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Permutations and symmetric functions

1. Thelength function.

(1.2) Setup. Fix an alphabet A, that is, afinitetotally ordered set; the elementsof A acalled
letters. Every letter a which is not the last letter has a successor, denoted a’. It is often
convenient to enumerate the letters, say A = {as, ..., a,} where n isthe number of |etters.
Since A isassumed to betotally ordered, thereis a unique enumeration such that thea; arein
increasing order. In this enumeration, the successor of a; isa; = a;y1fori =1,...,n— 1.

Unlessotherwise specified, apermutation will mean apermutation of theletters. Thegroup
of al permutations will be denoted G(A). The identity map is the unique order preserving
permutation of A, denoted 14 or ssimply 1. We denote by «w = w4 the unique order reversing
permutation of A. Obvioudly, w isan involution, that is, w? = 1. Sometimes w is called the
maximal permutation of A.

Thetransposition that interchangestwo lettersa and b will bedenoted z,, ;. Transpositions
that interchange two neighbors (with respect to the given order in A) are said to be smple.
So the simple transposition are the transpositions ¢, := 7, o~ Where a is not the last |etter.
The number of simple transpositions is one |ess than the number of |etters.

Assumethat thelettersareindexed a; inthe natural order. Itiseasily seen that the product
Ta1Tap -~ Ta,_4 1Sthen-cycle (ay, ..., a,). It follows, for instance by an inductive argument,
that

wa = (Tgy - fan_l) < (Tay Tap) Tayg -

(1.2) Definition. A pair (a, b) of letterswill be called an inversion for the permutation . if
a < band pna > pub. Thenumber of inversions of n isdenoted by ¢(w) and called thelength
of .

(2.3) Lemma. For any permutation w, the following six assertions hold:

(1) Wehave equality ¢(n) = Oifandonlyif u = 1. Moreover, if 1 # 1, thenthereisan
inversion for u of theform (a, a’).

(2) We have equality £() = 1if and only if 1 isa simple transposition.

(3) For asimple transposition 7, we have that

L) +1 ifua < pd,

Huta) = { L) —1 ifua > pad.

More precisaly, if ua < ua’, then the inversions for wt, are the pairs (t,b, 7,¢)
where (b, ¢) isan inversion for u and the pair (a,a’), and if ua > pa’, then the
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2 SYM 1

inversionsfor ut, arethepairs(z,b, t,c) where (b, ¢) isaninversionfor u different
from (a, a’).
(4) We havetheinequality ¢(n) < n(n — 1)/2, and equality holdsif and only if u = w.
(5) We havethat £(u) = €(u™1).
(6) We havethat £(wu) + £(un) = £(w).

Proof. The five first assertions are easily checked. The sixth follows from the equation
L(w) = n(n — 1)/2, because each pair (a, b) of letterswitha < b isan inversion for exactly
one of the permutations « and w. 0

(1.4) Proposition. The group &G(A) is generated by the smple transpositions. In fact, any
permutation w is a product of £(u) simple transpositions.

Proof. We provethe second assertion by inductionon £(w). If £(u) = 0, then © = 1. Hence
the assertion holdswhen ¢() = 0. Assumethat ¢(u) = [ > 0 and that the assertion holds
for permutationsof length/ — 1. Since u # 1, thereisaninversionfor u of theform (a, a’). It
followsfrom (1.3)(3) that £(ut,) = [ — 1. Hence ut, isaproduct / — 1 simpletranspositions.
Therefore u = (ut,)t, isaproduct of / smple transpositions. 0

(1.5) Note. The proof of Proposition (1.4) is constructive. Let u be a permutation, and
consider the direct representation of

w = (bibz...by). (1.5.2)

By definition, if A = {a1, ..., a,} withthelettersqa; inincreasing order, then  is determined
from the sequence in (1.5.1) by na; = b;. If the b; are in increasing order, then b; = a;
and pu = 1. If u # 1, thenthereisanindex j < n such that b; > b; 1. Now interchange
in the sequence b; and b;+1. The new sequence represents the permutation j.z,;. Continue
the process until the b;’s appear in increasing order. The sequence obtained at the end
represents the identity permutation 1. Hence we have an equation 1 = WTaj *** Taj,- Thus
W= Tq, Ty It follows from the proof of Proposition (1.4) that r = £(w).

(1.6) Proposition. For any presentation i = 71 - - - 7, of u asa product of » ssimple transpo-
sitions, we havethat £(i) < rand () = r (mod 2).

Proof. We prove the Proposition by induction on the number » of factorsin the presentation
of w. If r = 0, then u = 1 and the two assertions hold. Assume that r > 0 and that
the two assertions hold for al presentations with » — 1 factors. Consider the presentation
V=11 T,—1. SINCE u = v, it followsfrom Lemma (1.3)(3) that £(u) = £(v) £ 1. In
particular, we have that () < £(v) +1and £(un) = €(v) + 1 (mod 2). By the induction
hypothesis, we have that £(v) < r —1and £(v) = r — 1 (mod 2). Therefore, the two
assertions hold for the presentation of 1. 0

(1.7) Corallary. For any two permutations ,« and v in &(A), we have theinequality £() +
L) = L(uv).

Proof. The Corollary followsimmediately from the two previous Propositions. I
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(1.8) Definition. The signature of a permutation, denoted sign ., is the number
signu = (—1)*W.
It followsfrom Proposition (1.6) that the signature is a homomorphism of groups,
S(A) — {£1}.
By (1.3), the signature of a smple transposition is equal to —1. It is easy to see that the

signature of any transposition is equal to —1. It follows that the map sign is independent of
the given order of thelettersof A.






2. The Coxeter—Moorerelations.

(2.2) Definition. A sequence(rty, . . . , T) of smpletranspositionswill becalled apresentation
of the permutation w in &(A) if uw = t1---t.. By Proposition (1.6), for any presentation
(11, ..., 1) Of u,wehavethat r > £(u). Thepresentationissaid to beminimal if r = £(u).
Minimal presentations of a given permutation . exist by Proposition (1.4).

(2.2) Lemma. Let (71,...,7,) be a mnimal presentation of a permutation . For s =
1,...,r, let bs bethe letter for which 7, = 1;,,. Then the inversions for w are the pairs
(tr - Tog1(by), T - o2 (b)) fors = 1,..., 7.

In particular (when r > 1), the pair (b,, b)) isan inversion for .

Proof. We shall provethe Lemmaby inductiononr» = ¢(u). Clearly, the assertion holds for
r = 0. Assumethat r > 1 and that the assertion holdsfor all permutationsof length » — 1. It
followsfromLemma (1.3)(3) that v := ut, = 71 -- - 7,—1 haslength » — 1. By theinduction
hypothesis, we havethat theinversionsof v arethepairs (z,—1- - - T41(by), Tr—1- - - Ty1(b}))
fors=1,...,r—1 Sincel(vty,) = £(n) = £(v) + 1, it followsfrom Lemma (1.3)(3) that
the assertion holdsfor . 0

(2.3) Lemma (The exchange property). Let (r1,...,7,) and (o1, ...,0,), for r > 1, be
two minimal presentations of the same permutation . Then, for someqg = 1,...,r, thereis
a presentation of p of theform (o1, 71, ..., 74, ..., 7-), Where the hat indicates an omitted
transposition.

Proof. Assumeo1 =1, andt; =1, fori =1,...,r. By Lemma(2.2), we havethat (a, a’)
isan inverson for =1 = o, ---01. By the same Lemma, since u~! = 1, --- 11, thereis
ag suchthata = t1--- 7y—1(by) and a’ = rl---rq_l(b;). It follows that the permutation
T = (rl---rq_l)rq(tl---rq_l)—l interchanges a and a’. However, t is conjugate to the
transposition z, and hence t isatransposition. Since t interchangesa and a’, it follows that
T = 7, = o1. Asaconsequence, we have the equation,

O—ltl A ‘Eq_l - tl A tq_ltq.

Clearly, the assertion of the Lemmais obtained after multiplicationby 41 - - - 7,. I

(2.4) Remark. Every transposition 7 is an involution. In particular, for every smple trans-
position 7, we have that t? = 1. Consider a second simple transposition 7, with b # a.
Then we have the relations,

T.ThTa = TpTaTp I a and b are neighbors,
T,Tp = TpT, If @ and b are not neighbors.

Indeed, if a and b are neighbors, we may assume that b = a’, and then t, 77, = 74 =
T4 Tp. |f @ and b are not neighbors, then the permutations z, and t;, are digoint, and hence
they commute.
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In general, an ordered set ¢1, ..., g,—1 Of elementsin a semi-group G are said to satisfy
the Coxeter—Moore relations if

() gjgk=sgrgi if |k—jl>1,
(2 gjgkgi = gkgjgk if lk—jl=1
In particular, the smple transpositions 7,,;, with the letters a; in increasing order, satisfy
the Coxeter—Moore relations.

(2.5) Definition. Two presentations are said to be Coxeter—Moore equivalent if one can be
obtained from the other by a finite number (possibly none) of the following two allowable
replacements. Given a presentation (z1, ..., 7). If two consecutive transpositions z; and
7,41 are digoint, then it is allowed to replace t;, t;+1 by 7i+1, 7;. If for three consecutive
transpositions ;, tj11, and 7,12, we have that t; = 142 = 7, and 7,11 = 13, Wherea and b
are neighboring letters, then it is allowed to replace t;, 7; 1, Ti+2 BY 7i4+17i Ti 4 1.

Clearly, two Coxeter—M oore equival ent presentations contain the same number of smple
transpositions. As the ssimple transpositions satisfy the Coxeter—Moore relations, it follows
that two Coxeter—M oore equivalent presentations are presentations of the same permutation.

(2.6) Proposition. Any two minimal presentations of the same permutation are Coxeter—
Moore equivalent.

Any presentation which is not a minimal presentation is Coxeter—Moore equivalent to a
presentation in which two consecutive transpositions are equal.

Proof. To provethefirst assertion, consider two minimal presentations of the permutation

o= (1t1,...,Tr), B =(o1,...,00).

Thenr = ¢(u). We haveto prove g and « are (Coxeter—Moore) equival ent.

Clearly, the assertion holdswhen » = 1. Proceed by inductionon r = ¢(u). Assume that
r > 2 and that the assertion holds for minimal presentations of permutations of length r — 1.

Observe that the assertion holdsif o, = 7, asit follows by applying the induction hypoth-
esis to the two minimal presentations (z1, ..., t,—1) and (o1, ..., 0,-1) Of wo,. Similarly,
the assertion holdsif o1 = 1.

Now, by the exchange property, thereis, for someg = 1, ..., r apresentation of u of the
formy = (01,11, ..., 74, ..., 7). Asobserved above, the presentation y isequivalent to S.
Hence we may replace g by y and assumethat 8 = (01, 71,..., 74, ..., 7). Again, by the
observation, the equivalence of « and g holdsif ¢ < r. Hence we may assumethat ¢ = r,
that is, we may assume that

ﬁ = (Gl’ ‘El’ e ey ‘Er—]_)~

Again, by the exchange property, thereisapresentation of « of theformy = (t1,...) where
thedotsindicatethetranspositionsof g withoneomitted. If it wasthefirsttranspositiono; that
wasomitted, theny would havetheformy = (t1, 11, . .. ) andhencey would not beaminimal
presentation. Therefore, the presentation y isof theformy = (t1,01, 71, ..., T5 ..., Tr—1)
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forsomes =1,...,r — 1. Asobserved above, y isequivaent to . Hence we may replace
a by y, that is, we may assume that

a:(‘El’o—l’tl"--7{—;"-71:7'—1)’ ﬁ:(o—l’tl"'-yrr—l)

forsomes=1,...,r — 1L

The assertion holdsif r = 2. Indeed, if r = 2then o = (71, 01) and B = (o1, 71) and we
have the equation u© = t101 = o171. Since £(n) = 2, we have that t1 # o1. Clearly, then
the equation 101 = o171 impliesthat t1 and o1 are digoint. Thus g is obtained from « by
an allowabl e replacement, and hence « and g are equivalent.

Thus we may assume that »r > 3. As observed above, if s < r — 1, then the assertion
holds. So assumethat s = r — 1. Thens > 2, and so the presentation « has the form
a = (11,01, 11, ... ). Sincea isminimal, we have that t1 # o1 and t101 # o111. Therefore
o1 and t1 are smple transpositions associated to neighboring letters. Thuswith an allowable
replacement we may obtain from « a presentation of theform (o1, 71, 01, . .. ). As observed
above, thereplaced presentation is equivalent to 8. Therefore o and g are equivalent and the
first assertion of the Proposition has been proved.

The second assertion is proved by induction on the number r of factorsin the presentation.
Clearly, the number of factors of a non-minimal presentation is at least 2. Moreover, a
presentation (t1, t2) is minimal unless r1 = 12. Hence the assertion holds when r = 2.
Assumethat » > 2 and that the assertion holds for presentations with » — 1 factors. Let o« =
(11, ..., ) beanon-minimal presentation of . Thenr > £(n). Now 8 := (t1, ..., Tr—1)
isapresentation of v := ut,. Clearly, if 8 isnon-minimal then, by the induction hypothesis,
the assertion holds for «. So assume that the presentation 8 isminimal. Then ¢(v) = r — 1.
Since © = v, is not of length r, it follows from Lemma (1.3)(3) that ¢(u) = r — 2.
Hence there is aminimal presentation (o1, ..., 0,-2) of u. Sincev = urt,, it follows that
8 := (o1,...,0r,-2,7) IS a presentation of v. Moreover, the presentation § is minimal
because ¢(v) = r — 1. Therefore, by the first part of the Proposition, the presentation
is Coxeter—Moore equivalent to 8. It follows that « is Coxeter—Moore equivalent to the
presentation (o1, ..., 0r—2, Tr, ). Hence the assertion holdsfor «.

Thus both assertions of the Proposition have been proved. 0






3. The Bruhat—Ehresman order.
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4. Young subgroups.

11



12



5. Symmetric polynomials.

(5.1) Setup. Fix acommutativering R. Consider the ring R[A] of polynomials with co-
efficientsin R in the letters of A. With the letters of A inincreasing order azs, ..., a,, the
monomialsin R[ A] are the products,

Cl:{l . ar]l.n ,
where (j1, ..., jn) iSasequence of n nonnegative integers. The monomialsform an R-basis

of R[A] since, by definition, every polynomial f isan R-linear combination,

j J
£=Y frpalt--ar,

with uniquely determined coefficients fj,, .. ;, in R.
The notation is simplified through the use of multi indices. A multi index J isasequence

J = (j1, ..., jn) Of n nONNegative integers. Associate with J the monomial,
a’ = a{l caln

Then the coefficients of a polynomial f are the elements f; of R, for al multi indices J. If
f7 # 0, thenthemonomial «” issaidtoappear in f. Thedegree of amulti index J isthesum
of theentries, | J|| = j1 + - - - + Jjn, ad the degree of monomial a” isthe sum of exponents,
|J. If f 5 O, then the degree of f isthe maximal degree of a monomial appearingin f.
The polynomia f is said to be homogeneous of degree d if all monomials appearing in f
are of degree d. According to this definition, the zero polynomial is homogeneous of every
degreed.

Multi indices are ordered as follows. wewrite I < J if either || I]| < ||J]or |[I]| = ||/ ]|
andthereisap =1,...,nsuchthati, = j,for¢g =1,...,p—1andi, < j,. Clearly, the
order isatotal order, and thereis only afinite number of multi indiceslessthan agiven. The
smallest multi index isthe set (0, ..., 0). With respect to addition of multi indices, we have
thatif I < Jthen/ + K < J + K.

According to the order on the multi indices, there is a total order on the monomials:
al < a’ if I < J. (Notethat the order on the a;’s as monomials of degree 1 is the reverse
of the given order on the ¢;’s as letters)) The leading monomial of a non-zero polynomial
f isthe biggest monomial a” appearingin f; the corresponding coefficient f; is called the
leading coefficient and f;a’ iscalled theleadingterm. Addition of multi indicescorresponds
to multiplication of monomials. Hence, if a! < a’ and a® < a* and one of theinequalities
isgtrict, thena’al < a’aX . 1tfollowsthat if f and g are nonzero polynomialswith leading
terms fya’ and ggaX, then every monomial appearing in the product fg isat most equal to
a’TX: moreover, if fygx # 0, then fygxa’TX istheleading term of fg.

(5.2) Note. The number of monomials of degreed is equal to the binomial coefficient,

n+d-1
n—1 )

13



14 SYM 5

Indeed, the number is equal to the number of multi indices / = (j1,..., jn) such that
\JIl = j1+ -+ jn = d. Now, thereisa bijective map J — J’ from the set of al multi
indices onto the set of al strictly increasing multi indices, defined by

jp=it-+jp+(p=1 forp=1...n

Under this map, we havethat || /|| = d if and only if j, = d + n — 1. Hence, the number of
multi indices J such that || J|| = d isequal to the number of strictly increasing multi indices
(k1,...,ky) suchthat k, = n + d — 1. Clearly, the latter number is equal to the number of
subsetswith n — 1 elementsof thed +n — 1integers0,1,...,d +n — 2.

(5.3) Remark. Thealgebra R[ A] of polynomialshasthefollowing universal property: Given
ahomomorphism R — S of commutativeringsand aset @ = (a1, ..., oy, ) Of n elements of
S. Then there is a unique homomorphism of R-algebras R[A] — S suchthat a; — «;. Itis
called evaluation of polynomials at «, and the value of f, denoted

flo) = flag, ... an),

issaid to be obtained by the substitution a; +— «; (ora; == ;) fori =1,...,n.

(5.4) Definition. The symmetric group &(A) acts on the algebra R[A] of polynomials.
Indeed, any permutation o can be viewed as a permutation of the variables of R[A] and
as such it extends uniquely to an R-algebra automorphism of R[A], denoted f — of.
Obvioudly, we have the equation (o t) f = o (tf) for permutationso and t.
A polynomial f in R[A] iscalled symmetric if it is invariant under the action of G(A),
that is, if
o(f) = ffordl o e &(A). (5.4.1)

The symmetric polynomialsin R[A] form an R-subalgebra, denoted Sym ;[ A].
A polynomid f is caled anti-symmetric if it is semi-invariant under the action of G(A)
in the sense that
o(f) =sgn(o) f foral o € G(A). (5.4.2)

Clearly, the anti-symmetric polynomialsin R[A] form a module over the ring Sym [ A] of
symmetric polynomials. In particular, a product of a symmetric polynomial and an anti-
symmetric polynomial is an anti-symmetric polynomial. Similarly, a product of two anti-
symmetric polynomialsis a symmetric polynomial.

The symmetric group is generated by the smple transpositions. It follows that a poly-
nomial is symmetric if it is unchanged whenever two neighbor variables are interchanged.
Similarly, apolynomial isanti-symmetricif it changes sign whenever two neighbor variables
areinterchanged.

(5.5). If o isapermutation of G(A), then o (a”) is the monomial a°’, where o J is the
multi index obtained from J by permuting the entriesasfollows: With the given enumeration
of A, we can identify G (A) with the symmetric group &,, of permutations of the numbers
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1,2,...,n. ThenoJ isobtained from J by moving, for p = 1,..., n, theentry j, fromits
position p to the position o (p). In other words,

o1, s Jn) = (Ug-11, - -5 Jg-1,)-

Symmetry is detected on the coefficients. f issymmetricif and only if f,; = f; for al
Jandal o € G(A); itsufficesthat f; isunchanged whenever two neighbor entriesin J are
interchanged. Similarly, f isanti-symmetricif and only if f,; = sign(o) f7; it sufficesthat
f7 changes sign whenever to neighbor entriesin J are interchanged.

(5.6) Example. Consider the following polynomia of R[A]:
Aa,....an) =[] —a) =[] (ag — ap).

a<b p<q
Each factor is homogeneous of degree 1, and so A is homogeneous of degree equal to the
number, n(n — 1)/2, of factors. The leading monomial in A is a} ta2™2. .42 and the

leading coefficient is (—1)" /2,

Let o beapermutation. Then o A isthe product of thefactorsob —oa fora < b. Clearly,
if (a, b) isnot aninversion for o, thenob — oa isone of the factorsof A and if (a, b) isan
inverson for o, theob — o0a = —(0a — ob) isequal to —1 times afactor of A. It follows
that

oA = (=1 @A,
Hence A isan anti-symmetric polynomial. As a consequence, the square A2 is asymmetric
polynomial. The square A2 is called the discriminant.

(5.7) Definition. For each multi index J, define the monomial symmetric polynomial m?/ =
m” (A) asthefollowing sum of monomials,

m’ = Z/o*(aj),

where the sum is over al different monomials of the form o (a”) for o € &(A). In other
words, m” isthe sum of al monomiasa’ where I' can be obtained from J by a permutation
of the entries. The polynomial m” is obviously asymmetric polynomial, and homogeneous
of degree || /||

Clearly, if the multi index I is a permutation of J, then m! = m”’. Among the multi
indices that are permutations of J, the largest, K say, is characterized as being decreasing,
thatis, by theproperty that k1 > k2 > - - - > k,. Hencethemonomial symmetric polynomials
are naturally parametrized by the decreasing multi indices K. Note that if K isadecreasing
multi index, then the leading term in m X is the monomial aX .

If K isadecreasing multi index, thetrailing zerosin K are often omitted in the notation
mX . (However, for the smallest multi index K = (0, . .., 0) wewritem® = m%-0 = 1) For
instance, for the alphabet withn = 3 lettersa, b, ¢, we have that

m1=a—l—b—|—c,
m2=a2—l—b2—l—02, mllzab—l—ac—l—bc,

m3=a%+ b3+ c3, m? = a?b + a?c + ab® + ac® + b%c + bc2, m — abe.
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(5.8) Lemma. The monomial symmetric polynomials m X, for all decreasing multi indices
K, forman R-basisfor Symg[A].

Proof. Thetermsof the polynomial m X arethemonomialsa’ where J isapermutation of K.
Hence apolynomial f isan R-linear combination of them X if and only if, for all decreasing
multi indices K we havethat f; = fx when J isapermutation of K, that is, if and only if
f isasymmetric polynomial. 0

(5.9) Definition. The d’th elementary symmetric polynomial e; = e;(A) isthe sum of al
products of d different letters. Thus eg = 1 (the empty product isequal to 1) and ey = 0
whend > n. Clearly,e1 = a1+ --- +ay,ande, = ay---a,. Ingenerd,

eq = E aj, - -Adj,.

1<ii<--<ig=<n

Obvioudly, e; is a symmetric polynomial, and homogeneous of degree d. Note that e, for
d < n isthe special monomia symmetric polynomial,

with d occurrences of 1.
Equivalently, the e; may be defined by the following expansion in the polynomia ring
R[A][T] inonevariable T over R[A]:

[[T-a)=T"—eaT" 4 4 (=D,

acA

(5.10) Theorem. The productse’ := i - - e}, for all multi indices 1, form an R-basis for
Symg[A].

Proof. Theleading termin e, isthe monomia 190, Hencethe leading term of ¢/ isthe
monomial aX, where

K:(il_l_"'+in’i2+"'+il’l"'-7il’l—1+il’l’il’l)' (5101)

To prove the Theorem, we have to prove that any symmetric polynomial f hasan expansion
f =23, rre! with uniquely determined coefficientsr; € R. To provethe existence, assume
that f # 0, and consider the leading monomial, aX say, of f. Since f is symmetric, it
follows, for instance from (5.8), that K is a decreasing multi index. Hence thereis a unique
multi index I suchthat (5.10.1) holds. Then the polynomia f and the polynomia fxe’ have
the same leading term, namely fxaX. Consequently, the difference f — fxe! is either the
zero polynomial or its leading monomid is strictly less that the leading monomial of f. If
the difference f — fxe! isnon-zero, repeat the argument. By induction, in a finite number
of steps, we obtain the required expansion of f.

By amost the same argument, unicity holds. Indeed, it followsforasum Y, rye! that the
non-zero terms have different leading monomials, and so a non-trivial sum is never the zero
polynomial. 0
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(5.11) Remark. Animportant application of the theoremisthefollowing: Consider amonic
polynomia P € R[T], say,

P=T"'4+rT" Y4 . 4r T +r,. (5.11.1)

Let S be acommutative ring containing R as a subring, and assume that P as a polynomial
in S[T] has an expansion as a product,

P=(T—ay) (T —ay). (5.11.2)
Evauationat « = (a1, ..., o) isthe homomorphism of R-algebras R[A] — S,
e flog, ... an).
By expanding the product (5.11.2) it follows that
ea(@1, ..., an) = (=1)%4.

So, up to asign, evaluation of the elementary symmetric polynomialsyield the coefficients of
P. Itfollowsfromthe Theoremthat if f isasymmetric polynomial in R[A], then the value

f(a1,...,a,) isan R-linear combination of products r’ll = -r,i”. In other words, without
knowing the“roots’ «; of P itispossibleto express, for asymmetric polynomia f € R[A],
thevalue f (a1, ..., a,) asapolynomial in the coefficients of P.

(5.12) Example. The polynomial ¢! is obviously a sum of monomials a’. Hence, in the
notation of the proof of theorem (5.10), there is an equation,

el =m¥K + E Oll,LmL,
L<K

where the sum is over decreasing multi indices L lessthat K and the coefficients oy 1, are
non-negative integers. The equation expresses the basis ¢’ in terms of the basis mX, and it
followsthat the base change matrix is an upper triangular matrix with 1 in the diagonal. So
it is easy to invert the matrix and expressthe m X in terms of the basis e’ .

In degree 0, we have that ¢%-0 = 1 = m9, and in degrees 1, 2, and 3,

€1 = ml,

er = mll, e% = m? + 2m11,
es=m erer = mP 4 3mML oF = 4 3m® 4 et

By solving the equations, it followsthat

ml = e1,

mil = e, m2 = e% — 2e2,

mM = ez, m® =e1ep —3e3, m3 = €3 — Begen + 3es.
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(5.13) Definition. Thed’th power sum p; = py(A),ford > 1, isthe sum of thed’th powers
of the variables, that is, ps = Y, a. Equivaently,

pa =m.

The complete symmetric polynomial s; = s4(A) isthe sum of all monomiasof degreed,
that is, sq = ) ;=g @’ - Equivalently,

/
a= Y mk.

K =d

where the sum is over decreasing multi indices.

(5.14). The polynomials e4, sq, and p; appear naturally as coefficients of power series.
Indeed, in the power seriesring R[A][[T]] in one variable, we have the equations,

(0.9]

e(T):=[[A+aT) =) esT, (5.14.1)
acA d=0
1 0

s(Ty =] = > saT?, (5.14.2)
acA T4 d=0
a (0.9]

p(T):=) == =) panl". (5.14.3)
aca -4 d=0

It follows from the equations that the power series s(T') is the inverse of the power series
e(—T), that is, we have the equation e(—T)s(T) = 1. Hence, since eg = 1, the coefficients
sq of s(T) are determined recursively from the coefficients (—1)%ey of e(—T). For instance,
in low degrees we obtain the formulas,

eoso =1, so=1,
s1—e1=0; s1=ey,
s2—e1s1+e2=0; s2=¢f— e,
53— e152 + 251 —e3 =0; 53 = €5 — 2e1e2 + e,
S4—e153+exs2 —e3s1 +ea=0;, sq4= e‘l1 — 3@%@2 + 2e1e3 + eg — ea.
Similarly, it followsfrom the equationsthat the power series p(T') isequal to thelogarith-

mic derivativeof s(7') and equal to —1 timesthe logarithmic derivativeof e(—T), that is, we
have the equations p(T) = s(T)'/s(T) = —(e(—=T))'Je(—T) or, equivalently,

s(T)p(T) =s'(T), e(—T)p(T) =€'(—T). (5.14.9)
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Hence, the coefficients p441 of p(T) are determined recursively from the coefficients e of
e(T). For instance, in low degrees we obtain the formulas,

eopl1 =e1; p1=ei,
p2—e1p1 = —2ep; p2= et — e,
p3—e1p2 +eap1 = 3e3;  p3=e5 — 3eren + 3ez,

pa—e1p3+eapr — e3p1 = —des; pa = e — Aefer + deres + 2¢5 — dea.



20



6. Alternating polynomials.

(6.1) Lemma. The following three conditions on a polynomial f = Y, fsa’ of R[A] are
equivalent:

(i) Thecoefficients f; arealternatinginthemulti index /, thatis, f; changessignwhen
two entries at different positionsin J are interchanged and f; vanishes when two
entries of different positionin J are equal.

(ii) Thepolynomial f isanti-symmetric and divisible by the product [, _, (b — a).

(iii) The polynomial f isanti-symmetric and, for all ¢ > p, the substitutiona, = a, in
f yields the zero polynomial.

Proof. Asnoted in (5.4), the polynomial f is anti-symmetricif and only if f; changessign
when two entries of J are interchanged. Therefore, to prove the equivalence of the three
conditions, we may assume that f isanti-symmetric.

Let p < g be arbitrary integers between 1 and n, and let t be the transposition of G(A)
that interchangesa;, and a,. Then, to prove the equivalence of (i) and (iii), it sufficesto prove
the following assertion: the substitution a, = a, in f yields zero if and only if f; = O for
al multi indices J such that j, = j,. To prove the latter assertion, decompose f into two
sums of monomials,

f=> fra' + 3 (fsa’ + fesa™). (6.1.1)

Jp=Jq Jg<lJp

Clearly, the substitution a, := a, ina’ andina™’ yield the same result. Moreover, since f
is anti-symmetric, we have that f;; = — f,. Consequently, the substitution a, := a, in the
second sum of (6.1.1) yields zero. Therefore, the substitution a, = a, in f yields zero, if
and only if the substitution a, := a, inthefirst sum yields zero. Obviously, the substitution
ag ‘= ap inthefirst sum yields zero if and only if all the coefficients f; in the first sum are
equal to zero. Hence the equivalence of (i) and (iii) holds.

To prove the equivalence of (ii) and (iii), note that the substitution a, := a, in f yields
zero if and only if f isdivisible by the difference a, — a,. Clearly, f is divisible by dll
differencesa, —a, for p < g ifandonly if f isdivisibleby the product of all the differences.
Hence the equivalence of (ii) and (iii) holds. 0

(6.2) Definition. A polynomial f is said to be alternating if it satisfies the equivalent con-
ditionsin Lemma (6.1). Clearly, the alternating polynomialsform an R-submodule Altg[A]
of R[A]. Infact, it follows from any of the characterizations (ii) or (iii) that Altg[A] isa
Symg[A]-submodule, that is, a product of a symmetric polynomial and an aternating poly-
nomial is aternating.

If 2isaregular element in R thenthealternating polynomialsaresimply theanti-symmetric
polynomials. Indeed, if f isanti-symmetric and J is a multi-index with two equal entries,
then f; = —fy andhence2f; = 0.
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(6.3) Definition. Consider the oo x n matrix,

1 ... 1
air ... ap
Viag,...,an) = | © . (6.3.1)
a ... a,
whoserowsarenaturally indexed 0, 1, 2, ... . Forany multi-index J = (j1, ..., jn), consider
then x n matrix obtained by selecting from the matrix V the n rowswith indices ji, ..., ja,
and denote by A7 its determinant, that is,
aljl oat
A = A (ay, L an) = . (6.32)
alj” .. anj”

The special determinant obtained when J isthe sequence 0, 1, ..., n — 1 will be called the
Vandermonde determinant and denoted A(az, ..., a,), thatis,

1 ... 1
al a
Alar.....an) = | S (6.3.3)
af_l a,f_l

The determinants A’ are polynomialsin R[A]. Clearly, they are homogeneous of degree
|J]]. It followsfrom usual propertiesof determinants, as functions of the columns, that the
condition (6.1)(iii) holds for A/. Hence A’ is an aternating polynomial. Moreover, the
determinants A/ arealternating in the entriesof J, that is, if o isapermutationin G(A) then
A°’) = (signo)A’ and A’ = 0if the multi index J hastwo equal entries.

Note that, since A’ is an aternating polynomial, we have that A’ is divisible by the
product [ [,_, (ag — ap).

(6.4) Example. For n = 3 and the alphabet with the lettersa, b, ¢, we have that

a b

A”k(a, b,c)=lal bl | = a'bick + a*bicl +albFel — a'bFel —albick — akbict.
ak bk K

In particular,

Aa,b,c) = —a®b + a®c + ab® — ac® — b’c + bc® = (b—a)(c—a)(c—Db).

(6.5) Note. The Vandermonde determinant defined in (6.3) isthe determinant used by Jacobi
[1]. Up to asign, the determinant is independent of the given ordering of the letters of A.
Our choice of sign from that used by Macdonald [2] and others. Indeed, the Vandermonde
determinant defined in [2] differsby the sign (—1)"®*~/2 from ours.
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(6.6) Proposition. Thedeterminant A“ isgiven by the following formula,

Al = 3" dgn(o)o(a’). (6.6.1)

ceG(A)

Moreover, the determinants A7, for all strictly increasing multi indices J, form an R-basis
for the module Altg[ A] of alternating polynomialsin R[ A].

Proof. Theformula(6.6.1) isjust the usual expression for the determinant (6.3.2).

Let f bean alternating polynomial. By (6.1)(i), the only monomiasappearingin f are of
theforma’ whereall entriesinthe multi index I aredifferent. If al entriesin amulti index 7
aredifferent, then they may bearrangedinto strictly increasing order by aunique permutation,
that is, we have that I = oJ where o is apermutation and J is a strictly increasing multi
index. Moreover, since f isanti-symmetric, we have that f; = (sgno) fy, that is, theterm
fra' isequal to f;(signo)a®’. It follows that polynomials on the right side of (6.6.1), for
all strictly increasing multi indices J, form an R-basisfor Altg[A]. 0

(6.7) Corollary. For the Vandermonde determinant we have the equation,

A=A ....an) = [[ag —ap). (6.7.1)
pP<q

Moreover, multiplication by A is an isomorphism from the R-submodule Sym ;[ A] of sym-
metric polynomials onto the R-submodule of Altg[A] of alternating polynomials. Finally,
the symmetric polynomials,

s7(A) == AT /A,

for all strictly increasing multi indices J, form an R-bass for the module Sym[A] of
symmetric polynomials.

Proof. In (6.7.1) the two polynomials have the same degree, namely n(n — 1)/2. The Van-
dermonde determinant is alternating and hence divisible by the right side. Hence it suffices
to compare the coefficient of the monomia a3 - - - "~ in the two polynomials. Clearly,
both coefficients are equal to 1.

By Lemma (6.1), every aternating polynomial is divisibleby A. Clearly, if apolynomial
f isdivisible by A, then f is alternating if and only if f/A is symmetric. Hence the
second assertion of the Corollary holds. The final assertion follows from the second and the
description of the R-basisfor Altg[A] in Proposition (6.6). 0

(6.8) Definition. The symmetric polynomialss’ = A/ /A of (6.7) are called Schur polyno-
mials. Since A’ ishomogeneousof degree || J || and A ishomogeneous of degreen(n — 1) /2,
it followsthat s’ is homogeneous of degree || J|| — n(n — 1)/2.

The polynomials s/ for strictly increasing multi indices J will be called proper Schur
polynomials. They form an R-basis for Symy[A]. For the smallest strictly increasing multi
index J = (0,1, ...,n — 1), we have that

So,l,...,}’l—l — 1
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The Schur polynomialss’ arealternatinginthe multi index J, that is, s’ = 0if J hastwo
equal entriesand s’ changes sign when two entries at different positionin J areinterchanged.
In particular, any Schur polynomial s’ is either equal to O or, up to sign, equal to a proper
Schur polynomial.

Ingenera, itishard to computethe Schur polynomiasdirectly asthe determinantsdivided
by A, and later wewill proveother relationsinvolving the Schur polynomials. Asan example,
let us prove here the following formulas, for p =0, ..., n:

0Lt — g (6.8.1)

Consider the polynomia D(T) in R[A][T] defined as the Vandermonde determinant

1 ... 1 1

ag ... a, T
D(T) = A(ax,...,a,,T) =

ai ... a; T"

By (6.7.1), applied to the aphabet {a1, ..., a,, T}, we have the product expansion D(T) =
AT, (T —a;). Ontheother hand, by developing the determinant D(T') along itslast column,

we obtain the equation D(T) = Zp(_1)n—pAo,...,,3,...,nTp_ Henice we have the equation,
n n R
A l_[(T —_ ai) — Z(_l)”_PAO,...,p,...,nTp.
i=1 p=0

Asnoted in (5.9), the Formula (6.8.1) is a consequence.
(6.9) Definition. If f isany polynomia in R[A], then the sum,
Z (sgno)of,

ceG(A)

is an aternating polynomial. Indeed, the sum is R-linear as a function of f andif f isa
monomial a”, then, by (6.6.1), the sum isequal to the determinant A which isan alternating
polynomial. Therefore, it follows from Corollary (6.7) that the equation,

1 .
5(f) =< > (dgnoof, (6.9.1)

0eBG(A)
definesamap 8§ = 84: R[A] — Symg[A]. Obviously, the map § isan R-linear operator. It

is called the symmetrization operator. As noted above, the Schur polynomial s isthe result
of symmetrizing the monomial a”,

s/ =8(@a’). (6.9.2)
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It is obvious from (6.9.1) that symmetrization is a Sym [ A]-linear operator, that is, if f
and g are polynomialsand g is symmetric, then

8(gf) = g8(f). (6.9.2)

As a conseguence, we obtain for a symmetric polynomial ¢ and any multi index L the
formula,

gsh =Y grs'tE. (6.9.3)
1

Indeed, the two sides of (6.9.3) are the results of symmetrizing ga’ = Y, gsa’ L.

(6.10) Note. The formula (6.9.3) expresses the product gs’ of a symmetric polynomial g
and a Schur polynomia s as an R-linear combination of Schur polynomials. To get the
expansion of gs’ inthebasis s’ consisting of proper Schur polynomialswe have to consider
thenon-zero termsin (6.9.3), that is, the termsfor which the multi index 7 4 L hasall entries
different, and then, for the non-zero terms we have to collect the coefficientsfor which 7 + L
isapermutation of agiven strictly increasing multi index J. This collection of termsis often
of combinatorial nature.
For instance, let mX be the monomial symmetric polynomial. Then

mKst =35I+, (6.10.1)

where the sum is over all different permutations of the entriesin K. Indeed, the formula
followsfrom (6.9.3) sincemX =Y a’.

In particular, since the d’th elementary symmetric polynomial e;, for 0 < d < n, is
the monomia symmetric polynomial m*-1%-0 (with 1 occurring d times), it follows that
eqs” isthe sum (6.10.1) over all the (}) permutations / of (1,...,1,0,...,0). Teke L :=
(0,1,...,n —1). Then s’ = 1 and the formulais the expansion of ¢, in terms of Schur
polynomials. Clearly, I + L hastwo equal entriesunless/ = (0,...,0,1,...,1). Sothe
formulareducesto the formulaof (6.8.1),

eg = Oon—d=Ln—d+1...n (6.10.2)

Similarly, the d’th power sum pg4, for d > 1, is the monomia symmetric polynomial
m9%-0. Hence pys’ isthe sum (6.10.1) over the n permutations I of (d,0, ..., 0). Take
L:=(0,1,...,n—1) toobtain thefollowing expansion of p,:

Da = ZSO,l,...,i—l,d+i,i+1 ..... n—-1_ Z (= 1y =i =10 =L+ (6.10.3)

i i>n—d

(6.11) Note. Take L := (0,1,...,n — 1) in(6.10.1). Then (6.10.1) is the expansion of the
monomial symmetric polynomial mX in the basis of Sch~ur polynomials. Clearly, among the
multi indices I 4+ L appearing in formula, the smallest, K say, isthe strictly increasing multi
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index I 4+ L obtained when I isthe strictly increasing permutation of K. So the expansion

obtained has the form 3
mK =K + Z vk.ss”,
J>K

where the coefficients yx ; are integers. In particular, the base change matrix is a lower
triangular matrix, and hence it can be used to obtain expansions of the Schur polynomialss’
interms of the basismX . For n = 4, we have in degrees 1, 2, and 3 the equations,

ml — (0124
mil = 0134 2 (0125 (0134
mlll — (0234 21 (0135 50234 3 (0126 _ (0135 | (0234
and in degree 4,

mllll — 51234 211 _ 50235 _ 3S1234, m22 — 50145 _ 50235 + 51234,

, m

m31 — 50136 . 50145 . 50235 + 2S1234, 4 _ 50127 . 50136 + 50235 . 51234 )

m
By solving the equations, it followsin degrees 1, 2, and 3 that
(0124 1

=m

50134 — mll’ S0125 — m2 + ml

50234 — mlll’ S0135 — m21 + 2m111’ S0126 — m3 + m21 + mlll )

1

and in degree 4,

51234 — mllll’ S0235 — m211 + 3m1111’ S0145 — m22 + m211 + 2m1111’

211 1111

50136 — m31 + m22 + 2m211 + 3m1111’ S0127 — m4 + m31 + m22 +m +m

In fact, the coefficients of the proper Schur polynomialsin terms of the basism X are aways
non-negative, and we will later give acombinatoria expression for the coefficients.

(6.12) Pieri'sFormula. Let s; be the d’th complete symmetric polynomial. Then, for every
strictly increasing multi index L, we have the expansion,

sast = Z/SJ, (6.12.1)
where the sumis over all strictly increasing multi indices J = (j1, ..., j,) satisfying the
inequalities,

h<ji<b=<jo<-<lp-1=jn-1<ly < ju,
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and theequality | J|| = ||L| + d. In particular, we have the equation,

5g = SO ..... n—2,n—1+d. (6]_22)

Proof. Write J D L if every entry in the multi index J is at least equal to the corresponding
entry in L. Denote by 7 the set of multi indices J suchthat J > L and ||J| = || L] +d.
Sincess = Y=g a’, it followsfrom (6.9.3) that sss™ = Y, _ss' ™%, or, equivalently,

sqst = Z s’ (6.12.3)
JeJg

In (6.12.1), the sum isover all J € J such that the following inequality holds for p =
1,....,.n—1:

Jp < lp-|—1~ *)

Therefore, to prove the Formula (6.12.1), we have to prove that the sum of the s, over those
J € J for which one of the inequalities (*) isfalse, is equal to zero.

Foreachq = 1,...,n — 1, let 7, bethe subset of 7 consisting of multi indices J such
that the inequality (*) holdsfor all p < ¢ but not for p = ¢. It sufficesto prove that the sum
of the s/ for J € J, isequal to zero.

To prove the latter assertion, let T be the simple transposition that interchanges in amulti
index J theg’thand the (¢ + 1)’stentry. It J belongsto J,, then j, > I, y1and j 11 > [441
since J D L. Itfollowsthat v J belongsto J,. Hence t defines an involution of the set 7.
If tJ = J, then J hastwo equal entries, and thens’ = 0. If tJ # J, thens’ + 57/ =0,
sinces’ isalternatingin J. It followsthat thesum 3, ; s” is equal to zero,

Thus Formula (6.12.1) holds. Clearly, the Formula (6.12.2) is the specia case obtained
whenL = (0,1,...,n—1). 0

(6.13) Notation. Consider the three bases for the R-module Sym [ A] of symmetric polyno-
mials: the monomial basis of monomial symmetric polynomialsm X , indexed by decreasing
multi indices K , the elementary basis of productse’ = ef* - - - e, of the elementary symmet-
ric polynomials, indexed by arbitrary multi indices 1, and the Schur basis of proper Schur
polynomialss”, indexed by strictly increasing multi indices J. In all three cases, the mullti
indices are assumed to be of size equal to the number n of lettersof A. It will be convenient
to introduce a notation where multi indices of arbitrary sizes are alowed.

First, as noted in (5.7), it is common for a decreasing multi index K to omit (some of)
the trailing zeros in the notation mX. More precisely, we define, for any decreasing multi
index K = (ku, ..., k), thepolynomia mX asfollows: If r < n, thenmX := mkv-kr,0.....0
with n — r trailing zeros. If r > nand kyp1 = --- = k, = 0, then mX = mFv-Fn,
Findly, if » > n and some entry k, with ¢ > n is positive, then mX := 0. In all cases,
mX is homogeneous of degree ||K||. In this notation, the monomia basis consists of the
polynomiasmX where K isadecreasing multi index of size at most n and with no trailing
Zeros.
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Next, for an arbitrary multi index I = (i1, ..., i) of sizer, wedefinee’ :=ef'...e/.
The elementary symmetric polynomialse, aredefined for al d, and they vanishwhend > n.
So, ¢! = 0if and only if » > n and some entry i, for ¢ > n ispositive. Inall cases, ¢! is
homogeneous of degree equal to i1 + 2i2 + - - - + ri,. Inthisnotation, the elementary basis
consists of the products e/ where I is a multi index of size at most » and with no trailing
Zeros.

Consider finadly a strictly increasing multi index J = (j1, ..., j-). It will be convenient
to say that multi indices of the following form, for somet > 0, are extensions of J:

Ji=01,....t =L+ j1,....t+j),

If < n, defines’ := s/, where J isthe extension to amulti index of sizen. If r > n and
J isthe extension fo of amulti index Jg of sizen, defines’ := s/, Findly, if r > n and J
isnot the extension of amulti index of size n, defines’ = 0. Notethat s” isaproper Schur
polynomial exceptinthelast case. Inall cases, s’ ishomogeneousof degree|| J || —r(r —1) /2.
In this notation, the Schur basis consists of the Schur polynomias s’/ where J is a strictly
increasing multi index of size at most n and with j; > 0.

The empty sequence () is allowed in al three cases, and, according to the definitions,
mO =0 = 50 = 1.

For instance, in degree 4, the elements of the three bases are the following:

il 21 22 314

9 9 9 9

eOOOl’ elOl , 6’02, 6’21 , 6’4;

g1234 124 23 (14 (4
except that, when the number of variablesis|essthan 4, some of the polynomials vanish and
have to be discarded in thelist.

Note that, in the extended notation for the proper Schur polynomials, the formulas of
(6.10.2), (6.12.2), and (6.10.3), ssmplify to the following:

(6.14) Notation. There is another natural way to index the products e’ = el -- - e} of the
elementary basis. If L = (I1,...,1,) ismulti index of sizer, let

eL =ejp---¢€.

I

Note that ¢; is homogeneous of degree ||L||. The products e; are symmetric in the entries
of L, and we will usually index them by decreasing multi indices. If 1 > n, thene; = 0.
Clearly, e/ = e, where
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Hence the elementary basis consists of the productse; where L is a decreasing multi index
withl; < n.
For instance, in degree 4 we have that

0001 101 02 2 21 2 4 4
e =e4, € =e1e3 =¢€31, € =e€y =€, € =e1€2 =211, € = €1 = €1111.

(6.15) Remark. It is easy to express, for each decreasing multi index L of size r, the
coefficientsa;, x intheexpansione, = 3" ar. xmX of e inthe monomial basis. Namely,
or g 1s the number of r x n matrices with entries O or 1 and row sums 1, ..., [, and column
sums k1, ..., k,. Indeed, thetermsof ¢; are themonomiasal®...a;" wherethe p; are 0
orland ) ; p; = I. Hence each matrix of the said form corresponds to the selection of a

termineach e, fori = 1,...,r such that the product of the selected termsis equal to aX.

Similarly, if we define s, := s;, - --s;,, then, in the expansion s, = Y Br.xkmX, the
coefficient S1. x is the number of r x n matrices with non-negative integer entries and row
sumslq, ..., I, and column sums ky, ..., k;,.

As a consequence, the matrix of the oy x, indexed by al decreasing multi indices of
size n and degree d, is a symmetric matrix. Consider, for d < n, the products ¢;, for all
decreasing multi indices L of sizen and degreed. They are smply the elementary symmetric
polynomiase’ of degree at most d. Hence they form abasis for the R-module of symmetric
polynomials of degree at most d, and the matrix az x is the base change matrix from the
basis of the ¢y, to the basis of them X for || K| < d.
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7. Determinantal M ethods.

(7.1) Setup. Work with matrices and power series over a given commutative ground ring.
We will follow a classical convention for matrices M. If I isan ordered set of row indices,
we denote by M the matrix obtained from M by selecting its rows with indices in 1, and
if J isan ordered set of column indices, we denote by M ; the matrix obtained from M by
selecting its columnswith indicesin J. Inthisnotation, M isthei’th row of M, and M; is
the j'th column. In particular, M; istheij'th entry in M.

In generdl, if u isapower series we denote by u; the coefficient of 77, that is,
u =uo—|—u1T—|—u2T2—|—--- .
If I = (i1, ...,i) isamulti index of size r, we denote by «; the product,

Uj == Ujq -+ Uj

re

The products u«; are symmetric in the entries of 7. In particular, if K is the decreasing
permutation of 7, thenux = u;.

(7.2) Notation. For apower series u, denote by (u) the infinite column of coefficients of u.
Moregeneraly, for any finiteor infinitesequence of r (1 < r < oco) power seriesu, v, w, ...,
denoteby (u, v, w, ...) the co x r matrix with columns (u), (v), (w), ... .

In this notation, associate with a given power series u the oo x oo matrix,

up 0 0 O
up, ug 0 O

M@) = (u, Tu,T?u,...)= |42 ur uo O
u3z u2 U1 uQ

Therowsand columnsin M (u) arenaturaly indexed 0, 1, 2, . .. . Inparticular, theij’thentry
in M(u) isequal tou;_ ; where, by convention, u;, = 0if k < 0.

Clearly, for power series u, v, and w, the equation uv = w is equivalent to any of the
following two matrix equations:

Mu)(v) = (w), Mu)M ) = M(w). (7.2.0)

(7.3) Lemma. Let u be a power serieswith ugp = 1. Assume for power series v and w that
uv = w. Then,ford =0, 1, ..., the following equation holds:

wo uo 0 0
w1 71 ug ... 0O
(D =| : ; S (7.3.1)
Wg—1 Ud—1 Ud—2 ... UQ
wy Ug Ug—1 ... U1
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In particular, if uv = 1, then

u1 ug ... 0O

(=Dvy = : A (7.3.2)
Uj_1 Uj—2 ... UQ
ug Ug—1 ... U1

Proof. Let U bethe (d + 1) x (d + 1) matrix consisting of thefirst d + 1 rowsand columns
of M(u). Thecolumnsof U areUy, ..., Uy. Inparticular, the column Ug consists of thefirst
(d + 1) coefficients ug, . .., ug of u. Define the columns Wg and Vo similarly. The matrix
M (u) isalower triangular matrix. Hence, from the first equation of (7.2.1), or directly, we
obtain the matrix equation UVy = Wp. The latter equation, with the v; fori = 0,...,d as
unknowns, is solved by Cramer’'sformula: Sincedet U = 1, it followsthat v; is equa to the
determinant of the matrix obtained from U by replacing the column U; by Wp. In particular,

vy = det(Up, ..., Us_1, Wo) = (—1)? det(Wo, Uo, ..., Ug_1),

whichisthe asserted Formula(7.3.1). Clearly, Formula(7.3.2) isa special case. 0

(7.4) Définition. Let I = (i1,...,i)and J = (j1, ..., jr) bemulti indices of the same size
r. Then M (u) isan r x oo matrix, and M, (u) isan co x r matrix, and M!(u) isanr x r
matrix. Denote by u/, the determinant of M (u), that is,

Uip—j1 o+ Uig—j,
uh =
Ui, —jy -+ Uj—j,
Subsetswith r elements of the non-negativeintegerswill beidentified with strictly increas-
ing multi indices of size r. In particular, theinterval [r] := {0, 1,...,r — 1} consisting of

thefirst » non-negative integerswill be identified with the multi index (0, 1, ...,r —1). For
any multi index 1 of sizer, wewill normally writeu for the determinant u{,, = det M{,;(u).
Note that M[’r] (u) isthe matrix obtained from M (u) by selecting thefirst » columns and the
rowswith indicesin 7, and u/ isthe determinant,

Upp Ujp—1 ... Ujp—r41

ui, Uj,-1 ... Uj,—r4+1

In this notation, the 1 x 1 determinant «!, where the superscript i is an index, is the i’th
coefficient u; of u.

Notethat thedeterminant u/, isalternatingin  andalternatingin J. Inparticular, thespecial
determinant »! isalternatinginthe multi index 7. Asaconsequence, general propertiesof the
determinants u§ may be deduced from propertiesvalid for strictly increasing multi indices 7
and J.

The special determinants ! should not be confused with the products u ; defined in (7.1)
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(7.5) Proposition. Letu beapower seriesandlet 7 and J bestrictly increasing multi indices
of thesamesize r. View I and J as subsets of theinterval [N] = {0, 1, ..., N — 1} for some
N > 0. Then:

(1) (Vanishing) The determinantu§ isnon-zero only when 7 O J, that is, wheni, > j,
for p=1,...,r. Ifuisapolynomial of degree at most », then u§ is non-zero only when
n+j,>ip>jpforp=1...r.

(2) (Extension) The determinant u§ is unchanged if the same number is subtracted from
all entriesin 7 andin J. Ifug = landi, = j, for p = 1,...,¢, thenu! = uﬁ% where
Io = (it41, ..., i) and Jo = (jit1, .- -, jr)-

(3) (Homogeneity) If A isan element inthe ground ring and w isthe power series defined
by w(T) = u(AT), then

wh = Al I=171,1 (7.5.2)

(4) (Symmetry) Denote by x — x* = N — 1 — x the order reversing involution of the
interval, and by 7* and J* theimages of 7 and J, as subsets of [ V]. Then,

ug = u{: (75.2)

(5) (Duality) Denote by 7 and J the complements with respect to the interval [N], and
denote by I’ and J’ theimages of 7 and J under the involution x — x*. Ifug = 1and v is
the power series defined by the equation u(T)v(—T) = 1, then

uh =l (75.3)
(6) (Multiplication) If v and w are power series such that uv = w, then

w5= Z u%vf, (7.5.49)

where the sumis over strictly increasing multi indices K of sizer.

Proof. (1) Consider the matrix U = M}(u). By definition, the pg’th entry in U is the
coefficient U = uy wherek = i, — j,. Entriesof U above U} and to the right of U} are
coefficients u; with [ < k. Assumethat i, < j, for some p. The diagonal element U} is
equal to u; withk < 0. It followsthat the largest rectangular block of U with the diagonal
element U} as its lower |eft corner is equal to zero. Hence the determinant u/, = det U
vanishes.

Similarly, assume that u is a polynomial of degreeat most », andthat i, > j, 4+ n. Then
the diagonal element U} is equal to ux with k > n. It follows that the largest rectangular
block of U with the diagonal element U]} asits upper right corner isequal to zero. Hencethe
determinant u, = det U vanishes.

(2) If the samenumber issubtracted fromall entriesof 7 and J, then the differencesi, — j,
are unchanged. Hencethematrix U = M 5(u) and its determinant are unchanged.
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Ifi, = j,forp=1,..., ¢ then U isablock matrix,

T 0
U_<* U0>’

where T isan lower triangular (r — t) x (r — t) matrix with the element ¢ in the diagonal,
and Up := M2 (u). Hence, if uo = 1, we have that det U = det Uo, and hence u}, = u'?.
(3) Sincew; = A'u;, itfollowsthat if the pg’thentryin M}(w) isnon-zero, thenitisequal
to A’»~Ja times the pq’th entry of M (u). Hence, in the usual expansion of a determinant
as a signed sum of products, any non-zero product in the expansion of M 5(w) is equal to

AII=11 times the corresponding product in the expansion of M/ (u). Thus Equation (7.5.1)
holds.

.....

7777 li (u). Then the matrix M. (u) is obtained from U’
by reversing first the order of the rows and next the order of the columns. Hence the two
matrices have the same determinant, that iSu{: =detU’. The pg'thentryinU’ iSuj;;_,-;. As
Jr—i =i, — jp,itfollowsthat U’ isthetranspose of thematrix M} (u). Hencedet U’ = u’.
Thus Equation (7.5.2) holds.

(5) Let w be the power seriesdefined by w(T) = v(—T) so that, by hypothesis, uw = 1.
Let U bethematrix consisting of thefirst N rowsand columnsof M («). Itisalower triangular
matrix withuop = linthediagonal. Inparticular,det U = 1. Define W and V similarly from
M (w) and M (v).

First, from the equation uw = 1 of power series, we obtain the matrix equation,

uw =1

The determinant u§ isthe minor det U } of U corresponding to therowsin I and the columns
in J. Itisthe complementary minor to the determinant det UJ’~. Now, sincedet U = 1, it

iswell known that the complementary minor u/, is equal to the minor det WI!~ of theinverse
matrix W multiplied by the signatures of the permutations (I /) and (J J), that is,

uh = sign(Z Iy sign(J yw?. (7.5.5)
Thepermutation (1 1) of (0, 1, ..., N —1) may bebrought into strictly increasing order using
ir—(r—1+i—1—(r—2)+---+ix— 1+i; Smpletranspositions. Hencethelength of the
permutation (1 1) isequal to ||I|| — r(r — 1) /2. Thuswe obtain for the product of signatures
in (7.5.5) the equation,
sign(I D sign(J J) = (=HI=W1 = (—qyWI=IT1,
Therefore, by the homogeneity (7.5.1) with A := —1, it followsfrom (7.5.5) that

ug = Vs. (7.5.6)

~i,
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Finally, I’ and J’ aretheimagesof I and J under theinvolutionx - x*. So, by thesymmetry
(7.5.2), the equation (7.5.3) follows from (7.5.6).

(6) Assumethat anr x r matrix W isaproduct W = UV, whereU isanr x N matrix
and V isan N x r matrix. Then it iswell known that the following formula holds for the
determinant:

det W = "det Uk det VX, (75.7)
K

wherethe sumisover al subsets K with » elements of the common set [ N] of indicesfor the
columns of U and therowsof V.

Sincew = uv, wehaveby (7.2.1) thematrix equation M (w) = M (u) M (v). By extracting
the equationsfor therowsin / and the columnsin J, it followsthat M/ (w) = M’ (u) M (v).
Moreover, in M’ (u) only thefirst N columnsarenon-zerosince I isasubset of [ N]. Itfollows
that M1 (w) = M[’N] (u)MBN lw). Apply (7.5.7). The equation (7.5.4) isaconsequence, since
the product u % v¥ isonly non-zerowhen 7 > K > J. 0
(7.6) Definition. Recall that if 7 = (i1, ..., i) isadtrictly increasing multi index of sizer,
then the extensions of 7 are the multi indices of the form,

I:=0,1,....t—1t+i1,...,t+i).

Consider a second strictly increasing multi index J of the same size r, and the extension J
of J (withthe samer). If u isapower serieswith ug = 1, thenit follows from (7.5)(2) that

(7.6.1)

<=~

l/lg =Uu-.
In particular, since the extension of [r] is[¢ + r], it followsthat u! = u’.

Assume that 7 is asubset of theinterval [N]. The complement I of I with respect to the
interval isastrictly increasing multi index I = (i, ..., i;) with7 ;== N — r. The multi index
I’ defined in (7.5)(5) is (i}, ...,i}) = (i,%,...,i;"). Itissaid to be conjugate to 7. The
conjugate of the multi index [r] isequal to [¢]. Hence, under the conditions of (7.5)(5), we
have the eguation,

ul =o', (7.6.2)

Note that the definition of the conjugate depends on the choice of N. However, if N is
enlarged, then the new conjugate multi index is an extension of the old. In particular, if u is
apower serieswith ug = 1, then the determinant ! isindependent of the choice of N.

(7.7) Notation. Let (a1, ...,a,) beaset of n elements of the ground ring. Form, in the
notation of (7.2), then x oo matrix,
1 ... 1
a1 (077]
Vv . 1 1
= (011,...,05,1).—<1_a1T,...,1_anT>_ l_
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Therowsof V arenaturaly indexed0, 1, 2. ... Thematrix V istheevaluationat (a1, . . ., o)
of thematrix of (6.3.1). Hence, for any multi index I = (i1, . .., i, ) Of Sizen, the determinant
det VI(aa, ..., a,) isthe evauation of the polynomia A/,

A, ... o) =det Vi, ..., o). (7.7.2)

In particular, the determinant of the matrix V" consisting of the first n rows of V is the
Vandermonde determinant A (a1, ..., o).
In addition, form the two power series,

s =s(a1,...,0y) = l_[(l—oz,-T)_l, e=e(a1,...,q,) .= H(l—l—a,-T)

(of which e is apolynomial of degree at most n). Finally, for multi indices 7 and J of the
same size r, form the determinants,

55 = 55(011, ce, Q) = detM;(s(ozl, ... ,oen)),

65 = eg(ozl, ce, Q) = detM;(e(ozl, ... ,oen)).

Note that the determinants s} and ¢/, arealternatingin 7 and J.

(7.8) Corollary. Assume that 7 and J are strictly increasing multi indices of the same size
r. Then:

(1) (Vanishing) Thedeterminant s} = s/ (a1, ..., a,) isnon-zero only when 7 > J and
the following inequalities hold for all the entriesin the conjugate multi indices I’ and J:

iy < jg +n. (7.8.1)

In particular, if r > n, then s[’r] isnon-zero only if 1 isan extension of a strictly increasing
multi index 1o of size n; moreover, if I isan extension of I, then s[]r] = S[I,S].
(2) For n = 1, the determinant sj(a) is non-zero only when the following inequalities

hold:
Ni1<j=<izg<--=<ip—1<jr Zi. (7.8.2)

Moreover, if the inequalities (7.8.2) hold, then s/ (o) = oI71=I1V1,
(3) (Duality) The following equation holds,

55(011, e, Oly) = 65//(011, e, 0n), (7.8.3)

where I” and J' are the conjugate multi indices.
(4) (Multiplication) If (81, ..., Bn) isasecond set of elements of the ground ring, then

Sh@t, ., B Bu) = Y skl an)sF (B ), (7.8.4)

IDKDJ
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where the sumis over strictly increasing multi indices K of sizer.
(5) (Jacobi—Trudi’s Formula) If 7 a multi index of size equal to the number n of the «;,
then
shy(@1s o) A= Alar, ... o), (7.8.5)

where A = A(aa, ..., a,) isthe Vandermonde determinant.

Proof. The duality formula (3) follows from (7.5)(5) since s(T)e(—T) = 1. Similarly,
the multiplication formula (4) follows from (7.5)(6) since s(a1,...,a,, B1, ..., Bm) =
s(ag,...,05)s(B1, ..., Bm).

Given the duality formula (3), the first vanishing statement in (1) follows from (7.5)(1)
sincee isapolynomial of degree at most n. Consider the special case J = [r]. Then I D [r]
since [ is assumed to be dtrictly increasing. Assume that 7 is a subset of the interval [ N],
where N = r+t. ThenJ’ = [¢]. Sotheinequalities(7.8.1) aretheinequalitiesi, < g—1+n
forqg =1,...,t. Obvioudly, they hold for dl ¢ if andonly if i; <t — 1+ n, thatis, if and
only if

r—n <ii, (7.8.6)

where i1 isthefirst entry in the complement 7. The condition (7.8.6) isvacuousif r < n. If
r > n, then (7.8.6) holdsif and only if I isan extension of astrictly increasing multi index I¢
of sizen. Moreover, if I isan extension of I then s[]r] = S[I,S] by (7.5)(2). Hence the specia
vanishing assertion in (1) holds.

To prove (2) assumethat n = 1. Thens = s(a) = 1+ aT + «?T? +---. Hence M(s) is
the matrix whose j’ th entry is«’ ~/ with the (strange) convention that o = 0 if the exponent
k isnegative. Assumethat / O J and consider the matrix S := M}(s). Its pp’th diagonal
entry is the power o'»—/r sincei, — j, isnon-negative. The inequalities (7.8.2) impliesthat
all entriesabove thediagonal are zero. Thus, if theinequalities(7.8.2) hold, then s 5(0{) isthe
product of the diagonal entries and hence s/ (a) = aI/I=1V1l. Assume that the inequalities
(7.8.2) do not hold, and let ¢ < r be the first index for which i, > j,+1. Consider the
p'th entries in the ¢’th and the (¢ 4+ 1)’st column in S. By the choice of ¢, both entries
vanishif p < g andif p > ¢ then the entries are the powers o’» ~J« and o'r ~Ja+1, Hence the
g'th column is equal to a/s+17/a timesthe (¢ + 1)’th column. Therefore, the determinant
sh(a) = det S vanishes. Hence (2) has been proved.

Finally, to prove (5), consider for j = 1,...,n the product ) := T],.;(1 — & T).
Then d) isapolynomial of degree at most n — 1, and we have the equation of power series
sd¥) = (1—a;T)~L. Henceit follows from (7.2.1) that we have the matrix equation,

M) == 7)

Therefore, by definition (7.7) of the matrix V. = V(ay, ..., a,), we have the equation,

M(s)(d®, ..., d")=V. (7.8.7)
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Let D bethen x n matrix consisting of thefirst n rowsof theco x n matrix (4, ..., d™).
Thematrix D contains all the non-zero rows, since each polynomial d /) is of degree at most
n — 1. Therefore, from (7.8.7) we obtain the matrix equation,

M (s)D = V. (7.8.8)

In (7.8.8), extract the equation corresponding to the rowsin I and take determinants. Since
det VI = A by (7.7.1), we obtain the equation,

s[]n](ozl, o apdet D = Alay, ..., o). (7.8.9)

Take I := [n] in (7.8.9). On the left the determi nants[[,’j]] isequal to 1, and on the right the
determinantisthe Vandermondedeterminant A = A(azq, ..., «y). Itfollowsthatdet D = A.
Now (7.8.5), for any multi index I of size n, followsfrom (7.8.9). 0

(7.9) Corollary. For any strictly increasing multi index J of size r contained in an interval
[r + t], we have the equalities,

sT (a1, ..., ap) = S[Jr](al, e, 0ly) = e[J,i(al, e, Op), (79.1)

where the left side is the Schur polynomial of (6.13) evaluated at & and the right sides are
the determinants of (7.7).

Proof. The second equation isthe duaity formulaof (7.8.3) for / = (0, 1,...,r — 1).
Clearly, to prove thefirst equation, we may assume that the ground ring is the polynomial
ring R[A] and o; = a;. When the size r is equal to n, the equation follows from Jacobi—
Trudi’s formula, since s’ = A’ /A by definition of the Schur polynomials. If r < n, then
J has an extension J to amulti index of size n, and it follows from (7.6.1) and (6.13) that

s[Jr] — s[{ﬂ — s/ =57, Similarly, if r > n and J is an extension of amulti index Jo of size
n, then s[Jr] = s[Jno] =570 =5/, Findly, if r > n and J isnot an extension of amulti index of
sizen, then s[Jr] =0=ys’ by (7.8)(). 0

(7.10) Application. Assumethat the base ring isthe polynomial ring R[A] = R[azx, ..., a,]
over the alphabet A. The definitions of (7.7) and the results of (7.8) apply to any set of
polynomials «;, and not necessarily with the number of «; equal to the number n of letters
of A. However, a natural choiceis («1,...,a,) = (a1,...,a,). Then the power series
s(ai,...,ap)ande(as, ..., ay) of (7.7) arethe power seriess(A) and e(A) of (5.14). Their
d’th coefficients are, respectively, the complete symmetric polynomia s; = s4(A) and the
elementary symmetric polynomial e; = e4(A). Consequently, the matrix M (s(a1, ..., an))
has as i j'th entry the complete symmetric polynomial s;—; (equal to zero if i < j), and the
matrix M (e(a1, . .., a,)) hasasij’th entry the elementary symmetric polynomial ¢; _ ; (equal
tozeroifi < jori > j+n). Itfollowsthat the determinants s/ = s/ (A) and e, = e (A),
for multi indices I and J of the same size r, are symmetric polynomiasin the letters of A.
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They aredternatingin I andin J. Moreover, since s; and e; are homogeneous of degree d,
it followsthat the polynomials s’ and e/, are homogeneous of degree || 1] — ||/ ].

The ponnomiaI5s§ are called skew Schur polynomials. By (7.9.1), the skew Schur poly-
nomial s/, for a drictly increasing multi index 7, is equal to the Schur polynomial s/ of
(6.13). In particular, for the specia skew Schur ponnomiaIsS[’r] we may omit the subscript
[r] according to the notation introduced at the end of (7.4). It should be noted, however, that
the corresponding determinant e{, is not equal to the power product e’ = ef' - - - elr; we will
never omit the subscript on the determinants e[]r] :

Note finally that the notation «; of (7.1) for the product of the coefficients of a power
seriesu inthecasesu = ¢ and u = s isin accordance with the notationse;, and s;, of (6.14)
and (6.15).

The duality formula of (7.8) is valid for the polynomials s/ and /. The formulais an
explicit expression of the skew Schur polynomial s} as a determinant in the elementary
symmetric polynomialse,. In particular, with J = [r] and with the conjugate I’ of size ¢,
duality is the following formulafor the Schur polynomial s’ :

€) €il—-1 -+ Cil—r+1
s’:e[],/]: : : : . (7.10.2)

e;r e;r ce. €
i ii—1 ii—t+1

(7.11) Note. Asnoted above, the determinant s 5(0{1, ..., Q) Of (7.7) isdefined for any set
of polynomialsa; in R[A]. Of course, for an arbitrary set of polynomials«;, the determinant
isnot a symmetric polynomial.

As an example, consider an aphabet (A, B) = {a1,...,a,, b1, ..., by} obtained as the
unionof A andthelettersh; of asecond aphabet B. Take R[A, B] = R[A][ B] asgroundring.
Consider for strictly increasing multi indices I and J of size r the skew Schur polynomial
sj(A, B). Itisasymmetric polynomial inthelettersof (A, B). Inparticular, it issymmetric
inthelettersof A andin thelettersof B. By (7.8)(4), we have the formula,

si(A,B) = > sk(A)sf(B), (7.11.2)
IDKDJ

where the sum is over strictly increasing multi indices K of size r. For J := [r], it follows
that

s'"(A,B) =) sk (A)s¥(B). (7.11.2)

DK

Take as r the number m of letters of B. View the two sides of (7.11.2) as polynomialsin
R[A][B]. They are symmetric polynomias in the letters of B, with coefficients that are
polynomiasinthelettersof A. The polynomiassX (B) ontheright side are the proper Schur
polynomials, and they forman R[A]-basisfor Symg; 4;[ B]. Therefore, the equation (7.11.2)
is the expansion of s/ (A, B) in terms of the Schur basis. In other words, the skew Schur
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polynomials sk (A) may be defined as the coefficients of the Schur polynomial s7 (A, B)
expanded in the basis SX (B).

Asasecond example, consider for afixed letter ax of A the polynomial Sj(ak). It follows
from (7.8)(2) that S} (ax) isnon-zero only if the following inequalities hold,

J1<ii<jo<izg<--<ip_1<jr <lip. (7.11.3)
Moreover, if the inequalities (7.11.3) hold, then s/ (a;) = a"'~!’!l. For reasons that will
become more transparent later we will say that 7/J is ahorizontal strip if the inequalities
(7.11.3) hold.
Clearly, for dtrictly increasing multi indices I and J of the same size r, we obtain by
repeated application of (7.11.1) the formula,

Kn_
57 (A) = > Sk, (@) -+ S;" ™ an), (7.11.4)
I=KoD>K1D---DK,=J

where the sum is over strictly increasing multi indices K, of size r. As just observed, the
sum may be restricted by the condition that each K ,,_1/K, isahorizontal strip, and then the
corresponding term in the sum is the monomial,

aft-..af wherek, = |K,_1— K,| forp=1,...,n. (7.11.5)
If I O J aremulti indices of the same size r, then atableau of shape 7,/J and biggest entry
nisasequence T = (Ko, ..., K,) of gtrictly increasing multi indices such that I = Ko D
K1 D --- DK, =Jandsuchthat K,_1/K, isahorizontal strip for p = 1,...,n. With

each tableau T there is an associated monomial a” defined as the monomial (7.11.5). The
following formulais simply afancy rewriting of (7.11.4):

sy =>"a", (7.11.6)
T

where the sum is over all tableaux T of shape 7/J and biggest entry n. It is a consequence
of theformulathat the skew Schur polynomial s 5 is a sum of monomials. Equivalently, if s 5
is expanded in the basis of monomia symmetric polynomialsm X, then the coefficients are
n(;n-neg[?tive. More precisely, the coefficient to m X is the number of tableaux T for which
a =da .

(7.12) Special cases. Consider the complete symmetric polynomial s;. It is equa to the
skew Schur polynomial s¢, whered is considered asamulti index (d) of size 1. Theequation
sq = s? is the equation of (6.13). It should be noted, however, that the results in this
section essentially provide an aternative proof of the equation of (6.13). Indeed, by the
extension property, we have the equation s¢ = s%"~11+d for skew Schur polynomialsand
by Jacobi—Trudi’s formula, the skew Schur polynomial s%-"~1.7+d js equal to the proper
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Schur polynomial s%--"~1.2+4 Finally, inthenotation of (6.13), theproper Schur polynomial
s? issimply an abbreviated notation for the proper Schur polynomial s©-7—1n+d,

The multi index I := (d) is contained in the interval [d + 1] = {0, 1,...,d}, and the
conjugate multi index is1’ = (1, ..., d). Hence, by duality,

e1 1 0 0
e2 e1 1 0
1,2,...d .
Sd =€ d-17| ; : : (7.12.1)
ed—1 eq—2 ej—3 ... 1
€d €d—-1 €é4—2 ... e1
For instance,
e17 1 0 O
e2 e1 1 O 4 > 5
S4 = = e, — 3e7er + 2e1e3+ €5 —eq.
4= les er e1 1 1 12+ 2e1e3+e; —eq

eqs e3 ez el
Similarly, since I” = I, we obtain the formula, equivalent to the formulain (6.13),

eq = sb2d, (7.12.2)

Sinces(T)e(—T) = 1, theformulas(7.12.1) and (7.12.2) could have be deduced directly
from (7.3). Asadirect application of (7.3), consider the power series p = p(A) defined in
(5.14). The d’th coefficient isthe power sum pg11 = pa+1(A). Sincee(T)p(—=T) = €'(T),
we obtain from (7.3.1) the formula,

e1 1 0 0
2e2 e1 1 ... 0O
Pd = IR (7.12.3)
(d—1eq_1 eq2 eq—3 ... 1
dey ed—1 eq—2 ... e1
For instance,
e1 1 0 O
2¢o e1 1 O

_ 4 2 >
3es ey e 1| €1 Aelez deres+ 25 — dea.

deq e3 ex e1
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8. Base change.

(8.1) Setup. Severa identities of symmetric polynomialsare most easily expressed as equa-
tionsin the power seriesring R[[ A]] over the lettersof the alphabet A. Recall that an element
f of R[[A]] isaninfinite sequence f = (fo, f1,...) suchthat f; isahomogeneous polyno-
mial of degreei in R[A]. The polynomia f; isthei'thtermin f. If f; = Oforali < d,
then f issaid to have order at least d. A formal series,

>t (8.1.1)

over any set of indices, of elements f, in R[[ A]] is called convergent if, for any d, all but a
finite number of f, have order greater than d. When the series is convergent, we may view
thesum (8.1.1) asthe element in R[[ A]] whose d’th term isthe sum of the d’th termsin the

fi-

(8.2) Proposition. Let u be a power seriesin R[[T]]. Consider the monomial symmetric
polynomials mX (A) for decreasing multi indices K of size n, and the proper Schur polyno-
mials s’ (A) for strictly decreasing multi indices of sizen. Let J be a multi index of size n.
Then the following two formulas hold in R[[ A]]:

[Tu@=> uxm®a), (8.2.1)
acA K

sT(A) [Tu@ =D u)s (A). (8.2.2)
acA 1

Proof. Thefirst formulais obtained by a simple multiplication of series,

n O
_ i . i i
Hu(a) = l_[ E uia, = E Ui -+ Uj,dq - a,

acA q=1i=0

where the last sum isover al multi indices I = (i1, ..., i,) of Szen. Each multi index I is
apermutation of aunique decreasing multi index K, and u; = ug . Hencethelast sumisthe
right hand side of (8.2.1). Thus the first formulaholds.

To prove the second formula, consider an element « in R[[A]] without constant term.
Then the evaluation u(a) = Y ioqu;a’ can be obtained by multiplying the infinite row
)" = (ug, u1, uz, ...) and the infinite column V («) with entries 1, o, o2, .... Applied
with u := T'u, it follows that (T?u)"V («) = o'u(a). Hence, in the notation of (7.2), we
have the matrix equation,

M)V () = V(e)u(a).

Appliedwitho :=a, forg =1, ..., n, weobtain the matrix equation,
M) "V(ay,...,ap) = V(a,...,a,) diag(u(ay), ..., u(an)). (8.2.3)

43
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Extract the equations corresponding to the rowsin J to obtain the matrix equation,
M;)"V(a,...,an) = V' (aq, ..., an)diag(u(ay), ..., u(ay)). (8.2.4)

Take determinants and use the formulamentioned in the proof of (7.5)(6) for the product on
the left hand side. Theresult isthe equationin R[[A]],

ZuﬂAl(al, e, Qp) = AJ(al, ce,dp) l_[ u(aq), (8.2.5)
I qg=1

where the sum is over strictly increasing multi indices I of size n. The polynomias, A’ on
the left side and A7 on the right side, are divisible by the Vandermonde determinant A, and
Al =s'Aand A7 = s/ A. Moreover, the Vandermonde determinant A isaregular element
of R[[A]]. Therefore, formula(8.2.2) followsfrom (8.2.5) after divison by A. 0

(8.3) Corollary. Let B beasecond alphabet with m letters. Let J beamulti index of sizen.
Then the following two formulas hold in R[ B][[A]]:

] 1 _ > sk (BymX(A), (8.3.1)
acA, beB 1-ab K
J 1 _ 1 1
s7(A) aEHGB e les L(B)s'(A), (8.3.2)

wherethefirst sumisover all decreasing multi indices K of sizen and the second sumis over
all gtrictly increasing multi indices I of size n. In addition, the following formula holds in
R[A, B]: i

[[ @+by= Y s'as'B). (8.3.3)

acA, beB IC[n+m]

Proof. Replacein(8.2) R by R[ B]. Clearly, thefirst two formulasfollow fromthe Proposition
by taking u := s(B) = [[,cp(1—bT)"L.

To provethethird formula, takeu := [[,.z(T +b)and J := (0,1,...,n—1) in(8.2.2).
We obtain the equation,

[ @+b)=> ulys' 4. (8.3.4)
1

acA,beB
The pq’th entry in the determinant u[]n] is the polynomial
Ui,—(g—1) = €m—i,+(q—1)(B).

In particular, u[]n] =0ifi, > n+m. Assumethat i, < n+ m — 1 and identify 7 with a
subset of theinterval [n 4+ m]. Since

m—i,+(@—-—1=m+n—-1—i,)—(n—q),

it follows that u[,; = e[,;(B). Moreover, by dudity (7.9), ef,;(B) = sT(B). Hence (8.3.3)
followsfrom (8.3.4). 0
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(8.4) Definition. Definein Symz[A] an R-bilinear form, denoted (g, #) — (g | h), by the
equations, for strictly increasing multi indices 7 and J of sizen,

T 157 =81,

where sy, ; isKronecker’ss. In other words, if symmetric polynomials g and / are expanded
in the basis of the Schur polynomialss”’, say g = > ays’ andh = Y B;s7, then

(g1h)y =) aspy.
J

Clearly, the bilinear formissymmetric. Itiscalled theinner product in Sym[A]. It follows
from the definition that the inner product (g | s”) is equal to the coefficient to s’ when the
symmetric polynomia g is expanded in the Schur basis.

(8.5) Proposition. (1) If K and L are decreasing multi indices of size n, then
(s. |m%) =6 k. (8.5.1)
(2)1f I, J,and K are strictly increasing multi indices of size n, then
(sh 155y = (7 | s755). (8.5.2)
Proof. (1) Consider the expansions of s7 (A) and m®X (A) in the basis of proper Schur poly-

nomials,
sL(A) =) hrus’ (@A), mEA) =) ukas’(A). (85.3)
J J

Then (sz, | mX) = > ;AL g1k, - Inother words, if A and o denote the matricesof thei s
and s, foral L, J, then (1) holdsif and only if the product matrix A" isthe unit matrix
1. Hence (1) holdsif and only if 4", = 1, that is, for al dtrictly increasing 7 and J,

Z/LK,I)»K,J =91, (8.5.4)
K

To prove (8.5.4), let B be a second alphabet with n letters. Take J := [n] in (8.3). It
followsfrom the two equations (8.3.1) and (8.3.2) that

> sk (BymK(A) =" s (B)s!(A). (8.5.5)
K 1

The expansions (8.5.3) hold when A isreplaced by B. Insert the expansions of sk (B) and
mX(A) in (8.5.5). Theresult isthe equationin R[[ B, A]],

Y rkankas’ (B)s'(A) =) ' (B)s! (A). (85.6)
I

K,1,J
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It follows from (8.5.6), since the Schur polynomials s’ (A) form abasis for the polynomials
that are symmetricin the letters of A, that for any fixed strictly increasing multi index 7 we
have the equation in R[[ B]],

Z)»[(’J/L[(’]SJ(B) = S](B). (8.5.7)
K,J

Again, since the s’ (B) form a basis for the polynomials that are symmetric in the letters of
B, it followsfrom (8.5.7) that (8.5.4) holds. Hence (1) has been proved.

(2) The proof of (8.5.2) issimilar. Consider the expansionsof s/ and s”sX in the basis of
proper Schur polynomials,

55 = ZA]J’KSK, sTsK = Z/LL[(,]SI, (8.5.8)
K 1

whereboth sumsareover strictly increasing multi indicesof sizen. Then; sk = (s} | s%)
and (SI | SJSK) = WJ,K,I- Thus (852) isthe equation A.]“]’K = WJK,I-
From the equation (8.3.1) multiplied by s/ (A) and the equation (8.3.2) it follows that

> siBys'(A) =s7(4) Y sK(B)sK(A).
1 K
Insert the expansions (8.5.8) to obtain the equation,

Z Ay ks¥(B)sT(A) = Z 1y k155 (B)s (A). (8.5.9)
T.K TK

As in the proof of (1), it follows from (8.5.9) that A;.; x = s k.1, Which is the asserted
equation (8.5.2). 0

(8.6) Note. It followsfrom (8.5.2) that problem of determining the coefficientsin the expan-
sionsof all skew Schur polynomialss 5 interms of the Schur basisisthe same asthe problem
of determining the coefficientsin the expansions of all productss’sX . The coefficientsarein
fact non-negative, and given by acombinatorial rule, called the Littlewood-Richardson rule.

(8.7) Corollary. Theproductss; = sz (A), for all decreasing multi indices L of size n, form
an R-basisfor Symg[A].

Proof. The assertion follows from (8.5.1) since the mX form a basis. More precisdly, if a
symmetric polynomial g isan R-linear combination of the productss;,, say

g= ZaLsL, (8.7.1)
L

thenitfollowsfrom (8.5.1) thatax = (g | mX). Hencethecoefficientsin (8.7.1) areuniquely
determined by g. To prove the existence, consider the inner products o := (g | mX) for



Base change 47

decreasing multi indices K of size n. The expansion of g in the basis of Schur polynomials
involvesonly Schur polynomialss” of degree at most equal to thedegreeof g. Theexpansion
of mX involves only Schur polynomials s’ of degree equal to the degree | K||. Hence the
inner product ax vanisheswhen || K || isbigger than thedegree of g. In particular, only afinite
number of agx are non-zero. We claim that the equation (8.7.1) holds. To prove it, consider
the difference, g := g — >, arsr. It followsfrom (8.5.1) that (g | mX) = 0 for al mX.
Since the mX form an R-basis for Symy[A], it followsthat (g | #) = O for al symmetric
polynomialsh. In particular (g | s/) = O for al Schur polynomialss”’. As a consequence,
¢ = 0. Hence the equation (8.7.1) holds. 0

(8.8) Definition. It followsfrom Theorem (5.10) that the R-algebra Sym [ A] of symmetric
polynomials is the free polynomial ring over R in the elementary symmetric polynomials
e1, ..., ey. Inparticular, thereisaunique endomorphism of Symg[A] suchthat e; — s4 for
d=1,...,n. By définition, if 7 isamulti index of size n, we have that

el = et el s st st (8.8.1)

Notethat s/ isthe notation of a Schur polynomial, and hence it can not be used as a notation
for the right hand side of (8.8.1). In this context, it is common to denote, ford =0, 1, ...,
the d’th complete symmetric polynomial s; also by z,;. Accordingly, we define, for amulti
index I of arbitrary sizer,

hl = nit - hir hy:=hi - h; (8.8.2)

e

With this notation, the endomorphism of Sym z[A] is given by e/ > h! for multi indices I
of sizen. The endomorphismisdenoted g — g*. Clearly, if I isamulti index of size r and
ip =0f0rp=n—|—1,...,r,then(e’)*=h’.

(8.9) Lemma. The endomorphism g — g™ is an involution of Symyg[A]. Let K be a de-
creasing multi index of sizer and let J bea strictly increasing multi index of sizer. Consider
the following two equations:

(ex)™ = hg, (SJ)* =5/ (8.9.1)

If k1 < n then the first equation holds. If, for some conjugate J’ of J of size ¢, we have that
J; < n, then the second equation holds. In particular, both equations hold if the left hand
sides are non-zero and of degree at most n. Moreover, if f and g are symmetric polynomials
of degree at most n, then

(f*1egH=012. (8.9.2)

Proof. Recall that the power seriese = [[,(1+aT) ands = [[,(1 — aT)~ 1 arerelated
by the equation e(T)s(—T) = 1. In particular, the complete symmetric polynomials sg,
ford = 1,...,n, are determined from the elementary symmetric polynomials e; by the
congruence,

A4e1T++eyTHA+s51(=T) + -+ 5,(=T)") =1 (mod T"*1).
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Substitute T := —T in the congruence, and apply the endomorphism g — g*. On the left,
the first factor is changed to the second. Therefore, since the right side of the congruence
is unchanged, the second factor is changed to the first. Hence we have, ford = 1, ..., n,
the equation s/ = ey, that is, e;* = e4. Since Symg[A] is generated as an R-algebra by
e1,...,e, and g — g* isan R-algebra endomorphism, it follows that ¢** = g. Thus the
endomorphism is an involution.

In the first equation in (8.9.1), the multi index K is decreasing. Hence, if k1 < n, then
each factor in ek is of theform e, with k < n, and hence e, = ;. Thus the first equation
holds.

In the second equation, the multi index J is dtrictly increasing. By duality, we have the
equation,

s = det M} (e). (8.9.3)

In the matrix on theright side, the pq’th entry ise; where d = jl’7 — (¢ —1). The largest
possible d, obtained for p =t and g = 1,isd = j/. Assumethat j; < n. Then every entry
of thematrix ontheright sdeisof theforme,; whered < n. Therefore, if the endomorphism
¢ — g*isappliedto (8.9.3), we obtain the equation,

(SJ)* = det M[{]/(s) -

Thus the second equation of (8.9.1) holds.

If theproduct ex = ek, - - - ex, iISnon-zero, then k1 < n, and so thefirst equation of (8.9.1)
holds.

Assume similarly that Schur polynomial s’ isnon-zero. To prove the equation in (8.9.1),
we may replace J by any strictly increasing multi index of smaller size of which J is an
extension. Thus we may assume J is not an extension of a multi index of smaller size, that
is, we may assumethat j; > 0. Assume that thedegree || J || — r(r — 1)/2 of s/ isat most n.
Since j1 > 1, itfollowsthat j, > g forg = 1,...,r. Hence, from

n>|J-rr—=10/2=j1+Gea=D+--+(r—=Cr=1)) = -D+j — (-1,

[n + 1], it followsthat j; < n. Hence the second equation of (8.9.1) holds.

To prove (8.9.2), note that the proper Schur polynomials s’ of degree at most n form a
basis for the module of symmetric polynomials of degree at most n. It follows from the
second equation of (8.9.1) that in this basis, the involution g — g* is a permutation of the
basis elements. By definition, the proper Schur polynomiasform an orthonormal basis with
respect to the inner product. Therefore (8.9.2) holds. 0

itfollowsthat j. < n. Thus, if J’ isthe conjugate of J determined with respect to theinterval

(8.10) Definition. Up to now we have found several bases for the R-module Sym [ A] of
symmetric polynomials. The basesm*® = {mX} of (5.8) and h, = {h} of (8.6) areindexed
by decreasing multi indices K of sizen. Thebasise* = {e!} of (5.10) isindexed by arbitrary
multi indices I of sizen. Thebasiss*® = {s”} of (6.7) isindexed by strictly increasing multi
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indicesof sizen. Sinceg — g* isan automorphism of Sym[A], it followsthat the products
h! = (e!)*, for multi indices I of sizen, form abasis h°.

Consider an arbitrary basis g* = {g’} (where I runsthrough some suitable index set) of
Symg[A]. For any symmetric polynomia f, denote by C(f, g*) the row of coefficientsin
the expansion of f inthe basis g*. Inasimilar notation, denote by (f | g*) therow of inner
products ( f | g'). For instance, with respect to the basis s* of proper Schur polynomiaswe
have, as noted in (8.4),

C(f,s") =(f]s". (8.10.1)

Similarly,if f* = {fX}isasecond basis, denote by C(f*, g*) the matrix whose K'th row is
C(fX, g*),and denoteby (f* | g*) the matrix whose K 'throw if (X | g*). For instance, it
followsfrom (8.10.1) that

C(f*,s*)=(f"]s". (8.10.2)

Moreover, it followsfrom (8.5.1) that

C(f*,m*)=(f"1h), C(f* h)=(f|m"). (8.10.3)

The matrices C(f*, g*) areinfinite matrices. In general, it isassumed that the symmetric
polynomiasof abasisare homogeneous. Then the part of the basis consisting of polynomials
of fixed degree d isafinite basis for the R-module of homogeneous symmetric polynomials
of degree d. Accordingly, the matrix C(f*, g*) may be viewed as a sequence of quadratic
matrices where the part in degree d is obtained from the partsof f* and g* in degreed.

Note that the two bases, #, = {hg} indexed by decreasing multi indices K of size n and
h* = {h'} indexed by arbitrary multi indices of size n, agree in degree at most », but not in
degree bigger than n. For instance, 4,41 is part of the first basis and not of the second, and
ni+Lis part of the second and not of the first,

Note also that the products ek, for decreasing multi indices K of size n, do not form a
basis, sinceex = Oif k1 > n. However, the products e, for decreasing multi indices K
of sizen and ||K|| < n, form abass e, for the symmetric polynomials of degree at most »,
equal to the part of degree at most n of the basis e°.

(8.11) Definition. Consider in particular thematrix C := C(s*, m*®). ItsI L’thentry Cy, for
adtrictly increasing multi index 7 and adecreasing multi index L, both of sizen, isdetermined
by the expansion,
st=Y"Crm", (8.11.1)
L

of the Schur polynomial s interms of the basis of monomial symmetric functions. 1t follows
from (7.10) that the entries C; ;. are non-negative integers, determined combinatorically as a
number of tableaux with certain properties. The numbers C . are called the Kostka numbers.

TheKostkanumber C; ;. and, moregenerally, thecoefficient C; ; intheexpansion (8.11.1)
of s/ for an arbitrary strictly increasing multi index of size » may be determined as follows:

Thereis abijective correspondence between strictly increasing multi indices of size r and
weakly decreasing multi indicesof sizer, givenby J — J,whereJ = (j,—(r—1), ..., jo—
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1, j1). Henceasequence Ko, . .., K, of strictly increasing multi indicesof sizer corresponds
toanr x (n+1) matrix T of non-negativeintegerswhoseg’th columnistheweakly decreasing
sequence IEq. Therelations Ko O --- D K, correspond to the condition that the entriesin
each row of T are weakly decreasing. The condition that each K,_1/K, is a horizontal
strip corresponds to the condition that the entries in each skew diagona of 7' (southwest to
northeast) are weakly decreasing. The two conditions on 7', on the rows and on the skew
diagonals, are called the tableau conditions. Note that the tableau conditionsimply that the
entries in each column of 7', which is not the last column, are weakly increasing. Hence
a tableau of shape 7/[r], as defined in (7.11), can be identified with a matrix T satisfying
the tableau conditions and such that the first column of T is equal to I and the last column
consists of zeros. For each tableau, let 7, denote the sum of the entriesin the g’ th column of
the matrix. Clearly, |[K;—1 — Kyl = t,-1 — t4. Henceit followsfrom (7.11.1) that

to—t Ih—1—1,
S]:§ alo l___annl n
T

In particular, the coefficient C;, isequa to the number of matrices T satisfying the above
conditions and the equation

(to—t,...,ty_1—ty) = L. (8.11.2)

(812) Lemma. Let I = (i1,...,iy) be a drictly increasing multi index and let L =

(I, ..., 1) be a decreasing multi index. Form the decreasing multi index I = (i, — (n —

1),...,i2—1,i1). ThentheKostka number C; vanishesunless| /| = || L|| andthefollowing
inequalities hold:

n+-tig>li+---+1, forg=1...,n (8.12.1)

Moreover, if all the inequalities are equalities, that is, if L = I, then C;p = 1.

Proof. The Kostka number C;; is the number of n x (n + 1) matrices T satisfying the
conditions of (8.11).

Assume that C; # 0. Then thereisamatrix T = (t,,) satisfying the conditions. The
first column Ty of T is I, and the last column 7,, of T consist of zeros. Clearly, the tableau
conditions on the skew diagonals of 7" imply that the last ¢ entries in the ¢’th column are
equal to 0. The column sum rg isequdl to ||7]|. Hence it follows from (8.11.2) that

n n—q
ll+...+lq:t0_tq:Zip_ztpq, (8.12.2)
p=1 p=1

Since the entries along the skew diagonal are weakly increasing, it followsfor atermz¢,, in
the last sum that
tpg = tpilg—1> " = tpiqg,0=Ipiq- (8.12.3)
Hence the inequalities (8.12.1) follow from (8.12.2) and (8.12.3).
Clearly, if theinequalitiesare equalities, then T is unique and determined by equalitiesin
(8.12.3). Hence the last assertion of the Lemma holds. 0
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(8.13) Proposition. Let C = C(s*, m*) be the matrix of Kostka numbers. Let S be the
guadratic matrix indexed by strictly increasing multi indices 7, J of size n given by

S 1 if I and J’ are extensions of the same multi index,
=10 otherwise

Then S isa symmetric matrix. Moreover, the following formulas hold:

C(s*,m*) = C, (8.13.1)
C(h.,s%) =C", (8.13.2)
C(h,,m*) = C"C, (8.13.3)
and, in degree at most ,
Cl(e.,s*) =C"s, (8.13.4)
C(e.,m*) = C"SC. (8.13.5)

In particular, in degree at most n, the matrices C(h,, m*) and C(e,, m*) are symmetric.

Proof. Thematrix S issymmetric because conjugation J — J’ isaninvolution. Theformula
(8.13.1) isthe definition of the matrix C. Asnoted in (8.10), we have that

C(he,s*) = (ha | s°) = (s* | )" = C(s*,m*)".

Hence (8.13.2) holds.

Clearly, C(h,,m*) = C(h,,s*)C(s*,m*). Hence (8.13.3) follows from (8.13.1) and
(8.13.2).

Restrict to the parts of degreeat most n. Then it followsfrom (8.9) that S = C(s°, (s*)*).
Therefore, again by (8.9), we have that

C(e.,s*) = C((e)", (s°)") = C(h.,s*)S.

Hence (8.13.4) follows from (8.13.2). Finaly, (8.13.5) follows from (8.13.1) and (8.13.4)
sinceC(e,,m*) = C(e,, s*)C(s®, m*). 0
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9. Partitions.

(9.2) Definition. A partition is a decreasing sequence A = (A1, A2, ...) of non-negative
integers containing only afinite number of positive terms. Theterm A; iscalled thei’th part
of the partition A.

The number of positive parts is called the length of the partition, the sum of the partsis
called the degree of the partition and denoted ||A||. The biggest part of the partition is the
first part A1, Since the sequence is decreasing.

There are several convenient notationsfor partitions. First, we may indicate a partition by
giving any finite subsequence containing all the positive parts, in particul ar thefinite sequence
containing only the positive parts. For instance, each of the sequences (7,7, 3, 3,3, 1) and
(7,7,3,3,3,1,0,0) represent the partition,

A=(7,7,3,3,310,...). (9.1.1)

Thelength of A is 6, thedegree of A is 24, and the biggest part of A iS7.

Inthisnotation, thezero-partition (0, O, . . . ) isrepresented by any finite sequence of zeros,
in particular by the empty sequence ( ).

Next, apartition A may be given by itstype, that is, by the numbersm , = m (1) counting,
forp =1,2,...,thenumber of partsof X that areequal to p. Thetypeis oftenindicated by
the “formal” product 1122 . ... For instance, the partition A of (9.1.1) may be given by its
type 113372 (or 72331%).

Note that a positive integer d, both as the sequence (d) and as the type d 1, represents the
partition (d, 0,0, ...).

Third, apartition A may be given by its Ferrers diagram D;,. The diagram D, consists of
the set of points (i, j) € N2 suchthat 1 < j < ;. The diagram will aways be pictured in
a system of matrix coordinates where the first index i isarow index and the second j isa
column index. Moreover, the point (i, j) will be pictured as the unit box with (i, j) asthe
lower right vertex.

For instance, the diagram of the partition (9.1.1) is the following:

I

l
(9.2) Definition. There are several natural order relations among partitions. First, we write
A < wif either ||A|| < ||u]l orif |A|l = ||m|l and, for the firsti for which A; # u; we have
that A; < ;. Thereationisatota order on the set of partitions.
Next, wewrite A C wif A; < u; foral i. Therelationisapartial order. With respect to
the Ferrersdiagrams, wehavethat A C pifandonly D, C D,,. If u C A, thenthedifference
set D, — D;, (of boxes) is called the skew diagram of j./A.

53
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Finaly, wewrite L < wif |A|| = |||l and, forg = 1,2, ...,
M+t Ag S prt (.

Clearly, if L < pu,then i < p.
(9.3) Definition. For any partition A, define the conjugate partition 1’ by

M= #i | h > p).

For instance, for thepartition A of (9.1.1), theconjugateisthepartition).’ = (6,5, 5, 2, 2, 2, 2)
= 245261,

Notethat the Ferrersdiagram of A’ isobtained by reflecting the diagram of A inthediagonal
i = j, that is, the diagram D, isthe transpose, D", of Dj.

Clearly, we have that 1/ = A. The biggest part of A" isthe length of A, and the length of
A’ isthe biggest part of A.

(9.4). There are several natural ways to associate partitions with multi indices.
(1) To adecreasing multi index K of size r, associate the partition given by the map,

(k1, ..., k) — (k1,...,k-,0,0,...) Q)

Clearly, the map (1) defines a bijective correspondence between decreasing multi indices of
sizer and partitions of length at most ». Moreover, two decreasing multi indices of different
size define the same partition if and only if the longer is obtained from the shorter by adding
atrailing sequence of zeros.

Obvioudy, if A and « are the partitions associated via the map (1) to decreasing multi
indices L and K of thesamesize, then . <« ifandonlyif L < K and A C « if and only if
L CK.

(2) To an arbitrary multi index I of size r, associate the partition given by the map,
(il,---,ir) = (il‘l‘""I‘ir,-'-yir—l‘l’ir,ir,o,oy---)- (2)

Clearly, the map (2) defines a bijective correspondence between multi indices of size r and
partitions of length at most ». Moreover, two multi indices of different size define the same
partition if and only if the longer is obtained from the shorter by adding a trailing sequence
of zeros.

(2') To an arbitrary multi index I of size r, associate the partition given by the map,

— e, — o —
(i1, ....,0.) >0, ...,r, ...,2,...,2,1,...,1,0,...). (2)

In other words, the associated partition is given by thetype 1/t - - . rir. Clearly, the map (2)
defines a bijective correspondence between multi indices of size r and partitions of biggest
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part at most r. Moreover, two multi indices of different size define the same partitionif and
only if the longer is obtained from the shorter by adding a trailing sequence of zeros.

Clearly, if I isamulti index, then the two partitions associated with I via the maps (2)
and (2') are conjugate.

(3) Toastrictly increasing multi index J of sizer, associate the partition given by themap,

(J1y oo Jr) > (r= (@ —=21,...,j2—1,j1,0,0,...). 3

Clearly, the map (3) defines a bijective correspondence between strictly increasing multi
indices of size r and partitions of length at most ». Moreover, two strictly increasing multi
indices of different size define the same partition if and only if the longer is an extension of
the shorter.

(9.5) Lemma. If A isthe partition associated to a strictly increasing multi index J of sizer
viathe map (3), then ) is associated to the conjugate strictly increasing multi index J'.

Proof. Indeed, assume that J is a subsequence of [r + ¢]. Clearly, the conjugate of the
partition A isgiven by

A, =g e[lr]ljg— (-1 =p}
Sncejo,—(q@-D<j,—-D<@+t)—(r-1) =1t-1, itfollowsthatA; = Ofor

p >t —1. Assume p < t. Now, for any non-negative integer n, the following relations are
equivalent:

jg=n, #IN[l<qg-1 #JN[nl<n-—(q-1), fn_(q_1)<n

Itfollowsin particular, withn := p+q—1,tha j, — (g —1) > pifandonlyif j, < p+q—1.
Hence 1/, isthe number of g = 1,..., r suchthat j, — (p — 1) < g, thatis,

Ky=r—(jp—(p-D). (9.5.1)

Clearly, theright hand side of (9.5.1) isthe partition defined by (j1, ..., j/). I
(9.6) Definition. For any partition A of length at most », define

where K isthe decreasing multi index of size n corresponding to A viathe map (1). In other
words,

Definem” := 0if thelength of A isbigger than n. Notethat my = p, isthe d’th power sum,
andmi._ 1 = eq, Or, inthe type notation, m 1« = ey.
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For any partition A, define
e, =ex, h):=hg

where K isadecreasing multi index corresponding to A viathe map (1). In other words,
€ = €),€p, """ hy, =hyhy, - .

Note that the products are finite since eg = ho = 1. The products are defined for arbitrary
partitions .. The product e, vanishesif the biggest part of A is strictly greater than n, since
eq = 0whend > n. Clearly, if I isany multi index and X is associated to I viathe map (2'),
thene! = e¢;.

For any partition A of length at most n, define

JAVY ::AJ, S :=sJ,

where J isthe strictly increasing multi index of size n correspondingto A viathemap (3). In
other words,

AX — A)\ny)\n—l‘Fl ----- )Ll+(”_1). — S)\nv)\n—l+1 ----- )Ll+(”_1).

S)

Note that the empty partition ( ) corresponds to the sequence (0,1, ...,n — 1). Hence A
is the Vandermonde determinant, and s, = s®%-+"~1 = 1. Under the correspondence, the
partition d correspondsto the sequence (0,1, ...,n — 2,n — 1+ d). Hence it follows that,
with d as partition, we have that s, isthe d’th complete symmetric polynomial.

Finally, for any two partitions » and p of length at most n, define e/, and s/, asthe
determinants ¢, and s/ where 7 and J strictly increasing multi indices of the same size
associated viathe map (3) to A andpt.

(9.7). Inthelanguageof partitions, the notion of atableauisthefollowing: Denoteby J — J
the bijection (3) from strictly increasing multi indices of  to partition of length at most r.
Under this correspondence, we havethat I © J if andonly if D; > Dj. Moreover,itl > J,
then 7/J isahorizontal strip as defined in (7.11) if and only if the skew diagram D; — D
has no more than one box in each column.

Let I O J be strictly increasing multi indices of size r corresponding, viathe map (3), to
partitions 2 and . Thenasequence I = Ko D K1 D --- D K, = J of drictly increasing
multi indices K, corresponds to a sequence of partitions, A = kg D k1 D -+ D kK, = U.
The sequence of partitions may be represented by the skew diagrams D, of «,_1/«, for
g =1,...,n. The skew diagram D, is a subdiagram of the skew diagram D of A/u, and
it may be visualized by inserting the number ¢ in al boxes of D,. Note that the inserted
number increase along the rows and along the columns of D. Moreover, the condition that
each k,_1/k, isahorizontal strip meansthat no number g can occur more than once in each
column. | other words, the condition means that the inserted numbers are strictly decreasing
in each column of D. It followsthat atableau of shape 7/J and biggest entry n, as defined
in (7.11), can be identified with an insertion of numbersfrom {1, ..., n} in the boxes of the
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diagram of A/u such that the inserted numbers increase weakly in each row and increase
strictly in each column.

Under theidentifications, thedegree | K, -1 — K, || isequal tothedegree ||k, -1 — k||, and
hence equal to the number of boxesin the skew diagram D,,. Hencethedegree | K,—1 — K, ||
isequal to the number, denoted k,(7') of times the number ¢ occurs in the tableau 7. The
following formulaistherefore arewriting of (7.11.6):

k(T
T

where the sum is over al tableaux 7' of shape A/ and biggest entry . In particular, if K is
agiven decreasing multi index of size at most n, then the coefficient to m X in the expansion
of 55/, in the basis of monomia symmetric polynomialsis equal to the number of tableaux
T of shape A/ for which

K = (k1(T), ..., k,(T)).
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10. Applications of Deter minantal M ethods.

(10.1). Inthe proof of Jacobi—Trudi’sformula(7.8)(5), we proved, for amulti index I of size
n the formula(7.8.8):

Sz, ..., o) D =V(ag, ..., an), (10.1.1)
where D = D(a1,...,a,) iSann x n matrix with determinant equal to the Vandermonde
determinant A = A(ag, ..., a,). Theformulahas far reaching consequences.

Consider first a power series u which isa polynomial. Then, for every element « in the
ground ring, the value u(«) is awell defined. Recall that V(o) = ((1 —aT) 1 > isthe
infinite column with entries 1, o, o2, . . . . Hence, if the column V («) is multiplied from the
left by the infinite row whose entries arethe coefficientsof 77 u, theresultisa’u(a). In other
words, we have the following matrix equation,

M)V (a) = V(@)u(a).

As a consequence, by multiplying (10.1.1) from the left by the matrix M (x)'" we obtain the
equation,

M(u)trS[n](al, o ap)D =V(ag, ..., ay)diag(u(a), ..., ula,)). (10.1.2)

Let J beamulti index of sizen, and extract from (10.1.2) the equations corresponding to the
rowsin J. Theresult isthe equation,

Mj(l/l)trS[n](O[]_, oo a)D =V, .. a)diagua), ..., u(e)). (10.1.3)

Finally, take determinantsin the equation (10.1.3). Thedeterminant of D isthe Vandermonde
determinant A. The determinant of the product M J(l/l)trS[n] is developed as in the proof of
the multiplication formula(7.5)(6). The result is the equation,

AN ulshytea o) = A () [ Tulan). (10.1.4)
ID>J i

From (10.1.4) it follows, since A’ = As” by definition of the Schur polynomials, that

Z uﬂsl(al, e, Oly) = sJ(ozl, ce, Op). l_[u(oz,-) (10.1.5)

1DJ

Indeed, the equation followsfrom (10.1.4) when the ground ring isthe polynomial ring R[ A]
and «; := a;, because then the Vandermonde determinant is aregular element. Therefore,
since (10.1.5) isof universal nature, it holdsfor general ground rings.

Equation (10.1.5) holds when u is a polynomial. For some ground rings, the equation
holds even when u is apower series. Assume for smplicity that the ground ring isthe power
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seriesring R[[A]] over theaphabet A. If o isan element of R[[A]] of positive order (that is,
without constant term), then evaluation u («) isthe element of R[[A]] defined formally by

u(o) :=uo—|—u1a—l—u2a2—l—...,

In fact, in the sum only finitely many terms have order less than a given number, and so the
infinite sum isawell defined element of R[[A]].

Inthissetup, if a1, . .., o, arepower seriesin R[[ A]] without constant terms, then (10.1.5)
holds. Indeed, (10.1.5) is an equation of power seriesin R[[A]], and so it suffices to show
that its two sides agree in every degree. However, in afixed degree, the equation involves
only finitely many terms of u. Hence, since the equation holds for polynomials u, it holds
for arbitrary power series.

Asastandard application, replace R by apower seriesring R[[ B]] over asecond al phabet
B. Takeu := s(B) and «; := a;. Thenformula(10.1.5), for astrictly increasing multi index
J of sizen equa to the number of lettersof A, isthefollowing equationin R[[A, B]]:

1
> siB)st A =5 T] et (10.1.6)

1DJ acA,beB

wherethe sumisover strictly increasing multi indices I of sizen. Inparticular, with J = [n],
we obtain the formula,

acA, beB 1-ab

Y sty = T] ! (10.1.7)
1



Difference operators

1. Operatorson rational functions.

(1.1) Setup. Fix a commutative ring R and a finite aphabet A = {a1,...,a,} of n > 0

letters. Denote by R(A) thering of rational functionsin the letters of A, that is, the ring of

all fractions f/g where f and g are polynomialsin R[A] and g isnot azero divisor in R[ A].

Clearly, the action of the symmetric group G(A) on R[A] extends to an actionon R(A).

A rational function f in R(A) iscalled symmetric if it isinvariant under the action of G(A),
thatis, if

o(f) = ffordl o € S(A). (1.1.1)

The symmetric rational functionsin R(A) form an R-subalgebra, denoted Sym(A).
A rational function f is called anti-symmetric if it is semi-invariant under the action of
S (A) inthe sense that
o(f) =sign(o) f foral o € G(A). (1.1.2)

Clearly, the anti-symmetric rational functionsin R(A) formamoduleover thering Sym(A)
of symmetric rational functions. In particular, a product of a symmetric rational function
and an anti-symmetric rational function is an anti-symmetric rational function. Similarly, a
product of two anti-symmetric rational functionsis a symmetric rational function.

It follows that if 4 is an anti-symmetric polynomia and not a zero divisor in R[A] (for
instance, i could be the Vandermonde determinant A = [, _, (b — @)), then multiplication
by h defines an isomorphism from the R-module Sym (A) of symmetric rational functions
onto the R-module of anti-symmetric rational functions.

(1.2) Remark. If g isany polynomia in R[A], then by multiplying g by the product of
the polynomials o (g) for all permutations o # 1, we obtain a symmetric polynomial. It
followseasly that any rational functionin R(A) can bewritten asafraction f/g whereg isa
symmetric polynomial. Moreover, it followsthat the ring of symmetric functions Sym (A)
is the total fraction ring of its subring Symy[A], that is, the symmetric functions are the
fractions of the form f/g¢ where f and g are symmetric polynomials and g is not a zero
divisor in Symz[A].

(1.3) Proposition. Let E be the sequence (0,1, ...,n — 1). Then the monomials ¢’ for
J C E form a basis both for the algebra R(A) of rational functions as a module over its
subring Sym(A) of symmetric functions, and for the algebra of R[A] of polynomials as a
module over its subring Sym [ A] of symmetric polynomials.
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Proof. As noted in (1.2), every rational function in R(A) is a fraction f/g where g is a
symmetric polynomial. Asa conseguence, thefirst assertion of the Lemmafollowsfrom the
second.

The second assertion will be proved by induction on the number n of letters of A.
Clearly, the assertion holds when n = 1. Assume that » > 1 and consider the a phabet
A :=f{a1,...,a,_1}. Then R[A] = R[a,][A]. The subring Symg, 1[A] consists of the
polynomiasof R[A] that are symmetricinthefirstn — 1 letters. By induction, R[A] isafree
module over its subring Symp, 1[A], with a basis formed by the monomialsa” for J C E,
where E = (0,1,...,n — 2). Therefore, it suffices to prove that the ring Sym R[an][A] isa
free module over its subring Symg[A], with abasis formed by the powers 1, a,,, . . ., aZ_l.

In other words, it suffices to prove that any polynomia p in Sym R[an][A] has a unique
expansion,

P =qo+quan + -+ guoral ", 1)

whereg; € Symg[A].

Assume that p isapolynomial in SymR[an][A]. Fori =1,...,n,let p; ;= u(p) where
w is any permutation of G(A) such that (a,) = a;. The polynomia p; isindependent of
the choice of u, because p issymmetricinthelettersay, . . ., a,—1. Consider the following
system of n equations,

n—1

pi=q0+q1ai+"'+qﬂ—1ai fori:l,...,n, (2)

with unknown functions ¢; in R(A). The determinant of the matrix of coefficients is the
Vandermonde determinant A. Hence the system (2) has a unique solution (go, ..., gn—1)
with ¢g; in R(A).

The n’th equation in (2) is the equation (1), because p,, = p. Clearly, if the equation
(1) holds with polynomials g; that are symmetric in the letters of A, then the equations (2)
hold. Hence it sufficesto prove for the solutions ¢; to the system of equations (2) that each
gi isapolynomia and symmetricinthelettersof A. By Cramer’srule, the solution ¢; isthe
fraction Q;/A, where the denominator is the Vandermonde determinant and the numerator
isthe determinant,

—1 +1 -1

1 ... a p1 ag c.oag

Qi = : : : :
1 ... a7t p, att ... a1

Let = be the transposition that interchanges two different letters a; and a; of A. It follows
from the definition of the polynomials p; that t(p;) = p; when i isdifferent from k and j
and t(px) = pj. Hence, when t is applied to the determinant Q;, the k’th and the j’th row
of the determinant are interchanged, and if we substitute a; = a; in the determinant then its
J'thand k’th row become equal. Therefore, the determinant Q; isan aternating polynomial.
As a consequence, the quotient g; = Q; /A isapolynomia and symmetric in the letters of
A.

Thus the Lemma has been proved. 0
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(1.4) Observation. The number of elements in the basis of (1.3) is the number, n!, of
permutationsin G(A).






2. Thesmple difference operators.

(2.1) Definition. Consider the (twisted) group algebra R(A)[&(A)] of the ring of ratio-
na functions R(A). As aleft-R(A)-module, the group algebrais freely generated by the
permutations of G(A), that is, the elements of the algebraare R(A)-linear combinations of
permutations,

o= Z fs0, (2.1.1)
and the multiplication in the agebrais given by therule,

o-f =0(f)o. (21.2)

The twisted group algebra R(A)[&(A)] contains the ring of rational functions R(A), and it
contains the group G(A). Notethat o f, for o € G(A) and f € R(A) can be interpreted
both as the product of o and f in the group algebra and as the function obtained from f be
the action of o. When the interpretation is not clear from the context, we write o - f for the
product in the group algebra (defined by (2.1.2)) and o ( f) for the function obtained from the
action.

A permutation  in &(A) isinvertible in the group algebra. Hence it induces an inner
automorphism o — a1t of the group algebra, called conjugation by . On the subring
of rational functions, conjugationisthemap f — w(f).

In addition, the group algebra has a canonical involution @ +— «*. It is the anti-
automorphism of the group algebra defined by

(fo)* :=dgn(o)o L f. (2.1.3)

Notethat theinvolutionisan anti-automorphism, that is, it reversesthe order of the factorsin
aproduct. Itisequal to the identity on the subring R(A) of rational functions. In particular,

(0f)* = fo* =sign(o) fo~t.
(2.2) Definition. The group algebra R(A)[S(A)] acts naturally on the R-module R(A).
More precisely, to the element « of (2.1.1) we associate the operator on R(A) defined by

a(g) ==Y foo(g). (2.2.1)

The action is faithful, that is, if an element o of the group algebra operates as the zero
map on R(A), then « = 0. Equivalently, if asum o = Y, fio;, where the o; are k
different permutations, defines the zero operator (2.2.1), then the functions f; are equal to
zero. Indeed, by a standard argument of Galois theory, the assertion is proved by induction
on k. It holds when £k = 1. Assume that £k > 1 and that « defines the zero operator.
Then, for every function f € R(A), we havethat o (/) and «- f definesthe zero operator.
Hence the difference ok ( f)a — - f defines the zero operator. Clearly, the differenceisthe
sum Y5 (f) — 0i(f)] fioi. Hence, by induction, we have that [0k (/) — oi(f)] fi for
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i=1,...,k—1 Appliedwitheachletter of A as f, itfollowsthat f; = Ofori =1,...,k—1.
Clearly, thendso f; = O.

The agebra of all operatorson R(A) of the form g — «(g) where « is an element of
the twisted group algebra will be denoted £x(A). The elements of the algebra Eg(A) will
simply be called operators on R(A). By the result just proved, operators can be identified
with elements of the twisted group algebra. Note that all operators are Sym (A)-linear.
The subalgebra of £g(A) consisting of operators that map the subring R[A] into itself will
be denoted £g[A]. Obvioudly, the algebra Eg[A] contains the ring of polynomials R[A]
and the group of permutations G (A), that is, the algebra contains the twisted group algebra
RIA][S(A)].

It will be proved in Chapter SCHUB that the algebra of operators £z (A) isthefull ring of
al Symy(A)-linear endomorphismsof R(A).

Clearly, the subalgebra £g[A] is invariant under the conjugations. It will be proved in
Chapter SCHUB that £g[A] isinvariant under the canonical involution.

(2.3) Definition. The symmetrization operator § = §4 of R(A) isthefollowing operator:

84 = Z a-%z% Z (sgno)o.

oeG(A) 0eG(A)

Thetwo expressions areequal, because o (A) = (—1)). Itisclear fromthefirst expression
that the values of the operator 84 are symmetric functions. When the sum in the second
expression is applied to a polynomial, the result is an aternating polynomia and hence
divisibleby A. Therefore the operator 64 belongsto Ex[A].

Clearly, the first sum is transformed into the second by the canonical involution. Hence
the operator §4 isinvariant under the canonical involution. Moreover, under conjugation by
apermutation u of G(A) we havethat 841 = (signu)sét = 641,

(2.4) Déefinition. For 1 < p < n, let 7, isthe smple transposition that interchanges a,, and
ap+1. Define the simple difference operator,

1
= —— (11, (2.4.1)
ap+1 —4ap

Clearly, for each polynomial f in R[A] we have that the difference f — 7, (f) vanisheswhen
we subdtitute a, 1 = a,. Hence the difference is divisible by a1 — a,. Therefore the
operator a7 belongsto the subring £x[ A]. Moreover, the operator 07 is invariant under the
canonical involution:

(3P)* = 9P, (2.4.2)

Indeed, if welet A, = apy1 — ap, then9” = 1/A, — (1/Ap)7,. Under the canonical
involution, the function 1/A , is invariant and 7, is changed into —z,,. Hence (1/A,)t, is
changed to —7,-(1/A,) = (1/A,)t,, and consequently the equation (2.4.2) holds.
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It will be convenient to define 0, := —d”. In addition, define operators 77 and y”, and
m, and ¥, by the equations,

P =0P-apy1, YP =ayd?, m,=0pa, Yp=ap+10,. (2.4.3)

Clearly, under conjugation by 7, the function 1/A, changes sign and the operator 1 — 7, is
invariant. Therefore, under conjugation by 7, thethree operatorsd”, = and 7 are changed
into d,, m, and v,. Similarly, under conjugation by w the functionsa, and a1 are mapped
toa,—p+1anda,_p, and T, ismapped to 7, ,. Hence we obtain the formulas,

wd’w =0—p, onPo=m_p, oY’o="1vY,_). (2.4.9)

Since the canonical involution reverses the order of the factors, we obtain from (2.4.2) and
(2.4.3) thefollowing formulas:

Finally, by combining the previoustwo sets of formulas we obtain the following:
0@ 'w=-3"" @) o=-y"" oW’)o=-a""" (2.4.6)

(2.5) Observation. Itisimmediatefromthe definitionthat 7 (ap+1) = 1and 97 (ap) = —1.
Asaconsequence, 77 (1) = 1. Notethat the operator 97 isof degree—1 and 7z ? and ¢? are
of degree O inthe variablesof A.

(2.6) Lemma. Theoperatorsof (2.4) arelinear withrespect to polynomial sthat are symmetric
inthevariablesa, and a, 1. Moreover, theimage of 97 issymmetric in these variables, and
a” vanishes on polynomials that are symmetric in these variables. Finally, the image of 7 7
issymmetric in thevariablesa, anda,+1 and 77 (1) = 1.

Proof. All assertions result directly from the definition. 0
(2.7) The Leibnitz Formula. The operator 97 isa t,-derivation, that is, for rational func-
tions f and g in R(A) we have that

37 (gf) = 0P (&) f + tp(8)d” ().

Proof. The assertion follows by adirect calculation. 0

(2.8) Lemma. The following equations hold:

1=nP —yP, 3PP =0, nPrP =nP, Pyl =—yP.

Proof. It follows from the Leibnitz formulathat 97 (a,+1f) = f + a,9?(f). Hence the
first equation of the Lemmaholds. The second equation followsfrom the second assertion of
Lemma (2.6). The third eguation follows from the third assertion of Lemma (2.6). Finaly,
the last equation is a consequence of thefirst and the third. 0
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(29 Lemma. Let E := (0,1,2,...,n — 1) and E1 := (0,0,1,...,n — 2). Then the
following equation of operators holds:

ElTL'l- . _nn—l — al_ . 8n_1-61E.

Proof. The monomial af! is equal to a?/(az---a,). Define more generdly, for p =
1,...,n, the monomia a®r = af/(apt1---ay). Then the following equation holds for
p <n:

abraP = gP.qfrt, (@D

Indeed, the |eft side of the equation is equal to 77 - af» because a®r is symmetric in the
variablesa, and a,+1, and w”a’r isequal to the right side by definition of 7 and a®».

Clearly, the equations (1) for p < n imply that the following product of operators, for
p=1,...,n,isindependent of p:

81 . 8p_1aEP7'[p . nl’l—l'

Finally, the asserted equation of the Lemma is the equality of the latter productsfor p = 1
and p = n. 0



3. General difference operators.

(3.1) Definition. Define, by induction on the number of letters n of the alphabet A, two
operators 94 and 4 asfollows. If n = 1, then both operatorsareequal to 1. If n > 1, define

4 = 04191 ... 9" Tand 4 = g Aigl. gL

where A isthe aphabet withthen — 1 lettersap, . . ., a,. In addition, define the operator
¥4 by the equation,
wA — (_1))1(11—1)/20)(7_[14)*0).

In (3.5) wewill giveamoreflexibledefinition of all three operators, and we show in particular
that the operator 14 satisfiesthe equation 4 = y A1yl ...y~ anaogousto theformulas
used for the inductive definition of 34 and 4.

(3.2) Example. If n = 3, then
04 =520%92, A = 22rln? yA = ylylyl

Indeed, the first two equations follow from the inductive definition in (3.1). By the middle
equation of (DIFF.2.4.6), the third asserted equation follows by applying theinvolution « +—
wa™*w to the second equation.

(3.3) Theorem. Consider the symmetrization operator §4 of (DIFF.2.3),

=3 a-%:% > (dgno)s. (3.3.1)

oeG(A) 0e6(A)
Then, for any monomial a”’ we have that
§4a’y = A /A (33.2)

Inparticular, if E = (0,1,...,n — 1), then §4(af) = 1and §4(a’) = Owhen J C E and
J # E. Finally, the following three operator equations hold:

a4 =84, ah=09%aF, ¥ =w@ho’ (3.3.3)

Proof. The equality of the expressions in (3.3.1) was observed in the definition (DIFF.2.3)
of 34. Clearly, when the second sum in (3.3.1) is applied to a monomial a” the result is
the determinant A7, see (SYM.6.6). Hence the equation (3.3.2) follows from the second
expression for §4.

By definition of the Vandermonde determinant we have that AZ = A. Moreover, if
J C E, then J hastwo equal entries, and consequently A’/ = 0. Hence we have obtained
for 84 (a’) the specia values given in the Theorem.
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Consider thethreeoperator equationsof (3.3.3). The second equation followsby induction
on the number of |ettersof A from Lemma (DIFF.2.9) and the recursive definitionsof 34 and
74in(3.1). Indeed, let A; bethe alphabet of (3.1), and let E1 by the sequence of (DIFF.2.9).
Clearly, by induction, wemay assumethat 7 41 = 941a%1. Hence, by therecursivedefinitions
of 34 and 774, it suffices to prove the following equation,

8A1aE17'L'1 . nn—l — aAlal . 8n—1aE.

The latter equation followsimmediately from Lemma (DIFF.2.9).

Consider next the first equation of (3.3.3). The two sides are operators of Eg(A). In par-
ticular, they are Sympg (A)-linear operators. Therefore, by Proposition (DIFF.1.3), it suffices
to prove that the two operators yield the same value when they are evaluated on a monomial
a’,where J < E. Thevaues 4 (a’) werefoundin the first part of the Theorem. The other
operator 34 isaproduct of n(n — 1)/2 simple operators 7 and each operator 37 lowersthe
degree by 1. Therefore, if J ¢ E and J # E, then 34(a’) = 0, because the degree of a”’
isstrictly lessthan n(n — 1) /2. Moreover, for J = E we havethat 84 (af) = 74 (1) by the
second equation of (3.3.3), and 74 (1) = 1, because 74 isacomposition of simple operators
7P and 7P (1) = 1 for al p. Hence, the equality 34 (a’) = 84(a’) holdsfor J C E.
Consequently, the two operators are equal and the first equation of (3.3.3) has been proved.

It remainsto prove the third equation of (3.3.3). The following equation holds:

w3 o™l = (—1rn=D/24, (3.3.4)

Indeed, it followsfrom the observationsin Definition (2.3) that the equation holds for the op-
erator 4 andwehaveprovedthat 84 = §4. Apply theinvolutiona +— (—1)"~D/2pa* w1
to the second equation of (3.3.3). We obtain the equation,

(_1)n(n—1)/2w(nA)*w—l — (_1)]’1(11—1)/20)(aE)a)(aA)*a)—l.

Theleft hand sideisy4 by definition and theright hand sideisw (a £)34 by (3.3.4). Therefore
the third equation of (3.3.3) holds.
Thus al the assertions of the Theorem have been proved. 0

(3.4) Corollary. Each of the three sets of operators,

R L (ml, ... 7", (Wl .yt

satisfies the Coxeter—Moore relations.

Proof. Thefirst of the Coxeter—Moorerelations, for any of thethreesets, are satisfied because
the operator 97 commutes with ¢ and with a, and a,+1 when |p — g| > 1.

Clearly, to verify the second Coxeter—Moore relation, it suffices to consider an al phabet
A with 3 lettersay, az, az. The equations, for the three sets of operators, are the following:

828182 — 818281, 7'[27'[17'[2 — 7_[17_[27_[1, WZwle — ¢1¢2¢1~ (1)
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Consider the first equation. The left sideis equal to 84. Hence, by the Theorem, we obtain
the equation 329192 = 8. Now apply the involution & +— wa*w to the latter equation.
On the left, the result is —318281 by the first equation of (DIFF.2.4.6) and on the right the
result is —84 as observed in (DIFF.2.3). Hence we obtain the equation 919251 = §4. Sowe
have proved that both sides of the first equation of (1) are equal to §4. In particular, the first
equation holds.

Consider the second equation in (1). The left sideis the operator 74 and hence, by the
Theorem, the l€ft side is equal to the operator 92319%aza3. So, by the Coxeter relations
proved for 37, the left side is equal to the operator 32923%aza3. Hence it suffices to prove
that the latter operator is equal to the right side, that is, it suffices to prove the following
equation:

31920 aza3 = 8'az0%azdas.
The latter equation is easily verified. Indeed, on the right side, a3 commutes with 31. Next
apply theequation a29? = 3%a3— 1 of Lemma(DIFF.2.8). Finally, usetheequation 39 = 0
of Lemma (DIFF.2.8) to obtain the left hand side. Hence the second equation in (1) has been
proved.

Finally, the third equation in (1) follows by applying the involution & — wa*w ™1 to the
second equation, since w (7 ?)*w ™1 = —y"~P by Formula(DIFF.2.4.3).

Thus the second set of relations have been verified for al three sets of operators, and the
proof is completed. 0

(3.5) Definition. Let 1 beapermutation of A. Define the corresponding difference operator
d" by the following equation: _ _

A i=09"...9", (3.5.1)
where (7, ..., 7;,) isany minima presentation of x. Since the operators 97 satisfy the
Coxeter-Moore relations by Corollary (3.4), it follows from Proposition (SY M.2.6) that the
operator 0 iswell defined, that is, the right hand side of the equation isindependent of the
choice of the minimal presentation of .

Define similarly operators 7 # and ¢* by the equations,
ahi=git.oogtr and  YHt o=yt g,
Again, it follows from Corollary (3.4) that the operators are well defined. Finally, using
the equations (3.4.4) it follows from Corollary (3.4) that each of the three sets of operators,

{01, ..., 0p—1}, {1, ..., wp—1}, and {y1, ..., ¥u—_1}, stisfies the Coxeter-Moore relations.
Hence we obtain operators d,,, 7., and v,,, defined by the equations,

a/fL = 8il"'8ir’ 7'[“ ::nil"'nir’ and 1/fu = wil...wir'
When 1 = w, we obtain the operators defined in (3.1):
aA — aa) 7TA — n,a) wA — ww.

Indeed, thefirst two equationsfollow immediately fromtherecursive definitionsof (3.1). The
third equation is a consequence of the definition of 4 and the general formulaw (7)*w =

(—1) e yer™o proved in the following Lemma.
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(3.6) Lemma. Let 1« bea permutation of A. Then

1

M = (=1 Wy, and (31)* = 9+ . (3.6.1)

Moreover, the following nine formulas hold:

(8/1)* — (_1)6(/1)8“_1’ wItw = aw/uu, a)(a“)*a) _ (_]_)Z(M)awlflw,
(JTM)* — (_1)@(/1)1#“_1’ wtho = Toopws 6!)(7'[“)*0) _ (_1)5(/”1#&)”—1&)’

(W“)* = (—1)6(“)7'[“—1, a)w“a) = Ww/w), a)(lﬁ“)*a) — (_1)@(/1)7.[(»/1_150'

Proof. The first equation in (3.6.1) follows from the definition of 9# and 9,,, because 07 =
—0d,. The second equation in (3.6.1) followsfrom the first equation and the first of the nine
formulas.
To provethenineformulas, let (t,, . .., ;) beaminimal presentation of .. Consider the
equation of Definition (3.5):
A =9t... 90, (1)

Apply the canonical involution o +— «*. The canonical involution reverses the order of the
factorsin a product, and (9”)* = —a, by thefirst equation of (DIFF.2.4.5). Hence, from
Equation (1) we obtain the equation,

@  =(=1)"9;, - 9. (2

As the reversed sequence (t;,, ..., 7;;) isaminimal presentation of 11, it followsthat the
right side (2) isequal to (—1)*?"9 1. Hence thefirst of the nine formulas holds.

To provethe second of the nineformulas, apply the conjugation« — waw to Equation (1).
Conjugation is a homomorphism, and wd”w = 9,_, by the first equation of (DIFF.2.4.4).
Hence from Equation (1) we obtain the equation,

a)a“a) - an_ll s 8n_ir. (3)

Asthe sequence (7,,—i, - - . , Tn—i,) iISaminimal presentation of wuw, it followsthat theright
sideof (3) isequal to 9. Hence the second of the nine formulas holds.

Clearly, the third of the nine formulas is consequence of the first two formulas. Finally,
the proofs of remaining two sets of three formulas are entirely analogous to the proof of the
first three formulas. 0

(3.7) Proposition. Let 1 and v be permutations. Then:

(1) 1 6() + €(v) = £(uv), then 949¥ = 91¥, hx? = phv and Yy = v,
(2) Ife(u) + £(v) > £(uv), then 3#9¥ = 0.



General difference operators 73

Proof. Let (7;;,..., ;) and (tj, ..., tj,) be minimal presentations of « and v. Then the
concatenated sequence (t;,, . . ., Ti,, Tj;, - - - , Tj,) ISapresentation of nv. Moreover, thelatter
presentationisminimal if and only if £(u) +£(v) = €(uv). Henceassertion (1) followsfrom
the Definition (3.5).

If the concatenated sequenceisnot minimal, then, by Proposition (SY M.2.6), itisCoxeter—
Mooreeguivalenttoasequence (tx,, . . . , T, ) Wheretwo consecutivek;’sareequal. Itfollows
from Lemma (3.4) that 89" is equal to the product 3% - . - 9% . The latter product vanishes
by the second equation of Lemma (DIFF.2.8). Therefore assertion (2) holds. 0

(3.8) Coroallary. For all « in &(A) we have that

99 = 9Ur g = pHar e,

—1 -1 -1 -1
7Tw — n-wﬂ 7TM — JTMJTM w’ ww — wwﬂ wll — wﬂwﬂ w.

Proof. It follows from assertions (5) and (6) in Lemma (SYM.1.3) that £(w) = £(wp™1) +
£(1). Hence the formulas of the Corollary follow from the first assertion of the Proposition.
0

(3.9) Lemma. For amulti index K = (k1, ..., k), let R[A]ck denote the R-submodule of
R[A] generated by themonomialsa”’ for J C K. Assumethat |k,+1—k,| < 1for all p < n.
Then the R-submodule R[A] -k isinvariant under the operators a# for all permutations u
of G(A).

Proof. The operator 0* isacomposition of the smple difference operatorsd”. Thereforewe
may assumethat 1 = 1, for some p < n. It sufficesto prove for agiven multi index J C K
that the value 87 (a”) is an R-linear combination of monomiasa’ for I ¢ K. Moreover,
since 97 is linear with respect to polynomials that do not depend on the variables a;, and
ap+1, we may assume that a,, and a,,41 are the only letters of the alphabet, that is, we may
assumethatn = 2and u = t1. Then K = (k1, k2), and J = (J1, j2) C K, and we consider
the monomiasa’ = aiaz? occurring in the value 31 (a”).

Let k£ denote the larger of k1 and k2, and let j denote the larger of j; and j». By the
hypothesison K, we havethat (k — 1, k — 1) C K, and by the assumption on J we have that
Jj <k.Hence(j —1,j —1) C K. Therefore, to prove the assertion, it sufficesto prove for
any of the monomialsa’ occurringin d(a’)that 1 c (j —1, j — 1).

Clearly, the expansion of 81(a”) is given by the formula,

Ly aray —az'ay ! i i
Jd-a’ = . —:I:Zalaz,

01,12

wherethe sum isover al pairs I = (i1, i2) suchthat i1 and ip arelessthan or equal to j — 1,
andii +i» = j1+ jo» — 1. Inparticular, for each of the occurring monomialsa’ we have that
Ic(j—1,j—1),asasserted.

Thus we have proved the Lemma. 0
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(3.10) Lemma. Giveninvertiblerational functions f1, ..., f, and g1, ..., g, of R(A). De-
fineoperatorsé; fori = 1,...,ninEg(A)by& = fi(1—ti)g;. Then, for every permutation
win &(A) and every minimal presentation (z;,, . .., t;,) of u We have an expansion of oper-
ators,
G & =huu+ Y hyy,
L(v)<€(u)

with rational functions,,. Moreover, the coefficient 2, to « inthe expansion isan invertible
functionin R(A).

As a consequence, each of thethree sets of operators, {9#}, {7#}, and {y/*} for uinS(A),
isan R(A)-basisfor thealgebra £g(A) of all operators.

Proof. Usetheruler-g = t(g)t intheagebra&r(A) to develop theexpressoné;, - -- & =

fir(A—7i)giy - -+ fi,(1—1;)gi, asan R(A)-linear combination of monomialsinty, ..., 7,.
Clearly, each occurringmonomial isof theformz;, - - - 7j, where(ji, . .., j;) isasubsequence
of (i1,...,ir). Inparticular, the product t;, - - - 7;, iseither equal to w or it haslength strictly

lessthan ¢(w). [Infact, the product islessthan or equal to i inthe Bruhat—Ehresman order by
Proposition (SYM.3.7?).] Moreover, the coefficient /2, isequal to thesign (—1)" multiplied
by a product of functions obtained by applying suitable permutationsto the f; and g;. Hence
h, isinvertiblein R(A). Thus the first two assertions of the Lemma holds.

Since the operators 0%, 7* and y* areall of theform§;, - - - & for particular choices of
invertible f; and g;, it followsfrom the expansion, by induction on the length, that every per-
mutation u belongstothe R (A)-modul egenerated by any of these sets of operators. However,
the R(A)-module of operators can be identified with the twisted group algebra R(A)[S(A)]
and so the permutations i in G (A) formabasisfor £(A) asan R(A)—module. Moreover, the
number of operatorsin any of the three setsis equal to the number of permutations. Hence
any of the three setsisa basis. 0

(3.11) Note. Wewill provein Section (SCHUB.2.4) that theoperatorso* for 1 in S(A) form
abasisfor the algebra of operators £g[ A] as amodule over thering of polynomials R[ A].

(3.12) Lemma. Let u be a permutation in G(A) and let g be a rational function which is
symmetricinthelettersao, . . ., a,. Thenthederivativeo* (g) vanishesunlessy = 7,_1--- 11
for someg = 1,...,n. Moreover, the derivative 391 - .. 81(g) is symmetric in the letters
ai,...,ag andinthelettersa,y1, ..., ax.

Proof. Clearly, afunction f issymmetricif andonly if 97(f) =0forp=1,...,n — 1.
Consider, forg = 1, ..., n, the permutation o, := t,—1- - - 11. [Thus o, istheidentity if
g = landtheg-cycle(q,...,2,1) forg > 1] Then,forp=1,...,n —1land p # q — 1,
we have the equation,
04Tp if p>gq,
Tp0g = | Og+1 if p=gq,
ogtp+1 ifp<qg—1
The equations are easily verified. For instance, the equation t,0, = 0,1 followsfrom the
definition of the o, and the remaining equations follow from the Coxeter—-Moore relations.
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Consider aminimal presentation of . If u isnot of the form o, then there is aunique
q > 1 so that the presentation is of the form,

n = tpl e tpstq—l' <. T1,

where p; # g. Since the presentation isminimal, it followsthat p; # g — 1. Hence, by the
equations proved above, there is a second minimal presentation of theform u = 7, - - - 7,
where g, > 2. Therefore, since g is symmetric in the letters ap, . . ., a,, it follows that
9"(g) = 0.

To provethe second assertion of theLemma, let 4 := 9% (g). Consider,forp =1,...,n,
the derivative 37 (h). For p = g — 1 we have that 97~1(h) = 0, since 97~ 197-1 = 0. For
p < q — 1, it follows from the equations above that 37 (h) = 9% 37 *1(g), and 8711(g) = 0

since g issymmetricinay, ...,a,. Thusdo?(h) = 0forp =1,...,9g — 1, and hence i is
symmetricinthelettersas, ..., a,. Similarly,if p > ¢, itfollowsthat 97 (h) = 9°49”(g) =
0, and hence i issymmetricin thelettersa, 41, . . ., an. 0

(3.13) Definition. Every operator « in Eg[ A] acts naturally on the power seriesring R[[A]].
Indeed, @ isan R(A)-linear combination of permutationso. Hence, if 2 € R[ A] isacommon
denominator for the coefficients, then thereisan expansion, « = ) _ (hy/h)o wherethe i,
arepolynomials. Let k bethe order of the polynomial /. If f isapolynomial of order at |east
d,thenthesum > h,o(f) hasorder at least d. Hencethe value «( f), which is a obtained
by dividing the sum by %, isapolynomial of order at least d — k.

It followsthat if f = > f; isapower seriesin R[[A]], then thereisawell defined series,

a(f) = alf).

In particular, the difference operators 9* act on the power seriesring R[[ A]]. Note that the
operator 0 is homogeneous and lowers the degree by d = ¢(w), that is, the homogeneous
term of degreei in 9 (f) isequa to 9" ( fi+q)-

Clearly, the Leibnitz formulaof (DIFF.2.7) holdsfor power series f, g in R[[A]].

(3.14) Example. For 1 < g < n,wehavein R(A) and in R[[A]] the equations,

1 1
8q<1— aq) - (1—ag)(1—ag+1)’ (3.141)

1 1
8q"'81<1—a1) T d—a) - A—agsD) (314.2)

Indeed, the first formula is obtained by applying the Leibnitz rule to the equation (1 —
aq) (1 — a,) = 1, and the second formulafollows by induction on g from the first.

(3.15) Example. For a polynomial g depending only on the first letter a1, it follows from
(3.12) that the derivatives 9,,(g) vanishunlessu = 7,_1--- 1 forsomeqg = 1,...,n. Fora
polynomia g of the form,

g:=(a1—b1)--- (a1 —bp), (3.15.1)
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aformulafor the derivative 9,1 - - - 91(g) may be obtained as follows:

Assumefirstthat theb; arevariables, thatis, let B = {b1, ..., b, } beasecond a phabet with
m letters, and replacetheground ringwith the polynomia ring R[ B]. Form,forg =1, ...,n,
the power seriesin R[[ A, B]],

(1-by)---(1—bw)

S = S(ay,...,a,; B) == , 3.15.2

(1 q ) (1—611)---(1—Clq) ( )

and denote by sy(ax, . . ., ay; B) the homogeneous term of degreed in S@. Then
dg—1---01(8) = Sm—g+1(ax, ..., aq; B). (3.15.3)

Indeed, the numerator in S is the polynomial,
1-b1)---A=bp)=1l-er+---+ (=D"em,
wheree; ;= ¢;(B). Hence, for ¢ = 1, we have the equation,
SV=@l@-er+- -+ (=D"en)A+ar+a?+---).

It follows that the homogeneous term of degreed in SV, for d > m, isthe polynomial,

af —era{ t 4+ (=D "ena{ " =ai "(a1—b1)- - (a1 — by).

In particular, for d = m, it follows that g is the homogeneous term of degree m in SW. It
followsfrom (3.14.2) that
dg—1--- 815(1) — S@

Therefore, by taking the homogeneous terms of degree m — g + 1, we obtain the asserted
formula(3.15.3).

In (3.15.3), the b; are assumed to be variables. The formulafor the general case when the
b; arearbitrary elementsof R isobtained by specializing. Note however, that in the collection
of the homogeneoustermsinthe S, the b; haveto be considered as homogeneous of degree
1

For instance, let b1 = - -- = b,, = 0. Then g = @ and the power series S@ of (3.15.2)
specializesto the series,

. 1
S Q-an---(1-ay)

S(ai, ...,aq)

It followsthat
aq—l T 81(61T) = Sm—q—l—l(al, ceey aq)

isthe (m — g + 1)’th complete symmetric polynomial inthe lettersay, . .. , a4 .



4. Thebilinear form.

(4.1) Definition. Define a bilinear form on the algebra R(A) of rational functions by the
following equation:

=Y o= ¥ @oorw). (4.1.1)
oeG(A) oeG(A)
By Definition (DIFF.2.3) of the symmetrization operator §4, the two sums are equal, and
equal to thevalue 84 ( fg). Moreover, by Theorem (DIFF.3.3) and Definition (DIFF.3.5), the
following equation holds:
(f.g) =3”(fg). (412

The bilinear formis called the inner product on R(A).

(4.2) Lemma. Thevaluesof theinner product (4.1) are symmetric functionsin R(A). More-
over, theinner product issymmetric and Sym (A)-bilinear. Furthermore, if « isany operator
inEg(A), then

(@(f), 8) = (f.a"(g)), (4.2.1)

where o — o™ isthe canonical involution of (DIFF.2.1). In particular, for any permutation
uin &(A), we have that

(n(f).8) = Fanuw)(f.n"Hg) and (3"(f).8) = (£." (3). (422)
Finally, if f and g are polynomialsin R[A], then ( f, g) belongsto Sym [ A].

Proof. We have observed in (DIFF.2.3) the value (f, g) = 84 (fg) isasymmetric function.
Moreover, it is clear that the inner product is symmetricin f and g, and Sym, (A)-bilinear.

By additivity of theinner product it sufficesto proveequation (4.2.1) when« isaproduct /
of afunctionzin R(A) andapermutation .« in & (A). Moreover, sincethecanonical involution
reverses the orders of the factorsin a product, it suffices to treat separately the two cases.
o = handa = u. Inthefirst case the equation is obvious: (hf, g) = 84(hfg) = (f, hg).
In the second case the equation is the first equation of (4.2.2), and it follows immediately by
rearranging the termsin second sumin (4.1.1).

By the second equation in (DIFF.3.6.1), we have that (3%)* = 3% . Hence the second
equation of (4.2.2) isaspecial case of the general equation (4.2.1).

The final assertion of the Lemmais aconsequence of the equation ( £, g) = 84 (fg), since
the symmetrization operator §4 belongsto £x[A], see Definition (DIFF.2.3). 0

(4.3) Note. Theinner product is non-degenerate, that is, if (f, g) = Ofor al g,then f = 0.
Indeed, it follows from Equation (4.4.1) that (f, g) is the result of evaluating the operator
Y .0f = > ,0(f)o onthefunction g/A. If theresult is O for all g, then the operator
is zero and consequently, by (DIFF.2.2), zero as an element in the twisted group algebra
R(A)[6(A)]. Hence f = 0.

We provein (SCHUB.2.4) that if (f, g) isapolynomial for all polynomials g, then f isa
polynomial.

77
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(4.4) Lemma. Let I and J be multi indices of sizen suchthat/ ¢ (n —1,...,1,0) and
JC(0,1,...,n—1). Thentheinner product (a’, a’) isequal to O unless all entriesin the
sequence I + J aredifferent. Inthe exceptional case, the sequence I + J isa permutation of
thesequence (0, 1, ...,n—1),and (a’, a’) isequal tothesignature of thelatter permutation.

Proof. By definition we havethat (a!,a”’) = 84 (a’+”/). Moreover, as observed in Theorem
(DIFF.3.3), we have that §4(aX) = AX/A. From the assumptions on I and J it follows
that al entries in the sequence I + J are non-negative integers between 0 and n — 1. The
assertion of the Lemma is a consequence, because AX is aternating in K and equal to A
whenK = (0,1,...,n—1). 0



5. The Mobiustransfor mation.
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Schubert polynomials

1. Double Schubert polynomials.

(1.2) Setup. Fix anaphabet A = {as, ..., a,} withn > Oletters, and consider the algebras
R[A] of polynomialsand R(A) of rational functionsin the letters of A. For amulti index 7
of size n, we denote by R[A]<; the R-module of polynomials generated by the monomials
a’ for J C I. It followsfrom Lemma (DIFF.3.9) that the two R-modules, R[A]co.1...n—1
and R[A]cn—1,...,1,0, e invariant under the operators 0 for u € &(A). Recall that 9, =
(sign)or.

Fixaset B = (b1,...,b,) of n elementsin the ground ring R. If f isapolynomial in
R[A], wedenote by f(B) the value obtained by specializing the letters of A to the elements
of B.

Consider the following two polynomialsin R[ A]:

xB= T] (@y—by) ad YZ:=T](a,—by. (1.1.1)

ptq=n p>q

Notethat Y2 = w(X5).
When the ground ring isaring of polynomiasover an alphabet B withthern lettersb;, we
write X (A, B) := XB and Y (A, B) .= Y5.

(1.2) Lemma. The following assertions hold:

(1) Thevalue Y 2(B) isequal to A(B). Moreover, for a permutation i # 1in S(A),
thevalue (Y 2)(B) isequal to 0.

(2) The polynomials 3 (Y 8) and 3,,(X ) are equal to 1. Moreover, for a permutation
n# oin&(A), thevalued, (X8)(B) isequal to 0.

(3) If fisapolynomial in R[A]c,—1....1.0, then

(Y, f) = f(B).

Proof. In (3) we may, by linearity of the inner product, assume that f isamonomial a’ for
I € (n—1,...,1,0) inwhich case the equation asserts that (Y 2, a’) = b!. It sufficesto
provethelatter equation and the equationsof (1) and (2) in the special case where the ground
ringisapolynomial ring R[ B] over an aphabet B withn letters. Indeed, if the equationshold
in the specia case, then the equations in the general case follow by speciaizing the letters of
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B to the given sequence of elementsin R. In the polynomial ring R[ B], the Vandermonde
determinant A (B) isnot azero divisor. Therefore, in the remaining part of the proof we may
assume that the value A(B) isanot azero divisor in R.

Consider theassertionsof (1). Itisobviousfromthedefinition (1.1.1) of Y 2 that Y 3(B) =
A(B). Thepolynomial n (Y 8) for apermutation . isthe product of thefactorsu(a,) — b, for
p > q. Assumethat u # 1. Then there exist indices p > ¢ such that p(a,) = a,. Clearly,
the corresponding factor ((a,) — b, specializes to 0, and consequently (Y By(B) = 0.
Hence the assertions of (1) have been proved.

Consider thefirst assertion of (2). Theoperator 3 isthesymmetrization operator 94 = §4.
Hence 9® = (Sgnw)d®w = d,w. As XB = w(YB), it follows that 3,(X8) = 8°(YB).
Henceit sufficesto provethat 9 (Y %) = 1. Let E := (0, 1,...,n—1). Clearly, by expanding
the product defining Y 2 we obtain an R-linear combination of monomidsa’ where J C E,
and the coefficient of « £ isequal to 1. The values of the operator 3 = 34 on the monomials
a’ for J € E were determined in Theorem (DIFF.3.3). It followsthat (Y 8) = 1.

To prove the second assertion of (2), assume that © # w. It follows from Lemma
(DIFF.3.10) that thereis an expansion of operators,

au == Z hvv,
L)=t(w)

withrational functionsh,,. Sinceu # w, itfollowsthat all permutationsv intheexpansionare
differentfromw. Clearly, thedenominatorsintherational functionsh, areproductsof factors
of theforma, — a, for p # q. Therefore, when N issufficiently big, the operator AV 9, is
an R[ A]-linear combination of permutationsv # w. It follows from part (1) that if v # w,
then v(X8)(B) = va(Y?)(B) = 0. Consequently, when the operator AN 3, is applied to
X8 and A is specialized to B, we obtain the equation AV (B)d,,(X8)(B) = 0. Since A(B)
is assumed to be a non-zero divisor, the latter equation implies that BM(XB)(B) = 0. Hence
the assertions of (2) have been proved.

Consider assertion (3). The polynomial Y2 is an R-linear combination of monomials
a’,whereJ € (0,1,...,n—1),and f isan R-linear combination of monomiasa’, where
I € (n—1,...1,0). Fromthelatter conditionson 7 and J, itfollowsfrom Lemma(DIFF.4.4)
that theinner product (a”, a’) iseither 0 or +1. Asaconsequence, theinner product (Y 2, £)
belongsto R.

On the other hand, from the definition of the inner product we obtain the equation,

AYE fy= ) (dgnwu? f).

nes(A)

Speciaize A to B inthelatter equation. On the left hand side, the first factor A specializesto
A(B) and the second factor isleft unchanged since it belongsto R. On the right hand side,
by (1), theterms u(Y 2 f) = w(YB)u(f) corresponding to i # 1 specialize to 0 and the
term corresponding to «© = 1 specializesto A(B) f(B). Hence the specialization yields the
following equation:

A(B)(YE, f) = A(B) f(B).
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As A(B) isassumed to be anon-zero divisor in R, the latter equation impliesthe equation of
Assertion (3).
Hence all assertions of the Lemma have been proved. 0

(1.3) Definition. Inthesetup of (1.1), defineafamily of ponnomiaIsXﬁ indexed by permu-
tations . in &(A), by the equation,

XF=0,1,x"). (1.3.1)

When the ground ring is of the form R[B], where B is a second alphabet with n |etters, the
resulting polynomials are called double Schubert polynomials, and they are often denoted
X, (A, B). The double Schubert polynomials belong to the ring of polynomias R[ A, B].

It will be convenient to define an auxiliary family of polynomials,

Y2 =0,1Y"). (1.3.2)

By Lemma (DIFF.3.6) we have that wd,w = (Sgn )9, ue- Therefore the two families are
related by the equation,
Y2 = (dgnwao(xt,). (1.3.3)

Clearly, X3 = X8 and Y = Y 5. It followsfrom Lemma (1.2)(2) that X# = v = 1.

(1.4) Remark. Notethefollowing rulefor the calculation of X 5 . represent . asthe sequence
of indices (i1 ... iy) where u(ap) = a;,. Rearrange by simple transpositions the elements
in sequence so that the sequence becomes strictly decreasing, that is, solve the equation
JTpy - - - Tp, = o With aminimal number r. Then X2 =), --- 8, (X?).

(1.5) Example. For n = 3 we obtain, omitting the superscript B, thefollowing polynomials:

(32]) = o, X321 = X = (a1 — b1)(a1 — bp)(az2 — by),
Bl2)12 = o, X312 = 02X = (a1 — b1)(a1 — b2),
(23) 11 = o, X231 = 01X = (a1 — b1)(a2 — b1),

132)1112 = w, X132 = 0102X = a1 — b1 + a2 — by,
(213) 1211 = w, X213 = 0201 X = a1 — by,
(123) 121112 = w, X123 = 020102X = 1.

(1.6) Lemma. The polynomial Xﬁ belongsto the R-module R[A]c,—1....1.0. ItSdegreeis
degree is equal to £(n). Moreover, the polynomial X f isequal to 1, and if © # 1, then

the value XE(B) isequal to 0. Finally, if x and v are any permutationsin &G(A), then the
following equation holds:

B : _ -1
8U(X5) _ { X -1 if€(n) = €(uv™) + £(v),

) (1.6.2)
0 otherwise.
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Proof. It is obvious from the definition that the polynomial X 2 belongs to the submodule
R[A]lcp—1....1.0. Asnotedin (1.1), the submoduleisinvariant under the operators d,. There-
fore, the first assertion of the Lemma holds.

The polynomia X2 has degree equal to ¢(w) and the difference operator 3, lowers the
degree by ¢(v). Therefore the degree of Xﬁ isat most equal to £(w) — £(u tw) = L(w). It
follows from the last equation of the Lemma, applied with v = 4, that 0, (X5) = X7 = 1.
Hence, when the last equation of the Lemma has been proved, it follows that aMX/f #0and
therefore, the degree of X2 isequal to £(u).

The equation XE(B) = 0 for u # 1 follows from the definition of X/’f and Lemma
(2.2)(2).

Consider finally Equation (1.6.1). By definition, the left hand side is equal to the result of
applying the operator 9,9,,-1,, to the polynomial X B By Proposition (DIFF.3.7), the latter
operator is equal to zero unless the following condition holds:

() + L tw) = o). (1.6.2)

When condition (1.6.2) holds, the operator isequal tod,, , -1,,, and consequently, when applied
to X & theresult isthepolynomial X 51)_1. Moreover, the conditionfor thefirst casein Equation

(1.6.1) is equivalent to the condition (1.6.2), as it follows from Lemma (SYM.1.3). Hence
the final equation of the Lemma holds. 0

(1.7) Theorem. The polynomials Xﬁ for permutations i in S(A) forma basis for thering
R[ A] of polynomials as a module over the subring Sym [ A] of symmetric polynomials, and
a basis for the ring R(A) of rational functions as a module over the subring Sym(A) of
symmetric functions. In the expansion of a function f in the latter basis, the coefficient to
X5 isgiven by theinner products,

(YE, f) = (0,-1(Y®), f) = (Y2, 9,.(f)). (17.2)
Moreover, if u and v are permutationsin G(A), then we have the equation,

1 ifu=v,

) (1.7.2)
0 otherwise

(v x%) = {

Finally, the polynomials Xﬁ form a basis for the R-module R[A]c,,—1....1,0 and, for every
polynomial f inthelatter module, the coefficient (1.7.1) of X 5 satisfies the equation,

(Y f) = 8u()(B), (17.3)
that is, we have the Newton interpolation formula,

f= Y wuhHBXE (1.7.4)

ne&(A)
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Proof. In(1.7.1), thefirst equation followsfrom thedefinition (1.3.2), and the second equation
holds, because the operators d,,-1 and 9, are adjoint with respect to the inner product by
Proposition (DIFF.4.2). Hence theinner productsin (1.7.1) are equal.

Let N bethe R-submodule N := R[A]c,—1....1.0 0f R[A]. If f belongs N, thenitfollows
from Lemma (1.2)(3) and the equations of (1.7.1) that (Y 2, f) = (Y%, 0, (f)) = 9. (/) (B).
Hence Equation (1.7.3) holds.

By Lemma (1.6) we can apply Equation (1.7.3) with f := X 5. Asaconsequence,

(Y, X0y =0, (X)) (B). (1.7.5)

Assume first that © = v. Then, by Lemma (1.6), the polynomia 9, (X2) isequa to 1. In
particular, the value on the right hand side of (1.7.5) isequal to 1. Assume next that « # v.
Then, again by Lemma (1.6), the polynomia 8, (X 2) iseither equal to 0 or it is of the form
XB witht # 1. Inthelatter case, thevalue X 8 (B) isequal to 0 by Lemma(1.6). Therefore,
for u # v, the value on theright side of (1.7.5) is equal to 0. Hence Equation (1.7.2) follows
from (1.7.5).

By a standard argument of linear algebra, the remaining assertions of the Theorem are
consequences of the equations (1.7.2). Indeed, let d = n! be the cardinality of G(A). Let
M denote the algebra of rational functions R(A) asamodule over thering S := Sym(A).
Define, for each of thed elementsv in &(A), an S-linear form X, on the module M:

Xo(f) = (Y2, £).

Now, the d elements X2 of the S-module M define an S-linear map X : ¢ — M, and the

d linear forms X, define an S-linear map X: M — $¢. The equation (1.7.2) asserts that
XX = 1. By Proposition (DIFF.1.3), the S-module M can beidentified with S¢ viathe basis
formed by thed monomiasa’ for I € (n — 1, ..., 1,0). Under the latter identification, the
linear maps X and X are d x d matrices. Consequently, the equation XX = 1 implies that
thematrix X isinvertible. Hence the polynomials X 5 forman S-basisfor M. Moreover, the

linear forms X, form the dual basis.
Clearly, in the expansion of arational function f of R(A) in terms of the basis Xﬁ, the

coefficient of Xﬁ is given by evaluation of the linear form )V(M on f. In other words, the
coefficient isgiven by the expressionsof (1.7.1). Hence we have proved the second assertion
of the Theorem.

By the same standard argument, applied to the ring of polynomials R[ A] asamodule over
the subring Sym[A], it follows that the polynomials X/’j form a Symy[A]-basisfor R[A].
Hence the first assertion of the Theorem has been proved.

Consider finally the R-module N. It contains the polynomials X 2, as noted in Lemma

(1.6). Moreover, on the module N the forms X, take values in R, by (1.7.3). Therefore,
again by the same standard argument, the polynomials X 5 form an R-basisfor N and, in

the expansion of a polynomial f of N, the coefficient to X 5 is given by the value (1.7.3).
Therefore, the interpolation formula of Newton holds. 0
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(1.8) Example. For 1 < p < n we have the equation,
Xe,(A,B)=a1+4-+ap,—b1— - —b,. (1.8.1)

The equation follows by applying the interpolation formulato the polynomial f on the right
hand side. Clearly, f(B) =0. If u # 1, thend,, f isequal to 0 unless u = 7, in which case
9z, (f) = L.

(1.9) Example. For 0 < p < n we have the following equation,
X+,..1; (A, B) = (a1 — b1)(a1 — b2) - - - (a1 — bp). (2.9.2)

Indeed, we may assume that the ground ring is a polynomial ring R[ B], and that b1, ..., by,
arethelettersof B. Denote by g the polynomial in R[ A, B] ontheright hand side of (1.9.1).

It follows from Example (DIFF.3.15) that 9, (¢) = O unless . is of the form z, - - - 73.
Moreover, 9, - - - 31(g) isthe (p — g)’th homogeneous term in the power seriesin R[[A, B]],

(1—-01)---(1=bp)
(1—a1)---(1—aq+1)'
If ¢ > p, then p — ¢ is negative, and the homogeneous term vanishes. If ¢ = p, then the
termisequal to 1. Assumethat ¢ < p. Then it followsthat the value 9, - - - 91(g)(B) isthe

(p — ¢g)’th homogeneous term in the series obtained from (1.9.2) by substituting a; := b;.
The series obtained is the polynomial,

(L —=bgy2)--- (1 =Dbp),

whichisof degree p — ¢ — 1. In particular, itsterm of degree p — ¢ vanishes.
Hence, the value 9, (g)(B) isequal to 1 for u = 7, - -- 71, and equal to zero otherwise.
Therefore, the asserted equation g = X¢,...; followsfrom (1.7.4).

S(ay,...,aq+1; B) = (2.9.2

(1.10) Note. The Newton interpolation in one variable. The monomia af, for p < n, is
obtained from the polynomial g of (1.9) by specializing thelettersof B to 0. The power series
(1.9.2) speciaizesto the series S(ax, ..., ag+1). It followsfrom (1.9) that 9,,(a]) vanishes
unless v isof theform ¢, - - - 71. Moreover,

aq te 81(61]1_7) =Sp—q (Cll, cee aq—l—l)

isthe (p — ¢)’th complete symmetric function in the lettersas, . . ., ag 1.

Now, let f be a polynomial in the variable a; only, and of degree at most n. Then, by
R-linearity of 9, it follows that 9, (f) vanishes unless the permutation 1 is of the form
uw=r1,---11forsomeq =0,...,n — 1. Therefore, for any sequence B of elementsin the
ground ring, we obtain from the Newton interpolation formula (1.7.4) and Equation (1.9.1)
the following formula,

n—1
f=) 0 01(f)(B)(a1—b1)-- (a1 —by). (110.1)
q=0



Double Schubert polynomials 87

(1.11) Remark. Assume that the groundringis R[B], where B = {b1, ..., b,} isasecond
alphabet. Then the polynomials X (A, B) and Y (A, B) can be expressed as multi Schur
functions. In fact, with thewords A, := a1 + --- +ap and B, = by + --- + b, for
p=1,...,n, wehavetheformulas,

st 21=3(A, 1 — B1,..., A1 — B,_1) = X(A, B) (1.11.1)
s Len=l A B, 1 ... Ap»— By, A1) = Y(A, B). (1.11.2)

Indeed, from the Factorizationformula(SCHUR.2.8), appliedwithr := n— 1tothe sequence
an—1, ... ,az,a; weobtain for the left sde of (1.11.1) the factorization,

sn—1(an — By—1) - - - s1(a2 — B1)so(a1) = l_[(ap —by),
pP>q

and, by the same formula, applied with r := n to the sequence a,, . .., a1, we obtain for the
left side of (1.11.2) the factorization,

sn—1(an — By—1) - - - s1(a2 — B1)so(a1) = l_[(ap —bg).
pP>q
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2. Simple Schubert polynomials.

(2.1) Definition. Wedenoteby X, and Y, the polynomials X and Y ? corresponding to the
sequence B = (0, ..., 0). We call the polynomials X, the Schubert polynomials.
By Definition (SCHUB.1.3) we have that X, = 9,,-1,X = Sgn(uw)w (Y,e), Wwhere X
and Y arethe monomials,
X = l_[ a; =a’i’_1---ag and Y := Ha,- :a?---a”‘l. (21.1)

n
i+j<n i>j

(2.2) Example. Forn = 3,itfollowsfromthecomputationin (SCHUB.1.5) that X 321 = afag,
X312 = a2, X231 = a1az, X132 = a1 + az, X213 = a1, and X123 = 1.

(2.3) Remark. Note that Theorem (SCHUB.1.7) applies to the specia sequence B =
(0,...,0). In particular, the Schubert polynomias X, for n in &(A) form a basis for
the algebra of rational functions R(A) as a module over the ring of symmetric functions
Symg (A), they form abasisfor the algebraof polynomials R[ A] asamodule over thering of
symmetric polynomials Symy[A], and they form an R-basisfor the R-submodule generated
by themonomiasa’ for/ c (n—1,...,1,0). Asitfollowsfromtheproofsof thefollowing
results, the basis of Schubert polynomials has extremely good properties with respect to the
general difference operators d,, and with respect to the inner product in R(A).

(2.4) Proposition. Thealgebra&g(A) of operatorson R(A) isthefull ring of endomorphisms
of R(A) asamoduleover thering of symmetric functionsSym(A). Smilarly, thesubalgebra
Er[A] isthe full ring of endomorphisms of R[A] as a module over the ring of symmetric
polynomials Symg[A]. Moreover, the general difference operators d,, for n in &(A) form
a basis of £x(A) as a module over R(A), and a basis for £g[A] as a module over R[A].
Furthermore, if f is a rational function in R(A) such that the inner product (g, f) isa
polynomial for every polynomial g in R[A], then f is a polynomial in R[A]. Finally, the
subring Er[A] of Eg(A) isinvariant under the canonical involution of (DIFF.2.1).

Proof. Let M denote the algebra of rational functions R(A) as amodule over thering S :=
Symg (A). The Schubert polynomials X, form an S-basis for M. Hence, if {)?M} denotes
the dual basis for the module of S-linear formson M, every S-linear endomorphism of M is
of theform f — >, X,.(f)h,, for rational functions /. in M. Therefore, to prove the first
assertion of the Proposition, it suffices to prove for every permutation u and every rational
function & that the map f +— h)v(M(f) belongs to the ring £z (A). Now, by the equation
(SCHUB.1.7.2), for the dual basis X, we have the equation,

X (f) = (Y. f).

Moreover, by Definition (DIFF.4.1) of the inner product, (Y., f) = §4(Y,.f). Hence the

map f — h)v(M(f) is the operator 7184-Y,, belonging to £g(A). Thus the first assertion of
the Proposition has been proved. The proof of the second assertion entirely similar.
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Consider the general differenceoperatorsad,,. It wasproved in Lemma(DIFF.3.10) that the
9, forman R(A)-basisfor £g(A). Hence, every operator o of £g(A) hasauniqueexpansion,

o= Z o0y,

nes(A)

with uniquely determined coefficients o, in R(A). If « € Er[A], then the coefficients «,
arepolynomials. Indeed, to provethat «, € R[A] wemay, by inductionon £(v), assume that
a, € R[A] for dl permutations v with £(1) < €(v). By subtracting from « the sum of the
o, 0, for £(u) < €(v), we may assume that o, = O for £(p) < €¢(v). By (SCHUB.1.6), if
() = £(v), then 9, (X,) = O, unless u = v; moreovey, if u = v, thend, (X,) = X1 =1
Therefore, since o, = 0 for u # v, it followsthat «(X,) = «,. Hence the coefficient «,, is
apolynomia. Thus the third assertion of the proposition holds.

Let f be arational functionin R(A) such that the inner product (g, f) is a polynomial
for every polynomia g in R[A]. Expand f in terms of the Schubert polynomias, f =
>, JuXu, where the coefficients f), are symmetric rational functions. Now, by Theorem
(SCHUB.1.7), thecoefficient f,, isequal totheinner product (Y,,, f), and hencethecoefficient
isapolynomial. Therefore, the function f isapolynomial.

Finally, thelast assertion of the Proposition followsfrom the expansion of an operator « in
termsof the d,,. Indeed, if« =} 9, wherethea,, arerational functionsin R(A), then
of =3, (0", By Lemma(DIFF.3.6), we havethat (9,,)* = 9,,-1. Asproved above, if
o belongsto Er[A] then the functions «,, are a polynomials, and hence it follows from the
expression for o™ that o™ belongsto Eg[ A].

Hence all assertions of the Proposition have been proved. 0

(2.5) The Cauchy Formula. Assumethat B and C are two sequences with n elementsin the
ground ring R. Then, for every permutation 1 in S(A) we have the equation of values,

xB(c) = (sign M)xg_l(B). (2.5.1)
Moreover, the expansion of X 5 in terms of the basis X ¢ is given by the formula,

B B C
X, = E XW_l(C)XU ) (2.5.2)
VEG(A)
v H+ew)=L(1)

Proof. By Newton's interpolation formula (SCHUB.1.7.3), the left side of (2.5.1) is equa
to (¥, X2). The polynomial Xg_l is, by definition, equal to 8,,(X¢). Hence, again
by Newton's interpolation formula, the right side of (2.5.1) is equal to (signu) (Y2, X©).
Consequently, the equation (2.5.1) is equivalent to the following equation:

(Y, X2) = (signu)(Yys,, X©). (2.5.3)
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On the right side, X© = w(Y©), and (Sgnw)Y2, = (Sgnw)w(Xf) by (SCHUB.13).
Moreover, it followsfrom Lemma (DIFF.4.2) that (w (f), w(g)) = (Sgnw)(f, g). Therefore
the right side of Equation (2.5.3) isequal to the left side. Hence Equation (2.5.1) holds.

To prove (2.5.2), we apply Newton'sinterpolation formula(SCHUB.1.7.4) to the function
f := X% and obtain the equation,

xP= > axhHoxS.
veEG(A)

It followsfrom Proposition (SCHUB.1.6) that the polynomial 9, (Xﬁ) isequal to zero unless
the condition for the summation index in (2.5.1) is satisfied; moreover, if the latter condition
is satisfied, then the polynomial is equal to X 51)_1. Therefore Equation (2.5.2) holds. 0

(2.6) Corollary. Let B beaset of n elementsin R. Then the following formula holds:

XB= 3" (€gnw)X,(B)X 0. (2.6.1)
neG(4)

Proof. Apply the Cauchy formula (2.5.2) with u := w and C := (0,...,0). Inthe sum
on the right hand side, the condition £(wv 1) + £(v) = £(w) on the summation index v is
satisfied for al permutations v, by (SYM.1.3). Hence we obtain the equation,

x5 = Z x5 _(0X,. (2.6.2)
veS(A)

In the terms of the sum on the right hand side, let v = uw and form the summation over .
By Equation (2.5.1), we have that X 5_1(0) = (sign )X, (B). Therefore, Equation (2.6.1)
followsfrom Equation (2.6.2). 0

(2.7) Example. Let n = 3. Theright side of (2.6.1) isthe sum,

X»(A)X1(B) — szrl(A)Xrl(B) - Xrlrzxrz(B)
+ X‘L’Z(A)XTJ_TZ(B) + Xrl(A)szrl(B) - Xl(A)Xw(B)
= aZaz — a1az(by + b2) — aZb1 + a1b? + (a1 + az2)bibz — biby.

The formulais the reduction of this sum to

X (A, B) = (a1 — b1)(a1 — b2)(a2 — b1).
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1. Partially symmetric functions.

(1.2) Setup. Assumein this chapter that the alphabet A is partitioned, that is, assume that A
istheunionof aset A = (A1]...|A,) of r digoint alphabets A; such that, for al i < j, if
ac A;andb € Aj, that a < b. Equivalently, the partitioning may be given by listing, for
i=1,...,r —1 theindex p; of thelast |etter in A;:

A A A,

A=lay,...,ap,,ap;41,...,0py, ... ,Ap,_141,...,0n}.

The Young subgroup G(A) = &(A1]...|A,) corresponding to A is the subgroup of
permutationsin S (A) that leavesevery A; invariant. The group & (A;) will beidentified with
the subgroup of G(A) consisting of the permutations that are equal to the identity on letters
outside A;. Clearly, any permutation © in G(A) isaproduct u = w1 - - -, With uniquely
determined factors u; € G(A;). Moreover, as different factors ; commute, it follows that
the Young subgroup is the product,

G(A) =6(A1) x--- x G(A)).

The Young group &(A) is generated by the smple transpositions t,, for p different from the
Pi-

Denote by T(A) the subset of G(A) consisting of the permutationsthat are increasing on
every interval A;. The subset T(A) is a system of representatives for the set S(A)/S(A)
of left cosets modulo the Young group since, obviously, for every permutation i there are
uniquepermutations ; iNn&(A;) suchthat s - - - - isincreasingoneach interval A;. Note
asothatif o € T(A) andv € G(A), then we have the equation,

L(ov) =L(o) + £(v). (1.1.1)
Note that the smple transpositions t,,, belong to T(A).

Clearly, the Young subgroup G(A) hasorder ny! - - - n,!, wheren; isthe number of letters
in the subalphabet A;. It follows that the subset ¥(A) is of order equal to the multinomial

coefficient,
n n!
ni,....n,J) ngl---n0’
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Denote by v = w4 the order reversing permutation of A and by w; = w4, the order
reversing permutation of A;. It isobvious that a permutation o of G(A) belongsto T(A)
if and only if wow1---w, belongs to X(A). Clearly, the permutation wa defined by the
equation,

W= WAL O,

or equivaently, wa := ww1 - - - w,, belongsto T(A). The map w defines an order reversing
bijection A; — wA; and wa definesan order preserving bijection A; — wA;.

Note that there is a second partitioning wA = (wA,|...|wA1) of A, andthat S(wA) =
oS (A)w~ L. Moreover, a permutation o of G(A) belongs to T(wA) if and only if wow
belongsto T(A).

(1.2) Definition. A rational function of R(A) invariant under the Young subgroup S(A)
will be called partially symmetric. We denote by Sym (A) and Symy[A] the subal gebras of
R(A) of functions and polynomialsrespectively that are partially symmetric.

Clearly, afunction f is partially symmetric if and only if z,(f) = f for al p different
fromthe p;.

(1.3) Lemma. A function f of R(A) is partially symmetric if and only if 9,,(f) = O for
all p different fromthe p;. Inaddition, if f is partially symmetric, then a,,(f) = O for all
permutations p outside the subset T(A).

Proof. Since (a, — ap+1)9,(f) = f — t,(f), we have that 9,(f) = 0 if and only if
7,(f) = f. Thefirst assertion is aconsegquence, because the Young group &(A) isgenerated
by the transpositions 7, for p different fromthe p;.

To provethe second assertion, assumethat f ispartially symmetric. Thenclearly 9, (f) =
Oforevery v # 1in &(A). Consider for any permutation u the factorization © = o v where
o € X(A)andv € &(A). By Proposition (DIFF.3.7), it followsfrom the equality (1.1.1) that
9, = 3,9y. If u doesnot belong to T(A), then v # 1, and hence d,,(f) = 353, (f) = 0.

(1.4) Lemma. Let o be a permutation in G(A). Then, for any of the three polynomials
Xo, Yoo, @and Ysq,.., defined in (SCHUB.2.1), we have that the polynomial is partially
symmetric if and only if o belongsto T(A).

Proof. Consider first the Schubert polynomial X,. By Lemma (SCHUB.1.6) we have that
ds(Xs) = 1. Hence it follows from Lemma (1.3) that if X, is partially symmetric, then o
belongsto ¥(A). Assume conversely that o belongsto T(A). To provethat X, is partially
symmetric, we have to show that 9, X, = O for p different from the p;. The polynomial
dpXo = 0, X, is determined by Lemma (SCHUB.1.6). If p is different from the p;, then,
by (1.1.1), £(otp) = £(0) + £(1p). In particular, E(Grp_l) # L(0) — £(tp). Therefore, it
follows from Lemma (SCHUB.1.6) that 3,,(X,) = 0. Hence X, is partially symmetric.

By (SCHUB.1.3.3), we have that Y,, = Sign(wo)w(X,ee). Hence Y, is partialy
symmetric if and only if w(X,s) ispartially symmetric. Moreover, w (X yo0) IS partialy
symmetric if and only if X, iSinvariant under the conjugate Young group oS (A)w 1 =
S(wA). So, by the assertion for the Schubert polynomials X ,, we have that Y, is partialy
symmetric, if and only if wow € T(wA), that is, if andonly o € T(A).
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Finally, the assertion about the polynomials Yy, ..., followsfrom the assertion about the
polynomiasY,,, sinceo belongsto T(A) if and only if wow1 - - - w, belongsto T(A). O

(1.5) Proposition. The Schubert polynomials X, for o € ¥(A) forma basisfor the algebra
Symg (A) of partially symmetric functions as a module of the ring Symy(A) of symmetric
functions, and a basis for the algebra Sym;[A] of partially symmetric polynomials as a
module over the ring Symy[A] of symmetric polynomials.

Proof. By Theorem (SCHUB.1.7), the Schubert polynomials X, for u in &(A) form a
Symg (A)-basis for R(A). Moreover, in the expansion of a function f in the basis the
coefficient to X, is equal to the inner product,

(¥, 3, (f)) (15.1)

The monomias X, for o in T(A) are partially symmetric by Lemma (1.4). Therefore, to
prove the assertion of the Proposition, it suffices to prove that if f is partially symmetric
and . does not belong to T(A), then the inner product (1.5.1) vanishes. The latter assertion
followsimmediately from the second assertion of Lemma (1.3). I
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2. Partial symmetrization.

(2.1) Definition. Keep the setup of (PARTL.1). Consider the following specia polynomial:
A =] [I e-wo.
i>jbeA;, acA;

Clearly, the polynomia A(A) is partially symmetric. Moreover, we have the following
factorization of the Vandermonde determinant:

A(A) = AA)A(AL) - - A(A)). (2.1.1)
Define the partial symmetrization operator §” as the following sum,
1
=Y o—c. (2.1.2)
oeX(A) A(A)

By definition, we have that 8 isan operator, and assuch itisdefined on functions f of R(A),
and linear with respect to symmetric functions. Most often, we will consider values of 5§
on partially symmetric functions f. Assumethat f is partially symmetric. Then, clearly, to
obtainthevalues” ( f), thesummation over T(A) in (2.1.2) can be replaced by the summation
over any set of representatives for the set of left cosets S(A)/S(A). Inparticular, if uisa
given permutation of G(A), we may replace o inthetermsof (2.1.2) by o . It followsthat
thevalue 8 (f) isasymmetric function. Hence the partial symmetrization operator may be
viewed as a Symy(A)-linear map,

§A: Symp(A) — Symg(A).
(2.2) Proposition. The following equations of operatorshold: §4 = 3 and §4/ = 3, and
§4 = 9@AYPL. .. 9@ = sAgAL ... 547, (2.2.1)

Proof. Thefirst equations, 4 = 3¢ and §4i = 3, were proved in section (DIFF.3). Since
®w = wpaw] - oy, it follows from (1.1.1) and (DIFF.3.7) that the first equation in (2.2.1)
holds.

Recall that 64 is the total symmetrization operator, defined in (DIFF.2.3) as the sum
>, 1n-(1/A(A)) where the sum is over al permutations 1 in &(A), and 547 is defined
smilarly using A(A;) and permutations of G(A;). By Theorem (DIFF.3.3), we have that
84 = 9” and 641 = 9,

In the summation defining 84, each permutation . is uniquely aproduct u = oy . .. iy
whereo belongsto T (A) and u; belongsto G(A;). From thefactorization (2.1.1) we obtain
the equation of operators,

1 1 1 1
YA T Aam  aay T a@y
because A(A) and A(A;) for j # i aresymmetricwithrespect tothelettersof A;. Therefore,
from the definitions of 4 and 84/, we obtain the factorization,

§4 = shsAL.. 54, (2.2.2)
Hence the equations of (2.2.1) have been verified. 0
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(2.3) Corollary. Let n; bethe cardinality of A;, and let a% the monomial in R[A] defined
as the product of the letters of A; raised to the powers 0,1,...,n; — 1. Then, on the
subalgebra of partially symmetric functions, the operator 9“1 ¢r.q1 ... aEr isthe identity
and the following three operators are equal:

sA.gE1 ... Er sA

9

.o, (2.3.1)

Moreover, on the subalgebra, the val ues taken by the three operator s are symmetric functions,
and the values taken on partially symmetric polynomials are symmetric polynomials.

Proof. To prove the first assertion, note that 0“1 “r = 9®1... 9% and 9 commutes with
the operator a%i fori # j. Hence 9«1~ «r.qf1... gfr = g®1.qF1 ... §@r . 4Er Therefore, by
Theorem (DIFF.3.3), we have the equation of operators,

dorer. b gbr = AL g A (2.3.2)

Assume that f is a partially symmetric function. The operator 74 is linear with respect
to functions symmetric in the letters of A; and 74i(1) = 1. In particular, we have that
74i(f) = f. Therefore, by (2.3.2), we have the equation,

dor-ergbroqbr(py = £ (2.3.3)

Clearly, theequality of thethreeoperatorsin(2.3.1) on f followsfrom (2.3.3) and theequality
of the three operators of (2.2) on the function a1 - - - o f. Thus the first assertion of the
Corollary has been proved.

That the value §” (f) is asymmetric function was noted in (2.1). It follows also from the
equality 82 (f) = 84(afr-..afr f) since al values of the symmetrization operator §4 are
symmetric functions. From the same equality it followsthat 8 ( f) isapolynomia if f isa

polynomial.

Hence the assertions of the Corollary have been proved. 0
(2.4) Definition. Definefor partially symmetric functions f and g their partial inner product
asthe sum: p

A . 8 A
o = 2o ) =35 , 24.1
(f, &) 06;@0( sag) =99 (241)

Although the right hand side is defined for al rational functions f and g in R(A), we will
alwaysassume that f and g are partially symmetric. It followsfrom Corollary (2.3) that

(f, e = 8°A(fg). (242

(2.5) Lemma. The values of the partial inner product (2.4) are symmetric functions. More-
over, theinner product issymmetric, and Symy (A)-bilinear. Finally, if f and g are partially
symmetric polynomials, then their inner product ( f, gY* isa polynomial.

Proof. The assertions follow immediately from Corollary (2.3). 0
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(2.6) Proposition. Let f be a partially symmetric function. Then, in the expansion of f in
the basis of Schubert polynomials X, for o € T(A) (see Proposition (1.5)), the coefficient to
X, isequal to the partial inner product,

sign(w1 - - - 0r) Yowpw,s (2.6.1)

In particular, if o and t are permutationsin T (A), then

Slgn(a)]_ tee wr)<Y(7w1~~~w,, X)) = 0 otherwise (262)

Proof. By Proposition (1.5), to prove thefirst assertion, we have to verify, for o in T (A), the
equation,
SgN(@1 -+ ) Yowr -, [ = (Yo, f).

Equivalently, by definition of the inner products, we have to prove that

SgN(@1 - - - 0,)8" Vowyoo, f) = 84 (Yo f) . (2.6.3)

By (SCHUB.1.3), we have that Y;, = 9,,1Y. For u = ows - wr, we have, by (1.1) and
(DIFF.3.7), that 0,1 = 0y...v, 05 -1. ThUS

SgN(w1 - ©r) Yowpm, = SON(@1 - - @) depy.., 05 —1Y = 3¥L 1 Yy,

The operator 9“1 r commutes with multiplication by f since f is partialy symmetric.
Hence we obtain for the |eft side of (2.6.3) the expression,

(SAawl...wr (Y(y f),

which, by Proposition (2.2), isequal to theright side (2.6.3). Hence the first assertion of the
Proposition holds.
Clearly, the second assertion of the Proposition is a particular case of the first. 0

(2.7) Note. The total symmetrization operator §4 vanishes on the partially symmetric func-
tions except for the trivia partitioning A where each subinterval consists of a single letter.
Indeed, assumethat f ispartially symmetric. The operator 84 islinear with respect to func-
tions that are symmetric in the letters of A;. Therefore, by Proposition (2.2), we obtain the
equation,

34(f) = 8A(fot - 8"(D).

The operator §4¢ lowersthe degreeby £(w;). Hence§4i (1) = Ounless A; consistsof asingle
letter. Thus 84 (f) = 0 unlessthe partitioning is trivial.

Assume that the partitioning A is non-trivial. It followsin particular that the total inner
product of (DIFF.4.1) vanishes identically on the module of partially symmetric functions.
Notea sothat thepolynomial Y, in(2.6.2) isnot partially symmetric. Indeed, by Lemma(1.4),
the polynomial Y, ispartially symmetric if and only if wu isincreasing on each subinterval,
andif o € T(A), then wo isdecreasing on each A;.
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(2.8) Note. Lagrangeinterpolationin one variable. Let x be an additiona letter. Consider
the alphabet {ay, ..., a,, x} and the partitioning (A|x). Then A(Alx) = [[,(x —a) isa
polynomial of degree n, and the partial symmetrization operator lowers the degree by n.

Let f beapolynomia depending only on x, and of degree strictly lessthan n. Since 41
lowers the degree by n, it follows that partial symmetrization of f yields zero, that is, we
obtain the following equation:

> a(A(£|x)) =0.

oceT(Alx)

Consider the termsin the sum. The permutations o in ¥ (A|x) are determined by the value
o(x). Ifo(x) = x,then o = 1 and the corresponding term in the sum istherational function
f/A(Alx). If o(x) = b isaletter of A then, in the corresponding term, the numerator is
£ (b) and the denominator is given by

o(AA) =B -0 [[b-a).
a#b

Therefore, by separating in the equation the terms correspondingtooc = 1 and o # 1 and
multiplying by A(A|x) we obtain the equationin R(A)[x],

f=Y ro[] %, (28.1)

beA a#b

which isthe usua form of Lagrange interpolation.

Notethat (2.8.1) holdsif then lettersa; of A are replaced by any sequence of n elements
a; of R suchthat thedifferencesa, — oy, for p # g areinvertiblein R. Inparticular, replacing
R by R(A) we may apply the formulato the difference f := [[,(x — ta) — [[,(x — a) for
t € R. Then f(b) = (1—1t)b ]_[#b(b — ta) and we obtainthe formulain R(A)(x),

X —ta b b—ta
=1 1—¢ . 2.8.2
l:[x—a +( )Xb:x—bgb—a ( )




3. The Gysin formula.

(3.1) Setup. Assumein the setup of (1.1) that thereis given, for each i, an R-basis{ f; ;} for
the module Sym[ A;] of polynomialssymmetricinthelettersof A;. Then, clearly, the set of
al products f1, s, - - - fr.s. forman R-basis for the module Symy[A] of partially symmetric
polynomials. For instance, the set of all products of monomial symmetric polynomials,

mX1(Ay) - -m%r(A,),

where K; isaweakly decreasing multi index of size n; equal to the number of lettersin A;,
form abasis. Similarly, the set of all products of Schur polynomials,

s (A1) -5 (A,

where J; isasdtrictly increasing multi index of sizen;, form abasis.

(3.2) Example. Consider a partitioning A = (A1]A2) into two subal phabets. Then we have

the equation, A
[ @+by= ) s'(Ans’ (A2,

acA1,beAr JC|[n1]

wherethe sumis over subsets J of sizeny. Moregeneraly, for d > 0, we have the equation,

[To' I @+br=3 s s’ 4. (32.1)

beAr acA1,beAr JC|n]

where the sum is over subsets J of size n1, and J is the extension of J to a subset of size
n1+d of [n+d].

Indeed, the first equation is the equation (SYM.8.3.3) with A := A1 and B := A,. To
prove (3.2.1), extend A1 to an alphabet Ay = {a1, ..., an,, 41, ..., dq) Withny + d letters.
Apply thefirst equation to the partitioning (A1, A2) and substitute@; := Ofori =1,...,d.
It followsthat the |eft side of (3.2.1) is equal to the sum,

s1(A1,0,..., 0057 (A9),
IC[n+d]

over subsets I of size n1 + d. Sipce sT(A1,0,...,0) = 0if I isnot an extension and
sT(A1,0,...,0) = s’/ (Ay) if I = J,itfollowsthat equation (3.2.1) holds.

(3.3) Bott’'sFormula. Fori = 1,...,r, let J; be a strictly increasing multi index of size
equal to the number of letters of A. Then the following equation holds:

5A (le(Al) . sJ’(Ar)) — /19 (4), (33.1)
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where J; ... J, denotes the concatenated multi index.

Proof. With an abuse of notation, denote by a”i the monomial of R[A] wherethe g’th letter
of A; appearswith the exponent given by theg’th entry in J; and all other letters appear with
exponent zero.

In this notation, we have the equations,

sTU(AD) -+ s (Ay) = 84ty -+ 84 (a7r) = 84t .. A (a1, (3.3.2)

Indeed, by the definition in (SYM.6.9.2) or by Jacobi—Trudi’'s Formula (SYM.7.8.5) or
(SCHUR.1.11), we have the equation s’ (A) = §4(a’) for the Schur polynomia. Hence
the first equation in (3.3.2) holds. The polynomias a’i and §4i (a’i) depend only on the
letters of A;. Hence they are scalars with respect to the operator 84/ for j # i. Moreover,
a’t+r = g/1... q' Hencethe second equation in (3.3.2) holds.

By Proposition (2.2), the equation (3.3.1) follows by applying the operator §* to the
equation (3.3.2). 0

(3.4) Setup. Assume that the number r of subalphabetsis equal to 2. For convenience, set
B := Ajand C := Ap. Let m and k be the number of lettersin B and C, sothatn =m + k
isthe number of lettersof A. By definition of the partial inner product, theformula(3.3.1) is
equivaent to the following Gysin formula:

sT(B),s” OV =517 (A), (3.4.1)

where I and J are strictly increasing multi indices of sizesm and k.

(3.5) Corollary. Consider the set of Schubert polynomials X, and the set of polynomials
Yswi, TOr o € T(B|C). In addition, consider the set of Schur polynomials s’ (B) for all
strictly increasing multi indices I of size m with entries in the interval [n] = [m + k], and
the set of Schur polynomials s” (C) for all strictly increasing multi indices J of size k with
entriesin the same interval. Then any of the four setsis a basis for the algebra Sym [ B|C]
of partially symmetric polynomials as a module over its subring Symy[A] of symmetric
polynomials. Moreover, for Schur polynomials of the two bases we have that

(s'(B), s’ (C)* = dgn(1J), (35.1)
where the right hand side is equal to the signature of 7.J when the concatenated multi index
1J isa permutation of [m + k] and equal to zero otherwise.

Finally, for any partially symmetric polynomial f, the expansion of f in the basiss’(B)
is given by the formula,

f=" dgnHe*(fs'(©0)s'(B),
1
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where I denotes the complementary sequence of I with respect to the interval [m + £].
Smilarly, the expansion of f inthe basiss” (C) is given by the formula,

£=Y " don(J N8 (57 (B))s? (C).
J

Proof. The equation (3.5.1) follows from (3.4.1) because the Schur polynomia sX (A) is
aternatingin K and equal to 1 when K isthesequence (O, 1,...,n — 1).

Clearly, the four sets have the same number d of elements, namely d = (). That the X,
form a basis was proved in (1.5). The remaining assertions of the Corollary follow, by the
standard argument used in the proof of Theorem (SCHUB.1.7), from the equations (2.6.2) and
(3.5.1). Indeed, sincethe X, formabasiswith d elementsfor themodule M := Sym[B|C]
as the module over S, it follows from (3.5.1) that the d polynomiass’(B) form an S-basis
for M and the dual basisisgiven by the d linear forms,

£ sgn(ID(f, s (O

By the same argument, the s/ (C) form abasis, and by (2.6.2) the Y, form abasis.
Since (f, g)A = 8”(fg), the first expansion of f given in the Corollary follows from

the description of the basis dua to the s’ (B). The proof of the second expansion is entirely

similar. 0
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4. Hall-Littlewood polynomials.

(4.1) Setup. Fix anelement r € R. Consider the following polynomial of R[A]:
Ar(A) = [0~ ra).
a<b
wheretheproduct isover lettersa and b of A. Clearly, A;(A) hasthesamedegree, n(n—1)/2,
asthe Vandermonde determinant A(A). Fort = 1, wehavethat A1(A) = A(A). Fort = 0,
we havethat Ag(A) = af, where E = (0,1, ...,n — 1).
If apartitioning A = (A1]...|A,) isgiven, wewritea < b if a < b and a and b belong
to different subal phabets. In this notation, let
AA) =[]0 -1a).
akb
Clearly, A;(A) is a homogeneous partially symmetric polynomial. Moreover, we have the
factorization,
Ar(A) = Ar(A)A(A1) -+ - Ar(Ay). (4.11)
For r = 1, thefactorization is the factorization (2.1.1) of the Vandermonde determinant. For
t = 0, we havein thenotion of (2.3) that Ag(A) isthe monomial determined by the equation,

at = Ao(A)akt- .. afr. (4.1.2)

(4.2) Example. Consider a partitioning A = (B|x) where B = {b1, ..., by} isthe subal-
phabet consisting of thefirst m = n — 1 lettersof A and x = a,, isthe last |etter of A. By
definition, we havethat A;(B|x) = ]_[Z’zl(x — tby). Moreover, we have the equation,

m

5h ﬁ(x —thy =Y = 4.2.1)

. r—1
g=1 j=0
Indeed, by expanding the product, we obtain the equation,

Af(Blx) =Y (=)™ " ey j(B)x/.
=0

By (SYM.6.8.1), we have that e, ;(B) = so’---’fv---”"(B). Asx/ = s/ (x), it follows from
Bott’s Theorem that

8A(€m_j(B)Xj) — SO""’f""’m’j(B,X) — (_1)111—]

Therefore, partial symmetrization of A;(B|x) yieldsthesum in (4.2.1).

Note that A(B|x) = A1(B|x) is the polynomial appearing as the denominator in the
definition of $”. Asin(2.7), apermutationo inX(B|x) = F(ay, . .., an—1)a,) isdetermined
by theindex p = 1,...,n suchthat o (a,) = a,. Clearly, o (A;) = ]'[#p(ap —tay). Hence
theformula(4.2.1) is equivaent to the following:

anl—lap—taq:t”—l 42.2)
a, -1 -

a —
p=lq#p P
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(4.3) Lemma. Thetotal symmetrization of the polynomial A;(A) isthe constant given by the
equations,

84 (A/(A)) =]_[tt__11 = Y 1w (4.3.1)
i=1 neS(A)

Proof. The first equation in (4.3.1) is proved by induction on the number of n of letters
of A. The two sides of the equation reduce to 1 whenn = 1. If n > 1, then, in the
notation of Example (4.2), we may assume that the equation holds for the alphabet B. As
A:(A) = A/ (B|x)A(B) by (4.1) and 84 = 5”58 by Proposition (2.2), we have that

84 (A (A)) = 8288 (A(BIx) A(B)).

The polynomial A;(B|x) is symmetric in the letters of B and hence it commutes with the
operator §5. Moreover, 88 (A;(B)) is aconstant, given by the induction hypothesis. Hence
8B (A;(B)) commutes with the operator §4. Therefore, we obtain the equation,

84 (A (A)) = 88(A1(B)) 87 (A1 (BIx)).

By (4.2.1) and the induction hypothesis, the first equation of (4.3.1) is a conseguence.

To obtain the alternative expression for the symmetrization, given by the right side of
(4.3.1), recall the §4 (A, (A)) is the quotient obtained by dividing the following sum by the
Vandermonde determinant A(A):

> (dgnpmu(A(A)). (432)

ne&(A)

The sum (4.3.2) has the same degree, n(n — 1) /2, as the Vandermonde determinant A(A).
Therefore, to obtain the quotient, it sufficesto compare the smallest terms of the two polyno-
mials. For A(A), the smallest term is obtained as the product of the smallest terms of each
factor b — a for a < b. So the smallest termin A(A) is the monomial a£ obtained as the
product of the letters b for adl pairs (a, b) witha < b. Consider similarly the smallest term
in uw(A;(A)). Thefactorsof (A, (A)) are of thetwo forms,

b —td, —tb +d, witha' < b/,

where the factors of the first form correspond to factors b — ta of A;(A) such that (a, b)
is not an inversion for u, and the factors of the second form correspond to factors b — ta
such that (a, b) isaninversion for w. It followsthat the smallest termin u(A;(A)) isequal
to (—)*Wak . Hence the smallest term in the sum (4.3.2) is equal to the sum on the right
hand side of (4.3.1) multiplied by a£. Therefore, the alternative expression for 4 (A;(A))
holds. 0
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(4.4) Example. Consider, for apartially symmetricpolynomia f, the partia symmetrization,

b—ta
A (A (A)) = ol f . (4.4.2)
( ) UEZT(:A) ( al<_<[b b—a )

The partial symmetrization is a polynomial, symmetric in the letters of A, with coefficients
dependingont. Thefractionin(4.4.1) isthefraction A;(A)/A(A) of two homogeneouspoly-
nomialsof the same degree. Hence, if f ishomogeneous, then §4 ( fA; (A)) ishomogeneous
of the same degree.

Denote by ¢ the following polynomid in¢:

o(t) == ]_[]n_[ t;__ll = > 1w (4.4.2)

i=1j=1 HLeG(A)

where n; is the number of letters of A;. The second equation in (4.4.2) follows from the
second equation in (4.3.1) since any permutation © € S(A) isaproduct & = 1 - - - i With
uniquely determined factors u; € 6(A;) and £(u) = (1) + - - - + €(wr).

Then we have the equations,

Aram)= Y w(f[]5=2) =ewst (ram).  @43)
a<b

ne&(A)

Indeed, the first equation follows from the definition of the symmetrization operator §4. For
the operator 54 we have the factorization of §4 = §2841...84 of (2.2) and for A,(A)
we have the factorization A;(A) = A;(A)A;(A1) --- Ai(A,) of (4.1.1). The polynomial
fA(A) ispartially symmetric and hence it commutes with the operators §4i. Moreover, the
polynomia 847 (A;(A;)) is constant, and hence it commutes with any operator. Therefore,
from the two factorizations, we obtain the equation,

SA(FA(A)) = 841 (AL (A1) - - - 84 (AL(A))SA (f AL (A)).
Hence the equation 8 (£ A (A)) = ¢(1)84 (f A(A)) followsfrom (4.3.1).

(4.5) Definition. Let J be a dtrictly increasing multi index of size n. Associate with J
the partitioning A = (A1]...|A,) defined by the sequence p1 < --- < p,—1 of indices
p <nsuchthat j, +1 < j,41, cf. (1.1). Define the Hall-Littlewood symmetric polynomial
P’ (A; 1) asthe partiad symmetrization,

J . . A, J-FE _ J_EAI(A)
P/ (A:1) =6 (a A,(A))_UEZT(:A)O*(a —A(A)), (45.1)

whereE = (0,1, ...,n —1). Notethat the sequence J — E isweekly increasing; moreover,
by the choice of the p;, the monomial a’/ £ is partially symmetric. Hence, by Corollary
(2.3), the polynomia P’ (A; 1) isgiven as the total symmetrization,

J E1 .

E,
P’ (A: 1) =3A<“ @ a A,(A)) (45.2)

ak
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By the factorization (4.1.2) we have that

afr... gk A(A) b—ta
aE A’(A):AO(A):H b
akb
Henceit follows from (4.5.2) that
oo — sA(, T _ 4
P/(A:n) =5 (a H(l tb)>. (45.3)
akb
Moreover, by (4.4.3) we have the equation,
b—ta
0P (A1) =84 (@Ea ) = Y [L(aJ_El_[ - ) (4.5.4)
~ —da
UEG(A) a<kb

where ¢, (¢) isthe polynomial in ¢ defined by (4.4.2).
For t = 0 we have the equation, a1 - - - a®r Ag(A) = a*. Henceit follows from (4.5.2)
that P’ (A; 0) = 84(a”), thatis, P’ (A; 0) isthe Schur polynomial,

P’ (A;0) =57 (A). (4.5.5)
Fort = 1, we havethat A1(A) = A(A). Henceit followsfrom (4.5.1) that

Pl(A D) = Z o(al~E).

oeX(A)

By the choice of the p;, the monomials o (a’ ~F) are exactly the different monomials of the
form p(a’—F) for u € &(A). Hence P/ (A; 1) isthe monomia symmetric polynomial,

P (A: 1) =m’"E(A). (4.5.6)

(4.6) Proposition. In the basis of proper Schur polynomials, the expansion of the Hall—
Littlewood polynomial P’ (A; t) isof the form,

Pl (A = ay()s'(A), (4.6.1)
I>J
where the sumisover strictly increasing multi indices I of sizen such that || 7| = ||/ || and

i1+---+ig>j1+---+jsfors =1,...,n. Moreover, the coefficient o ; (¢) isequal to 1.

Proof. By (4.5.3), the polynomial P”(A;t) is obtained by applying the symmetrization
operator 54 to the product,
. J _.a
[MT:=a l_[ (1 tb).

akb
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Theproduct ITisapolynomial. Consider amonomial a X appearinginI1. ThenaX isobtained
from a”/ by multiplication by a finite number of different factorsa/b for a « b. Fix aset
l1 <--- <5 of s indices. Consider for monomials the sum of the exponents corresponding
to theindices!,. For aX, the sumisk; + --- + k;,. We claim that the following inequality
holds:

ki -k, > ji+-+ Js. (4.6.2)

Indeed, for a”, the sum of the exponentsis ji, + - - - + ji,. Now, if amonomial is multiplied
by afactor a/b for a <« b, then the sum of the exponentsis decreased by 1 if b isone of the
ai, and a isnot, it isincreased by 1 if a is one of the ai, and b isnot, and it is unchanged
otherwise. Therefore, when a” is multiplied by a number of different factors of the form
a/b,thesum ji, + - - - + ji, ismost decreased by the number of factorsa/b suchthat a < b
and b is one of the @, and a isnot. Clearly, the latter number of factorsis at most equa to
>_g=1Ug — q). Hence we have the inequality,

N
kiy 4+ 4k > gy g, — Z(lq —q). (4.6.3)
q=1

Since the [, were increasing, we havethat [, > g. Moreover, the multi index J was strictly
increasing. Hence, we have theinequalities,

Jiy =lg=jg—q forg=1,... 5. (4.6.49)

Clearly (4.6.2) followsfrom the inequalities (4.6.3) and (4.6.4).

It follows from (4.6.2) that the expansion of P/ (A; t) has the form asserted in (4.6.1).
Indeed, from the expansion of IT as an R-linear combination of monomialsa X we obtain the
expansion of P/ (A; t) asthe corresponding R-linear combination of §4 (aX) = sX (A). The
polynomial sX (A) is alternating in K. Hence a monomial aX contributes with zero if two
entriesin K areequal. If al entriesin K are different, then sX (A) is up to sign equal to the
proper Schur polynomial s’ (A), where I isthe strictly increasing permutation of K. Takeas
I, theindicessuch that {k;,, ..., ki } = {i1,...,is}. Thenitfollowsfrom (4.6.2) that

i1+ iy = it 4 s

Therefore, if s' (A) appearsin the expansion of P/ (A; 1), we havethat ||1]| > || J].

Obviously, the monomial a’ appears with coefficient 1 in the expansion of T1. Therefore,
to prove the last assertion of the Proposition, it suffices to prove that if the monomia aX
appears in the expansion of IT and K is apermutation of J, then K = J. By aninductive
argument, it sufficesto provethat if k, = j, forg =1,...,s — 1, thenk, = j;. Let!/ > s be
theindex such that k; = j;. Apply the reasoning leading to (4.6.2) with the set of /, equal to
{1,...,s — 1,1}. As(4.6.2) isan equality, it followsin particular that the last inequality in
(4.6.4) isanequdlity, thatis, j; —I = j; —s. Hencea; and a,; belong to the same subal phabet
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A;. Therefore, there are no factorsa /b wherea < b and b is one of the a;, and a is not.
Hence we obtain in stead of (4.6.3) theinequality,

kit +k—1t+ki =+t js-1+ i

Sincek, = j, forqg =1,...,s — 1, itfollowsfrom theinequality that k; > j;. Ask; = js
and/ > s, weconcludethat / = s.
Hence both assertions of the Proposition have been proved. 0

(4.7) Corollary. For any ¢ € R, the Hall-Littlewood polynomials P/ (A; 1), for all strictly
increasing multi indices J of size n, forman R-basis of Symy[A].

Proof. It follows from the Proposition that the matrix expressing the P’ (A; t) in terms of
the basis s’ (A) is alower triangular matrix with 1 in the diagonal. In particular, the matrix
isinvertible. Hencethe P/ (A; t) form abasis. 0

(4.8) Example. For d > 0 we have the equations,
Pd,d-l—l ..... d-l—il—l(A; t) — sd,d+1 ..... d-l—il—l(A) — en(A)d. (481)

Indeed, let J := (d,d +1,...,d +n—1). Then, in thenotation of (4.5), the corresponding
partitioning is the trivia partitioning A = (A) withr = 1. Asa’~F = (a1---a,)?, the
asserted equation followsfrom (4.5.1).

(4.9) Example. For d > 1 we have the equations,

L b—ta
PO,l,...,n—Z,n—1+d A1) = d 491
(A;1) ;b 15— (4.9.1)
a#b
_ Z (_t)n—l—jSO,1,...,f,...,n—1,d+j(A). (4.9.2)
n—d<j<n-—1

Indeed,let J := (0, 1,...,n—2,n—1+d). Then, inthenotation of (4.5), the corresponding
partitioning isA = (aa,...,as—1la,). Clearly, we have that a’/ =% = a? and A,(A) =

]_[q<n(an — tag). In (4.5.1), the permutations o are determined by the index p such that
o (an) = a,. Hencethefirst expression for P/ (A; t) isobtained from (4.5.1).

To obtain the second expression of P’ (A; 1), note that the monomials aX appearing in
the expansion of the product in (4.5.3) either have two equal exponents or appear asterms,

—1=jgt —(n—1-j 1= 0 n—2.d+]
(—t)” ]a (Clj+1"'an—1)an( J) — (_t)n ]Cl b n d—l—].

The second expression for P/ (A; r) isaconsequence, since 84 (aX) = sK (A).

It is customary to extend the notation P (A; r) to strictly increasing multi indices J of
arbitrary size in exactly the same way as the extension was defined in (SYM.6.13) for the
Schur polynomialss” (A). In this extended notation, the second expression is the following:

d-1
PUA ) =) (=nfstRd(A). (4.9.3)
k=0
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By replacing x by 1/T in the Lagrange interpolation formula (PARTL2.8.2), we obtain the
equationin R(A)[[T1]],

1—taT bT b—ta

=1 1—+¢ .

l:[l—aT o )Zb el §
a#b

Therefore, by (4.9.1), it follows that

1—taT
[[—=1+1-n) PlasnT? (4.9.4)
1—aT
acA d>1
(4.10) Example. Assumethatd > 1and1 < j < n — 1. Consider the polynomia P! (A; t)
for/ .=(@,...,j—1,j+d,...,n—1+d) . Inthenotation of (4.5), the corresponding
partitioning is A = (A1]|A2), where Ay = {a1,...,q;} and A2 = {aj41,...,a,}. By
(4.5.1) we have that P! (A; t) isthe partial symmetrization of the product,

a’_EA,(A):Hbd ]_[ (b — ta).

beAsr acA1,beAr

The product is given by the expansion obtained from (3.2.1) after the substitutiona; := —ta;
fori =1,...,j,thatis we have the equation,

a!~EAA) = Y (=l Bl (A (),
JC[n]

where the sum is over subsets J of size j, and J isthe extension to a subset of size j + d of
[n +d].

Therefore, by Bott's Formula, we obtain the following expression for the partial sym-
metrization, i

Pl(A;) = Y (—pl/-Eulgl T 4), (4.10.2)
JC[n]

where the sum is over subsets J of size j, and J denotes the extension to a subset of size
Jj+dof[n+d].

Consider the specia cased = 1. If J # E1, thenthereexistsanindexg = 1,...,
suchthat j, > 1and j, — 1 ¢ J. Itfollowsthat j, belongsto the complement of /. Hence

shd (A) = 0. Therefore, the sum in (4.10.1) reducesto the term correspondingto J = Ej.
Thus we obtain the equations,

PO,l,...,f,...,n(A; l,) — SO,...,},...,H(A) — en—j(A)~ (4102)

Note that the equations hold for j = 0 by (4.8) and trivially for j = n.
In the extended notation of Example (4.9), the polynomia P! (A; ) isequal to the polyno-

PLK(A: 1) = s5 K (A) = e (A). (4.10.3)
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(4.11) Proposition. Let A be the alphabet obtained by adding a simple letter to A. For a
strictly increasing multi index I of sizen + 1, denote by P/ (A, 0; ¢) the polynomial obtained
by specializing the additional letter of A to 0. If 7 isnot an extension of a multi index of size
n, then P/ (A,0;1) = 0. Moreover, for an extension I = J of a strictly increasing multi
index J of size n, we have the equation,

P/ (A,0;1) = PY(A; ). (4.11.1)

Proof. Notethat, since P! (A; t) issymmetricin theletters of A, we obtain the same polyno-
mia P! (A, 0; r) by specializing any letter of A to zero and specializing the remaining letters
to the letters of A. We will denote the additional letter of A by ao.

Let A bethe partitioning correspondingto /. Set K = I — E. Then K = (ko. K), where
K isaweskly increasing multi index of sizen and kg < k1. AsaX = agoaK, it followsfrom
(4.5.1) that

Pl(A: 1) = ko KA’(f&) . 411.2
(A51) UEZT(:A)C’(“OC’ A(A)) (411.2)

It follows that the polynomial P’ (A, 0; ) is the sum of the rational functions obtained by
substitution ag := 0in each term of (4.11.2).

Assume that I is not an e>§tension of amulti index of sizen. Then kg > 1. Hence all
exponents of the monomial aX are at least equal to 1. It follows that substitution ag := 0in
o*(aéoaK), for any o € G(A), yields0. Hence P/ (A, 0; 1) = 0.

Assume that / isan extension, say I = J. Then ko = 0 and J—E=K. Lt A1 be
the first subalphabet in the partitioning A. Then, in the monomial 45 = aX | theletter a has
exponent 0if and only if a € A1. Hence thetermin (4.11.2) corresponding to o is non-zero
after substitution o ~1(ag) € A1. However, if o (a) = ag for somea € A1 thena = ag since
o isassumed to increasing on the subinterval A1. Therefore, to determine the result of the
substitution, wemay in (4.11.2) restrict theindex of summationto thoseo € T (A) for which
o (ap) = ap. Clearly, the latter set of permutations correspond to the permutations of T(A),
where A isthe partitioning of A correspondingto /. Moreover, if o (ag) = ao, thenal factors
of o(A;(A/A(A) containing ag are of the form (b — tag) /(b — ag), and they yield 1 after
substitution of ag := 0. It follows that the result of substitution of ag := 0in (4.11.2) isthe

sum AA
Z Cf(dK t( )),
oeX(A) A(A)

and hence the result is equal to P! (A; 1), as asserted. 0

(4.12) Example. For any multi index K of sizen, let Rk (A; t) be the polynomial obtained
asthetotal symmetrization,

Ri(A; 1) :=8%a® A/(A)). (4.12.1)
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If K isweakly increasing, then K + E is strictly increasing, and, by (4.5.4), we have the
equation,
ok+eOPETE(A 1) = Ri (A 7). (4.12.2)

LetA = (A1]...|A,) beany partitioningof A. Let K; bethesubsequenceof K corresponding

to the letters of A; and, with an abuse of notation, let «Xi be the product of the powers alli”
fora, € A;. ThenaX = aX1...a%r Moreover,

Ai(A) = A(A)A(AD) - - Ar(A)).
Hence, we obtain the equation,
Ri(A; 1) = 8" (Rky(A1; 1) -+ Rk, (Ar; ) AL(A)). (4.12.3)
Consider in particular the partitioning (Ala,). For any letter b of a, let IT, = I1,(A; t) be
therational function, bt
I, = H P

a#b
Then A;(A)/A(A) = I1,,, and we obtain an inductive definition of Rk (A; t).

Aninductivedefinition of the polynomials P/ (A; t) isobtained asfollows: Inthenotation
of (4.5), let n, be the number of lettersin the last subalphabet A,. Let J = (j1,..., ju—1)
denote the truncated multi index of sizen — 1. Then we have the equation,

t”lr _

1 L . C a, —ta
Plain =Y Play....ap.....apinaf "V ] 2—2. (4124
t—1 — ap — dg

p=1 q#p

Indeed, by (4.5.4) wehavethat ¢ (1) P7 (A; 1) isthetotal symmetrization of thepolynomia
a’“EA/(A). Let A :={ay, ..., a,—1} and consider the partitioning A := (Ala,) of A. Then
84 = §As4. Clearly, we have that

@’ "EA(A) = ' "Eai VA (A) A (A).

The factors a,{” =D and A +(A) are scalars with respect to the operator 54, Moreover, we

have that (SA(aJ—EA,(A)) = ¢;(t) P’ (A; t). Hence we obtain the equation,
54 (a’E A (A)) = ;08 (P (Ayal "D A D). (4.12.5)

Denote by I17 (A; ¢) the sum on the right hand side of (4.12.4). Then, clearly, TT(A; ) is
equal to the partial symmetrization on the right hand side of (4.12.5). Hence, from (4.12.5)
we obtain the equation,

01 (P (A1) = ()T (A; 1).

Sincep;(t" — 1) = (t — Dy, (1), it followsthat (4.12.4) holds when ¢ isavariable. Hence
(4.12.4) holdsin general.
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Schur functions

1. Schur functions.

(1.1) Setup. Fix afiniteaphabet A = {a1, ..., a,} of n > O letters. In addition to the ring
R[A] of polynomiasand thering R(A) of rational functionswe consider the ring of formal
power series R[A]. Clearly, the action of G(A) on the polynomials extends canonically to
an action on the power series. More generaly, the action of thering Egr[A] on R[ A] extends
canonically to an action on R[ A].

For a power series p in R[A], we denote by p; its homogeneous term of degree j. By
convention, p; = Ofor j < 0.

(1.2) Definition. Inthe sequel we will consider matrices with coefficientsin R[ A], possibly
with an infinite number of rowsor columns. Let s be apower seriesin R[A]. For any integer
i we denote by s[i] the infinite row of homogeneous terms of s shifted i places to theright,

thet is, s[i] isthe row whose j’'th entry, for j = 0,1,..., isequa tos;_;. For any integer
j we denote by s/= the infinite column whose i’th entry, fori = 0,1, ..., isequa tos;_;.
The infinite matrix S whose rows are s[i] fori = 0,1,..., or equivaently, whose columns
ares/= for j =0,1,...,isan upper triangular matrix,

s[O] S0 S1 §2

0 so s1
0> 1>
S=(S[,1]):(S’S’~-)= 0 0 s

If I = (i1,...,i) and J = (J1,..., Jr) ae sequences with the same number » of non-
negative integers, we denote by S’/ the determinant of ther x r matrix obtained from S by
selecting the rows with indicesfrom 7 and the columns with indicesfrom J, that is,

Sjr—ix Sjp—in -+ -Sj—i1
gl — Sjl.—iz sz.—iz '-'S.jr—iz (12.)
Sjl_ir SjZ_ir e sjr_ir
Clearly, if p isasecond power series, then, fori > 0,
plils/= = (ps)ji. (1.2.2)

115
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where the left hand side is the product of arow and a column. In particular,
plilS = (po)li] and  Sp’= = (sp)’=. (12.3)
(1.3) Definition. Let W be a (commutative) word in the letters of A, that is, aformal sum,
W =zia1+--- + zpan,

where the z;'s are integers. The degree of the word is the sum of the coefficients, |W| =
71+ -+ + z,. Associate with W the following power seriesin R[A]:

son=[1(25)"

k=1

and denote by S; (W) = S(W); the homogeneous term of degree j in S(W). Note that if the
word is positive, that is, if the coefficients z; are non-negative, then S(—W) isapolynomia
of degree equal to the degree of W. In particular, if W is positive, then S;(—W) = 0 for
J>[Wl

The special word ag + - - - + a, will be denoted A. As aword, the degree of A is the
cardinality of the alphabet A. Clearly S;(A) isthe j'th complete symmetric function in the
lettersof A. The power series S(—A) isthe polynomia [];_,(1 — ax), and (—1)/Sj(—A)is
the j'th elementary symmetric function in the letters of A.

(1.4) Remark. Enlarge the alphabet A with a single letter x, and consider the word x — A
in the letters of the enlarged alphabet. The power series S(x — A) is the product (1 —
x)—ll_[’,;‘zl(l — ay). It follows easily that the homogeneous term S; (x — A), for j > n, is
equal to the polynomial x/~" TT}_,(x — ax).

(1.5) Definition. Let W be acommutative word in the lettersof A. For any two sequences /
and J in N”, we define the associated skew Schur function S*/7 (W) as the determinant S’/
of (1.2.1) associated with the power series s := S(W). In other words, if we consider the
matrices,

S(W)lia]
( : ) and (S(W)fﬁ,...,S(W)frZ), (15.1)
S(W)lir]

then the skew Schur function S7// (W) isequal to the determinant of the matrix that i sobtained
either fromthefirst matrix in (1.5.1) by selectingitscolumnsfrom J or from the second matrix
in (1.5.1) by selecting itsrowsfrom 1.

The Schur function is apolynomial in R[A]. When I isthe sequence O, 1,...,r — 1we
write S7 (W) := §1/7(W). The polynomia S’ (W) isthe ordinary Schur function 7 (W).



Schur functions 117

(1.6) Observation. Several properties of the skew Schur functions S’//(W) are obvious
from their definition as determinants. Clearly, the function is aternating in 7, that is, if the
entriesin I are permuted, then the function is changed by the signature of the permutation
and the function vanishes if two entriesof 7 are equal. Similarly, the function is aternating
inJ.

The Schur function S*// (W) isthe determinant of an » x r matrix whose (p, ¢)’th entry
isthe homogeneous part of degree j, — i), of the power series S(W). In particular, the entry
vanishes if j, < i,. Asaconsequence, if both sequences / and J are dtrictly increasing,
then S7// (W) vanishesunless iy < ji fork =1, ..., r. Notethat under the latter condition,
each product in the expansion of the determinant S’/7 (W) ishomogeneous of degree " jix —
Yix = ||J|| — ||| inthe letters of A. In particular, the ordinary Schur function S/ (W) is
homogeneous of degree ||J|| — r(r — 1)/2.

(1.7) Remark. Consider theSchur function S’/ (W) corresponding to two strictly increasing
sequences I = (i1,...,ip) and J = (j1,..., jr). Assumethat i1 = j1. Then the first
columnin the matrix defining the Schur function has 1 asitsfirst entry and O as the remaining
entries. Therefore, the Schur function is unchanged if the sequences I and J are replaced by
(i2,...,iy) and (jo, ..., jr). Clearly, the argument can be repeated if thefirst p entriesin /
and J agree.

Note in addition that the Schur function, asa determinant of amatrix of theform {s; —; },
is unchanged if the same integer is added to all entries of 7 and J. It followsin particular
that the ordinary Schur function S7 (W) is unchanged if the sequence J isreplaced for some
p by the extended sequence

J=01,....p=Lp+j1.....p+Jjr),

of length p +r.

(1.8) Additivity Formula. Inthe setup of (1.5), let W’ be a second word in the letters of A.
Then,
K

where the sumis over all strictly increasing sequences K = (k1, ..., k).

Proof. Itisclear from the definition of power series associated to wordsthat S(W/ + W) =
S(W)S(W). Therefore, thefirst formulaof (1.2.3) yields the following matrix equation:

S(W' + W)liq] S(WHIi4]
( : ) _ ( : ) (S(W)OZ,S(W)li,...).

SOW' + W)[ir] S(WHiv]

From the matrix equation, extract the equation corresponding to the columnsin J. The
asserted additivity formula follows from the formula for the determinant of a product of
matrices (the Cauchy-Binet Formula). 0



118 SCHUR 1

(1.9) Duality Formula. Let W be a word in the letters of A, and let I and J be strictly
increasing sequences of » non-negative integers. Then

SUT (W) = (— D)= 1 (. (1.9.1)

where the primes indicate the dual sequences, defined as follows: Choose an integer N
greater than all entriesof 7 and J. Identify 7 with a subset of {0, 1, ..., N — 1}, and denote
by 7¢ the complement of 7 in{0,1,..., N — 1}. Then I/, asa strictly increasing sequence,
isthe image of the complement under the reflectioni — N — 1 —i.

Proof. Consider the power seriess := S(W) and ¢ := s(—W). Asts = 1, the following
matrix equation results from the Equations (1.2.2) fori, j =0,..., N — 1:

t[0]
( ) (soz,...,sN_lz)zl,
t[N —1]

wheretheright hand sideisthe N x N unit matrix. Inthe second factor on theleft hand side,
only thefirst N rowsare nonzero. Therefore, if S denotesthe N x N matrix consisting of the
first N rows of the second factor, and 7 denotesthe N x N matrix consisting of thefirst N
columnsof thefirst factor, then we obtain the matrix equation 7S = 1. Moreover, the matrix
T has determinant 1, sinceit is an upper triangular matrix with 1 in the diagonal.

Clearly, the two Schur functions /7 (W) and "/’ (—=w) of the Duality Formula are
minorsinthematricesS and 7. Now, sincedet 7 = 1, itiswell knownthat thematrix equation
TS = 1impliesthat the (1, J)'th minor S’// in S is equal to the algebraic complement of
the (J, I)’thminorin T, that is,

§' = sign(, 1) sign(J, J) T/ (19.2)

Indeed, fromthe matrix equation 7S = 1it followsthat the matrix of » by » minorsof S isthe
inverse of the matrix of » by » minorsof 7. On the other hand, from the equationdet 7 = 1
it follows by Laplace development of determinants that the transpose of matrix of algebraic
complements of the r by r minors of T is the inverse of the matrix of » by » minorsof 7.
Thus Equation (1.9.2) holds.

Clearly, theleft side of Equation (1.9.2) isthe Schur function ontheleft side of the Duality
formula. Theright hand side of Equation (1.9.2) iseasily transformedto theright hand side of
the Duality Formula. Indeed, if I = (i1, ..., i,), then the permutation (1, 1¢) of the integers
0,...,N — lhaslengthequa toi; +ip — 1+ --- 4+ i, — (r —1). Hence the products of
the two signs on the right hand side of (1.9.2) is equal to (—1) /=1l Moreover, the minor
77°/1° on the right hand side of (1.9.2) is a minor in the matrix {¢;_;}. Therefore, T/°/!°
isequa T!*/7* where I* and J* denote the images of the sequences ¢ and J¢ under the
reflectioni — N — 1 — i. Finally, the sequences I’ and J’ are obtained from 7* and J* by
reversing the order of the elements. The reversion of rows and columns does not change the
determinant. Hence 7/"//" is equal to the minor 7'//" of T. Finally, since T was defined
from the power seriest = S(—W), theminor 7/'/7" isthe Schur function /77" (—=W). Thus
the Duality Formula has been proved. 0
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(1.10) Example. TakeI = (0,...,r— 1 andJ = (1,...,r) (and N := r + 1). Then
I' = (0)and J' = (r). Hence S/ (W) = (=1)"S"(—W) by the Duality Formula, and
clearly S"(—W) = S, (—W). In particular, when W = A, we obtain that the Schur function
S1--7(A) isequal to the r’th elementary symmetric function in the letters of A, see (1.3).

(1.11) Jacobi—Trudi’sFormula. Letas, ..., a, bethen lettersof A, andlet J bea sequence
of n non-negative integers. Then,

A(ay, ..., an) = Alag, . .., ap) S (A). (1.11.1)

Moreover, if D isthen x n matrix whose k’throw isthe ordered set of then first homogeneous
terms in the polynomial ]'[#k(l —a;),thendet D = A(ax, ..., a,).

Proof. Fork =1, ...,n,wehavethatay = (ax—A)+A,andhenceS(ar) = S(ar—A)S(A).
Consequently, the first equation in (1.2.3), applied with p = S(ax — A) fork = 1,...,n,
yields the following matrix equation:

S(a)[Q] S(ax — A)[0]
( : ) _ ( : ) (S(A)OZ,S(A)lz,...).

S(an[O] S(an — A)[O]

In the first matrix on the right, the power series S(ax — A) isthe polynomial ]_[#k(l —aj)
of degree n — 1. Hence, in the first matrix on the right, the first n columns form the matrix
D and the remaining columns are equal to zero. Therefore, the product on the right sideis
unchanged if thefirst matrix isreplaced by D and the second matrix isreplaced by itsfirst n
rows. Now, from the replaced equation select the columns corresponding to the el ements of
J, and take determinants. On the left side we obtain the determinant AY = A7 (aq, ..., a,),
and on the right side we obtain the product (det D)S”(A). Hence we obtain the equation,

A’ = (det D)S’(A). (1.11.2)

TakeJ = (0,1, ...,n—1)in(1.11.2). Theleft side becomes the Vandermonde determinant
A. Ontheright sidewe havethat S’ (A) = 1. Therefore, Equation (1.11.2) impliesfirst that
A = det D and next that the Jacobi—Trudi Formula (1.11.1) holds. 0

(1.12) Corollary. The Schur functions S/ (A), for all strictly increasing sequences J of n
non-negativeintegers, forman R-basis for the algebra Sym ;[ A] of symmetric polynomials.

Proof. By Jacobi—Trudi’sformula, S¥ = A’ /A, andthepolynomias A’ /A forman R-basis
by Proposition (SYM.6.6). 0

(1.13) Remark. Every ordinary Schur function SX(A), whereK = (ka, .. ., k) isasequence
with an arbitrary number r of entries, is either equal to zero or up to asign equal to one of
the Schur functions S” (A) of Corollary (1.12), that is, a Schur function defined by a strictly
increasing sequence J with n entries. Indeed, since SX(A) is alternating in K, we may
assume that the sequence K is strictly increasing. If r < n, we have that SX (W) = §7(W),



120 SCHUR 1

where J = K is the sequence obtained by extending K as in Remark (1.7). Assume that
r > n. If K isan extension in the sense of Remark (1.7) of asequence J with n entries, then
sKA) = S/ (A).

If K isnot an extension of asequencewithn entries, then SX (A) = 0. Indeed, proceeding
by inductionon r, we may assumethat K isnot an extension of a sequencewith » — 1 entries,
that is, we may assumethat k1 > 0. Consider an alphabet A with r |ettersobtained by adding
r —n letters a, 11, ...,a, to A. Clearly, the Schur function SX(A) is obtained from the
Schur function SX (A) by specializing the additional variables a,+1, . .., a, to 0. Now, if
the last variable a, is specialized to 0, then the Vandermonde determinant A(A) specializes
to a nonzero value and, since k1 > 0, the determinant AKX (A) specializes to 0. Therefore,
b;;( Jacobi—Trudi’s Formula, the Schur function SX (A) specializes to 0, and consequently
St(A)=0.

(1.14) Remark. Consider the symmetrization operator §4 of Section (DIFF.2.3),

A . Sy 1 .
=2 o(xm) = am L G,

oeG(A) 0eG(A)

The operator §4 is Symy[A]-linear. Let a’ be amonomial. It is elementary, see Theorem
(DIFF.3.3), to prove that 4 (a’) = A’ /A. Hence it follows from Jacobi—Trudi's Formula
that 4 (a’) = S’ (A). Asaconsequence, if f isasymmetric polynomial, then £S5/ (A) =
84(fa’). In particular, if a symmetric polynomial f is given as a sum of monomials,
f ="k fxaX, then we obtain the formula

£87(A) =Y frSKH (A).
K

(1.15) Example. Pieri's Formula. (1) Let 7 be a sequence of n non-negative integers, and
denote by m! the symmetrized monomial corresponding to 7, that is,

/
m! = E a’’,
o

where the sum is over all different permutations o I of the sequence I of exponents. Then,
for every sequence J of non-negative integers, we obtain from (1.14) the formula,

m!s7(A) =Y 571+ (4), (1.15.1)
wherethesumisover al different permutationso I of 1. In particular, when J isthe sequence
0,1,...,n — 1) we have that S’/ (A) = 1, and we obtain an explicit formula for m! as a
linear combination of Schur functions.

For the sequence I = (1,...,1,0,...,0) wherer < n entriesare equal to 1, the poly-
nomial m! is the r’th elementary symmetric function (—1)” S, (—A), and we obtain Pieri’s
formula,

(=1)S-(—A)S’ (A) = Z sK+(a), (1.15.2)
K
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where the sum is over all sequences K of n integers where r entries are equa to 1 and the
remaining entries are equal to 0. For J = (0,1,...,n — 1), we recover the formula of
Example (1.10),

(—1)"S,(—A) = ST7(A). (1.15.3)

Indeed, let J = (0, 1, ...,n — 1). Thentheleft hand side of (1.15.2) isequal tother’'th ele-
mentary symmetricfunctionsince S’ (A) = 1. Ontheright hand sideof (1.15.2), thesequence
K + J hastwo equal entriesunlessK = (0,...,0,1,...,1). Hencetheonly non-vanishing
term on the right hand is the Schur function SX*7/(A) where K = (0,...,0,1,...,1).
Moreover, for K = (0,...,0,1,...,1) the sequence K + J is an extension in the sense
of (1.7) of the sequence (1, ..., r). Therefore, the right hand side of (1.15.2) is the Schur
function S1-7 (A).

(2) Similarly, the j’th complete symmetric functionis the sum,

Si(A) = a~,

IKll=Jj
where the sum is over sequences of n integers. Hence we obtain from (1.14) the formula,

Si(A)ST (A= Y K (). (1.15.3)
1K=
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2. Multi Schur functions.

(2.1) Setup. Inthissection we consider smultaneoudly several alphabets. All alphabets are
assumed to be subal phabets of afixed (universal) alphabet. Lettersand (commutative) words
will be taken from the fixed alphabet. Asin (SCHUR.1.3), if A is an aphabet, the word
defined asthe sum of the lettersof A will also bedenoted by A. If {a1, ..., a,} aretheletters
of A,wewrite A<, :=a1+---+a,, andwedefine A-,, A>,, and A~ , similarly.

(2.2) Definition. Let W = (W), } beanr x r matrix of words W),,. Let I and J be sequences
of r integers. Define the associated multi skew Schur function S/ (W) as the determinant
of the matrix whose (p, ¢)'thentry is S i, (Wp,), that is,

Wir ... Wi Sj—in(W11) ... S, (W)
st ( : : ) = : :
Wi ... W, Sii—i, Wr1) ... Sj—i,(Wy)
Asin Definition (SCHUR.L5), when I = (0,1, ...,r — 1) wewrite S’ W) := S/ (W)
and obtain the ordinary multi Schur function S’ (W). When al the words W, are equal to
the same word W, we recover the Schur function S7// (W) of (SCHUR.1.5).

Clearly, the Schur function is unchanged if the same integer is added to all entries of the
two sequences I and J. In particular we will usually assume that the entries of the two
sequences / and J are non-negative. Note also that the function S’/7 (W) is dternating with
respect to J and the columns of the matrix W, and with respect to / and the rows of W.
Notefinaly, that the function is symmetric in the following sense: choose an integer N (say,
greater than al elementsin the two sequences 7 and J). Consider the sequences 7* and J*
obtained from 7 and J by the reflectionx > N — 1 — x. Then S/ (W) = §7*/1* (W),

where WY denotes the transposed matrix of W.
Let (Wy,..., W,) beasequence of r wordsin the letters of A. Then we denote by

W1
ST (W, ..., W,) and S’/J( ; )

W,

the two special functionsdefined asfollows: Thefirst function isthe Schur function S7/7 (W)
obtained fromthematrix {W,,} where W,, = W, andthesecond functionisdefined similarly
by thematrixwhere W,, = W,,. Notethat thetwo special Schur functionsaremaximal minors
of the two matrices,

S(W)[i1]
(S(Wp=, ..., S(W,)’Z)  and ( : ) :
S(Wo)lir]
The first function is the minor of the first matrix corresponding to the row indicesin I, the
second function is the minor of the second matrix corresponding to the column indicesin J.
When I = (0,1,...,r — 1) we write S/ (W1, ..., W,) and S/ (W4, ..., W) for the
functions S/ (W1, ..., W) and ST/ (Wq, ..., W)Y,
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(2.3) Additivity Formula. Let(W;, ..., W))and (W4, ..., W,) betwo sequencesof r words,
and let 7 and J be two sequences of r non-negativeintegers. Then,

Wi+ Wi ... W+ W, w;
s’/f( : : ):Zs”K( : )SK/J(Wl,...,Wr),
K

W+W ... W+W, w!
where the summation is over all strictly increasing sequences K of » non-negative integers.

Proof. The argument isidentica to the proof of (SCHUR.1.8). 0

(2.4) Duality Formula. Let Wp, W1, ... be a sequence of words such that, for j > 0, the
word W;_1 — W, is either equal to O or equal to a word formed by a single letter. Let /
and J be strictly increasing sequences of » nonnegative integers. Finally, let N be an integer
greater than all entriesin the two sequences 7 and J. Then

ST Wiy, W) = (=)W (e g =Wy,

where the primes indicate the dual sequences with respect to N as in (SCHUR.1.9) and
JC = (ji,..., J{)isthecomplementof J in{0,1,..., N —1}.

Proof. The proof is similar to the proof of Duality (SCHUR.1.9). Consider the following
product of matrices:

S(—=W)[0]
( : ) (swo®=,... swn-p 1), (1)
S(=WnIN — 1]

It follows from Formula (SCHUR.1.2.2) that the (i, j)'th entry in the product, for i, j =
0,1,...N -1, isequal to Sj_,'(Wj — Wit1). Clearly, the entry Sj—i(Wj — Wit1) isequal to
Ofor j <i andequal to1lfor j =i. Moreover, theentry isequal to O for j > i, because, by
hypothesis, the word —(W; — W;1) apositiveword of degreeat most j — i — 1. Hencethe
product of matrices (1) isthe N x N unit matrix 1.

From the two matricesin the product (1), let T be the submatrix of the first factor formed
by the first N columns, and let S be the submatrix of the second factor formed by the first
N rows. Asin the proof of the Duality Formula (SCHUR.1.9), it followsthat 7S = 1 and
det 7 = 1. Itisaconsequence, aswe saw in the proof of the Duality Formula(SCHUR.1.9),
that the (1, J)'th minor S/7 in S isequal to the algebraic complement of the (J, 1)’ th minor
inT,thatis,

ST — (W= Ie/1e 2)

Clearly, the left side of Equation (2) is the Schur function on the left side of the asserted
Duality Formula. The right hand side of Equation (2) is easily transformed to the right hand
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side of the Duality Formula. Indeed, the minor 77///° on the right hand side of (2) is the
Schur function,
Wie 41
SJC/]C
thc_|_1
To obtain the Schur function on the right side of the Duality Formula, apply the reflection
i~ N—1—ito/l¢andJcand transpose the matrix, and then reverse the order of row and

columns.
Hence the Duality Formulais a consequence of Equation (2). 0

(2.5) Corollary. Let A = {a1, ..., a,} bean alphabet with n |etters, and denote by A< ; the
sum of the letters a,, for p < j (in particular, A<; = A for j > n). Moreover, let I and J
be strictly increasing sequences of » nonnegative integers, and set A, = j, — (p — 1) for
p=1...,r. Finally, let N bean integer greater than all entries of the two sequences / and
J. Then, for any word W,

ST (W=Acsy, ..., W=~z ) = (=D=M (Ao, —w, ... Aca—W),

where the primes indicate the dual sequences with respect to N.

Proof. For any integer j, denote by w(j) the number of elementsin the complement J ¢ that
aredtrictly lessthan j. Then the following equations hold:

w() =i and  p(jy +1) =k. (1)

Indeed, the first equation holds because there are j; nonnegative integers strictly less than ji
and of these exactly k — 1 belong to J. The second equation holds, because the nonnegative
integersin J¢ that are strictly lessthan ji + 1 arethek integers ji, ..., ji.

Now apply Duality (2.4) with W; := W — A (). It follows from the equations (1) that
Wi, =W — Agy and —Wje g = A<, — W. Hence the asserted formulafollows from the
Duality Formula. 0

(2.6) Jacobi’'sLemma. Let (Wy,..., W,) be a sequence of r words, and let (Cq, ..., C;)
be a sequence of r positive words. Moreover, let 7 and J be sequences of » non-negative
integers. If [Cp| +ip < rfor p=1,...,r, thenthefollowing formula holds:

wWi—-C1 ... W,—C1 —C1
S]/J : : — S]/O,l,...,r—l : SJ(W]_, o Wr)
Wl_Cr o .. Wr_Cr _Cr
Inparticular, if |C,| <r —pforp=1,...,r, then
Wi—C1 ... W,—(C1
st ; ; =87 (W1,..., W,).
Wl_Cr o .. Wr_Cr
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Proof. To provethefirst assertion, assumethat |Cp,| 4 i, < r for al p. Apply the Additivity
Formula(2.3) with W), := —C,. The Schur functions $*/¥ in the sum on theright hand side
of the Additivity Formulaarethe maximal minorsof the matrix whose p’throwisS(—C)[i,]
for p = 1,...,r. It follows from the hypothesis on the degree of C,, that only the first r
entriesin the p’th row can be nonzero. Hence the sum on the right hand side of (2.3) reduces
to its single term correspondingto K = (0,1,...,r — 1). Clearly, the latter term is the
product on the right hand side of the asserted formula. Thus the first assertion holds.
Assumein particular that 7 = (O, ..., r — 1). Then thefirst factor on theright side of the
first formulais the determinant of an upper triangular matrix with 1 in the diagonal. Hence
the first assertion implies the second. I

(2.7) Example. The Jacobi—Trudi Formula. When 7 = (O, ..., 0), the condition for Lemma
(2.6) isthat |C,,| < r for @l p. For example, let A = {ay, ..., a,} be an aphabet with n
letters, and let r = n. Take W, := Aand C, := A —a, in Jacobi’sLemma. Then we obtain
the formula,

ai al— A
SO ..... 0/J — SO ..... 0/0,1,...,.n—1 SJ(A, o A)

an a, — A

The Schur function on the left side isthe determinant A7 (a1, . .. , a,). Ontheright side, the
second Schur function is the simple Schur function S7 (A), and the first Schur function isthe
determinant det D from Jacobi—Trudi’s Formula. Hence we recover Jacobi—Trudi’s Formula
from (2.6) (and we recover the proof from the proof of (2.6)).

(2.8) Factorization Formula. Let (as,...,a,) bea sequence of r letters, and set A~ ), =
a,+---+a,for p=1...,r. Moreover, let J be a sequence of r non-negative integers,
andset A, = j, —(p— 1 for p =1,...,r. Finally, let By,..., B, be a sequence of r
positivewords. Assumethat |B,| < A, for p=1,...,r. Then

ST(A21-B1..... Asr—By) = [ | S1,(ap—By). (2.8.1)
p=1

Proof. Apply theparticular case I = (0, 1, ..., r — 1) of Jacobi’sLemma (2.6) with W, :=
A>, —B,and C, := A . Itfollowsthat the Schur function on the left hand side of (2.8.1)
isegual to the following Schur function:

A>1—A-1—B1 ... As,—A.1-B,
s’ : : . (1)
As1—A-,—B1 ... As,—A.,—B,
The latter Schur function is the determinant of a matrix whose (p, ¢)’th entry is equal to

qu—(p—l)(AZq_A>p_Bq)~ (2
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Consider an entry above the diagonal, that is, for p < ¢. Clearly, theword A~,—A~ ,—B,
isnegative. Itisequal to —B,,, where B,,, thesumof theqg — p — 1lettersa, forp < k < g
and the word B,. In particular, since |B,;| < Ay, the degree of B, is strictly less than
Ag + (g — p) = j; — (p —1). Hence the entry (2) vanishes above the diagonal.
Thereforethe determinant (1) the product of itsdiagonal entries. Clearly the p’th diagonal
wordis a,—B), and so the diagonal entry is S;,_(,—1)(ap—Bp) = S3,(ap—Bp). Thusthe
asserted formula has been proved. I

(2.9) Remark. Inthe setup of Lemma (2.8), assumethat B, isthe word of an a phabet with
By letters. Then g, < i, by assumption. Therefore, by Remark (SCHUR.1.4), the p’th
factor on theright hand side of (2.8.1) is the product,

a;”_ﬂp l_[ (ap — D).

beB,

In particular, if al the alphabets B, are empty, then the p’th factor on the right hand side of

(2.8.1) isthe product, a* = a}* - - - @, and we obtain the formula,

o—1 —(r—1
S (As1, ..., Asy) =altaf gl T,

(2.10) Example. Let A = {ax, ..., a,} beanaphabet. Thenthedeterminant A’ (a, . .., a,)
defined in (SYM.6.3) isthe multi Schur function,

ai
A(ay, ... ay) = 8% O”(E)~ (1)

[

Assumethat J = (0, 1, ..., n—1). Thenthedeterminant A isthe Vandermonde determinant
A(ai, ..., ap). Itfollowsby the symmetry of (2.2), or directly, that the Schur function in (1)

isequal to "~ 1-""1(q,, ..., a1), and hence equal to
Sn_l """ n_l(ASn_A<n, ey Afl_A<1) (2)
It followsfrom the Factorization Formula(2.8), applied to the reversed sequence (a,, . . . , a1)

and B; := A_,_;+1, that the Schur function (2) isequal to the product,
Sp—1(an—A<y) --- S1(a2 — A~2)So(a1).

Hence, the Factorization Formula together with Remark (SCHUR.1.4) implies the equation
of (SYM.6.7),
Aay,...,ay) = l_[(ap —ag).

p>q
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(211)Lemma. Let(Wy,..., W,) beasequenceof r words, andlet J bea sequence of r non-
negative integers. Assume for some k and somed < k that the following holds: Wy_; = W
and ji_; = jx—ifori =1,...,d. ThentheSchur function /7 (W4, ..., W,) isunchanged
if Wy isreplaced by Wy, — B, where B is positive word of degree at most d.

Proof. The proof, entirely similar to the proof of Jacobi’sLemma (2.6), isleft asan exercise.
0

(2.12) Example. Let A = {a1,...,a,} and B = {b1, ..., b,,} be aphabets with n and m
letters. Asan application of Lemma (2.11) we will prove the formula,

gromtbmin=lq — By = [ [(ap — by). (2.12.1)

p.q
Set A := a1+ ---+ a;, and let W be any word. Consider forr = nand J = (m,m +
1, ..., m+n—1)theSchur function S’ (W) = S’/ (W, ..., W). Then, by repeated application
of Lemma (2.11), it follows that we can replace in the Schur function S/(W, ..., W), for

k=n,...,2,thek’thword W by W — A;_1. Hence we obtain the equation,

Sm,m—l—l ..... m—l—n—l(W) — Sm,m—l—l,...,m—l—n—l(W_AO’ W—A1,..., W—A,_1).

Sm,m—l—l ..... m-l—}’l—l(A . B) — Sm,m—l—l ..... m+n—l(A>1 —B.... A>I1 . B)

Finally, by applying the Factorization Formulato the Schur function on the right hand side,
cf. Remark (2.9), we obtain the formula (2.12.1).



3. Differenciation of Schur functions.

(3.1) Setup. Fix anaphabet A withn lettersas, .. ., a,. Consder the smple operatorsd?,
7P, yP, andthegeneral operatorso4 = 9, 74 = n® of Section (DIFF.3). For convenience,
definedy ;= 0, and 4 1= 7y,.

(3.2) Note. Weprovedin (DIFF.3.4) that the simple operators satisfy the Coxeter-Moorerel a-
tions, and in (DIFF.3.5) that the general operatorscan be defined by any reduced presentation
of w. Inthissection we will only need the inductive definitions,

aA — al_ . 8n—1aA’ 7TA — 7_[1_ . -TL’n_lﬂ'A,

where A := {a1, ..., ay_1)}.

(3.3) Lemma. Fixaninteger p suchthat 1 < p < n. Let W be a word which is symmetric
with respect to the letters a,, and a,+1. Then we have the following two identities of power
series

PS(W —ap) = S(W),
TP S(W — ap) = S(W).

Proof. Clearly, S(W —a,) = S(W)(1—a,), and the power series S(W) issymmetricin the
lettersa, anda,1. The operatorsare linear with respect to polynomialssymmetricina, and
ap+1. Therefore the two first equations of the Lemmaresult from the following equations,

0?(1—ap) =1, aPA—ap) =1
The latter equations result immediately from the definitionsof 07 and 7. 0

(3.4) Lemma. Fix a positive integers k < r. Consider a Schur function Y (Wy, ..., W,),
where J isasequenceof » non-negativeintegers. Assumethat all thewords W, aresymmetric
with respect to the lettersa, and a,1. Then,

P8I (Wi, ..., Wi—ap, ..., W,) = SHtdeLodr(wy 0 Wy, W),
P ST (Wa, ..., Wi—ap, ..., Wy) = Sledioedr (W, o W, ., W),

Proof. The Schur function ontheleft hand sidesof the equationsisthe determinant of amatrix
whose k’th column is the sequence of polynomiasS;, —;(Wy —a,) fori =0,...,r —1and
wherethe entriesof theremaining columnsare symmetricina, anda,1. Sincethe operators
07 and r” arelinear with respect to polynomials symmetricina, and a, 1, theleft sdesare
therefore equal to the determinants obtained by applying the operators to the entries of the
k'th column.

Consider the first equation. Since 97 lowers the degree of polynomias by 1, it follows
fromLemma(3.3) that 07 S; (Wi —ap) = S;—1(Wy). Clearly, thefirst equation of the Lemma
IS a consequence.

Similarly, it follows from Lemma (3.3) thet 7 7 S; (Wi — a,) = S;(Wi), and consequently
the second equation of the Lemma holds. 0

129
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(3.5) Differenciation Lemma. Consider for n < r the Schur function S/ (Wy, ..., W,),
where J isasequenceof » non-negativeintegers. Assumethat all thewords W, aresymmetric
in the letters of A. Then the following two formulas hold:

%S  (Wi—A1, ..., Wy—Acp, Wagt, ..., W) = ST E(Wy, ..., W),
78T (Wi—A1, ..., Wp—Acp, Wyt ..., W) = ST (W1, ..., W,),

where J — E isthe sequence obtained from J by subtracting k — 1 from j, fork =1, ..., n.

Proof. The assertion will be proved by induction on n. The formulas have no content when
n = 1. Sowe may assume that n > 1 and that the assertion holds for the alphabet A :=
{a1, ..., an—1}.

In the Schur functions on the left sides of the equations, the n’th word W,, — A_, is
symmetric with respect to the letters of A. Therefore, by the inductive hypothesis and the
inductive definition of 9“ in (3.1), the left hand side of the first equation is equal to the
expression,

81 e 8n_1SJ_E(W1’ ey Wl’l—l’ Wl’l - A’ Wl’l-I—l’ LA ] Wr),

where J — E isthesequenceobtained from J by subtractingk —1from jifork = 1,...,n—1.
Clearly, by applying n — 1 timesthe first equation of Lemma(3.4) forp =n—1,...,1and
k = n, it follows that the |latter expression isequal to the right hand side of the first formula.
Hence the first formulaholds.

The proof of the second formulais entirely similar. 0

(3.6) Remark. By conjugation by » we obtain from (3.5) the following formulasfor d,, and
T

awSJ(Wl_A>I’l’ L) Wl’l_A>1’ Wl’l-I—l’ L) WV) = SJ_E(W].’ L) Wr),
anJ(Wl_A>I’l’ RN Wl’l_A>1’ Wl’l-I—l’ L] WV) = SJ(W].’ L) Wr)~

Indeed, in (DIFF.3.6) we proved that wd“w ™t = 3,. Consider the first equation of (3.5).
Apply the permutation w to thetwo sides. Theright sideisunchanged, becauseitissymmetric
inthelettersof A. Ontheleft side, the result isthe operator wd“ = 9, applied to the Schur
function Y (W1—A_1, ..., Wo—A_p, Wyi1, ..., W,). Asw changes theword Wy — A_;
into theword Wy, — A ,,_x+1, we obtain thefirst formulaasserted above. The verification of
second formulais completely analogous.

Using the fact that the Schur function S7 (W, ..., W,) isdternating in J and the words
W, we get analogous formulas when the n words A _; are subtracted from any » different
wordsin the given sequence (W1, ..., W,). For example, from the second formulaabove we
obtain the formula,

TS (Wi, ..., Wr—py, Wr—pg1—Asp, ... W — As) =87 (W1, ..., W,).  (36.1)



Differenciation of Schur functions 131

(3.7) Note. Let J be asequence of n non-negativeintegersand set £ := (0,1,...,n — 1).
Then the following two formulas hold:

3°@@’) = §7(A), (3.7.1)
7%’y = §'TE(A), (3.7.2)

Indeed, we havethat A~, = A — A_,. Therefore, it followsfrom the Factorization Formula
(SCHUR.2.8), applied to the sequence J + E and the words B, := O, that

STE(A—Aq,...,A—A_,) =a’.

Hence the two asserted formulas follow from the Differentiation Lemma (3.5).

Notethat, by theformulas of Theorem (DIFF.3.3), theleft sideof (3.7.1) isequal to A7 /A.
Hencetheformula(3.7.1) aso followsfrom Theorem (DIFF.3.3) and Jacobi—Trudi’sLemma
(SCHUR.1.11). The formula (3.7.2) aso follows from the (3.7.1) and the second operator
equation of (DIFF.3.3.3).

(3.8) Sergeev-Pragacz’ sFormula. Let B = {b1, ..., b, } beasecondal phabet, digoint from
A. Let J beasdtrictly increasing sequence of r non-negativeintegers. Set Ay := jix — (k—1)
fork=1,...,r. Assumethatr > n, wheren isthenumber of lettersof A, andsets ;= r —n.
Then the following formula holds,

s s+n
ST(A—B) =anp [ [ Sn(=B<x) [] Sulars— B<yy).
k=1 k=s+1

Proof. Form the dua sequence J’ with respect to an integer N, see (SCHUR.1.9). By choos-
ing N large we may assume that the dual sequence J’ has at least m elements. Consider the
Schur function S’ (A — B) ontheleft side of the asserted formula. By Duality (SCHUR.1.9),

ST(A—B)=eS"(B—A) =¢S"(B—A,...,B—A), (1)

wheree isequal totheparity of || J|| —r(r — 1) /2. Now apply the Differentiation Formula, in
theformof Equation (3.6.1), to thealphabet B and the sequence of equal words W, := B — A.
We obtain the formula,

S"(B—A,....B—A) =npS" (B—A,...,.B—A, By —A,...,Bz1—A). (2
Again by Duality, see Corollary (SCHUR.2.5), applied to the lettersof B and W := A,

S"(B—A,....B—A Bcp—A,...,Bs1—A) =S’ (A= B<y,,....,A—B<), (3
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with ¢ as before. Apply again the Differentiation Lemmato the aphabet A and the words
W, = A — B<,,. Subtract A from thelast n words. We obtain the equation,

ST (A—=B<y,,...,A—B<),)
= 7487 (A~ By, ..., A — B, As1— B<j,igs ..o, Aoy — B<y,). (4)

Finally, the Schur function on the right hand side of (4) is equal to the product on the right
hand side of Sergeev’s Formula, as it follows by applying the Factorization Formula, see
Remark (SCHUR.2.9), to asequence of letters (ay, ..., ay, au, . . ., a,) and then specidizing

the additional letters a; to zero. Therefore, the asserted formula follows from Equations

(D—4). 0
(3.9) Note. The condition for the Schur function S’ (A — B) that the sequence J has at least
n elements can aways be obtained by extending the sequence J, cf. (SCHUR.1.7).

Clearly, thefactor S<;, (—B;,) inthefirst product on the right hand side is only non-zero
if theword By, has i letters, that is, if A islessthan or equal to the number m of |ettersof B.
Hence the Schur function S’ (A — B) isonly non-zeroif A, < m, thatis, if j;, <m +s — 1.
Sequences J satisfying the latter condition are said to be contained in the (n, m)-hook.

Assumethat A;4+1 > m, thatis, js+1 > s +m. Thenthelast product in Sergeev-Pragacz’'s
formulaisequal to the following product,

n

)\.-ﬁ— —m
[Ta™ T @-b.
p=1 acA, beB

In particular, when J = (m,m +1,...,m + n — 1), we recover the formula of Example
(SCHUR.2.12),

acA,beB

sncer4(1) = 1and np(1) = 1.
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