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Permutations and symmetric functions

1. The length function.

(1.1) Setup. Fix an alphabet A, that is, a finite totally ordered set; the elements of A a called
letters. Every letter a which is not the last letter has a successor, denoted a ′. It is often
convenient to enumerate the letters, say A = {a1, . . . , an} where n is the number of letters.
Since A is assumed to be totally ordered, there is a unique enumeration such that the ai are in
increasing order. In this enumeration, the successor of ai is a′i = ai+1 for i = 1, . . . , n − 1.

Unless otherwise specified, a permutation will mean a permutation of the letters. The group
of all permutations will be denoted

�
(A). The identity map is the unique order preserving

permutation of A, denoted 1A or simply 1. We denote by ω = ωA the unique order reversing
permutation of A. Obviously, ω is an involution, that is, ω2 = 1. Sometimes ω is called the
maximal permutation of A.

The transposition that interchanges two letters a and b will be denoted τa,b. Transpositions
that interchange two neighbors (with respect to the given order in A) are said to be simple.
So the simple transposition are the transpositions τa := τa,a′ where a is not the last letter.
The number of simple transpositions is one less than the number of letters.

Assume that the letters are indexed ai in the natural order. It is easily seen that the product
τa1τa2 · · · τan−1 is the n-cycle (a1, . . . , an). It follows, for instance by an inductive argument,
that

ωA = (τa1 · · · τan−1) · · · (τa1τa2)τa1.

(1.2) Definition. A pair (a, b) of letters will be called an inversion for the permutation µ if
a < b and µa > µb. The number of inversions of µ is denoted by `(µ) and called the length
of µ.

(1.3) Lemma. For any permutation µ, the following six assertions hold:

(1) We have equality `(µ) = 0 if and only if µ = 1. Moreover, if µ 6= 1, then there is an
inversion for µ of the form (a, a′).

(2) We have equality `(µ) = 1 if and only if µ is a simple transposition.
(3) For a simple transposition τa , we have that

`(µτa) =
{

`(µ)+ 1 if µa < µa′,
`(µ)− 1 if µa > µa′.

More precisely, if µa < µa′, then the inversions for µτa are the pairs (τab, τac)

where (b, c) is an inversion for µ and the pair (a, a ′), and if µa > µa′, then the
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2 SYM 1

inversions for µτa are the pairs (τab, τac) where (b, c) is an inversion for µ different
from (a, a′).

(4) We have the inequality `(µ) ≤ n(n− 1)/2, and equality holds if and only if µ = ω.
(5) We have that `(µ) = `(µ−1).
(6) We have that `(ωµ)+ `(µ) = `(ω).

Proof. The five first assertions are easily checked. The sixth follows from the equation
`(ω) = n(n− 1)/2, because each pair (a, b) of letters with a < b is an inversion for exactly
one of the permutations µ and ωµ.

(1.4) Proposition. The group
�

(A) is generated by the simple transpositions. In fact, any
permutation µ is a product of `(µ) simple transpositions.

Proof. We prove the second assertion by induction on `(µ). If `(µ) = 0, then µ = 1. Hence
the assertion holds when `(µ) = 0. Assume that `(µ) = l > 0 and that the assertion holds
for permutations of length l−1. Since µ 6= 1, there is an inversion for µ of the form (a, a ′). It
follows from (1.3)(3) that `(µτa) = l−1. Hence µτa is a product l−1 simple transpositions.
Therefore µ = (µτa)τa is a product of l simple transpositions.

(1.5) Note. The proof of Proposition (1.4) is constructive. Let µ be a permutation, and
consider the direct representation of µ:

µ = (b1b2 . . . bn). (1.5.1)

By definition, if A = {a1, . . . , an}with the letters ai in increasing order, then µ is determined
from the sequence in (1.5.1) by µai = bi . If the bi are in increasing order, then bi = ai
and µ = 1. If µ 6= 1, then there is an index j < n such that bj > bj+1. Now interchange
in the sequence bj and bj+1. The new sequence represents the permutation µτaj . Continue
the process until the bi’s appear in increasing order. The sequence obtained at the end
represents the identity permutation 1. Hence we have an equation 1 = µτaj1 · · · τajr . Thus
µ = τajr · · · τaj1 . It follows from the proof of Proposition (1.4) that r = `(µ).

(1.6) Proposition. For any presentation µ = τ1 · · · τr of µ as a product of r simple transpo-
sitions, we have that `(µ) ≤ r and `(µ) ≡ r (mod 2).

Proof. We prove the Proposition by induction on the number r of factors in the presentation
of µ. If r = 0, then µ = 1 and the two assertions hold. Assume that r > 0 and that
the two assertions hold for all presentations with r − 1 factors. Consider the presentation
ν := τ1 · · · τr−1. Since µ = ντr , it follows from Lemma (1.3)(3) that `(µ) = `(ν)± 1. In
particular, we have that `(µ) ≤ `(ν) + 1 and `(µ) ≡ `(ν) + 1 (mod 2). By the induction
hypothesis, we have that `(ν) ≤ r − 1 and `(ν) ≡ r − 1 (mod 2). Therefore, the two
assertions hold for the presentation of µ.

(1.7) Corollary. For any two permutations µ and ν in
�

(A), we have the inequality `(µ)+
`(ν) ≥ `(µν).

Proof. The Corollary follows immediately from the two previous Propositions.
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(1.8) Definition. The signature of a permutation, denoted sign µ, is the number

sign µ := (−1)`(µ).

It follows from Proposition (1.6) that the signature is a homomorphism of groups,

�
(A)→ {±1}.

By (1.3), the signature of a simple transposition is equal to −1. It is easy to see that the
signature of any transposition is equal to −1. It follows that the map sign is independent of
the given order of the letters of A.
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2. The Coxeter–Moore relations.

(2.1) Definition. A sequence (τ1, . . . , τr )of simple transpositions will be called a presentation
of the permutation µ in

�
(A) if µ = τ1 · · · τr . By Proposition (1.6), for any presentation

(τ1, . . . , τr ) of µ, we have that r ≥ `(µ). The presentation is said to be minimal if r = `(µ).
Minimal presentations of a given permutation µ exist by Proposition (1.4).

(2.2) Lemma. Let (τ1, . . . , τr ) be a minimal presentation of a permutation µ. For s =
1, . . . , r , let bs be the letter for which τs = τbs . Then the inversions for µ are the pairs(
τr · · · τs+1(bs), τr · · · τs+1(b

′
s)
)

for s = 1, . . . , r .
In particular (when r ≥ 1), the pair (br , b

′
r ) is an inversion for µ.

Proof. We shall prove the Lemma by induction on r = `(µ). Clearly, the assertion holds for
r = 0. Assume that r ≥ 1 and that the assertion holds for all permutations of length r − 1. It
follows from Lemma (1.3)(3) that ν := µτr = τ1 · · · τr−1 has length r − 1. By the induction
hypothesis, we have that the inversions of ν are the pairs

(
τr−1 · · · τs+1(bs), τr−1 · · · τs+1(b

′
s)
)

for s = 1, . . . , r − 1. Since `(ντbr ) = `(µ) = `(ν)+ 1, it follows from Lemma (1.3)(3) that
the assertion holds for µ.

(2.3) Lemma (The exchange property). Let (τ1, . . . , τr ) and (σ1, . . . , σr ), for r ≥ 1, be
two minimal presentations of the same permutation µ. Then, for some q = 1, . . . , r , there is
a presentation of µ of the form (σ1, τ1, . . . , τ̂q , . . . , τr ), where the hat indicates an omitted
transposition.

Proof. Assume σ1 = τa and τi = τbi for i = 1, . . . , r . By Lemma (2.2), we have that (a, a ′)
is an inversion for µ−1 = σr · · ·σ1. By the same Lemma, since µ−1 = τr · · · τ1, there is
a q such that a = τ1 · · · τq−1(bq) and a′ = τ1 · · · τq−1(b

′
q). It follows that the permutation

τ := (τ1 · · · τq−1)τq(τ1 · · · τq−1)
−1 interchanges a and a′. However, τ is conjugate to the

transposition τq and hence τ is a transposition. Since τ interchanges a and a ′, it follows that
τ = τa = σ1. As a consequence, we have the equation,

σ1τ1 · · · τq−1 = τ1 · · · τq−1τq .

Clearly, the assertion of the Lemma is obtained after multiplication by τq+1 · · · τr .
(2.4) Remark. Every transposition τ is an involution. In particular, for every simple trans-
position τa we have that τ 2

a = 1. Consider a second simple transposition τb with b 6= a.
Then we have the relations,

τaτbτa = τbτaτb if a and b are neighbors,

τaτb = τbτa if a and b are not neighbors.

Indeed, if a and b are neighbors, we may assume that b = a ′, and then τaτbτa = τa,b′ =
τbτaτb. If a and b are not neighbors, then the permutations τa and τb are disjoint, and hence
they commute.
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6 SYM 2

In general, an ordered set g1, . . . , gn−1 of elements in a semi-group G are said to satisfy
the Coxeter–Moore relations if

(1) gjgk = gkgj if |k − j | > 1,
(2) gjgkgj = gkgjgk if |k − j | = 1.

In particular, the simple transpositions τaj , with the letters aj in increasing order, satisfy
the Coxeter–Moore relations.

(2.5) Definition. Two presentations are said to be Coxeter–Moore equivalent if one can be
obtained from the other by a finite number (possibly none) of the following two allowable
replacements: Given a presentation (τ1, . . . , τr ). If two consecutive transpositions τi and
τi+1 are disjoint, then it is allowed to replace τi, τi+1 by τi+1, τi . If for three consecutive
transpositions τi , τi+1, and τi+2, we have that τi = τi+2 = τa and τi+1 = τb, where a and b

are neighboring letters, then it is allowed to replace τi, τi+1, τi+2 by τi+1τiτi+1.
Clearly, two Coxeter–Moore equivalent presentations contain the same number of simple

transpositions. As the simple transpositions satisfy the Coxeter–Moore relations, it follows
that two Coxeter–Moore equivalent presentations are presentations of the same permutation.

(2.6) Proposition. Any two minimal presentations of the same permutation are Coxeter–
Moore equivalent.

Any presentation which is not a minimal presentation is Coxeter–Moore equivalent to a
presentation in which two consecutive transpositions are equal.

Proof. To prove the first assertion, consider two minimal presentations of the permutation µ:

α = (τ1, . . . , τr), β = (σ1, . . . , σr ).

Then r = `(µ). We have to prove β and α are (Coxeter–Moore) equivalent.
Clearly, the assertion holds when r = 1. Proceed by induction on r = `(µ). Assume that

r ≥ 2 and that the assertion holds for minimal presentations of permutations of length r − 1.
Observe that the assertion holds if σr = τr as it follows by applying the induction hypoth-

esis to the two minimal presentations (τ1, . . . , τr−1) and (σ1, . . . , σr−1) of µσr . Similarly,
the assertion holds if σ1 = τ1.

Now, by the exchange property, there is, for some q = 1, . . . , r a presentation of µ of the
form γ = (σ1, τ1, . . . , τ̂q , . . . , τr ). As observed above, the presentation γ is equivalent to β.
Hence we may replace β by γ and assume that β = (σ1, τ1, . . . , τ̂q , . . . , τr). Again, by the
observation, the equivalence of α and β holds if q < r . Hence we may assume that q = r ,
that is, we may assume that

β = (σ1, τ1, . . . , τr−1).

Again, by the exchange property, there is a presentation of µ of the form γ = (τ1, . . . ) where
the dots indicate the transpositions ofβ with one omitted. If it was the first transpositionσ1 that
was omitted, thenγ would have the formγ = (τ1, τ1, . . . ) and henceγ would not be a minimal
presentation. Therefore, the presentation γ is of the form γ = (τ1, σ1, τ1, . . . , τ̂s . . . , τr−1)
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for some s = 1, . . . , r − 1. As observed above, γ is equivalent to α. Hence we may replace
α by γ , that is, we may assume that

α = (τ1, σ1, τ1, . . . , τ̂s . . . , τr−1), β = (σ1, τ1, . . . , τr−1)

for some s = 1, . . . , r − 1.
The assertion holds if r = 2. Indeed, if r = 2 then α = (τ1, σ1) and β = (σ1, τ1) and we

have the equation µ = τ1σ1 = σ1τ1. Since `(µ) = 2, we have that τ1 6= σ1. Clearly, then
the equation τ1σ1 = σ1τ1 implies that τ1 and σ1 are disjoint. Thus β is obtained from α by
an allowable replacement, and hence α and β are equivalent.

Thus we may assume that r ≥ 3. As observed above, if s < r − 1, then the assertion
holds. So assume that s = r − 1. Then s ≥ 2, and so the presentation α has the form
α = (τ1, σ1, τ1, . . . ). Since α is minimal, we have that τ1 6= σ1 and τ1σ1 6= σ1τ1. Therefore
σ1 and τ1 are simple transpositions associated to neighboring letters. Thus with an allowable
replacement we may obtain from α a presentation of the form (σ1, τ1, σ1, . . . ). As observed
above, the replaced presentation is equivalent to β. Therefore α and β are equivalent and the
first assertion of the Proposition has been proved.

The second assertion is proved by induction on the number r of factors in the presentation.
Clearly, the number of factors of a non-minimal presentation is at least 2. Moreover, a
presentation (τ1, τ2) is minimal unless τ1 = τ2. Hence the assertion holds when r = 2.
Assume that r > 2 and that the assertion holds for presentations with r − 1 factors. Let α =
(τ1, . . . , τr ) be a non-minimal presentation of µ. Then r > `(µ). Now β := (τ1, . . . , τr−1)

is a presentation of ν := µτr . Clearly, if β is non-minimal then, by the induction hypothesis,
the assertion holds for α. So assume that the presentation β is minimal. Then `(ν) = r − 1.
Since µ = ντr is not of length r , it follows from Lemma (1.3)(3) that `(µ) = r − 2.
Hence there is a minimal presentation (σ1, . . . , σr−2) of µ. Since ν = µτr , it follows that
δ := (σ1, . . . , σr−2, τr) is a presentation of ν. Moreover, the presentation δ is minimal
because `(ν) = r − 1. Therefore, by the first part of the Proposition, the presentation β

is Coxeter–Moore equivalent to δ. It follows that α is Coxeter–Moore equivalent to the
presentation (σ1, . . . , σr−2, τr , τr). Hence the assertion holds for α.

Thus both assertions of the Proposition have been proved.
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3. The Bruhat–Ehresman order.
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4. Young subgroups.
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5. Symmetric polynomials.

(5.1) Setup. Fix a commutative ring R. Consider the ring R[A] of polynomials with co-
efficients in R in the letters of A. With the letters of A in increasing order a1, . . . , an, the
monomials in R[A] are the products,

a
j1
1 · · · ajnn ,

where (j1, . . . , jn) is a sequence of n nonnegative integers. The monomials form an R-basis
of R[A] since, by definition, every polynomial f is an R-linear combination,

f =
∑

fj1,...,jna
j1
1 · · · ajnn ,

with uniquely determined coefficients fj1,...,jn in R.
The notation is simplified through the use of multi indices. A multi index J is a sequence

J = (j1, . . . , jn) of n nonnegative integers. Associate with J the monomial,

aJ := a
j1
1 · · · ajnn .

Then the coefficients of a polynomial f are the elements fJ of R, for all multi indices J . If
fJ 6= 0, then the monomial aJ is said to appear in f . The degree of a multi index J is the sum
of the entries, ‖J‖ = j1 + · · · + jn, and the degree of monomial aJ is the sum of exponents,
‖J‖. If f 6= 0, then the degree of f is the maximal degree of a monomial appearing in f .
The polynomial f is said to be homogeneous of degree d if all monomials appearing in f

are of degree d . According to this definition, the zero polynomial is homogeneous of every
degree d .

Multi indices are ordered as follows: we write I < J if either ‖I‖ < ‖J‖ or ‖I‖ = ‖J‖
and there is a p = 1, . . . , n such that iq = jq for q = 1, . . . , p − 1 and ip < jp . Clearly, the
order is a total order, and there is only a finite number of multi indices less than a given. The
smallest multi index is the set (0, . . . , 0). With respect to addition of multi indices, we have
that if I < J then I +K < J +K .

According to the order on the multi indices, there is a total order on the monomials:
aI < aJ if I < J . (Note that the order on the ai’s as monomials of degree 1 is the reverse
of the given order on the ai’s as letters.) The leading monomial of a non-zero polynomial
f is the biggest monomial aJ appearing in f ; the corresponding coefficient fJ is called the
leading coefficient and fJa

J is called the leading term. Addition of multi indices corresponds
to multiplication of monomials. Hence, if aI ≤ aJ and aL ≤ aK and one of the inequalities
is strict, then aIaL < aJ aK . It follows that if f and g are nonzero polynomials with leading
terms fJa

J and gKaK , then every monomial appearing in the product fg is at most equal to
aJ+K; moreover, if fJgK 6= 0, then fJgKaJ+K is the leading term of fg.

(5.2) Note. The number of monomials of degree d is equal to the binomial coefficient,
(
n + d − 1

n− 1

)
.
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14 SYM 5

Indeed, the number is equal to the number of multi indices J = (j1, . . . , jn) such that
‖J‖ = j1 + · · · + jn = d . Now, there is a bijective map J 7→ J ′ from the set of all multi
indices onto the set of all strictly increasing multi indices, defined by

j ′p := j1 + · · · + jp + (p − 1) for p = 1, . . . , n.

Under this map, we have that ‖J‖ = d if and only if j ′n = d + n− 1. Hence, the number of
multi indices J such that ‖J‖ = d is equal to the number of strictly increasing multi indices
(k1, . . . , kn) such that kn = n + d − 1. Clearly, the latter number is equal to the number of
subsets with n− 1 elements of the d + n− 1 integers 0, 1, . . . , d + n− 2.

(5.3) Remark. The algebra R[A] of polynomials has the following universal property: Given
a homomorphism R→ S of commutative rings and a set α = (α1, . . . , αn) of n elements of
S. Then there is a unique homomorphism of R-algebras R[A]→ S such that ai 7→ αi . It is
called evaluation of polynomials at α, and the value of f , denoted

f (α) = f (α1, . . . , αn),

is said to be obtained by the substitution ai 7→ αi (or ai := αi) for i = 1, . . . , n.

(5.4) Definition. The symmetric group
�

(A) acts on the algebra R[A] of polynomials.
Indeed, any permutation σ can be viewed as a permutation of the variables of R[A] and
as such it extends uniquely to an R-algebra automorphism of R[A], denoted f 7→ σf .
Obviously, we have the equation (στ)f = σ(τf ) for permutations σ and τ .

A polynomial f in R[A] is called symmetric if it is invariant under the action of
�

(A),
that is, if

σ(f ) = f for all σ ∈ �
(A). (5.4.1)

The symmetric polynomials in R[A] form an R-subalgebra, denoted SymR[A].
A polynomial f is called anti-symmetric if it is semi-invariant under the action of

�
(A)

in the sense that
σ(f ) = sign(σ)f for all σ ∈ �

(A). (5.4.2)

Clearly, the anti-symmetric polynomials in R[A] form a module over the ring SymR[A] of
symmetric polynomials. In particular, a product of a symmetric polynomial and an anti-
symmetric polynomial is an anti-symmetric polynomial. Similarly, a product of two anti-
symmetric polynomials is a symmetric polynomial.

The symmetric group is generated by the simple transpositions. It follows that a poly-
nomial is symmetric if it is unchanged whenever two neighbor variables are interchanged.
Similarly, a polynomial is anti-symmetric if it changes sign whenever two neighbor variables
are interchanged.

(5.5). If σ is a permutation of
�

(A), then σ(aJ ) is the monomial aσJ , where σJ is the
multi index obtained from J by permuting the entries as follows: With the given enumeration
of A, we can identify

�
(A) with the symmetric group

�
n of permutations of the numbers
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1, 2, . . . , n. Then σJ is obtained from J by moving, for p = 1, . . . , n, the entry jp from its
position p to the position σ(p). In other words,

σ(j1, . . . , jn) = (jσ−11, . . . , jσ−1n).

Symmetry is detected on the coefficients: f is symmetric if and only if fσJ = fJ for all
J and all σ ∈ �

(A); it suffices that fJ is unchanged whenever two neighbor entries in J are
interchanged. Similarly, f is anti-symmetric if and only if fσJ = sign(σ)fJ ; it suffices that
fJ changes sign whenever to neighbor entries in J are interchanged.

(5.6) Example. Consider the following polynomial of R[A]:

1(a1, . . . , an) :=
∏

a<b

(b − a) =
∏

p<q

(aq − ap).

Each factor is homogeneous of degree 1, and so 1 is homogeneous of degree equal to the
number, n(n − 1)/2, of factors. The leading monomial in 1 is an−1

1 an−2
2 · · · a0

n and the
leading coefficient is (−1)n(n−1)/2.

Let σ be a permutation. Then σ1 is the product of the factors σb−σa for a < b. Clearly,
if (a, b) is not an inversion for σ , then σb − σa is one of the factors of 1 and if (a, b) is an
inversion for σ , the σb − σa = −(σa − σb) is equal to −1 times a factor of 1. It follows
that

σ1 = (−1)`(σ )1.

Hence 1 is an anti-symmetric polynomial. As a consequence, the square 12 is a symmetric
polynomial. The square 12 is called the discriminant.

(5.7) Definition. For each multi index J , define the monomial symmetric polynomial mJ =
mJ (A) as the following sum of monomials,

mJ =
∑′

σ(aJ ),

where the sum is over all different monomials of the form σ(aJ ) for σ ∈ �
(A). In other

words, mJ is the sum of all monomials aI where I can be obtained from J by a permutation
of the entries. The polynomial mJ is obviously a symmetric polynomial, and homogeneous
of degree ‖J‖.

Clearly, if the multi index I is a permutation of J , then mI = mJ . Among the multi
indices that are permutations of J , the largest, K say, is characterized as being decreasing,
that is, by the property that k1 ≥ k2 ≥ · · · ≥ kn. Hence the monomial symmetric polynomials
are naturally parametrized by the decreasing multi indices K . Note that if K is a decreasing
multi index, then the leading term in mK is the monomial aK .

If K is a decreasing multi index, the trailing zeros in K are often omitted in the notation
mK . (However, for the smallest multi index K = (0, . . . , 0) we write m0 = m0...0 = 1.) For
instance, for the alphabet with n = 3 letters a, b, c, we have that

m1 = a + b + c,

m2 = a2 + b2 + c2, m11 = ab + ac + bc,

m3 = a3 + b3 + c3, m21 = a2b + a2c + ab2 + ac2 + b2c + bc2, m111 = abc.
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(5.8) Lemma. The monomial symmetric polynomials mK , for all decreasing multi indices
K , form an R-basis for SymR[A].

Proof. The terms of the polynomial mK are the monomials aJ where J is a permutation of K .
Hence a polynomial f is an R-linear combination of the mK if and only if, for all decreasing
multi indices K we have that fJ = fK when J is a permutation of K , that is, if and only if
f is a symmetric polynomial.

(5.9) Definition. The d’th elementary symmetric polynomial ed = ed(A) is the sum of all
products of d different letters. Thus e0 = 1 (the empty product is equal to 1) and ed = 0
when d > n. Clearly, e1 = a1 + · · · + an, and en = a1 · · · an. In general,

ed =
∑

1≤i1<···<id≤n
ai1 · · · aid .

Obviously, ed is a symmetric polynomial, and homogeneous of degree d . Note that ed for
d ≤ n is the special monomial symmetric polynomial,

ed = m1...10...0 = m1...1,

with d occurrences of 1.
Equivalently, the ed may be defined by the following expansion in the polynomial ring

R[A][T ] in one variable T over R[A]:
∏

a∈A
(T − a) = T n − e1T

n−1 + · · · + (−1)nen.

(5.10) Theorem. The products eI := e
i1
1 · · · einn , for all multi indices I , form an R-basis for

SymR[A].

Proof. The leading term in ed is the monomial a1...10...0. Hence the leading term of eI is the
monomial aK , where

K = (i1 + · · · + in, i2 + · · · + in, . . . , in−1 + in, in). (5.10.1)

To prove the Theorem, we have to prove that any symmetric polynomial f has an expansion
f =∑I rI e

I with uniquely determined coefficients rI ∈ R. To prove the existence, assume
that f 6= 0, and consider the leading monomial, aK say, of f . Since f is symmetric, it
follows, for instance from (5.8), that K is a decreasing multi index. Hence there is a unique
multi index I such that (5.10.1) holds. Then the polynomial f and the polynomial fKeI have
the same leading term, namely fKaK . Consequently, the difference f − fKeI is either the
zero polynomial or its leading monomial is strictly less that the leading monomial of f . If
the difference f − fKeI is non-zero, repeat the argument. By induction, in a finite number
of steps, we obtain the required expansion of f .

By almost the same argument, unicity holds. Indeed, it follows for a sum
∑
I rI e

I that the
non-zero terms have different leading monomials, and so a non-trivial sum is never the zero
polynomial.
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(5.11) Remark. An important application of the theorem is the following: Consider a monic
polynomial P ∈ R[T ], say,

P = T n + r1T
n−1 + · · · + rn−1T + rn. (5.11.1)

Let S be a commutative ring containing R as a subring, and assume that P as a polynomial
in S[T ] has an expansion as a product,

P = (T − α1) · · · (T − αn). (5.11.2)

Evaluation at α = (α1, . . . , αn) is the homomorphism of R-algebras R[A]→ S,

f 7→ f (α1, . . . , αn).

By expanding the product (5.11.2) it follows that

ed(α1, . . . , αn) = (−1)drd .

So, up to a sign, evaluation of the elementary symmetric polynomials yield the coefficients of
P . It follows from the Theorem that if f is a symmetric polynomial in R[A], then the value
f (α1, . . . , αn) is an R-linear combination of products r

i1
1 · · · r inn . In other words, without

knowing the “roots” αi of P it is possible to express, for a symmetric polynomial f ∈ R[A],
the value f (α1, . . . , αn) as a polynomial in the coefficients of P .

(5.12) Example. The polynomial eI is obviously a sum of monomials aJ . Hence, in the
notation of the proof of theorem (5.10), there is an equation,

eI = mK +
∑

L<K

αI,LmL,

where the sum is over decreasing multi indices L less that K and the coefficients αI,L are
non-negative integers. The equation expresses the basis eI in terms of the basis mK , and it
follows that the base change matrix is an upper triangular matrix with 1 in the diagonal. So
it is easy to invert the matrix and express the mK in terms of the basis eI .

In degree 0, we have that e0...0 = 1 = m0, and in degrees 1, 2, and 3,

e1 = m1,

e2 = m11, e2
1 = m2 + 2m11,

e3 = m111, e1e2 = m21 + 3m111, e3
1 = m3 + 3m21 + 6m111

By solving the equations, it follows that

m1 = e1,

m11 = e2, m2 = e2
1 − 2e2,

m111 = e3, m21 = e1e2 − 3e3, m3 = e3
1 − 3e1e2 + 3e3.
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(5.13) Definition. The d’th power sum pd = pd(A), for d ≥ 1, is the sum of the d’th powers
of the variables, that is, pd =∑a ad . Equivalently,

pd = md .

The complete symmetric polynomial sd = sd (A) is the sum of all monomials of degree d ,
that is, sd =∑‖J‖=d aJ . Equivalently,

sd =
∑′

‖K‖=d
mK ,

where the sum is over decreasing multi indices.

(5.14). The polynomials ed , sd , and pd appear naturally as coefficients of power series.
Indeed, in the power series ring R[A][[T ]] in one variable, we have the equations,

e(T ) :=
∏

a∈A
(1+ aT ) =

∞∑

d=0

edT
d , (5.14.1)

s(T ) :=
∏

a∈A

1

1− aT
=
∞∑

d=0

sdT
d , (5.14.2)

p(T ) :=
∑

a∈A

a

1− aT
=
∞∑

d=0

pd+1T
d . (5.14.3)

It follows from the equations that the power series s(T ) is the inverse of the power series
e(−T ), that is, we have the equation e(−T )s(T ) = 1. Hence, since e0 = 1, the coefficients
sd of s(T ) are determined recursively from the coefficients (−1)ded of e(−T ). For instance,
in low degrees we obtain the formulas,

e0s0 = 1; s0 = 1,

s1 − e1 = 0; s1 = e1,

s2 − e1s1 + e2 = 0; s2 = e2
1 − e2,

s3 − e1s2 + e2s1 − e3 = 0; s3 = e3
1 − 2e1e2 + e3,

s4 − e1s3 + e2s2 − e3s1 + e4 = 0; s4 = e4
1 − 3e2

1e2 + 2e1e3 + e2
2 − e4.

Similarly, it follows from the equations that the power series p(T ) is equal to the logarith-
mic derivative of s(T ) and equal to−1 times the logarithmic derivative of e(−T ), that is, we
have the equations p(T ) = s(T )′/s(T ) = −(e(−T ))′/e(−T ) or, equivalently,

s(T )p(T ) = s ′(T ), e(−T )p(T ) = e′(−T ). (5.14.4)
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Hence, the coefficients pd+1 of p(T ) are determined recursively from the coefficients ed of
e(T ). For instance, in low degrees we obtain the formulas,

e0p1 = e1; p1 = e1,

p2 − e1p1 = −2e2; p2 = e2
1 − 2e2,

p3 − e1p2 + e2p1 = 3e3; p3 = e3
1 − 3e1e2 + 3e3,

p4 − e1p3 + e2p2 − e3p1 = −4e4; p4 = e4
1 − 4e2

1e2 + 4e1e3 + 2e2
2 − 4e4.
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6. Alternating polynomials.

(6.1) Lemma. The following three conditions on a polynomial f = ∑
J fJa

J of R[A] are
equivalent:

(i) The coefficients fJ are alternating in the multi index J , that is, fJ changes sign when
two entries at different positions in J are interchanged and fJ vanishes when two
entries of different position in J are equal.

(ii) The polynomial f is anti-symmetric and divisible by the product
∏
a<b(b − a).

(iii) The polynomial f is anti-symmetric and, for all q > p, the substitution aq := ap in
f yields the zero polynomial.

Proof. As noted in (5.4), the polynomial f is anti-symmetric if and only if fJ changes sign
when two entries of J are interchanged. Therefore, to prove the equivalence of the three
conditions, we may assume that f is anti-symmetric.

Let p < q be arbitrary integers between 1 and n, and let τ be the transposition of
�

(A)

that interchanges ap and aq . Then, to prove the equivalence of (i) and (iii), it suffices to prove
the following assertion: the substitution aq := ap in f yields zero if and only if fJ = 0 for
all multi indices J such that jp = jq . To prove the latter assertion, decompose f into two
sums of monomials,

f =
∑

jp=jq
fJa

J +
∑

jq<jp

(
fJa

J + fτJa
τJ
)
. (6.1.1)

Clearly, the substitution aq := ap in aJ and in aτJ yield the same result. Moreover, since f

is anti-symmetric, we have that fτJ = −fJ . Consequently, the substitution aq := ap in the
second sum of (6.1.1) yields zero. Therefore, the substitution aq := ap in f yields zero, if
and only if the substitution aq := ap in the first sum yields zero. Obviously, the substitution
aq := ap in the first sum yields zero if and only if all the coefficients fJ in the first sum are
equal to zero. Hence the equivalence of (i) and (iii) holds.

To prove the equivalence of (ii) and (iii), note that the substitution aq := ap in f yields
zero if and only if f is divisible by the difference aq − ap . Clearly, f is divisible by all
differences aq−ap for p < q if and only if f is divisible by the product of all the differences.
Hence the equivalence of (ii) and (iii) holds.

(6.2) Definition. A polynomial f is said to be alternating if it satisfies the equivalent con-
ditions in Lemma (6.1). Clearly, the alternating polynomials form an R-submodule AltR[A]
of R[A]. In fact, it follows from any of the characterizations (ii) or (iii) that AltR[A] is a
SymR[A]-submodule, that is, a product of a symmetric polynomial and an alternating poly-
nomial is alternating.

If 2 is a regular element in R then the alternating polynomials are simply the anti-symmetric
polynomials. Indeed, if f is anti-symmetric and J is a multi-index with two equal entries,
then fJ = −fJ and hence 2fJ = 0.

21
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(6.3) Definition. Consider the∞× n matrix,

V (a1, . . . , an) :=




1 . . . 1
a1 . . . an
...

...

a i1 . . . a in
...

...




, (6.3.1)

whose rows are naturally indexed 0, 1, 2, . . . . For any multi-indexJ = (j1, . . . , jn), consider
the n× n matrix obtained by selecting from the matrix V the n rows with indices j1, . . . , jn,
and denote by 1J its determinant, that is,

1J = 1j1,...,jn (a1, . . . , an) :=

∣∣∣∣∣∣∣

a
j1
1 . . . a

j1
n

...
...

a
jn
1 . . . a

jn
n

∣∣∣∣∣∣∣
. (6.3.2)

The special determinant obtained when J is the sequence 0, 1, . . . , n − 1 will be called the
Vandermonde determinant and denoted 1(a1, . . . , an), that is,

1(a1, . . . , an) :=

∣∣∣∣∣∣∣∣

1 . . . 1
a1 . . . an
...

...

a n−1
1 . . . a n−1

n

∣∣∣∣∣∣∣∣
. (6.3.3)

The determinants 1J are polynomials in R[A]. Clearly, they are homogeneous of degree
‖J‖. It follows from usual properties of determinants, as functions of the columns, that the
condition (6.1)(iii) holds for 1J . Hence 1J is an alternating polynomial. Moreover, the
determinants 1J are alternating in the entries of J , that is, if σ is a permutation in

�
(A) then

1σJ = (sign σ)1J and 1J = 0 if the multi index J has two equal entries.
Note that, since 1J is an alternating polynomial, we have that 1J is divisible by the

product
∏
p<q(aq − ap).

(6.4) Example. For n = 3 and the alphabet with the letters a, b, c, we have that

1ijk(a, b, c) =
∣∣∣∣∣
ai bi ci

aj bj cj

ak bk ck

∣∣∣∣∣ = aibj ck + akbicj + ajbkci − aibkcj − ajbick − akbj ci.

In particular,

1(a, b, c) = −a2b + a2c + ab2 − ac2 − b2c + bc2 = (b − a)(c− a)(c − b).

(6.5) Note. The Vandermonde determinant defined in (6.3) is the determinant used by Jacobi
[1]. Up to a sign, the determinant is independent of the given ordering of the letters of A.
Our choice of sign from that used by Macdonald [2] and others. Indeed, the Vandermonde
determinant defined in [2] differs by the sign (−1)n(n−1)/2 from ours.
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(6.6) Proposition. The determinant 1J is given by the following formula,

1J =
∑

σ∈ �
(A)

sign(σ)σ(aJ ). (6.6.1)

Moreover, the determinants 1J , for all strictly increasing multi indices J , form an R-basis
for the module AltR[A] of alternating polynomials in R[A].

Proof. The formula (6.6.1) is just the usual expression for the determinant (6.3.2).
Let f be an alternating polynomial. By (6.1)(i), the only monomials appearing in f are of

the form aI where all entries in the multi index I are different. If all entries in a multi index I

are different, then they may be arranged into strictly increasing order by a unique permutation,
that is, we have that I = σJ where σ is a permutation and J is a strictly increasing multi
index. Moreover, since f is anti-symmetric, we have that fI = (sign σ)fJ , that is, the term
fIa

I is equal to fJ (sign σ)aσJ . It follows that polynomials on the right side of (6.6.1), for
all strictly increasing multi indices J , form an R-basis for AltR[A].

(6.7) Corollary. For the Vandermonde determinant we have the equation,

1 = 1(a1, . . . , an) =
∏

p<q

(aq − ap). (6.7.1)

Moreover, multiplication by 1 is an isomorphism from the R-submodule SymR[A] of sym-
metric polynomials onto the R-submodule of AltR[A] of alternating polynomials. Finally,
the symmetric polynomials,

sJ (A) := 1J /1,

for all strictly increasing multi indices J , form an R-basis for the module SymR[A] of
symmetric polynomials.

Proof. In (6.7.1) the two polynomials have the same degree, namely n(n − 1)/2. The Van-
dermonde determinant is alternating and hence divisible by the right side. Hence it suffices
to compare the coefficient of the monomial a0

1a1
2 · · · an−1

n in the two polynomials. Clearly,
both coefficients are equal to 1.

By Lemma (6.1), every alternating polynomial is divisible by 1. Clearly, if a polynomial
f is divisible by 1, then f is alternating if and only if f/1 is symmetric. Hence the
second assertion of the Corollary holds. The final assertion follows from the second and the
description of the R-basis for AltR[A] in Proposition (6.6).

(6.8) Definition. The symmetric polynomials sJ = 1J /1 of (6.7) are called Schur polyno-
mials. Since 1J is homogeneous of degree ‖J‖ and 1 is homogeneous of degree n(n−1)/2,
it follows that sJ is homogeneous of degree ‖J‖ − n(n− 1)/2.

The polynomials sJ for strictly increasing multi indices J will be called proper Schur
polynomials. They form an R-basis for SymR[A]. For the smallest strictly increasing multi
index J = (0, 1, . . . , n − 1), we have that

s0,1,...,n−1 = 1.
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The Schur polynomials sJ are alternating in the multi index J , that is, sJ = 0 if J has two
equal entries and sJ changes sign when two entries at different position in J are interchanged.
In particular, any Schur polynomial sJ is either equal to 0 or, up to sign, equal to a proper
Schur polynomial.

In general, it is hard to compute the Schur polynomials directly as the determinants divided
by 1, and later we will prove other relations involving the Schur polynomials. As an example,
let us prove here the following formulas, for p = 0, . . . , n:

s0,1,...,p̂,...,n = en−p . (6.8.1)

Consider the polynomial D(T ) in R[A][T ] defined as the Vandermonde determinant

D(T ) := 1(a1, . . . , an, T ) =

∣∣∣∣∣∣∣∣

1 . . . 1 1
a1 . . . an T
...

...
...

a n1 . . . a nn T n

∣∣∣∣∣∣∣∣
.

By (6.7.1), applied to the alphabet {a1, . . . , an, T }, we have the product expansion D(T ) =
1
∏
i(T −ai). On the other hand, by developing the determinant D(T ) along its last column,

we obtain the equation D(T ) =∑p(−1)n−p10,...,p̂,...,nT p . Hence we have the equation,

1
n∏

i=1

(T − ai) =
n∑

p=0

(−1)n−p10,...,p̂,...,nT p.

As noted in (5.9), the Formula (6.8.1) is a consequence.

(6.9) Definition. If f is any polynomial in R[A], then the sum,

∑

σ∈ �
(A)

(sign σ)σf,

is an alternating polynomial. Indeed, the sum is R-linear as a function of f and if f is a
monomial aJ , then, by (6.6.1), the sum is equal to the determinant 1J which is an alternating
polynomial. Therefore, it follows from Corollary (6.7) that the equation,

δ(f ) := 1

1

∑

σ∈ �
(A)

(sign σ)σf , (6.9.1)

defines a map δ = δA : R[A]→ SymR[A]. Obviously, the map δ is an R-linear operator. It
is called the symmetrization operator. As noted above, the Schur polynomial sJ is the result
of symmetrizing the monomial aJ ,

sJ = δ(aJ ). (6.9.2)
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It is obvious from (6.9.1) that symmetrization is a SymR[A]-linear operator, that is, if f

and g are polynomials and g is symmetric, then

δ(gf ) = gδ(f ). (6.9.2)

As a consequence, we obtain for a symmetric polynomial g and any multi index L the
formula,

gsL =
∑

I

gI s
I+L. (6.9.3)

Indeed, the two sides of (6.9.3) are the results of symmetrizing gaL =∑I gIa
I+L.

(6.10) Note. The formula (6.9.3) expresses the product gsL of a symmetric polynomial g

and a Schur polynomial sL as an R-linear combination of Schur polynomials. To get the
expansion of gsL in the basis sJ consisting of proper Schur polynomials we have to consider
the non-zero terms in (6.9.3), that is, the terms for which the multi index I +L has all entries
different, and then, for the non-zero terms we have to collect the coefficients for which I +L

is a permutation of a given strictly increasing multi index J . This collection of terms is often
of combinatorial nature.

For instance, let mK be the monomial symmetric polynomial. Then

mK sL =
∑′

sI+L, (6.10.1)

where the sum is over all different permutations of the entries in K . Indeed, the formula
follows from (6.9.3) since mK =∑′ aI .

In particular, since the d’th elementary symmetric polynomial ed , for 0 ≤ d ≤ n, is
the monomial symmetric polynomial m1...10...0 (with 1 occurring d times), it follows that
eds

L is the sum (6.10.1) over all the
(
n
d

)
permutations I of (1, . . . , 1, 0, . . . , 0). Take L :=

(0, 1, . . . , n − 1). Then sL = 1 and the formula is the expansion of ed in terms of Schur
polynomials. Clearly, I + L has two equal entries unless I = (0, . . . , 0, 1, . . . , 1). So the
formula reduces to the formula of (6.8.1),

ed = s0,...,n−d−1,n−d+1,...,n . (6.10.2)

Similarly, the d’th power sum pd , for d ≥ 1, is the monomial symmetric polynomial
md0...0. Hence pds

L is the sum (6.10.1) over the n permutations I of (d, 0, . . . , 0). Take
L := (0, 1, . . . , n − 1) to obtain the following expansion of pd :

pd =
∑

i

s0,1,...,i−1,d+i,i+1,...,n−1 =
∑

i≥n−d
(−1)n−i−1s0,...,î,...,n−1,d+i . (6.10.3)

(6.11) Note. Take L := (0, 1, . . . , n − 1) in (6.10.1). Then (6.10.1) is the expansion of the
monomial symmetric polynomial mK in the basis of Schur polynomials. Clearly, among the
multi indices I +L appearing in formula, the smallest, K̃ say, is the strictly increasing multi
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index I + L obtained when I is the strictly increasing permutation of K . So the expansion
obtained has the form

mK = sK̃ +
∑

J>K̃

γK,J s
J ,

where the coefficients γK,J are integers. In particular, the base change matrix is a lower
triangular matrix, and hence it can be used to obtain expansions of the Schur polynomials s J

in terms of the basis mK . For n = 4, we have in degrees 1, 2, and 3 the equations,

m1 = s0124

m11 = s0134, m2 = s0125 − s0134

m111 = s0234, m21 = s0135 − 2s0234, m3 = s0126 − s0135 + s0234 ,

and in degree 4,

m1111 = s1234, m211 = s0235 − 3s1234, m22 = s0145 − s0235 + s1234,

m31 = s0136 − s0145 − s0235 + 2s1234, m4 = s0127 − s0136 + s0235 − s1234 .

By solving the equations, it follows in degrees 1, 2, and 3 that

s0124 = m1

s0134 = m11, s0125 = m2 +m11

s0234 = m111, s0135 = m21 + 2m111, s0126 = m3 +m21 +m111 .

and in degree 4,

s1234 = m1111, s0235 = m211 + 3m1111, s0145 = m22 +m211 + 2m1111,

s0136 = m31 +m22 + 2m211 + 3m1111, s0127 = m4 +m31 +m22 +m211 +m1111.

In fact, the coefficients of the proper Schur polynomials in terms of the basis mK are always
non-negative, and we will later give a combinatorial expression for the coefficients.

(6.12) Pieri’s Formula. Let sd be the d’th complete symmetric polynomial. Then, for every
strictly increasing multi index L, we have the expansion,

sd s
L =

∑′
sJ , (6.12.1)

where the sum is over all strictly increasing multi indices J = (j1, . . . , jn) satisfying the
inequalities,

l1 ≤ j1 < l2 ≤ j2 < · · · < ln−1 ≤ jn−1 < ln ≤ jn,
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and the equality ‖J‖ = ‖L‖ + d . In particular, we have the equation,

sd = s0,...,n−2,n−1+d. (6.12.2)

Proof. Write J ⊃ L if every entry in the multi index J is at least equal to the corresponding
entry in L. Denote by

�
the set of multi indices J such that J ⊃ L and ‖J‖ = ‖L‖ + d .

Since sd =∑‖I‖=d aI , it follows from (6.9.3) that sd s
L =∑‖I‖=d sI+L, or, equivalently,

sd s
L =

∑

J∈ �
sJ . (6.12.3)

In (6.12.1), the sum is over all J ∈ �
such that the following inequality holds for p =

1, . . . , n − 1:
jp < lp+1. (*)

Therefore, to prove the Formula (6.12.1), we have to prove that the sum of the sJ , over those
J ∈ �

for which one of the inequalities (*) is false, is equal to zero.
For each q = 1, . . . , n − 1, let

�
q be the subset of

�
consisting of multi indices J such

that the inequality (*) holds for all p < q but not for p = q. It suffices to prove that the sum
of the sJ for J ∈ �

q is equal to zero.
To prove the latter assertion, let τ be the simple transposition that interchanges in a multi

index J the q’th and the (q+ 1)’st entry. It J belongs to
�
q , then jq ≥ lq+1 and jq+1 ≥ lq+1

since J ⊃ L. It follows that τJ belongs to
�
q . Hence τ defines an involution of the set

�
q .

If τJ = J , then J has two equal entries, and then sJ = 0. If τJ 6= J , then sJ + sτJ = 0,
since sJ is alternating in J . It follows that the sum

∑
J∈ � q sJ is equal to zero.

Thus Formula (6.12.1) holds. Clearly, the Formula (6.12.2) is the special case obtained
when L = (0, 1, . . . , n − 1).

(6.13) Notation. Consider the three bases for the R-module SymR[A] of symmetric polyno-
mials: the monomial basis of monomial symmetric polynomials mK , indexed by decreasing
multi indices K , the elementary basis of products eI = e

i1
1 · · · einn of the elementary symmet-

ric polynomials, indexed by arbitrary multi indices I , and the Schur basis of proper Schur
polynomials sJ , indexed by strictly increasing multi indices J . In all three cases, the multi
indices are assumed to be of size equal to the number n of letters of A. It will be convenient
to introduce a notation where multi indices of arbitrary sizes are allowed.

First, as noted in (5.7), it is common for a decreasing multi index K to omit (some of)
the trailing zeros in the notation mK . More precisely, we define, for any decreasing multi
index K = (k1, . . . , kr ), the polynomial mK as follows: If r < n, then mK := mk1,...,kr ,0,...,0

with n − r trailing zeros. If r > n and kn+1 = · · · = kr = 0, then mK := mk1,...,kn .
Finally, if r > n and some entry kq with q > n is positive, then mK := 0. In all cases,
mK is homogeneous of degree ‖K‖. In this notation, the monomial basis consists of the
polynomials mK where K is a decreasing multi index of size at most n and with no trailing
zeros.
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Next, for an arbitrary multi index I = (i1, . . . , ir ) of size r , we define eI := e
i1
1 . . . e

ir
r .

The elementary symmetric polynomials ed are defined for all d , and they vanish when d > n.
So, eI = 0 if and only if r > n and some entry iq for q > n is positive. In all cases, eI is
homogeneous of degree equal to i1 + 2i2 + · · · + rir . In this notation, the elementary basis
consists of the products eI where I is a multi index of size at most n and with no trailing
zeros.

Consider finally a strictly increasing multi index J = (j1, . . . , jr ). It will be convenient
to say that multi indices of the following form, for some t ≥ 0, are extensions of J :

Ĵ := (0, 1, . . . , t − 1, t + j1, . . . , t + jr ),

If r ≤ n, define sJ := s Ĵ , where Ĵ is the extension to a multi index of size n. If r > n and
J is the extension Ĵ0 of a multi index J0 of size n, define sJ := sJ0 . Finally, if r > n and J

is not the extension of a multi index of size n, define sJ = 0. Note that sJ is a proper Schur
polynomial except in the last case. In all cases, sJ is homogeneous of degree ‖J‖−r(r−1)/2.
In this notation, the Schur basis consists of the Schur polynomials sJ where J is a strictly
increasing multi index of size at most n and with j1 > 0.

The empty sequence ( ) is allowed in all three cases, and, according to the definitions,
m( ) = e( ) = s( ) = 1.

For instance, in degree 4, the elements of the three bases are the following:

m1111, m211, m22, m31, m4;
e0001, e101, e02, e21, e4;
s1234, s124, s23, s14, s4;

except that, when the number of variables is less than 4, some of the polynomials vanish and
have to be discarded in the list.

Note that, in the extended notation for the proper Schur polynomials, the formulas of
(6.10.2), (6.12.2), and (6.10.3), simplify to the following:

ed = s1,...,d , sd = sd , pd =
d−1∑

j=0

(−1)j s1,...,j,d.

(6.14) Notation. There is another natural way to index the products eI = e
i1
1 · · · einn of the

elementary basis. If L = (l1, . . . , lr) is multi index of size r , let

eL := el1 · · · elr .
Note that eL is homogeneous of degree ‖L‖. The products eL are symmetric in the entries
of L, and we will usually index them by decreasing multi indices. If l1 > n, then eL = 0.

Clearly, eI = eL, where

L := (

in︷ ︸︸ ︷
n, . . . , n, . . . ,

i2︷ ︸︸ ︷
2, . . . , 2,

i1︷ ︸︸ ︷
1, . . . , 1).
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Hence the elementary basis consists of the products eL where L is a decreasing multi index
with l1 ≤ n.

For instance, in degree 4 we have that

e0001 = e4, e101 = e1e3 = e31, e02 = e2
2 = e22, e21 = e2

1e2 = e211, e4 = e4
1 = e1111.

(6.15) Remark. It is easy to express, for each decreasing multi index L of size r , the
coefficients αL,K in the expansion eL =∑K αL,KmK of eL in the monomial basis. Namely,
αL,K is the number of r × n matrices with entries 0 or 1 and row sums l1, . . . , lr and column
sums k1, . . . , kn. Indeed, the terms of el are the monomials a

p1
1 . . . a

pn
n where the pj are 0

or 1 and
∑
j pj = l. Hence each matrix of the said form corresponds to the selection of a

term in each eli for i = 1, . . . , r such that the product of the selected terms is equal to aK .
Similarly, if we define sL := sl1 · · · slr , then, in the expansion sL = ∑

K βL,KmK , the
coefficient βL,K is the number of r × n matrices with non-negative integer entries and row
sums l1, . . . , lr and column sums k1, . . . , kn.

As a consequence, the matrix of the αL,K , indexed by all decreasing multi indices of
size n and degree d , is a symmetric matrix. Consider, for d ≤ n, the products eL for all
decreasing multi indices L of size n and degree d . They are simply the elementary symmetric
polynomials eI of degree at most d . Hence they form a basis for the R-module of symmetric
polynomials of degree at most d , and the matrix αL,K is the base change matrix from the
basis of the eL to the basis of the mK for ‖K‖ ≤ d .
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7. Determinantal Methods.

(7.1) Setup. Work with matrices and power series over a given commutative ground ring.
We will follow a classical convention for matrices M . If I is an ordered set of row indices,
we denote by MI the matrix obtained from M by selecting its rows with indices in I , and
if J is an ordered set of column indices, we denote by MJ the matrix obtained from M by
selecting its columns with indices in J . In this notation, M i is the i’th row of M , and Mj is
the j’th column. In particular, M i

j is the ij’th entry in M .

In general, if u is a power series we denote by ui the coefficient of T i , that is,

u = u0 + u1T + u2T
2 + · · · .

If I = (i1, . . . , ir ) is a multi index of size r , we denote by uI the product,

uI := ui1 · · · uir .
The products uI are symmetric in the entries of I . In particular, if K is the decreasing
permutation of I , then uK = uI .

(7.2) Notation. For a power series u, denote by 〈u〉 the infinite column of coefficients of u.
More generally, for any finite or infinite sequence of r (1 ≤ r ≤ ∞) power series u, v,w, . . . ,
denote by 〈u, v,w, . . . 〉 the∞× r matrix with columns 〈u〉, 〈v〉, 〈w〉, . . . .

In this notation, associate with a given power series u the∞×∞ matrix,

M(u) := 〈u, T u, T 2u, . . . 〉 =




u0 0 0 0 . . .

u1 u0 0 0 . . .

u2 u1 u0 0 . . .

u3 u2 u1 u0 . . .
...

...
...

...
. . .




The rows and columns in M(u) are naturally indexed 0, 1, 2, . . . . In particular, the ij’th entry
in M(u) is equal to ui−j where, by convention, uk = 0 if k < 0.

Clearly, for power series u, v, and w, the equation uv = w is equivalent to any of the
following two matrix equations:

M(u)〈v〉 = 〈w〉, M(u)M(v) = M(w). (7.2.1)

(7.3) Lemma. Let u be a power series with u0 = 1. Assume for power series v and w that
uv = w. Then, for d = 0, 1, . . . , the following equation holds:

(−1)dvd =

∣∣∣∣∣∣∣∣∣∣

w0 u0 0 . . . 0
w1 u1 u0 . . . 0
...

...
...

. . .
...

wd−1 ud−1 ud−2 . . . u0
wd ud ud−1 . . . u1

∣∣∣∣∣∣∣∣∣∣

(7.3.1)
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In particular, if uv = 1, then

(−1)dvd =

∣∣∣∣∣∣∣∣

u1 u0 . . . 0
...

...
. . .

...

ud−1 ud−2 . . . u0
ud ud−1 . . . u1

∣∣∣∣∣∣∣∣
. (7.3.2)

Proof. Let U be the (d + 1)× (d + 1) matrix consisting of the first d + 1 rows and columns
of M(u). The columns of U are U0, . . . , Ud . In particular, the column U0 consists of the first
(d + 1) coefficients u0, . . . , ud of u. Define the columns W0 and V0 similarly. The matrix
M(u) is a lower triangular matrix. Hence, from the first equation of (7.2.1), or directly, we
obtain the matrix equation UV0 = W0. The latter equation, with the vi for i = 0, . . . , d as
unknowns, is solved by Cramer’s formula: Since det U = 1, it follows that vi is equal to the
determinant of the matrix obtained from U by replacing the column Ui by W0. In particular,

vd = det(U0, . . . , Ud−1,W0) = (−1)d det(W0, U0, . . . , Ud−1),

which is the asserted Formula (7.3.1). Clearly, Formula (7.3.2) is a special case.

(7.4) Definition. Let I = (i1, . . . , ir ) and J = (j1, . . . , jr ) be multi indices of the same size
r . Then MI (u) is an r ×∞ matrix, and MJ (u) is an∞× r matrix, and MI

J (u) is an r × r

matrix. Denote by uIJ the determinant of MI
J (u), that is,

uIJ :=
∣∣∣∣∣∣

ui1−j1 . . . ui1−jr
...

...

uir−j1 . . . uir−jr

∣∣∣∣∣∣

Subsets with r elements of the non-negative integers will be identified with strictly increas-
ing multi indices of size r . In particular, the interval [r] := {0, 1, . . . , r − 1} consisting of
the first r non-negative integers will be identified with the multi index (0, 1, . . . , r − 1). For
any multi index I of size r , we will normally write uI for the determinant uI[r] = det MI

[r](u).

Note that MI
[r](u) is the matrix obtained from M(u) by selecting the first r columns and the

rows with indices in I , and uI is the determinant,

uI :=
∣∣∣∣∣∣

ui1 ui1−1 . . . ui1−r+1
...

...
...

uir uir−1 . . . uir−r+1

∣∣∣∣∣∣

In this notation, the 1 × 1 determinant ui , where the superscript i is an index, is the i’th
coefficient ui of u.

Note that the determinantuIJ is alternating in I and alternating inJ . In particular, the special
determinant uI is alternating in the multi index I . As a consequence, general properties of the
determinants uIJ may be deduced from properties valid for strictly increasing multi indices I

and J .
The special determinants uI should not be confused with the products uI defined in (7.1)
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(7.5) Proposition. Let u be a power series and let I and J be strictly increasing multi indices
of the same size r . View I and J as subsets of the interval [N] = {0, 1, . . . , N − 1} for some
N � 0. Then:

(1) (Vanishing) The determinant uIJ is non-zero only when I ⊃ J , that is, when ip ≥ jp
for p = 1, . . . , r . If u is a polynomial of degree at most n, then uIJ is non-zero only when
n+ jp ≥ ip ≥ jp for p = 1, . . . , r .

(2) (Extension) The determinant uIJ is unchanged if the same number is subtracted from

all entries in I and in J . If u0 = 1 and ip = jp for p = 1, . . . , t , then uIJ = u
I0
J0

, where
I0 = (it+1, . . . , ir ) and J0 = (jt+1, . . . , jr ).

(3) (Homogeneity) If λ is an element in the ground ring and w is the power series defined
by w(T ) = u(λT ), then

wI
J = λ‖I‖−‖J‖uIJ . (7.5.1)

(4) (Symmetry) Denote by x 7→ x∗ = N − 1 − x the order reversing involution of the
interval, and by I ∗ and J ∗ the images of I and J , as subsets of [N]. Then,

uIJ = uJ
∗
I ∗ . (7.5.2)

(5) (Duality) Denote by Ĩ and J̃ the complements with respect to the interval [N], and
denote by I ′ and J ′ the images of Ĩ and J̃ under the involution x 7→ x∗. If u0 = 1 and v is
the power series defined by the equation u(T )v(−T ) = 1, then

uIJ = vI
′
J ′ . (7.5.3)

(6) (Multiplication) If v and w are power series such that uv = w, then

wI
J =

∑

I⊃K⊃J
uIKvKJ , (7.5.4)

where the sum is over strictly increasing multi indices K of size r .

Proof. (1) Consider the matrix U := M I
J (u). By definition, the pq’th entry in U is the

coefficient U
p
q = uk where k = ip − jq . Entries of U above U

p
q and to the right of U

p
q are

coefficients ul with l ≤ k. Assume that ip < jp for some p. The diagonal element U
p
p is

equal to uk with k < 0. It follows that the largest rectangular block of U with the diagonal
element U

p
p as its lower left corner is equal to zero. Hence the determinant uIJ = det U

vanishes.
Similarly, assume that u is a polynomial of degree at most n, and that ip > jp + n. Then

the diagonal element U
p
p is equal to uk with k > n. It follows that the largest rectangular

block of U with the diagonal element U
p
p as its upper right corner is equal to zero. Hence the

determinant uIJ = det U vanishes.
(2) If the same number is subtracted from all entries of I and J , then the differences ip−jq

are unchanged. Hence the matrix U = M I
J (u) and its determinant are unchanged.
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If ip = jp for p = 1, . . . , t , then U is a block matrix,

U =
(

T 0
∗ U0

)
,

where T is an lower triangular (r − t)× (r − t) matrix with the element u0 in the diagonal,
and U0 :=M

I0
J0

(u). Hence, if u0 = 1, we have that det U = det U0, and hence uIJ = u
I0
J0

.

(3) Since wi = λiui , it follows that if the pq’th entry in M I
J (w) is non-zero, then it is equal

to λip−jq times the pq’th entry of M I
J (u). Hence, in the usual expansion of a determinant

as a signed sum of products, any non-zero product in the expansion of M I
J (w) is equal to

λ‖I‖−‖J‖ times the corresponding product in the expansion of M I
J (u). Thus Equation (7.5.1)

holds.
(4) Denote by U ′ the matrix M

j∗1 ,...,j
∗
r

i∗1 ,...,i
∗
r

(u). Then the matrix MJ ∗
I ∗ (u) is obtained from U ′

by reversing first the order of the rows and next the order of the columns. Hence the two
matrices have the same determinant, that is uJ

∗
I ∗ = det U ′ . The pq’th entry in U ′ is uj∗p−i∗q . As

j∗p−i∗q = iq−jp , it follows that U ′ is the transpose of the matrix M I
J (u). Hence det U ′ = uIJ .

Thus Equation (7.5.2) holds.
(5) Let w be the power series defined by w(T ) = v(−T ) so that, by hypothesis, uw = 1.

Let U be the matrix consisting of the first N rows and columns of M(u). It is a lower triangular
matrix with u0 = 1 in the diagonal. In particular, det U = 1. Define W and V similarly from
M(w) and M(v).

First, from the equation uw = 1 of power series, we obtain the matrix equation,

UW = 1.

The determinant uIJ is the minor det U I
J of U corresponding to the rows in I and the columns

in J . It is the complementary minor to the determinant det U Ĩ
J̃

. Now, since det U = 1, it

is well known that the complementary minor uIJ is equal to the minor det W J̃

Ĩ
of the inverse

matrix W multiplied by the signatures of the permutations (I Ĩ ) and (J J̃ ), that is,

uIJ = sign(I Ĩ ) sign(J J̃ )wJ̃

Ĩ
. (7.5.5)

The permutation (I Ĩ ) of (0, 1, . . . , N−1) may be brought into strictly increasing order using
ir − (r−1)+ ir−1− (r−2)+· · ·+ i2−1+ i1 simple transpositions. Hence the length of the
permutation (I Ĩ ) is equal to ‖I‖− r(r − 1)/2. Thus we obtain for the product of signatures
in (7.5.5) the equation,

sign(I Ĩ ) sign(J J̃ ) = (−1)‖I‖−‖J‖ = (−1)‖J̃‖−‖Ĩ‖.

Therefore, by the homogeneity (7.5.1) with λ := −1, it follows from (7.5.5) that

uIJ = vJ̃
Ĩ
. (7.5.6)
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Finally, I ′ and J ′ are the images of Ĩ and J̃ under the involution x 7→ x∗. So, by the symmetry
(7.5.2), the equation (7.5.3) follows from (7.5.6).

(6) Assume that an r × r matrix W is a product W = UV , where U is an r × N matrix
and V is an N × r matrix. Then it is well known that the following formula holds for the
determinant:

det W =
∑

K

det UK det V K , (7.5.7)

where the sum is over all subsets K with r elements of the common set [N] of indices for the
columns of U and the rows of V .

Since w = uv, we have by (7.2.1) the matrix equation M(w) = M(u)M(v). By extracting
the equations for the rows in I and the columns in J , it follows that M I

J (w) = MI (u)MJ (v).
Moreover, in MI (u) only the first N columns are non-zero since I is a subset of [N]. It follows
that MI

J (w) = MI
[N ](u)M

[N ]
J (v). Apply (7.5.7). The equation (7.5.4) is a consequence, since

the product uIKvKJ is only non-zero when I ⊃ K ⊃ J .

(7.6) Definition. Recall that if I = (i1, . . . , ir ) is a strictly increasing multi index of size r ,
then the extensions of I are the multi indices of the form,

Î := (0, 1, . . . , t − 1, t + i1, . . . , t + ir).

Consider a second strictly increasing multi index J of the same size r , and the extension Ĵ

of J (with the same t). If u is a power series with u0 = 1, then it follows from (7.5)(2) that

uIJ = uÎ
Ĵ

. (7.6.1)

In particular, since the extension of [r] is [t + r], it follows that uI = uÎ .
Assume that I is a subset of the interval [N]. The complement Ĩ of I with respect to the

interval is a strictly increasing multi index Ĩ = (ĩ1, . . . , ĩt ) with t := N − r . The multi index
I ′ defined in (7.5)(5) is (i ′1, . . . , i ′t ) = (ĩ ∗t , . . . , ĩ ∗1 ). It is said to be conjugate to I . The
conjugate of the multi index [r] is equal to [t]. Hence, under the conditions of (7.5)(5), we
have the equation,

uI = vI
′
. (7.6.2)

Note that the definition of the conjugate depends on the choice of N . However, if N is
enlarged, then the new conjugate multi index is an extension of the old. In particular, if u is
a power series with u0 = 1, then the determinant uI

′
is independent of the choice of N .

(7.7) Notation. Let (α1, . . . , αn) be a set of n elements of the ground ring. Form, in the
notation of (7.2), the n×∞ matrix,

V = V (α1, . . . , αn) :=
〈 1

1− α1T
, . . . ,

1

1− αnT

〉
=




1 . . . 1
α1 . . . αn
...

...

α i1 . . . α in
...

...




.
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The rows of V are naturally indexed 0, 1, 2 . . . . The matrixV is the evaluation at (α1, . . . , αn)

of the matrix of (6.3.1). Hence, for any multi index I = (i1, . . . , in) of size n, the determinant
det V I (α1, . . . , αn) is the evaluation of the polynomial 1I ,

1I (α1, . . . , αn) = det V I (α1, . . . , αn). (7.7.1)

In particular, the determinant of the matrix V [n] consisting of the first n rows of V is the
Vandermonde determinant 1(α1, . . . , αn).

In addition, form the two power series,

s = s(α1, . . . , αn) :=
∏

(1− αiT )−1, e = e(α1, . . . , αn) :=
∏

(1+ αiT )

(of which e is a polynomial of degree at most n). Finally, for multi indices I and J of the
same size r , form the determinants,

sIJ = sIJ (α1, . . . , αn) := det MI
J

(
s(α1, . . . , αn)

)
,

eIJ = eIJ (α1, . . . , αn) := det MI
J

(
e(α1, . . . , αn)

)
.

Note that the determinants sIJ and eIJ are alternating in I and J .

(7.8) Corollary. Assume that I and J are strictly increasing multi indices of the same size
r . Then:

(1) (Vanishing) The determinant sIJ = sIJ (α1, . . . , αn) is non-zero only when I ⊃ J and
the following inequalities hold for all the entries in the conjugate multi indices I ′ and J ′:

i ′q ≤ j ′q + n. (7.8.1)

In particular, if r > n, then sI[r] is non-zero only if I is an extension of a strictly increasing

multi index I0 of size n; moreover, if I is an extension of I0, then sI[r] = s
I0
[n].

(2) For n = 1, the determinant sIJ (α) is non-zero only when the following inequalities
hold:

j1 ≤ i1 < j2 ≤ i2 < · · · ≤ ir−1 < jr ≤ ir . (7.8.2)

Moreover, if the inequalities (7.8.2) hold, then s IJ (α) = α‖I‖−‖J‖.
(3) (Duality) The following equation holds,

sIJ (α1, . . . , αn) = eI
′
J ′(α1, . . . , αn), (7.8.3)

where I ′ and J ′ are the conjugate multi indices.
(4) (Multiplication) If (β1, . . . , βm) is a second set of elements of the ground ring, then

sIJ (α1, . . . , αn, β1, . . . , βm) =
∑

I⊃K⊃J
sIK (α1, . . . , αn)s

K
J (β1, . . . , βm), (7.8.4)
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where the sum is over strictly increasing multi indices K of size r .
(5) (Jacobi–Trudi’s Formula) If I a multi index of size equal to the number n of the αi ,

then
sI[n](α1, . . . , αn)1 = 1I (α1, . . . , αn), (7.8.5)

where 1 = 1(α1, . . . , αn) is the Vandermonde determinant.

Proof. The duality formula (3) follows from (7.5)(5) since s(T )e(−T ) = 1. Similarly,
the multiplication formula (4) follows from (7.5)(6) since s(α1, . . . , αn, β1, . . . , βm) =
s(α1, . . . , αn)s(β1, . . . , βm).

Given the duality formula (3), the first vanishing statement in (1) follows from (7.5)(1)
since e is a polynomial of degree at most n. Consider the special case J = [r]. Then I ⊃ [r]
since I is assumed to be strictly increasing. Assume that I is a subset of the interval [N],
where N = r+t . Then J ′ = [t]. So the inequalities (7.8.1) are the inequalities i ′q ≤ q−1+n

for q = 1, . . . , t . Obviously, they hold for all q if and only if i ′t ≤ t − 1+ n, that is, if and
only if

r − n ≤ ĩ1, (7.8.6)

where ĩ1 is the first entry in the complement Ĩ . The condition (7.8.6) is vacuous if r ≤ n. If
r > n, then (7.8.6) holds if and only if I is an extension of a strictly increasing multi index I0

of size n. Moreover, if I is an extension of I0 then sI[r] = s
I0
[n] by (7.5)(2). Hence the special

vanishing assertion in (1) holds.
To prove (2) assume that n = 1. Then s = s(α) = 1+ αT + α2T 2 + · · · . Hence M(s) is

the matrix whose ij’th entry is αi−j with the (strange) convention that αk = 0 if the exponent
k is negative. Assume that I ⊃ J and consider the matrix S := M I

J (s). Its pp’th diagonal
entry is the power αip−jp since ip − jp is non-negative. The inequalities (7.8.2) implies that
all entries above the diagonal are zero. Thus, if the inequalities (7.8.2) hold, then s IJ (α) is the
product of the diagonal entries and hence sIJ (α) = α‖I‖−‖J‖. Assume that the inequalities
(7.8.2) do not hold, and let q < r be the first index for which iq ≥ jq+1. Consider the
p’th entries in the q’th and the (q + 1)’st column in S. By the choice of q, both entries
vanish if p < q and if p ≥ q then the entries are the powers α ip−jq and αip−jq+1 . Hence the
q’th column is equal to αjq+1−jq times the (q + 1)’th column. Therefore, the determinant
sIJ (α) = det S vanishes. Hence (2) has been proved.

Finally, to prove (5), consider for j = 1, . . . , n the product d (j) := ∏
i 6=j (1 − αiT ).

Then d (j) is a polynomial of degree at most n− 1, and we have the equation of power series
sd(j) = (1− αjT )−1. Hence it follows from (7.2.1) that we have the matrix equation,

M(s)
〈
d(j)

〉 =
〈 1

1− αjT

〉
.

Therefore, by definition (7.7) of the matrix V = V (α1, . . . , αn), we have the equation,

M(s)
〈
d(1), . . . , d (n)

〉 = V. (7.8.7)
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Let D be the n× n matrix consisting of the first n rows of the∞×n matrix 〈d (1), . . . , d (n)〉.
The matrix D contains all the non-zero rows, since each polynomial d (j) is of degree at most
n− 1. Therefore, from (7.8.7) we obtain the matrix equation,

M[n](s)D = V. (7.8.8)

In (7.8.8), extract the equation corresponding to the rows in I and take determinants. Since
det V I = 1I by (7.7.1), we obtain the equation,

sI[n](α1, . . . , αn) det D = 1I (α1, . . . , αn). (7.8.9)

Take I := [n] in (7.8.9). On the left the determinant s
[n]
[n] is equal to 1, and on the right the

determinant is the Vandermonde determinant1 = 1(α1, . . . , αn). It follows that det D = 1.
Now (7.8.5), for any multi index I of size n, follows from (7.8.9).

(7.9) Corollary. For any strictly increasing multi index J of size r contained in an interval
[r + t], we have the equalities,

sJ (α1, . . . , αn) = sJ[r](α1, . . . , αn) = eJ
′

[t](α1, . . . , αn), (7.9.1)

where the left side is the Schur polynomial of (6.13) evaluated at α and the right sides are
the determinants of (7.7).

Proof. The second equation is the duality formula of (7.8.3) for J = (0, 1, . . . , r − 1).
Clearly, to prove the first equation, we may assume that the ground ring is the polynomial

ring R[A] and αi = ai . When the size r is equal to n, the equation follows from Jacobi–
Trudi’s formula, since sJ = 1J /1 by definition of the Schur polynomials. If r < n, then
J has an extension Ĵ to a multi index of size n, and it follows from (7.6.1) and (6.13) that

sJ[r] = s Ĵ[n] = s Ĵ = sJ . Similarly, if r > n and J is an extension of a multi index J0 of size

n, then sJ[r] = s
J0
[n] = sJ0 = sJ . Finally, if r > n and J is not an extension of a multi index of

size n, then sJ[r] = 0 = sJ by (7.8)(1).

(7.10) Application. Assume that the base ring is the polynomial ring R[A] = R[a1, . . . , an]
over the alphabet A. The definitions of (7.7) and the results of (7.8) apply to any set of
polynomials αi , and not necessarily with the number of αi equal to the number n of letters
of A. However, a natural choice is (α1, . . . , αn) := (a1, . . . , an). Then the power series
s(a1, . . . , an) and e(a1, . . . , an) of (7.7) are the power series s(A) and e(A) of (5.14). Their
d’th coefficients are, respectively, the complete symmetric polynomial sd = sd (A) and the
elementary symmetric polynomial ed = ed(A). Consequently, the matrix M

(
s(a1, . . . , an)

)

has as ij’th entry the complete symmetric polynomial si−j (equal to zero if i < j), and the
matrix M

(
e(a1, . . . , an)

)
has as ij’th entry the elementary symmetric polynomial ei−j (equal

to zero if i < j or i > j + n). It follows that the determinants sIJ = sIJ (A) and eIJ = eIJ (A),
for multi indices I and J of the same size r , are symmetric polynomials in the letters of A.
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They are alternating in I and in J . Moreover, since sd and ed are homogeneous of degree d ,
it follows that the polynomials sIJ and eIJ are homogeneous of degree ‖I‖ − ‖J‖.

The polynomials sIJ are called skew Schur polynomials. By (7.9.1), the skew Schur poly-
nomial sIr , for a strictly increasing multi index I , is equal to the Schur polynomial s I of
(6.13). In particular, for the special skew Schur polynomials s I[r] we may omit the subscript
[r] according to the notation introduced at the end of (7.4). It should be noted, however, that
the corresponding determinant eI[r] is not equal to the power product eI = e

i1
1 · · · eirr ; we will

never omit the subscript on the determinants eI[r].
Note finally that the notation uL of (7.1) for the product of the coefficients of a power

series u in the cases u = e and u = s is in accordance with the notations eL and sL of (6.14)
and (6.15).

The duality formula of (7.8) is valid for the polynomials s IJ and eIJ . The formula is an
explicit expression of the skew Schur polynomial sIJ as a determinant in the elementary
symmetric polynomials ed . In particular, with J = [r] and with the conjugate I ′ of size t ,
duality is the following formula for the Schur polynomial s I :

sI = eI
′

[t] =

∣∣∣∣∣∣∣

ei′1 ei′1−1 . . . ei′1−t+1

...
...

...

ei′t ei′t−1 . . . ei′t−t+1

∣∣∣∣∣∣∣
. (7.10.1)

(7.11) Note. As noted above, the determinant sIJ (α1, . . . , αm) of (7.7) is defined for any set
of polynomials αj in R[A]. Of course, for an arbitrary set of polynomials αj , the determinant
is not a symmetric polynomial.

As an example, consider an alphabet (A,B) = {a1, . . . , an, b1, . . . , bm} obtained as the
union of A and the letters bi of a second alphabet B. Take R[A,B] = R[A][B] as ground ring.
Consider for strictly increasing multi indices I and J of size r the skew Schur polynomial
sIJ (A,B). It is a symmetric polynomial in the letters of (A,B). In particular, it is symmetric
in the letters of A and in the letters of B. By (7.8)(4), we have the formula,

sIJ (A,B) =
∑

I⊃K⊃J
sIK (A)sKJ (B), (7.11.1)

where the sum is over strictly increasing multi indices K of size r . For J := [r], it follows
that

sI (A,B) =
∑

I⊃K
sIK (A)sK(B). (7.11.2)

Take as r the number m of letters of B. View the two sides of (7.11.2) as polynomials in
R[A][B]. They are symmetric polynomials in the letters of B, with coefficients that are
polynomials in the letters of A. The polynomials sK(B) on the right side are the proper Schur
polynomials, and they form an R[A]-basis for SymR[A][B]. Therefore, the equation (7.11.2)

is the expansion of sI (A,B) in terms of the Schur basis. In other words, the skew Schur
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polynomials sIK (A) may be defined as the coefficients of the Schur polynomial s I (A,B)

expanded in the basis SK(B).

As a second example, consider for a fixed letter ak of A the polynomial SIJ (ak). It follows
from (7.8)(2) that SIJ (ak) is non-zero only if the following inequalities hold,

j1 ≤ i1 < j2 ≤ i2 < · · · ≤ ir−1 < jr ≤ ir . (7.11.3)

Moreover, if the inequalities (7.11.3) hold, then s IJ (ak) = a
‖I‖−‖J‖
k . For reasons that will

become more transparent later we will say that I/J is a horizontal strip if the inequalities
(7.11.3) hold.

Clearly, for strictly increasing multi indices I and J of the same size r , we obtain by
repeated application of (7.11.1) the formula,

sIJ (A) =
∑

I=K0⊃K1⊃···⊃Kn=J
SIK1

(a1) · · ·SKn−1
J (an), (7.11.4)

where the sum is over strictly increasing multi indices Kp of size r . As just observed, the
sum may be restricted by the condition that each Kp−1/Kp is a horizontal strip, and then the
corresponding term in the sum is the monomial,

a
k1
1 · · · a knn where kp := ‖Kp−1 −Kp‖ for p = 1, . . . , n. (7.11.5)

If I ⊃ J are multi indices of the same size r , then a tableau of shape I/J and biggest entry
n is a sequence T = (K0, . . . ,Kn) of strictly increasing multi indices such that I = K0 ⊃
K1 ⊃ · · · ⊃ Kn = J and such that Kp−1/Kp is a horizontal strip for p = 1, . . . , n. With
each tableau T there is an associated monomial aT defined as the monomial (7.11.5). The
following formula is simply a fancy rewriting of (7.11.4):

sIJ (A) =
∑

T

aT , (7.11.6)

where the sum is over all tableaux T of shape I/J and biggest entry n. It is a consequence
of the formula that the skew Schur polynomial sIJ is a sum of monomials. Equivalently, if sIJ
is expanded in the basis of monomial symmetric polynomials mK , then the coefficients are
non-negative. More precisely, the coefficient to mK is the number of tableaux T for which
aT = aK .

(7.12) Special cases. Consider the complete symmetric polynomial sd . It is equal to the
skew Schur polynomial sd , where d is considered as a multi index (d) of size 1. The equation
sd = sd is the equation of (6.13). It should be noted, however, that the results in this
section essentially provide an alternative proof of the equation of (6.13). Indeed, by the
extension property, we have the equation sd = s0,...,n−1,n+d for skew Schur polynomials and
by Jacobi–Trudi’s formula, the skew Schur polynomial s0,...,n−1,n+d is equal to the proper
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Schur polynomial s0,...,n−1,n+d. Finally, in the notation of (6.13), the proper Schur polynomial
sd is simply an abbreviated notation for the proper Schur polynomial s0,...,n−1,n+d.

The multi index I := (d) is contained in the interval [d + 1] = {0, 1, . . . , d}, and the
conjugate multi index is I ′ = (1, . . . , d). Hence, by duality,

sd = e1,2,...,d
0,1,...,d−1 =

∣∣∣∣∣∣∣∣∣∣

e1 1 0 . . . 0
e2 e1 1 . . . 0
...

...
...

. . .
...

ed−1 ed−2 ed−3 . . . 1
ed ed−1 ed−2 . . . e1

∣∣∣∣∣∣∣∣∣∣

. (7.12.1)

For instance,

s4 =

∣∣∣∣∣∣∣

e1 1 0 0
e2 e1 1 0
e3 e2 e1 1
e4 e3 e2 e1

∣∣∣∣∣∣∣
= e4

1 − 3e2
1e2 + 2e1e3 + e2

2 − e4 .

Similarly, since I ′′ = I , we obtain the formula, equivalent to the formula in (6.13),

ed = s1,2,...,d . (7.12.2)

Since s(T )e(−T ) = 1, the formulas (7.12.1) and (7.12.2) could have be deduced directly
from (7.3). As a direct application of (7.3), consider the power series p = p(A) defined in
(5.14). The d’th coefficient is the power sum pd+1 = pd+1(A). Since e(T )p(−T ) = e′(T ),
we obtain from (7.3.1) the formula,

pd =

∣∣∣∣∣∣∣∣∣∣

e1 1 0 . . . 0
2e2 e1 1 . . . 0
...

...
...

. . .
...

(d−1)ed−1 ed−2 ed−3 . . . 1
ded ed−1 ed−2 . . . e1

∣∣∣∣∣∣∣∣∣∣

. (7.12.3)

For instance,

p4 =

∣∣∣∣∣∣∣

e1 1 0 0
2e2 e1 1 0
3e3 e2 e1 1
4e4 e3 e2 e1

∣∣∣∣∣∣∣
= e4

1 − 4e2
1e2 + 4e1e3 + 2e2

2 − 4e4.
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8. Base change.

(8.1) Setup. Several identities of symmetric polynomials are most easily expressed as equa-
tions in the power series ring R[[A]] over the letters of the alphabet A. Recall that an element
f of R[[A]] is an infinite sequence f = (f0, f1, . . . ) such that fi is a homogeneous polyno-
mial of degree i in R[A]. The polynomial fi is the i’th term in f . If fi = 0 for all i < d ,
then f is said to have order at least d . A formal series,

∑

ι

fι, (8.1.1)

over any set of indices ι, of elements fι in R[[A]] is called convergent if, for any d , all but a
finite number of fι have order greater than d . When the series is convergent, we may view
the sum (8.1.1) as the element in R[[A]] whose d’th term is the sum of the d’th terms in the
fι.

(8.2) Proposition. Let u be a power series in R[[T ]]. Consider the monomial symmetric
polynomials mK(A) for decreasing multi indices K of size n, and the proper Schur polyno-
mials sI (A) for strictly decreasing multi indices of size n. Let J be a multi index of size n.
Then the following two formulas hold in R[[A]]:

∏

a∈A
u(a) =

∑

K

uKmK(A), (8.2.1)

sJ (A)
∏

a∈A
u(a) =

∑

I

uIJ s
I (A). (8.2.2)

Proof. The first formula is obtained by a simple multiplication of series,

∏

a∈A
u(a) =

n∏

q=1

∞∑

i=0

uia
i
q =

∑
ui1 · · ·uinai11 · · · ainn ,

where the last sum is over all multi indices I = (i1, . . . , in) of size n. Each multi index I is
a permutation of a unique decreasing multi index K , and uI = uK . Hence the last sum is the
right hand side of (8.2.1). Thus the first formula holds.

To prove the second formula, consider an element α in R[[A]] without constant term.
Then the evaluation u(α) = ∑∞

i=0 uiα
i can be obtained by multiplying the infinite row

〈u〉tr = (u0, u1, u2, . . . ) and the infinite column V (α) with entries 1, α, α2 , . . . . Applied
with u := T iu, it follows that 〈T iu〉trV (α) = αiu(α). Hence, in the notation of (7.2), we
have the matrix equation,

M(u)trV (α) = V (α)u(α).

Applied with α := aq for q = 1, . . . , n, we obtain the matrix equation,

M(u)trV (a1, . . . , an) = V (a1, . . . , an) diag
(
u(a1), . . . , u(an)

)
. (8.2.3)

43



44 SYM 8

Extract the equations corresponding to the rows in J to obtain the matrix equation,

MJ (u)trV (a1, . . . , an) = V J (a1, . . . , an)diag
(
u(a1), . . . , u(an)

)
. (8.2.4)

Take determinants and use the formula mentioned in the proof of (7.5)(6) for the product on
the left hand side. The result is the equation in R[[A]],

∑

I

uIJ1
I (a1, . . . , an) = 1J (a1, . . . , an)

n∏

q=1

u(aq), (8.2.5)

where the sum is over strictly increasing multi indices I of size n. The polynomials, 1I on
the left side and 1J on the right side, are divisible by the Vandermonde determinant 1, and
1I = sI1 and 1J = sJ1. Moreover, the Vandermonde determinant 1 is a regular element
of R[[A]]. Therefore, formula (8.2.2) follows from (8.2.5) after division by 1.

(8.3) Corollary. Let B be a second alphabet with m letters. Let J be a multi index of size n.
Then the following two formulas hold in R[B][[A]]:

∏

a∈A, b∈B

1

1− ab
=
∑

K

sK (B)mK(A), (8.3.1)

sJ (A)
∏

a∈A, b∈B

1

1− ab
=
∑

I

sIJ (B)sI (A), (8.3.2)

where the first sum is over all decreasing multi indices K of size n and the second sum is over
all strictly increasing multi indices I of size n. In addition, the following formula holds in
R[A,B]: ∏

a∈A, b∈B
(a + b) =

∑

I⊆[n+m]

sI (A)s Ĩ (B) . (8.3.3)

Proof. Replace in (8.2) R by R[B]. Clearly, the first two formulas follow from the Proposition
by taking u := s(B) =∏b∈B(1− bT )−1.

To prove the third formula, take u := ∏b∈B(T + b) and J := (0, 1, . . . , n− 1) in (8.2.2).
We obtain the equation, ∏

a∈A, b∈B
(a + b) =

∑

I

uI[n]s
I (A) . (8.3.4)

The pq’th entry in the determinant uI[n] is the polynomial

uip−(q−1) = em−ip+(q−1)(B).

In particular, uI[n] = 0 if in ≥ n + m. Assume that in ≤ n + m − 1 and identify I with a
subset of the interval [n+m]. Since

m− ip + (q − 1) = (m+ n − 1− ip)− (n− q),

it follows that uI[n] = eI
∗

[n](B). Moreover, by duality (7.9), eI
∗

[n](B) = s Ĩ (B). Hence (8.3.3)
follows from (8.3.4).
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(8.4) Definition. Define in SymR[A] an R-bilinear form, denoted (g, h) 7→ (g | h), by the
equations, for strictly increasing multi indices I and J of size n,

(sI | sJ ) := δI,J ,

where δI,J is Kronecker’s δ. In other words, if symmetric polynomials g and h are expanded
in the basis of the Schur polynomials sJ , say g =∑αJ sJ and h =∑βI s

I , then

(g | h) =
∑

J

αJβJ .

Clearly, the bilinear form is symmetric. It is called the inner product in SymR[A]. It follows
from the definition that the inner product (g | sJ ) is equal to the coefficient to sJ when the
symmetric polynomial g is expanded in the Schur basis.

(8.5) Proposition. (1) If K and L are decreasing multi indices of size n, then

(sL | mK) = δL,K . (8.5.1)

(2) If I , J , and K are strictly increasing multi indices of size n, then

(sIJ | sK ) = (sI | sJ sK ). (8.5.2)

Proof. (1) Consider the expansions of sL(A) and mK(A) in the basis of proper Schur poly-
nomials,

sL(A) =
∑

J

λL,J s
J (A), mK(A) =

∑

J

µK,J s
J (A). (8.5.3)

Then (sL | mK) =∑J λL,JµK,J . In other words, if λ and µ denote the matrices of the λL,J
and µL,J , for all L, J , then (1) holds if and only if the product matrix λµtr is the unit matrix
1. Hence (1) holds if and only if µtrλ = 1, that is, for all strictly increasing I and J ,

∑

K

µK,IλK,J = δI,J . (8.5.4)

To prove (8.5.4), let B be a second alphabet with n letters. Take J := [n] in (8.3). It
follows from the two equations (8.3.1) and (8.3.2) that

∑

K

sK (B)mK(A) =
∑

I

sI (B)sI (A). (8.5.5)

The expansions (8.5.3) hold when A is replaced by B. Insert the expansions of sK (B) and
mK(A) in (8.5.5). The result is the equation in R[[B,A]],

∑

K,I,J

λK,JµK,I s
J (B)sI (A) =

∑

I

sI (B)sI (A). (8.5.6)



46 SYM 8

It follows from (8.5.6), since the Schur polynomials sJ (A) form a basis for the polynomials
that are symmetric in the letters of A, that for any fixed strictly increasing multi index I we
have the equation in R[[B]],

∑

K,J

λK,JµK,I s
J (B) = sI (B). (8.5.7)

Again, since the sI (B) form a basis for the polynomials that are symmetric in the letters of
B, it follows from (8.5.7) that (8.5.4) holds. Hence (1) has been proved.

(2) The proof of (8.5.2) is similar. Consider the expansions of s IJ and sJ sK in the basis of
proper Schur polynomials,

sIJ =
∑

K

λI,J,KsK , sJ sK =
∑

I

µJ,K,I s
I , (8.5.8)

where both sums are over strictly increasing multi indices of size n. Then λI,J,K = (sIJ | sK )

and (sI | sJ sK ) = µJ,K,I . Thus (8.5.2) is the equation λI,J,K = µJ,K,I .
From the equation (8.3.1) multiplied by sJ (A) and the equation (8.3.2) it follows that

∑

I

sIJ (B)sI (A) = sJ (A)
∑

K

sK (B)sK(A).

Insert the expansions (8.5.8) to obtain the equation,
∑

I,K

λI,J,KsK(B)sI (A) =
∑

I,K

µJ,K,I s
K(B)sI (A). (8.5.9)

As in the proof of (1), it follows from (8.5.9) that λI,J,K = µJ,K,I , which is the asserted
equation (8.5.2).

(8.6) Note. It follows from (8.5.2) that problem of determining the coefficients in the expan-
sions of all skew Schur polynomials sIJ in terms of the Schur basis is the same as the problem
of determining the coefficients in the expansions of all products sJ sK . The coefficients are in
fact non-negative, and given by a combinatorial rule, called the Littlewood–Richardson rule.

(8.7) Corollary. The products sL = sL(A), for all decreasing multi indices L of size n, form
an R-basis for SymR[A].

Proof. The assertion follows from (8.5.1) since the mK form a basis. More precisely, if a
symmetric polynomial g is an R-linear combination of the products sL, say

g =
∑

L

αLsL, (8.7.1)

then it follows from (8.5.1) that αK = (g | mK ). Hence the coefficients in (8.7.1) are uniquely
determined by g. To prove the existence, consider the inner products αK := (g | mK) for
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decreasing multi indices K of size n. The expansion of g in the basis of Schur polynomials
involves only Schur polynomials sJ of degree at most equal to the degree of g. The expansion
of mK involves only Schur polynomials sJ of degree equal to the degree ‖K‖. Hence the
inner product αK vanishes when ‖K‖ is bigger than the degree of g. In particular, only a finite
number of αK are non-zero. We claim that the equation (8.7.1) holds. To prove it, consider
the difference, g̃ := g −∑L αLsL. It follows from (8.5.1) that (g̃ | mK) = 0 for all mK .
Since the mK form an R-basis for SymR[A], it follows that (g̃ | h) = 0 for all symmetric
polynomials h. In particular (g̃ | sJ ) = 0 for all Schur polynomials sJ . As a consequence,
g̃ = 0. Hence the equation (8.7.1) holds.

(8.8) Definition. It follows from Theorem (5.10) that the R-algebra SymR[A] of symmetric
polynomials is the free polynomial ring over R in the elementary symmetric polynomials
e1, . . . , en. In particular, there is a unique endomorphism of SymR[A] such that ed 7→ sd for
d = 1, . . . , n. By definition, if I is a multi index of size n, we have that

eI = e
i1
1 · · · einn 7→ s

i1
1 · · · sinn . (8.8.1)

Note that sI is the notation of a Schur polynomial, and hence it can not be used as a notation
for the right hand side of (8.8.1). In this context, it is common to denote, for d = 0, 1, . . . ,
the d’th complete symmetric polynomial sd also by hd . Accordingly, we define, for a multi
index I of arbitrary size r ,

hI := h
i1
1 · · ·hirr , hI := hi1 · · · hir . (8.8.2)

With this notation, the endomorphism of SymR[A] is given by eI 7→ hI for multi indices I

of size n. The endomorphism is denoted g 7→ g∗. Clearly, if I is a multi index of size r and
ip = 0 for p = n+ 1, . . . , r , then

(
eI
)∗ = hI .

(8.9) Lemma. The endomorphism g 7→ g∗ is an involution of SymR[A]. Let K be a de-
creasing multi index of size r and let J be a strictly increasing multi index of size r . Consider
the following two equations:

(eK)∗ = hK ,
(
sJ
)∗ = sJ

′
. (8.9.1)

If k1 ≤ n then the first equation holds. If, for some conjugate J ′ of J of size t , we have that
j ′t ≤ n, then the second equation holds. In particular, both equations hold if the left hand
sides are non-zero and of degree at most n. Moreover, if f and g are symmetric polynomials
of degree at most n, then

(f ∗ | g∗) = (f | g). (8.9.2)

Proof. Recall that the power series e = ∏
a(1 + aT ) and s = ∏

a(1 − aT )−1 are related
by the equation e(T )s(−T ) = 1. In particular, the complete symmetric polynomials sd ,
for d = 1, . . . , n, are determined from the elementary symmetric polynomials ed by the
congruence,

(1+ e1T + · · · + enT
n)(1+ s1(−T )+ · · · + sn(−T )n) ≡ 1 (mod T n+1).
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Substitute T := −T in the congruence, and apply the endomorphism g 7→ g∗. On the left,
the first factor is changed to the second. Therefore, since the right side of the congruence
is unchanged, the second factor is changed to the first. Hence we have, for d = 1, . . . , n,
the equation s ∗d = ed , that is, e ∗∗d = ed . Since SymR[A] is generated as an R-algebra by
e1, . . . , en and g 7→ g∗ is an R-algebra endomorphism, it follows that g∗∗ = g. Thus the
endomorphism is an involution.

In the first equation in (8.9.1), the multi index K is decreasing. Hence, if k1 ≤ n, then
each factor in eK is of the form ek with k ≤ n, and hence e ∗k = hk . Thus the first equation
holds.

In the second equation, the multi index J is strictly increasing. By duality, we have the
equation,

sJ = det MJ ′
[t](e) . (8.9.3)

In the matrix on the right side, the pq’th entry is ed where d = j ′p − (q − 1). The largest
possible d , obtained for p = t and q = 1, is d = j ′t . Assume that j ′t ≤ n. Then every entry
of the matrix on the right side is of the form ed where d ≤ n. Therefore, if the endomorphism
g 7→ g∗ is applied to (8.9.3), we obtain the equation,

(
sJ
)∗ = det MJ ′

[t](s) = sJ
′
.

Thus the second equation of (8.9.1) holds.
If the product eK = ek1 · · · ekr is non-zero, then k1 ≤ n, and so the first equation of (8.9.1)

holds.
Assume similarly that Schur polynomial sJ is non-zero. To prove the equation in (8.9.1),

we may replace J by any strictly increasing multi index of smaller size of which J is an
extension. Thus we may assume J is not an extension of a multi index of smaller size, that
is, we may assume that j1 > 0. Assume that the degree ‖J‖− r(r − 1)/2 of sJ is at most n.
Since j1 ≥ 1, it follows that jq ≥ q for q = 1, . . . , r . Hence, from

n ≥ ‖J‖ − r(r − 1)/2 = j1 + (j2−1)+ · · · + (jr−(r−1)) ≥ (r − 1)+ jr − (r − 1),

it follows that jr ≤ n. Thus, if J ′ is the conjugate of J determined with respect to the interval
[n+ 1], it follows that j ′t ≤ n. Hence the second equation of (8.9.1) holds.

To prove (8.9.2), note that the proper Schur polynomials sJ of degree at most n form a
basis for the module of symmetric polynomials of degree at most n. It follows from the
second equation of (8.9.1) that in this basis, the involution g 7→ g∗ is a permutation of the
basis elements. By definition, the proper Schur polynomials form an orthonormal basis with
respect to the inner product. Therefore (8.9.2) holds.

(8.10) Definition. Up to now we have found several bases for the R-module SymR[A] of
symmetric polynomials. The bases m• = {mK} of (5.8) and h• = {hK} of (8.6) are indexed
by decreasing multi indices K of size n. The basis e• = {eI } of (5.10) is indexed by arbitrary
multi indices I of size n. The basis s• = {sJ } of (6.7) is indexed by strictly increasing multi
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indices of size n. Since g 7→ g∗ is an automorphism of SymR[A], it follows that the products
hI = (eI )∗, for multi indices I of size n, form a basis h•.

Consider an arbitrary basis g• = {gI } (where I runs through some suitable index set) of
SymR[A]. For any symmetric polynomial f , denote by C(f, g•) the row of coefficients in
the expansion of f in the basis g•. In a similar notation, denote by (f | g•) the row of inner
products (f | gI ). For instance, with respect to the basis s• of proper Schur polynomials we
have, as noted in (8.4),

C(f, s•) = (f | s•). (8.10.1)

Similarly, if f • = {f K} is a second basis, denote by C(f •, g•) the matrix whose K’th row is
C(fK , g•), and denote by (f • | g•) the matrix whose K’th row if (fK | g•). For instance, it
follows from (8.10.1) that

C(f •, s•) = (f • | s•). (8.10.2)

Moreover, it follows from (8.5.1) that

C(f •,m•) = (f • | h•), C(f •, h•) = (f • | m•). (8.10.3)

The matrices C(f •, g•) are infinite matrices. In general, it is assumed that the symmetric
polynomials of a basis are homogeneous. Then the part of the basis consisting of polynomials
of fixed degree d is a finite basis for the R-module of homogeneous symmetric polynomials
of degree d . Accordingly, the matrix C(f •, g•) may be viewed as a sequence of quadratic
matrices where the part in degree d is obtained from the parts of f • and g• in degree d .

Note that the two bases, h• = {hK} indexed by decreasing multi indices K of size n and
h• = {hI } indexed by arbitrary multi indices of size n, agree in degree at most n, but not in
degree bigger than n. For instance, hn+1 is part of the first basis and not of the second, and
hn+1

1 is part of the second and not of the first.
Note also that the products eK , for decreasing multi indices K of size n, do not form a

basis, since eK = 0 if k1 > n. However, the products eK , for decreasing multi indices K

of size n and ‖K‖ ≤ n, form a basis e• for the symmetric polynomials of degree at most n,
equal to the part of degree at most n of the basis e•.

(8.11) Definition. Consider in particular the matrix C := C(s •,m•). Its IL’th entry CIL, for
a strictly increasing multi index I and a decreasing multi index L, both of size n, is determined
by the expansion,

sI =
∑

L

CILmL, (8.11.1)

of the Schur polynomial sI in terms of the basis of monomial symmetric functions. It follows
from (7.10) that the entries CIL are non-negative integers, determined combinatorically as a
number of tableaux with certain properties. The numbers CIL are called the Kostka numbers.

The Kostka number CI,L and, more generally, the coefficient CI,L in the expansion (8.11.1)
of sI for an arbitrary strictly increasing multi index of size r may be determined as follows:

There is a bijective correspondence between strictly increasing multi indices of size r and
weakly decreasing multi indices of size r , given by J 7→ J̄ , where J̄ = (jr−(r−1), . . . , j2−
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1, j1). Hence a sequence K0, . . . ,Kn of strictly increasing multi indices of size r corresponds
to an r×(n+1) matrix T of non-negative integers whose q’th column is the weakly decreasing
sequence K̄q . The relations K0 ⊃ · · · ⊃ Kn correspond to the condition that the entries in
each row of T are weakly decreasing. The condition that each Kq−1/Kq is a horizontal
strip corresponds to the condition that the entries in each skew diagonal of T (southwest to
northeast) are weakly decreasing. The two conditions on T , on the rows and on the skew
diagonals, are called the tableau conditions. Note that the tableau conditions imply that the
entries in each column of T , which is not the last column, are weakly increasing. Hence
a tableau of shape I/[r], as defined in (7.11), can be identified with a matrix T satisfying
the tableau conditions and such that the first column of T is equal to Ī and the last column
consists of zeros. For each tableau, let tq denote the sum of the entries in the q’th column of
the matrix. Clearly, ‖Kq−1 −Kq‖ = tq−1 − tq . Hence it follows from (7.11.1) that

sI =
∑

T

a
t0−t1
1 · · · atn−1−tn

n .

In particular, the coefficient CIL is equal to the number of matrices T satisfying the above
conditions and the equation

(t0 − t1, . . . , tn−1 − tn) = L. (8.11.2)

(8.12) Lemma. Let I = (i1, . . . , in) be a strictly increasing multi index and let L =
(l1, . . . , ln) be a decreasing multi index. Form the decreasing multi index Ī = (in − (n −
1), . . . , i2−1, i1). Then the Kostka number CIL vanishes unless ‖Ī‖ = ‖L‖ and the following
inequalities hold:

ī1 + · · · + īq ≥ l1 + · · · + lq for q = 1, . . . , n. (8.12.1)

Moreover, if all the inequalities are equalities, that is, if L = Ī , then CIL = 1.

Proof. The Kostka number CIL is the number of n × (n + 1) matrices T satisfying the
conditions of (8.11).

Assume that CIL 6= 0. Then there is a matrix T = (tpq) satisfying the conditions. The
first column T0 of T is Ī , and the last column Tn of T consist of zeros. Clearly, the tableau
conditions on the skew diagonals of T imply that the last q entries in the q’th column are
equal to 0. The column sum t0 is equal to ‖Ī‖. Hence it follows from (8.11.2) that

l1 + · · · + lq = t0 − tq =
n∑

p=1

īp −
n−q∑

p=1

tpq . (8.12.2)

Since the entries along the skew diagonal are weakly increasing, it follows for a term tpq in
the last sum that

tpq ≥ tp+1,q−1 ≥ · · · ≥ tp+q,0 = īp+q . (8.12.3)

Hence the inequalities (8.12.1) follow from (8.12.2) and (8.12.3).
Clearly, if the inequalities are equalities, then T is unique and determined by equalities in

(8.12.3). Hence the last assertion of the Lemma holds.
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(8.13) Proposition. Let C = C(s•,m•) be the matrix of Kostka numbers. Let S be the
quadratic matrix indexed by strictly increasing multi indices I, J of size n given by

SIJ =
{

1 if I and J ′ are extensions of the same multi index,

0 otherwise.

Then S is a symmetric matrix. Moreover, the following formulas hold:

C(s•,m•) = C, (8.13.1)

C(h•, s
•) = Ctr, (8.13.2)

C(h•,m•) = CtrC, (8.13.3)

and, in degree at most n,

C(e•, s
•) = CtrS, (8.13.4)

C(e•,m
•) = CtrSC. (8.13.5)

In particular, in degree at most n, the matrices C(h•,m•) and C(e•,m•) are symmetric.

Proof. The matrix S is symmetric because conjugation J 7→ J ′ is an involution. The formula
(8.13.1) is the definition of the matrix C. As noted in (8.10), we have that

C(h•, s•) = (h• | s•) = (s• | h•)tr = C(s•,m•)tr.

Hence (8.13.2) holds.
Clearly, C(h•,m•) = C(h•, s•)C(s•,m•). Hence (8.13.3) follows from (8.13.1) and

(8.13.2).
Restrict to the parts of degree at most n. Then it follows from (8.9) that S = C(s •, (s•)∗).

Therefore, again by (8.9), we have that

C(e•, s•) = C((e•)∗, (s•)∗) = C(h•, s•)S.

Hence (8.13.4) follows from (8.13.2). Finally, (8.13.5) follows from (8.13.1) and (8.13.4)
since C(e•,m•) = C(e•, s•)C(s•,m•).



52



9. Partitions.

(9.1) Definition. A partition is a decreasing sequence λ = (λ1, λ2, . . . ) of non-negative
integers containing only a finite number of positive terms. The term λi is called the i’th part
of the partition λ.

The number of positive parts is called the length of the partition, the sum of the parts is
called the degree of the partition and denoted ‖λ‖. The biggest part of the partition is the
first part λ1, since the sequence is decreasing.

There are several convenient notations for partitions. First, we may indicate a partition by
giving any finite subsequence containing all the positive parts, in particular the finite sequence
containing only the positive parts. For instance, each of the sequences (7, 7, 3, 3, 3, 1) and
(7, 7, 3, 3, 3, 1, 0, 0) represent the partition,

λ = (7, 7, 3, 3, 3, 1, 0, . . . ). (9.1.1)

The length of λ is 6, the degree of λ is 24, and the biggest part of λ is 7.
In this notation, the zero-partition (0, 0, . . . ) is represented by any finite sequence of zeros,

in particular by the empty sequence ( ).

Next, a partition λ may be given by its type, that is, by the numbers mp = mp(λ) counting,
for p = 1, 2, . . . , the number of parts of λ that are equal to p. The type is often indicated by
the “formal” product 1m12m2 · · · . For instance, the partition λ of (9.1.1) may be given by its
type 113372 (or 723311).

Note that a positive integer d , both as the sequence (d) and as the type d 1, represents the
partition (d, 0, 0, . . . ).

Third, a partition λ may be given by its Ferrers diagram Dλ. The diagram Dλ consists of
the set of points (i, j) ∈ � 2 such that 1 ≤ j ≤ λi . The diagram will always be pictured in
a system of matrix coordinates where the first index i is a row index and the second j is a
column index. Moreover, the point (i, j) will be pictured as the unit box with (i, j) as the
lower right vertex.

For instance, the diagram of the partition (9.1.1) is the following:

j

i

(9.2) Definition. There are several natural order relations among partitions. First, we write
λ < µ if either ‖λ‖ < ‖µ‖ or if ‖λ‖ = ‖µ‖ and, for the first i for which λi 6= µi we have
that λi < µi . The relation is a total order on the set of partitions.

Next, we write λ ⊂ µ if λi ≤ µi for all i. The relation is a partial order. With respect to
the Ferrers diagrams, we have that λ ⊂ µ if and only Dλ ⊂ Dµ. If µ ⊂ λ, then the difference
set Dµ −Dλ (of boxes) is called the skew diagram of µ/λ.
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Finally, we write λ� µ if ‖λ‖ = ‖µ‖ and, for q = 1, 2, . . . ,

λ1 + · · · + λq ≤ µ1 + · · ·µq .

Clearly, if λ� µ, then λ ≤ µ.

(9.3) Definition. For any partition λ, define the conjugate partition λ′ by

λ′p := #{i | λi ≥ p}.

For instance, for the partitionλof (9.1.1), the conjugate is the partitionλ′ = (6, 5, 5, 2, 2, 2, 2)

= 245261.
Note that the Ferrers diagram of λ′ is obtained by reflecting the diagram of λ in the diagonal

i = j , that is, the diagram Dλ′ is the transpose, Dtr
λ , of Dλ.

Clearly, we have that λ′′ = λ. The biggest part of λ′ is the length of λ, and the length of
λ’ is the biggest part of λ.

(9.4). There are several natural ways to associate partitions with multi indices.

(1) To a decreasing multi index K of size r , associate the partition given by the map,

(k1, . . . , kr ) 7→ (k1, . . . , kr , 0, 0, . . . ) (1)

Clearly, the map (1) defines a bijective correspondence between decreasing multi indices of
size r and partitions of length at most r . Moreover, two decreasing multi indices of different
size define the same partition if and only if the longer is obtained from the shorter by adding
a trailing sequence of zeros.

Obviously, if λ and κ are the partitions associated via the map (1) to decreasing multi
indices L and K of the same size, then λ ≤ κ if and only if L ≤ K and λ ⊂ κ if and only if
L ⊂ K .

(2) To an arbitrary multi index I of size r , associate the partition given by the map,

(i1, . . . , ir ) 7→ (i1 + · · · + ir , . . . , ir−1 + ir , ir , 0, 0, . . . ). (2)

Clearly, the map (2) defines a bijective correspondence between multi indices of size r and
partitions of length at most r . Moreover, two multi indices of different size define the same
partition if and only if the longer is obtained from the shorter by adding a trailing sequence
of zeros.

(2’) To an arbitrary multi index I of size r , associate the partition given by the map,

(i1, . . . , ir ) 7→ (

ir︷ ︸︸ ︷
r, . . . , r , . . . ,

i2︷ ︸︸ ︷
2, . . . , 2,

i1︷ ︸︸ ︷
1, . . . , 1, 0, . . . ). (2’)

In other words, the associated partition is given by the type 1i1 · · · r ir . Clearly, the map (2’)
defines a bijective correspondence between multi indices of size r and partitions of biggest
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part at most r . Moreover, two multi indices of different size define the same partition if and
only if the longer is obtained from the shorter by adding a trailing sequence of zeros.

Clearly, if I is a multi index, then the two partitions associated with I via the maps (2)
and (2’) are conjugate.

(3) To a strictly increasing multi index J of size r , associate the partition given by the map,

(j1, . . . , jr ) 7→ (jr − (r − 1), . . . , j2 − 1, j1, 0, 0, . . . ). (3)

Clearly, the map (3) defines a bijective correspondence between strictly increasing multi
indices of size r and partitions of length at most r . Moreover, two strictly increasing multi
indices of different size define the same partition if and only if the longer is an extension of
the shorter.

(9.5) Lemma. If λ is the partition associated to a strictly increasing multi index J of size r

via the map (3), then λ′ is associated to the conjugate strictly increasing multi index J ′.

Proof. Indeed, assume that J is a subsequence of [r + t]. Clearly, the conjugate of the
partition λ is given by

λ′p = #{q ∈ [1, r] | jq − (q − 1) ≥ p}.

Since jq − (q − 1) ≤ jr − (r − 1) < (r + t) − (r − 1) = t − 1, it follows that λ′p = 0 for
p ≥ t − 1. Assume p ≤ t . Now, for any non-negative integer n, the following relations are
equivalent:

jq ≥ n, #J ∩ [n] ≤ q − 1, #J̃ ∩ [n] ≤ n− (q − 1), j̃n−(q−1) < n

It follows in particular, with n := p+q−1, that jq−(q−1) ≥ p if and only if j̃p < p+q−1.
Hence λ′p is the number of q = 1, . . . , r such that j̃p − (p − 1) < q, that is,

λ′p = r − (j̃p − (p − 1)
)
. (9.5.1)

Clearly, the right hand side of (9.5.1) is the partition defined by (j ′1, . . . , j ′t ).

(9.6) Definition. For any partition λ of length at most n, define

mλ := mK ,

where K is the decreasing multi index of size n corresponding to λ via the map (1). In other
words,

mλ := mλ1,...,λn .

Define mλ := 0 if the length of λ is bigger than n. Note that md = pd is the d’th power sum,
and m1...1 = ed , or, in the type notation, m1d = ed .
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For any partition λ, define
eλ := eK , hλ := hK

where K is a decreasing multi index corresponding to λ via the map (1). In other words,

eλ = eλ1eλ2 · · · hλ = hλ1hλ2 · · · .

Note that the products are finite since e0 = h0 = 1. The products are defined for arbitrary
partitions λ. The product eλ vanishes if the biggest part of λ is strictly greater than n, since
ed = 0 when d > n. Clearly, if I is any multi index and λ is associated to I via the map (2’),
then eI = eλ.

For any partition λ of length at most n, define

1λ := 1J , sλ := sJ ,

where J is the strictly increasing multi index of size n corresponding to λ via the map (3). In
other words,

1λ = 1λn,λn−1+1,...,λ1+(n−1). sλ = sλn,λn−1+1,...,λ1+(n−1).

Note that the empty partition ( ) corresponds to the sequence (0, 1, . . . , n − 1). Hence 1( )

is the Vandermonde determinant, and s( ) = s0,1,...,n−1 = 1. Under the correspondence, the
partition d corresponds to the sequence (0, 1, . . . , n − 2, n − 1+ d). Hence it follows that,
with d as partition, we have that sd is the d’th complete symmetric polynomial.

Finally, for any two partitions λ and µ of length at most n, define eλ/µ and sλ/µ as the
determinants eIJ and sIJ where I and J strictly increasing multi indices of the same size
associated via the map (3) to λ andµ.

(9.7). In the language of partitions, the notion of a tableau is the following: Denote by J 7→ J̄

the bijection (3) from strictly increasing multi indices of r to partition of length at most r .
Under this correspondence, we have that I ⊃ J if and only if DĪ ⊃ DJ̄ . Moreover, it I ⊃ J ,
then I/J is a horizontal strip as defined in (7.11) if and only if the skew diagram D Ī −DJ̄

has no more than one box in each column.
Let I ⊃ J be strictly increasing multi indices of size r corresponding, via the map (3), to

partitions λ and µ. Then a sequence I = K0 ⊃ K1 ⊃ · · · ⊃ Kn = J of strictly increasing
multi indices Kr corresponds to a sequence of partitions, λ = κ0 ⊃ κ1 ⊃ · · · ⊃ κn = µ.
The sequence of partitions may be represented by the skew diagrams Dq of κq−1/κq for
q = 1, . . . , n. The skew diagram Dq is a subdiagram of the skew diagram D of λ/µ, and
it may be visualized by inserting the number q in all boxes of Dq . Note that the inserted
number increase along the rows and along the columns of D. Moreover, the condition that
each κq−1/κq is a horizontal strip means that no number q can occur more than once in each
column. I other words, the condition means that the inserted numbers are strictly decreasing
in each column of D. It follows that a tableau of shape I/J and biggest entry n, as defined
in (7.11), can be identified with an insertion of numbers from {1, . . . , n} in the boxes of the
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diagram of λ/µ such that the inserted numbers increase weakly in each row and increase
strictly in each column.

Under the identifications, the degree ‖Kq−1−Kq‖ is equal to the degree ‖κq−1−κq‖, and
hence equal to the number of boxes in the skew diagram Dq . Hence the degree ‖Kq−1−Kq‖
is equal to the number, denoted kq(T ) of times the number q occurs in the tableau T . The
following formula is therefore a rewriting of (7.11.6):

sλ/µ =
∑

T

a
k1(T )
1 · · · akn(T )n ,

where the sum is over all tableaux T of shape λ/µ and biggest entry n. In particular, if K is
a given decreasing multi index of size at most n, then the coefficient to mK in the expansion
of sλ/µ in the basis of monomial symmetric polynomials is equal to the number of tableaux
T of shape λ/µ for which

K = (k1(T ), . . . , kn(T )).
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10. Applications of Determinantal Methods.

(10.1). In the proof of Jacobi–Trudi’s formula (7.8)(5), we proved, for a multi index I of size
n the formula (7.8.8):

S[n](α1, . . . , αn)D = V (α1, . . . , αn), (10.1.1)

where D = D(α1, . . . , αn) is an n × n matrix with determinant equal to the Vandermonde
determinant 1 = 1(α1, . . . , αn). The formula has far reaching consequences.

Consider first a power series u which is a polynomial. Then, for every element α in the
ground ring, the value u(α) is a well defined. Recall that V (α) = 〈

(1 − αT )−1 > is the
infinite column with entries 1, α, α2 , . . . . Hence, if the column V (α) is multiplied from the
left by the infinite row whose entries are the coefficients of T iu, the result is αiu(α). In other
words, we have the following matrix equation,

M(u)trV (α) = V (α)u(α).

As a consequence, by multiplying (10.1.1) from the left by the matrix M(u)tr we obtain the
equation,

M(u)trS[n](α1, . . . , αn)D = V (α1, . . . , αn)diag(u(α1), . . . , u(αn)). (10.1.2)

Let J be a multi index of size n, and extract from (10.1.2) the equations corresponding to the
rows in J . The result is the equation,

MJ (u)trS[n](α1, . . . , αn)D = V I (α1, . . . , αn)diag(u(α1), . . . , u(αn)). (10.1.3)

Finally, take determinants in the equation (10.1.3). The determinant of D is the Vandermonde
determinant 1. The determinant of the product MJ (u)trS[n] is developed as in the proof of
the multiplication formula (7.5)(6). The result is the equation,

1
∑

I⊃J
uIJ s

I
[n](α1, . . . , αn) = 1J (α1, . . . , αn)

∏

i

u(αi). (10.1.4)

From (10.1.4) it follows, since 1J = 1sJ by definition of the Schur polynomials, that

∑

I⊃J
uIJ s

I (α1, . . . , αn) = sJ (α1, . . . , αn).
∏

i

u(αi) (10.1.5)

Indeed, the equation follows from (10.1.4) when the ground ring is the polynomial ring R[A]
and αi := ai , because then the Vandermonde determinant is a regular element. Therefore,
since (10.1.5) is of universal nature, it holds for general ground rings.

Equation (10.1.5) holds when u is a polynomial. For some ground rings, the equation
holds even when u is a power series. Assume for simplicity that the ground ring is the power
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series ring R[[A]] over the alphabet A. If α is an element of R[[A]] of positive order (that is,
without constant term), then evaluation u(α) is the element of R[[A]] defined formally by

u(α) := u0 + u1α + u2α
2 + . . . ,

In fact, in the sum only finitely many terms have order less than a given number, and so the
infinite sum is a well defined element of R[[A]].

In this setup, if α1, . . . , αn are power series in R[[A]] without constant terms, then (10.1.5)
holds. Indeed, (10.1.5) is an equation of power series in R[[A]], and so it suffices to show
that its two sides agree in every degree. However, in a fixed degree, the equation involves
only finitely many terms of u. Hence, since the equation holds for polynomials u, it holds
for arbitrary power series.

As a standard application, replace R by a power series ring R[[B]] over a second alphabet
B. Take u := s(B) and αi := ai . Then formula (10.1.5), for a strictly increasing multi index
J of size n equal to the number of letters of A, is the following equation in R[[A,B]]:

∑

I⊃J
sIJ (B)sI (A) = sJ (A)

∏

a∈A, b∈B

1

1− ab
, (10.1.6)

where the sum is over strictly increasing multi indices I of size n. In particular, with J = [n],
we obtain the formula, ∑

I

sI (B)sI (A) =
∏

a∈A, b∈B

1

1− ab
. (10.1.7)



Difference operators

1. Operators on rational functions.

(1.1) Setup. Fix a commutative ring R and a finite alphabet A = {a1, . . . , an} of n ≥ 0
letters. Denote by R(A) the ring of rational functions in the letters of A, that is, the ring of
all fractions f/g where f and g are polynomials in R[A] and g is not a zero divisor in R[A].

Clearly, the action of the symmetric group
�

(A) on R[A] extends to an action on R(A).
A rational function f in R(A) is called symmetric if it is invariant under the action of

�
(A),

that is, if
σ(f ) = f for all σ ∈ �

(A). (1.1.1)

The symmetric rational functions in R(A) form an R-subalgebra, denoted SymR(A).
A rational function f is called anti-symmetric if it is semi-invariant under the action of

�
(A) in the sense that

σ(f ) = sign(σ)f for all σ ∈ �
(A). (1.1.2)

Clearly, the anti-symmetric rational functions in R(A) form a module over the ring SymR(A)

of symmetric rational functions. In particular, a product of a symmetric rational function
and an anti-symmetric rational function is an anti-symmetric rational function. Similarly, a
product of two anti-symmetric rational functions is a symmetric rational function.

It follows that if h is an anti-symmetric polynomial and not a zero divisor in R[A] (for
instance, h could be the Vandermonde determinant 1 = ∏a<b(b − a)), then multiplication
by h defines an isomorphism from the R-module SymR(A) of symmetric rational functions
onto the R-module of anti-symmetric rational functions.

(1.2) Remark. If g is any polynomial in R[A], then by multiplying g by the product of
the polynomials σ(g) for all permutations σ 6= 1, we obtain a symmetric polynomial. It
follows easily that any rational function in R(A) can be written as a fraction f/g where g is a
symmetric polynomial. Moreover, it follows that the ring of symmetric functions SymR(A)

is the total fraction ring of its subring SymR[A], that is, the symmetric functions are the
fractions of the form f/g where f and g are symmetric polynomials and g is not a zero
divisor in SymR[A].

(1.3) Proposition. Let E be the sequence (0, 1, . . . , n − 1). Then the monomials aJ for
J ⊂ E form a basis both for the algebra R(A) of rational functions as a module over its
subring SymR(A) of symmetric functions, and for the algebra of R[A] of polynomials as a
module over its subring SymR[A] of symmetric polynomials.
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Proof. As noted in (1.2), every rational function in R(A) is a fraction f/g where g is a
symmetric polynomial. As a consequence, the first assertion of the Lemma follows from the
second.

The second assertion will be proved by induction on the number n of letters of A.
Clearly, the assertion holds when n = 1. Assume that n > 1 and consider the alphabet
Ā := {a1, . . . , an−1}. Then R[A] = R[an][Ā]. The subring SymR[an][Ā] consists of the
polynomials of R[A] that are symmetric in the first n−1 letters. By induction, R[A] is a free
module over its subring SymR[an][Ā], with a basis formed by the monomials ā J̄ for J̄ ⊂ Ē,
where Ē = (0, 1, . . . , n − 2). Therefore, it suffices to prove that the ring SymR[an][Ā] is a
free module over its subring SymR[A], with a basis formed by the powers 1, an, . . . , a

n−1
n .

In other words, it suffices to prove that any polynomial p in SymR[an][Ā] has a unique
expansion,

p = q0 + q1an + · · · + qn−1a
n−1
n , (1)

where qi ∈ SymR[A].
Assume that p is a polynomial in SymR[an][Ā]. For i = 1, . . . , n, let pi := µ(p) where

µ is any permutation of
�

(A) such that µ(an) = ai . The polynomial pi is independent of
the choice of µ, because p is symmetric in the letters a1, . . . , an−1. Consider the following
system of n equations,

pi = q0 + q1ai + · · · + qn−1a
n−1
i for i = 1, . . . , n, (2)

with unknown functions qi in R(A). The determinant of the matrix of coefficients is the
Vandermonde determinant 1. Hence the system (2) has a unique solution (q0, . . . , qn−1)

with qi in R(A).
The n’th equation in (2) is the equation (1), because pn = p. Clearly, if the equation

(1) holds with polynomials qi that are symmetric in the letters of A, then the equations (2)
hold. Hence it suffices to prove for the solutions qi to the system of equations (2) that each
qi is a polynomial and symmetric in the letters of A. By Cramer’s rule, the solution qi is the
fraction Qi/1, where the denominator is the Vandermonde determinant and the numerator
is the determinant,

Qi :=

∣∣∣∣∣∣∣

1 . . . ai−1
1 p1 ai+1

1 . . . an−1
1

...
...

...
...

...

1 . . . ai−1
n pn ai+1

n . . . an−1
n

∣∣∣∣∣∣∣
.

Let τ be the transposition that interchanges two different letters aj and ak of A. It follows
from the definition of the polynomials pi that τ(pi) = pi when i is different from k and j

and τ(pk) = pj . Hence, when τ is applied to the determinant Qi , the k’th and the j’th row
of the determinant are interchanged, and if we substitute ak = aj in the determinant then its
j’th and k’th row become equal. Therefore, the determinant Qi is an alternating polynomial.
As a consequence, the quotient qi = Qi/1 is a polynomial and symmetric in the letters of
A.

Thus the Lemma has been proved.
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(1.4) Observation. The number of elements in the basis of (1.3) is the number, n!, of
permutations in

�
(A).
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2. The simple difference operators.

(2.1) Definition. Consider the (twisted) group algebra R(A)[
�

(A)] of the ring of ratio-
nal functions R(A). As a left-R(A)-module, the group algebra is freely generated by the
permutations of

�
(A), that is, the elements of the algebra are R(A)-linear combinations of

permutations,
α =

∑

σ

fσσ, (2.1.1)

and the multiplication in the algebra is given by the rule,

σ ·f = σ(f )σ. (2.1.2)

The twisted group algebra R(A)[
�

(A)] contains the ring of rational functions R(A), and it
contains the group

�
(A). Note that σf , for σ ∈ �

(A) and f ∈ R(A) can be interpreted
both as the product of σ and f in the group algebra and as the function obtained from f be
the action of σ . When the interpretation is not clear from the context, we write σ ·f for the
product in the group algebra (defined by (2.1.2)) and σ(f ) for the function obtained from the
action.

A permutation µ in
�

(A) is invertible in the group algebra. Hence it induces an inner
automorphism α 7→ µαµ−1 of the group algebra, called conjugation by µ. On the subring
of rational functions, conjugation is the map f 7→ µ(f ).

In addition, the group algebra has a canonical involution α 7→ α∗. It is the anti-
automorphism of the group algebra defined by

(f σ)∗ := sign(σ)σ−1·f. (2.1.3)

Note that the involution is an anti-automorphism, that is, it reverses the order of the factors in
a product. It is equal to the identity on the subring R(A) of rational functions. In particular,
(σf )∗ = fσ ∗ = sign(σ)fσ−1.

(2.2) Definition. The group algebra R(A)[
�

(A)] acts naturally on the R-module R(A).
More precisely, to the element α of (2.1.1) we associate the operator on R(A) defined by

α(g) :=
∑

σ

fσσ(g). (2.2.1)

The action is faithful, that is, if an element α of the group algebra operates as the zero
map on R(A), then α = 0. Equivalently, if a sum α = ∑k

i=1 fiσi , where the σi are k

different permutations, defines the zero operator (2.2.1), then the functions fi are equal to
zero. Indeed, by a standard argument of Galois theory, the assertion is proved by induction
on k. It holds when k = 1. Assume that k > 1 and that α defines the zero operator.
Then, for every function f ∈ R(A), we have that σk(f )α and α·f defines the zero operator.
Hence the difference σk(f )α − α·f defines the zero operator. Clearly, the difference is the
sum

∑k−1
i=1 [σk(f ) − σi(f )]fiσi . Hence, by induction, we have that [σk(f ) − σi(f )]fi for
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i = 1, . . . , k−1. Applied with each letter ofA as f , it follows that fi = 0 for i = 1, . . . , k−1.
Clearly, then also fk = 0.

The algebra of all operators on R(A) of the form g 7→ α(g) where α is an element of
the twisted group algebra will be denoted

�
R(A). The elements of the algebra

�
R(A) will

simply be called operators on R(A). By the result just proved, operators can be identified
with elements of the twisted group algebra. Note that all operators are SymR(A)-linear.
The subalgebra of

�
R(A) consisting of operators that map the subring R[A] into itself will

be denoted
�
R[A]. Obviously, the algebra

�
R[A] contains the ring of polynomials R[A]

and the group of permutations
�

(A), that is, the algebra contains the twisted group algebra
R[A][

�
(A)].

It will be proved in Chapter SCHUB that the algebra of operators
�
R(A) is the full ring of

all SymR(A)-linear endomorphisms of R(A).
Clearly, the subalgebra

�
R[A] is invariant under the conjugations. It will be proved in

Chapter SCHUB that
�
R[A] is invariant under the canonical involution.

(2.3) Definition. The symmetrization operator δ = δA of R(A) is the following operator:

δA :=
∑

σ∈ �
(A)

σ · 1
1
= 1

1

∑

σ∈ �
(A)

(sign σ)σ.

The two expressions are equal, because σ(1) = (−1)`(σ ). It is clear from the first expression
that the values of the operator δA are symmetric functions. When the sum in the second
expression is applied to a polynomial, the result is an alternating polynomial and hence
divisible by 1. Therefore the operator δA belongs to

�
R[A].

Clearly, the first sum is transformed into the second by the canonical involution. Hence
the operator δA is invariant under the canonical involution. Moreover, under conjugation by
a permutation µ of

�
(A) we have that µδAµ−1 = (sign µ)δA = δAµ−1.

(2.4) Definition. For 1 ≤ p < n, let τp is the simple transposition that interchanges ap and
ap+1. Define the simple difference operator,

∂p := 1

ap+1 − ap
(1− τp), (2.4.1)

Clearly, for each polynomial f in R[A] we have that the difference f − τp(f ) vanishes when
we substitute ap+1 = ap . Hence the difference is divisible by ap+1 − ap. Therefore the
operator ∂p belongs to the subring

�
R[A]. Moreover, the operator ∂p is invariant under the

canonical involution:
(∂p)∗ = ∂p. (2.4.2)

Indeed, if we let 1p := ap+1 − ap , then ∂p = 1/1p − (1/1p)τp. Under the canonical
involution, the function 1/1p is invariant and τp is changed into −τp. Hence (1/1p)τp is
changed to −τp·(1/1p) = (1/1p)τp, and consequently the equation (2.4.2) holds.
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It will be convenient to define ∂p := −∂p. In addition, define operators πp and ψp , and
πp and ψp , by the equations,

πp = ∂p·ap+1, ψp = ap∂
p, πp = ∂p·ap, ψp = ap+1∂p. (2.4.3)

Clearly, under conjugation by τp the function 1/1p changes sign and the operator 1− τp is
invariant. Therefore, under conjugation by τp the three operators ∂p, πp and ψp are changed
into ∂p , πp and ψp . Similarly, under conjugation by ω the functions ap and ap+1 are mapped
to an−p+1 and an−p, and τp is mapped to τn−p. Hence we obtain the formulas,

ω∂pω = ∂n−p, ωπpω = πn−p, ωψpω = ψn−p. (2.4.4)

Since the canonical involution reverses the order of the factors, we obtain from (2.4.2) and
(2.4.3) the following formulas:

(∂p)∗ = −∂p, (πp)∗ = −ψp, (ψp)∗ = −πp. (2.4.5)

Finally, by combining the previous two sets of formulas we obtain the following:

ω(∂p)∗ω = −∂n−p, ω(πp)∗ω = −ψn−p, ω(ψp)∗ω = −πn−p. (2.4.6)

(2.5) Observation. It is immediate from the definition that ∂p(ap+1) = 1 and ∂p(ap) = −1.
As a consequence, πp(1) = 1. Note that the operator ∂p is of degree−1 and πp and ψp are
of degree 0 in the variables of A.

(2.6) Lemma. The operators of (2.4) are linear with respect to polynomials that are symmetric
in the variables ap and ap+1. Moreover, the image of ∂p is symmetric in these variables, and
∂p vanishes on polynomials that are symmetric in these variables. Finally, the image of π p

is symmetric in the variables ap and ap+1 and πp(1) = 1.

Proof. All assertions result directly from the definition.

(2.7) The Leibnitz Formula. The operator ∂p is a τp-derivation, that is, for rational func-
tions f and g in R(A) we have that

∂p(gf ) = ∂p(g)f + τp(g)∂p(f ).

Proof. The assertion follows by a direct calculation.

(2.8) Lemma. The following equations hold:

1 = πp − ψp, ∂p∂p = 0, πpπp = πp, ψpψp = −ψp.

Proof. It follows from the Leibnitz formula that ∂p(ap+1f ) = f + ap∂
p(f ). Hence the

first equation of the Lemma holds. The second equation follows from the second assertion of
Lemma (2.6). The third equation follows from the third assertion of Lemma (2.6). Finally,
the last equation is a consequence of the first and the third.
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(2.9) Lemma. Let E := (0, 1, 2, . . . , n − 1) and E1 := (0, 0, 1, . . . , n − 2). Then the
following equation of operators holds:

aE1π1 · · ·πn−1 = ∂1 · · · ∂n−1·aE .

Proof. The monomial aE1 is equal to aE/(a2 · · · an). Define more generally, for p =
1, . . . , n, the monomial aEp := aE/(ap+1 · · · an). Then the following equation holds for
p < n:

aEpπp = ∂p·aEp+1 . (1)

Indeed, the left side of the equation is equal to πp · aEp because aEp is symmetric in the
variables ap and ap+1, and πpaEp is equal to the right side by definition of πp and aEp .

Clearly, the equations (1) for p < n imply that the following product of operators, for
p = 1, . . . , n, is independent of p:

∂1 · · · ∂p−1aEpπp · · · πn−1.

Finally, the asserted equation of the Lemma is the equality of the latter products for p = 1
and p = n.



3. General difference operators.

(3.1) Definition. Define, by induction on the number of letters n of the alphabet A, two
operators ∂A and πA as follows. If n = 1, then both operators are equal to 1. If n > 1, define

∂A := ∂A1∂1 · · · ∂n−1 and πA := πA1π1 · · ·πn−1,

where A1 is the alphabet with the n − 1 letters a2, . . . , an. In addition, define the operator
ψA by the equation,

ψA := (−1)n(n−1)/2ω(πA)∗ω.

In (3.5) we will give a more flexible definition of all three operators, and we show in particular
that the operator ψA satisfies the equation ψA = ψA1ψ1 · · ·ψn−1, analogous to the formulas
used for the inductive definition of ∂A and πA.

(3.2) Example. If n = 3, then

∂A = ∂2∂1∂2, πA = π2π1π2, ψA = ψ1ψ2ψ1.

Indeed, the first two equations follow from the inductive definition in (3.1). By the middle
equation of (DIFF.2.4.6), the third asserted equation follows by applying the involution α 7→
ωα∗ω to the second equation.

(3.3) Theorem. Consider the symmetrization operator δA of (DIFF.2.3),

δA =
∑

σ∈ �
(A)

σ · 1
1
= 1

1

∑

σ∈ �
(A)

(sign σ)σ. (3.3.1)

Then, for any monomial aJ we have that

δA(aJ ) = 1J /1 . (3.3.2)

In particular, if E = (0, 1, . . . , n − 1), then δA(aE) = 1 and δA(aJ ) = 0 when J ⊂ E and
J 6= E. Finally, the following three operator equations hold:

∂A = δA, πA = ∂A·aE , ψA = ω(aE)∂A. (3.3.3)

Proof. The equality of the expressions in (3.3.1) was observed in the definition (DIFF.2.3)
of ∂A. Clearly, when the second sum in (3.3.1) is applied to a monomial aJ the result is
the determinant 1J , see (SYM.6.6). Hence the equation (3.3.2) follows from the second
expression for δA.

By definition of the Vandermonde determinant we have that 1E = 1. Moreover, if
J ⊂ E, then J has two equal entries, and consequently 1J = 0. Hence we have obtained
for δA(aJ ) the special values given in the Theorem.
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Consider the three operator equations of (3.3.3). The second equation follows by induction
on the number of letters of A from Lemma (DIFF.2.9) and the recursive definitions of ∂A and
πA in (3.1). Indeed, let A1 be the alphabet of (3.1), and let E1 by the sequence of (DIFF.2.9).
Clearly, by induction, we may assume that πA1 = ∂A1aE1 . Hence, by the recursive definitions
of ∂A and πA, it suffices to prove the following equation,

∂A1aE1π1 · · · πn−1 = ∂A1∂1 · · · ∂n−1aE.

The latter equation follows immediately from Lemma (DIFF.2.9).
Consider next the first equation of (3.3.3). The two sides are operators of

�
R(A). In par-

ticular, they are SymR(A)-linear operators. Therefore, by Proposition (DIFF.1.3), it suffices
to prove that the two operators yield the same value when they are evaluated on a monomial
aJ , where J ≤ E. The values δA(aJ ) were found in the first part of the Theorem. The other
operator ∂A is a product of n(n− 1)/2 simple operators ∂p and each operator ∂p lowers the
degree by 1. Therefore, if J ⊂ E and J 6= E, then ∂A(aJ ) = 0, because the degree of aJ

is strictly less than n(n− 1)/2. Moreover, for J = E we have that ∂A(aE) = πA(1) by the
second equation of (3.3.3), and πA(1) = 1, because πA is a composition of simple operators
πp and πp(1) = 1 for all p. Hence, the equality ∂A(aJ ) = δA(aJ ) holds for J ⊂ E.
Consequently, the two operators are equal and the first equation of (3.3.3) has been proved.

It remains to prove the third equation of (3.3.3). The following equation holds:

ω(∂A)∗ω−1 = (−1)n(n−1)/2∂A. (3.3.4)

Indeed, it follows from the observations in Definition (2.3) that the equation holds for the op-
erator δA and we have proved that ∂A = δA. Apply the involution α 7→ (−1)n(n−1)/2ωα∗ω−1

to the second equation of (3.3.3). We obtain the equation,

(−1)n(n−1)/2ω(πA)∗ω−1 = (−1)n(n−1)/2ω(aE)ω(∂A)∗ω−1.

The left hand side is ψA by definition and the right hand side is ω(aE)∂A by (3.3.4). Therefore
the third equation of (3.3.3) holds.

Thus all the assertions of the Theorem have been proved.

(3.4) Corollary. Each of the three sets of operators,

{∂1, . . . , ∂n−1}, {π1, . . . , πn−1}, {ψ1, . . . , ψn−1},
satisfies the Coxeter–Moore relations.

Proof. The first of the Coxeter–Moore relations, for any of the three sets, are satisfied because
the operator ∂p commutes with ∂q and with aq and aq+1 when |p − q| > 1.

Clearly, to verify the second Coxeter–Moore relation, it suffices to consider an alphabet
A with 3 letters a1, a2, a3. The equations, for the three sets of operators, are the following:

∂2∂1∂2 = ∂1∂2∂1, π2π1π2 = π1π2π1, ψ2ψ1ψ2 = ψ1ψ2ψ1. (1)
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Consider the first equation. The left side is equal to ∂A. Hence, by the Theorem, we obtain
the equation ∂2∂1∂2 = δA. Now apply the involution α 7→ ωα∗ω to the latter equation.
On the left, the result is −∂1∂2∂1 by the first equation of (DIFF.2.4.6) and on the right the
result is −δA as observed in (DIFF.2.3). Hence we obtain the equation ∂ 1∂2∂1 = δA. So we
have proved that both sides of the first equation of (1) are equal to δA. In particular, the first
equation holds.

Consider the second equation in (1). The left side is the operator πA and hence, by the
Theorem, the left side is equal to the operator ∂2∂1∂2a2a

2
3 . So, by the Coxeter relations

proved for ∂p , the left side is equal to the operator ∂1∂2∂1a2a
2
3 . Hence it suffices to prove

that the latter operator is equal to the right side, that is, it suffices to prove the following
equation:

∂1∂2∂1a2a
2
3 = ∂1a2∂

2a3∂
1a2.

The latter equation is easily verified. Indeed, on the right side, a3 commutes with ∂1. Next
apply the equation a2∂

2 = ∂2a3−1 of Lemma (DIFF.2.8). Finally, use the equation ∂ 1∂1 = 0
of Lemma (DIFF.2.8) to obtain the left hand side. Hence the second equation in (1) has been
proved.

Finally, the third equation in (1) follows by applying the involution α 7→ ωα∗ω−1 to the
second equation, since ω(πp)∗ω−1 = −ψn−p by Formula (DIFF.2.4.3).

Thus the second set of relations have been verified for all three sets of operators, and the
proof is completed.

(3.5) Definition. Let µ be a permutation of A. Define the corresponding difference operator
∂µ by the following equation:

∂µ := ∂ i1 · · · ∂ ir , (3.5.1)

where (τi1, . . . , τir ) is any minimal presentation of µ. Since the operators ∂p satisfy the
Coxeter-Moore relations by Corollary (3.4), it follows from Proposition (SYM.2.6) that the
operator ∂µ is well defined, that is, the right hand side of the equation is independent of the
choice of the minimal presentation of µ.

Define similarly operators πµ and ψµ by the equations,

πµ := π i1 · · ·π ir and ψµ := ψ i1 · · ·ψ ir .

Again, it follows from Corollary (3.4) that the operators are well defined. Finally, using
the equations (3.4.4) it follows from Corollary (3.4) that each of the three sets of operators,
{∂1, . . . , ∂n−1}, {π1, . . . , πn−1}, and {ψ1, . . . , ψn−1}, satisfies the Coxeter-Moore relations.
Hence we obtain operators ∂µ, πµ, and ψµ, defined by the equations,

∂µ := ∂i1 · · · ∂ir , πµ := πi1 · · · πir , and ψµ := ψi1 · · ·ψir .
When µ = ω, we obtain the operators defined in (3.1):

∂A = ∂ω, πA = πω, ψA = ψω.

Indeed, the first two equations follow immediately from the recursive definitions of (3.1). The
third equation is a consequence of the definition of ψA and the general formula ω(πµ)∗ω =
(−1)`(µ)ψωµ−1ω proved in the following Lemma.
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(3.6) Lemma. Let µ be a permutation of A. Then

∂µ = (−1)`(µ)∂µ and (∂µ)∗ = ∂µ
−1

. (3.6.1)

Moreover, the following nine formulas hold:

(∂µ)∗ = (−1)`(µ)∂µ−1 , ω∂µω = ∂ωµω, ω(∂µ)∗ω = (−1)`(µ)∂ωµ
−1ω,

(πµ)∗ = (−1)`(µ)ψµ−1 , ωπµω = πωµω, ω(πµ)∗ω = (−1)`(µ)ψωµ−1ω,

(ψµ)∗ = (−1)`(µ)πµ−1 , ωψµω = ψωµω, ω(ψµ)∗ω = (−1)`(µ)πωµ
−1ω.

Proof. The first equation in (3.6.1) follows from the definition of ∂µ and ∂µ, because ∂p =
−∂p. The second equation in (3.6.1) follows from the first equation and the first of the nine
formulas.

To prove the nine formulas, let (τi1, . . . , τir ) be a minimal presentation of µ. Consider the
equation of Definition (3.5):

∂µ = ∂ i1 · · · ∂ ir . (1)

Apply the canonical involution α 7→ α∗. The canonical involution reverses the order of the
factors in a product, and (∂p)∗ = −∂p by the first equation of (DIFF.2.4.5). Hence, from
Equation (1) we obtain the equation,

(∂µ)∗ = (−1)r∂ir · · · ∂i1. (2)

As the reversed sequence (τir , . . . , τi1) is a minimal presentation of µ−1, it follows that the
right side (2) is equal to (−1)`(µ)∂µ−1 . Hence the first of the nine formulas holds.

To prove the second of the nine formulas, apply the conjugation α 7→ ωαω to Equation (1).
Conjugation is a homomorphism, and ω∂pω = ∂n−p by the first equation of (DIFF.2.4.4).
Hence from Equation (1) we obtain the equation,

ω∂µω = ∂n−i1 · · · ∂n−ir . (3)

As the sequence (τn−i1, . . . , τn−ir ) is a minimal presentation of ωµω, it follows that the right
side of (3) is equal to ∂ωµω. Hence the second of the nine formulas holds.

Clearly, the third of the nine formulas is consequence of the first two formulas. Finally,
the proofs of remaining two sets of three formulas are entirely analogous to the proof of the
first three formulas.

(3.7) Proposition. Let µ and ν be permutations. Then:

(1) If `(µ)+ `(ν) = `(µν), then ∂µ∂ν = ∂µν , πµπν = πµν and ψµψν = ψµν .
(2) If `(µ)+ `(ν) > `(µν), then ∂µ∂ν = 0.
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Proof. Let (τi1, . . . , τir ) and (τj1, . . . , τjs ) be minimal presentations of µ and ν. Then the
concatenated sequence (τi1, . . . , τir , τj1 , . . . , τjs ) is a presentation of µν. Moreover, the latter
presentation is minimal if and only if `(µ)+`(ν) = `(µν). Hence assertion (1) follows from
the Definition (3.5).

If the concatenated sequence is not minimal, then, by Proposition (SYM.2.6), it is Coxeter–
Moore equivalent to a sequence (τk1, . . . , τkt ) where two consecutive ki’s are equal. It follows
from Lemma (3.4) that ∂µ∂ν is equal to the product ∂k1 · · · ∂kt . The latter product vanishes
by the second equation of Lemma (DIFF.2.8). Therefore assertion (2) holds.

(3.8) Corollary. For all µ in
�

(A) we have that

∂ω = ∂ωµ
−1

∂µ = ∂µ∂µ
−1ω,

πω = πωµ
−1

πµ = πµπµ
−1ω, ψω = ψωµ−1

ψµ = ψµψµ−1ω.

Proof. It follows from assertions (5) and (6) in Lemma (SYM.1.3) that `(ω) = `(ωµ−1)+
`(µ). Hence the formulas of the Corollary follow from the first assertion of the Proposition.

(3.9) Lemma. For a multi index K = (k1, . . . , kn), let R[A]⊂K denote the R-submodule of
R[A] generated by the monomials aJ for J ⊂ K . Assume that |kp+1−kp| ≤ 1 for all p < n.
Then the R-submodule R[A]⊂K is invariant under the operators ∂µ for all permutations µ

of
�

(A).

Proof. The operator ∂µ is a composition of the simple difference operators ∂p. Therefore we
may assume that µ = τp for some p < n. It suffices to prove for a given multi index J ⊂ K

that the value ∂p(aJ ) is an R-linear combination of monomials aI for I ⊂ K . Moreover,
since ∂p is linear with respect to polynomials that do not depend on the variables ap and
ap+1, we may assume that ap and ap+1 are the only letters of the alphabet, that is, we may
assume that n = 2 and µ = τ1. Then K = (k1, k2), and J = (j1, j2) ⊂ K , and we consider
the monomials aI = a

i1
1 a

i2
2 occurring in the value ∂1(aJ ).

Let k denote the larger of k1 and k2, and let j denote the larger of j1 and j2. By the
hypothesis on K , we have that (k− 1, k − 1) ⊂ K , and by the assumption on J we have that
j ≤ k. Hence (j − 1, j − 1) ⊂ K . Therefore, to prove the assertion, it suffices to prove for
any of the monomials aI occurring in ∂1(aJ ) that I ⊂ (j − 1, j − 1).

Clearly, the expansion of ∂1(aJ ) is given by the formula,

∂1aJ = a
j1
1 a

j2
2 − a

j1
2 a

j2
1

a2 − a1
= ±

∑′

i1,i2

a
i1
1 a

i2
2 ,

where the sum is over all pairs I = (i1, i2) such that i1 and i2 are less than or equal to j − 1,
and i1+ i2 = j1+ j2− 1. In particular, for each of the occurring monomials aI we have that
I ⊂ (j − 1, j − 1), as asserted.

Thus we have proved the Lemma.
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(3.10) Lemma. Given invertible rational functions f1, . . . , fn and g1, . . . , gn of R(A). De-
fine operators ξi for i = 1, . . . , n in

�
R(A) by ξi = fi(1−τi)gi . Then, for every permutation

µ in
�

(A) and every minimal presentation (τi1, . . . , τir ) of µ we have an expansion of oper-
ators,

ξi1 · · · ξir = hµµ+
∑

`(ν)<`(µ)

hνν,

with rational functions hν . Moreover, the coefficient hµ to µ in the expansion is an invertible
function in R(A).

As a consequence, each of the three sets of operators, {∂µ}, {πµ}, and {ψµ} for µ in
�

(A),
is an R(A)-basis for the algebra

�
R(A) of all operators.

Proof. Use the rule τ ·g = τ(g)τ in the algebra
�
R(A) to develop the expression ξi1 · · · ξir =

fi1(1− τi1)gi1 · · ·fir (1− τir )gir as an R(A)-linear combination of monomials in τ1, . . . , τn.
Clearly, each occurring monomial is of the form τj1 · · · τjq where (j1, . . . , jq ) is a subsequence
of (i1, . . . , ir ). In particular, the product τj1 · · · τjq is either equal to µ or it has length strictly
less than `(µ). [In fact, the product is less than or equal to µ in the Bruhat–Ehresman order by
Proposition (SYM.3.7?).] Moreover, the coefficient hµ is equal to the sign (−1)r multiplied
by a product of functions obtained by applying suitable permutations to the fi and gi . Hence
hµ is invertible in R(A). Thus the first two assertions of the Lemma holds.

Since the operators ∂µ, πµ and ψµ are all of the form ξi1 · · · ξir for particular choices of
invertible fi and gi , it follows from the expansion, by induction on the length, that every per-
mutationµ belongs to the R(A)-module generated by any of these sets of operators. However,
the R(A)-module of operators can be identified with the twisted group algebra R(A)[

�
(A)]

and so the permutations µ in
�

(A) form a basis for
�
(A) as an R(A)–module. Moreover, the

number of operators in any of the three sets is equal to the number of permutations. Hence
any of the three sets is a basis.

(3.11) Note. We will prove in Section (SCHUB.2.4) that the operators ∂µ for µ in
�

(A) form
a basis for the algebra of operators

�
R[A] as a module over the ring of polynomials R[A].

(3.12) Lemma. Let µ be a permutation in
�

(A) and let g be a rational function which is
symmetric in the lettersa2, . . . , an. Then the derivative ∂µ(g) vanishes unlessµ = τq−1 · · · τ1

for some q = 1, . . . , n. Moreover, the derivative ∂q−1 · · · ∂1(g) is symmetric in the letters
a1, . . . , aq and in the letters aq+1, . . . , an.

Proof. Clearly, a function f is symmetric if and only if ∂p(f ) = 0 for p = 1, . . . , n − 1.
Consider, for q = 1, . . . , n, the permutation σq := τq−1 · · · τ1. [Thus σq is the identity if

q = 1 and the q-cycle (q, . . . , 2, 1) for q > 1.] Then, for p = 1, . . . , n − 1 and p 6= q − 1,
we have the equation,

τpσq =




σqτp if p > q,

σq+1 if p = q,

σqτp+1 if p < q − 1.

The equations are easily verified. For instance, the equation τqσq = σq+1 follows from the
definition of the σq , and the remaining equations follow from the Coxeter–Moore relations.



General difference operators 75

Consider a minimal presentation of µ. If µ is not of the form σq , then there is a unique
q ≥ 1 so that the presentation is of the form,

µ = τp1 · · · τpsτq−1 · · · τ1,

where ps 6= q. Since the presentation is minimal, it follows that ps 6= q − 1. Hence, by the
equations proved above, there is a second minimal presentation of the form µ = τq1 · · · τqr
where qr ≥ 2. Therefore, since g is symmetric in the letters a2, . . . , an, it follows that
∂µ(g) = 0.

To prove the second assertion of the Lemma, let h := ∂σq (g). Consider, for p = 1, . . . , n,
the derivative ∂p(h). For p = q − 1 we have that ∂q−1(h) = 0, since ∂q−1∂q−1 = 0. For
p < q − 1, it follows from the equations above that ∂p(h) = ∂σq ∂p+1(g), and ∂p+1(g) = 0
since g is symmetric in a2, . . . , an. Thus ∂p(h) = 0 for p = 1, . . . , q − 1, and hence h is
symmetric in the letters a1, . . . , aq . Similarly, if p > q, it follows that ∂p(h) = ∂σq ∂p(g) =
0, and hence h is symmetric in the letters aq+1, . . . , an.

(3.13) Definition. Every operator α in
�
R[A] acts naturally on the power series ring R[[A]].

Indeed, α is an R(A)-linear combination of permutations σ . Hence, if h ∈ R[A] is a common
denominator for the coefficients, then there is an expansion, α =∑σ (hσ /h)σ where the hσ
are polynomials. Let k be the order of the polynomial h. If f is a polynomial of order at least
d , then the sum

∑
σ hσσ(f ) has order at least d . Hence the value α(f ), which is a obtained

by dividing the sum by h, is a polynomial of order at least d − k.
It follows that if f =∑fi is a power series in R[[A]], then there is a well defined series,

α(f ) :=
∑

α(fi).

In particular, the difference operators ∂µ act on the power series ring R[[A]]. Note that the
operator ∂µ is homogeneous and lowers the degree by d = `(µ), that is, the homogeneous
term of degree i in ∂µ(f ) is equal to ∂µ(fi+d).

Clearly, the Leibnitz formula of (DIFF.2.7) holds for power series f, g in R[[A]].

(3.14) Example. For 1 ≤ q < n, we have in R(A) and in R[[A]] the equations,

∂q

( 1

1− aq

)
= 1

(1− aq)(1− aq+1)
, (3.14.1)

∂q · · · ∂1

( 1

1− a1

)
= 1

(1− a1) · · · (1− aq+1)
. (3.14.2)

Indeed, the first formula is obtained by applying the Leibnitz rule to the equation (1 −
aq)
−1(1− aq) = 1, and the second formula follows by induction on q from the first.

(3.15) Example. For a polynomial g depending only on the first letter a1, it follows from
(3.12) that the derivatives ∂µ(g) vanish unless µ = τq−1 · · · τ1 for some q = 1, . . . , n. For a
polynomial g of the form,

g := (a1 − b1) · · · (a1 − bm), (3.15.1)
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a formula for the derivative ∂q−1 · · · ∂1(g) may be obtained as follows:
Assume first that thebi are variables, that is, letB = {b1, . . . , bm}be a second alphabet with

m letters, and replace the ground ring with the polynomial ringR[B]. Form, for q = 1, . . . , n,
the power series in R[[A,B]],

S(q) = S(a1, . . . , aq ;B) := (1− b1) · · · (1− bm)

(1− a1) · · · (1− aq)
, (3.15.2)

and denote by sd(a1, . . . , aq ;B) the homogeneous term of degree d in S (q). Then

∂q−1 · · · ∂1(g) = sm−q+1(a1, . . . , aq ;B). (3.15.3)

Indeed, the numerator in S(q) is the polynomial,

(1− b1) · · · (1− bm) = 1− e1 + · · · + (−1)mem,

where ei := ei(B). Hence, for q = 1, we have the equation,

S(1) = (1− e1 + · · · + (−1)mem)(1+ a1 + a2
1 + · · · ).

It follows that the homogeneous term of degree d in S (1), for d ≥ m, is the polynomial,

ad1 − e1a
d−1
1 + · · · + (−1)memad−m1 = ad−m1 (a1 − b1) · · · (a1 − bm).

In particular, for d = m, it follows that g is the homogeneous term of degree m in S (1). It
follows from (3.14.2) that

∂q−1 · · · ∂1S
(1) = S(q).

Therefore, by taking the homogeneous terms of degree m − q + 1, we obtain the asserted
formula (3.15.3).

In (3.15.3), the bi are assumed to be variables. The formula for the general case when the
bi are arbitrary elements of R is obtained by specializing. Note however, that in the collection
of the homogeneous terms in the S(q), the bi have to be considered as homogeneous of degree
1.

For instance, let b1 = · · · = bm = 0. Then g = am1 and the power series S(q) of (3.15.2)
specializes to the series,

S(a1, . . . , aq ) = 1

(1− a1) · · · (1− aq)
.

It follows that
∂q−1 · · · ∂1(a

m
1 ) = sm−q+1(a1, . . . , aq )

is the (m− q + 1)’th complete symmetric polynomial in the letters a1, . . . , aq .



4. The bilinear form.

(4.1) Definition. Define a bilinear form on the algebra R(A) of rational functions by the
following equation:

〈f, g〉 :=
∑

σ∈ �
(A)

σ
(fg

1

)
= 1

1

∑

σ∈ �
(A)

(sign σ)σ(fg). (4.1.1)

By Definition (DIFF.2.3) of the symmetrization operator δA, the two sums are equal, and
equal to the value δA(fg). Moreover, by Theorem (DIFF.3.3) and Definition (DIFF.3.5), the
following equation holds:

〈f, g〉 = ∂ω(fg). (4.1.2)

The bilinear form is called the inner product on R(A).

(4.2) Lemma. The values of the inner product (4.1) are symmetric functions in R(A). More-
over, the inner product is symmetric and SymR(A)-bilinear. Furthermore, if α is any operator
in

�
R(A), then

〈α(f ), g〉 = 〈f, α∗(g)〉, (4.2.1)

where α 7→ α∗ is the canonical involution of (DIFF.2.1). In particular, for any permutation
µ in

�
(A), we have that

〈µ(f ), g〉 = (sign µ)〈f,µ−1(g)〉 and 〈∂µ(f ), g〉 = 〈f, ∂µ
−1

(g)〉. (4.2.2)

Finally, if f and g are polynomials in R[A], then 〈f, g〉 belongs to SymR[A].

Proof. We have observed in (DIFF.2.3) the value 〈f, g〉 = δA(fg) is a symmetric function.
Moreover, it is clear that the inner product is symmetric in f and g, and SymR(A)-bilinear.

By additivity of the inner product it suffices to prove equation (4.2.1) whenα is a producthµ

of a functionh inR(A) and a permutationµ in
�

(A). Moreover, since the canonical involution
reverses the orders of the factors in a product, it suffices to treat separately the two cases:
α = h and α = µ. In the first case the equation is obvious: 〈hf, g〉 = δA(hfg) = 〈f, hg〉.
In the second case the equation is the first equation of (4.2.2), and it follows immediately by
rearranging the terms in second sum in (4.1.1).

By the second equation in (DIFF.3.6.1), we have that (∂µ)∗ = ∂µ
−1

. Hence the second
equation of (4.2.2) is a special case of the general equation (4.2.1).

The final assertion of the Lemma is a consequence of the equation 〈f, g〉 = δA(fg), since
the symmetrization operator δA belongs to

�
R[A], see Definition (DIFF.2.3).

(4.3) Note. The inner product is non-degenerate, that is, if 〈f, g〉 = 0 for all g, then f = 0.
Indeed, it follows from Equation (4.4.1) that 〈f, g〉 is the result of evaluating the operator∑
σ σf = ∑

σ σ(f )σ on the function g/1. If the result is 0 for all g, then the operator
is zero and consequently, by (DIFF.2.2), zero as an element in the twisted group algebra
R(A)[

�
(A)]. Hence f = 0.

We prove in (SCHUB.2.4) that if 〈f, g〉 is a polynomial for all polynomials g, then f is a
polynomial.
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(4.4) Lemma. Let I and J be multi indices of size n such that I ⊂ (n − 1, . . . , 1, 0) and
J ⊂ (0, 1, . . . , n− 1). Then the inner product 〈aI , aJ 〉 is equal to 0 unless all entries in the
sequence I + J are different. In the exceptional case, the sequence I + J is a permutation of
the sequence (0, 1, . . . , n−1), and 〈aI , aJ 〉 is equal to the signature of the latter permutation.

Proof. By definition we have that 〈aI , aJ 〉 = δA(aI+J ). Moreover, as observed in Theorem
(DIFF.3.3), we have that δA(aK) = 1K/1. From the assumptions on I and J it follows
that all entries in the sequence I + J are non-negative integers between 0 and n − 1. The
assertion of the Lemma is a consequence, because 1K is alternating in K and equal to 1

when K = (0, 1, . . . , n − 1).



5. The Möbius transformation.
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Schubert polynomials

1. Double Schubert polynomials.

(1.1) Setup. Fix an alphabet A = {a1, . . . , an} with n ≥ 0 letters, and consider the algebras
R[A] of polynomials and R(A) of rational functions in the letters of A. For a multi index I

of size n, we denote by R[A]⊆I the R-module of polynomials generated by the monomials
aJ for J ⊆ I . It follows from Lemma (DIFF.3.9) that the two R-modules, R[A]⊆0,1,...,n−1
and R[A]⊆n−1,...,1,0, are invariant under the operators ∂µ for µ ∈ �

(A). Recall that ∂µ =
(sign µ)∂µ.

Fix a set B = (b1, . . . , bn) of n elements in the ground ring R. If f is a polynomial in
R[A], we denote by f (B) the value obtained by specializing the letters of A to the elements
of B.

Consider the following two polynomials in R[A]:

XB :=
∏

p+q≤n
(ap − bq) and YB :=

∏

p>q

(ap − bq). (1.1.1)

Note that YB = ω(XB).
When the ground ring is a ring of polynomials over an alphabet B with the n letters bi , we

write X(A,B) := XB and Y(A,B) := YB .

(1.2) Lemma. The following assertions hold:

(1) The value YB(B) is equal to 1(B). Moreover, for a permutation µ 6= 1 in
�

(A),
the value µ(YB)(B) is equal to 0.

(2) The polynomials ∂ω(YB) and ∂ω(XB) are equal to 1. Moreover, for a permutation
µ 6= ω in

�
(A), the value ∂µ(XB)(B) is equal to 0.

(3) If f is a polynomial in R[A]⊆n−1,...,1,0, then

〈YB, f 〉 = f (B).

Proof. In (3) we may, by linearity of the inner product, assume that f is a monomial aI for
I ⊆ (n − 1, . . . , 1, 0) in which case the equation asserts that 〈Y B , aI 〉 = bI . It suffices to
prove the latter equation and the equations of (1) and (2) in the special case where the ground
ring is a polynomial ring R[B] over an alphabet B with n letters. Indeed, if the equations hold
in the special case, then the equations in the general case follow by specializing the letters of
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B to the given sequence of elements in R. In the polynomial ring R[B], the Vandermonde
determinant 1(B) is not a zero divisor. Therefore, in the remaining part of the proof we may
assume that the value 1(B) is a not a zero divisor in R.

Consider the assertions of (1). It is obvious from the definition (1.1.1) of Y B that YB(B) =
1(B). The polynomial µ(YB) for a permutation µ is the product of the factors µ(ap)−bq for
p > q. Assume that µ 6= 1. Then there exist indices p > q such that µ(ap) = aq . Clearly,
the corresponding factor µ(ap) − bq specializes to 0, and consequently µ(Y B)(B) = 0.
Hence the assertions of (1) have been proved.

Consider the first assertion of (2). The operator ∂ω is the symmetrization operator ∂A = δA.
Hence ∂ω = (sign ω)∂ωω = ∂ωω. As XB = ω(YB), it follows that ∂ω(XB) = ∂ω(YB).
Hence it suffices to prove that ∂ω(YB) = 1. Let E := (0, 1, . . . , n−1). Clearly, by expanding
the product defining Y B we obtain an R-linear combination of monomials aJ where J ⊆ E,
and the coefficient of aE is equal to 1. The values of the operator ∂ω = ∂A on the monomials
aJ for J ⊆ E were determined in Theorem (DIFF.3.3). It follows that ∂ω(YB) = 1.

To prove the second assertion of (2), assume that µ 6= ω. It follows from Lemma
(DIFF.3.10) that there is an expansion of operators,

∂µ =
∑

`(ν)≤`(µ)
hνν,

with rational functions hν . Since µ 6= ω, it follows that all permutations ν in the expansion are
different fromω. Clearly, the denominators in the rational functions hν are products of factors
of the form ap − aq for p 6= q. Therefore, when N is sufficiently big, the operator 1N∂µ is
an R[A]-linear combination of permutations ν 6= ω. It follows from part (1) that if ν 6= ω,
then ν(XB)(B) = νω(YB)(B) = 0. Consequently, when the operator 1N ∂µ is applied to
XB and A is specialized to B, we obtain the equation 1N (B)∂µ(XB)(B) = 0. Since 1(B)

is assumed to be a non-zero divisor, the latter equation implies that ∂µ(XB)(B) = 0. Hence
the assertions of (2) have been proved.

Consider assertion (3). The polynomial Y B is an R-linear combination of monomials
aJ , where J ⊆ (0, 1, . . . , n− 1), and f is an R-linear combination of monomials aI , where
I ⊆ (n−1, . . .1, 0). From the latter conditions on I and J , it follows from Lemma (DIFF.4.4)
that the inner product 〈aJ , aI 〉 is either 0 or±1. As a consequence, the inner product 〈Y B , f 〉
belongs to R.

On the other hand, from the definition of the inner product we obtain the equation,

1〈YB , f 〉 =
∑

µ∈ �
(A)

(sign µ)µ(YBf ).

Specialize A to B in the latter equation. On the left hand side, the first factor 1 specializes to
1(B) and the second factor is left unchanged since it belongs to R. On the right hand side,
by (1), the terms µ(YBf ) = µ(YB)µ(f ) corresponding to µ 6= 1 specialize to 0 and the
term corresponding to µ = 1 specializes to 1(B)f (B). Hence the specialization yields the
following equation:

1(B)〈YB, f 〉 = 1(B)f (B).
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As 1(B) is assumed to be a non-zero divisor in R, the latter equation implies the equation of
Assertion (3).

Hence all assertions of the Lemma have been proved.

(1.3) Definition. In the setup of (1.1), define a family of polynomials XB
µ indexed by permu-

tations µ in
�

(A), by the equation,

XB
µ = ∂µ−1ω(XB). (1.3.1)

When the ground ring is of the form R[B], where B is a second alphabet with n letters, the
resulting polynomials are called double Schubert polynomials, and they are often denoted
Xµ(A,B). The double Schubert polynomials belong to the ring of polynomials R[A,B].

It will be convenient to define an auxiliary family of polynomials,

YBµ = ∂µ−1(YB). (1.3.2)

By Lemma (DIFF.3.6) we have that ω∂µω = (sign µ)∂ωµω. Therefore the two families are
related by the equation,

YBµ = (sign µ)ω(XB
µω). (1.3.3)

Clearly, XB
ω = XB and YB1 = YB . It follows from Lemma (1.2)(2) that XB

1 = YBω = 1.

(1.4) Remark. Note the following rule for the calculation of XB
µ : represent µ as the sequence

of indices (i1 . . . in) where µ(ap) = aip . Rearrange by simple transpositions the elements
in sequence so that the sequence becomes strictly decreasing, that is, solve the equation
µτp1 · · · τpr = ω with a minimal number r . Then XB

µ = ∂p1 · · · ∂pr (XB).

(1.5) Example. For n = 3 we obtain, omitting the superscript B, the following polynomials:

(321) = ω, X321 = X = (a1 − b1)(a1 − b2)(a2 − b1),

(312)τ2 = ω, X312 = ∂2X = (a1 − b1)(a1 − b2),

(231)τ1 = ω, X231 = ∂1X = (a1 − b1)(a2 − b1),

(132)τ1τ2 = ω, X132 = ∂1∂2X = a1 − b1 + a2 − b2,

(213)τ2τ1 = ω, X213 = ∂2∂1X = a1 − b1,

(123)τ2τ1τ2 = ω, X123 = ∂2∂1∂2X = 1.

(1.6) Lemma. The polynomial XB
µ belongs to the R-module R[A]⊆n−1,...,1,0. Its degree is

degree is equal to `(µ). Moreover, the polynomial XB
1 is equal to 1, and if µ 6= 1, then

the value XB
µ (B) is equal to 0. Finally, if µ and ν are any permutations in

�
(A), then the

following equation holds:

∂ν(X
B
µ ) =

{
XB
µν−1 if `(µ) = `(µν−1)+ `(ν),

0 otherwise.
(1.6.1)
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Proof. It is obvious from the definition that the polynomial XB belongs to the submodule
R[A]⊆n−1,...,1,0. As noted in (1.1), the submodule is invariant under the operators ∂ν . There-
fore, the first assertion of the Lemma holds.

The polynomial XB has degree equal to `(ω) and the difference operator ∂ν lowers the
degree by `(ν). Therefore the degree of XB

µ is at most equal to `(ω)− `(µ−1ω) = `(µ). It

follows from the last equation of the Lemma, applied with ν = µ, that ∂µ(XB
µ ) = XB

1 = 1.
Hence, when the last equation of the Lemma has been proved, it follows that ∂µXB

µ 6= 0 and
therefore, the degree of XB

µ is equal to `(µ).
The equation XB

µ (B) = 0 for µ 6= 1 follows from the definition of XB
µ and Lemma

(1.2)(2).
Consider finally Equation (1.6.1). By definition, the left hand side is equal to the result of

applying the operator ∂ν∂µ−1ω to the polynomial XB . By Proposition (DIFF.3.7), the latter
operator is equal to zero unless the following condition holds:

`(ν)+ `(µ−1ω) = `(νµ−1ω). (1.6.2)

When condition (1.6.2) holds, the operator is equal to ∂νµ−1ω, and consequently, when applied
to XB the result is the polynomial XB

µν−1. Moreover, the condition for the first case in Equation
(1.6.1) is equivalent to the condition (1.6.2), as it follows from Lemma (SYM.1.3). Hence
the final equation of the Lemma holds.

(1.7) Theorem. The polynomials XB
µ for permutations µ in

�
(A) form a basis for the ring

R[A] of polynomials as a module over the subring SymR[A] of symmetric polynomials, and
a basis for the ring R(A) of rational functions as a module over the subring SymR(A) of
symmetric functions. In the expansion of a function f in the latter basis, the coefficient to
XB
µ is given by the inner products,

〈YBµ , f 〉 = 〈∂µ−1(YB), f 〉 = 〈YB , ∂µ(f )〉. (1.7.1)

Moreover, if µ and ν are permutations in
�

(A), then we have the equation,

〈YBµ ,XB
ν 〉 =

{
1 if µ = ν,

0 otherwise.
(1.7.2)

Finally, the polynomials XB
µ form a basis for the R-module R[A]⊆n−1,...,1,0 and, for every

polynomial f in the latter module, the coefficient (1.7.1) of XB
µ satisfies the equation,

〈YBµ , f 〉 = ∂µ(f )(B), (1.7.3)

that is, we have the Newton interpolation formula,

f =
∑

µ∈ �
(A)

∂µ(f )(B)XB
µ . (1.7.4)



Double Schubert polynomials 85

Proof. In (1.7.1), the first equation follows from the definition (1.3.2), and the second equation
holds, because the operators ∂µ−1 and ∂µ are adjoint with respect to the inner product by
Proposition (DIFF.4.2). Hence the inner products in (1.7.1) are equal.

Let N be the R-submodule N := R[A]⊆n−1,...,1,0 of R[A]. If f belongs N , then it follows
from Lemma (1.2)(3) and the equations of (1.7.1) that 〈Y Bµ , f 〉 = 〈YB , ∂µ(f )〉 = ∂µ(f )(B).
Hence Equation (1.7.3) holds.

By Lemma (1.6) we can apply Equation (1.7.3) with f := XB
ν . As a consequence,

〈YMµ ,XB
ν 〉 = ∂µ(XB

ν )(B). (1.7.5)

Assume first that µ = ν. Then, by Lemma (1.6), the polynomial ∂µ(XB
ν ) is equal to 1. In

particular, the value on the right hand side of (1.7.5) is equal to 1. Assume next that µ 6= ν.
Then, again by Lemma (1.6), the polynomial ∂µ(XB

ν ) is either equal to 0 or it is of the form
XB
τ , with τ 6= 1. In the latter case, the value XB

τ (B) is equal to 0 by Lemma (1.6). Therefore,
for µ 6= ν, the value on the right side of (1.7.5) is equal to 0. Hence Equation (1.7.2) follows
from (1.7.5).

By a standard argument of linear algebra, the remaining assertions of the Theorem are
consequences of the equations (1.7.2). Indeed, let d = n! be the cardinality of

�
(A). Let

M denote the algebra of rational functions R(A) as a module over the ring S := SymR(A).
Define, for each of the d elements ν in

�
(A), an S-linear form X̌ν on the module M:

X̌ν(f ) := 〈YBν , f 〉.
Now, the d elements XB

µ of the S-module M define an S-linear map X : Sd → M , and the

d linear forms X̌ν define an S-linear map X̌ : M → Sd . The equation (1.7.2) asserts that
X̌X = 1. By Proposition (DIFF.1.3), the S-module M can be identified with Sd via the basis
formed by the d monomials aI for I ⊆ (n− 1, . . . , 1, 0). Under the latter identification, the
linear maps X and X̌ are d × d matrices. Consequently, the equation X̌X = 1 implies that
the matrix X is invertible. Hence the polynomials XB

µ form an S-basis for M . Moreover, the

linear forms X̌ν form the dual basis.
Clearly, in the expansion of a rational function f of R(A) in terms of the basis XB

µ , the

coefficient of XB
µ is given by evaluation of the linear form X̌µ on f . In other words, the

coefficient is given by the expressions of (1.7.1). Hence we have proved the second assertion
of the Theorem.

By the same standard argument, applied to the ring of polynomials R[A] as a module over
the subring SymR[A], it follows that the polynomials XB

µ form a SymR[A]-basis for R[A].
Hence the first assertion of the Theorem has been proved.

Consider finally the R-module N . It contains the polynomials XB
µ , as noted in Lemma

(1.6). Moreover, on the module N the forms X̌ν take values in R, by (1.7.3). Therefore,
again by the same standard argument, the polynomials XB

µ form an R-basis for N and, in
the expansion of a polynomial f of N , the coefficient to XB

µ is given by the value (1.7.3).
Therefore, the interpolation formula of Newton holds.
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(1.8) Example. For 1 ≤ p < n we have the equation,

Xτp (A,B) = a1 + · · · + ap − b1 − · · · − bp. (1.8.1)

The equation follows by applying the interpolation formula to the polynomial f on the right
hand side. Clearly, f (B) = 0. If µ 6= 1, then ∂µf is equal to 0 unless µ = τp in which case
∂τp (f ) = 1.

(1.9) Example. For 0 ≤ p < n we have the following equation,

Xτp ···τ1 (A,B) = (a1 − b1)(a1 − b2) · · · (a1 − bp). (1.9.1)

Indeed, we may assume that the ground ring is a polynomial ring R[B], and that b1, . . . , bn
are the letters of B. Denote by g the polynomial in R[A,B] on the right hand side of (1.9.1).

It follows from Example (DIFF.3.15) that ∂µ(g) = 0 unless µ is of the form τq · · · τ1.
Moreover, ∂q · · · ∂1(g) is the (p− q)’th homogeneous term in the power series in R[[A,B]],

S(a1, . . . , aq+1;B) = (1− b1) · · · (1− bp)

(1− a1) · · · (1− aq+1)
. (1.9.2)

If q > p, then p − q is negative, and the homogeneous term vanishes. If q = p, then the
term is equal to 1. Assume that q < p. Then it follows that the value ∂q · · · ∂1(g)(B) is the
(p − q)’th homogeneous term in the series obtained from (1.9.2) by substituting ai := bi .
The series obtained is the polynomial,

(1− bq+2) · · · (1− bp),

which is of degree p − q − 1. In particular, its term of degree p − q vanishes.
Hence, the value ∂µ(g)(B) is equal to 1 for µ = τp · · · τ1, and equal to zero otherwise.

Therefore, the asserted equation g = Xτp ···τ1 follows from (1.7.4).

(1.10) Note. The Newton interpolation in one variable. The monomial a
p
1 , for p < n, is

obtained from the polynomial g of (1.9) by specializing the letters of B to 0. The power series
(1.9.2) specializes to the series S(a1, . . . , aq+1). It follows from (1.9) that ∂µ(a

p
1 ) vanishes

unless µ is of the form τq · · · τ1. Moreover,

∂q · · · ∂1(a
p
1 ) = sp−q(a1, . . . , aq+1)

is the (p− q)’th complete symmetric function in the letters a1, . . . , aq+1.
Now, let f be a polynomial in the variable a1 only, and of degree at most n. Then, by

R-linearity of ∂µ, it follows that ∂µ(f ) vanishes unless the permutation µ is of the form
µ = τq · · · τ1 for some q = 0, . . . , n − 1. Therefore, for any sequence B of elements in the
ground ring, we obtain from the Newton interpolation formula (1.7.4) and Equation (1.9.1)
the following formula,

f =
n−1∑

q=0

∂q · · · ∂1(f )(B) (a1 − b1) · · · (a1 − bq). (1.10.1)
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(1.11) Remark. Assume that the ground ring is R[B], where B = {b1, . . . , bn} is a second
alphabet. Then the polynomials X(A,B) and Y(A,B) can be expressed as multi Schur
functions. In fact, with the words Ap := a1 + · · · + ap and Bp := b1 + · · · + bp for
p = 1, . . . , n, we have the formulas,

s1,3,...,2n−3(An−1 − B1, . . . , A1 − Bn−1) = X(A,B) (1.11.1)

sn−1,...,n−1(An − Bn−1, . . . , A2 − B1, A1) = Y(A,B). (1.11.2)

Indeed, from the Factorization formula (SCHUR.2.8), applied with r := n−1 to the sequence
an−1, . . . , a2, a1 we obtain for the left side of (1.11.1) the factorization,

sn−1(an − Bn−1) · · · s1(a2 − B1)s0(a1) =
∏

p>q

(ap − bq),

and, by the same formula, applied with r := n to the sequence an, . . . , a1, we obtain for the
left side of (1.11.2) the factorization,

sn−1(an − Bn−1) · · · s1(a2 − B1)s0(a1) =
∏

p>q

(ap − bq).
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2. Simple Schubert polynomials.

(2.1) Definition. We denote by Xµ and Yµ the polynomials XB
µ and YBµ corresponding to the

sequence B = (0, . . . , 0). We call the polynomials Xµ the Schubert polynomials.
By Definition (SCHUB.1.3) we have that Xµ = ∂µ−1ωX = sign(µω)ω(Yµω), where X

and Y are the monomials,

X :=
∏

i+j≤n
ai = an−1

1 · · · a0
n and Y :=

∏

i>j

ai = a0
1 · · · an−1

n . (2.1.1)

(2.2) Example. Forn = 3, it follows from the computation in (SCHUB.1.5) thatX321 = a2
1a2,

X312 = a2
1 , X231 = a1a2, X132 = a1 + a2, X213 = a1, and X123 = 1.

(2.3) Remark. Note that Theorem (SCHUB.1.7) applies to the special sequence B =
(0, . . . , 0). In particular, the Schubert polynomials Xµ for µ in

�
(A) form a basis for

the algebra of rational functions R(A) as a module over the ring of symmetric functions
SymR(A), they form a basis for the algebra of polynomials R[A] as a module over the ring of
symmetric polynomials SymR[A], and they form an R-basis for the R-submodule generated
by the monomials aI for I ⊂ (n−1, . . . , 1, 0). As it follows from the proofs of the following
results, the basis of Schubert polynomials has extremely good properties with respect to the
general difference operators ∂µ and with respect to the inner product in R(A).

(2.4) Proposition. The algebra
�
R(A) of operators on R(A) is the full ring of endomorphisms

of R(A) as a module over the ring of symmetric functions SymR(A). Similarly, the subalgebra
�
R[A] is the full ring of endomorphisms of R[A] as a module over the ring of symmetric

polynomials SymR[A]. Moreover, the general difference operators ∂µ for µ in
�

(A) form
a basis of

�
R(A) as a module over R(A), and a basis for

�
R[A] as a module over R[A].

Furthermore, if f is a rational function in R(A) such that the inner product 〈g, f 〉 is a
polynomial for every polynomial g in R[A], then f is a polynomial in R[A]. Finally, the
subring

�
R[A] of

�
R(A) is invariant under the canonical involution of (DIFF.2.1).

Proof. Let M denote the algebra of rational functions R(A) as a module over the ring S :=
SymR(A). The Schubert polynomials Xµ form an S-basis for M . Hence, if {X̌µ} denotes
the dual basis for the module of S-linear forms on M , every S-linear endomorphism of M is
of the form f 7→∑

µ X̌µ(f )hµ for rational functions hµ in M . Therefore, to prove the first
assertion of the Proposition, it suffices to prove for every permutation µ and every rational
function h that the map f 7→ hX̌µ(f ) belongs to the ring

�
R(A). Now, by the equation

(SCHUB.1.7.2), for the dual basis X̌µ we have the equation,

X̌µ(f ) = 〈Yµ, f 〉.

Moreover, by Definition (DIFF.4.1) of the inner product, 〈Yµ, f 〉 = δA(Yµf ). Hence the
map f 7→ hX̌µ(f ) is the operator hδA·Yµ belonging to

�
R(A). Thus the first assertion of

the Proposition has been proved. The proof of the second assertion entirely similar.
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Consider the general difference operators ∂µ. It was proved in Lemma (DIFF.3.10) that the
∂µ form an R(A)-basis for

�
R(A). Hence, every operator α of

�
R(A) has a unique expansion,

α =
∑

µ∈ �
(A)

αµ∂µ,

with uniquely determined coefficients αµ in R(A). If α ∈ �
R[A], then the coefficients αµ

are polynomials. Indeed, to prove that αν ∈ R[A] we may, by induction on `(ν), assume that
αµ ∈ R[A] for all permutations µ with `(µ) < `(ν). By subtracting from α the sum of the
αµ∂µ for `(µ) < `(ν), we may assume that αµ = 0 for `(µ) < `(ν). By (SCHUB.1.6), if
`(µ) ≥ `(ν), then ∂µ(Xν) = 0, unless µ = ν; moreover, if µ = ν, then ∂µ(Xν) = X1 = 1.
Therefore, since αm = 0 for µ 6= ν, it follows that α(Xν) = αν . Hence the coefficient αν is
a polynomial. Thus the third assertion of the proposition holds.

Let f be a rational function in R(A) such that the inner product 〈g, f 〉 is a polynomial
for every polynomial g in R[A]. Expand f in terms of the Schubert polynomials, f =∑
µ fµXµ, where the coefficients fµ are symmetric rational functions. Now, by Theorem

(SCHUB.1.7), the coefficientfµ is equal to the inner product 〈Yµ, f 〉, and hence the coefficient
is a polynomial. Therefore, the function f is a polynomial.

Finally, the last assertion of the Proposition follows from the expansion of an operator α in
terms of the ∂µ. Indeed, if α =∑µ αµ∂µ where the αµ are rational functions in R(A), then
α∗ =∑µ(∂µ)

∗αµ. By Lemma (DIFF.3.6), we have that (∂µ)∗ = ∂µ−1 . As proved above, if
α belongs to

�
R[A] then the functions αµ are a polynomials, and hence it follows from the

expression for α∗ that α∗ belongs to
�
R[A].

Hence all assertions of the Proposition have been proved.

(2.5) The Cauchy Formula. Assume that B and C are two sequences with n elements in the
ground ring R. Then, for every permutation µ in

�
(A) we have the equation of values,

XB
µ (C) = (sign µ)XC

µ−1(B). (2.5.1)

Moreover, the expansion of XB
µ in terms of the basis XC

ν is given by the formula,

XB
µ =

∑

ν∈ �
(A)

`(µν−1)+`(ν)=`(µ)

XB
µν−1(C)XC

ν . (2.5.2)

Proof. By Newton’s interpolation formula (SCHUB.1.7.3), the left side of (2.5.1) is equal
to 〈YC ,XB

µ 〉. The polynomial XC
µ−1 is, by definition, equal to ∂µω(XC). Hence, again

by Newton’s interpolation formula, the right side of (2.5.1) is equal to (sign µ)〈Y Bµω,XC 〉.
Consequently, the equation (2.5.1) is equivalent to the following equation:

〈YC,XB
µ 〉 = (sign µ)〈YBµω,XC 〉. (2.5.3)
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On the right side, XC = ω(YC), and (sign µ)YBµω = (sign ω)ω(XB
µ) by (SCHUB.1.3).

Moreover, it follows from Lemma (DIFF.4.2) that 〈ω(f ), ω(g)〉 = (sign ω)〈f, g〉. Therefore
the right side of Equation (2.5.3) is equal to the left side. Hence Equation (2.5.1) holds.

To prove (2.5.2), we apply Newton’s interpolation formula (SCHUB.1.7.4) to the function
f := XB

µ and obtain the equation,

XB
µ =

∑

ν∈ �
(A)

∂ν(X
B
µ)(C)XC

ν .

It follows from Proposition (SCHUB.1.6) that the polynomial ∂ν(X
B
µ ) is equal to zero unless

the condition for the summation index in (2.5.1) is satisfied; moreover, if the latter condition
is satisfied, then the polynomial is equal to XB

µν−1 . Therefore Equation (2.5.2) holds.

(2.6) Corollary. Let B be a set of n elements in R. Then the following formula holds:

XB =
∑

µ∈ �
(A)

(sign µ)Xµ(B)Xµω. (2.6.1)

Proof. Apply the Cauchy formula (2.5.2) with µ := ω and C := (0, . . . , 0). In the sum
on the right hand side, the condition `(ων−1) + `(ν) = `(ω) on the summation index ν is
satisfied for all permutations ν, by (SYM.1.3). Hence we obtain the equation,

XB
ω =

∑

ν∈ �
(A)

XB
ων−1(0)Xν. (2.6.2)

In the terms of the sum on the right hand side, let ν = µω and form the summation over µ.
By Equation (2.5.1), we have that XB

µ−1(0) = (sign µ)Xµ(B). Therefore, Equation (2.6.1)
follows from Equation (2.6.2).

(2.7) Example. Let n = 3. The right side of (2.6.1) is the sum,

Xω(A)X1(B)−Xτ2τ1(A)Xτ1(B)−Xτ1τ2Xτ2(B)

+Xτ2(A)Xτ1τ2(B)+Xτ1(A)Xτ2τ1(B)−X1(A)Xω(B)

= a2
1a2 − a1a2(b1 + b2)− a2

1b1 + a1b
2
1 + (a1 + a2)b1b2 − b2

1b2.

The formula is the reduction of this sum to

X(A,B) = (a1 − b1)(a1 − b2)(a2 − b1).



92



Partially symmetric functions

1. Partially symmetric functions.

(1.1) Setup. Assume in this chapter that the alphabet A is partitioned, that is, assume that A

is the union of a set A = (A1| . . . |Ar ) of r disjoint alphabets Ai such that, for all i < j , if
a ∈ Ai and b ∈ Aj , that a < b. Equivalently, the partitioning may be given by listing, for
i = 1, . . . , r − 1, the index pi of the last letter in Ai :

A = {
A1︷ ︸︸ ︷

a1, . . . , ap1 ,

A2︷ ︸︸ ︷
ap1+1, . . . , ap2 , . . . ,

Ar︷ ︸︸ ︷
apr−1+1, . . . , an}.

The Young subgroup
�

(A) = �
(A1| . . . |Ar ) corresponding to A is the subgroup of

permutations in
�

(A) that leaves every Ai invariant. The group
�

(Ai) will be identified with
the subgroup of

�
(A) consisting of the permutations that are equal to the identity on letters

outside Ai . Clearly, any permutation µ in
�

(A) is a product µ = µ1 · · ·µr with uniquely
determined factors µi ∈ �

(Ai). Moreover, as different factors µi commute, it follows that
the Young subgroup is the product,

�
(A) = �

(A1)× · · · × �
(Ar ).

The Young group
�

(A) is generated by the simple transpositions τp for p different from the
pi .

Denote by
�
(A) the subset of

�
(A) consisting of the permutations that are increasing on

every interval Ai . The subset
�
(A) is a system of representatives for the set

�
(A)/

�
(A)

of left cosets modulo the Young group since, obviously, for every permutation µ there are
unique permutations µi in

�
(Ai) such that µµ1 · · ·µr is increasing on each interval Ai . Note

also that if σ ∈ �
(A) and ν ∈ �

(A), then we have the equation,

`(σν) = `(σ)+ `(ν). (1.1.1)

Note that the simple transpositions τpi belong to
�
(A).

Clearly, the Young subgroup
�

(A) has order n1! · · ·nr!, where ni is the number of letters
in the subalphabet Ai . It follows that the subset

�
(A) is of order equal to the multinomial

coefficient, (
n

n1, . . . , nr

)
= n!

n1! · · ·nr ! .
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Denote by ω = ωA the order reversing permutation of A and by ωi = ωAi the order
reversing permutation of Ai . It is obvious that a permutation σ of

�
(A) belongs to

�
(A)

if and only if ωσω1 · · ·ωr belongs to
�
(A). Clearly, the permutation ωA defined by the

equation,
ω = ωAω1 · · ·ωr ,

or equivalently, ωA := ωω1 · · ·ωr , belongs to T (A). The map ω defines an order reversing
bijection Ai → ωAi and ωA defines an order preserving bijection Ai → ωAi .

Note that there is a second partitioning ωA := (ωAr | . . . |ωA1) of A, and that
�

(ωA) =
ω

�
(A)ω−1. Moreover, a permutation σ of

�
(A) belongs to

�
(ωA) if and only if ωσω

belongs to
�
(A).

(1.2) Definition. A rational function of R(A) invariant under the Young subgroup
�

(A)

will be called partially symmetric. We denote by SymR(A) and SymR[A] the subalgebras of
R(A) of functions and polynomials respectively that are partially symmetric.

Clearly, a function f is partially symmetric if and only if τp(f ) = f for all p different
from the pi .

(1.3) Lemma. A function f of R(A) is partially symmetric if and only if ∂p(f ) = 0 for
all p different from the pi . In addition, if f is partially symmetric, then ∂µ(f ) = 0 for all
permutations µ outside the subset

�
(A).

Proof. Since (ap − ap+1)∂p(f ) = f − τp(f ), we have that ∂p(f ) = 0 if and only if
τp(f ) = f . The first assertion is a consequence, because the Young group

�
(A) is generated

by the transpositions τp for p different from the pi .
To prove the second assertion, assume that f is partially symmetric. Then clearly ∂ν(f ) =

0 for every ν 6= 1 in
�

(A). Consider for any permutation µ the factorization µ = σν where
σ ∈ �

(A) and ν ∈ �
(A). By Proposition (DIFF.3.7), it follows from the equality (1.1.1) that

∂µ = ∂σ ∂ν . If µ does not belong to
�
(A), then ν 6= 1, and hence ∂µ(f ) = ∂σ ∂ν(f ) = 0.

(1.4) Lemma. Let σ be a permutation in
�

(A). Then, for any of the three polynomials
Xσ , Yωσ , and Yσω1···ωr defined in (SCHUB.2.1), we have that the polynomial is partially
symmetric if and only if σ belongs to

�
(A).

Proof. Consider first the Schubert polynomial Xσ . By Lemma (SCHUB.1.6) we have that
∂σ (Xσ ) = 1. Hence it follows from Lemma (1.3) that if Xσ is partially symmetric, then σ

belongs to
�
(A). Assume conversely that σ belongs to

�
(A). To prove that Xσ is partially

symmetric, we have to show that ∂pXσ = 0 for p different from the pi . The polynomial
∂pXσ = ∂τpXσ is determined by Lemma (SCHUB.1.6). If p is different from the pi , then,
by (1.1.1), `(στp) = `(σ) + `(τp). In particular, `(στ−1

p ) 6= `(σ) − `(τp). Therefore, it
follows from Lemma (SCHUB.1.6) that ∂p(Xσ ) = 0. Hence Xσ is partially symmetric.

By (SCHUB.1.3.3), we have that Yωσ = sign(ωσ)ω(Xωσω). Hence Yωσ is partially
symmetric if and only if ω(Xωσω) is partially symmetric. Moreover, ω(Xωσω) is partially
symmetric if and only if Xωσω is invariant under the conjugate Young group ω

�
(A)ω−1 =

�
(ωA). So, by the assertion for the Schubert polynomials Xσ , we have that Yωσ is partially

symmetric, if and only if ωσω ∈ �
(ωA), that is, if and only σ ∈ �

(A).
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Finally, the assertion about the polynomials Yσω1···ωr follows from the assertion about the
polynomials Yωσ , since σ belongs to

�
(A) if and only if ωσω1 · · ·ωr belongs to

�
(A).

(1.5) Proposition. The Schubert polynomials Xσ for σ ∈ �
(A) form a basis for the algebra

SymR(A) of partially symmetric functions as a module of the ring SymR(A) of symmetric
functions, and a basis for the algebra SymR[A] of partially symmetric polynomials as a
module over the ring SymR[A] of symmetric polynomials.

Proof. By Theorem (SCHUB.1.7), the Schubert polynomials Xµ for µ in
�

(A) form a
SymR(A)-basis for R(A). Moreover, in the expansion of a function f in the basis the
coefficient to Xµ is equal to the inner product,

〈Y, ∂µ(f )〉 (1.5.1)

The monomials Xσ for σ in
�
(A) are partially symmetric by Lemma (1.4). Therefore, to

prove the assertion of the Proposition, it suffices to prove that if f is partially symmetric
and µ does not belong to

�
(A), then the inner product (1.5.1) vanishes. The latter assertion

follows immediately from the second assertion of Lemma (1.3).
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2. Partial symmetrization.

(2.1) Definition. Keep the setup of (PARTL.1). Consider the following special polynomial:

1(A) :=
∏

i>j

∏

b∈Ai, a∈Aj
(b − a).

Clearly, the polynomial 1(A) is partially symmetric. Moreover, we have the following
factorization of the Vandermonde determinant:

1(A) = 1(A)1(A1) · · ·1(Ar ). (2.1.1)

Define the partial symmetrization operator δA as the following sum,

δA :=
∑

σ∈ �
(A)

σ · 1

1(A)
. (2.1.2)

By definition, we have that δA is an operator, and as such it is defined on functions f of R(A),
and linear with respect to symmetric functions. Most often, we will consider values of δA

on partially symmetric functions f . Assume that f is partially symmetric. Then, clearly, to
obtain the value δA(f ), the summation over

�
(A) in (2.1.2) can be replaced by the summation

over any set of representatives for the set of left cosets
�

(A)/
�

(A). In particular, if µ is a
given permutation of

�
(A), we may replace σ in the terms of (2.1.2) by µσ . It follows that

the value δA(f ) is a symmetric function. Hence the partial symmetrization operator may be
viewed as a SymR(A)-linear map,

δA : SymR(A)→ SymR(A).

(2.2) Proposition. The following equations of operators hold: δA = ∂ω and δAi = ∂ωi , and

δA = ∂ωA∂ω1 · · · ∂ωr = δAδA1 · · · δAr . (2.2.1)

Proof. The first equations, δA = ∂ω and δAi = ∂ωi , were proved in section (DIFF.3). Since
ω = ωAω1 · · ·ωr , it follows from (1.1.1) and (DIFF.3.7) that the first equation in (2.2.1)
holds.

Recall that δA is the total symmetrization operator, defined in (DIFF.2.3) as the sum∑
µµ·(1/1(A)) where the sum is over all permutations µ in

�
(A), and δAi is defined

similarly using 1(Ai) and permutations of
�

(Ai). By Theorem (DIFF.3.3), we have that
δA = ∂ω and δAi = ∂ωi .

In the summation defining δA, each permutation µ is uniquely a product µ = σµ1 . . . µr
where σ belongs to

�
(A) and µi belongs to

�
(Ai). From the factorization (2.1.1) we obtain

the equation of operators,

µ· 1

1(A)
= σ · 1

1(A)
µ1· 1

1(A1)
· · ·µr · 1

1(Ar)
,

because 1(A) and 1(Aj ) for j 6= i are symmetric with respect to the letters of Ai . Therefore,
from the definitions of δA and δAi , we obtain the factorization,

δA = δAδA1 · · · δAr . (2.2.2)

Hence the equations of (2.2.1) have been verified.
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(2.3) Corollary. Let ni be the cardinality of Ai , and let aEi the monomial in R[A] defined
as the product of the letters of Ai raised to the powers 0, 1, . . . , ni − 1. Then, on the
subalgebra of partially symmetric functions, the operator ∂ω1···ωr ·aE1 · · · aEr is the identity
and the following three operators are equal:

δA·aE1 · · · aEr , δA, ∂ωA. (2.3.1)

Moreover, on the subalgebra, the values taken by the three operators are symmetric functions,
and the values taken on partially symmetric polynomials are symmetric polynomials.

Proof. To prove the first assertion, note that ∂ω1···ωr = ∂ω1 · · · ∂ωr and ∂ωi commutes with
the operator aEj for i 6= j . Hence ∂ω1···ωr ·aE1 · · · aEr = ∂ω1·aE1 · · · ∂ωr ·aEr . Therefore, by
Theorem (DIFF.3.3), we have the equation of operators,

∂ω1···ωr ·aE1 · · · aEr = πA1 · · ·πAr . (2.3.2)

Assume that f is a partially symmetric function. The operator πAi is linear with respect
to functions symmetric in the letters of Ai and πAi (1) = 1. In particular, we have that
πAi (f ) = f . Therefore, by (2.3.2), we have the equation,

∂ω1···ωr ·aE1 · · · aEr (f ) = f. (2.3.3)

Clearly, the equality of the three operators in (2.3.1) on f follows from (2.3.3) and the equality
of the three operators of (2.2) on the function aE1 · · · aErf . Thus the first assertion of the
Corollary has been proved.

That the value δA(f ) is a symmetric function was noted in (2.1). It follows also from the
equality δA(f ) = δA(aE1 · · · aErf ) since all values of the symmetrization operator δA are
symmetric functions. From the same equality it follows that δA(f ) is a polynomial if f is a
polynomial.

Hence the assertions of the Corollary have been proved.

(2.4) Definition. Define for partially symmetric functions f and g their partial inner product
as the sum:

〈f, g〉A :=
∑

σ∈ �
(A)

σ
( fg

1(A)

)
= δA(fg). (2.4.1)

Although the right hand side is defined for all rational functions f and g in R(A), we will
always assume that f and g are partially symmetric. It follows from Corollary (2.3) that

〈f, g〉A = ∂ωA(fg). (2.4.2)

(2.5) Lemma. The values of the partial inner product (2.4) are symmetric functions. More-
over, the inner product is symmetric, and SymR(A)-bilinear. Finally, if f and g are partially
symmetric polynomials, then their inner product 〈f, g〉A is a polynomial.

Proof. The assertions follow immediately from Corollary (2.3).
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(2.6) Proposition. Let f be a partially symmetric function. Then, in the expansion of f in
the basis of Schubert polynomials Xσ for σ ∈ �

(A) (see Proposition (1.5)), the coefficient to
Xσ is equal to the partial inner product,

sign(ω1 · · ·ωr)〈Yσω1···ωr , f 〉A. (2.6.1)

In particular, if σ and τ are permutations in
�
(A), then

sign(ω1 · · ·ωr)〈Yσω1···ωr ,Xτ 〉A =
{

1 if σ = τ,

0 otherwise.
(2.6.2)

Proof. By Proposition (1.5), to prove the first assertion, we have to verify, for σ in
�
(A), the

equation,
sign(ω1 · · ·ωr)〈Yσω1···ωr , f 〉A = 〈Yσ , f 〉.

Equivalently, by definition of the inner products, we have to prove that

sign(ω1 · · ·ωr)δA(Yσω1···ωrf ) = δA(Yσf ) . (2.6.3)

By (SCHUB.1.3), we have that Yµ = ∂µ−1Y . For µ = σω1 · · ·ωr , we have, by (1.1) and
(DIFF.3.7), that ∂µ−1 = ∂ω1···ωr ∂σ−1 . Thus

sign(ω1 · · ·ωr)Yσω1···ωr = sign(ω1 · · ·ωr)∂ω1···ωr ∂σ−1Y = ∂ω1···ωrYσ .

The operator ∂ω1···ωr commutes with multiplication by f since f is partially symmetric.
Hence we obtain for the left side of (2.6.3) the expression,

δA∂ω1···ωr (Yσf ),

which, by Proposition (2.2), is equal to the right side (2.6.3). Hence the first assertion of the
Proposition holds.

Clearly, the second assertion of the Proposition is a particular case of the first.

(2.7) Note. The total symmetrization operator δA vanishes on the partially symmetric func-
tions except for the trivial partitioning A where each subinterval consists of a single letter.
Indeed, assume that f is partially symmetric. The operator δAi is linear with respect to func-
tions that are symmetric in the letters of Ai . Therefore, by Proposition (2.2), we obtain the
equation,

δA(f ) = δA(f δA1 · · · δA1(1)
)
.

The operator δAi lowers the degree by `(ωi). Hence δAi (1) = 0 unless Ai consists of a single
letter. Thus δA(f ) = 0 unless the partitioning is trivial.

Assume that the partitioning A is non-trivial. It follows in particular that the total inner
product of (DIFF.4.1) vanishes identically on the module of partially symmetric functions.
Note also that the polynomialYσ in (2.6.2) is not partially symmetric. Indeed, by Lemma (1.4),
the polynomial Yµ is partially symmetric if and only if ωµ is increasing on each subinterval,
and if σ ∈ �

(A), then ωσ is decreasing on each Ai .
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(2.8) Note. Lagrange interpolation in one variable. Let x be an additional letter. Consider
the alphabet {a1, . . . , an, x} and the partitioning (A|x). Then 1(A|x) = ∏

a(x − a) is a
polynomial of degree n, and the partial symmetrization operator lowers the degree by n.

Let f be a polynomial depending only on x, and of degree strictly less than n. Since δA|x
lowers the degree by n, it follows that partial symmetrization of f yields zero, that is, we
obtain the following equation:

∑

σ∈ �
(A|x)

σ
( f

1(A|x)

)
= 0.

Consider the terms in the sum. The permutations σ in
�
(A|x) are determined by the value

σ(x). If σ(x) = x, then σ = 1 and the corresponding term in the sum is the rational function
f/1(A|x). If σ(x) = b is a letter of A then, in the corresponding term, the numerator is
f (b) and the denominator is given by

σ(1(A|x)) = (b − x)
∏

a 6=b
(b − a) .

Therefore, by separating in the equation the terms corresponding to σ = 1 and σ 6= 1 and
multiplying by 1(A|x) we obtain the equation in R(A)[x],

f =
∑

b∈A
f (b)

∏

a 6=b

(x − a)

(b− a)
, (2.8.1)

which is the usual form of Lagrange interpolation.
Note that (2.8.1) holds if the n letters ai of A are replaced by any sequence of n elements

αi of R such that the differences αp−αq for p 6= q are invertible in R. In particular, replacing
R by R(A) we may apply the formula to the difference f := ∏a(x − ta)−∏a(x − a) for
t ∈ R. Then f (b) = (1− t)b

∏
a 6=b(b− ta) and we obtain the formula in R(A)(x),

∏

a

x − ta

x − a
= 1+ (1− t)

∑

b

b

x − b

∏

a 6=b

b − ta

b − a
. (2.8.2)



3. The Gysin formula.

(3.1) Setup. Assume in the setup of (1.1) that there is given, for each i, an R-basis {fi,J } for
the module SymR[Ai] of polynomials symmetric in the letters of Ai . Then, clearly, the set of
all products f1,J1 · · · fr,Jr form an R-basis for the module SymR[A] of partially symmetric
polynomials. For instance, the set of all products of monomial symmetric polynomials,

mK1(A1) · · ·mKr (Ar ),

where Ki is a weakly decreasing multi index of size ni equal to the number of letters in Ai ,
form a basis. Similarly, the set of all products of Schur polynomials,

sJ1(A1) · · · sJr (Ar),

where Ji is a strictly increasing multi index of size ni , form a basis.

(3.2) Example. Consider a partitioning A = (A1|A2) into two subalphabets. Then we have
the equation, ∏

a∈A1,b∈A2

(a + b) =
∑

J⊆[n1]

sJ (A1)s
Ĵ (A2),

where the sum is over subsets J of size n1. More generally, for d ≥ 0, we have the equation,

∏

b∈A2

bd
∏

a∈A1,b∈A2

(a + b) =
∑

J⊆[n]

sJ (A1)s
˜̂
J (A2), (3.2.1)

where the sum is over subsets J of size n1, and Ĵ is the extension of J to a subset of size
n1 + d of [n+ d].

Indeed, the first equation is the equation (SYM.8.3.3) with A := A1 and B := A2. To
prove (3.2.1), extend A1 to an alphabet Â1 = {a1, . . . , an1 , â1, . . . , âd} with n1 + d letters.
Apply the first equation to the partitioning (Â1, A2) and substitute âi := 0 for i = 1, . . . , d .
It follows that the left side of (3.2.1) is equal to the sum,

∑

I⊆[n+d]

sI (A1, 0, . . . , 0)s Ĩ (A2),

over subsets I of size n1 + d . Since sI (A1, 0, . . . , 0) = 0 if I is not an extension and
sI (A1, 0, . . . , 0) = sJ (A1) if I = Ĵ , it follows that equation (3.2.1) holds.

(3.3) Bott’s Formula. For i = 1, . . . , r , let Ji be a strictly increasing multi index of size
equal to the number of letters of A. Then the following equation holds:

δA
(
sJ1(A1) · · · sJr (Ar)

)
= sJ1 ...Jr (A), (3.3.1)
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where J1 . . . Jr denotes the concatenated multi index.

Proof. With an abuse of notation, denote by aJi the monomial of R[A] where the q’th letter
of Ai appears with the exponent given by the q’th entry in Ji and all other letters appear with
exponent zero.

In this notation, we have the equations,

sJ1(A1) · · · sJr (Ar ) = δA1(aJ1) · · · δAr (aJr ) = δA1 · · · δAr (aJ1···Jr ). (3.3.2)

Indeed, by the definition in (SYM.6.9.2) or by Jacobi–Trudi’s Formula (SYM.7.8.5) or
(SCHUR.1.11), we have the equation sJ (A) = δA(aJ ) for the Schur polynomial. Hence
the first equation in (3.3.2) holds. The polynomials aJi and δAi (aJi ) depend only on the
letters of Ai . Hence they are scalars with respect to the operator δAj for j 6= i. Moreover,
aJ1...Jr = aJ1 · · · aJr . Hence the second equation in (3.3.2) holds.

By Proposition (2.2), the equation (3.3.1) follows by applying the operator δA to the
equation (3.3.2).

(3.4) Setup. Assume that the number r of subalphabets is equal to 2. For convenience, set
B := A1 and C := A2. Let m and k be the number of letters in B and C, so that n = m + k

is the number of letters of A. By definition of the partial inner product, the formula (3.3.1) is
equivalent to the following Gysin formula:

〈sI (B), sJ (C)〉A = sIJ (A), (3.4.1)

where I and J are strictly increasing multi indices of sizes m and k.

(3.5) Corollary. Consider the set of Schubert polynomials Xσ and the set of polynomials
Yσω1ω2 for σ ∈ �

(B|C). In addition, consider the set of Schur polynomials s I (B) for all
strictly increasing multi indices I of size m with entries in the interval [n] = [m + k], and
the set of Schur polynomials sJ (C) for all strictly increasing multi indices J of size k with
entries in the same interval. Then any of the four sets is a basis for the algebra SymR[B|C]
of partially symmetric polynomials as a module over its subring SymR[A] of symmetric
polynomials. Moreover, for Schur polynomials of the two bases we have that

〈sI (B), sJ (C)〉A = sign(IJ ), (3.5.1)

where the right hand side is equal to the signature of IJ when the concatenated multi index
IJ is a permutation of [m+ k] and equal to zero otherwise.

Finally, for any partially symmetric polynomial f , the expansion of f in the basis s I (B)

is given by the formula,

f =
∑

I

sign(I Ĩ)δA(f s Ĩ (C)
)
sI (B),
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where Ĩ denotes the complementary sequence of I with respect to the interval [m + k].
Similarly, the expansion of f in the basis sJ (C) is given by the formula,

f =
∑

J

sign(J̃J )δA(f s J̃ (B)
)
sJ (C).

Proof. The equation (3.5.1) follows from (3.4.1) because the Schur polynomial sK (A) is
alternating in K and equal to 1 when K is the sequence (0, 1, . . . , n − 1).

Clearly, the four sets have the same number d of elements, namely d = (n
m

)
. That the Xσ

form a basis was proved in (1.5). The remaining assertions of the Corollary follow, by the
standard argument used in the proof of Theorem (SCHUB.1.7), from the equations (2.6.2) and
(3.5.1). Indeed, since the Xσ form a basis with d elements for the module M := SymR[B|C]
as the module over S, it follows from (3.5.1) that the d polynomials s I (B) form an S-basis
for M and the dual basis is given by the d linear forms,

f 7→ sign(I Ĩ)〈f, s Ĩ (C)〉A.

By the same argument, the sJ (C) form a basis, and by (2.6.2) the Yσω1ω2 form a basis.
Since 〈f, g〉A = δA(fg), the first expansion of f given in the Corollary follows from

the description of the basis dual to the sI (B). The proof of the second expansion is entirely
similar.
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4. Hall–Littlewood polynomials.

(4.1) Setup. Fix an element t ∈ R. Consider the following polynomial of R[A]:

1t (A) :=
∏

a<b

(b− ta),

where the product is over letters a and b of A. Clearly, 1t (A) has the same degree, n(n−1)/2,
as the Vandermonde determinant 1(A). For t = 1, we have that 11(A) = 1(A). For t = 0,
we have that 10(A) = aE , where E = (0, 1, . . . , n − 1).

If a partitioning A = (A1| . . . |Ar ) is given, we write a � b if a < b and a and b belong
to different subalphabets. In this notation, let

1t (A) :=
∏

a�b
(b− ta).

Clearly, 1t (A) is a homogeneous partially symmetric polynomial. Moreover, we have the
factorization,

1t(A) = 1t (A)1t(A1) · · ·1t(Ar). (4.1.1)

For t = 1, the factorization is the factorization (2.1.1) of the Vandermonde determinant. For
t = 0, we have in the notion of (2.3) that 10(A) is the monomial determined by the equation,

aE = 10(A)aE1 · · · aEr . (4.1.2)

(4.2) Example. Consider a partitioning A = (B|x) where B = {b1, . . . , bm} is the subal-
phabet consisting of the first m = n − 1 letters of A and x = an is the last letter of A. By
definition, we have that 1t(B|x) = ∏m

q=1(x − tbq ). Moreover, we have the equation,

δA
m∏

q=1

(x − tbq) =
m∑

j=0

tj = tn − 1

t − 1
. (4.2.1)

Indeed, by expanding the product, we obtain the equation,

1t (B|x) =
m∑

j=0

(−1)m−j tm−j em−j (B)xj .

By (SYM.6.8.1), we have that em−j (B) = s0,...,ĵ ,...,m(B). As xj = sj (x), it follows from
Bott’s Theorem that

δA(em−j (B)xj
) = s0,...,ĵ ,...,m,j(B, x) = (−1)m−j .

Therefore, partial symmetrization of 1t(B|x) yields the sum in (4.2.1).
Note that 1(B|x) = 11(B|x) is the polynomial appearing as the denominator in the

definition of δA. As in (2.7), a permutation σ in
�
(B|x) = �

(a1, . . . , an−1|an) is determined
by the index p = 1, . . . , n such that σ(an) = ap. Clearly, σ(1t) =∏q 6=p(ap− taq). Hence
the formula (4.2.1) is equivalent to the following:

n∑

p=1

∏

q 6=p

ap − taq

ap − aq
= tn − 1

t − 1
. (4.2.2)
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(4.3) Lemma. The total symmetrization of the polynomial 1t (A) is the constant given by the
equations,

δA
(
1t(A)

) =
n∏

i=1

t i − 1

t − 1
=

∑

µ∈ �
(A)

t`(µ). (4.3.1)

Proof. The first equation in (4.3.1) is proved by induction on the number of n of letters
of A. The two sides of the equation reduce to 1 when n = 1. If n > 1, then, in the
notation of Example (4.2), we may assume that the equation holds for the alphabet B. As
1t(A) = 1t (B|x)1t(B) by (4.1) and δA = δAδB by Proposition (2.2), we have that

δA
(
1t (A)

) = δAδB
(
1t(B|x)1t(B)

)
.

The polynomial 1t(B|x) is symmetric in the letters of B and hence it commutes with the
operator δB . Moreover, δB (1t(B)) is a constant, given by the induction hypothesis. Hence
δB(1t(B)) commutes with the operator δA. Therefore, we obtain the equation,

δA
(
1t (A)

) = δB(1t(B)) δA(1t(B|x)).

By (4.2.1) and the induction hypothesis, the first equation of (4.3.1) is a consequence.
To obtain the alternative expression for the symmetrization, given by the right side of

(4.3.1), recall the δA(1t(A)) is the quotient obtained by dividing the following sum by the
Vandermonde determinant 1(A):

∑

µ∈ �
(A)

(sign µ)µ(1t (A)). (4.3.2)

The sum (4.3.2) has the same degree, n(n − 1)/2, as the Vandermonde determinant 1(A).
Therefore, to obtain the quotient, it suffices to compare the smallest terms of the two polyno-
mials. For 1(A), the smallest term is obtained as the product of the smallest terms of each
factor b − a for a < b. So the smallest term in 1(A) is the monomial aE obtained as the
product of the letters b for all pairs (a, b) with a < b. Consider similarly the smallest term
in µ(1t(A)). The factors of µ(1t (A)) are of the two forms,

b′ − ta′, −tb′ + a′, with a′ < b′,

where the factors of the first form correspond to factors b − ta of 1t(A) such that (a, b)

is not an inversion for µ, and the factors of the second form correspond to factors b − ta

such that (a, b) is an inversion for µ. It follows that the smallest term in µ(1t (A)) is equal
to (−t)`(µ)aE . Hence the smallest term in the sum (4.3.2) is equal to the sum on the right
hand side of (4.3.1) multiplied by aE . Therefore, the alternative expression for δA(1t (A))

holds.



Hall–Littlewood polynomials 107

(4.4) Example. Consider, for a partially symmetric polynomial f , the partial symmetrization,

δA(f1t (A)
) =

∑

σ∈ �
(A)

σ
(
f
∏

a�b

b − ta

b − a

)
. (4.4.1)

The partial symmetrization is a polynomial, symmetric in the letters of A, with coefficients
depending on t . The fraction in (4.4.1) is the fraction1t (A)/1(A)of two homogeneous poly-
nomials of the same degree. Hence, if f is homogeneous, then δA

(
f1t (A)

)
is homogeneous

of the same degree.
Denote by ϕ the following polynomial in t:

ϕ(t) :=
r∏

i=1

ni∏

j=1

t i − 1

t − 1
=

∑

µ∈ �
(A)

t`(µ), (4.4.2)

where ni is the number of letters of Ai . The second equation in (4.4.2) follows from the
second equation in (4.3.1) since any permutation µ ∈ �

(A) is a product µ = µ1 · · ·µr with
uniquely determined factors µi ∈ �

(Ai) and `(µ) = `(µ1)+ · · · + `(µr).
Then we have the equations,

δA
(
f1t(A)

) =
∑

µ∈ �
(A)

µ
(
f
∏

a<b

b − ta

b − a

)
= ϕ(t)δA(f1t(A)

)
. (4.4.3)

Indeed, the first equation follows from the definition of the symmetrization operator δA. For
the operator δA we have the factorization of δA = δAδA1 · · · δAr of (2.2) and for 1t(A)

we have the factorization 1t (A) = 1t(A)1t(A1) · · ·1t (Ar) of (4.1.1). The polynomial
f1t(A) is partially symmetric and hence it commutes with the operators δAi . Moreover, the
polynomial δAi (1t(Ai)) is constant, and hence it commutes with any operator. Therefore,
from the two factorizations, we obtain the equation,

δA(f1t (A)) = δA1(1t (A1)) · · · δAr (1t(Ar))δ
A(f1t (A)).

Hence the equation δA
(
f1t (A)

) = ϕ(t)δA
(
f1t(A)

)
follows from (4.3.1).

(4.5) Definition. Let J be a strictly increasing multi index of size n. Associate with J

the partitioning A = (A1| . . . |Ar ) defined by the sequence p1 < · · · < pr−1 of indices
p < n such that jp + 1 < jp+1, cf. (1.1). Define the Hall–Littlewood symmetric polynomial
P J (A; t) as the partial symmetrization,

P J (A; t) := δA(aJ−E1t(A)) =
∑

σ∈ �
(A)

σ
(
aJ−E

1t(A)

1(A)

)
, (4.5.1)

where E = (0, 1, . . . , n− 1). Note that the sequence J −E is weekly increasing; moreover,
by the choice of the pi , the monomial aJ−E is partially symmetric. Hence, by Corollary
(2.3), the polynomial P J (A; t) is given as the total symmetrization,

P J (A; t) = δA
(aJ aE1 · · · aEr

aE
1t (A)

)
(4.5.2)
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By the factorization (4.1.2) we have that

aE1 · · · aEr
aE

1t(A) = 1t(A)

10(A)
=
∏

a�b

b − ta

b
.

Hence it follows from (4.5.2) that

P J (A; t) = δA
(
aJ

∏

a�b

(
1− t

a

b

))
. (4.5.3)

Moreover, by (4.4.3) we have the equation,

ϕJ (t)P
J (A; t) = δA

(
aJ−E1t (A)

) =
∑

µ∈ �
(A)

µ
(
aJ−E

∏

a�b

b − ta

b − a

)
, (4.5.4)

where ϕJ (t) is the polynomial in t defined by (4.4.2).
For t = 0 we have the equation, aE1 · · · aEr10(A) = aE . Hence it follows from (4.5.2)

that P J (A; 0) = δA(aJ ), that is, P J (A; 0) is the Schur polynomial,

P J (A; 0) = sJ (A). (4.5.5)

For t = 1, we have that 11(A) = 1(A). Hence it follows from (4.5.1) that

P J (A; 1) =
∑

σ∈ �
(A)

σ(aJ−E).

By the choice of the pi , the monomials σ(aJ−E) are exactly the different monomials of the
form µ(aJ−E) for µ ∈ �

(A). Hence P J (A; 1) is the monomial symmetric polynomial,

P J (A; 1) = mJ−E(A). (4.5.6)

(4.6) Proposition. In the basis of proper Schur polynomials, the expansion of the Hall–
Littlewood polynomial P J (A; t) is of the form,

P J (A; t) =
∑

I�J
αJI (t)s

I (A), (4.6.1)

where the sum is over strictly increasing multi indices I of size n such that ‖I‖ = ‖J‖ and
i1+ · · ·+ is ≥ j1 + · · · + js for s = 1, . . . , n. Moreover, the coefficient αJJ (t) is equal to 1.

Proof. By (4.5.3), the polynomial P J (A; t) is obtained by applying the symmetrization
operator δA to the product,

5 := aJ
∏

a�b

(
1− t

a

b

)
.
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The product 5 is a polynomial. Consider a monomial aK appearing in 5. Then aK is obtained
from aJ by multiplication by a finite number of different factors a/b for a � b. Fix a set
l1 < · · · < ls of s indices. Consider for monomials the sum of the exponents corresponding
to the indices lq . For aK , the sum is kl1 + · · · + kls . We claim that the following inequality
holds:

kl1 + · · · + kls ≥ j1 + · · · + js . (4.6.2)

Indeed, for aJ , the sum of the exponents is jl1 + · · · + jls . Now, if a monomial is multiplied
by a factor a/b for a � b, then the sum of the exponents is decreased by 1 if b is one of the
alq and a is not, it is increased by 1 if a is one of the alq and b is not, and it is unchanged
otherwise. Therefore, when aJ is multiplied by a number of different factors of the form
a/b, the sum jl1 + · · · + jls is most decreased by the number of factors a/b such that a � b

and b is one of the alq and a is not. Clearly, the latter number of factors is at most equal to∑s
q=1(lq − q). Hence we have the inequality,

kl1 + · · · + kls ≥ jl1 + · · · + jls −
s∑

q=1

(lq − q). (4.6.3)

Since the lq were increasing, we have that lq ≥ q. Moreover, the multi index J was strictly
increasing. Hence, we have the inequalities,

jlq − lq ≥ jq − q for q = 1, . . . , s. (4.6.4)

Clearly (4.6.2) follows from the inequalities (4.6.3) and (4.6.4).
It follows from (4.6.2) that the expansion of P J (A; t) has the form asserted in (4.6.1).

Indeed, from the expansion of 5 as an R-linear combination of monomials aK we obtain the
expansion of P J (A; t) as the corresponding R-linear combination of δA(aK) = sK (A). The
polynomial sK (A) is alternating in K . Hence a monomial aK contributes with zero if two
entries in K are equal. If all entries in K are different, then sK (A) is up to sign equal to the
proper Schur polynomial sI (A), where I is the strictly increasing permutation of K . Take as
lq the indices such that {kl1 , . . . , kls } = {i1, . . . , is }. Then it follows from (4.6.2) that

i1 + · · · + is ≥ j1 + · · · + js .

Therefore, if sI (A) appears in the expansion of P J (A; t), we have that ‖I‖ � ‖J‖.
Obviously, the monomial aJ appears with coefficient 1 in the expansion of 5. Therefore,

to prove the last assertion of the Proposition, it suffices to prove that if the monomial aK

appears in the expansion of 5 and K is a permutation of J , then K = J . By an inductive
argument, it suffices to prove that if kq = jq for q = 1, . . . , s − 1, then ks = js . Let l ≥ s be
the index such that kl = js . Apply the reasoning leading to (4.6.2) with the set of lq equal to
{1, . . . , s − 1, l}. As (4.6.2) is an equality, it follows in particular that the last inequality in
(4.6.4) is an equality, that is, jl − l = js − s. Hence al and as belong to the same subalphabet
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Ai . Therefore, there are no factors a/b where a � b and b is one of the alq and a is not.
Hence we obtain in stead of (4.6.3) the inequality,

k1 + · · · + ks−1 + kl ≥ j1 + · · · + js−1 + jl .

Since kq = jq for q = 1, . . . , s − 1, it follows from the inequality that kl ≥ jl . As kl = js
and l ≥ s, we conclude that l = s.

Hence both assertions of the Proposition have been proved.

(4.7) Corollary. For any t ∈ R, the Hall–Littlewood polynomials P J (A; t), for all strictly
increasing multi indices J of size n, form an R-basis of SymR[A].

Proof. It follows from the Proposition that the matrix expressing the P J (A; t) in terms of
the basis sI (A) is a lower triangular matrix with 1 in the diagonal. In particular, the matrix
is invertible. Hence the P J (A; t) form a basis.

(4.8) Example. For d ≥ 0 we have the equations,

P d,d+1,...,d+n−1(A; t) = sd,d+1,...,d+n−1(A) = en(A)d . (4.8.1)

Indeed, let J := (d, d + 1, . . . , d + n− 1). Then, in the notation of (4.5), the corresponding
partitioning is the trivial partitioning A = (A) with r = 1. As aJ−E = (a1 · · · an)d , the
asserted equation follows from (4.5.1).

(4.9) Example. For d ≥ 1 we have the equations,

P 0,1,...,n−2,n−1+d(A; t) =
n∑

b

bd
∏

a 6=b

b − ta

b − a
(4.9.1)

=
∑

n−d≤j≤n−1

(−t)n−1−js0,1,...,ĵ ,...,n−1,d+j(A). (4.9.2)

Indeed, let J := (0, 1, . . . , n−2, n−1+d). Then, in the notation of (4.5), the corresponding
partitioning is A = (a1, . . . , an−1|an). Clearly, we have that aJ−E = adn and 1t(A) =∏
q<n(an − taq ). In (4.5.1), the permutations σ are determined by the index p such that

σ(an) = ap . Hence the first expression for P J (A; t) is obtained from (4.5.1).
To obtain the second expression of P J (A; t), note that the monomials aK appearing in

the expansion of the product in (4.5.3) either have two equal exponents or appear as terms,

(−t)n−1−jaJ (aj+1 · · · an−1)a
−(n−1−j)
n = (−t)n−1−ja0,1,...,ĵ ,...,n−2,d+j.

The second expression for P J (A; t) is a consequence, since δA(aK) = sK (A).

It is customary to extend the notation P J (A; t) to strictly increasing multi indices J of
arbitrary size in exactly the same way as the extension was defined in (SYM.6.13) for the
Schur polynomials sJ (A). In this extended notation, the second expression is the following:

P d (A; t) =
d−1∑

k=0

(−t)ks1,...,k,d(A). (4.9.3)
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By replacing x by 1/T in the Lagrange interpolation formula (PARTL2.8.2), we obtain the
equation in R(A)[[T ]],

∏

a

1− taT

1− aT
= 1+ (1− t)

∑

b

bT

1− bT

∏

a 6=b

b − ta

b − a
.

Therefore, by (4.9.1), it follows that

∏

a∈A

1− taT

1− aT
= 1+ (1− t)

∑

d≥1

P d (A; t)T d . (4.9.4)

(4.10) Example. Assume that d ≥ 1 and 1 ≤ j ≤ n− 1. Consider the polynomial P I (A; t)
for I := (0, . . . , j − 1, j + d, . . . , n − 1 + d) . In the notation of (4.5), the corresponding
partitioning is A = (A1|A2), where A1 := {a1, . . . , aj } and A2 := {aj+1, . . . , an}. By
(4.5.1) we have that P I (A; t) is the partial symmetrization of the product,

aI−E1t(A) =
∏

b∈A2

bd
∏

a∈A1, b∈A2

(b− ta).

The product is given by the expansion obtained from (3.2.1) after the substitution ai := −tai
for i = 1, . . . , j , that is, we have the equation,

aI−E1t(A) =
∑

J⊆[n]

(−t)‖J−E1‖sJ (A1)s
˜̂
J (A2),

where the sum is over subsets J of size j , and Ĵ is the extension to a subset of size j + d of
[n+ d].

Therefore, by Bott’s Formula, we obtain the following expression for the partial sym-
metrization,

P I (A; t) =
∑

J⊆[n]

(−t)‖J−E1‖sJ,
˜̂
J (A), (4.10.1)

where the sum is over subsets J of size j , and Ĵ denotes the extension to a subset of size
j + d of [n+ d].

Consider the special case d = 1. If J 6= E1, then there exists an index q = 1, . . . , j

such that jq ≥ 1 and jq − 1 /∈ J . It follows that jq belongs to the complement of Ĵ . Hence

sJ,
˜̂
J (A) = 0. Therefore, the sum in (4.10.1) reduces to the term corresponding to J = E1.

Thus we obtain the equations,

P 0,1,...,ĵ ,...,n(A; t) = s0,...,ĵ ,...,n(A) = en−j (A). (4.10.2)

Note that the equations hold for j = 0 by (4.8) and trivially for j = n.
In the extended notation of Example (4.9), the polynomial P I (A; t) is equal to the polyno-

mial P d,d+1,...,d+n−1−j(A; t). In particular, (4.10.2) is the following equation, for 0 ≤ k ≤ n:

P 1,...,k(A; t) = s1,...,k(A) = ek(A). (4.10.3)
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(4.11) Proposition. Let Â be the alphabet obtained by adding a simple letter to A. For a
strictly increasing multi index I of size n+ 1, denote by P I (A, 0; t) the polynomial obtained
by specializing the additional letter of Â to 0. If I is not an extension of a multi index of size
n, then P I (A, 0; t) = 0. Moreover, for an extension I = Ĵ of a strictly increasing multi
index J of size n, we have the equation,

P Ĵ (A, 0; t) = P J (A; t). (4.11.1)

Proof. Note that, since P I (Â; t) is symmetric in the letters of Â, we obtain the same polyno-
mial P I (A, 0; t) by specializing any letter of Â to zero and specializing the remaining letters
to the letters of A. We will denote the additional letter of Â by a0.

Let Â be the partitioning corresponding to I . Set K̂ = I − Ê. Then K̂ = (k0,K), where

K is a weakly increasing multi index of size n and k0 ≤ k1. As âK̂ = a
k0
0 aK , it follows from

(4.5.1) that

P I (Â; t) =
∑

σ∈ �
(Â)

σ
(
a
k0
0 aK

1t (Â)

1(Â)

)
. (4.11.2)

It follows that the polynomial P I (A, 0; t) is the sum of the rational functions obtained by
substitution a0 := 0 in each term of (4.11.2).

Assume that I is not an extension of a multi index of size n. Then k0 ≥ 1. Hence all
exponents of the monomial âK̂ are at least equal to 1. It follows that substitution a0 := 0 in
σ(a

k0
0 aK), for any σ ∈ �

(Â), yields 0. Hence P I (A, 0; t) = 0.

Assume that I is an extension, say I = Ĵ . Then k0 = 0 and J − E = K . Let Â1 be

the first subalphabet in the partitioning Â. Then, in the monomial âK̂ = aK , the letter a has
exponent 0 if and only if a ∈ Â1. Hence the term in (4.11.2) corresponding to σ is non-zero
after substitution σ−1(a0) ∈ Â1. However, if σ(a) = a0 for some a ∈ A1 then a = a0 since
σ is assumed to increasing on the subinterval Â1. Therefore, to determine the result of the
substitution, we may in (4.11.2) restrict the index of summation to those σ ∈ �

(Â) for which
σ(a0) = a0. Clearly, the latter set of permutations correspond to the permutations of

�
(A),

where A is the partitioning of A corresponding to I . Moreover, if σ(a0) = a0, then all factors
of σ(1t(Â/1(Â) containing a0 are of the form (b − ta0)/(b − a0), and they yield 1 after
substitution of a0 := 0. It follows that the result of substitution of a0 := 0 in (4.11.2) is the
sum ∑

σ∈ �
(A)

σ
(
aK

1t (A)

1(A)

)
,

and hence the result is equal to P I (A; t), as asserted.

(4.12) Example. For any multi index K of size n, let RK(A; t) be the polynomial obtained
as the total symmetrization,

RK(A; t) := δA(aK1t(A)). (4.12.1)
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If K is weakly increasing, then K + E is strictly increasing, and, by (4.5.4), we have the
equation,

ϕK+E(t)PK+E(A; t) = RK(A; t). (4.12.2)

Let A = (A1| . . . |Ar ) be any partitioning ofA. Let Ki be the subsequence of K corresponding

to the letters of Ai and, with an abuse of notation, let aKi be the product of the powers a
kp
p

for ap ∈ Ai . Then aK = aK1 · · · aKr . Moreover,

1t(A) = 1t (A)1t(A1) · · ·1t(Ar).

Hence, we obtain the equation,

RK(A; t) = δA(RK1(A1; t) · · ·RKr (Ar; t)1t (A)
)
. (4.12.3)

Consider in particular the partitioning (Ā|an). For any letter b of a, let 5b = 5b(A; t) be
the rational function,

5b :=
∏

a 6=b

b − ta

b − a
.

Then 1t (A)/1(A) = 5an , and we obtain an inductive definition of RK(A; t).
An inductive definition of the polynomials P J (A; t) is obtained as follows: In the notation

of (4.5), let nr be the number of letters in the last subalphabet Ar . Let J̄ = (j1, . . . , jn−1)

denote the truncated multi index of size n− 1. Then we have the equation,

tnr − 1

t − 1
P J (A; t) =

n∑

p=1

P J̄ (a1, . . . , âp , . . . , an; t)ajn−(n−1)
p

∏

q 6=p

ap − taq

ap − aq
. (4.12.4)

Indeed, by (4.5.4) we have thatϕJ (t)P J (A; t) is the total symmetrization of the polynomial
aJ−E1t(A). Let Ā := {a1, . . . , an−1} and consider the partitioning A := (Ā|an) of A. Then
δA = δAδĀ. Clearly, we have that

aJ−E1t(A) = aJ̄−Ēa
jn−(n−1)
n 1t (Ā)1t(A).

The factors a
jn−(n−1)
n and 1t (A) are scalars with respect to the operator δĀ. Moreover, we

have that δĀ
(
aJ̄−Ē1t (Ā)

) = ϕJ̄ (t)P
J̄ (Ā; t). Hence we obtain the equation,

δA
(
aJ−E1t (A)

) = ϕJ̄ (t)δ
A(P J̄ (Ā)a

jn−(n−1)
n 1t (A)

)
. (4.12.5)

Denote by 5J (A; t) the sum on the right hand side of (4.12.4). Then, clearly, 5(A; t) is
equal to the partial symmetrization on the right hand side of (4.12.5). Hence, from (4.12.5)
we obtain the equation,

ϕJ (t)P
J (A; t) = ϕJ̄ (t)5

J (A; t).
Since ϕJ̄ (t

nr − 1) = (t − 1)ϕJ (t), it follows that (4.12.4) holds when t is a variable. Hence
(4.12.4) holds in general.
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Schur functions

1. Schur functions.

(1.1) Setup. Fix a finite alphabet A = {a1, . . . , an} of n ≥ 0 letters. In addition to the ring
R[A] of polynomials and the ring R(A) of rational functions we consider the ring of formal
power series R[A]. Clearly, the action of

�
(A) on the polynomials extends canonically to

an action on the power series. More generally, the action of the ring
�
R[A] on R[A] extends

canonically to an action on R[A].
For a power series p in R[A], we denote by pj its homogeneous term of degree j . By

convention, pj = 0 for j < 0.

(1.2) Definition. In the sequel we will consider matrices with coefficients in R[A], possibly
with an infinite number of rows or columns. Let s be a power series in R[A]. For any integer
i we denote by s[i] the infinite row of homogeneous terms of s shifted i places to the right,
that is, s[i] is the row whose j’th entry, for j = 0, 1, . . . , is equal to sj−i . For any integer
j we denote by sj≥ the infinite column whose i’th entry, for i = 0, 1, . . . , is equal to sj−i .
The infinite matrix S whose rows are s[i] for i = 0, 1, . . . , or equivalently, whose columns
are sj≥ for j = 0, 1, . . . , is an upper triangular matrix,

S =



s[0]
s[1]

...


 = (s0≥, s1≥, . . .

) =




s0 s1 s2 . . .

0 s0 s1 . . .

0 0 s0 . . .
...

...
...

. . .


 .

If I = (i1, . . . , ir ) and J = (j1, . . . , jr ) are sequences with the same number r of non-
negative integers, we denote by SI/J the determinant of the r × r matrix obtained from S by
selecting the rows with indices from I and the columns with indices from J , that is,

SI/J =

∣∣∣∣∣∣∣∣

sj1−i1 sj2−i1 . . . sjr−i1
sj1−i2 sj2−i2 . . . sjr−i2

...
...

...

sj1−ir sj2−ir . . . sjr−ir

∣∣∣∣∣∣∣∣
. (1.2.1)

Clearly, if p is a second power series, then, for i ≥ 0,

p[i] sj≥ = (ps)j−i, (1.2.2)

115
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where the left hand side is the product of a row and a column. In particular,

p[i]S = (ps)[i] and Spj≥ = (sp)j≥ . (1.2.3)

(1.3) Definition. Let W be a (commutative) word in the letters of A, that is, a formal sum,

W = z1a1 + · · · + znan,

where the zk’s are integers. The degree of the word is the sum of the coefficients, |W | =
z1 + · · · + zn. Associate with W the following power series in R[A]:

S(W) =
n∏

k=1

( 1

1− ak

)zk
,

and denote by Sj (W) = S(W)j the homogeneous term of degree j in S(W). Note that if the
word is positive, that is, if the coefficients zk are non-negative, then S(−W) is a polynomial
of degree equal to the degree of W . In particular, if W is positive, then Sj (−W) = 0 for
j > |W |.

The special word a1 + · · · + an will be denoted A. As a word, the degree of A is the
cardinality of the alphabet A. Clearly Sj (A) is the j’th complete symmetric function in the
letters of A. The power series S(−A) is the polynomial

∏n
k=1(1− ak), and (−1)jSj (−A) is

the j’th elementary symmetric function in the letters of A.

(1.4) Remark. Enlarge the alphabet A with a single letter x, and consider the word x − A

in the letters of the enlarged alphabet. The power series S(x − A) is the product (1 −
x)−1∏n

k=1(1 − ak). It follows easily that the homogeneous term Sj (x − A), for j ≥ n, is
equal to the polynomial xj−n

∏n
k=1(x − ak).

(1.5) Definition. Let W be a commutative word in the letters of A. For any two sequences I

and J in Nr , we define the associated skew Schur function SI/J (W) as the determinant SI/J

of (1.2.1) associated with the power series s := S(W). In other words, if we consider the
matrices, 


S(W)[i1]

...

S(W)[ir]


 and

(
S(W)j1≥, . . . , S(W)jr≥

)
, (1.5.1)

then the skew Schur function SI/J(W) is equal to the determinant of the matrix that is obtained
either from the first matrix in (1.5.1) by selecting its columns from J or from the second matrix
in (1.5.1) by selecting its rows from I .

The Schur function is a polynomial in R[A]. When I is the sequence 0, 1, . . . , r − 1 we
write SJ (W) := SI/J (W). The polynomial SJ (W) is the ordinary Schur function SJ (W).
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(1.6) Observation. Several properties of the skew Schur functions S I/J (W) are obvious
from their definition as determinants. Clearly, the function is alternating in I , that is, if the
entries in I are permuted, then the function is changed by the signature of the permutation
and the function vanishes if two entries of I are equal. Similarly, the function is alternating
in J .

The Schur function SI/J (W) is the determinant of an r × r matrix whose (p, q)’th entry
is the homogeneous part of degree jq − ip of the power series S(W). In particular, the entry
vanishes if jq < ip . As a consequence, if both sequences I and J are strictly increasing,
then SI/J (W) vanishes unless ik ≤ jk for k = 1, . . . , r . Note that under the latter condition,
each product in the expansion of the determinant S I/J (W) is homogeneous of degree

∑
jk−∑

ik = ‖J‖ − ‖I‖ in the letters of A. In particular, the ordinary Schur function SJ (W) is
homogeneous of degree ‖J‖ − r(r − 1)/2.

(1.7) Remark. Consider the Schur function SI/J (W) corresponding to two strictly increasing
sequences I = (i1, . . . , ir ) and J = (j1, . . . , jr ). Assume that i1 = j1. Then the first
column in the matrix defining the Schur function has 1 as its first entry and 0 as the remaining
entries. Therefore, the Schur function is unchanged if the sequences I and J are replaced by
(i2, . . . , ir ) and (j2, . . . , jr ). Clearly, the argument can be repeated if the first p entries in I

and J agree.
Note in addition that the Schur function, as a determinant of a matrix of the form {sjp−iq },

is unchanged if the same integer is added to all entries of I and J . It follows in particular
that the ordinary Schur function SJ (W) is unchanged if the sequence J is replaced for some
p by the extended sequence

J̃ = (0, 1, . . . , p − 1, p + j1, . . . , p + jr ),

of length p + r .

(1.8) Additivity Formula. In the setup of (1.5), let W ′ be a second word in the letters of A.
Then,

SI/J (W ′ +W) =
∑

K

SI/K(W ′)SK/J (W),

where the sum is over all strictly increasing sequences K = (k1, . . . , kr ).

Proof. It is clear from the definition of power series associated to words that S(W ′ +W) =
S(W ′)S(W). Therefore, the first formula of (1.2.3) yields the following matrix equation:




S(W ′ +W)[i1]
...

S(W ′ +W)[ir]


 =




S(W ′)[i1]
...

S(W ′)[ir]



(
S(W)0≥, S(W)1≥, . . .

)
.

From the matrix equation, extract the equation corresponding to the columns in J . The
asserted additivity formula follows from the formula for the determinant of a product of
matrices (the Cauchy-Binet Formula).
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(1.9) Duality Formula. Let W be a word in the letters of A, and let I and J be strictly
increasing sequences of r non-negative integers. Then

SI/J (W) = (−1)‖J‖−‖I‖SI
′/J ′(−W), (1.9.1)

where the primes indicate the dual sequences, defined as follows: Choose an integer N

greater than all entries of I and J . Identify I with a subset of {0, 1, . . . , N − 1}, and denote
by I c the complement of I in {0, 1, . . . , N − 1}. Then I ′, as a strictly increasing sequence,
is the image of the complement under the reflection i 7→ N − 1− i.

Proof. Consider the power series s := S(W) and t := s(−W). As ts = 1, the following
matrix equation results from the Equations (1.2.2) for i, j = 0, . . . , N − 1:




t[0]
...

t[N − 1]



(
s0≥, . . . , sN−1≥

)
= 1,

where the right hand side is the N ×N unit matrix. In the second factor on the left hand side,
only the first N rows are nonzero. Therefore, if S denotes the N ×N matrix consisting of the
first N rows of the second factor, and T denotes the N × N matrix consisting of the first N

columns of the first factor, then we obtain the matrix equation T S = 1. Moreover, the matrix
T has determinant 1, since it is an upper triangular matrix with 1 in the diagonal.

Clearly, the two Schur functions SI/J (W) and SI
′/J ′(−W) of the Duality Formula are

minors in the matricesS andT . Now, since det T = 1, it is well known that the matrix equation
T S = 1 implies that the (I, J )’th minor SI/J in S is equal to the algebraic complement of
the (J, I )’th minor in T , that is,

SI/J = sign(I, I c) sign(J, J c)T J
c/I c . (1.9.2)

Indeed, from the matrix equation T S = 1 it follows that the matrix of r by r minors of S is the
inverse of the matrix of r by r minors of T . On the other hand, from the equation det T = 1
it follows by Laplace development of determinants that the transpose of matrix of algebraic
complements of the r by r minors of T is the inverse of the matrix of r by r minors of T .
Thus Equation (1.9.2) holds.

Clearly, the left side of Equation (1.9.2) is the Schur function on the left side of the Duality
formula. The right hand side of Equation (1.9.2) is easily transformed to the right hand side of
the Duality Formula. Indeed, if I = (i1, . . . , ir ), then the permutation (I, I c) of the integers
0, . . . , N − 1 has length equal to i1 + i2 − 1 + · · · + ir − (r − 1). Hence the products of
the two signs on the right hand side of (1.9.2) is equal to (−1)‖J‖−‖I‖. Moreover, the minor
T J

c/I c on the right hand side of (1.9.2) is a minor in the matrix {tj−i}. Therefore, T J
c/I c

is equal T I
∗/J ∗ where I ∗ and J ∗ denote the images of the sequences I c and J c under the

reflection i 7→ N − 1− i. Finally, the sequences I ′ and J ′ are obtained from I ∗ and J ∗ by
reversing the order of the elements. The reversion of rows and columns does not change the
determinant. Hence T I

∗/J ∗ is equal to the minor T I
′/J ′ of T . Finally, since T was defined

from the power series t = S(−W), the minor T I
′/J ′ is the Schur function SI

′/J ′(−W). Thus
the Duality Formula has been proved.
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(1.10) Example. Take I = (0, . . . , r − 1) and J = (1, . . . , r) (and N := r + 1). Then
I ′ = (0) and J ′ = (r). Hence SI/J (W) = (−1)rSr(−W) by the Duality Formula, and
clearly Sr(−W) = Sr(−W). In particular, when W = A, we obtain that the Schur function
S1,...,r(A) is equal to the r’th elementary symmetric function in the letters of A, see (1.3).

(1.11) Jacobi–Trudi’s Formula. Let a1, . . . , an be the n letters of A, and let J be a sequence
of n non-negative integers. Then,

1J (a1, . . . , an) = 1(a1, . . . , an)S
J (A). (1.11.1)

Moreover, if D is the n×n matrix whose k’th row is the ordered set of the n first homogeneous
terms in the polynomial

∏
i 6=k(1− ai), then det D = 1(a1, . . . , an).

Proof. For k = 1, . . . , n, we have that ak = (ak−A)+A, and hence S(ak) = S(ak−A)S(A).
Consequently, the first equation in (1.2.3), applied with p = S(ak − A) for k = 1, . . . , n,
yields the following matrix equation:




S(a1)[0]
...

S(an)[0]


 =




S(ak − A)[0]
...

S(an − A)[0]



(
S(A)0≥, S(A)1≥, . . .

)
.

In the first matrix on the right, the power series S(ak − A) is the polynomial
∏
i 6=k(1 − ai)

of degree n − 1. Hence, in the first matrix on the right, the first n columns form the matrix
D and the remaining columns are equal to zero. Therefore, the product on the right side is
unchanged if the first matrix is replaced by D and the second matrix is replaced by its first n

rows. Now, from the replaced equation select the columns corresponding to the elements of
J , and take determinants. On the left side we obtain the determinant 1J = 1J (a1, . . . , an),
and on the right side we obtain the product (det D)SJ (A). Hence we obtain the equation,

1J = (det D)SJ (A). (1.11.2)

Take J = (0, 1, . . . , n− 1) in (1.11.2). The left side becomes the Vandermonde determinant
1. On the right side we have that SJ (A) = 1. Therefore, Equation (1.11.2) implies first that
1 = det D and next that the Jacobi–Trudi Formula (1.11.1) holds.

(1.12) Corollary. The Schur functions SJ (A), for all strictly increasing sequences J of n

non-negative integers, form an R-basis for the algebra SymR[A] of symmetric polynomials.

Proof. By Jacobi–Trudi’s formula, SJ = 1J /1, and the polynomials 1J /1 form an R-basis
by Proposition (SYM.6.6).

(1.13) Remark. Every ordinary Schur function SK(A), where K = (k1, . . . , kr ) is a sequence
with an arbitrary number r of entries, is either equal to zero or up to a sign equal to one of
the Schur functions SJ (A) of Corollary (1.12), that is, a Schur function defined by a strictly
increasing sequence J with n entries. Indeed, since SK(A) is alternating in K , we may
assume that the sequence K is strictly increasing. If r < n, we have that SK(W) = SJ (W),
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where J = K̃ is the sequence obtained by extending K as in Remark (1.7). Assume that
r > n. If K is an extension in the sense of Remark (1.7) of a sequence J with n entries, then
SK(A) = SJ (A).

If K is not an extension of a sequence with n entries, then SK(A) = 0. Indeed, proceeding
by induction on r , we may assume that K is not an extension of a sequence with r−1 entries,
that is, we may assume that k1 > 0. Consider an alphabet Ã with r letters obtained by adding
r − n letters an+1, . . . , ar to A. Clearly, the Schur function SK(A) is obtained from the
Schur function SK(Ã) by specializing the additional variables an+1, . . . , ar to 0. Now, if
the last variable ar is specialized to 0, then the Vandermonde determinant 1(Ã) specializes
to a nonzero value and, since k1 > 0, the determinant 1K(Ã) specializes to 0. Therefore,
by Jacobi–Trudi’s Formula, the Schur function SK(Ã) specializes to 0, and consequently
SK(A) = 0.

(1.14) Remark. Consider the symmetrization operator δA of Section (DIFF.2.3),

δA(f ) =
∑

σ∈ �
(A)

σ
( f

1(A)

)
= 1

1(A)

∑

σ∈ �
(A)

(sign σ)σ(f ).

The operator δA is SymR[A]-linear. Let aJ be a monomial. It is elementary, see Theorem
(DIFF.3.3), to prove that δA(aJ ) = 1J /1. Hence it follows from Jacobi–Trudi’s Formula
that δA(aJ ) = SJ (A). As a consequence, if f is a symmetric polynomial, then fSJ (A) =
δA(f aJ ). In particular, if a symmetric polynomial f is given as a sum of monomials,
f =∑K fKaK , then we obtain the formula

fSJ (A) =
∑

K

fKSK+J (A).

(1.15) Example. Pieri’s Formula. (1) Let I be a sequence of n non-negative integers, and
denote by mI the symmetrized monomial corresponding to I , that is,

mI :=
∑′
σ

aσI ,

where the sum is over all different permutations σI of the sequence I of exponents. Then,
for every sequence J of non-negative integers, we obtain from (1.14) the formula,

mISJ (A) =
∑′
σ

SσI+J (A), (1.15.1)

where the sum is over all different permutations σI of I . In particular, when J is the sequence
(0, 1, . . . , n − 1) we have that SJ (A) = 1, and we obtain an explicit formula for mI as a
linear combination of Schur functions.

For the sequence I = (1, . . . , 1, 0, . . . , 0) where r ≤ n entries are equal to 1, the poly-
nomial mI is the r’th elementary symmetric function (−1)rSr(−A), and we obtain Pieri’s
formula,

(−1)rSr(−A)SJ (A) =
∑

K

SK+J (A), (1.15.2)



Schur functions 121

where the sum is over all sequences K of n integers where r entries are equal to 1 and the
remaining entries are equal to 0. For J = (0, 1, . . . , n − 1), we recover the formula of
Example (1.10),

(−1)rSr(−A) = S1,...,r(A). (1.15.3)

Indeed, let J = (0, 1, . . . , n− 1). Then the left hand side of (1.15.2) is equal to the r’th ele-
mentary symmetric function sinceSJ (A) = 1. On the right hand side of (1.15.2), the sequence
K + J has two equal entries unless K = (0, . . . , 0, 1, . . . , 1). Hence the only non-vanishing
term on the right hand is the Schur function SK+J (A) where K = (0, . . . , 0, 1, . . . , 1).
Moreover, for K = (0, . . . , 0, 1, . . . , 1) the sequence K + J is an extension in the sense
of (1.7) of the sequence (1, . . . , r). Therefore, the right hand side of (1.15.2) is the Schur
function S1,...,r(A).

(2) Similarly, the j’th complete symmetric function is the sum,

Sj (A) =
∑

‖K‖=j
aK ,

where the sum is over sequences of n integers. Hence we obtain from (1.14) the formula,

Sj (A)SJ (A) =
∑

‖K‖=j
SK+J (A). (1.15.3)
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2. Multi Schur functions.

(2.1) Setup. In this section we consider simultaneously several alphabets. All alphabets are
assumed to be subalphabets of a fixed (universal) alphabet. Letters and (commutative) words
will be taken from the fixed alphabet. As in (SCHUR.1.3), if A is an alphabet, the word
defined as the sum of the letters of A will also be denoted by A. If {a1, . . . , an} are the letters
of A, we write A≤p := a1 + · · · + ap , and we define A<p, A≥p , and A>p similarly.

(2.2) Definition. Let
� = {Wpq } be an r×r matrix of words Wpq . Let I and J be sequences

of r integers. Define the associated multi skew Schur function S I/J (
�

) as the determinant
of the matrix whose (p, q)’th entry is Sjq−ip (Wpq), that is,

SI/J




W11 . . . W1r
...

...

Wr1 . . . Wrr


 =

∣∣∣∣∣∣

Sj1−i1(W11) . . . Sjr−i1(W1r)
...

...

Sj1−ir (Wr1) . . . Sjr−ir (Wrr)

∣∣∣∣∣∣

As in Definition (SCHUR.1.5), when I = (0, 1, . . . , r − 1) we write SJ (
�

) := SI/J (
�

)

and obtain the ordinary multi Schur function SJ (
�

). When all the words Wpq are equal to
the same word W , we recover the Schur function SI/J (W) of (SCHUR.1.5).

Clearly, the Schur function is unchanged if the same integer is added to all entries of the
two sequences I and J . In particular we will usually assume that the entries of the two
sequences I and J are non-negative. Note also that the function S I/J (

�
) is alternating with

respect to J and the columns of the matrix
�

, and with respect to I and the rows of
�

.
Note finally, that the function is symmetric in the following sense: choose an integer N (say,
greater than all elements in the two sequences I and J ). Consider the sequences I ∗ and J ∗
obtained from I and J by the reflection x 7→ N − 1 − x. Then S I/J (

�
) = SJ

∗/I ∗(
� tr),

where
� tr denotes the transposed matrix of

�
.

Let (W1, . . . ,Wr ) be a sequence of r words in the letters of A. Then we denote by

SI/J (W1, . . . ,Wr ) and SI/J




W1
...

Wr




the two special functions defined as follows: The first function is the Schur function S I/J (
�

)

obtained from the matrix {Wpq}where Wpq = Wq and the second function is defined similarly
by the matrix whereWpq = Wp . Note that the two special Schur functions are maximal minors
of the two matrices,

(
S(W1)

j1≥, . . . , S(Wr)
jr≥) and




S(W1)[i1]
...

S(Wr)[ir]


 .

The first function is the minor of the first matrix corresponding to the row indices in I , the
second function is the minor of the second matrix corresponding to the column indices in J .

When I = (0, 1, . . . , r − 1) we write SJ (W1, . . . ,Wr ) and SJ (W1, . . . ,Wr )
tr for the

functions SI/J (W1, . . . ,Wr ) and SI/J (W1, . . . ,Wr )
tr.

123
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(2.3) Additivity Formula. Let (W ′1, . . . ,W
′
r ) and (W1, . . . ,Wr ) be two sequences of r words,

and let I and J be two sequences of r non-negative integers. Then,

SI/J




W ′1 +W1 . . . W ′1 +Wr

...
...

W ′r +W1 . . . W ′r +Wr


 =

∑

K

SI/K




W ′1
...

W ′r


SK/J (W1, . . . ,Wr ),

where the summation is over all strictly increasing sequences K of r non-negative integers.

Proof. The argument is identical to the proof of (SCHUR.1.8).

(2.4) Duality Formula. Let W0,W1, . . . be a sequence of words such that, for j > 0, the
word Wj−1 − Wj is either equal to 0 or equal to a word formed by a single letter. Let I

and J be strictly increasing sequences of r nonnegative integers. Finally, let N be an integer
greater than all entries in the two sequences I and J . Then

SI/J (Wj1 , . . . ,Wjr ) = (−1)‖J‖−‖I‖SI ′/J ′(−Wj ct +1, . . . ,−Wj c1+1),

where the primes indicate the dual sequences with respect to N as in (SCHUR.1.9) and
J c = (jc1 , . . . , j ct ) is the complement of J in {0, 1, . . . , N − 1}.
Proof. The proof is similar to the proof of Duality (SCHUR.1.9). Consider the following
product of matrices:




S(−W1)[0]
...

S(−WN)[N − 1]



(
S(W0)

0≥, . . . S(WN−1)
N−1≥). (1)

It follows from Formula (SCHUR.1.2.2) that the (i, j)’th entry in the product, for i, j =
0, 1, . . . N − 1, is equal to Sj−i(Wj −Wi+1). Clearly, the entry Sj−i(Wj −Wi+1) is equal to
0 for j < i and equal to 1 for j = i. Moreover, the entry is equal to 0 for j > i, because, by
hypothesis, the word−(Wj −Wi+1) a positive word of degree at most j − i − 1. Hence the
product of matrices (1) is the N × N unit matrix 1.

From the two matrices in the product (1), let T be the submatrix of the first factor formed
by the first N columns, and let S be the submatrix of the second factor formed by the first
N rows. As in the proof of the Duality Formula (SCHUR.1.9), it follows that T S = 1 and
det T = 1. It is a consequence, as we saw in the proof of the Duality Formula (SCHUR.1.9),
that the (I, J )’th minor SI/J in S is equal to the algebraic complement of the (J, I )’th minor
in T , that is,

SI/J = (−1)‖J‖−‖I‖T J c/I c . (2)

Clearly, the left side of Equation (2) is the Schur function on the left side of the asserted
Duality Formula. The right hand side of Equation (2) is easily transformed to the right hand
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side of the Duality Formula. Indeed, the minor T J c/I c on the right hand side of (2) is the
Schur function,

SJ
c/I c




Wj c1+1

...

Wj ct +1


 .

To obtain the Schur function on the right side of the Duality Formula, apply the reflection
i 7→ N − 1− i to I c and J c and transpose the matrix, and then reverse the order of row and
columns.

Hence the Duality Formula is a consequence of Equation (2).

(2.5) Corollary. Let A = {a1, . . . , an} be an alphabet with n letters, and denote by A≤j the
sum of the letters ap for p ≤ j (in particular, A≤j = A for j ≥ n). Moreover, let I and J

be strictly increasing sequences of r nonnegative integers, and set λp := jp − (p − 1) for
p = 1, . . . , r . Finally, let N be an integer greater than all entries of the two sequences I and
J . Then, for any word W ,

SI/J (W−A≤λ1, . . . ,W−A≤λr ) = (−1)‖J‖−‖I‖SI ′/J ′(A≤t−W, . . . , A≤1−W),

where the primes indicate the dual sequences with respect to N .

Proof. For any integer j , denote by µ(j) the number of elements in the complement J c that
are strictly less than j . Then the following equations hold:

µ(jk) = λk and µ(j ck + 1) = k. (1)

Indeed, the first equation holds because there are jk nonnegative integers strictly less than jk
and of these exactly k − 1 belong to J . The second equation holds, because the nonnegative
integers in J c that are strictly less than j ck + 1 are the k integers j c1 , . . . , j ck .

Now apply Duality (2.4) with Wj := W − A≤µ(j). It follows from the equations (1) that
Wjk = W − A≤λk and −Wj c

k
+1 = A≤k −W . Hence the asserted formula follows from the

Duality Formula.

(2.6) Jacobi’s Lemma. Let (W1, . . . ,Wr ) be a sequence of r words, and let (C1, . . . , Cr )

be a sequence of r positive words. Moreover, let I and J be sequences of r non-negative
integers. If |Cp | + ip < r for p = 1, . . . , r , then the following formula holds:

SI/J




W1−C1 . . . Wr−C1
...

...

W1−Cr . . . Wr−Cr


 = SI/0,1,...,r−1



−C1

...

−Cr


SJ (W1, . . . ,Wr ).

In particular, if |Cp | ≤ r − p for p = 1, . . . , r , then

SJ




W1−C1 . . . Wr−C1
...

...

W1−Cr . . . Wr−Cr


 = SJ (W1, . . . ,Wr ).
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Proof. To prove the first assertion, assume that |Cp | + ip < r for all p. Apply the Additivity
Formula (2.3) with W ′p := −Cp . The Schur functions SI/K in the sum on the right hand side
of the Additivity Formula are the maximal minors of the matrix whose p’th row is S(−Cp)[ip]
for p = 1, . . . , r . It follows from the hypothesis on the degree of Cp that only the first r

entries in the p’th row can be nonzero. Hence the sum on the right hand side of (2.3) reduces
to its single term corresponding to K = (0, 1, . . . , r − 1). Clearly, the latter term is the
product on the right hand side of the asserted formula. Thus the first assertion holds.

Assume in particular that I = (0, . . . , r − 1). Then the first factor on the right side of the
first formula is the determinant of an upper triangular matrix with 1 in the diagonal. Hence
the first assertion implies the second.

(2.7) Example. The Jacobi–Trudi Formula. When I = (0, . . . , 0), the condition for Lemma
(2.6) is that |Cp| < r for all p. For example, let A = {a1, . . . , an} be an alphabet with n

letters, and let r = n. Take Wp := A and Cp := A− ap in Jacobi’s Lemma. Then we obtain
the formula,

S0,...,0/J




a1
...

an


 = S0,...,0/0,1,...,n−1




a1 − A
...

an − A


SJ (A, . . . , A).

The Schur function on the left side is the determinant 1J (a1, . . . , an). On the right side, the
second Schur function is the simple Schur function SJ (A), and the first Schur function is the
determinant det D from Jacobi–Trudi’s Formula. Hence we recover Jacobi–Trudi’s Formula
from (2.6) (and we recover the proof from the proof of (2.6)).

(2.8) Factorization Formula. Let (a1, . . . , ar ) be a sequence of r letters, and set A≥p :=
ap + · · · + ar for p = 1, . . . , r . Moreover, let J be a sequence of r non-negative integers,
and set λp := jp − (p − 1) for p = 1, . . . , r . Finally, let B1, . . . , Br be a sequence of r

positive words. Assume that |Bp| ≤ λp for p = 1, . . . , r . Then

SJ (A≥1−B1, . . . , A≥r−Br) =
r∏

p=1

Sλp (ap−Bp). (2.8.1)

Proof. Apply the particular case I = (0, 1, . . . , r − 1) of Jacobi’s Lemma (2.6) with Wp :=
A≥p −Bp and Cp := A>p . It follows that the Schur function on the left hand side of (2.8.1)
is equal to the following Schur function:

SJ




A≥1−A>1−B1 . . . A≥r−A>1−Br
...

...

A≥1−A>r−B1 . . . A≥r−A>r−Br


 . (1)

The latter Schur function is the determinant of a matrix whose (p, q)’th entry is equal to

Sjq−(p−1)(A≥q−A>p−Bq). (2)
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Consider an entry above the diagonal, that is, for p < q. Clearly, the word A≥q−A>p−Bq
is negative. It is equal to−Bpq , where Bpq the sum of the q−p− 1 letters ak for p < k < q

and the word Bq . In particular, since |Bq | ≤ λq , the degree of Bpq is strictly less than
λq + (q − p) = jq − (p− 1). Hence the entry (2) vanishes above the diagonal.

Therefore the determinant (1) the product of its diagonal entries. Clearly the p’th diagonal
word is ap−Bp, and so the diagonal entry is Sjp−(p−1)(ap−Bp) = Sλp (ap−Bp). Thus the
asserted formula has been proved.

(2.9) Remark. In the setup of Lemma (2.8), assume that Bp is the word of an alphabet with
βp letters. Then βp ≤ λp by assumption. Therefore, by Remark (SCHUR.1.4), the p’th
factor on the right hand side of (2.8.1) is the product,

a
λp−βp
p

∏

b∈Bp
(ap − b).

In particular, if all the alphabets Bp are empty, then the p’th factor on the right hand side of
(2.8.1) is the product, aλ = a

λ1
1 · · · aλrr , and we obtain the formula,

SJ (A≥1, . . . , A≥r ) = a
j1
1 a

j2−1
2 · · · ajr−(r−1)

r .

(2.10) Example. Let A = {a1, . . . , an} be an alphabet. Then the determinant1J (a1, . . . , an)

defined in (SYM.6.3) is the multi Schur function,

1J (a1, . . . , an) = S0,...,0/J




a1
...

an


 . (1)

Assume that J = (0, 1, . . . , n−1). Then the determinant 1J is the Vandermonde determinant
1(a1, . . . , an). It follows by the symmetry of (2.2), or directly, that the Schur function in (1)
is equal to Sn−1,...,n−1(an, . . . , a1), and hence equal to

Sn−1,...,n−1(A≤n−A<n, . . . , A≤1−A<1) (2)

It follows from the Factorization Formula (2.8), applied to the reversed sequence (an, . . . , a1)

and Bi := A<n−i+1, that the Schur function (2) is equal to the product,

Sn−1(an−A<n) · · · S1(a2 − A<2)S0(a1).

Hence, the Factorization Formula together with Remark (SCHUR.1.4) implies the equation
of (SYM.6.7),

1(a1, . . . , an) =
∏

p>q

(ap − aq).
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(2.11) Lemma. Let (W1, . . . ,Wr ) be a sequence of r words, and let J be a sequence of r non-
negative integers. Assume for some k and some d < k that the following holds: Wk−i = Wk

and jk−i = jk− i for i = 1, . . . , d . Then the Schur function SI/J (W1, . . . ,Wr) is unchanged
if Wk is replaced by Wk − B, where B is positive word of degree at most d .

Proof. The proof, entirely similar to the proof of Jacobi’s Lemma (2.6), is left as an exercise.

(2.12) Example. Let A = {a1, . . . , an} and B = {b1, . . . , bm} be alphabets with n and m

letters. As an application of Lemma (2.11) we will prove the formula,

Sm,m+1,...,m+n−1(A− B) =
∏

p,q

(ap − bq). (2.12.1)

Set Ai := a1 + · · · + ai , and let W be any word. Consider for r = n and J = (m,m +
1, . . . ,m+n−1) the Schur function SJ (W) = SJ (W, . . . ,W). Then, by repeated application
of Lemma (2.11), it follows that we can replace in the Schur function SJ (W, . . . ,W), for
k = n, . . . , 2, the k’th word W by W − Ak−1. Hence we obtain the equation,

Sm,m+1,...,m+n−1(W) = Sm,m+1,...,m+n−1(W−A0,W−A1, . . . ,W−An−1).

In particular, for W := A − B we obtain the equation,

Sm,m+1,...,m+n−1(A− B) = Sm,m+1,...,m+n−1(A≥1 − B, . . . , A≥n − B).

Finally, by applying the Factorization Formula to the Schur function on the right hand side,
cf. Remark (2.9), we obtain the formula (2.12.1).



3. Differenciation of Schur functions.

(3.1) Setup. Fix an alphabet A with n letters a1, . . . , an. Consider the simple operators ∂p ,
πp, ψp , and the general operators ∂A = ∂ω , πA = πω of Section (DIFF.3). For convenience,
define ∂A := ∂ω and πA := πω.

(3.2) Note. We proved in (DIFF.3.4) that the simple operators satisfy the Coxeter-Moore rela-
tions, and in (DIFF.3.5) that the general operators can be defined by any reduced presentation
of ω. In this section we will only need the inductive definitions,

∂A = ∂1 · · · ∂n−1∂Ā, πA = π1 · · ·πn−1π Ā,

where Ā := {a1, . . . , an−1}.
(3.3) Lemma. Fix an integer p such that 1 ≤ p < n. Let W be a word which is symmetric
with respect to the letters ap and ap+1. Then we have the following two identities of power
series:

∂pS(W − ap) = S(W),

πpS(W − ap) = S(W).

Proof. Clearly, S(W − ap) = S(W)(1− ap), and the power series S(W) is symmetric in the
letters ap and ap+1. The operators are linear with respect to polynomials symmetric in ap and
ap+1. Therefore the two first equations of the Lemma result from the following equations,

∂p(1− ap) = 1, πp(1− ap) = 1.

The latter equations result immediately from the definitions of ∂p and πp .

(3.4) Lemma. Fix a positive integers k ≤ r . Consider a Schur function SJ (W1, . . . ,Wr ),
where J is a sequence of r non-negative integers. Assume that all the words Wq are symmetric
with respect to the letters ap and ap+1. Then,

∂pSJ (W1, . . . ,Wk−ap, . . . ,Wr ) = Sj1,...,jk−1,...,jr (W1, . . . ,Wk, . . . ,Wr ),

πpSJ (W1, . . . ,Wk−ap, . . . ,Wr ) = Sj1,...,jk,...,jr (W1, . . . ,Wk , . . . ,Wr ).

Proof. The Schur function on the left hand sides of the equations is the determinant of a matrix
whose k’th column is the sequence of polynomials Sjk−i(Wk − ap) for i = 0, . . . , r − 1 and
where the entries of the remaining columns are symmetric in ap and ap+1. Since the operators
∂p and πp are linear with respect to polynomials symmetric in ap and ap+1, the left sides are
therefore equal to the determinants obtained by applying the operators to the entries of the
k’th column.

Consider the first equation. Since ∂p lowers the degree of polynomials by 1, it follows
from Lemma (3.3) that ∂pSl(Wk−ap) = Sl−1(Wk). Clearly, the first equation of the Lemma
is a consequence.

Similarly, it follows from Lemma (3.3) that πpSl(Wk − ap) = Sl(Wk), and consequently
the second equation of the Lemma holds.
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(3.5) Differenciation Lemma. Consider for n ≤ r the Schur function SJ (W1, . . . ,Wr ),
where J is a sequence of r non-negative integers. Assume that all the words Wq are symmetric
in the letters of A. Then the following two formulas hold:

∂ωSJ (W1−A<1, . . . ,Wn−A<n,Wn+1, . . . ,Wr ) = SJ−E(W1, . . . ,Wr ),

πωSJ (W1−A<1, . . . ,Wn−A<n,Wn+1, . . . ,Wr ) = SJ (W1, . . . ,Wr ),

where J −E is the sequence obtained from J by subtracting k− 1 from jk for k = 1, . . . , n.

Proof. The assertion will be proved by induction on n. The formulas have no content when
n = 1. So we may assume that n > 1 and that the assertion holds for the alphabet Ā :=
{a1, . . . , an−1}.

In the Schur functions on the left sides of the equations, the n’th word Wn − A<n is
symmetric with respect to the letters of Ā. Therefore, by the inductive hypothesis and the
inductive definition of ∂ω in (3.1), the left hand side of the first equation is equal to the
expression,

∂1 · · · ∂n−1SJ−Ē(W1, . . . ,Wn−1,Wn − Ā,Wn+1, . . . ,Wr ),

where J−Ē is the sequence obtained from J by subtracting k−1 from jk for k = 1, . . . , n−1.
Clearly, by applying n− 1 times the first equation of Lemma (3.4) for p = n− 1, . . . , 1 and
k = n, it follows that the latter expression is equal to the right hand side of the first formula.
Hence the first formula holds.

The proof of the second formula is entirely similar.

(3.6) Remark. By conjugation by ω we obtain from (3.5) the following formulas for ∂ω and
πω:

∂ωS
J (W1−A>n, . . . ,Wn−A>1,Wn+1, . . . ,Wr ) = SJ−E(W1, . . . ,Wr ),

πωSJ (W1−A>n, . . . ,Wn−A>1,Wn+1, . . . ,Wr ) = SJ (W1, . . . ,Wr ).

Indeed, in (DIFF.3.6) we proved that ω∂ωω−1 = ∂ω. Consider the first equation of (3.5).
Apply the permutationω to the two sides. The right side is unchanged, because it is symmetric
in the letters of A. On the left side, the result is the operator ω∂ω = ∂ωω applied to the Schur
function SJ (W1−A<1, . . . ,Wn−A<n,Wn+1, . . . ,Wr ). As ω changes the word Wk − A<k
into the word Wk −A>n−k+1, we obtain the first formula asserted above. The verification of
second formula is completely analogous.

Using the fact that the Schur function SJ (W1, . . . ,Wr ) is alternating in J and the words
Wq we get analogous formulas when the n words A<k are subtracted from any n different
words in the given sequence (W1, . . . ,Wr ). For example, from the second formula above we
obtain the formula,

πωSJ (W1, . . . ,Wr−n,Wr−n+1−A>n, . . . ,Wr − A>1) = SJ (W1, . . . ,Wr ). (3.6.1)
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(3.7) Note. Let J be a sequence of n non-negative integers and set E := (0, 1, . . . , n − 1).
Then the following two formulas hold:

∂ω(aJ ) = SJ (A), (3.7.1)

πω(aJ ) = SJ+E(A), (3.7.2)

Indeed, we have that A≥q = A−A<q . Therefore, it follows from the Factorization Formula
(SCHUR.2.8), applied to the sequence J + E and the words Bq := 0, that

SJ+E(A− A<1, . . . , A − A<n) = aJ .

Hence the two asserted formulas follow from the Differentiation Lemma (3.5).
Note that, by the formulas of Theorem (DIFF.3.3), the left side of (3.7.1) is equal to 1J /1.

Hence the formula (3.7.1) also follows from Theorem (DIFF.3.3) and Jacobi–Trudi’s Lemma
(SCHUR.1.11). The formula (3.7.2) also follows from the (3.7.1) and the second operator
equation of (DIFF.3.3.3).

(3.8) Sergeev-Pragacz’s Formula. LetB = {b1, . . . , bm}be a second alphabet, disjoint from
A. Let J be a strictly increasing sequence of r non-negative integers. Set λk := jk − (k− 1)

for k = 1, . . . , r . Assume that r ≥ n, where n is the number of letters of A, and set s := r−n.
Then the following formula holds,

SJ (A− B) = πAπB

s∏

k=1

Sλk(−B≤λk)
s+n∏

k=s+1

Sλk (ak−s − B≤λk).

Proof. Form the dual sequence J ′ with respect to an integer N , see (SCHUR.1.9). By choos-
ing N large we may assume that the dual sequence J ′ has at least m elements. Consider the
Schur function SJ (A−B) on the left side of the asserted formula. By Duality (SCHUR.1.9),

SJ (A− B) = εSJ
′
(B − A) = εSJ

′
(B − A, . . . , B − A), (1)

where ε is equal to the parity of ‖J‖− r(r−1)/2. Now apply the Differentiation Formula, in
the form of Equation (3.6.1), to the alphabet B and the sequence of equal words Wq := B−A.
We obtain the formula,

SJ
′
(B −A, . . . , B − A) = πBSJ

′
(B − A, . . . , B − A,B≤m − A, . . . , B≤1 − A). (2)

Again by Duality, see Corollary (SCHUR.2.5), applied to the letters of B and W := A,

SJ
′
(B − A, . . . , B − A,B≤m − A, . . . , B≤1 − A) = εSJ (A− B≤λ1, . . . , A −B≤λr ), (3)
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with ε as before. Apply again the Differentiation Lemma to the alphabet A and the words
Wq := A− B≤λq . Subtract A<k from the last n words. We obtain the equation,

SJ (A−B≤λ1 , . . . , A −B≤λr )

= πASJ (A− B≤λ1, . . . , A − B≤λt , A≥1 − B≤λt+1 , . . . , A≥n − B≤λr ). (4)

Finally, the Schur function on the right hand side of (4) is equal to the product on the right
hand side of Sergeev’s Formula, as it follows by applying the Factorization Formula, see
Remark (SCHUR.2.9), to a sequence of letters (a ′1, . . . , a′s , a1, . . . , an) and then specializing
the additional letters a′q to zero. Therefore, the asserted formula follows from Equations
(1)–(4).

(3.9) Note. The condition for the Schur function SJ (A−B) that the sequence J has at least
n elements can always be obtained by extending the sequence J , cf. (SCHUR.1.7).

Clearly, the factor S≤λk(−Bλk) in the first product on the right hand side is only non-zero
if the word Bλk has λk letters, that is, if λk is less than or equal to the number m of letters of B.
Hence the Schur function SJ (A−B) is only non-zero if λs ≤ m, that is, if js ≤ m+ s − 1.
Sequences J satisfying the latter condition are said to be contained in the (n,m)-hook.

Assume that λs+1 ≥ m, that is, js+1 ≥ s +m. Then the last product in Sergeev-Pragacz’s
formula is equal to the following product,

n∏

p=1

a
λs+p−m
p

∏

a∈A, b∈B
(a − b).

In particular, when J = (m,m + 1, . . . ,m + n− 1), we recover the formula of Example
(SCHUR.2.12),

Sm,m+1,...,m+n−1(A− B) =
∏

a∈A, b∈B
(a − b),

since πA(1) = 1 and πB(1) = 1.
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