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This notebook is intended to give you some insight on identifiability of additive noise models and how they could be estimated
in practice. The references are sparse and are somewhat biased towards [1]. We do not intend to claim that this is the original
reference.

In [ ]: library(mgcv)
library(dHSIC)
source("utils.R")

Two Variables
Assume we are given a sample from a bivaraite distribution over $X$ and $Y$ and want to find out, which variable is the
cause and which the effect, i.e., whether the distribution has been induced by an SCM with graph $X \rightarrow Y$ or $Y
\rightarrow X$.

Without further assumptions, this will not be possible: Either graph can induce any distribution (e.g., see Proposition 4.1 in
[1]). This is different, however, if we restrict the model class. E.g., if we consider only linear assignments, we have the
following statement. Given a distribution over $X$ and $Y$ that is induced by an SCM with linear assignments and graph $X
\rightarrow Y$. Then, it is also induced by an SCM with linear assignments and graph $X \leftarrow Y$ only if the noise
variables are Gaussian (e.g., see [2] or Thm 4.2. in [1]).

Exercise 1:

Generate a (large) sample from a distribution from a linear SCM with graph $X \rightarrow Y$ and non-Gaussian noise (e.g.,
uniform). Do the same for a linear SCM with the reversed graph $X \leftarrow Y$. Plot both samples. What is the (systematic)
difference between the two pictures?

Solution 1:

In [ ]:

End of Solution 1

A very similar statement holds for nonlinear functions, too: If a distribution is induced by $Y = f(X) + N_Y$ with $N_Y
\mbox{${}\perp\mkern-8mu\perp{}$} X$, then only for very few (and somewhat non-generic) combinations of functions $f$ and
distributions of $X$ and $N_Y$, will we find a model in the backward direction, too (e.g., see Thm 4.5 in [1]).
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But how can we find the graph if we are only given a sample from the joint (observational) distribution? In other words, how do
we decide which model the data come from: $$ \tag{1} Y = f(X) + N_Y, \quad N_Y \mbox{${}\perp\mkern-8mu\perp{}$} X $$ or
$$ \tag{2} X = g(Y) + N_X, \quad N_X \mbox{${}\perp\mkern-8mu\perp{}$} Y ? $$

Let us consider a real world data set.

In [ ]: XX <- read.csv('./RestrictedSCMsData1.txt', sep = "\t")
XX <- XX[1:1000,]
Y <- XX[,2]
X <- XX[,1]
plot(X, Y, pch = 19, cex = .8)

The next two exercises contain two approaches that aim to estimate the underlying causal DAG, i.e., whether $X \rightarrow
Y$ or $X \leftarrow Y$.

Exercise 2:

First, we perform an approach based on independence tests. Assume for a moment that equation (1) is correct. Then the
corresponding function $f$ can be found (asymptotically) by regression and the residuals are independent of $X$. If (1) is
incorrect, the residuals are not independent of $X$. We thus perform the following four steps:

Regress $Y$ on $X$ and obtain estimate $\hat{f}$.1. 
Check whether the residuals $Y - \hat{f}(X)$ are independent of $X$.2. 
Repeat the same in the opposite direction.3. 
If the independence is accepted for one direction and rejected for the other, infer the former one as the causal direction.4. 

To regress B on A, you may use gam(B ∼ s(A))  from package mgcv ; the residuals can be accessed by gam(B ∼ 
s(A))$residuals . For the independence test you can use dhsic.test  from package dHSIC  (setting method = 
"gamma"  will increase the speed).

Solution 2:

In [ ]:

End of Solution 2
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Exercise 3:

If we know the distribution of the noise variables, we can also choose a maximum likelihood (ML) approach, also called a
score-based approach. (This means --- roughly--- that we are choosing the model class that is closer to the observed
empirical distribution in KL distance.) For example, we know that the distribution of any noise variable is Gaussian with mean
zero and a certain variance. For any given graph, we obtain a score that is propotional to the likelihood by the following three
steps.

Regress each node on its parents.1. 
Compute the variance of all residuals (here: $R_X$ and $R_Y$).2. 
To obtain the score for the graph, take the negative sum of all logarithms of these numbers (here: $- \log(\mathrm{var}
(R_X)) - \log(\mathrm{var}(R_Y))$).

3. 

Compute this score for all graphs (here: $X \rightarrow Y$, $X \leftarrow Y$ and the empty graph $X \quad Y$) and compare.

Solution 3:

In [ ]:

End of Solution 3

In fact, the example shows for several days of the year the average daily temperature in a city in Germany. The value of $X$
indicates the altitude and the value of $Y$ the annual mean temperature. We expect that $X \rightarrow Y$ is the underlying
causal structure.

Note that there is the following fundamental problem. In almost all scenarios, we'll reject any statistical model if we receive
more and more data. The same happens here. In the wrong direction, however, the model is rejected even for small sample
sizes.

More than two Variables
So far, we have considered two variables but the same principle applies to more than two variables, too. Again, one can show
that without further assumptions, it is not possible to infer causal structure from just observational data, see Proposition 7.1 in
[1].

We will now see how the approaches from above can be generalized to problems that contain more than two variables.

In [ ]: load(file = "./RestrictedSCMsData2.RData") # loads dat
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We have now loaded a sample from a distribution over variables $W$, $X$, $Y$, and $Z$. The columns of the matrix dat
contain the data for the variables $W$, $X$, $Y$, and $Z$, respectively.

In principle, we can now go through all DAGs and for each DAG --- as before --- compute the residuals and consider either
their independence or the likelihood score (details are explained below). The problem, however, is that for both methods,
adding edges usually helps. To be able to detect and remove "inactive" edges, we have to slightly modify the procedure. First,
to make your life easier, we load some DAGs over four variables.

In [ ]: load(file = "./RestrictedSCMsallDagsWith4Nodes.RData") # loads all DAGs as allD
ags
load(file = "./RestrictedSCMsallFullDagsWith4Nodes.RData") # loads all fully co
nnected DAGs as allFullDags

The matrix allDags  has dimension 543x16 and contains all 543 directed acyclic graphs (DAGs) with four nodes. You can
access the adjacency matrix of the 5th DAG by matrix(allDags[5,],4,4) . Similarly for allFullDags . (Can you
guess the number of fully connected DAGs over four variables?)

Exercise 4:

Go through all fully connected DAGs and for each DAG, regress a variable on its parents

Independence-based approach: Test whether the residuals are jointly independent (you test whether the columns of a
matrix A  are jointly independent by dHSIC::dhsic.test(A, method="gamma", matrix.input=TRUE) .

1. 

Score-based approach: for each DAG, regress each variable on its parents and compute $$2. 

\log(\mathrm{var}(R_W)) - \log(\mathrm{var}(R_X)) - \log(\mathrm{var}(R_Y)) - \log(\mathrm{var}(R_Z)). $$

For regressions, you can use the function train_gam , it is a wrapper for the function gam . E.g.,
train_gam(dat[,c(1,3)], dat[,2])  regresses $X$ on $W$ and $Y$.

Both procedures estimate a fully connected DAG. Do you have an idea how to modify the above procedure to remove
"inactive" edges? Which one is the underlying DAG that was used to generate the data? (Hint: to your convenience, the
outcome of train_gam  contains an entry p.values  that indicate whether a variable is significant in the regression model
or not.)

Solution 4:

In [ ]:

End of Solution 4
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To deal with "inactive edges", there are alternatives to consider fully connected DAGs. E.g., for the score-based approach, you
may also go through all DAGs and compute the score \begin{equation}

\log(\mathrm{var}(R_W)) - \log(\mathrm{var}(R_X)) - \log(\mathrm{var}(R_Y)) - \log(\mathrm{var}(R_Z)) - \log(n) \cdot #
\text{pars}/2, \end{equation} where $\# \text{pars}$ are the number of parameters. Adding edges always makes the
residuals smaller and therefore the first part of the score larger. The "penalization term" compensates for that effect. The
score is called Bayesian Information Criterion (BIC).
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