Kernel Hilbert Spaces

The theory of reproducing kernels has for two reasons turned out to
be very useful in the treatment of this problem:

1} any Hilbert space of sufficiently well behaved functions (e.g. poten-
tials) has a reproducing kernel,

2) the Hilbert space, spanned by a second order stochastic process,
is isomorphic with some reproducing kernel Hilbert space.

The second property has been utilized for the first time by Parzen
(1959, 1961). Aronszajn (1950) gives a detailed treatment of the theory
and Meschkowski (1962) considers many applications. Also Davis (1963)
has a short treatment of the basic results with special attention to
approximation problems.

4.1. Basic Properties and Definitions

Let U be a Hilbert space consisting of functions # from M into the
real or complex numbers: u:M —~K (=R or C). By {,>, || || we
denote respectively the inner product and norm in U. Let &k be a function
of two variables k:M x M - K. For all t € M we shall by k¢ denote
the function kt: M — K, defined as kt(s) = k(s,t) for s € M.

Definition 1.1. The function & is said to be a reproducing kernel for the
space U if

YyVseM:kselU

1) YueUVseM: u(s) ={u, ks>,

The property 1i) is usually called the reproducing property.
From the definition is easily seen that k is Hermitian

k(s,t) = (kb ks = (ks kb = k(2,5) (1)

Furthermore, k(s,s) = 0 and for all a,, ..., an €K, ¢, ..., th €M
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n

) w n
0= X akh, 3 aqklty = 3 3 aidsk(t,t). (2)
i=1 i=1 i=1 j=1

The property (2) shall we express by saying that k is positive.
The following important theorem by Aronszajn gives a n. and s.
condition of a Hilbert space having a reproducing kernel:

Theorem 1.2 (Aronszajn). A necessary and sufficient condition that U have
a reproducing kernel is that all the linear functionals Is, s € M, defined by

Is(u) = u(s), Vue U 3)
are bounded, i.e. elements of the dual space U¥*.

Proof: Follows immediately from the definition and the Frechét-Riesz
representation theorem.

Theorem 1.3. If U has a reproducing kernel, the kernel is unique.

Proof: Suppose k, and k, are reproducing kernels. From the definition
we get Vst e M:

ki(s,) = ki(s) = <k k3> = ky(t) = ky(s,0)

and therefore k; = k,.

A property that makes the theory so important is that, if a Hilbert
space has a reproducing kernel, the convergence in norm implies point-
wise convergence. This means that the representations of the elements

as sums are convergent in the usual sense, and not just in the strong
topology.

Theorem 1.4. Let U have a reproducing kernel, and let u, uy, u,, ... be
elements of U, so that lim ||u—uy, || = 0. Then
7 ~> 00
VseM: lim uy(s) = u(s), 4)
n—> oo

where the convergence holds uniformly in every subset M' < M, so that k
is bounded on the diagonal of M' x M',

Proof. [u(s) — un()P = |[<u — un, k%) *
Hu — Up II 'Hks” = H i — unH 'k(S,S)l’Ia

= C-llu—unll

A

where | k(s,5)"| < C for all s € M.
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It could be interesting to see, if any positive hermitian function would
be reproducing kernel for some Hilbert space. In fact, the answer is
affirmative;

Theorem 1.5, Let M be an arbitrary set, and letk: M x M — K(= R or C)
be positive and Hermitian. Then there exists a Hilbert space, unique up
to isomorphism, which has k as reproducing kernel.

Proof. A rigorous proof is given by Meschkowski, 1962, p. 96, and 1
shall just sketch how to construct the space. Define U, as

arieK,zfie]laf,NeN1 (%)

|

N
U, = { > aikh

i=1

and the inner product on U, as

N N N N
(2 aik’, 3 bik%y = 3 3 aibjk(sy,t:) (6)

i=1 j=1 i=17=1
and U, becomes a pre- Hilbert space, if the norm is defined as || || =
¢, >!/2, The space U generated by completion of U, will then be a Hilbert
space with & as reproducing kernel.

4.2. Some Special Results

Separability: Let U be a reproducing kernel Hilbert space of functions
on M.

Theorem 2.1. U is separable if, and only if, there exists an orthonormal
system en, n € N in U, so that

=]

Vst e M:ik(s,t) = > en(s)en(t).
1

The functions ey will then constitute a complete orthonormal system in U,

Proof. Suppose U is separable. Then there exists a complete orthonormal
system en, # € N, As k; € U it can be written as

kt(s) = 3 <K' enden(s) (D

n&E N

But (kt,eny = {eq,kt> = ex(t), and you have the result. Suppose ey,

n € N is an orthonormal system, so that £(s,7) = > en(s)en(t). We shall
nEN
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show that ey, n € N is complete. Assume that » € U is orthogonal to
all the functions ey, i.e. (u, ep> = 0V n € N. Then

u(t) = Cukty = 3 (uen(Den)

nEN

= > uen>-en(t) =0 VeeT,
nEN
As u was an arbitrary element of U, U must be separable.
The above theorem implies that, if e,,# € N and fi,n € N are complete
orthonormal systems, then

2. en(s)en(t) = 3 fu(s)fu(t) Vs,t. (2)

nEN nEN

Projections and subspaces:

Theorem 2.2. If U’ €U is a closed subspace of U, then U’ also has a re-
producing kernel,

Proof. The linear functionals u — u(s) must also be continuous, when
they are restricted to U’.

Theorem 2.3. If k' is the kernel of U’ < U, and u is an element of U,
then the projection of u on U’ is found as

Pu(t) = Cu, k). 3)

Proof. U has a unique decomposition # = u" + u’’, where «’' € U’ and
u'’ € U't, and v’ = Puis the projection of v on U’. Because k" € U’, and
' e UL,

b’ kS = 0V1,

But then Pu(t) = (u', k"> = (u' +u", k"> = {u,k'" q.e.d.

Linear functionals:

Theorem 2.4, Let U have a reproducing kernel and let u* € U¥, be a
bounded linear functional on U. Then the function

B (2) = u* (k?) 4)

is an element of U and for any v e U

u‘i‘(v) = <va hwk> (5)




)

Proof. According to the Frechét-Riesz theorem, there is a unique element
gus € U, so that
ut() =<y, g>VvelU

then u*(kﬂ) = <k5,gu*> = <gu*7 kt> = gu*(t)' But then hu* = yx elU
and the result follows.

4.3. Examples of Reproducing Kernel Hilbert Spaces

Example 3.1.
Let M = N, and let

U - {u:N R[> |u(n)|2<oo} = R”

ne& N
with the inner product
Cu,vy = 2, u(n)v(n). (1)
nEN
Define
k(m,n) - 6mn = Z C"{(m) e'j(n) (2)
iEN

where ei(n) = 05 is a well-known orthonormal basis for U. It is not
difficult to see that k is a reproducing kernel. In fact k™ = e, € U and
u(m) =, em >y = uy k™).

Example 3.2.

Let M = [0,1] and let U consist of all functions f: M —~ R in such
a way that fis absolutely continuous with a square-integrable derivative
Df, and f(0) = 0.

U =

f13Dfe L, ([0,1]) :f(x) = f Df(t)dth}-
0
Define the inner product

1
fg> = | D) De(eyr G)
0

and the function
k(s,t) = min(s,?). (4)
It is easy to see that
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lt for t =¥
ke = 5
ls for t> s
is an element of U and .
Dks = 1[0: 8] (6)
We then have
1 . 8
Sk = [ Doy Desde - [ Dyt - £ @)
0 0

and thus k(s,t) is the reproducing kernel for U.

Example 3.3.
Let M = Mg, the space outside a sphere with radius R in R3, define

]

k(s 1) z 2n+1 Ren+1i P )
¢ (s, = COSYs,
n+1(rsrpn+l mFOS et

®)

1 Fsre (1 — cosys,s)
+ —1n .
R R L+R?— rg-rycosy,:

2 1/2
Fglt
L = (( 7 ) — 2rsriCOSYy,t + Rz) &)

and s, is the spherical distance between s and ¢:

NI

where

COSYs,t = €080, cosl; + sinfls sinficos(As— Af) (10)

(rs,0s,45) are the spherical coordinates of s. k(s, ) is the famous Dirichlet
kernel. The Hilbert space generated by this kernel can be shown to con-
sist of all potentials u, so that

full* = fgradu-gradu< o+ o0, (11)
Mp
And the inner product is defined as

{u,v) = f grad v - grad v. (12)
Mpg
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The Hilbert space defined in section 2.2, consisting of harmonic func-

tions, in such a way that

lim ut < + .
g—=~>0
OR+¢g

The kernel is the Poisson kernel, see e.g. Krarup, 1969

2

= n+l
k(s,t) = Z (2n+1)<r I‘z) Pp(cosys,s) =
=0 §

2.2 _ p4
rorg — R 1

R IL*¥

(13)

(14)




5. Some Fundamental Concepts of Probability Theory and
| Stochastic Processes

This section is primarily written for the reader, who has a basic
knowledge of modern probability theory but who is unfamiliar with the
more general theory of stochastic processes. It may, however, also be
useful for others to read because the notation and terminology used in
the rest of this work will be introduced here.

5.1. Basic Definitions

A probability space is a triplet (£2, &7, P), where £ is an arbitrary set,
& is a boolean o-algebra of subsets of £2, and P is a probability measure,
i.e. a o-additive positive set function on &7, with P(£2) = 1. For a more
detailed description see Doob (1953) or Neveu (1965).

A random variable is nothing but a measurable mapping of £ into the
set of real numbers, i.e. a mapping X, satisfying

X 1B e, YBe B, (D)

where % is the o-algebra of Borel subsets of R, the real numbers. A
random variable induces a probability measure on (R, &%), which we
shall denote by PX, by

PX(B) = P(X"Y(B)), VBe &. (2)

The probability measure PX is called the distribution of the random
variable X.
Now let T be an arbitrary set, and let (2, 27, P) be a probability space.

Definition 1.1. A stochastic process is a mapping

E:Tx0->R 3)

so that for all £ € T the mappings




2Y
£t 0 >R, E(w) = £(t,w), Vo 82 )

are random variables.
The functions

£0 T =R, &9(t) = &(t,w), YieT (5)

for w € Q are usually called the sample functions of the process. Instead
of stochastic process the word random function is often used. Sometimes
we just write &(¢) instead of &(7,) when misunderstanding is impossible.
It is often convenient to think of a stochastic process as an indexed set
or family of random variables &, ¢ € T. Often T denotes time and the
values &t denote the random development of a system, e.g. the tempera-
ture in a room. The sample functions correspond to any particular
realization of the process. The sample functions are elements of RY, the
space of all mappings from T to R.

The family of joint distributions of any finite set of random variables
g1 En 1, €T is called the finite-dimensional distributions of the
process. A good deal of the probability structure of P is determined by
the finite-dimensional distributions, but certainly not all of it. By &7
we denote the g-algebra generated by sets of the form

{a) | (§(ty, ), ..., f(f?a,w)) EBn}, (6)

where 1y, ..., tn € T, and By is any n-dimensional Borel set. The finite-
dimensional distributions determine uniquely the probability of sets of
the form (6) and therefore of all sets in o/¢. In order that all & should
be random variables, &7z < &, but it is sometimes relevant to work
with an ./ which is strictly bigger than &7, e.g. one could be interested
in the probability of a set of the form

fw|E(tw)s 1 Vi e T*}, (N

where T* < T. If T* is not denumerable, the set (7) does not belong to
/g, and the probability is not determined by the finite-dimensional
distributions. I shall not treat these questions in detail, but refer to
Doob (1953), Chapter 1I. The o-algebra &Z¢ is usually called the o-
algebra spanned by &.

Now, let X < RT be a space of real-valued functions, so that all the
sample functions of the process belong to X:

Voef2:8%ecX. (8)
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Define # as the smallest o-algebra of subsets of X that contains all
cylinder sets:

{x EX|(x(), ..., x(tn)) EBH} 9)

where #,,...,t, €T and By is any n-dimensional Borel set. Now (X, %)
is a measurable space, and the mappings

105X, E(w) = &2

are all measurable with respect to the o-algebra /¢. The mapping £
therefore induces a probability measure on (X, %), which we shall denote
by u*, by

#5(B) = P{w|E? B}, VBe &. (10)

We shall call ,u‘s the distribution of the process &, or of the random func-
tion £. As £ is measurable with respect to Es 4t is determined from
the finite-dimensional distributions.

5.2. Construction of Random Functions

It is often necessary to construct a random function from some family
of finite-dimensional distributions, and one might ask, when it is possible
to find an (£2, &7, P), so that there exists a process on £2 with the given
family of finite-dimensional distributions? The answer is contained in
the fundamental theorem by Kolmogorov (see e.g. Doob, 1953, p. 609)
saying that the following consistency conditions are necessary and suf-

ficient. If Fy,, ..., are the joint distribution function of &1, ..., &n
then |
) Fry, ooty (X1 -+ %) = Fugay, ooty Gmqys - - - 5 X))

for all permutations w of 1, ..., &

i) lim Fyy, ..., tn (X1, ooy Xn) =
Ti—> o0 . . . .
J Ftl, NP IS B 7 N PR tn()\fla ceay X1y Xj+1, cu ey l?l)'

If a family of finite-dimensional distributions satisfies 1) and ii) we
say that the family is consistent. As (L2, &) can always be chosen (R7, %),
when & is the o-algebra generated by the cylinder sets.

Now, if X = R? is some subspace of real valued functions, when does
a probability on (X, &) exist, so that the process &:7 x X — R defined as

Et,x)=x(t) YreT (1)
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has the given finite-dimensional distributions? This problem becomes
relevant, when for example 7 = R and X = C(T'), the space of continuous
functions on 7, and you want to construct a process with continuous
sample functions. Or if 7 = My is the subset of R® of points outside a
sphere with radius R

Mg = {(x,,2) eR3 | x2+)*+22 > R*}, R= 0 )

and X = ITg or X = U < [T, where Ilg is the space of all functions
regular and harmonic in Mz and U is some Hilbert space of potentials
in ITp. We want to ensure that all the sample functions are elements
of X. We know that this is the case if, and only if, there exists a proba-
bility on (X, %) so that the process defined by (1) has the given finite-
dimensional distributions. Which conditions shall the finite-dimensional
distributions satisfy? Usually it is very difficult to solve problems of this
kind, and they are therefore often avoided and forgotien. In the book
by Cramér and Leadbetter (1968), further examples of this kind are
treated, and solutions are also given in some cases. Mostly only sufficient
conditions are known. The following theorem is of no use at all, but
maybe it gives some intuitive understanding of the problem.

Theorem 2.1. Let P be a probability measure on (RT, %) and let X be
a subset of RY. If we by B x denote the o-algebra of sets

By={BNX|BecH}, (3)

(i.e. the cylinder sets of X), then the following two statements 1) and 1i)
are equivalent:

i) There exists a probability Px on (X, #x) so that VB € #B: P(B) =
Px(Bn X)
ii) X has outer P-measure 1,1.e. P*(X) =  inf P(B) = 1.
{Be Z|B2 X}
Proof: Suppose i) holds; then

PHX)=  infP(B) = infPx(BnX) =Px(X)=1,
(Be#|B2X} {Be#|B=2X}

which was to be proved. Now suppose ii) is true. If we define for any
set BnXe By
Px(Bn X) = P(B). (4)
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This is easily seen to be a probability on (X,%x) if, and only if, the
above definition (4) has a meaning, i.e. is unique. Suppose B, 1 X =
B, N X, where By, B, € %, then we have to show that P(B,) = P(B,)
But B; A B, (Aisthe symmetric difference between B, and B,, B, A B, =
(B, B;) U (B,\By) must be contained in X¢, the complement to X

B, AB, < X¢ %)

But then (B; A B,)¢ @ X and P(B; A By)t =1 — P(B; A By) =2 P*(X) =1
and therefore P(B, A B,) = 0. But as B, S (B,;4By)U B, and B, <
(ByAB)U By, | P(By) — P(By) | £ P(B;AB,) =0, which means, that
P(B,) = P(B,) q.e.d.

The uselessness of the theorem is due to the fact that it is indeed very
difficult to prove that ii) is fulfilled, when P is the probability on
(R%, %) defined by some consistent family of finite-dimensional distribu-
tions. However, I like the theorem! '

5.3. Second-order Random Functions

Let (2, o7, P) be a probability space. The random variable X:{ - R
is said to have finite second-order moments if it is square-integrable,
ie. if
EX® - f X(@)2dP@) < + . ()

2

The space Ly(£2, .7, P) of all square-integrable functions on £2 becomes
a Hilbert space, defining the inner product {, >, as

(X,Y>, — EXY = f X () Y(0)dP (). @)
0

Strictly speaking, it is a space of equivalence classes, where X and Y
are said to be equivalent if P{w | X(w) = Y(w)} = 1. Stochastic processes,
where £t € L,(Q, o7, P) for all t € T, are called second-order stochastic
processes or second-order random functions. These processes have al-
ways been of particular importance because of the correlation theory
similar to the least squares theory known from classical mathematical
statistics.

If & is a second-order random function, we define the mean value func-
tionm: T —R as

m(t) = Eft = | E(t,w)dP(w),VteT 3)
0
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and the covariance function v : T x T - R as

r(s,1) = B ~ m(s)) (& — m(z) ]
4)
= cov(§s, &), s,teT, f

In the following we shall assume that m(z) = 0 V¢ € T, when the opposite
is not explicitely remarked. This is no restriction to theoretical considera-
tions as we can always consider the random variables &¢ — m(t) instead
of &t.

The covariance function is symmetric and positive:

r(s,t) =r(t,s)Vs,teT
n i
Z Z aiapr(ti,t)) 20V ¢y, ..., th €T
f=1j=1

(3)

e ——

V(Jl, e An e R.
(5) follows from the fact, that

2

0<E = > >aiq;EEHES = 3 Y asasr(ti, ). (©6)
i F i 7

n
> a&h
i=1

But then theorem 1.5 from section 4 shows the existence of a Hilbert
space, unique up to isomorphism, which has r as reproducing kernel.
This Hilbert space can be chosen as the completion of the set

Ko(r) ={ % airti|a; eR, t; € T} @)

i=1

with respect to the inner product

{2 agr's, ijf”tj> = > >aibir{se, ty). (8)
i ]

This Hilbert space we shall denote as K, the kernel space of the process.

There is another relevant Hilbert space representation of the process.
By L,(ét,t €T) we mean the closed linear manifold, spanned by the
random variables &¢, f € T considered as elements of Ly({2, o7, P). As
this subspace of L,(£2, o7, P) is closed, it can be considered as a Hilbert
space itself, which we shall denote as Hg, the Hilbert space spanned by
the process. Now the interesting thing is that Hg and K are isomorphic.
Define J:Hg — K¢, as the extension by linearity and continuity of the
isometric mapping J*:{ &, reT}>{rtreT}J*&) =rt. It is no

3
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problem to see that J* can be extended to the one-to-one isometric
operator J.

Now, this is the way in which the theory of reproducing kernel Hilbert
spaces becomes relevant and useful to statistical inference on stochastic
processes, especially prediction theory and related topics (see Parzen,
1961).

Now if a topology on T is defined, we say that & is continuous in the
mean at ty € T, if

E(& — &2 >0 when t - 1. €))

If this holds for all ¢, € T we just say that & is continuous in the mean.
But as

E(& — &2 = r(1,1) — 2r(1, o) + 1(to, 1), (10)

continuity in the mean is equivalent to continuity of the covariance
function at any diagonal point of T x 7. Now suppose that 7" is locally
compact, and r is everywhere continuous. We already know that r* is
continuous everywhere on 7. But as K is a reproducing kernel Hilbert

space, any clement of K¢ is a pointwise convergent sum %a@-r‘i(t). Now
i=1

let 7, € T, then there cxists a compact neighbourhood U of #,, and as r

is continuous at the diagonal point, r is bounded on U x U. But then

the sum converges wniformly, and the limit must be continuous at #,

(see section 4, Theorem 1.4). Hence, all the clements of K are continuous

functions.

Thus we have seen that continuity in the mean is in natural way
related to continuity of the functions in K. In the same way differenti-
ability in the mean is closely related to differentiability of the functions
in K¢. This is why one often avoids the difficulties in dealing with sample
function properties and instead considers the corresponding properties
of the function in K, as for example described by Parzen (1961). Another
relevant reason is that the predictions all will be elements of the kernel
space Kg. This, I think, is also the reason of letting the covariance func-
tion be a reproducing kernel for some Hilbert space of potentials, as
suggested by Krarup (1969) in the statistical analysis of gravity data.

This is, however, a highly unsatisfactory approach, and I shall try to
explain why. For example continuity in the mean implies by no means
sample function continuity! In a Poisson-process the sample functions are
with probability one step functions, and the process is anyhow continuous
in the mean. Later I shall give some further examples of the difference
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between the sample function properties and the properties of the func-
tions in the kernel space of the process. Fortunately, it will be found
that the difference in this particular “potential”’ problem is not so
significant after all.

5.4, Gaussian Random Functions

A random function or a stochastic process is said to be gaussian, if
all the finite-dimensional distributions are multivariate gaussian. There is
an infinite number of ways to define the multivariate gaussian distribu-
tion law. I shall not deal with these definition in detail here, but refer
to Rao (1965). Now, let (X,. .. ,X») be an n-dimensional random variable.
The distribution of (X4, ..., Xn) is said to be multivariate gaussian, if any
linear combination of the Xes has a one-dimensional gaussian distribution.
That this really is a meaningful definition is e.g. discussed in Rao (1965),
Chapt. VIII. Now X = (X, ..., X») is a measurable mapping of an
(L2, o7, P) into a Euclidean n-dimensional space V. The above definition
then says that, whenever v* ¢ V*, the dual space of V, the mapping

v¥e X142 -+ R, (1)

is a gaussian distributed real random variable. Now we can define a
function m: V* - R, by
m(v*) = E(v*(X)); )

i is obviously a linear functional on V*, m € V**, We shall call m the
.mean value functional. But we can very well identify V** with V, and
identify m with some point m € V, which we shall call the mean value
of the distribution. It has the property:

E(v*(X)) = v¥(m) Vv* e V¥, 3)
. which implies that m = (m,, ..., my) is the “classical mean value vector”,
EXi=my i=1,...,n. 4)

In a similar way we define a function R: V* x V* - R, by
R, v¥) = E@*(X — m)) (v*(X —m)). (5)

R is a positivec symmetric bilinear form on V* x V*, the covariance form
of the distribution. We can in a unique way find the corresponding

linear mapping or operator R on V*, so that
KL
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¢ Ru*, v¢>, = Ru*, vHVu* v e V¥, (6)

Here ¢, >, denotes the usual scalar product on the Euclidean space V'*.
R is a positive, symmetric operator, which we shall call the covariance
operator of the distribution. Now R is given by some matrix (ry), where
the element in i-th row and j-th column is

Fig = R'(efs ej*) = COV(X,;, Xj)a (7)
where e;", i=1,...,n are the unit vectors in V¥, corresponding to
efiu—uy, u=C(@y, ..., u)eU. (8)

This is what is called the covariance matrix in most statistical literature.
The covariance matrix has the property of being positive:

>aairi; 20 Yag, ...,an€R. (9)
tf
Any positive matrix defines a covariance operator and a gaussian
distribution together with any element of ¥ as mean value. It seems to be
most natural to think of the covariance as a bilinear form, but the proper-
ties of the distribution are closely connected with the covariance as an
operator, and the statistical literature mostly deals with the covariance
as a matrix. I hope this will not cause too much confusion to the reader,
I have here tried to describe the multivariate gaussian law in a way that
makes the generalization to Hilbert space almost obvious.
Now, let & be a gaussian random. function. The finite-dimensional
distributions are completely determined by the mean value function and the

covariance function, as (£, ..., &n) follows a multivariate gaussian
distribution with mean value (m(¢,), ..., m(ty)) and covariance matrix
("(tistﬁ'))-

If & is any second-order random function, the corresponding mean
value function and covariance function define the finite-dimensional
distributions of a gaussian random function. The idea of making a
correlation analysis of data from any second-order random function is
closely related to the hope that the distributions are not too far from
the gaussian distributions. For theoretical convenience we shall therefore
work with gaussian random functions instead of second-order random
functions. If this is a bad simplification, it is bad to make a correlation
analysis.
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Any positive, symmetric function is a covariance function of some
gaussian random function, which is easily seen from the fact that the
gaussian distributions with mean value zero and (#(¢:,¢;)) as covariance
matrix constitute a consistent family of finite-dimensional distributions.

We have now seen that the properties of a reproducing kernel and a
covariance function are exactly the same, which of course can be utilized.

Example 4.1.

Let T =10, 1], r(s,t) = min(s,t), m(s) = O be respectively index set,
covariance function and mean value function of a gaussian random
function. This is the famous Wiener process, used to describe the Brown-
ian motion. The sample functions of the Wiener process can be chosen
to be continuous, i.e. the continuous functions on 7, C([0, 1]) has outer
measure 1, by the probability measure on RI%! defined by the finite-
dimensional distributions. But the sample functions of the Wiener process
indeed behave very wildly! It can be shown that the sample functions
cross any level more than a finite number of times in any small interval.
I am glad, I do not have to draw one of those! But note that the kernel
space of the Wiener process entirely consists of functions which are
absolutely continuous with square-integrable derivatives, as you can see
in section 4, ex. 3.2. There is, in fact, a remarkable difference between
the sample functions and the functions in the kernel space!

Example 4.2. Pure white noise:

Let T = R, r(s,t) = 05z, m(t) = 0. Here &5 and &t are identically inde-
pendently distributed gaussian random variables with mean value zero
and variance 1. The sample functions behave as wildly as functions
possibly can. The kernel space consists of functions that are identically
zero except in a denumerable set of points, and in such a way that

2 f{t)? < + . The sample functions and the functions in the kernel
tER
space do not look like each other at all!

Example 4.3.

Let T =R, r(s,t) =1, m(¢t) = 0. This is a trivial process, where the
sample functions are identically constant equal to &, and £ is normally
distributed (0, 1). The kernel space is easily seen to consist of identically
constant functions also. Here is an example where the sample function
space and the kernel space are identical. But the process is not very
interesting at all.
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5.5. Convergence Concepts and Limit Theorems

Two fundamental convergence concepts are necessary for the following.
First, a sequence of random variables &, &,, ... has to be defined on
some probability space (2, &7, P). We say that the sequence &, converges
to & in the mean, if & is a random variable on (£2, &7, P) and

E|én —&P——0. (D
n—r 0
This is the same as convergence in the topology on L.(£2, &7, P) and is
of course only defined for &, € Ly(2, o7, P).
We say that &, converges to & almost surely if

P{w | lim &5 () = E(cu)} =1, (2)
mn—> o

Any of the two modes of convergence implies the convergence of the
distribution functions Fy of &, to that of &, F, in every continuity point
of F (weak convergence).

Another mode of convergence frequently used in connection with
stochastic processes is comvergence in probability, when &y is said to
converge in probability if

V8>0:P{f5n—§{>8}—m«>0, (3)
G = 00
but we shall not use this concept much in the present work. The following
theorem will be used frequently in the next section.

Theorem 5.1, If &, is a sequence of gaussian random variables and &, —~ £
almost surely, then &, converges to & in the mean. (In fact it is enough to
assume that &, — £ in probability, and the same proof will go through).

Proof. 1f &, converges to & almost surely, &,(w) is a Cauchy-sequence
for almost all w, i.e.

lim |&p(®) — Em(w) | = 0. a.s. (4)

T, T >

Put Apym = &4 — Em. Aum converges to zero a.s. and therefore also
weakly.
Anm has Fourier transform

\ ; -1 2ey2
Eeztd,ﬂm _ e"‘fmnm 128800

m, Q)
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where a,,,, = E4,,, and o>, = E(4,,, — a,,)* Then

Eetmm (6)
which implies
~ 1/2t%0%, — 0. (7)

I wm

But then 4,,, >0 and ¢2,, >0 and
E(42,) = o2, + a%, — 0. (8)

(8) says that &, — &y, is a Cauchy sequence in Lo,(2, =7, P}, and therefore
&, converges to £* in the mean. But &, *$ £ and &, 2 &* implies & = &*
a.s., and the theorem has been proved.
We shall state another theorem without proof:

Theorem 5.2. Let &, &,, ... be mutually independent random variables

@0 o0
with variances o%, o5, ... . Then, if 2 0% =0° < + o and | > E§,|
=1 =1
< + o, &= Z Ex is convergent almost surely and also in the mean. More-

n=1
oo

over EE = > E&y, EE® — (E&)* = o Conversely, if & = Z & converges

n=1 =1

o0
in the mean, Z 02 =% < + o and Y EE, converges.

n=1 =1

For a proof, see Doob, (1953), p. 108 Th. 2.3.

'Remark : If especially, > E&, is absolutely convergent, i.e. if the conver-
n=1
gence does not depend on the order of summation, Z &, 1s also absolutely
-1
convergent, as the conditions of the theorem are fulﬁiled for any ordering.




6. Gaussian Measures on Hilbert Spaces.
Random Functionals

The exposition of the theory of gaussian measures on Hilbert spaces
given here mostly follows the one given by Rozanov (1968). Also Gelfand
and Vilenkin (1964) have an exposition of the theory of gaussian measures
on topological vector spaces (Chapt. IV). The cited works all deal with
countably Hilbert spaces, i.e. topological vector spaces with a sequence
of inner products, whose corresponding norms are non-decreasing, to
define the topology. But, as the theory can always in the end be reduced
to just Hilbert spaces, 1 shall not introduce-these concepts here. This
makes it possible to prove the results without using too much sophis-
ticated mathematics. I hope that the reader is familiar with the most
common results of the theory of compact self-adjoint operators. In Gel-
fand and Vilenkin (1964) Chapt. I, most of these results can be found.

6.1. Hilbert-valued Random Variables

Let U be a real, separable Hilbert space, and let ({2, o/, P) be a
probability space. Denote by U* the dual space to U, consisting of all
bounded linear functionals on U.

Definition 1.1. A mapping &: £ - U is said to be a Hilbert-valued random
variable if it is weakly measurable, i.e. if

Vute UVBe # :{w | u*(&w)) e B} € o, ()

where % is the Borel subsets of the real numbers, or equivalently if all
the mappings u*o£: Q2 - R, u* € U* are real random variables.

1t is not difficult to see that the above definition involves that & should
be measurable with respect to the g-algebra Z(U) generated by the sets

w*1(B), Be &, u* € U*, (2)




As usual, & induces a probability measure PS¢ on (U, & (U)) by
PE(B) = P{w | &(w) € B}, B ¢ B(U). (3)
We shall call P¢ the distribution of &.

Definition 1.2. A Hilbert-valued random variable is said to be gaussian,
if the random variables u* o &, u* € U* are all gaussian random variables.
The corresponding distribution P¢ is said to be a gaussian measure on U.

A Hilbert-valued random variable & induces a random function
E:U* x 0 — R, defined by

Ew*,w) = u*(¢(w)). (4)
The sample functions have the property
EOQur + uv*) = AEC (u*) + uEP(*), d,u €R u*,v* e U*, (5)

Therefore, we shall call the process & a linear random functional on U*,
Another way to express this is to say that U can be identified with its
double-dual U**, and the mapping & can be regarded as a mapping from
0 to U*™.

If the Hilbert-valued random variable & is gaussian, the corresponding
linear random functional is a gaussian stochastic process. To see this,
we shall convince ourselves that all the finite-dimensional distributions
are multivariate gaussian. Let uf s e u,"; e U* We have to show that

n ‘
> a,u; o & has a one-dimensional gaussian distribution. But »* =
i=1

V(]
> a;u; € U*, and
i=1 ®
> aup o & =u*ol. (6)
i=1
But u* o & has a one-dimensional gaussian distribution, which follows
from definition 1.2, Now to compare with section 5, the finite-dimensional
distributions define a measure on RY*, and it is here obvious, that the
subspace of RY*, U** has outer measure 1, if we identify U and U™**.
Thus we can also regard the gaussian measure as a measure on U*¥,
constructed from a measure on RY",
The mean value function m of this gaussian stochastic process, obvi-
ously satisfy the property of being linear:

mAu* + puv¥) = @) + pm(v*), (N
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and the covariance function R that of being bilinear:

- n « n m - N
R( 2 ayu; , 2 V) = > 2 aibj‘R(uiﬂv;'k)' (8)

{ = t=1 j=1

All the sample functions of the process & are continuous, as for any
w € 42, the mapping

E0 U >R, E2u) = ut(E(w) ©)
is an element of U**. But then the process & is continuous in the mean, i.c.
E | u*(€) — ug (&) >~ 0, when || u* — uj {|, ~0. (10)

This follows from section 5.5. But
B[ - ) 1 = (G — i)+ Rt — o — ), (1)

and it then follows from (10) that m and R are continuous. But this
means that m € U**, and as we again can identify U and U*¥*, there 1s
a unique element m € U, so that

@) = u*(m), Yu* e U*. (12)

This element m, we shall call the mean value of the gaussian measure
or distribution P¢, defined by (3).

Similarly there is a unique bounded operator R on U*, see e.g. Gelfand .
and Vilenkin (1964) p. 10, so that

R(u*,v¥) = (Ru*,v&),, (13)

where (, >, denotes the inner product in U*. As R has to be positive
and symmetric, R also becomes positive and symmetric:

CRu* v¥y, = (u®, Rv®>, , Yu* v e U¥, (14)
and
{Ru*, u*5, =z 0,Vu* € U*, (15)

The operator Ris called the covariance operator of the gaussian measure,
As the finite-dimensional distributions of the random functionals are
completely determined by m and R, it follows that the gaussian measure
on (U, (U)) is completely determined.
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We shall prove that R is a compact operator. Now, as R is positive,
it has a unique square-root R". Let (i),  y b€ a sequence of elements
of U¥*, weakly converging to zero:

limu}(u) =0,VueU. (16)

n—>®

Define the sequence of random variables

£, () = u) (E(w)). (17)
Because of (16), we have
Yo e:§, (w)—0. (18)

But then &x(w) must converge to zero also in the mean (see section 5.5).

Eén(w)? = R*,ul) = (R > = [|R M, |Ii —— 0. (19)
N~ Q0

Hence weak convergence of the sequence (un), e n implies strong con-

vergence of (R*1¥), - x Which means that R"is a compact operator, and
a fortiori R is a compact operator.

As R is positive, symmetric and compact, there exists a complete

orthonormal system (e}), c n in U*, so that (ey),  n are eigenfunctions

of the operator R:

VnelN:Re = ,e. (20)
Because R is positive, 4, = 0, Vo €N, so if we put 4, = o2, we have:
o ifi=]
(Re*, &S, = 02(ef,efde =1 ' 21
R AR NIy .
If we define the random variables

£, (@) = ¢, (E)), (22)

we have that & and &; are stochastically independent, whenever i =% j.
If we define the elements (e,), cn Of U by

YueU: el ) = {ue,) (23)

(¢4)n c N becomes a complete orthonormal system in U, as we have used
the natural inner product preserving mapping from a Hilbert space to
its dual. But, as &(w) € U, Yo €£2, the series
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2 Cé(w)ent=|E(@ |2 <+oVoeh (24)
nEN
Using (23) and (22) we then have that
> erE@)’ =3 EE < +oV el (25)
nEN nEN

But then > £2 must also be convergent in the mean, and theorem 5.2
n

of section 5 gives that
ZE(é—n _Egn)z = Z<R€:=e::>i = Zo‘i < -+, (26)
7 n n

This means that R is a nuclear operator (a compact self-adjoint operator

is said to be nuclear, if > A, < + o, where A, are the eigenvalues).
nEN
Now we shall also prove the existence of a gaussian measure to any

pair (m,R), where m € U and R is a positive, symmetric, nuclear opera-
tor on U¥*,

First we choose a complete orthonormal system in U*, (e}), c  of
eigenvectors for R, so that

R{e}) = o e, @7)
and therefore
{Re, e}" Dy = 0F Oy (28)
We put '
a, = e, (m), (29)

which means that a, are the coefficients of m with respect to the complete
orthonormal system (e,), < 5 in U, defined by

{ue,> = er(u) Yue U (30)
Of course
>ay=||ml? < + . (31)
nEN

Then a sequence (£,),n of random variables exists, independently

normally distributed (a,,07). But, as > o2 < +» and > a2 < + «,
() 7
theorem 5.2 and the remark gives that the series

2 1én —an| < +o for w¢Ad, when P(A) = 0. (32)
n

We can now change the values of &,(w) in 4, so that




4>
En(®) = an, Voo €. (33)

(Here we have assumed that the o-algebra &7 in the underlying probab-
ility space is complete, i.e. contains all subsets of sets with probability
zero, but this can always be done, see e.g. Doob (1953), Chapt. I1).
The distributions of the “new” random variables will be unaltered.
But then also

S (En(@) —an)t < + o, Vo €8 (34)

nE N

and because » ao < + o, also
nEN

> E(w) < += Vo e (35)

wREN

We can then define a mapping & from £ into U, so that &(w) is the
clement of U with coefficients é,(w) with respect to the orthonormal
system (e,),cn- It is obvious that, for any element #;, € U*, where

n
ut =3 Je;, the random variable

i=1
HOE W E{CEP RN (36)
has a gaussian distribution with mean value
7 | n
Eus(®) = 3 MEE = 3 ha; =t (m) (37)
and variance o o
V(1 (&) = Z BVE) - Z 370} = (Rl D (38)

But, as &w) € U, Yo €4, we have that

uf (§()) —— u*(E(@)) when [Juf, — u* ||y — 0. 39)

n—> o0 7n—> 0

If we then define u* = > Ae; and u, Z }% ;> (39) is true. But then
i=1
wy (€) also converges to #*(£) in the mean, and u*(&) must have a gaussmn

distribution with mean value

Eu* (&) = lim Eu* (&) = lim u}(m) = uw*(m) (40)

n—> o 7 —>

and variance
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V(&) = im (Rul il >y = CRu*u*dy . (41)
1 —> 0
We have then proved that »*(£) is a gaussian real random variable
for any u* € U*, and, consequently, that & is a Hilbert-valued gaussian
random variable. The mean value and the covariance operator are
uniquely determined from their values on a complete orthonormal system
and must therefore be m and R.
We summarize the results:

Summary 1.1. Let m be an element of a real, separable Hilbert space U,
and let R be an everywhere defined operator on U*. Then there is a gaussian
Hilbert valued random variable & on U with m as mean value and R as
covariance operator if, and only if, R is positive, symmetric and nuclear.
The following results hold:

1) Yu* € U* . u*(&) has a gaussian distribution
i) Eu*(§) = u*(m), Vu* € U*
i) E(*(&) —u*(m)(v¥(&) —v*¥(m)) = (Ru* v* >, Yu*, v* e U*
iv) There is a complete orthonoimal system in U*, (e}), c n» S0 that

k%N _ 2 ® 2 %

W ENE|? = trace (R) = 5 o2 = + o

n=1

6.2. Gaussian Random Functions and Gaussian Measures on Reproducing
Kernel Hilbert Spaces

If U is a reproducing kernel Hilbert space, we can of course specialize
the results. But it will also be proved here that, if £ is a gaussian process,
the sample functions are elements of some reproducing kernel Hilbert space
if, and only if, there is a gaussian measure on the Hilbert space that in
a natural way “‘generates’ the process. Consequently, the necessary and
sufficient conditions to be fulfilled by the covariance function that the
sample functions be elements of a Hilbert space with reproducing kernel
are simple. It also gives a very comfortable way of dealing with linear
operations on the process.

Now, let U be a separable reproducing kernel Hilbert space, consisting
of real valued functions on 7. Denote the kernel by k. Let (m,R) be
respectively an element of U and a positive, symmetric nuclear operator
on U*, together determining a gaussian measure on U, the distribution
of some Hilbert-valued random variable & Choose a complete ortho-
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normal system in U of eigenvectors for R, (ef;)ne N From theorem 2.4,
section 4, we get that the functions

e,(t) = e, (kt),neN (1)

constitute the corresponding orthonormal system in U, and

%k 2 ® %k 2 2
CRep €5 Dy = 07Ce; ,e) Dy = 0;<e;,€;0 = 070, )

Now let L; € U* be the linear functionals
Li(t) = u(®),Vu e U. (3)
Let us consider the process

{Li(8), 1eT} ={&(0), 1T}, 4)
We get that :
E&(t) = Li(m) = m(t), (5)
and

r(s,t) = cov(&(s), (1)) = {RLs,Lsyy = (R'ks,kty = R'ks(t).  (6)

Here R’ is the nuclear operator on U corresponding to R on U¥*, which
for example could be defined as

R(e)=02e,¥YneN (7)
and extended by linearity and continuity to U. But as

k(s, 1}y = > en(s)en(?). (8)

neEN
(theorem 2.1, section 4),
r(s,t) = > o2e,(s)e,(2). 9)
nEN
The process (4) is a gaussian process with mean value function m and
covariance function r, which means that all the sample functions are
elements of U. It is in a very canonical way generated from the gaussian

measure (m,R). All linear operations on the process (4) can be regarded
as observations from the larger process

{w*(&), u* e U*}. (10)

From (9) it is easily seen that r is the reproducing kernel for the Hilbert
space:
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Hr={2a¢aiei|2a?<+oo (1D
i=1 -1
with the inner product
(Saioiei, 2.bjoge;>r = 2.aibi. | (12)
i i i

It is easy to see that H, < U, and, in general, Hy < U (inclusions refer
to the underlying sets), as e.g. Do;¢; € U, as >0} < + o, but > ;e
i ' i

(3 (]
¢ H,. H, is isomorphic to the Hilbert space spanned by the process (4).
Let now m and r be mean value function and covariance function for
some gaussian process &, whose sample functions belong to some repro-
ducing kernel Hilbert space U with probability one and m € U:

Ad el P(A)=0:Vo¢gd: ¥ el. (13)

We can change & in 4, so that e.g. £* = 0 for w €4, without changing
m and r. As {L;, te T} is total in U*, i.e. the closed linear manifold
spanned by {L;, te T} is U itself, any element u* € U* can be regarded
as a limit of clements # of the form

n
ut = 3 aiLy. (14)
i=1 :
It is easy to see that
n
Eul (&) = 2, aiLy,(m) = uf; (m) (15)
i=1
and that
" Tt
V@) = 2 2 aqdir(tit) (16)
i=1 j=1
when u:: - u*,
Vo €0 :ul(£?) — u* (&%) (17)

But then the convergence (17) is also in the mean, and

VEi©) V@) = 3 > marint) |
i=1j=1 (18)
B (&) > EG*(8) = u* (m). |
But now we have shown that the mapping
w - £ (19)

defines a Hilbert-valued random variable on U, and, consequently, there
is a complete orthonormal system in U, so that
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Fs,0) = 3 olea(s)en(t) (20)
nEN
where
> 02 < 4w, (21)
nEN

If, on the other hand, r has the expression (20) for some orthonormal
system {en, n € N}, it is obvious that there is a gaussian measure on
U with covariance operator R so that r(s,?) = { RLs, Ls Dy, as we can
define

R(e}) = odel (22)

and by linearity and continuity extend R to an operator R which is seen
to be a covariance operator because of (21). We can summarize the
results in the following theorem:

Theorem 2.1. Let U be a real, separable Hilbert space with the repro-
ducing kernel k: T x T -~ R, Let r be a positive, symmetric function
F:T x T —R. The following statements are then equivalent:

1) There is a complete orthonormal system (e,),, =  in U, so that

r(s,1) = 3 one (e, ()Vs,teT, 3 o2 < + w,
nEN neEN
it) There is a gaussian process with mean value O and covariance func-
tion r, the sample functions of which belong to U with probability one.
i) There is a gaussian measure on U with covariance operator R, so
that
r(s,t) = (re,ksy = (RLt,Ls)y.

We have constructed a method to get from a process {Et, teT } with
sample functions in a reproducing kernel Hilbert space U to a random
functional {u*(&), u* e U* } in a way that makes the first process canon-
ically embedded in the random functional by the equation & = L;(£).
It is important that U has a r.k. as L; € U* < U has r.k. (Theorem 1.2,
section 4), It is possible also to get from e.g. {ft, t E[O,l]} where
£? e L*[0,1] a.s. to a random functional {u*(€), u* € U*}. But here
- { &, ¢e[0,1]} will not be embedded in the functional.

It is also easy to see that r(s,z) = k(s,¢) implies 62 = 1 V n €N in i),
and therefore there i1s no gaussian process with mean value zero and
covariance function r the sample functions of which belong to U with
probability one,




7. Topological Groups and Their Representations

7.1. Topological Groups and Haar Measure

A topological group G is a group with a topology that makes the group
operations continuous.

Let G in the following be a locally compact (Hausdorff) topological
group, satisfying the second axiom of countability. We shall consider
the transformations of G, 6(g) and y(g), defined for g € G by:

dg):x >xg xg€C )

yg)ix»gx xge€C (2)

8(g), g € G are called the right-translations and v(g), g € G the left-trans-
lations. If w is a measure on the Borel-sets %, of G (the o-algebra
generated by the closed sets of G), u is said to be right-invariant if

1(B) = (8(g) (B)), Vg € G, VB € ¢, 3)
and left-invariant if
u(B) = uly(g) (B)), Vg € G, VB € Z. &
The following theorem is fundamental:

Theorem 1.1. Up to a constant factor there is exactly one right-invariant
measure ) and exactly one left-invariant measure u on G.

A is called the right Haar measure and p the left Haar measure.

If G is commutative, } = u.

But also, if G is just compact, A = p and A is finite, i.e. A(G) < + .
In fact, A is finite if, and only if, G is compact. This means that on a
compact group, there is a unigue Haar probability measure, ie. A(G) = 1.
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Example 1.2.

Let G = (R, +) the real numbers with addition as group composition.
G is locally compact and commutative, and the Haar-measure is the
Lebesgue-measure.

Example 1.3,

Let G=({zeC]||z|=1}, ) the complex unit circle with multi-
plication as group composition. G is compact and commutative, and
the Haar probability measure is the uniform distribution over the unit
circle in the complex plane.

Example 1.4,
ip2m
Let G=({e » ,peZ},.). G is finite, compact (discrete topology),
and commutative. The Haar probability measure is “counting measure”

1
assigning the probability — to any of the »# points of G.
n

The theory of Haar measure is very fundamental in many fields of
probability and statistics. I shall refer to Bourbaki (1965), for proofs
and details,

7.2. Representations of Topological Groups

Let G be a topological group and let U be a separable Hilbert space.
By O(U) we denote the unitary group on U, i.e. the group of all unitary
operators.

Definition 2.1. A mapping 7: G - O(U) is said to be a representation of
G, if it is strongly continuous and homomorphic, i.e.

1) Yue U:g - T(g)u is continuous (in the norm topology on U)
i) V&1,8: €G: T(g)T(gs) = T(g182).

The mappings ¢, ,: g by, (&) = <T(g)u,v) for u,v € U are called the

coefficients of T. As the strong and weak topology on O(U) are identical,

it is the same as saying that all the coefficients should be continuous.
Note the following relations:

T(g =Tyt =T"@g); T =1 (1)
4%
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Here T* is the adjoint operator to 7, I is the identity on U, and e is the
neutral element of G. Furthermore

fu0(8) = <T@uy> — T Iy = to,u(g™) 2)

tu,0(€) = i, V). (3)

Example 2.2.
Let G = O(U), define T(4) = A, YA € O(U). T is a representation

(trivial).

Example 2.3.

Let A be right Haar measure on G. L,(G) is a separable Hilbert space,
consisting of the functions on G, square-integrable with respect to A
Define for g € G the mapping T(g) = L,(G) - Lo(G) given by:

T(9)f(x) = fxg™") Vx €G. (4)

T(g) is easily seen to be linear. T(g) is unitary because of the right in-
variance of A. T is a homomorphism:

T(e) T(go)f(x) = T(gy)f(xgz ) = flxgz g1h) = f(x(g180) ™) = } -
T(g182)f(x).

T(g)f is also continuous. I shall not prove this, but it is not difficult.
T is a representation. This representation is called the regular right
representation of G.

Sometimes we have to deal with different representations of the same
group. If T'is a representation, we shall denote the corresponding Hilbert

space by Ug.

Definition 2.4. Let T be a representation of G. By dim T we mean the
dimension of Up.

Definition 2.5. Let .S and 7 be representations of the same group G.
S and T are said to be equivalent (S = T), if there exists an isometric
one-to-one and onto operator A: Ug - Up, so that

YgeG: AS(g) = T(g)4 (6)
Of course
S~T=dimS =dmT7T. (7)
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Example 2.6.
Let T be a representation of G. Define S by
Us = Ur (8)
S(g) = T(go88, "), V€ €G )

where g, is an arbitrary but fixed element of G. Obviously = T, which
is seen when defining 4 = T(g;):

AS(g) = T(g, T (8088 ) = T(ggs ") = T(9) 4. (10)
A subspace F < U is said to be stable for some bounded operator A4
if A(F) < F.

If F is stable for all the operators 7(g), g € G, where T is some repre-
sentation, the same is true for Ft and F* = F. Fis said to be stable for T.
Let F be stable for T and closed. Let us consider the mapping g -~ 7(g) | F.
(T(g) | F is the restriction of T(g) to F). As F is closed, it is a Hilbert
space itself and the mapping g - T(g) | F is a representation of G into
O(F). This representation we shall denote T | F. We have Uy, 5 = F.

Definition 2,7, 7| Fis called a subrepresentation of T. The subrepresenta-
tion is called trivial if F={0}or if F= Up, otherwise it is called
non-trivial.

Definition 2.8. If T has only trivial subrepresentations and Urp = {0},
T is called irreducible, otherwise reducible.

Example 2.9.

Let G be any group, and let Ur = C2 Define T(g) = I, Vg € G. Any
subspace of C? is stable for 7, and T is therefore reducible. If Uy = C1,
ie. dim T = 1, T is of course irreducible.

Let (Tn, n € N) be a family of representations of the same group G.
We can construct the direct orthogonal sum of the corresponding Hilbert

spaces U = @ Up, . We shall write an element w af U as v = (1), e n
nEN

where uy € Uy, . Define for g € G T(g)u by

T(g)(un)nEN = (Tn(g)un)neN’ | (1 1)

T: G - O(U) becomes a representation of G. We shall write T = @ T».
nEN
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If T is a representation of G, and F is a proper stable subspace of
Up, F® F* is isomorphic to Ur and T=7T| F® T'| F1, which is seen
when using the isomorphism from Uy to F® FL. If T|F or T|F* are re-
ducible, we can again decompose it into two components and so on.

If T~ @® Ty, where Ty are all irreducible, we say that 7" has been de-
nEN

composed into irreducible components.

Let F be a closed subspace of U, It is well known, that Fis stable for
an operator A4, if and only if A and Pp (the projection operator corre-
sponding to F) commute, we shall primarily consider the case, in which
G is compact. The following theorem is then important:

Theorem 2.10. Any representation of a compact group is direct sum of
denumerably many irreducible representations of finite dimension.
And as a corollary:

Corollary 2.11. Any irreducible representation of a compact group has
finite dimension.

Any representation of a compact group then has the following decom-
position

o0 g
T=® & Ty (12)
i=1 j=1
where T; are irreducible and 7i; = Tyx. The sequence ny, #y, ... 1s

uniquely determined up to permutation, and the same is true for dim
g

( @ Tyy). But Tyy 1s only uniquely determined when n; = 1. (Note that
j=1

the n;’s could be cardinal numbers of N).

Example 2.12.

Let G be the group from example 1.3, and let 7(g) = fon U = C2. T
can be decomposed in any way you like as 27,, where T'(g) = I on C.
For proofs and details the reader is referred to Dixmier (1964).

7.3. Irreducible Representations of Compact Groups

Let T be an irreducible representation of a compact group G. This
means that the dimension of Ugp is finite. Now every T(g) is a unitary
linear mapping of Ur onto Ugp. If dim T = n, there is a complete ortho-
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normal system e, ..., en. In this orthonormal system, 7(g) is determined
by a unitary matrix (a:;(g)), where

aij(g) = <T(glew,es). (b
But this is what we called coefficients of the representation.
aij(g) = fe?;,ej(g) (2)

What becomes important to us are certain simple integration properties
of these coefficients. Let 1 be the Haar probability measure on G. Let
n = dim 7, and let T be irreducible; then the following relations hold:

1
j tes (&) e (& ) (®) = — urds 3)

7

Or, using (2), section 7.2

—_— 1
| s (@ s ex @) = ~Buady. @
(&

Furthermore, if S and 7 are inequivalent irreducible representations
of the same compact group G, and s and ¢ are the corresponding coef-
ficients:

j Setres (2) o> 1 (8)die(g) = O (5)
)

where e, ..., epand fi, ..., fm are orthonormal systems in Ug, respec-
tively Ur. What we shall in fact use, is a result about integration of
reducible representations of a certain type.

Theorem 3.1. Let T be a representation of a compact group G, so that

o
T @ Ty, where Ty and T; are non-equivalent whenever i + j. Let ey,
i=1 -

i=12,...,j=1,..., ni = dim Ty, be a complete orthonormal system
in Up so that ey, j =1, ..., ny are orthonormal systems in Ur;. Let
u, v, %,y € Up with {u,eqsd = uig, <v,e15) = vij, {X,ei5) = Xi5, (y,€15> =
Vig . Then:

. 0 ] MM A
ffu,v(g)fx,y(g,)d#(g) = 2 — 2 2 Ui Yik Vik Xij. (6)
i=1Mi §=1 k=1

G
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Proof: The proof is just arithmetic calculation. Note that

o g
tu,v(g) = <T(g)uav> = .Zl .zl uz3<T(g)ezJ,V>
i=14=

© 7y o0 g (7)
=2 2 2 2 uyvalT(@ey,enr).

b=1lj=1k=11=1

Py

But, as T(gX(Ur;) € Up;and U, L. Ury, fori + k, {T(g)eij,ersy = 0 for
i + k, and we get:
ny
tu 'l)(g) = 2 z Z uzjv@kteijﬂ%k(g) (8)
i=1 j=1k=1
and analogously:
w Tp Tp

try(@ = 2 2 2 XpgVor Ie’quepr(g) 9)
p=1g=1 r=1

As the coefficients are continuous on G, and | oy, e;(8) | £ 1, Vg € G,
there is no problem in changing the order of integration and summation,
and we get:

[ @y @elusle) -

G

Ny Tp ——
Z 2 Z Z 2 Zu?'jvikquyp?‘<fte'c',jsﬁiig(g)t@pgbefpr(g)dlu’(g))'

=1 =1k=1p=1¢=1r=1 o

But, as T; and T, are inequivalent for i + p, we can use (5) and remove
all terms in the sum with / &= p. Furthermore, we can use (4) and remove

1
all terms with j = g or k = r. All other integrals are equal to —, also

from (4). We get: "
n; My 1
ffu vl y = Z 2 Z UijVikXijYVik— (1D
¢ i=1 j=14k=1 i

which proves the result. Again, the reader is referred to Dixmier (1964)
for proofs of (4) and (5).

(10)




8. Homogeneous Random Functionals and Unitary
Representations

8.1. General Cuase

To draw statistical inference from observations of random functions,
it is necessary to get some reduction of the model. One of the most
important reductions in connection with random functions on the real
axis is stationarity. A random function with 7' = R is said to be statio-
nary, if the finite-dimensional distributions are invariant with respect to
translations of the real axis, i.e. if the distributions of &4, ..., & and
Ew+s . Ftn+s gre the same for any s € R. The real axis is a commu-
tative locally compact Hausdorff topological group, and stationarity
means that the translations of the group do not affect the distributions.

We shall here try to define a similar concept in the case of a gaussian
random functional, which we shall call homogeneity. What we need is
a group acting on the dual space to U, where U is a Hilbert space with
a gaussian measure. We shall furthermore demand that this group con-
sists of unitary operators on U*. It is my opinion that otherwise the con-
cept has no practical meaning, and in this particular context it is all
that I have to use. It seems to be most convenient to study such groups
of unitary operators as representations of groups, because it is my feeling
that they will be given this way from the nature of the problem dealt
with, as we shall see, making the model for the potential of the earth.

Now, let U be a real, separable Hilbert space, U* its dual, and let m
and R be respectively mean value and covariance operator for a gaussian
measure on U. Let £ be a gaussian Hilbert-valued random variable on U,
with this gaussian measure as distribution. Let G be a topological group,
(locally) compact, satisfying 2. axiom of countability, and let 7. G —~
O(U*) be a unitary representation of G. For uf, ..., u, € U*, the
distribution of (1} (&), ..., u} (&) is multivariate gaussian, and the same
is true for (T()uf (&), ..., T(g)u (&) for any g € G.
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Definition 1.1. The random functional & is said to be T-homogeneous if,
for any uf, ..., u} € U* and any g € G, the distributions of (uf (&),
s U (E)) and (T()uS (&), ..., T(2) uy (£)) are identical.

The mean value of u*(&) is u*(m) (Theorem 1.1, section 6). If & has to
be T-homogeneous, we must have

T(gu*(m) = u*(m), Vg € G. (1)

But also the covariance of #*(£) and v*(£) must be left unchanged by T(g):

CRu*, v¥ 5y = CRT(G™, T(g) v* Dy 2
But as T(g) is unitary (2) is equivalent to
(Ru* v¥)y = (T(g) 1RT(gu*v* )y < } @)
(R -=T@ TRT(2)u*v*> = 0 Yu*,v* e U*,

But this cannot be true unless

(R—-T(g) RT(g)u* =0 Vu* c U, 4)
which again means that

R =T(g)! RT(g) = T(g)R = RT(g). (3)

If, on the other side, R and T{g) commute,

CRT(Qu* T(gv* > = CT@)Ru*, T(g)v* Dy = { Ru*,v* >, (6)

and the covariance between u*(£) and v*(&) is left unchanged by T.
By the canonical isomorphism between U* and U, T is transformed
into an equivalent representation 7:G - O(U), where J is the isometry

S 7(g)J = JT(s) Vg <G, )
(1) 1s then equivalent to
T(g)u*(m) = w*(m) = {J(W*),m) < ]
Cut, J=1m) oy = (T (gu*,J=1(m) 5y = {I(T(u),m ) ()
= (T (@JIW*),m> = (Jw),T(gYm >. J
But this is true if, and only if|
T(@m=m VgedG. (9)

We have proved the following:
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Theorem 1.2. The random functional & is T-homogeneous if, and only if,
the following two conditions are satisfied

i) RT(g) =T(g)R Vgel

iy T(gym = m YgegG,

(where T(g) = JT(g)J-1 is the to T(g) by the canonical isomorphism
between a Hilbert space and its dual corresponding operator).
If we take a cylinder set C on U,

C={uelU|WiwW,... uw)eB} (10)

where B is a Borel set in R%, the probability of C is determined by the
distribution of (i} (&), ..., up(&).

P(C) = P{w e Q| E@), ..., u (@) €B}. (11)
Let us consider the set T(g)C:

T(@)C - {ue U| @ Ty, ..., 5 T W) B}  (12)
as

w*(T(g)u) = (I W), T(g)1u> = <T(g) Ju*,u> } (13)
= {I(T(gu)uy = T(Q)u* ()

we have
T(g)C ={ue U|T@u @), ..., T(2)u,w) € B}. (14)

If £ is T-homogeneous, we get from (11) that
PS(C) = P5(T(g)C) Vg eG. (15)

Conversely, if (15) is true for any cylinder set C, & obviously is 7-homo-
geneous. We therefore have the following theorem:

Theorem 1.3. The random function & is T-homogeneous if, and only if,
T(g) is measure-preserving for any g € G.

Intuitively this means that elements # and v in U have equal probab-
ility if u = T(g)v. This is the most convenient way to think of homo-
geneity if you want to understand what this actually means.

We shall use a lemma:
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Lemma 1.4, Let R be a positive symmetric compact operator and A a
bounded operator on a Hilbert space U. Then A and R commute if, and
only if,

Vi>0: A(R—-AD-1(0) < (R — A1)~ 1(0). (16)

Proof: Suppose AR = RA. Let u (R — AI)-1(0), which means that

Ru = Ju. But
R(Au) = A(Ru) = A(Au) = A(Au) (17)

therefore Au € (R — AI)~1(0). Conversely, suppose 4(R — A)-1(0)) <
(R — Al)=1(0). There is a denumerable set (15, n € N) of eigenvalues of
R, 9: so that (R ~ Ax1)~1(0) + {0}. It is well known that for s + 0

the dimension of (R — A,1)~1(0) is finite and U = @ (R — A, 1)~ 1(0).
neEN
If we by P, denote the projection on (R — A,1)~1(0) we have that, if

uelU u= 2 Pyu We get

nEN
ARu = A( S RPuu) = A( > An Pnu) (18)
nEN nEN
RAu = R( > A(Ppt)) = 5 IndPyu = ARu. (19)
nEN nEN

The second equality in (19) follows from the fact that A(P,u) € (R -
And)=1(0). If we think of R as a covariance operator and 4 = 7(g), we
immediately get the following theorem:

Theorem 1.5. Let & be a random functional with zero mean value and R
as covariance operator with o,2, neN as eigenvalues. Then & is T-homo-
geneous if, and only if, T | (R — o5 1)~1(0) is a subrepresentation of T.

If we standardize oF = 0, we have that dim (R — o2 1)-1(0) < +
for n = 2. We now have the decomposition of T°

T=@® Th (20)

where Ty = T (R — ¢21)-1(0) and dim Ty, < +w forn + 1. T}, are not
necessarily irreducible, but can be decomposed into irreducible compo-

nents
Ya

i=1

with 4, < + o and dim T, < + o for s + 1.
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If we take the special case of R=1(0) = {0} it is worth noting that the
only possible representations giving a 7-homogeneous functional are
those which can be decomposed into denumerable many irreducible
representations of finite dimension. We ought to make a summary of
the results in this part:

Summary 1.6. Let & be a random functional with mean value zero and
covariance operator R. Let T be a representation of a group G. The following
statements are then equivalent:

1) & is T-homogeneous

i) YgeG Yu*re U*: u*(&) and T(g)u*(&) have the same distribution
i) Vge G: RT(g) = T(g)R
iv) YBe #(U): P¢(B) = PS(T(2)B)

v) T has the decomposition
Yn

T=®(@Tin)

=] f=1
with vy, dim Ty < 4+ if 1 + 1 and
Yy

® Tin = T| (R — 621)~1(0).
i=1

(i) follows from the fact that the multivariate distributions are determined
from the one-dimensional distributions).

8.2.. The Case of a Compact Group

Suppose T is a representation of a compact group. Then T has a de-
composition into irreducible components of finite dimension

o0 g
T>~® @ Ty, (1)
i=14=1
where
. oo n;
Up~® @ UT?;j = U*, (2)
f=1f=1

and Ty and Ty are equivalent if i = k£ and non-equivalent otherwise.
If R is the covariance operator for a 7-homogeneous functional, we also
have the decomposition:
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T=@® Tp,Tn="T|(R -2~ 1(0). (3)
n=1
Tn are not necessarily irreducible, but dim 7, < +« if 62 + 0. We can
obviously choose a decomposition (1), so that

by first making the decomposition (4) and then decompose T, into its
irreducible components:

o

T=©( @& Ty). (5)

ne=1VEH=n

If especially n; = 1, Vie N we can first uniquely decompose T as T =

@ Ti' . From (4) it is easily seen that all vectors in some particular Uz
t=1
must be eigenvectors of R corresponding to the same eigenvalue, Choosing

complete orthonormal systems for Ur} we get a complete orthonormal
system of eigenvectors of R. Thus building a model for some random
functional, an invariance with respect to a compact group will immedia-
tely tell us which are the eigenvectors of R and which correspond to the
same eigenvalue and will in this way give us the useful diagonalization
of R. If R is supposed to be unknown and estimated, R is parametrized
by its eigenvalues (62). The above reduction also reduces the number
of unknown eigenvalues, as some of them which correspond to the same
invariant subspace have to be equal. However, if the Hilbert space is
infinite-dimensional, the number of different eigenvalues will still be
infinite, as all invariant subspaces have finite dimension.

8.3. Ergodicity and Estimation

If {é‘t, IER} is a stationary gaussian random function on the real
axis with mean value function identically zero and unknown covariance
function, one will often want to estimate the covariance function from
empirical observations of a part of the process.

It is of course difficult to estimate anything from omne single sample
Sfunction but because of the stationarity the two-dimensional distribution
of (&¢, &) and (&t+%, &s+h) is identical for any . This can somehow be
regarded as “‘repetitions” of the same experiment, and statistics suddenly
get a meaning. The problem is that the “repetitions” are not necessarily
independent, and the law of large numbers does not apply immediately.
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Suppose we have observed &¢ in some large interval, say from — 7T to 7.
It would be natural to suggest the following the following estimator for
E§t+h Eﬁ - r(h):

h

1T

A = A

W =gy | e (1)
~T+h

the natural generalization of an average. #(/) is of course unbiased

) 1 T—h
Er(h) = TR f r(hydt = r(h). )

~T+h

When does this estimator in some sense converge to the true value
for T~ « ? This is the contents of one of the many “statistical’” ergodic
theorems. It does, roughly speaking, converge if the & —s are not too
much dependent. It especially converges if the process is an ergodic
process (also sometimes denoted as “metrically transitive”) see e.g. Doob
(1953).

In most geodetic literature the covariance function is defined averag-
ing over the sphere instead of averaging with respect to the underlying
probability measure, which implicitly assumes some kind of ergodicity.
This assumption cannot be fulfilled, which in fact is not difficult to prove.
This is important. It means, that it is needless work to measure and
measure gravity anomalies, deflections of the vertical and so on, in order
to determine the covariance function, and that the evaluations of “‘un-
certainty” of the covariance function determined are completely mis-
leading.

Now, let &£ be a random functional with zero mean value and covari-
ance operator R: U*— U*, Let G bea compact groupand T :G - O(U*)
a representation of G. Suppose & is T-homogeneous and 7 is a represen-
tation of the type with all irreducible components non-equivalent:

T=®T; €)
t=1
where dim T; = n; < + « and T; and 7T; are non-equivalent, whenever
i + j. Now if u*, v¥ € U* the distribution of (T(g)u*(§), T(g)v*(§)) is the
same for all geG. If u is the Haar-probability measure on G, the average
corresponding to (1) is
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[T@w© T @dute) @
&
This should be an estimator of
Rty = [k E@)V* E@)dP@). ©
2

If we choose an orthonormal system e;‘;, J=1,...,n for Ur;, we
know that

as e;'; are eigenvectors of R and corresponding to the same eigenvalue
for j =1, ..., n;. By the canonical isomorphism from U to U*, e U
corresponds to &* € U* with coefficients e;;(f) to efj, and

T(@)u*(§) = {T(gu*,E*Dy. (7)

But this is what we called coefficients of the representation T’

T(@u*(&) = t, e:(8) (8)
(see 7.2).
If we by u3;, and vi; denote the coefficients of u* and v* to e; we can
apply theorem 3.1, section 7, noting that

[ 1@ OT@v©du® = [t @ty @i ©)
G ¢
But this theorem says that this integral is equal to
w ] L) g N
2 — 2 2 uijvijeik(‘f)z' (10)
i=1 0 j=1k=1

We know that e, (&) are independently normally distributed with zero
mean value and variance 7. The random variable

ket = [ T@uw OT@ v ©du(e) -
G

w 1 ng (11)
=2 2 uyvig— 2 en(6)?

i=14f=1 Hi g=1

therefore has mean value




65

ER®u*,v¥) = Z Z cr% Vi = CRu*, v*) (12)
i=1 j=1
and variance
w
VarR((u*,v) = > S uzjv Vr:tr(ew(.ff))2 (13)
f=1j=1 Hy

which follows from theorem 5.2, section 5.5. But e;';.(gf)s* has a chi-square

distribution with scale parameter o? and one degree of freedom, and

therefore

Var (e;‘;.(f))2 ~ 207, (14)
Insert this into (13) and we get
N ® 1
Var(R(u*,v¥)) = 2 3 o} Z uzjv@ : (15)
i=1 jﬂ Ry

again using the same theorem. Note that Var(R(u*,v*)) > 0 if uyvy
are not zero for all J, so that o? # 0. We have proved:

Theorem 3.1. If & is a gaussian random functional with zero mean value

and covariance operator R, which is T-homogeneous, where T is a represen-
7 4]

tation T = @ Ty with dim T; < + « and Ty and T; non-equivalent if i = j,

i=1
the estimator

R(u*,v¥) = f T(g)u* ()T (g)v*(&)du(g) (16)
&

is unbiased
ER(u*,v¥) = (Ru*,v*), (17)

and has positive variance if there is an i and j, so that o7, or Uy vy are
different from zero.
. w0 7 1
Var(Ru*,v¥)) =2 3 of > ufjvfj~ (18)
i=1 4=1 nq

where u”, vij are coefficients of u* and v* to an orthonormal system (e%j)
with ew .J = 1,..., nas an orthonormal system in Uz, and R(ezj) = g? e
Especially, if <Ru*, V¥« # 0 the variance will be positive.




9. The Model

9.1. The Hilbert Space

Building the model we have to choose a convenient Hilbert space of
potentials. It does not matter which, it just has to be big enough and
nice to work with. We shall choose the Hilbert space of section 2.2. We
defined it first giving an orthonormal system in U

R n+1
(*‘) an(et,lt) for m g 0

Fe
RO = (W
(—) Sn|m|(6t,lt) for m < 0O
¥y
where n = 1,2, ... and m = —n, ..., n, and then constructed the corre-

sponding pre-Hilbert space of finite linear-combinations of e}’.
To show that it is a Hilbert space, suppose (anm) is a sequence of

"
numbers so that > a2, < +~. Wewanttoshowthat > > a,,en(t)
n=1 m=—-n

is convergent for any ¢ € Mg, uniformly on every compact subset of Mg,
and that the limit is a harmonic function, i.e. satisfies the Laplace-equa-
tion. The convergence is easy to show along the same lines as example
4.1, section 2. The limit can be formally differentiated term by term, and
the resulting series is seen to be absolutely and uniformly convergent
on compact subsets, which means that the limit is the corresponding
differential quotient of the series. This way we can see that it is possible
to apply the Laplacian operator term by term, and as all terms are
harmonic, the limit is also harmonic. Hence the completion of the pre-
Hilbert space also consists of harmonic functions.
We mentioned in section 4 that the function

2

. 7+ 1
k(s t) = gl(?.n + 1)(——) Py (cosys, ) (2)

Fsti
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was the reproducing kernel for this Hilbert space, which we shall now
prove. The addition formula (16), section 2.1, gives

n
2 ey (e (r) =
me=—n
R2 n+1 n _ !
R ananla. 3 UM b (o800 Pum(cost)
Fsrt m=1(n+m)!
3)
(cosmAscosmis + sinmAssinmiy) + Pp(cosls) Py (cosly)
2 n+1
= (——~) (2n+ 1) Pr(cosys, 1).
Fslg
So we have that u
k(s,t) = > > er(s)el(¢). 4)

‘=1 m=—n

@ n
To ensure that k(-,f) = kt € U, we just have to show that > >
€™ (1) < + « which is quite trivial to do. n=1lm=-n
The reproducing property can also be verified immediately if u =
>d,.. e, we have that kt = > e (¢)e? and

ma €n s
Ukt = 2l eq(t) = u(@). (5)

U*, the dual space to U, is spanned by the linear functionalsL¢, t € Mr
L) = u(t)Vue U, (6)

and L; and k* are corresponding elements by the canonical isometric
mapping J from a Hilbert space to its dual:

J(kt) = L;. (7

It is worth noting that aithough k is a positive symmetric kernel it
could not be the covariance function of a stochastic process with all
sample functions in U as discussed in section 6.2. It is, however, not
serious at all in this particular problem.

If we by U, denote the corresponding Hilbert space of functions
harmonic in My, it has kernel function

k.(s,2) = % % sewT(S)seﬁb(t) =

=1 m=—n

@)
o &)2 n+1
> ((R+ )) (2n+ 1) Py(cosws,e).

=1 Fslt

Yy

5%
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It is easy to see that
k :t = — m em t). 9
(S ) nglmg—n(R+€> aen(s)en() ( )
And because

o

2n+2
Z (E—_‘EM) (2n+1) < +oVe>0 (10)

n=1

it follows from section 6.2 that there is a gaussian process with sample
functions all in U,. But then the sample functions are harmonic in My,
for any & > 0 and therefore also harmonic in Mx.

This means that the main difficulties and problems in connexion with
choosing a Hilbert space lie in the boundary conditions of the sample
functions and not in the harmonicity, As we have already chosen to place
a Bjerhammar sphere in the interior of the earth, these problems have
no physical meaning, as the physically existing potential necessarily
satisfies boundary conditions on the boundary of the earth and not on
some convenient mathematical concept as the Bjerhammar sphere.

9.2. The Group Representation

We have a natural transformation group suitable for a reduction of
the problem. Actually, if we think of the earth as a sphere we cannot
see what is up and what is down (as the potential of rotation is out of
the problem). This can be expressed by saying that a rotation of space
around the origin must not change anything in the problem.

The group of rotations of three-dimensional space around the origin
or the orthogonal group, together with its representations, has been
studied by Weyl and others as one of the classical groups. In the rest
of this part 1 shall refer to Gelfand and Shapiro (1956), whenever a result
is stated without proof or without details.

To get a brief look on the topological nature of the rotation group,
you can think of a rotation as a vector which has its direction along
the axis of rotation and whose length [0, =] is the angle of rotation, the
rotation group being mapped into a sphere with radius =, so that oppo-
site points correspond to the same rotation. This is the topological struc-
ture of the group: a sphere with opposite points identified. The group
is compact, but not commutative.

Any rotation can be built up from rotations about the x-axis and z-axis.
If we by X(0), 0 = f £ & denote the rotation about the x-axis through
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the angle 8, and by Z(p), 0 £ ¢ = 27 denote the rotation about the z-axis
through the angle ¢, any rotation is of the form

8(p20.91) = Z(p)X(O)Z(py). (1)

(@2, 0, @,) are called the Eulerian angles of the rotation. Different triplets
(@2, 0,9,) correspond to different rotations except for 8 = 0 and 0 = .

These Eulerian angles give a convenient expression of the Haar prob-
ability measure on the rotation group. If /' is a continuous function on
the group, the integration formula becomes

N A A 4

[roawe - | | [r@u0.00sin0apap,. @
G

0 0 0O

As sin 8dldep, is the surface element of the unit sphere at the point with
spherical coordinates (1, 0, ¢,), this integral is an integral with respect
to the product measure of the surface measure on a sphere and arc-
measure on a circle.

The matrices corresponding to Z(p) and X(f) become:

[(cosgp —~sing 0
Z(p): | sing cosp O 3)
0 0 1]
and
1 0 0
X)) 0 cosf -sinf 4)
| 0 sinf cos f

If Li, te Mg is the element of U* determined by
Li(u) = u(t)VuelU, ()
we shall to any geG (G is the rotation group) define T'(g): U*-U* by

T(g)(Le) = Ly gy (6)
and T(g): U - U, by
T(g)(kt) = ke ®, (7)

where g(¢) is the picture of ¢ by the rotation g €G. This means that if ue U
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T(e)u(t) = <T(@ukt> = u,T(g) 'kt = u(g*(t)). ®)

T'(g) is obviously a transformation of U which is linear and bounded,
and it is inner-product preserving (unitary) because of the rotation
invariance of the kernel of U. T(g) can also be extended to U by linearity
and continuity. T and 7 are obviously homomorphisms of G.

To show the continuity of 7 it is enough to show it at the identity of G,
because if '

| T(u —ull -0 YueU 9)
then ~ e
NT(@)u — T(goull = | T(gs @u—ul] -0 (10)
q->f

as gglg — e because of the continuity of the group operations.
g—>ge
It is also enough to show

| T(g)kt —kt || - 0 VieMp (11)

g-—>e

i
as any u of U can be approximated by > ask*, and
i=1 |

T — ull = || T(gu — T(Qunll + | T(@un — unll + [|ten — u]] } (12)
=2 ||lu — ua|| + || T(Qun — uall.
We have
|1 T(g)kt — ket = 2(k(2,8) — k(t.g~*(2))) (13),

and the right side of (13) tends to zero when g tends to e because of the
continuity of the kernel. The continuity of T follows from the isomorph-
ism J: U - U*,
If we define
V, =span{el,m=—n, ..., n}, (14)

V., is invariant under T. This can be seen by the following argument:
if ueVy, i.e. u is a spherical harmonic of degree n, u has the series
expansion:

R #+1 7" 7
m=10

I m=1
and
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T(g~Yu(t) = u(g(?)) = ]
R\"Y »o ", g (16)
T z anman(Bg(t)sz'g(t)) + bnmSnm(eg(t}’Ag(t)) I
Fg @) m =0 m=1
but because ry¢) = r, 7(g Hu also has an expression containing ¢ only
1
as —7 and must therefore also be an element of V,.
r

We have mentioned earlier (section 2.2) that the functions Ry, and
Sum also played a role as orthonormal systems in the Hilbert space H,
of square-integrable functions on the unit sphere. One of the classical
representations of the rotation group, studied by Weyl and also treated
in the earlier cited work by Gelfand and Shapiro, is defined by setting
T*()f(t) = flg~¢t)) for feH,. It is here known that Ruym, n =0, ...,
nand Spm, m = 1,. .., n together constitute a orthonormal system for a
subspace Ly, « H,, which contains rno proper invariant subspace, 1.e. the
subrepresentation T* | Ly, is irreducible. As T'| V» acts on the functions
Rum and Sam exactly as T%* | Ly, it follows that T | Vy, is irreducible.

So we have the decomposition

7=

[

T Va (17)
1

I &8

and this decomposition is unique as dim ¥V = 2n+1 + dim Vy if m 2 n
and therefore 7| Vi and T'| Vi are non-equivalent.

By the isomorphism between U and U* where ¥, <> ¥V we also get

T=® T|V), (18)

n=1
and the same remarks hold.

9.3, The Gaussian Measure

We shall now define a gaussian measure on the Hilbert space U. First
we have to get a mean value. If we substract a suitable normal potential
from the potential of the earth and only consider the anomalous potential,
we can very well assume the mean value to be zero.

We can say a lot about the covariance structure of the measure if we
demand T-homogeneity. Demanding this kind of homogeneity is very
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natural, as it follows from section 8.1 that this is equivalent to demanding
T(g) to be measure-preserving for any g, i.e. sets of potentials which can
be carried into each other by a rotation of space have the same probability.
Maybe it is a little too much as the earth is not a sphere, but this kind
of homogeneity is closely related to the concept of the Bjerhammar sphere,
and if we should just have invariance with respect to rotation about the
z-axis, we should also use a Bjerhammar ellipsoid and everything would
get unneccessarily complicated.

As T'| V, are subrepresentations of T, elements of V. are eigenvectors
for the covariance operator R corresponding to the eigenvalue o2, and

<-Ren :e]g* >=!= = kna (1)

when e]* is the linear functional mapping a potential u into its coordinate
to the basis vector '

emr () = (uyel>, @)

(The natural isomorphism has been used again). But as
Var(e*(£) = (R &%, em*> = o, 3)

o2 can be interpreted as the variance of the coefficients of the potential
to the normalized spherical harmonics of degree »n. Hence the name
“degree variances”,

Another way to think of the model is that it is put together by de-
numerably many variance components ¥, with variance ¢2 and
dim Vy = 2n+ 1.

In section 2.3 it was mentioned that the coefficients of the potential
toepforn=1,n=2,and m = 1, — 1 were known to be zero. Therefore
we must have of = 0. If we want T-homogeneity we must also have

= 0 and assume the coefficients to e} known forallm = — 2, ..., 2.
Therefore we must include the best known value of these into the normal
potential. This has not been done in earlier attempts to give a statistical
treatment of the problem, which in my opinion is wrong. It is not easy
to estimate the practical importance of this “change” in the model, but
why make unnecessary theoretical inconsistencies ?

In order that the covariance operator should have finite trace, we must

demand
n [v'e]

503 2= S 20n+1) <+, 4)

n=1lm=—n n=38
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This gaussian measure induces, as shown in section 6.2 a gaussian process
&t te Mg, where &t denotes the value of the potential at the point ¢ with
covariance function:

foe) n

E&sgt = 5 o2 3 eM™(s)e(¢)

n=1 m=—"n

m e ®
= > G?L(2n+l)(—£—> Pp(cosys, ).

n=3 Fsti

The degree variances o2 are unknown and have to be estimated. We never
have more than a finite number of observations, and in my opinion it
makes no sense at all to draw statistical inference on an infinite number
of unknown parameters from a finite number of observations.

This means that we somehow have to reduce the problem further than
we have done at the present stage. The best way to do so is to get a
physical interpretation of o2 and deduce something about its structure.
In fact, this is not easy, and I am not able to do it.

Another approach is to find an expression for o2 containing few
parameters which fits data satisfactorily; this will be done in the last
sections of the present work.

9.4. The Linear Functionals
The linear functionals which shall be considered here are
1) gravity anomalies

2) deflections of the vertical
3) height anomalies.

The gravity anomalies as linear functionals were discussed in section
2.4. It follows that the covariance between gravity anomaly in a point s
and gravity anomaly in f is given as:

BUs@50) = 3 3 bun(@byn ()}

m=—1%

= 2n+1 1)%02 K P
_néa( n+1)(n-1) n“(“;;‘ijt)n+2 n(COSYs, 1)

The deflections of the vertical &(¢,) and #(¢,) at the point ¢, resulting
from an anomalous potential u is given by:
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—1 Bu@®)|
1) = 2
£(20) . 30, ’t= (2)
and
—1 ou(t)
to) = 3
77( o) cosOt P Ohs . (3)

where y, 1s normal gravity at 7, (Heiskanen & Moritz, 1967). Defining
Cnm(to) and dnm(fo) as

—1 0e™(t
e, Ve, 90, =ty
and
-1 el (¢)
dum{ty) = - , 5
wmllo re,7;,C080,  OAs =t ®
a "
we have, ifu = > > a,,e®,
n=1m=—a
o n
E(ty) = 2 2 GumCnm(ty) (6)
f=1m=—n '
and
@ n
n(te) = 2. 2 anmdum(fy). (7)
n=1m=—n.
Noting that
ae™t) (R\"*? 0Py (cos0;)
. . A ok 8
89,3 (}‘;) COS A, 39; nm ( )
if m= 0 and
dem (1) R\"+1 ) QP (cosly) i ©
S RS sin :
30, » ST " )

— )
if m < 0, where knm = |/ 221+ D™ it is not difficult to see
that (n+m)!

| der(r)
a0, |

= Q- ep® (1) (10)

where Q is a polynomial in n. Similarly

Deg'(1)
oA

—e, (1) m. (11)




This easily gives
o0 7
S0 )< 4w (12)
n=1m=-—n
and
o0 K
S0 4R (t) < +o, (13)
n=1m=—n
If we therefore define ¢, ,d, € U by
(Cpsn > = Cup(to) (14)
and
<dto:eg?‘> = dmn(t())s (15)
we get
§(ty) = {u,cq ) (16)
and
n(te) = {u,de,> (17)

and therefore that the linear functionals, mapping « into its corresponding

deflections of the vertical, are elements of U.
The height anomalies are given by

u(t
£ty = M0 (18)
Yt
and are elements of U* because U has a reproducing kernel and
ke
E(ty) = <u,—>. (19)
Yt

From these relations it is very easy to get expressions of covariance
between different functionals of the linear functionals of the potential.
If we note however that the coefficients u,,,(#,) to e} of the element

in U corresponding to u;‘: e U* were found as
unm (tO) = u:(e;’,ﬁ) (20)

we remark that
(Rt VEY = Wi OR()). (21)

Here r is the “potential” covariance function given by (5) and (21) means
that we first apply v;': on r* for any fixed teMp and then apply u: on
VZ (') considered as a function on f. This has certainly importance for

. the computation of covariances.




10. Estimating the Covariance Function

10.1. The Observations

The observations available consist mainly of about 1.000.000 measure-
ments of gravity anomalies and 100.000 deflections of the vertical. The
observations are not homogeneously scattered on the surface, but are
concentrated in densely populated areas. Deflections of the vertical are
missing on the oceans. In the Kaula papers mentioned earlier, there is a
detailed description of the observations.

Because of the enormous amount of gravity anomaly measurements it
is natural to use these to get an empirical covariance function for the
gravity anomalies and to determine the “degree variances” o2 from this
one, But of course the practical problems in dealing with one million
observations spread over the earth in an inconvenient way are not
negligible. All these problems have been discussed intensively by Kaula
and I shall not here do this again.

Besides, I do not find it worth while, which is a consequence of the
non-ergodicity, as the next section will show.

10.2. Uncertainty of the Empirical Covariance Function

In Kaula (1959), the empirical covarjance function is computed in the
following way. First, the gravity anomalies are changed to mean square
anomalies in squares of about 300 x 300 n.m. In squares without measure-
ments, the anomalies are predicted from a very simple model of the
Markov-type. All products of these values are computed and classified
according to spherical distance. The average of products with approx-
imately the same spherical distance is then used to estimate the covariance
between gravity anomalies which are apart by this distance:

A 1
c) = N 2, adg(S)-Ag(r) (1)
Ys, t =




/i

where N is the number of terms in the sum. Thus C(0) should be a reason-
able estimate of

CO) = > AnPn(cost) (2)
7= 1
where A, are unknown parameters. To get a guess on the variance of
C(#), Kaula by a heuristic argument comes to the result that it is possible
to treat the products in the sum as if they were independent, as their
dependence cannot be so very great at all. This gives that

2

Var(C(6)) ~ % (3)

where
0 = > A,P,(cost)y_, = Var(dg) = C(0). 4)

This means that if the sum contains, say, about 3000 products, this
variance is negligible, and we can say that we actually have the right value.
But (3) is not true! Suppose we knew gravity anomaly continuously
all over the earth. As estimator for the covariance function one should

suggest
I

8n? R3

[ | %0 0,00, ©

SER tE k(O

) =

where k is a sphere with centre at the origin and radius R, and k4(0) is
a circle on the sphere with “spherical radius” 6. gy () is arc-measure
on the circle k«(0), and o(s) is surface-measure on the sphere k.

Define

Cly) = f Ag(x(s)Ag (x(2)}dp (%), (6)

T E G

where v,,; = w and ug is Haar-probability measure on the rotation group
G. We shall show that €(8) = C(6)V0, and we shall then use the results
from section 8.3 about the variance of C(6).

If we put f(x) = Ag(x(s,))-Ag(x(2,)), where s, has spherical coordinates
(R,0,0) and ¢, has spherical coordinates (R,,0), we have from (2) section
9.2

2m ww 2m:

1
f £ () — g;f f f f@o 0 p)sinbdpdodp,  (7)
- 0 0 0
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where f(,,0,p,) is f(x) where x has eulerian angles (¢,,0,p,). Because of
the invariance of ug

Cw = [ (F) deg() ®)
G

as we can always bring s and ¢ into s, and ¢, by means of a rotation.
Using the formulas (3) and (4) from section 9.2 it is possible to realize
that

3
f(@zsﬁ,?)l) = Ag(R,G, ‘; + ?92) ' Ag(rq:)l (_V)) (9)
where
I, = Zip)X(0) Z(py) X(—6) Z(~py) (10)
and
¥ = Z(p)X(0) (Ry,0) 1y

(X and Z are the elementary rotations defined by (3) and (4) in section 9.2).
But then

2n & 2m

8 2 f f f S (e, 0,9,)sinbdy, dbdyp,
0

27 (12)
- f f Ag(R, 0, qoz) f Ag () dipy sintidipy
0
o carries the point (R,@, + 992> into itself:
3n
(R 0,— ‘Pz) = Z(p)X(O) Z(p) X (- 6) (R:G:?)
= Z(p) X(0)Z(91)(R,0,0) (13)

= ’R93n+
- 552 (Pz-

Therefore ry, must be a rotation about the axis through the origin and

R93n+
5:2 ?92-

3
By rotating the point (R,B + Ty + %) one can see by some calcula-

tion that T is a rotation of angle ¢,. But then r(pl(y) must move along




14

3n
a circle on the sphere with centre (R,H, 5 + t,vz) and spherical radius

3
with constant velocity. But (R,B, B + (p2> will pass through all points on

the sphere and sinfdfdp, is proportional to the volume of the surface
element on the sphere. Hence

Cw) = [f@dune - ¢ [ [ 456ag)do,, ()dols) (14
¢ SEk LE k)

and therefore

Cw®) = Co). (15)
And we get from section 8.3
0 0—4 7 \
Var(C(@) =2 3 —" ( > (bum(r,0, 0))2(bnm(r',9,0))2), (16)
n=12n+t1\m=—n
n-1

where bpm(r,0,4) = e™(r,0,2), see section 2.4. But as Pnm(?)

R A™P,(t)
= (1-1H% — t
(1- 192 "= we go
Pun(l) O0if m=#20 an
n = |
" 1if m=0.
Using (16) we get :
- 4
Var(C(@®)) = 2 > Tn (bno (#,0,00)2(buo (r,6,0))? (18)
and as
_ 1 R f+1
buo(r,0,4) = z (——2> ]/2n+1Pn(cost9), (19)
FoAr

R 4 5 R dn
Var(C(0)) = 2(}72) > (n —1)4(2n+1)a,§(;—) (Pr(costh))?.  (20)
n=1

Except in trivial cases this variance is fairly large and is not to be neg-
lected. The sum (1) converges to the integral (5) when the number of
points becomes infinite and the maximum distance between two points
tends to zero (a Riemann procedure). It therefore follows that the vari-
ance of the sum does not tend to zero as (3) would suggest.
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This means that, even if we knew gravity all over the earth, we would
not be able to find the true value of the covariance function. But if we
knew gravity, we could find the true potential. Somehow it seems that
it is much more difficult to find the covariance function than to find
the potential. This fact gives the impression that somehow the problem
is not suited for a statistical treatment. However, if the alternative is to
use an arbitrary kernel for collocation it cannot be a bad idea to use
a kernel that in a way reflects the observed behaviour of the actual potential
of the earth, which will be the case when using some estimated covariance
function,

But it seems to be less important to get very exact values of the empir-
ical covariance function and the degree variances. As in section 9.3, the
conclusion must be that it is desirable to get a covariance function which
is easy to handle and which is not too far away from the empirical one.

10.3. The Empirical Covariance Function

Data used to compute the empirical covariance function are those
prepared by Kaula (1966), and reproduced in Gaposhkin and Lambeck
(1970), consisting of 300 x 300 n.m. mean anomalies. The normal potential
used corresponds to a reference ellipsoid with f = 1/298.255 (see Gaposh-
kin and Lambeck, 1970, p. 49) with the modification that the values of
the coefficients of the potential to spherical harmonics up to the degree
n = 2 were included. These coefficients were taken from table 14 in the
same paper. The empirical covariance function was computed and is
plotted in figure 2. One may notice that, for spherical distances greater
than 30°, the gravity anomalies seem to be approximately independent.

In figure 3 the empirical covariance function of the gravity anomalies
refer to a normal potential without the above modification. In fact the
two covariance functions are almost equal, so it seems to have no
practical importance to include these extra coefficients.

This covariance function includes very few observations of the short-
range values. To get a better idea of the short-range part of the covari-
ance function (which in fact is the most important) another sample of
about 16.000 1°x1° mean gravity anomalies has been used. The corre-
sponding covariance function has been taken directly from Kaula, (1966)
and is shown in table I (fig. 4).

It is remarkable that the variance in the short-range sample is about
711 mGal® and the variance in the long-range sample about 270 mGal®.
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Fig. 2. Empirical covariance function of gravity anomalies referring to normal poten-
tial with terms of degree = 2 included.
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Fig. 3. Empirical covariance function of gravity anomalies referring to normal
potential without modification.
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Table I. Kaula’s short-range empirical covariance function
of gravity anomalies

argument cov.fct. number

° mGal® of obs.
0.00 711 16331
0.92 421 6803
1.32 272 35225
2.35 196 43674
3.35 162 33864
4.34 97 19414

This, however, is easy to explain, as the global sample consists of mean
anomalies in squares of 300x 300 n.m., which considerably reduces the
variance; furthermore some of the values in the long-range sample are
predicted from a very simple model.

Of course this is very unpleasant because one does not have the
slightest idea of what happens to the covariance function from the long-
range sample, and it seems to me impossible to have confidence in it.
In my opinion it is more adequate to use only correct measurements of
gravity anomaly and then ignore the fact that in large areas no measure-
ments are present, We shall, however, not panic, because what we want
from the empirical covariance function is just something to look at.

In Gaposhkin and Lambeck, (1970), a set of values of the *“degree
variances” corresponding to the gravity covariance function is listed.
As the tendency of thesc are slightly decreasing towards a constant, one

n—1
for n=z 3 and O

could hope that they could be described as A -
n J—

otherwise, with good approximation. This corresponds to a potential
covariance function

R A 1Y

This can be obtained as a closed expression

R \? 2\ sin%ygy
ris,t) = A — ) | Py(cosps){ 1 +In—) + ——r
Iekt 1 4
R\ 2 [ R\b[_ [ R
—{— ] cosypge In—- +[— =13 cosPst — 1
Fsly a Fste)2 Fgly

%+1
) Prp(cosys). ()

Fsht

o A (Rz

)
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Fig. 4. Short-range empirical covariance function (Table I).

Cy)

mgal?

600T

400+

2007

Short range | Long range

1 ) 1 >

10 15 20 ¢ in degrees

——— g —— ] e

Fig. 5. Mixed empirical covariance function of gravity anomalies.
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Fig. 6. Parametric covariance function of gravity anomalies.
A = 7.84888 Rjr = 0.994,

R2
a=1—L—[—|cosys

Fsti

where

Rz
b=1+L- COSYsi (3)

Fslg

R? R \?
L=1{1-2[—|cosys +|— .
Fsli Fsti

Maybe it looks complicated, but it is really nothing for an electronic
computer and much easier than an infinite series. This model corresponds
to

[

! i >
&=[ D@y L =3

n
0 if n=s2.

The covariance functions between other types of functionals can be
derived (see 9.4) “just” by differentiation of the expression (3). It should
then be adequate to choose R and A to make this parametric expression
look like the empirical one. The fit scemed to be the best for 4 = 7.84888,
and R/r = 0.9945, making R be the mean radius of the earth. In fig. 5,
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Fig. 7a. Comparison of short-range parts of parameiric and empirical covariance
function of gravity anomalies.
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Fig. 7b. Comparison of long-range parts of parametric and empirical covariance
function of gravity anomalies.
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Table II. Parametric covariance functions between different
linear functionals

P Grav. Anom. | Grav. Anom. | Grav. Anom. Defl. Ver. Defl, Ver. Height Anom.
Grav. Anom, Defl. Ver, Height Anom. | Defl. Ver. Height Anom. | Height Anom.

© mGal® m@Gal-arcsec mGal - m arcsec? arcsec - m m?

0 711.00 0.00 220.82 18.37 0.00 302.89

5 86.12 20.44 136.78 1.77 14.68 274.96
10 36.23 13.05 93.53 0.73 17.85 230.47
15 17.43 9.99 62.86 0.15 18.98 180.43
20 7.15 8.01 38.72 — 0.29 18.77 129.24
25 0.73 6.43 19.30 — 0.62 17.52 80.09
30 — 3.44 5.03 3.88 — 0.87 15.50 35.40
35 — 6.08 3.74 — 7.93 — 1.04 12.91 — 3.02
40 — 7.58 2.56 — 16.41 — 1.13 9.98 — 33.95
45 - 8.19 1.48 — 21.83 - 1.15 6.89 — 56.71
50 — 8.08 0.52 — 24.49 - 1.11 3.82 — 71.13
55 — 742 — 0.31 — 24,74 — 1.02 0.93 — 77.48
60 — 6.34 — 0.99 — 22,97 — 0.88 — 1.64 — 76.45
65 — 4.96 — 1.50 — 19.57 — 0.71 — 3.79 — 69.02
70 — 3.41 — 1.86 — 15.00 — 0.51 — 5.44 — 56.45
75 - 1.79 — 2.06 — 9.68 — 0.30 — 6.54 — 40.16
80 — 0.20 — 2.10 — 4.04 - 0.10 - 7.08 — 21.66
85 1.27 — 1.99 1.50 0.10 - 71.07 — 245
90 2.55 — 1.76 6.59 0.28 — 6.55 16.03
95 3.57 — 1.43 10.92 0.43 — 5,58 32.48
160 4.28 — 1.02 14.24 0.55 —4.24 45.79
105 4.66 — 0.55 16.36 0.63 — 2.63 55.10
110 4.71 — 0.06 17.18 0.68 — 0.85 59.81
115 4.41 0.44 16.66 0.68 0.98 59.63
120 3.79 0.90 14.84 0.64 2.76 54.56
125 2.89 1.32 11.83 0.56 4.39 44.86
130 1.76 1.66 7.79 0.46 5.78 31.08
135 0.44 1.92 2.94 0.33 6.85 13.98
140 - 0.99 2.08 - 247 0.18 7.55 -~ 5,53
145 — 247 2.13 — 8.16 0.03 7.84 - 26.37
150 - 3.92 2.07 — 13.85 — 0.13 7.71 — 47.44
155 - 5.29 1.91 — 19.24 — 0.27 7.17 — 67.60
160 — 6,51 1.66 — 24.08 — 0.41 6.25 — 85.78
165 — 7.52 1.32 — 28.10 - 0.52 5.00 —101.02
170 — 8.27 0.92 — 31.13 — .60 349 — 112.52
175 - 8.74 0.47 — 33.01 — 0.65 1.79 - 119.67
180 — 8.90 0.00 — 33.65 — 0.67 000 - 122,09
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the first part of a mixed empirical covariance function is made using the
short-range covariance function from 0° until 5° and the long-range from
5° to 180°. The same part of the parametric covariance function is shown
in fig. 6. To get a good comparison of the parametric and the empirical
covariance functions, the short-range and long-range parts have been
compared in two curves, and the result can be seen in fig. 7a-7b. The
fit is remarkable! One could get the impression that there might be some
physical reality behind this version of o2 . But at least I can see no reason
at all for using the empirically determined degree variances instead of
these parametric degree variances. In table II, the covariances between
different types of linear functionals are shown using the parametric
expression, and the corresponding curves can be seen in fig. 8a—8f.




11. Results and Final Comments

11.1. General Problem of Prediction

Let £:Tx £2 R be a second-order random function with known
covariance function r and mean value identically zero. Suppose we have
observed the process on some subset 7' < T, where 7" is finite. We want
to have a good guess on &(fo,w) for 70 ¢ T’ from the observed values of &,
It is an idea to seek the linear combination of the &(¢)’s in 7" that mini-
mizes mean square error, i.e. find a4, so that

EI z aifti _5%,23(7’" = {Ila"-atn}) (1)

t=1

n
is at minimum. It is easy to see that this Y a;£% is the projection of
i=1
& on the closed subspace spanned by the random variables {& teT'},

considered as elements of Hg, the Hilbert space spanned by the process
(see section 5). This random variable we shall call the prediction of &
from {&, t€T'}, and we shall write EX{£%|T’}. If we define

‘ M. = span{ét,teT'}, (2)
we have

Vuedp: ||§ - E*{°T'}| = {|&% — u|] 3)

It is natural to generalize this to 7’, when 7" is an arbitrary subset of
T, and define the prediction of & as the projection on M p. defined by
(2). This prediction problem has been treated by many authors, e.g.
Doob (1953) and Grenander and Rosenblatt (1956). Parzen (1959, 1961)
gave a very general treatment of the problem, applying reproducing
kernel Hilbert space theory. We shall here not consider the general
theory, but just use the results directly relevant to the practical purposes
of this problem, i.e. 7" finite.

The important thing is that, as Hg = & is isomorphic to the kernel
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space of the process K, the prediction problem can be solved in K and
then transformed to Hg later. As &f corresponds to ¢, . 7, corresponds to

MTf = -ﬁj_a—n_{rt,tET’}. (4)

The prediction of & from T’ corresponds to the projection of r* on
M., The coefficients a; are determined by the property

n
(rtrh — S artDp=0,j=1,...,n 5
i=1
which gives the system of linear equations
i
Z agr(ts, 13} = r(Zy, ihj=1,...,n (6)
i=1
If a;, i = 1, ..., n are solutions to (6), it follows that
"
E*{f|T'} = 3 a;&h, (7)
i1

If we consider E*{& | T’} as a function of ¢, the coefficients a; depend
on ¢,

E*(EIT') = 5 a()eh. ®)

i=1
From (6) it is evident that, if (r(¢;,#;)) is regular (as matrix),
T
ail(t) = 2, rir(t,t) )
i=1
where r#/ are the elements of the inverse matrix to (r(¢i,¢;)). Hence
i/ " . ) /) X
EX&|T'} = > 5 rr(n,0)E = 3 (2 &y, (10)
j=1 =1 j=1i=1

We see that having observed the values &% = my,i=1, ..., n, the
. predictor as a function of ¢, is given by:

n
2>, byrti, (11)

f=1

n
when b; = > m;rt/ are solutions to the system of linear equations
i=1
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n
Z bir(ti,ty)) =me, i=1,...,n (12)
i=1

(12) is the most convenient problem to solve seen from a computational
point of view. The mean square error of prediction is given by

TER{E T — 1 = || 3 aur't =]} -
i=1
(rt - % airs,ryy = (13)
i=1
r(t,t) — %a.;r(ti,t) = r(t,t) — % %f‘”l‘(fi,l‘)r(tj,t),
i=1 i1 5=

which is seen from (6). It is not difficult to see that the prediction requires
~ the inversion of the matrix (r(t;t5)).

The prediction has many properties of the conditional expectation, and
if £ is a gaussian process, the two concepts are equivalent. The idea of
minimizing mean square error of a linear combination of the observed
values has first of all some optimal properties, when the process is not
too far away from being gaussian. This is again an argument for con-
sidering only gaussian processes here.

11.2. Prediction of Linear Functionals

From the formulas in 11.1 it is easy to see that a constant factor on
the covariance function does not affect the predictions. If we in our
problem consider the covariance function to be determined by the values
of 2 given by (4), section 10.3 and the value of R corresponding to

— = 0.9945, we can suggest the only unknown parameter to be 4, which
p

does not affect the predictions. Suppose we have observed uy, ..., uy
linear functionals, whose covariance matrix would be

(Ruf,ujy = A-riy= A-R (1)

and suppose further that R is regular. The maximum-likelihood estimate
of 4 would then be

A_m

N
TN 2T @
%
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where ¥ is the elements of R~1. This also requires inversion of R. As
we have actually observed linear functionals where N ~ 106, the inver-
sion cannot practically be carried through. On the GIER-computer it is
possible to carry through this inversion when N is not much bigger than
100. We have tried to make a prediction from 27 different linear functio-
nals situated as sketched in fig. 9. We have predicted the two compo-
nents of the deflection of the vertical and the gravity anomalies in 6 points.
The points were chosen where the actual value of the functionals were
known. In table ITI a comparison between measured and predicted values
together with the prediction error is shown. It looks reasonable.

Of course, it does not show more than that the computing procedure
seems to work.

11.3. Final Comments

The parametric model used in the present work has the obvious defi-

A
ciency, that the values of o2 = D -DCnil) have no physical

interpretation, or more correctly, I have not been able to understand the
physical meaning of o2 . But the “goodness of fit” is remarkable. There-
fore one should think of the prediction as an algorithm and not as an
optimal procedure having its background in a correct statistical model.

The most important property of an algorithm is that it works and that
it is easy to handle. This algorithm satisfies the above properties., Of
course, it would be better, if it was possible to make predictions from
a larger number of observations. One could say, that this is a problem
of getting a very large and fast computer. However, it would be con-
venient, if it was possible to find a simpler algorithm. This suggests an
approach completely different from the statistical one here. But I do not
know, if anyone has the idea yet.

I think, that the most important problem to solve is connected with
the degree variances. This can only be done if somebody has a very
deeply theoretical understanding of what is going on in the earth and
what this means to the potential.

It seems to me that it is dangerous to give too much attention to the
non-theoretical statistical approach to physical geodesy. Somehow the
statistical method (i.e. the prediction theory, harmonic analysis of the
covariance function etc.) makes you forget about the relevant problem
because it “disappears” in computation and formulas. 1 think that the
non-ergodicity of the process, which I have proved here, is merely due
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I\ - gravity anomalies used to prediction
[ - deflections of the vertical used to prediction
O - predicted deflections of the vertical and gravity anomalies

Fig. 9,

to the fact that problems of understanding physical mechanisms seldom
can be solved by statistical methods. An exact theoretical study of the
probabilistic background of the method, as I have tried to carry through
here, will often tell you, how the problems have been changed and hidden
in places, where they are difficult to discover.
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Table III. Prediction of linear functionals

a) gravity anomalies

long. lat. measured predicted diff, standard
o o mGal mGal mGal error
56 44 12 40 29.30 14.98 14.32 12.6
57 17 948 — 401 — 9.38 5.30 10.2
56 30 10 32 — 8.21 — 4.58 — 3.63 14.6
56 39 10 01 — 7.33 — 8.80 1.47 11.5
56 27 8 48 0.51 — 13.84 14.35 18.5
55 44 12 30 — 11.77 3.10 — 14.87 18.4
b) defiections of the vertical
long. lat. measured predicted diff. standard
0 o arcsec arcsec arcsec error

5717 9 49 & — 346 — 295 — 0.51 1.7

n — 0.26 0.48 — 0.74 2.3
56 39 10 00 & — 0.57 — 2.25 1.68 2.1

7 4.15 — 0.09 4.24 4.0
56 30 10 34 & — 0.44 — 2.35 1.91 2.0

w231 — .37 2.68 4.5
56 26 8 48 & 1.93 — 1.51 3.44 2.0

7 1.89 1.38 0.51 1.2
5544 12 30 & — 1.54 — 1.54 0.00 1.6

n 2.7 2.11 0.86 1.7
56 41 12 51 & — 2.65 — 2.35 0.30 2.3

7 3.13 4.79 — 1.66 1.7
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