InstrumentalVariables http://localhost:8888/nbconvert/html/Instrumenta...

Instrumental Variables
by Jonas Peters, Niklas Pfister, 06.01.2019

This notebook aims to give you a basic understanding of the instrumental variable approach and when it can be used to infer
causal relations.

In the following, let all variables have

® zero mean,
® finite second moments, and
® their joint distribution is absolutely continuous with respect to Lebesgue.

In [ ]: library(AER)

Instrumental Variable Model

The goal of this method is to estimate the causal effect of a predictor variable $X$ on a target variable $Y$ if the effect from
$X$ to $Y$ is confounded. The idea of the instrumental variable approach is to account for this confounding by considering an
additional variable $1$ called an instrument. Although there exist numerous extensions, here, we focus on the classical case.
We provide two definitions.

First, assume the following SCM \begin{align} | &= N_N H &:= N_H\\ X &:= I \gamma + H \delta_X + N_X\'Y &:= X \beta + H
\delta_Y + N_Y.\\ \end{align} (All variables except $Y$ could be multi-dimensional, in which case, they should be written as
row vectors: $1 \times d$.) If all variables are $1$-dimensional, the corresponding DAG looks as follows. \begin{align}
&\phantom{O}\\ &\begin{array}{ccc} & & &H & \\ & &\phantom{abcdefgh}\overset{\delta_X}{\swarrow} & & \overset{\delta_Y}
{\searrow}\phantom{abcdefgh}\\ & & & & \\ | &\overset{\gamma}{\longrightarrow} &X & \overset{\beta}{\longrightarrow} & Y\\
\end{array}\\ & phantom{0} \end{align} Here, $I$ is called an instrumental variable for the causal effect from $X$ to $Y$. It is
essential that $I$ effects $Y$ only via $X$ (and not directly).

Second, it is possible to define instrumental variables without SCMs, too. Let us therefore write \begin{equation} Y = X \beta +
\epsilon_Y \end{equation} (this can always be done). Here, $\epsilon_Y$ is allowed to depend on $X$ (if there is a confounder
$H$ between $X$ and $Y$, this is usually the case). We then call a variable $I$ an instrumental variable if it satisfies the
following two conditions:

1. $\operatorname{cov}(X,1)$ is of full rank (relevance)
2. $\operatorname{cov}(\epsilon_Y,l)=0$ (exogenity)
3. $\operatorname{cov}(l)$ is of full rank.

Informally speaking, these conditions again mean that $I$ affects $Y$ "only through its effect on $X$".
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Estimation

We now want to illustrate how the existence of an instrumental variable $I$ can be used to estimate the causal effect $\beta$
in the model above. Let us therefore assume that we have received data in matrix form

® $\mathbf{Y}$ - the target variable $n \times 1$
® $\mathbf{X}$ - the covariates $n \times d$
® $\mathbf{l}$ - the instruments $n \times m$

where $n > \max(m, d)$.

We now assume that $I$ is a valid instrument (we come back to this question in Exercise 2 below). To estimate the causal
effect of $X$ on $Y$, there are several options of writing down the same estimator.

OPTION 1: The following estimator is sometimes called the generalized methods of moments (GMM) $$ \hat{\beta}*{GMM}_n
= (\mathbf{X}*t \mathbf{l} (\mathbf{l}*t \mathbf{1})*{-1} \mathbf{l}*t \mathbf{X})*{-1} \, \mathbf{X}*t \mathbf{l} (\mathbf{I}"t
\mathbf{l})*{-1} \mathbf{l}*t \mathbf{Y} $$

OPTION 2: we can use a so-called 2-stage least squares (2SLS) procedure. Step 1: Regress $X$ on $I$ and compute the
corresponding fitted values $\hat{X}$. Step 2: Regress $Y$ on $\hat{X}$. Use the regression coefficients from step 2.

The following four exercises go over some of the details of the 2SLS and apply it to a real data set.

Exercise 1

Assume that the data are i.i.d. from the following two structural assignments \begin{align*} Y &:= X \cdot \beta + \epsilon_Y \\
X &:= I \cdot \gamma + \epsilon_X, \end{align*} where $X$ and $I$ are written as $1 \times d$ and $1 \times m$ vectors,
respectively. Here, $\epsilon_X$ and $\epsilon_Y$ are not necessarily independent, but the instrument $I$ is assumed to
satisfy the assumptions 1., 2., and 3. above.

a) Write down conditions on $d$ and $m$ that guarantee that $\hat{\beta}*{ GMM}_n$ is well-defined (with probability one).

b) Prove that under these conditions, the GMM method is consistent, i.e., $\hat{\beta}*{ GMM}_n \rightarrow \beta$ in
probability.

c¢) Assume $d = m$. Prove that the methods 2SLS and GMM provide the same estimate.

Solution 1

End of Solution 1

For illustration, we use the CollegeDistance data set from [1] available in the R package AER.
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In [ ]: | # load CollegeDistance data set
data("CollegeDistance")
# read out relevant variables
Y <- CollegeDistance$score
X <- CollegeDistance$education
I <- CollegeDistance$distance

This data set consists of $4739$ observations on $14$ variables from high school student survey conducted by the
Department of Education in $19808$, with a follow-up in $1986$. In this notebook, we only consider the following variables:

® $Y$ - base year composite test score. These are achievement tests given to high school seniors in the sample.
® $X$ - number of years of education.
® $I$ - distance from closest 4-year college (units are in 10 miles).

Exercise 2

Argue whether the variable $I$ can be used as an instrumental variable to infer the causal effect of $X$ on $Y$. Are there
arguments, why it might not be a valid instrument? Hint: You can perform a regression in order to test if there is significant
correlation.

Solution 2

In [ ]:

End of Solution 2

Exercise 3

Use 2SLS to estimate the causal effect of $X$ on $Y$ based on the instrument $I$. Compare your results with a standard
OLS regression of $Y$ on $X$ (that includes an intercept). What happens to the correlation between $X$ and the residuals in
both methods? Which attempt yields smaller variance of residuals?

Solution 3

In [ ]:

End of Solution 3

3of4 1/23/19, 4:21 PM



InstrumentalVariables http://localhost:8888/nbconvert/html/Instrumenta...

A slightly different approach to 2SLS is to use the formula
OPTION 3: \begin{equation} \tag{1} \hat{\beta}_n = (\mathbf{l}*t \mathbf{X})*{-1} \mathbf{l}*t \mathbf{Y}. \end{equation}

This formula can be shown to be the same as OPTIONS 1 and 2 if $d = m$ (try proving it).

Exercise 4

Apply the above estimator (1) to CollegeDistance data and compare your result with the one from Exercise 3. (If you have
included intercepts in the 2SLS, you need to replace the product moments by sample covariances.)

Solution 4

In [ ]:

End of Solution 4
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