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Summary

The underlying theme of this thesis is statistical inference for stochastic partial
differential equations observed at discrete points in time and space. The thesis
consists of an introductory essay on the notion of stochastic partial differential
equations and of the four enclosed papers. The first two papers are concerned
with statistical inference for time series embedded in linear stochastic partial dif-
ferential equations driven by Gaussian noise. The focus of the last two papers
is the notion of chaos decomposition and Malliavin calculus for the underlying
stochastic process. The purpose of these two papers is to investigate non-Gaussian
stochastic calculus, and to compute the likelihood function given an observation
at discrete points of a stochastic process defined in this framework. The prerequi-
site for reading this thesis is familiarity with linear partial differential equations,
statistical inference based on the maximum likelihood method, spectral analysis
for time series, Itô calculus, and functional analysis with emphasis on Schwartz
distributions and Hilbert space theory.

In the introductory essay, models based on stochastic partial differential equa-
tions and the associated statistical inference problem is discussed. Particular par-
tial differential equations are presented in order to exemplify the usage of equa-
tions disturbed by stochastic noise, equations with stochastic coefficients, and the
usage of non-Gaussian noise. Many stochastic partial differential equations do not
possess solutions in the ordinary sense due to the roughness of the underlying
noise process, and a notion of a generalized solution is needed. Two different
approaches employing spatial respectively stochastic distributions are presented.
The latter approach allows a mathematically rigorous definition of white noise as
well as the definition of the so-called Wick product. Some mathematical proper-
ties of these notions are presented, and the possibility of extending this stochastic
calculus to non-Gaussian and Lévy processes is discussed briefly. From a model
building and interpretation point of view the fundamental question is whether or
not the Wick product should be used. It is argued that this question can actually
be answered on the basis of the interpretations of the Wick product and the ordi-
nary product. This is illustrated by two examples. Regarding statistical inference
for models based on stochastic partial differential equations, the emphasis in the
literature has been on spectral data for parabolic equations. These models are
presented. Moreover, the four papers enclosed in the thesis are reviewed relative
to the presented theory and literature.

An observation at discrete points in time and space of a stochastic partial dif-
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ferential equation can be viewed as a time series. In Markussen (2001d), paper
I of the thesis, this connection between stochastic partial differential equations
and time series is exemplified for a parabolic equation. The main part of the
paper is concerned with the local asymptotic properties of the likelihood func-
tion given an observation of a multivariate Gaussian time series. Especially, the
well-known asymptotic properties of the maximum likelihood are proven. The re-
quired regularity conditions are given as integrability and smoothness conditions
on the spectral densities. These regularity conditions are very general and include
time series with long range dependence, i.e. spectral densities with a pole, and to
some extend also spectral densities with a zero. Sequences of misspecified mod-
els, which contain the true spectral density in the limit, are also considered. The
main theorem states a uniform version of the local asymptotic normality property
known from Le Cam theory. The mathematical techniques used are p-norms for
matrices, Lp-norms for multivariate spectral densities, and maximal inequalities
for stochastic processes. Moreover, the needed properties of Fejér approximations
and Toeplitz matrices are stated and proven. In the existing time series literature
the p-norms and the Lp-norms are usually used only for p = 1; 2;1. The novelty
of this paper probably lies in the usage of these norms for every p 2 [1;1℄.

In Markussen (2001b), paper II of the thesis, parametric inference given an
observation at discrete lattice points in time and space of a hyperbolic stochastic
partial differential equation is studied. An approximate state space model is pro-
posed, and the associated likelihood function is calculated via the Kalman filter.
The results developed in Markussen (2001d) are used to give conditions ensur-
ing asymptotic efficiency. The parabolic equations can be obtained as limits of
hyperbolic equations, and the asymptotic distribution of the likelihood ratio test
statistic for a parabolic equation against the hyperbolic alternative is stated. More-
over, sample path properties of the parabolic respectively hyperbolic equations are
studied.

In Markussen (2001a), paper III of the thesis, the chaos decomposition of the
Hilbert space of quadratic integrable functionals of the negative binomial process
is studied. Familiarity with functional analysis and especially firm knowledge of
Hilbert space theory is probably required of the potential reader. The structure of
the chaos decomposition found in the paper is different from the symmetric Fock
space well-known for Gaussian and Poisson processes. Especially, the multiple in-
tegrals are not capable of generating all the quadratic integrable functionals. The
developed chaos decomposition is used to introduce Malliavin derivative opera-
tors corresponding to variational derivatives w.r.t. the jump times respectively the
jump heights. Although the latter derivative operator is not densely defined, this
operator can be defined as a closed operator on a subspace containing the multiple
integrals. The introduced Malliavin operators do not have a diagonal representa-
tion w.r.t. the developed chaos decomposition. However, the corresponding Wick
product is easily expressed in terms of the chaos decomposition. The negative
binomial process is investigated as a generic example of what could possibly be
done for Lévy processes and especially compound Poisson processes. The devel-
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oped chaos decomposition is directly connected to the characteristic functional of
the negative binomial process, and does not use the identification of a compound
Poisson process with the Poisson process defined on the cartesian product of the
parameter space and the jump space.

If the chaos expansion of a finite dimensional random variable is known, then
the corresponding Lebesgue density can be expressed as an expectation via the
integration by parts setting from Malliavin calculus. In Markussen (2001c), paper
IV of the thesis, this property is used to propose a simulation approach to compute
pseudo-likelihoods given an observation at discrete points of a stochastic partial
differential equation. The proposed method is developed for Gaussian spaces and
requires the chaos decomposition to be known. The paper contains a short in-
troduction to the needed Malliavin calculus, and the simulation of the involved
iterated Skorohod integrals is discussed. The proposed method is seen to be nu-
merically demanding. Moreover, the special case corresponding an observation
with measurement errors exemplifies, that the method is numerically instable as
well. The paper thus concludes, that the proposed method is of little practical
usage.





Dansk resumé

Det underliggende tema for denne afhandling er statistisk inferens for stokastiske
partielle differentialligninger observeret i diskrete punkter i tid og rum. Afhand-
lingen består af et indledende essay om stokastiske partielle differentialligninger
og af de fire inkluderede artikler. De to første artikler omhandler statistisk inferens
for tidsrækker indlejret i lineære stokastiske partielle differentialligninger drevet
af Gaussisk støj. Fokus i de to sidste artikler er begreberne kaos dekomponer-
ing og Malliavin kalkyle for den underliggende stokastiske proces. Formålet med
disse to artikler er at undersøge ikke-Gaussisk stokastiske kalkyle, samt i denne
matematiske ramme at beregne likelihoodfunktionen givet diskrete observationer
af stokastiske processer. Forudsætningerne for at læse denne afhandling er kend-
skab til lineære partielle differentialligninger, statistisk inferens baseret på mak-
simum likelihood metoden, spektral analyse for tidsrækker, Itô kalkyle, og funk-
tional analyse med særlig vægt på Schwartz distributioner og teorien for Hilbert
rum.

I det introducerende essay bliver modeller bestående af stokastiske partielle
differentialligninger og det tilhørende statistiske inferens problem diskuteret. Der
bliver givet konkrete eksempler på partielle differentialligninger henholdvis drevet
af stokastisk støj og med stokastiske koefficienter. Videre gives der et eksempel på
en ligning med ikke-Gaussisk støj. Rugheden af den underliggende stokastisk pro-
ces betyder, at mange stokastiske partielle differentialligninger ikke har en løsning
i klassisk forstand. To forskellige former for generaliserede løsninger der anvender
henholdvis rumlige og stokastiske distributioner bliver præsenteret. Den anden
af disse løsningsmetoder gør det muligt at give en matematisk stringent defini-
tion af hvid støj, og endvidere kan det såkaldte Wick produkt defineres. Nogle
matematiske egenskaber ved disse objekter bliver præsenteret, og muligheden for
at overføre denne stokastiske kalkyle til ikke-Gaussiske og Lévy processer bliver
kort diskuteret. I forbindelse med model bygning og fortolkninger er det fun-
damentale spørgsmål hvorvidt Wick produktet skal anvendes eller ej. Der bliver
argumenteret for at dette spørgsmål rent faktisk kan besvares udfra en præcis for-
tolkning af Wick produktet og det almindelige produkt. Dette bliver illustreret
med to eksempler. Statistiske modeller bestående af spektral data for parabolske
ligninger, som er beskrevet meget i litteraturen, bliver præsenteret. Endelig bliver
de fire artikler inkluderet i afhandlingen beskrevet i forhold til den præsenterede
teoridannelse og litteratur.

Observationen af en stokastisk partiel differentialligning i diskrete punkter i
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tid og rum kan betragtes som en tidsrække. I den første artikel i afhandlingen,
Markussen (2001d), bliver denne sammenhæng eksemplificeret for en parabolsk
ligning. Hovedparten af artiklen omhandler de lokal asymptotiske egenskaber
for likelihoodfunktionen givet observationen af en flerdimensional Gaussisk tids-
række. Specielt fås de velkendte asymptotiske egenskaber ved maksimum like-
lihood estimatoren. De krævede regularitets betingelser formuleres på spektral-
tæthederne i form af integrabilitet og glathed. Disse regularitets betingelser er
meget generelle og indeholder specielt tidsrækker med lang hukommelse, d.v.s.
spektraltætheder med en pol, og til en vis grad også spektraltætheder med nul-
punkter. De asymptotiske egenskaber givet en følge af misspecificerede modeller,
som indeholder den sande spektraltæthed i grænsen, bliver diskuteret. Hoved-
resultatet er en uniform version af den lokale asymptotiske normalitets egenskab
kendt fra Le Cam teori. De anvendte matematiske teknikker er p-normer for ma-
tricer, Lp-normer for flerdimensionale spektraltætheder, og maksimums uligheder
for stokastiske processer. Videre bliver de anvendte egenskaber ved Fejér approksi-
mationer og Toeplitz matricer formuleret og bevist. I den eksisterende litteratur
for tidsrækker bliver p-normerne og Lp-normerne sædvanligvis kun anvendt forp = 1; 2;1. Nyskabelsen i denne artikel består formodenlig i anvendelsen af disse
normer for ethvert p 2 [1;1℄.

Den anden artikel i afhandlingen, Markussen (2001b), omhandler parametrisk
inferens givet en observation i diskrete gitter punkter af en hyperbolsk stokastisk
partiel differentialligning. En approksimativ state space model bliver foreslået, og
den tilhørende likelihoodfunktion beregnes v.h.a. Kalman filteret. Videre bliver
resultaterne fra Markussen (2001d) brugt til at give betingelser der sikre asymp-
totisk efficiens. Parabolske ligninger kan fås som grænsepunkter af hyperbolske
ligninger, og den asymptotiske fordeling af kvotienttestet for en parabolsk lign-
ing mod det hyperbolske alternativ bliver undersøgt. Endelig bliver glatheden af
udfaldsfunktionerne undersøgt for parabolske henholdvis hyperbolske ligninger.

Den tredje artikel i afhandlingen, Markussen (2001a), omhandler kaos dekom-
poneringen af Hilbert rummet af kvadratisk integrabel funktionaler af den nega-
tive binomial proces. Kendskab til funktional analyse og i særdeleshed godt kend-
skab til Hilbert rums teori er formodenlig nødvendigt for at læse denne artikel.
Strukturen af den fundne kaos dekomponering er forskellig fra den symmetrisk
Fock rum struktur kendt fra Gaussiske og Poisson processer. Specielt kan alle
kvadratisk integrabel funktionaler ikke genereres af de multiple integraler. Den
fundne kaos dekomponering bliver anvendt til at definere Malliavin differential
operatore svarende til variationale aflede m.h.t. henholdvis spring tidspunkterne
og spring højderne. Selvom den anden af disse differential operatore ikke er tæt
defineret, kan den dog defineres som en afsluttet operator på et rum indehold-
ende de multiple integraler. De indførte Malliavin operatore har ikke en diag-
onal repræsentation m.h.t. den fundne kaos dekomponering. Derimod kan det
tilhørende Wick produkt let udtrykkes via kaos dekomponeringen. Den negative
binomial proces er tænkt som et generisk eksempel på hvad der muligvis kan gøres
for Lévy processer og i særdeleshed sammensatte Poisson processer. Den beskrevet
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kaos udvikling er direkte baseret på den karakteriske funktional for den negative
binomial proces, og anvender således ikke identifikationen af en sammensat Pois-
son proces med en Poisson proces defineret på det kartesiske produkt af parameter
rummet og spring rummet.

Hvis kaos udviklingen for en endelig dimensional stokastisk variabel er kendt,
så kan den tilhørende Lebesgue tæthed udtrykkes som en middelværdi via delvis
integrations metoder fra Malliavin kalkylen. I den fjerde artikel i afhandlingen,
Markussen (2001c), bliver denne egenskab udnyttet til at foreslå en simuleringstil-
gang til beregningen af pseudo likelihoodfunktioner givet en observation i diskrete
punkter af en stokastisk partiel differentialligning. Den foreslået metode bliver
beskrevet for Gaussiske rum og kræver at kaos udviklingerne er kendte. Artiklen
indeholder en kort introduktion til den anvendte Malliavin kalkyle, og simulerin-
gen af de involverede Skorohod integraler bliver diskuteret. Den foreslået metode
viser sig at være numerisk krævende. Specialtilfældet svarende til en observation
med målefejl viser endvidere, at metoden også er numerisk instabil. Det bliver
således konkluderet i artiklen, at den foreslået metode ikke har store praktiske
anvendelses muligheder.
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1
Solving stochastic partial differential

equations

In this essay, we will discuss some of the mathematical problems related to solving
Stochastic Partial Differential Equations1 with the intention of building probabilis-
tic models for real life phenomena and doing statistical inference. We will mostly
write the equations in an informal manner avoiding the precise mathematical def-
initions, however there will be some mathematics where it is needed to make the
ideas clear. It is my hope, that this essay could be helpful to anyone interested in
learning about the notion of SPDEs. This essay will also serve as an introduction
to the Ph.D. thesis in which it is enclosed.

Many of the probabilistic models that are employed in the world today are
known not to fit the data they are supposed to model. For instance, all the models
from the successful field of mathematical finance based on Stochastic Differential

Equations can not give an exact description of the prices on the stock exchange.
This is due to the mathematical fact that the Brownian motion has infinite vari-
ation. Nevertheless, these models are sensible approximations to the real world
phenomena, are mathematically nice and to a large extent also tractable, and
therefore provide very useful models. One might even argue that the marginal dis-
tributions of SDEs actually could describe stock prices observed at discrete points
in time. We would hope to find similar features for probabilistic models based on
SPDEs. Consider for instance the stochastic wave equation,( �2t u(t; x) = �xu(t; x) +W (t; x); t > 0; x 2 Rd ;u(0; x) = �tu(0; x) = 0; x 2 Rd ; (1.1)

where W (t; x) denote some kind of white noise process.2 For d = 1 equation (1.1)
models the motion of one of the strings of a “guitar carelessly left outdoors during

a sandstorm”, cf. Walsh (1986, p. 281), and the solution is given byu(t; x) = 12 Z t0 Z x+t�sx+s�t W (s; y) dy ds D= 12B̂� t+xp2 ; t�xp2 �; t > 0; x 2 R;
where B̂(t; x) is a Brownian sheet fixed to zero along the line t + x = 0. For d = 2
equation (1.1) would model the motion of the drum skin of a drum carelessly

1In the following abbreviated by SPDEs.
2The nomenclature W (t; x) is for white noise and should not be confused with a Wiener process.

The latter will be denoted by B(t; x) for Brownian motion.
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left outdoors during a sandstorm except for the fact that there do not exist an
ordinary solution to (1.1) when d � 2. We thus need some notion of generalized
solutions in order to solve this physical meaningful equation, and some procedure
of regularizing these generalized solutions in order to have physical meaningful
solutions and possibly conduct statistical inference. Indeed, we do not believe
that the sand grains hit the guitar strings or the drum skin strictly according to a
singular white noise process, but only that this mathematical model gives a good
approximation of what is happening. It is thus acceptable to arrive at generalized
solutions as long as there exist physically interpretable smoothing procedures to
get real life solutions.

Three different notions of SPDEs

There exist at least three different answers to the question of how to pose and
solve SPDEs. It should be emphasized that the question, which of these answers
is the right one, is not a strictly mathematical question but a matter of choice
and personal taste, and may also depend on the particular application. Of course
each approach will have different properties and consequences which could be
compared, but whether a given approach will prevail also depend on the strength
of the advocates in favour of this particular approach. The first answer to the
question of how to handle SPDEs is to blame the roughness of the white noise for
the non-solvability of these equations. Indeed, if the white noise is replaced by
coloured noise, i.e. some sort of smoothed white noise, then there exist ordinary
solutions to many SPDEs. In the papers Manthey & Mittmann (1998), Manthey &
Mittmann (1999) existence, uniqueness and stability properties of some stochas-
tic partial functional-differential equations, i.e. SPDEs in time and space where the
behaviour of the equation may depend on the entire past, are proved using this
approach. Although the use of coloured noise directly gives physical interpretable
solutions, and we thus avoid the smoothing of a potential generalized solution,
this approach seems somewhat unaesthetic. Whereas white noise in some math-
ematical sense is a canonical object, this is not the case for coloured noise. The
solution to the stochastic version of a given PDE will depending on the coloured
noise employed, and this approach is thus most sensible in the cases where there
are physical reasons for choosing a particular coloured noise process, cf. the dis-
cussion in Holden, Øksendal, Ubøe & Zhang (1996, p. 166). The second and the
third answer to the question of how to pose and solve SPDEs gives canonical al-
beit generalized solutions to equations containing white noise. Let us consider
SPDEs similar to (1.1), i.e. equations depending on a random element ! 2 
, on
time t > 0, and on a spatial component x 2 Rd . An ordinary solution to such an
equation would be a measurable functionu : 
� R+ � Rd ! R
solving the PDE itself or more likely an integral version of the PDE. Unfortunately
such solutions rarely exist when d � 2 as already mentioned. The two different
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answers, which we will baptize the Walsh approach respectively the Norwegian

approach3, are given by considering the solution u as a functionu : 
� R+ ! H�n(Rd) respectively u : R+ � Rd ! (S)�1:
In the Walsh approach H�n(Rd) is a Sobolev space of sufficiently high order n, i.e.

the solutions are defined pointwise in (!; t) 2 
 � R+ as generalized functions
in space. This approach is used in the monographs Walsh (1986), Kallianpur &
Xiong (1995). In the Norwegian approach (S)�1 is the less known Kondratiev

space of stochastic distributions, i.e. the dual of some space of smooth random
variables. In this approach, which is used in the monograph Holden et al. (1996),
the solutions are defined pointwise in (t; x) 2 R+ � Rd as generalized random
variables. In order to enhance the discussion let us consider some other PDEs.

Pressure equation with stochastic coefficients

Suppose we want to model the pressure p(t; x) and the saturation �(t; x) of a fluid
injected into a porous rock. Assume that the point x 2 R3 of the rock is either
dry at time t > 0, i.e. �(t; x) = 0, or have complete saturation �0(x) > 0. If f(t; x)
is the injection rate of the fluid at time t and the point x, and k(x) � 0 is the
permeability of the rock at the point x, then the pressure p(t; x) can be modeled by
the following moving boundary problem, cf. Holden et al. (1996),8><>:divx�k(x)rxp(t; x)� = �f(t; x); x 2 Dt;p(t; x) = 0; x 2 �Dt;�0(x) ddt(�Dt) = �k(x)rxp(t; x); x 2 �Dt; (1.2)

where Dt is the wet region at time t, i.e.Dt = �x 2 R3 : �(t; x) = �0(x)	:
This apparently deterministic PDE exemplifies what I believe to be the most impor-
tant applications of SPDEs, namely the cases where the coefficients of determinis-
tic PDEs from physics, biology or other research fields are unknown and replaced
by stochastic processes. For instance, the permeability of the porous rock is known
to be non-negative, heterogeneous and isotropic, but the actual permeability k(x)
at the point x is likely to be unknown. It is thus natural to replace k(x) by a
stochastic process with the same qualitative properties known to be satisfied by
this unknown function. Similarly, the injection rate f(t; x) may be replaced by a
stochastic process if necessary.

3These names refer to the monographs, i.e. Walsh (1986) respectively Holden et al. (1996),
from which I learned the two different approaches.
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Stochastic transport equation with Poisson noise

The concentration U(t; x) at the time t > 0 and at the point x 2 Rd of a chemical
substance dispersed in a moving medium can be modeled by the PDE8><>: �tU(t; x) = 12�2�xU(t; x) + V (t; x) � rxU(t; x)�K(t; x)U(t; x) + g(t; x); t > 0; x 2 Rd ;U(0; x) = f(x); x 2 Rd ; (1.3)

where f(x) � 0 is the initial concentration of the substance, 12�2 > 0 is the dis-
persion coefficient, V (t; x) 2 Rd is the velocity of the medium, K(t; x) > 0 is the
relative leakage rate, and g(t; x) 2 R is the source rate of the substance. The cased = 1 would correspond to a river, and d = 2 would correspond to a lake. If some
of the coefficients in (1.3) are unknown and replaced by stochastic processes we
get a SPDE. For instance the transport of a chemical substance dispersed in a tur-
bulent medium could be modeled by replacing the velocity coefficient V (t; x) by
a white noise process, cf. Holden et al. (1996, p. 146). The point we would like
to stress by mentioning equation (1.3) however connects to the analysis done in
Kallianpur & Xiong (1995, chapter 7), where equation (1.3) especially is used to
model the pollution along a river. Kallianpur and Xiong assume that all the coef-
ficients of (1.3) are known except the source rate g(t; x) of the substance, which
in their chapter 7.2 is replaced by a compound Poisson process. From a modeling
perspective, this assumption of the probabilistic behavior of chemical deposits is
sensible, and this model exemplifies the need for employing e.g. compound Pois-
son processes. In a more general setup but still within in same mathematical
framework, it would be desirable to employ general Lévy processes.

1.1 The Walsh approach

In the Walsh approach SPDEs depending on time t > 0 and a spatial componentx 2 O � Rd are reformulated as Itô type SDEs with values in a Hilbert and conu-
clear space, e.g. a Sobolev space. We will thus also refer to these equations as Itô
type SPDEs. Besides the references already mentioned this approach is also used
in the monographs Rozovskii (1990), Da Prato & Zabczyk (1992). One of the
main problems with this approach arises from the lack of a multiplicative struc-
ture of these Hilbert spaces. This means that it is difficult to handle SPDEs with
multiplicative noise like the non-linear cable equation8><>: �tu(t; x) = �xu(t; x)� u(t; x) + f�u(t; x); t�W (t; x); t > 0; x 2[0; L℄d;�xu(t; x) = 0; x 2 �[0; L℄d;u(0; x) = u0(x); x 2[0; L℄d; (1.4)

cf. Walsh (1986, p. 312), and PDEs like (1.2) with stochastic coefficients. For
some equations with multiplicative noise, e.g. equation (1.4), this difficulty can
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be resolved by the aid of contraction semigroups, cf. Kotelenez (1992), Kallianpur
& Xiong (1995, chapter 4.3). However, a general theory to handle SPDEs with
non-linearity or multiplicative structures is to my knowledge not available.

All papers on statistical inference for SPDEs I have seen essentially employes
the Walsh approach to tame the roughness of these equations. Suppose for in-
stance that the water temperature of the oceans is modeled by a SPDE, and we
have temperature data consisting of satellite photos taken with an infrared cam-
era at our disposal. Since the photos are taken from a high altitude, it is then
natural to assume that the data actually are spatially smoothed water tempera-
tures. A Walsh type SPDE thus is a mathematically nice model of generalized
functions with a natural smoothing procedure to arrive at ordinary functions for
the observations of the water temperatures.

1.1.1 Statistical inference based on spectral data

As an example of statistical estimation problems for SPDEs let us consider the
analysis done in Huebner & Rozovskii (1995) in some detail. Let O be a smooth
bounded domain in Rd , and for a multi index 
 = (
1; : : : ; 
d) 2 Nd0 defineD
 f(x) = dj
jdx
11 � � �dx
dd f(x);
where j
j = 
1 + : : : + 
d. Moreover let A0 and A1 be formally self-adjoint par-
tial differential operators on C1(O) of orders m0 respectively m1, and let m =maxfm1; m2g.4 Huebner and Rozovskii investigates the asymptotic properties of
the maximum likelihood estimator for a scalar parameter � belonging to some
compact subset � of R, in the Dirichlet problem for the parabolic SPDE8><>: du(t; �) = (A0 + �A1)u(t; �) dt+ dB(t; �); t > 0;D
 u(t; x) = 0; j
j � m� 1; t > 0; x 2 �O;u(0; x) = u0(x); x 2 O: (1.5)

Here B(t; x) is a so-called cylindrical Brownian motion, i.e. B(t; �), t > 0, is a
stochastic process with values in the Schwartz space of distributions D0(O) such
that k�k�1L2(O) hB(t; �); �iD0(O) is a one dimensional Brownian motion for every � 2C1(O), and such thatE � hB(t1; �); �1iD0(O) hB(t2; �); �2iD0(O) � = (t1 ^ t2) h�1; �2iL2(O) :
Solving the SPDE using spectral analysis

If the operators A0 and A1 commute, and the family A� = A0 + �A1, � 2 �, is uni-
formly strongly elliptic of order m, then the operator A� with boundary conditions

4In Huebner & Rozovskii (1995) this maximum is denoted by 2m, and some caution is thus
required when comparing this essay and Huebner & Rozovskii (1995).
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u(t; x) = 0, j
j � m�1, can be extended to a closed, self-adjoint operator L� onL2(O). Moreover the operator L� is lower semibounded, i.e. there exist a constantk� 2 R such that k�I � L� > 0 and the resolvent (k�I � L�)�1 is compact, and the
spectrum of the operator (k�I � L�)1=m is a discrete set consisting of eigenvalues�n(�), n 2 N , of finite multiplicity such that0 < �1(�) � �2(�) � �3(�) � : : : ; �n(�) ���!n!1 1;
with associated eigenfunctions h�n 2 Dom(L�) \ C1(O), n 2 N , constituting an
orthonormal basis for L2(O). All this follows from the standard theory for de-
terministic PDEs and unbounded operators. Huebner and Rozovskii assume that
the eigenfunctions hn = h�n, n 2 N , do not depend on the parameter � 2 �, and
introduce the Sobolev spacesHs� = �u 2 L2(O) : kuks;� = � 1Xn=1 �2sn (�) ���hu; hniL2(O)���2 �1=2 <1	;s � 0, with dual spaces H�s� . The functions hsn;� = ��sn (�)hn, n 2 N , constitute an
orthonormal basis for H�s� , and for fixed � > d=2 the cylindrical Brownian motionB(t; x) has the expansion B(t; �) = 1Xn=1Bn(t)hn 2 H��� ;
whereBn(t), n 2 N , are pairwise independent one dimensional Brownian motions.
Using this spectral decomposition it follows that if u0 2 H��� , then the solutionu�(t; x) to the parabolic SPDE (1.5) is given byu�(t; �) = 1Xn=1 u�n(t)h��n;� ; (1.6)

where the coefficient processes u�n(t), n 2 N , satisfies the SDEs( du�n(t) = ���mn (�)� k��u�n(t) dt+ ���n (�) dBn(t);u�n(0) = 
u0; h��n;��H��� ; (1.7)

i.e. u�n, n 2 N , are pairwise independent Ornstein-Uhlenbeck processes.

Statistical inference using spectral data

After having solved the SPDE Huebner and Rozovskii arrive at the crucial cross-
road in deciding, precisely which statistical problem is to be considered. They
first decide on considering the estimation problem in an asymptotic framework.
Beside the usual frameworks of asymptotics w.r.t. the time parameter respectively
w.r.t. small noise, there is also the possibility of considering asymptotics w.r.t. the
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spatial parameter x 2 O. The latter framework is most promising of revealing
new mathematical features, and from an application point of view this framework
is also very realistic, cf. the application in oceanography discussed in Piterbarg &
Rozovskii (1997).

Instead of considering the estimation problem given data observed at discrete
points in the fixed, bounded spatial domain O, Huebner and Rozovskii consider
data consisting of finitely many coefficients in the spectral decomposition (1.6)
used to solve the SPDE. The latter is certainly most easy since it allows an ex-
plicit expression for the maximum likelihood estimator �̂. Moreover consider-
ing data consisting of observations of the first coefficient processes removes, but
perhaps also blurs, the problem of the generalized nature of the solution to the
considered SPDE when d � 2. I believe these are the reasons why most papers
on this problem take the spectral approach. In Huebner & Rozovskii (1995) the
Le Cam theory as presented in Ibragimov & Has’minskii (1981) and the general
theory for the asymptotics of the eigenvalues for partial differential operators is
used to give conditions for asymptotic normality and efficiency of the maximum
likelihood estimator in the spectral framework. In Huebner (1997), Lototsky &
Rozovskii (1999) similar analysis are done for multi dimensional parameters and
without the assumption of commutativity of the involved partial differential oper-
ators. In Huebner & Lototsky (2000) a sieve estimator is introduced for the case
where the parameter � is time dependent. A common feature of these models is
that the Fisher information grows e.g. like N3, where N is the number of observed
coefficient processes, and not linearly in N as in the i.i.d. situation, cf. the exam-
ples Huebner & Rozovskii (1995, p. 156). This feature is due to the fact that the
coefficients in the Ornstein-Uhlenbeck processes (1.7) depends more heavily on
the parameter � for large n, and might not hold when data are sampled at discrete
points in space. This non-standard rate of convergence of the maximum likelihood
estimator thus may only hold due to a somewhat artificial sampling scheme.

Other references to the literature

I would also like to mention the following papers. In Loges (1984) a Girsanov

theorem, which provides the basis for doing maximum likelihood estimation, is
proved for SDEs with values in a Hilbert space. In the series of papers Ibragimov
& Has’minskii (1998), Ibragimov & Has’minskii (1999), Ibragimov & Has’minskii
(2000) the inverse problem for parabolic SPDEs, i.e. estimating the functional co-
efficients in the PDE, is studied under small noise asymptotics. The paper Huebner
(1999) also studies small noise asymptotics for the maximum likelihood estima-
tor, and in Mohapl (1998) estimation equations for the unknown parameter given
an observation at discrete points in space of a linear Gaussian SPDE are derived
and analysed. The paper by Mohapl is one of the few papers that discuss esti-
mation based on spatially discrete observations. Further references can e.g. be
found in the proceedings of the Workshop on SPDEs held 4–6 January 2001 at the
Department of Statistics and Operations Research, University of Copenhagen, cf.

Sørensen & Huebner (2001).
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1.1.2 Review of paper I and paper II

In this subsection we review the papers Markussen (2001d), Markussen (2001b)
enclosed in this thesis. The purpose of these papers is to study asymptotic likeli-
hood inference when n!1 for the statistical model given by the scalar parame-
ters �1; �2; �0; �1; �2 and an observation of the stationary solution to the hyperbolic
SPDE8><>: �2�2t u(t; x) + �1�tu(t; x) = �0u(t; x) + �1�xu(t; x) + �2�2xu(t; x)+ e� �12�2 xW (t; x); t 2 R; x 2 (0; 1);u(t; 0) = u(t; 1); t 2 R; (1.8)

in the lattice points (t; x) in time and space given byt = �; 2�; : : : ; n�; x = a1b ; : : : ; aNb ;
where � > 0 and a1; : : : ; aN ; b 2 N , a1 < : : : < aN < b, are fixed. The motivation
for considering this estimation problem is to investigate the possible more real-
istic, but also more difficult, problem of spatial discrete date instead of spectral
data. We have made the analysis easier in two ways. In order to avoid having
observations from a smoothed version of a generalized solution to (1.8), and thus
having to decide on the smoothing procedure, we only consider one dimensional
space. Moreover we have chosen the problem of asymptotics for n ! 1 and
not for N ! 1. In Cont (1998) the SPDE (1.8) with �2 = 0, i.e. the parabolic
limit of (1.8), is proposed as a model for the deviations of the interest rate for
bounds with different maturity from the linear interpolation between the interest
rate for the bound with the shortest respectively the longest time to maturity, and
in Santa-Clara & Sornette (1999) the hyperbolic equation is proposed as a model
in a somewhat different framework. A similar model for the term structure of in-
terest rates is proposed in Brace, Ga̧terek & Musiela (1997). Observations for such
models would be spatially sparse and temporally long, and would thus fit into the
analysed asymptotic framework.

Linear time series models

The statistical model described above is a multivariate time series model, where
the dimension of the time series equals the spatial resolution. Moreover using a
spectral decomposition similar to (1.6) it is seen, that this model can be described
as an infinite dimensional state space model. It is thus natural to use the Kalman
filter for a finite dimensional approximation of this infinite dimensional model
in order to compute an approximate likelihood, i.e. to use a slightly misspecified
model in order to do computations. In Markussen (2001d) an uniform version of
the local asymptotic normality property is proved for a sequence of misspecified
multivariate Gaussian time series models, which contains the true model in the
limit. The needed regularity conditions, which are formulated in terms of integra-
bility and smoothness conditions on the spectral densities, are more general than
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the regularity conditions given in e.g. Dahlhaus (1989). Especially multivariate
spectral densities with both a pole and a zero are included. The main mathemati-
cal tools employed in Markussen (2001d) are Toeplitz matrices, p-Schatten matrix
norms, multivariate Lp-norms, Orlicz norms for random variables, cumulants for
bilinear forms of Gaussian vectors, chaining inequalities for stochastic processes,
and Le Cam theory. I believe the technical novelty in the paper consists in the
employment of p-norms for every p 2 [1;1℄, and not only for p = 1; 2;1. Unfor-
tunately, the paper appears rather technical. This is partly explained by the fact
that I have tried to solve several problems at the same time, i.e. asymptotics for
slightly misspecified multivariate time series, which was needed for the applica-
tion to SPDEs, but also for long memory and almost deterministic time series.5

Statistical inference for a discretely observed SPDE

In Markussen (2001b) the results developed in Markussen (2001d) are used to
prove consistency, asymptotic normality and asymptotic efficiency of the maxi-
mum likelihood estimator for the parameters �1; �2; �0; �1; �2 based on the finite
dimensional approximation of the SPDE model described above. The asymptotic
distribution of the likelihood ratio test for a parabolic equation, i.e. �2 = 0, against
a hyperbolic equation, i.e. �2 > 0, is found to be a truncated �2-distribution with
one degree of freedom. Moreover, sample path properties of the solution to (1.8)
are proved both in the parabolic case and the hyperbolic case. The results given
in Markussen (2001b) can therefore be used to test the hypothesis of parabolicity
against hyperbolicity, cf. the discussion in Cont (1998).

1.2 The Norwegian approach

In the Norwegian approach SPDEs are interpreted in the usual strong sense w.r.t.
the time parameter t and the spatial parameter x 2 Rd , and the generalized nature
of the solutions is transferred to the stochastic component. It is thus necessary to
introduce spaces of generalized random variables. A particular nice feature of the
Norwegian approach is that a singular white noise process, e.g. the time derivative
of the Brownian motion, can be defined as a mathematical rigorous object. SDEs
can thus be solved as actual differential equations in accordance with the way they
usually are interpreted, and not only as integral equations. On the Kondratiev
space of generalized random variables the so-called Wick product is defined. The
Wick product is a product in the algebraic sense, and it is thus tempting to re-
solve the problems of multiplicative noise and non-linear equations by replacing
all products with Wick products and all non-linear functions with their Wick coun-
terparts. Although the Wick product as a mathematical object behaves extremely

5Time series which either have long memory or are almost deterministic have spectral densities
with a pole respectively a zero. It was clear that the employed technique using general p-norms
was strong enough to include time series with these singular properties, and the temptation to do
so was simply too big.
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nicely it should be used with caution, cf. the discussion in section 1.2.4 below.
Another nice feature is that the stochastic part and the PDE part in some sense
are separated, this is especially so for Wick type equations. In the subsequent sec-
tions I will describe the above mentioned notions, and relate the enclosed papers
Markussen (2001a), Markussen (2001c) to the Norwegian approach.

1.2.1 Chaos decomposition, Kondratiev spaces, and the Wick

product

In this section we will concentrate on the classical Gaussian case, but also discuss
the potential extension to Lévy processes. Let T be a �-compact, topological space
equipped with a non-atomic positive Radon measure. For applications to SPDEs the
space T could e.g. be the set of temporal-spatial parameters R+�Rd equipped with
the Lebesgue measure. The idea is first to construct a Wiener process indexed by T ,
i.e. a Gaussian white noise or Brownian sheet depending on how the construction
is done and interpreted, and describe the associated Hilbert space (L2) of quadratic
integrable random variables measurable w.r.t. this process. Then the standard
Hilbert space theory is employed to construct a Gel’fand triplet(S) ,! (L2) ,! (S)0;
where (S) is some space of smooth random variables and (S)0 is the dual space of
generalized random variables.6 Finally, if the constructions are done properly, then
it is possible to introduce the Wick product on these spaces. There are of course
different ways of implementing this program. We will present a synthesis of the
methods used in Itô (1988), Holden et al. (1996).

White noise space

Let S = S (T ) be the Schwartz space of smooth, rapidly decreasing functions
on T , and let S 0 = S 0(T ) be the dual space of tempered distributions. By the
Bochner-Minlos theorem, cf. Holden et al. (1996, p. 12), there exists a unique
probability measure �, called the white noise probability measure, on the Borel�-algebra on S 0 with characteristic functionalC(�) = ZS 0 e{h!;�iS 0 d�(!) = e� 12 k�k2L2(T ); � 2 S : (1.9)

The random variable h�; �iS 0 defined on the probability space (S 0;B(S 0); �) thus
follows a Gaussian distribution with mean zero and variance k�k2L2(T ), and can be
interpreted as the stochastic integral w.r.t. a Brownian sheet defined on T , i.e.h�; �iS 0 = ZT �(t) dB(t); � 2 S :

6The theory of Schwartz distributions or generalized functions is constructed similarly w.r.t. the
spatial parameter x 2 Rd .
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Chaos decomposition

The nomenclature chaos decomposition is unfortunate and a bit misleading. A
chaos decomposition is simply an orthonormal expansion in the Hilbert spaceL2(S 0) of quadratic integrable functions defined on (S 0;B(S 0); �), and although
it might seem chaotic in the non-mathematical sense of the word, such a decom-
position gives a very firm grip on the probability space under consideration. The
classical Wiener chaos decomposition, cf. Wiener (1938), can be constructed via the
following commuting diagram L2(S 0) S

// S:Ln2N L̂2(T n) U 99
s

s
s

s
s

s
s

s
s

s
s

V=�n2NIn OO

(1.10)

The horizontal part of the diagram (1.10) consists of the so-called S-transform
from L2(S 0) to a Hilbert space S of non-linear, complex valued functionals de-
fined on S , cf. Hida, Kuo, Potthoff & Streit (1993). The S-transform is the linear
operator defined by normalizing the Fourier transform with the characteristic func-
tional, 7 i.e.(S�)(�) = C(�)�1 ZS 0 e{h!;�iS 0�(!) d�(!); � 2 L2(S 0); � 2 S :
The key to the analysis is, thatS is a reproducing kernel Hilbert space, cf. Aronszajn
(1950), with reproducing kernelK(�; �) = C(�)�1C(� � �)C(��)�1: (1.11)

The non-trivial part of this analysis is to find the Hilbert space in the lower left
corner of (1.10) together with the isomorphism U , and to describe the isomor-
phism V = S�1 Æ U . In the Gaussian case the well known isomorphism V from
the quadratic integrable, symmetric functions to L2(S 0) via the multiple Wiener-
integrals, cf. Itô (1951), is recovered.

Let I = (NN0 )
 be the set of non-negative integer sequences a = (an)n2N with
only finitely many non-zero coordinates. If the functions �n 2 S , n 2 N, constitute
an orthonormal basis for L2(T ), then an orthonormal basis for �n2NL̂2(T ) can be
constructed via the tensor structure, and hence be mapped to an orthonormal basis
for L2(S 0). The resulting basis for L2(S 0) consists of the polynomial functionals�a, a 2 I, given by�a = Yn2N(an!)� 12 Han� h�; �niS 0 �; a = (an)n2N 2 I;

7The S-transform can also be defined via translation on the !-space, i.e. by (S�)(�) = E� �(�+�), and thus connect to Gâteaux derivatives and Malliavin calculus, cf. Hida et al. (1993, chapter 5).
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where Hn(x) denotes the n’th Hermite polynomial8 defined by H0(x) = 1 andHn(x) = (�1)n ex22 dndxn e�x22 = [n2 ℄Xk=0(�12)k n!k!(n� 2k)! xn�2k; n 2 N :
Stochastic distributions

Having described the chaos decomposition we can proceed to define the Kon-
dratiev space of stochastic distributions as done in Holden et al. (1996, chapter
2.3). For � 2 [0; 1℄ the Kondratiev spaces (S)� and (S)�� of stochastic test functions
respectively stochastic distributions are defined by(S)� = �� =Xa2I
a�a �� k�k�;k <1 for all k 2 N	;(S)�� = �� =Xa2I
a�a �� k�k��;�q <1 for some q 2 N	;
where the norms k�k�;k, k�k��;�q for � =Pa2I 
a�a are defined byk�k2�;k =Xa2I 
2aYn2N(an!)� (2n)k an ; k�k��;�q =Xa2I 
2aYn2N(an!)�� (2n)�q an :
Whereas the elements of (S)� converge in L2(S 0), the elements of (S)�� are only
defined as formal sums. The space (S)�� can be interpreted as the dual space of(S)� via the duality h ; �i(S)�� =Xa2I 
 a � 
�a ;
given  = Pa2I 
 a �a 2 (S)��, � =Pa2I 
�a �a 2 (S)�, and we have the following
Sobolev scale of smooth respectively generalized random variables,(S)1 � (S)� � (S)0 � L2(S ) � (S)�0 � (S)�� � (S)�1:
There are quite a few constructions of Gel’fand triplets for the Hilbert space L2(S 0)
in the literature. Especially the Hida spaces of test functions and distributions, cf.

Hida et al. (1993, chapter 4), are widely used. See also Watanabe (1987) for the
definition of other Gel’fand triplets and their application in Malliavin calculus. I
have not been explicitly concerned with these spaces in my thesis, and will there-
fore not dwell further on this issue. However, it should be mentioned that the
space (S)�0 contains white noise. If the Brownian sheet B(t) is constructed as theL2(S 0)-limit B(t) = 
�; �[0;t℄�S 0 =Xn2N 
�[0;t℄; �n�L2(T ) �"n 2 L2(S 0);

8There exist different definitions of the Hermite polynomials in the litterature. We follow the
definition used in Holden et al. (1996).
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where �A is the indicator function for the set A, and "n is the multi index which
has a one on the n’th coordinate and zeros elsewhere, then the white noise processW (t) can be defined via formal differentiation w.r.t. the parameter t 2 T ,9 i.e.W (t) = ddtB(t) =Xn2N ddt 
�[0;t℄; �n�L2(T ) �"n =Xn2N �n(t) �"n 2 (S)�0: (1.12)

Wick product

For each � 2 [0; 1℄ the Kondratiev spaces constitutes a Gel’fand triplet for the
Hilbert space L2(S 0). Similarly, Gel’fand triplets for the two other corners of the
diagram (1.10) can be constructed and the isomorphisms S, U , V be extended.
In first constructing the Gel’fand triplet for the upper left corner of (1.10) we
have in fact departed from the methodical correct way of proceeding. As basis
for the construction lies the parameter space T and the characteristic functionalC(�). Given these objects the right corner of (1.10) is defined via the known re-
producing kernel (1.11), and the lower left corner and the isomorphism U should
be found. Thereafter, the lower left corner of the diagram hopefully can be con-
structed via L2-spaces over T , and if so, then Sobolev spaces for these L2-spaces
can be constructed and mapped to Sobolev spaces for L2(S 0) via the isomorphismV = S�1 Æ U , cf. the analysis done in Itô & Kubo (1988). Suppose such a con-
struction has been done. Since the extended isomorphism S is injective, the Wick
product � �  of the generalized random variables � and  , and the Wick versionf � of an analytic function f can then be defined by the equationsS(� �  ) = (S�) � (S ); Sf �(�) = f Æ (S�): (1.13)

In the Gaussian case it is possible to show, that the Wick product satisfies the
following formal rule of multiplication,�Xa2I 
 a �a� � �Xa2I 
�a �a� =Xa2I � Xa +a�=a�Yn2N an!a n ! a�n!� 12 
 a 
�a���a; (1.14)

and that the Kondratiev spaces (S)1 and (S)�1 are closed w.r.t. Wick multiplication,
cf. Holden et al. (1996, chapter 2.4). It easily follows from the defining equation
(1.13), that the Wick product satisfy the usual algebraic properties of a product.
However due to the functional analytic definition, the Wick product is very difficult
to grasp on an intuitive level. In section 1.2.3 we will discuss some more properties
of the Wick product.

Extension to Lévy processes

The methodology described above should in principle also work for general Lévy
processes. All that has to be done, is to replace the Gaussian characteristic func-

9This derivation can be made precise in several ways, e.g. W (t) = ddtB(t) w.r.t. the topology on(S)�1 described in Holden et al. (1996, chapter 2.8).
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tional (1.9) with the characteristic functional for the Lévy process under consider-
ation and complete the diagram (1.10). This program have been implemented for
the Poisson process in Itô (1988), Itô & Kubo (1988). In paper III of this thesis,
Markussen (2001a), the diagram corresponding to (1.10) is found for the com-
pound Poisson process with logarithmic distributed jumps, i.e. the Lévy process
with negative binomial distributed marginals. This process is meant as a generic
example of a Lévy process, and was chosen for two reasons. Firstly, the negative
binomial process is a compound Poisson process with bounded intensity and in-
teger valued jump heights and thus a rather benign Lévy process. Secondly, the
orthogonal polynomials w.r.t. the negative binomial distribution, i.e. the Meixner
polynomials, are well known. The analysis of the negative binomial process was
thus likely to be successful, which it indeed also were. However, the Meixner
polynomials turned out not to play any role in the presented analysis. The proofs
in Markussen (2001a) probably easily generalize to any given compound Poisson
process. Three things obviously remain to be done in the future. Firstly, the chaos
decomposition should be found for general Lévy processes, especially in the math-
ematical interesting case where the Lévy measure has infinite mass. Secondly, the
corresponding Sobolev spaces and Wick product should be found. Thirdly, the
resulting Wick calculus should be investigated.

I would like to mention the following papers. Chaos decomposition and Malli-
avin calculus for Poisson processes is studied in Privault (1994), Privault (1996),
Dermoune (1995). A compound Poisson processes indexed by the set T and with
jumps belonging to the set N � R is in a natural correspondence with a Pois-
son process indexed by the set T � N . This correspondence is used in Lytvynov,
Rebenko & Shchepan’uk (1997), Denis (2000) to discuss stochastic calculus for
compound Poisson processes. In Kondratiev, Silva & Streit (1996) the biorthog-
onal Appell systems is used as the basis for non-Gaussian probability spaces, and
the resulting stochastic calculus is investigated. For a general reference on Lévy
processes see Sato (1999).

1.2.2 Solving Wick type SPDEs

Let us consider the stochastic pressure equation (1.2) once more. The Wick version
of this equation arises by replacing the product with a Wick product. For a fixed
instant of time we thus get the equation(

div
�k(x) � rp(x)� = �f(x); x 2 D;p(x) = 0; x 2 �D; (1.15)

where D � Rd is the wet region, and where the unknown permeability k(x) is
replaced by the singular positive noise process,k(x) = exp� �W (x)� 2 (S)�1; (1.16)

cf. Holden et al. (1996, chapter 4.6). The pressure p(x), the source rate f(x), and
the permeability k(x) are stochastic distributions, whence there exists coefficient
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functions 
pa; 
fa; 
ka : Rd ! R, a 2 I, such thatp(x) =Xa2I 
pa(x) �a; f(x) =Xa2I 
fa(x) �a; k(x) =Xa2I 
ka(x) �a: (1.17)

The coefficient functions 
ka(x) are differentiable w.r.t. x 2 Rd . Suppose the coef-
ficient functions 
fa(x) are Hölder continuous. If the chaos expansions (1.17) are
inserted in the SPDE (1.15), the partial derivations and the sum over a 2 I are
interchanged, the formal rule (1.14) for the Wick product is used, and the coef-
ficients of the resulting chaos expansions are compared, then we get an infinite
dimensional system of coupled PDEs10 in the functions 
pa(x), a 2 I. Moreover it
can be shown11, cf. Holden et al. (1996, theorem 4.6.3), that there exist a unique
solution (
pa)a2I to this system of PDEs, and that the stochastic distribution processp(x) =Pa2I 
pa(x) is the unique (S)�1-valued solution to (1.15).

Two reasons to use the Wick product

The previous example illustrates two favourable properties of the Wick product.
Firstly, many multiplicative or non-linear SPDEs are well-defined in their Wick
version since (S)�1 is closed w.r.t. Wick multiplication. Secondly, Wick type SPDEs
are in principle easy to solve. The second property is due to the fact that a Wick
type SPDE can be separated into a stochastic part and a analytic part, and hence
posed as a system of deterministic PDEs in a straightforward manor. This system
of PDEs can then e.g. be solved numerically, cf. Theting (2000).

This technique does not work for Itô type SPDEs. For the sake of argument
suppose the pressure equation (1.15) was well-defined without the Wick prod-
uct but still with the permeability k(x) given by (1.16). If this SPDE were to be
transformed into a system of deterministic PDEs we would use the usual product
instead of the Wick product after the partial derivations and the sum over a 2 I
were interchanged. But comparing the usual product of two basis random vari-
ables �a and �b,�a �b = X
2I:
n�an^bn �Yn2N pan!bn!(an + bn � 2
n)!
n!(an � 
n)!(bn � 
n)! ��a+b�2
; a; b 2 I;
with the Wick counterpart,�a ��b = �Yn2N (an + bn)!an! bn! � 12 �a+b; a; b 2 I;

10Usually this system will not be entangled, and can be solved recursively w.r.t. the multi indicesa 2 I of the coefficient functions.
11Technically this is done via the so-called Hermite transform, cf. Holden et al. (1996, chapter

2.6), which converts stochastic distributions into holomorphic functions of infinitely many vari-
ables.
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it is clear that the resulting system of PDEs would be very entangled. Moreover, us-
ing formal calculations for the usual product can easily lead to undefined objects,
e.g. the formal square of singular white noise (1.12) is given byW (t)2 = Xn;m2N �n(t) �m(t) �"n�"m = Xn;m2N �n(t) �m(t) �"n ��"m| {z }=W (t)�22(S)�0 +Xn2N �n(t)2| {z }=1
and hence not well-defined.

1.2.3 Properties of the Wick product

The analytic properties of the Wick product are reviewed in this subsection. These
properties will qualify the Wick product to be interpreted as a renormalized prod-
uct, cf. the terminology from physics, or as a compensated product.

Connection to the ordinary product

Let X; Y 2 L2(S 0) be two quadratic integrable random variables. The ordinary
product X � Y 2 L1(S 0) is defined pointwise w.r.t. the !-space, i.e.(X � Y )(!) = X(!) � Y (!); ! 2 S 0;
whence we also will refer to the ordinary product as the pointwise product. The
Wick productX�Y is not necessarily an ordinary random variable, but is in general
a Hida distribution. Moreover, the Wick product X � Y is non-local in the !-
space, i.e. there are in general not relations between (X � Y )(!) and the pairX(!), Y (!) for given fixed ! 2 S 0. I believe that this non-locality is the main
culprit for the difficulty in interpreting the Wick product. The null-rule thus only
holds for the Wick product in the weak sense that X � Y = 0 if either X or Y
equals zero as elements in L2(S 0). However, the pointwise product and the Wick
product coincides if the factors are analytically independent, i.e. if there exists a
partition fA;Bg of S 0 such that the functions X and Y are constant on the setB respectively on the set A. Especially X � Y = X � Y if one of the factors is
deterministic. Analytic independence implies stochastic independence, but is a
much stronger requirement.

Generalized expectation and commutativity properties

The notion of expectation can be generalized to Kondratiev distributions via the
formal calculationE�X =Xa2I 
Xa E� �a = 
X0 = (SX)(0); X =Xa2I 
Xa �a 2 (S)�1;
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where �0 = 1 and E� �a = 0 for every a 2 I n f0g have been used. It is easily
seen that the generalized expectation is indeed a generalization of the ordinary
expectation. Given X; Y 2 (S)�1 and an analytic function f this definition yields,E� �X � Y � = �S(X � Y )�(0) = (SX)(0) � (SY )(0) = E�X � E� Y;E� f �(X) = �Sf �(X)�(0) = f�(SX)(0)� = f(E�X);
i.e. the Wick product and Wick versions of analytic functions commutes with the
expectation operator. Moreover, if a generalized notion of martingale is intro-
duced, then it can be shown, that the Wick product of two generalized martingales
is again a generalized martingale, cf. Benth & Potthoff (1996).

Connection to Skorohod calculus and commutativity properties

An important property of the Wick calculus is the connection to Skorohod calculus.
If the stochastic process u(t) 2 L2(S 0), t 2 R, is Skorohod integrable,12 thenZR u(t) ÆB(t) = ZR u(t) �W (t) dt; (1.18)

where Æ(u) = R u(t) ÆB(t) denotes the Skorohod integral, and W (t) = ddtB(t) is
white noise. Moreover, Itô calculus with ordinary multiplication is equivalent to
ordinary calculus with Wick multiplication, cf. Holden et al. (1996, chapter 2.5).
If F 2 L2(S 0), u(t) 2 L2(S 0), t 2 R, the stochastic processes u, F � u, F � u all
are Skorohod integrable, and F is Malliavin differentiable with derivative DF =(Dt F )t2T , thenÆ(F � u) = F Æ(u)� ZRDt F u(t) dt; Æ(F � u) = F � Æ(u);
cf. Nualart (1995, p. 40) respectively Holden et al. (1996, corollary 2.5.12), i.e.

the Wick product also commute with the Skorohod integral.

Preservation of positivity

A Kondratiev distribution X 2 (S)�1 is called positive if hX; �i(S)�1 � 0 for test
functions � 2 (S)1 that are positive almost surely. This concept naturally general-
ize the notion of positivity, and to some extent the Wick product of two positive
Kondratiev distributions is again positive, cf. Holden et al. (1996, corollary 2.11.7).
See also Benth (1997), where the problem of positivity of the stochastic heat equa-
tion is analysed.

12The Skorohod integral is an extension of the classical Itô integral to non-adapted integrands.
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1.2.4 To Wick or not to Wick

The basic question is now whether the Wick product should be used instead of the
ordinary product in stochastic equations, or rephrasing Shakespeare,

To Wick, or not to Wick, – that is the question.13

We have already listed several of the properties of the Wick product, which is
preferable from a mathematical point since it behaves nicely in almost every sense.
But whether Wick type equations gives the right mathematical models for real life
phenomena is another question. This question is also addressed in Holden et al.
(1996), where two different SDEs are compared in their ordinary respectively
Wick version. In this section we will comment on these examples and argue that it
is possible to choose between the ordinary and the Wick versions based on careful
considerations of the associated interpretations.

Revisiting the stochastic pressure equation

In the first example, the stochastic pressure equation at an instant of time is con-
sidered for a one-dimensional model. Thus imagine a long, thin, porous cylinder
filled with a fluid. Suppose that the pressure and the outward flux of the fluid at
the left end point is equal to zero respectively equal to a > 0, and that no fluid is
injected into the cylinder. If the unknown permeability k(x), x � 0, is replaced by
smoothed positive noise, i.e.k(x) = exp� �W�(x)� = exp �W�(x)� 12 k�k2L2(R) �; (1.19)

where W�(x) = h�; �(� � x)iS 0 , � 2 S (R), is smoothed white noise, then the pres-
sure p(x) at the point x > 0 can be modeled by the SDEddx�k(x) ddxp(x)� = 0; x > 0; p(0) = 0; k(0) p0(0) = a: (1.20)

The question is whether the quantity k(x) ddxp(x) should be interpreted as the or-
dinary product k(x) � ddxp(x) or as the Wick product k(x) � ddxp(x). The pressure
equation can be solved pointwise in ! 2 S 0 in both cases, cf. Holden et al. (1996,
chapter 3.5), and the mean behaviors of the solutions are given byE� �pordinary(x)� = a x � exp � k�k2L2(R) �; E� �pWi
k(x)� = a x:
The mean behavior of the Wick type solution solve the equation (1.20) with the
stochastic coefficient k(x) replaced by its mean value E� k(x) = exp(E�W�(x)) =1. This common feature of Wick type equations is due to the commutativity prop-
erties of the Wick product. The mean behavior of pordinary(x) contain the factorexp(k�k22), which can be interpreted as the effect of a non-constant permeability. In

13William Shakespeare, 1564–1616. Hamlet’s monologue, act 3, scene 1: “To be, or not to be, –
that is the question”.
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order to answer the question of which model should be preferred the following ob-
servation can be made. The unknown permeability was modelled by the stochastic
process (1.19) because of some qualitative characteristics of this process, and we
do not believe this actually gives a precise description of the microscopic features
of the cylinder. The additional factor exp(k�k22) exactly depend on the microscopic
behavior of the process (1.19), and is thus undesirable from a modeling point of
view, whence the Wick type equation is to be preferred. Moreover, the Wick type
equation has better stability and variance properties as demonstrated in Holden
et al. (1996).

Population growth in a stochastic, crowded environment

The second example consists of stochastic versions of the classical Verhulst model
for population growth in a crowded environment. Thus let X(t) denote the size
at time t > 0 of a population living in a environment with carrying capacity K.
Assume that the relative growth rate is proportional to the free life space K �X(t) with proportionality factor given by r + aW (t), i.e. the white noise models
unpredictable, irregular changes in the environment. If the population size at time
zero equals x0, then X(t) can be modeled by the SDEX(0) = x0; dX(t)dt = X(t) �K �X(t)� � �r + aW (t)�: (1.21)

This equation is a Itô type SDE, whence the product of the factors X(t) (K�X(t))
and r+aW (t) should be a Wick product, cf. the connection between Wick calculus
and Skorohod integration given in equation (1.18). The question is whether the
factor X(t) (K � X(t)) should be interpreted as the ordinary pointwise productX(t) � (K �X(t)) or as the Wick product X(t) � (K �X(t)). Holden et al. (1996,
p. 111) states,

We emphasize that there is no reason to assume a priori that the pointwise

product X(t) � (K � X(t)) is better than the Wick product X(t) � (K �X(t)).14

This is however not the case. In the Verhulst model the factor X(t)(K � X(t)) is
constructed in order to model two features. The growth should be proportional
to the population size as well as to the free life space. This should also be the
case in a stochastic environment, whence the pointwise product a priori is the
right interpretation. If the Wick product is used instead, then the interpretation
of the Verhulst model disappears completely, and the resulting model indeed fea-
tures a very strange behavior. As observed in Holden et al. (1996, p. 117) the
solution XWi
k(t) to the Wick version of (1.21) with 0 < x0 < K may overshoot
the carrying capacity K,15 whence the stochastic process XWi
k(t) also must be

14The notation have been changed slightly.
15This feature is illustrated by some simulations, cf. Holden et al. (1996, p. 116).
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non-Markovian.16 These features are not unreasonable a priori. However, the so-
lution XWi
k(t) may also undershoot the lower level of a population size equal to
zero, i.e. there is positive probability of a negative population size. This directly
disqualifying feature of the Wick interpretation is due to the loss of the Verhulst
interpretation, i.e. X(!0; t0) = 0 does not imply X(!0; t0) � (K �X(!0; t0)) = 0.

1.2.5 Statistical inference for Wick type SPDEs

In this section we give a brief review of paper IV of this thesis, Markussen (2001c).
This paper contains a suggestion on how to simulate an approximative pseudo-
likelihood given an observation in discrete points in time and space of a parame-
terized Wick type SPDE model. The proposed procedure to compute the pseudo-
likelihood for the model parameter � 2 � is as follows. The coefficient functions in
the chaos expansion of the SPDE corresponding to the parameter � can be found
recursively by solving deterministic PDEs, e.g. numerically, as explained in section
1.2.2. In order to proceed further only finitely many of the coefficient functions
are determined, and the used SPDE model is approximated by the correspond-
ing truncation of the chaos expansion. This of course introduces bias, and the
approximation should somehow take into account the particular features of the
model. The approximative model now consists of an observation of finitely many
random variables with finite chaos expansions, whence Markussen (2001c) pro-
poses to use the formulae for the Lebesgue densities of these random variables
based on the integration by parts setting from Malliavin calculus to simulate a
pseudo-likelihood. However, the employment of the integration by parts formula
is numerically demanding as well as instable, and the proposed procedure is prob-
ably of little usefulness.

Choosing a good basis

Despite the disadvantages of the suggestion in Markussen (2001c), we will like
to comment on how sensible truncations of the chaos expansion for non-linear
SPDEs could be made. Instead of using the Hermite functions, cf. Holden et al.
(1996, p. 18), as the orthonormal basis for L2(T ), it is often possible to chose a
basis �n 2 S (T ), n 2 N , which relates to the SPDE under consideration. If we for
instance are analyzing the non-linear cable equation (1.4), then the orthonormal
basis consisting of the eigenfunctions for the linear part would have good proper-
ties, and the corresponding misspecification be less gross. Regarding the question
for which multi indices a 2 I the coefficient functions should be found see e.g. the
discussion in Theting (2000).

16The process XWi
k(t) is continuous, and if it also were strong Markov, then an overshoot of
the carrying capacity would be impossible. Observe that non-linear Wick type equations typically
are non-Markovian due to the non-locality of the Wick product in the !-space.
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Moment estimators

Besides the final suggestion in Markussen (2001c) to impose measurement errors
on the observations in order to simulate the pseudo-likelihood more easily, we will
point out an even easier calibration method for Wick type SPDEs. Since the Wick
product commute with the expectation operator, cf. section 1.2.3, it is often pos-
sible to show, that the expectation of the solution of a Wick type SPDE solve the
corresponding PDE, where the stochastic coefficients are replaced by their expec-
tations. Knowing the expectation of the solution will often give the possibility of
employing some kind of moment estimators.
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Abstract

We study the likelihood function for a finite dimensional parameter in a misspeci-
fied Gaussian time series model. If the misspecification vanishes at rate

pn, then
a uniform version of the local asymptotic normality property is proved under mild
regularity conditions formulated in terms of multivariate Lp-norms. Especially,
time series which either are close to deterministic processes, have long range de-
pendence or both properties are included. As examples an approximative likeli-
hood for a stochastic partial differential equation observed at discrete points in
time and space, and a multivariate time series with long range dependence, are
presented. The method of proof relies on standard inequalities and the interplay
between Schatten p-norms of Toeplitz matrices and Lp-norms of matrix valued
functions.
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I.1 Introduction

This paper presents a unified treatment on the asymptotic properties of the like-
lihood function for a finite dimensional parameter in a sequence of possible mis-
specified multivariate Gaussian time series models given by their spectral densi-
ties. The motivation for this study stems from a problem concerning parameter
estimation given observations at discrete points in time and space of an linear
stochastic partial differential equation. Such an observation will have a repre-
sentation as an infinite dimensional state space model, and in practice it will be
convenient to approximate this representation by a finite dimensional model. In
order to achieve consistent and asymptotically efficient estimators the dimension
of this approximation should increase, i.e. the misspecification should decrease,
as the number of observations increases. For a general introduction to time series
and spectral analysis see Brockwell & Davis (1991).

We use standard inequalities on multivariate Lp-norms to prove uniform con-
vergence of the log likelihood function to its mean value, and a uniform version
of the local asymptotic normality property at rate

pn. As a consequence of this,
asymptotic normality and efficiency of the corresponding maximum likelihood es-
timator follows. The needed regularity conditions, which are formulated in terms
of Lp-norms on the spectral densities, cover spectral densities with pole’s, i.e. time
series with long range dependence, and zero’s, i.e. time series close to determin-
istic processes. If a model without misspecification is used, then the regularity
conditions specializes to very general conditions on the spectral densities. This
paper strengthen earlier result for multivariate Gaussian time series, see e.g. Dun-
smuir & Hannan (1976), and for long range depend time series, see e.g. Dahlhaus
(1989). The required regularity conditions are weakened and an stronger conclu-
sion is obtained in terms of the local asymptotic normality property.

This paper is organized as follows. In section I.2 we describe the multivari-
ate Lp-norms and the Schatten matrix p-norms, which plays a crucial role in this
paper. Moreover we present and discuss the regularity conditions, state the main
theorem, and two examples are considered. The proof of the main theorem is
given in section I.3, and in the appendix we prove results connecting Lp-norms of
functions, p-norms of Toeplitz matrices and their inverses, Fejér approximations
of functions, and the approximation of the product of Toeplitz matrices by the
Toeplitz matrix of the product.

I.2 Main result and examples

First we will introduce some notation. In the remaining of this paper let b 2 N be
a fixed dimension, and letM n = M n(C b�b) ' C nb�nb ; n 2 N [ f1g;
be the set of n-dimensional matrices with C b�b -valued entries. Let In 2 M n , n 2 N ,
denote the identity matrices, and given a matrixA 2 M n letA� denote the complex

(I.2)
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conjugate transposed matrix.

Definition I.1 The singular values of A 2 M n are the eigenvalues of the positive
semi definite matrix jAj = (A�A)1=2. The Schatten p-norm kAkp, p 2 [1;1℄, is thelp-norm of the singular values of A. The Lp-norm kfkp, p 2 [1;1℄, of a matrix
valued function f : (�12 ; 12 ℄! M n
is the usual Lp-norm of the real function kf(�)kp.

The space Lp of matrix valued functions on (�12 ; 12 ℄ with finite Lp-norm thus
generalizes the usual Lp-space of complex valued functions. By periodic extension
the functions in Lp will be considered as defined on the whole of R. For f 2 L1 the
Fourier coefficient matrices f̂(k) 2 M 1 , k 2 Z, and the Toeplitz matrices Tn(f) 2M n , n 2 N , are given byf̂(k) = Z exp(�2�ikx)f(x) dx; Tn(f) = �f̂(i� j)�i;j=1;::: ;n;
where, as everywhere else unless explicitly stated, the integral is a Lebesgue inte-
gral over (�12 ; 12 ℄. Denote by Lp+ the subset of functions that are positive definite
almost everywhere. If f 2 L1+, then the Toeplitz matrix Tn(f) is positive definite
and can be interpreted as a covariance matrix. This correspondence between co-
variance matrices and matrix valued functions will be essential for the analysis of
the likelihood function for a stationary Gaussian time series given below.

In our analysis we will separate the data generating mechanism from the sta-
tistical model. Thus let X1; X2; : : : be a stationary b-dimensional Gaussian time
series with spectral density ' 2 L1+, i.e.Xn = 0B�X1

...Xn1CA d� Nnb�0; Tn(')�:
Let � � Rd be a d-dimensional parameter region, and assume that we for eachn 2 N have a statistical model given by a family 'n;�, � 2 �, of b-dimensional
spectral densities. The log likelihood function ln(�) given an observation of Xn ,
and the associated log likelihood ratio �n(�) w.r.t. some fixed parameter �0 2 �,
then are given byln(�) = �12 log detTn('n;�)� 12 tr �Tn('n;�)�1XnX�n�; �n(�) = ln(�)� ln(�0):
Let B(�; �) = f� 2 � : j� � �j � �g be the ball with center � 2 � and radius � > 0,
and consider the following regularity conditions.

(I.3)



26 Paper I. Convergence of likelihood functions for Gaussian time series

Assumption I.2 The parameter space � is a bounded and convex subset of Rd .
The spectral densities 'n;� are continuously differentiable in L1 as functions of �
with derivatives r'n;� = (�i'n;�)i=1;::: ;d. The Fisher information matrixJ = � limn!1 12 Z tr �'�1n;�0(x)�i'n;�0(x)'�1n;�0(x)�j'n;�0(x)� dx�i;j=1;::: ;d
exists and is positive definite. For every " > 0 the norm

' 12n;�0'�1n;�' 12n;�0 � I1

1
is bounded away from zero uniformly over n 2 N , � 2 � nB(�0; ").

Assumption I.2 consists of a structure condition on the parameter space, and
smoothness respectively identifiability conditions on the parameterization. Only
the structure condition might seem somewhat restrictive, and this condition could
indeed be relaxed in many situation at the cost of additional arguments. In order
to formulate the more technical regularity conditions let p; q; r be fixed numbers
such that

i) p 2 [1;1℄ and q; r 2 (2;1℄,
ii) p�1 + q�1 + r�1 � 12 or p < 2, q =1, 12p�1 + r�1 � 12 ,

The integrability indices p, q, r could be allowed to depend on � 2 �. But in order
to keep the proofs as simple as possible we will refrain from these extensions.

Assumption I.3 The normsk'n;�kp ; k�i'n;�kp ; 

'�1n;�

q ; 

'�1n;��i'n;�

r
are uniformly bounded over n 2 N , � 2 �. For every vanishing sequence �n the
normsk�i'n;� � �i'n;�0k(1�q�1�r�1)�1 ; 

'�1n;��i'n;� � '�1n;�0�i'n;�0

(1�r�1)�1
vanishes uniformly over � 2 B(�0; �n) as n!1.

Assumption I.3 consists of integrability conditions on the spectral densities, and
a uniform strengthening of the smoothness of the parameterization. The technique
used in this paper works best when p�1+q�1+r�1 � 12 , and the following regularity
condition is constructed to encompass that situation.

Assumption I.4 Suppose p�1 + q�1 + r�1 � 12 . The normsn 12 k'� 'n;�0k( 12�q�1)�1
vanish as n!1. There exists � 2 (0; 1) such that the normsjyj�� k'n;� � 'n;�(� � y)k(1�p�1�2q�1)�1 ;jyj�� 

'�1n;��i'n;� � ('�1n;��i'n;�)(� � y)

( 12�p�1�q�1)�1
are uniformly bounded over y 2 (�12 ; 12 ℄, n 2 N , � 2 �.

(I.4)
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Assumption I.4 consists of a rate condition on the approximation of the true
spectral density ' by the sequence 'n;�0, and smoothness conditions on the spectral
densities. Assumption I.4 also allows spectral densities with a zero, i.e. time series
that are close to be deterministic. There is a duality between the steepness of the
pole’s and the zero’s formulated via the requirement p�1+ q�1+ r�1 � 12 . Probably
conditions allowing for p =1, q < 2 could also be constructed.

If p < 2, then more complicated regularity conditions are needed. The most
interestingcase corresponds to long memory processes, i.e. spectral densities with
a pole at zero, and assumption I.5 is constructed to encompass that situation.
However, regularity conditions allowing for a pole away from zero could easily be
constructed by using appropriate replacements for lemma I.15 and lemma I.17 in
section I.4.

Assumption I.5 Suppose p < 2; q =1; 12p�1 + r�1 � 12 . The normsn 12 k'� 'n;�0kp ; n 12 

x�'(x)� 'n;�0(x)�

1
vanish uniformly over x 2 (�12 ; 12 ℄ as n !1. There exists � 2 (0; 1) such that the
norms 

 jxj� 'n;�(x)

1; 

 jxj� 12 '�1n;�(x)

1
are uniformly bounded over x 2 (�12 ; 12 ℄, n 2 N , � 2 �. There exists � 2 (0; 1) such
that the normsjyj�� k'n;� � 'n;�(� � y)k1 ; jyj�� 

'�1n;��i'n;� � ('�1n;��i'n;�)(� � y)

2(1�p�1)�1
are uniformly bounded over y 2 (�12 ; 12 ℄, n 2 N , � 2 �.

Assumption I.5 consists of a rate condition on the approximation of the true
spectral density ' by the sequence 'n;�0, further integrability conditions on the
spectral densities, and smoothness conditions on the spectral densities.

We will say that the regularity conditions are fulfilled if assumption I.2 and
assumption I.3 hold, and if assumption I.4 holds when p�1 + q�1 + r�1 � 12 , and
assumption I.5 holds when p < 2. In the classical case, i.e. when the spectral
densities do not depend on n 2 N , these conditions simplifies and are seen to
be more general than the conditions presented in Dahlhaus (1989). A possibly
extension of the regularity conditions would be to allow the parameter region �
and the dimension d to increase with n, and thus include sieve estimation.

Theorem I.6 Suppose that the regularity conditions are fulfilled. Then the maxi-

mum likelihood estimator �̂n = argmax�2� ln(�) is a
pn-consistent estimator of �0,

and there exists a sequence Gn, n 2 N , of d-dimensional random variables converging

in distribution to Nd(0;J ) such thatE� sup�2B(�0;n�12 �) ���n(�)� �n 12 (� � �0)�Gn � 12n(� � �0)�J (� � �0)����
vanishes for every � > 0 as n!1.

(I.5)
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Remark Theorem I.6 states that the log likelihood ratio �n(�) satisfies a uniform
version of the LAN-condition, whence �̂n especially is asymptotically efficient in
sense of the minimax bound and the convolution property, see Le Cam & Yang
(2000). Moreover if �0 is in the interior of �, then

pn(�̂n � �0) converges in
distribution to Nd(0;J �1).
I.2.1 A stochastic partial differential equation

Let W (t; x) be a standard Brownian sheet, see Walsh (1986), and let X�(t; x),� 2 � � (0;1), be the stationary solution in time t � 0 of the parabolic stochastic
partial differential equation( dX�(t; x) = � �2xX�(t; x) dt + dW (t; x); t > 0; 0 < x < 1;X�(t; 0) = X�(t; 1) = 0; t � 0: (I.1)

We assume X�0(t; x) is observed at the discrete lattice points in time and space
given by t = 1; : : : ; n; x = x1; : : : ; xb; xi = uiv
for some fixed u1; : : : ; ub; v 2 N , u1 < � � � < ub < v, and wish to estimate �0. By
Walsh (1986, p. 324) the stationary solution to (I.1) is given byX�(t; x) = p2 1Xj=1 sin(�jx)Yj;�(t);
where Yj;�(t), j 2 N , are pairwise independent Ornstein-Uhlenbeck processes
given by the stationary solutions to the stochastic differential equationsdYj;�(t) = ��j2 Yj;�(t) dt+ dWj(t):
Now let the time series X�(t), Y�(t), ~Y�(t), t = 1; : : : ; n, and the matrices A, ~A be
given byX�(t) = �X�(t; xi)�i=1;::: ;b;Y�(t) = �Yj;�(t)�j2N; A = �p2 sin(�xij)�i=1;::: ;bj2N ;~Y�(t) = � 1Xk=0 Yj+2vk;�(t)�j=1;::: ;2v; ~A = �p2 sin(�xij)�i=1;::: ;bj=1;::: ;2v:
Since the sinus function is periodic, we find that A = ( ~A ~A � � � ). Moreover, X�(t)
can be represented as a state space model, X�(t) = AY�(t) = ~A ~Y�(t), where the
state space vector Y�(t) is an infinite dimensional first order autoregressive process.
The likelihood function can in principle be calculated via the infinite dimensional

(I.6)
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Kalman filter. In order to do computations we propose to approximate the infinite
dimensional model. The time series Yj;�(t) have spectral density  j;�(x) given by j;�(x) = 12�j2 �1� 2e��j2 
os(2�x) + e�2�j2��1;
whence the time series X�(t) have spectral density '�(x) given by'�(x) = ~A diag

� 1Xk=0  j+2vk;�(x)�j=1;::: ;2v ~A�:
We now approximate the infinite dimensional model by a finite dimensional state
space model plus a white noise term, where the dimension K(n) of the approxi-
mation increases with n. The approximative spectral density 'n;� is given by'n;�(x) = ~A diag

� Xk2N0 :j+2vk<K(n) j+2vk;�(x) + � 2n;j;��j=1;::: ;2v ~A�; n 2 N;
and the white noise variances � 2n;j;� are given by� 2n;j;� = Xk2N0 :j+2vk�K(n) 12�(j + 2vk)2 ; j = 1; : : : ; 2v; n 2 N :
If K(n) increases sufficiently fast with n, then assumption I.4 is satisfied withp = q = r = 1. How fast K(n) should increase is conceived by calculating the
norms k'� � 'n;�k1. Since


 j;� � 12�k2


1 = 1�k2 e��k21� e��k2 ;
and the Lp-norms satisfies the Hölder inequality, cf. section I.3, we see thatk'� � 'n;�k1 � 

 ~A� ~A

1 1Xk=K(n) 1�k2 e��k21� e��k2 :
Thus if e�0K(n)2 = n 12 , i.e. K(n) = q 12�0 logn, then n 12 k'�0 � 'n;�0k1 vanishes asn!1 and assumption I.4 is satisfied.

I.2.2 Multivariate long memory time-series

Let ("t)t2Z be a b-dimensional Gaussian process with spectral density '�0 , where'�(x) = 2��1� � jxj�� I1; '�1� (x)��'�(x) = � 11� � � log j2xj�I1:
(I.7)
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This process has stationary variance I1 and long memory. The family of spectral
densities '�, � 2 � = [12 ; �max℄, �max < 1, satisfies the regularity conditions withp = 12(1 + ��1max); q =1; r = 2(1� p�1)�1; � = 12(1� �max);
and the Fisher information matrix J� at � is given byJ� = Z 120 b� 11� � � log(2x)�2 dx = b�1 + 11� � + 12 1(1� �)2�:
The above model can easily be generalized by allowing the components to have
different scale of long memory. Using ("t)t2Z as a noise process it is now straight-
forward to build long memory processes with e.g. ARMA structure. Thus let(Xt)t2N be a causal time invariant linear filter of ("t)t2Z with transfer function �0 , Xt = 1Xj=0 
�0j"t�j;  �(x) = 1Xj=0 
�je�2�ijx;
where 
� = (
�j)j2N0 , 
�j 2 R~b�b, is a family of coefficients parameterized by � 2� � Rd�1 . If the power transfer functions j �j2 and their inverses all belong toL1+ , are continuous differentiable in L1+ , and satisfies the smoothness condition
formulated in assumption I.3, then theorem I.6 holds for the model given by the
spectral densities  �(x)'�(x) �� (x); (�; �) 2 �� � � Rd :
I.3 Uniform convergence of the likelihood

The purpose of this section is to prove theorem I.6. We first list some properties of
the Schatten p-norms, see e.g. Bhatia (1997), the Lp-norms and the interplay with
Toeplitz matrices. The p-norms are matrix norms, which decrease in p and satisfy
the Hölder inequality, and the 1-norm bounds the trace, i.e.kAkp p>q� kAkq ; kABkp p�1=q�1+r�1� kAkq kBkr ; jtrAj � kAk1 :
Moreover the 2-norm coincides with the Frobenius norm, and the 1-norm coin-
cides with the operator norm, i.e.kAk22 = tr(A�A); kAk1 = max� kAhkl2 �� h 2 l2(C ) : khkl2 = 1	:
Since the p-norms satisfy the Hölder inequality, the Lp-norms also satisfy the
Hölder inequality. If f 2 L1+, f�1 2 Lp+ and g 2 Lp, then

Tn(f)�1

p � 

Tn(f�1)

p ; n�p�1 kTn(g)kp � kgkp ;

(I.8)
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see lemma I.12 and lemma I.16 in section I.4 below. In the rest of this section we
will refer to the inequalities stated above as the standard inequalities.

Now consider the spectral densities 'n;� introduced in section I.2. For ease of
notation we will skip the index n of the spectral densities when they appear in
Toeplitz matrices, e.g. we abbreviate Tn('n;�) by Tn('�) and so forth. In section
I.4 we prove lemma I.8, which states that the product of Toeplitz matrices can be
approximated by the Toeplitz matrix of the product.

Lemma I.8 If the regularity conditions are fulfilled, thensup�2� n�1 

Tn('�)�1Tn('�0)� Tn('�1� '�0)

1 = O(n� �2+4� logn);sup�2� n� 12 

Tn('�)�1Tn(�i'�)� Tn('�1� �i'�)

2 = O(n� �1+2( 12�q�1)�1�plogn):
Before we start the analysis of the likelihood function, we will introduce some

notation. The log likelihood ratio �n(�) w.r.t. the unknown parameter �0 is given
by �n(�) = ln(�)� ln(�0) = vn(�) + wn(�) + Zn(�); (I.2)

where the functions vn(�), wn(�), and the mean zero stochastic process Zn(�) are
defined byvn(�) = 12 log det �Tn('�)�1Tn('�0)�+ 12 tr �Tn('�)�1Tn('� � '�0)�;wn(�) = 12 tr ��Tn('�0)�1 � Tn('�)�1�Tn('� '�0)�;Zn(�) = 12 tr ��Tn('�0)�1 � Tn('�)�1��XnX�n � Tn(')��:
Moreover, let the function ~�n(�) be defined by~�n(�) = 12 Z � log det �'�1n;�(x)'n;�0(x)�+ tr �'�1n;�(x)�'n;�(x)� 'n;�0(x)��� dx:
The proof of theorem I.6 is divided into the following three steps

i) consistency of the maximum likelihood estimator �̂n,

ii)
pn-rate of convergence of �̂n,

iii) the uniform version of the LAN-property.

In order to find the proper rate of convergence, cf. step (ii), we will use the fol-
lowing lemma formulated in terms of the decomposition (I.2) of the log likelihood
ratio introduced above.

(I.9)
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Lemma I.9 If �̂n is consistent for �0, nÆ(�̂n � �0) is tight for some Æ � 0 and there

exist constants " > 0, 
1 > 0, 
2 <1 such thatlim supn!1 sup�2B(�0;�n)nf�0g j� � �0j�2 n�1vn(�) < �
1;lim supn!1 E� sup�2B(�0;n�Æ�) n2Æ+"�1�wn(�) + Zn(�)�� < 
2 � (I.3)

for every vanishing sequence �n and every � > 0, then nÆ+"(�̂n � �0) is tight.

Proof This proof follows van der Vaart & Wellner (1996, theorem 3.2.5). GivenM 2 N the probability P�nÆ+"j�̂n � �0j > 2M� is bounded byP�j�̂n � �0j > �n�+ P�nÆj�̂n � �0j > ��+ Xj>M :n�Æ�"2j��n^n�Æ�P��̂n 2 Sjn�;
where the shells Sjn are given by Sjn = B(�0; n�Æ�"2j) nB(�0; n�Æ�"2j�1). The first
term vanishes if �n decreases sufficiently slowly, and the second term vanishes as�!1. If n�Æ�"2j � �n ^ n�Æ�, then P(�̂n 2 Sjn) is bounded byP� sup�2Sjn n2Æ+"�1�wn(�) + Zn(�)� � � sup�2Sjn n2Æ+"�1vn(�) > 
1n�"22j�2�;
and hence by 
2
�11 2�j+2 according to Markov’s inequality. The third term is thus
bounded by 
2
�11 2�M+2 and vanishes as M ! 1. It follows that nÆ+"(�̂n � �0) is
tight. �

The first step of theorem I.6 is contained in the following theorem.

Theorem I.10 Suppose the regularity conditions are fulfilled. Then the maximum

likelihood estimator �̂n = argmax�2� ln(�) is consistent for �0 as n!1.

Proof We first analyze the function ~�n(�). The function g : (�1;1) ! R defined
by g(x) = x� log(x+ 1) is non-negative, strictly convex, has the unique minimumg(0) = 0, and satisfies g(x) < g(�x) for x 2 (0; 1). Thus if 0 � �1(x) � � � � � �b(x)
denote the eigenvalues of the positive semi definite matrix' 12n;�0(x)'�1n;�(x)' 12n;�0(x)
for fixed n 2 N and � 2 �, then the Jensen inequality gives�~�n(�) = 12 bXi=1 Z g��i(x)� 1�dx � 12 bXi=1 Z g� j�i(x)� 1j � dx� 12b g�b�1 bXi=1 Z j�i(x)� 1j dx� = 12b g�b�1

' 12n;�0'�1n;�' 12n;�0 � I1

1�:

(I.10)
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Let " > 0 be given. Then we by assumption I.2 have� lim supn!1 sup�:j���0j>" ~�n(�) � 12b g�b�1 lim infn!1 inf�:j���0j>"

' 12n;�0'�1n;�' 12n;�0 � I1

1� > 0;
and since the maximum �n(�̂n) of the log likelihood ratio is non-negative, we have
the inequalityP�j�̂n � �0j > �� � �E ~�n(�̂n)� sup�:j���0j>� ~�n(�) � E �n�1�n(�̂n)� ~�n(�̂n)�� sup�:j���0j>� ~�n(�) :
Thus if for every Æ > 0 the inequalityE �n�1�n(�̂n)� ~�n(�̂n)� � Æ
holds for n sufficiently large, then �̂n converge in probability to �0 as n ! 1.
Using the decomposition (I.2) of the log likelihood ratio, we see that the random
variable n�1�n(�̂n)� ~�n(�̂n) is bounded bysup�2� ��n�1vn(�)� ~�n(�)��+ sup�2� n�1 jwn(�)j+ sup�2� n�1 jZn(�)j : (I.4)

Let �s = �0+s(���0), s 2 [0; 1℄, be the natural parameterization of the line segment
from �0 to �, and use the identities�i log det �Tn('�)�1Tn('�0)� = � tr �Tn('�)�1Tn(�i'�)�;Z �i log det �'�1n;�(x)'n;�0(x)� dx = tr �Tn('�1� �i'�)�
to rewrite the difference n�1vn(�)� ~�n(�) as�12 Z 10 n�1 tr �Tn('�s)�1Tn�(� � �0)�r'�s�� Tn�'�1�s (� � �0)�r'�s��ds+12n�1 tr �Tn('�)�1Tn('� � '�0)� Tn�'�1� ('� � '�0)��:
The first term in (I.4) is thus bounded by12 sup�2� j� � �0j sup�2� maxi=1;::: ;dn� 12 

Tn('�)�1Tn(�i'�)� Tn('�1� �i'�)

2 n� 12 kInk2+12 sup�2� n�1 

Tn('�)�1Tn('�0)� Tn('�1� '�0)

1 ;
and hence vanishes by lemma I.8. The remaining two terms in (I.4) also vanish asn!1 as a consequence of lemma I.11 below. �

Before we state and prove lemma I.11, we introduce some more notation and
technical tools. Firstly, we need maximal inequalities for stochastic processes.

(I.11)
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These are formulated in terms of Orlicz norms. Let  : R+ ! R+ be a given
convex, strictly increasing function with 0 �  (0) < 1, and let  �1 denote the
inverse function of  . Then the Orlicz  -norm of a random variable Y is defined
by kY k = inf �
 > 0 : E (
�1jY j) � 1	:
If  (x) = xp, p � 1, then the Orlicz  -norm coincides with the usual Lp-norm of
random variables. Suppose a stochastic process Y (�), � 2 � � Rd , defined on
a probability space (
;A ;P), and �0 2 � are given. If � = sup�2� j� � �0j is the
radius of � around �0, then a chaining argument gives the maximal inequalityZA sup�2� jY (�)� Y (�0)j dP � � sup�;�2� kY (�)� Y (�)k j� � �j P(A) 1Xj=1 2�j+1 �1�3d2jdP(A)�;

(I.5)A 2 A , cf. Ledoux & Talagrand (1991, theorem 11.2). Below we will use the
exponential function  0 given by 0(x) = 12 exp �x� 13�;  �10 (y) = 13 + log(2y);
and the bound (I.5) with  =  0 specializes to2� sup�;�2� j� � �j�1 kY (�)� Y (�)k 0 P(A)�13 � log �12P(A)�+ d log(12)�: (I.6)

We thus use Schatten p-norms of matrices, Lp-norms of matrix valued functions,
and Orlicz  -norms of random variables. This should however not give rise to
confusion since which norm is used will be clear from the context. Secondly, we
need a further norm inequality for the product of two Toeplitz matrices. In the
remaining of this paper let the functions �� 2 L1, � > �1, be defined by��(x) = jxj� I1:
If f 2 Lp, g 2 L1+, then lemma I.17 gives the boundn� 12 

Tn(g)�1Tn(f)

2 � 

�� 12g�1

1� k�1fk 12(1�p�1)�1 kfk 12p +plogn kfk1 �: (I.7)

Lemma I.11 Suppose the regularity conditions are fulfilled, and let � > 0 be the

constant from assumption I.4 respectively assumption I.5. Given � > 0, a vanishing

sequence �n, and Æ; " � 0 such that " < �(1 + 4�)�1 ^ (12 � r�1), Æ + " � 12 , theni) limn!1 sup�2B(�0;�n) j� � �0j�2 ��n�1vn(�) + 12(� � �0)�J (� � �0)�� = 0;ii) limn!1 sup�2� j� � �0j�1 n� 12 jwn(�)j = 0;iii) lim supn!1 ��1 E� sup�2B(�0;n�Æ�)n2Æ+"�1 jZn(�)j� <1:
(I.12)
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Proof In order to prove (i) we rewrite the function vn(�) as�12 Z 10 Z 10 tr �Tn('�s)�1Tn�(� � �0)�r'�s�Tn('�s)�1Tn�s(� � �0)�r'�su��du ds;
where �s = �0 + s(� � �0). Thus if the matrix Jn is defined byJn = � 12 Z tr �'�1n;�0(x)�i'n;�0(x)'�1n;�0(x)�j'n;�0(x)� dx�i;j=1;::: ;d;
then the quantity4 sup�2B(�0;�n) j� � �0j�2 ��n�1vn(�)� 12(� � �0)�Jn(� � �0)��
is bounded by the supremum over �; � 2 B(�0; �n), i; j = 1; : : : ; d ofn�1 

Tn('�)�1Tn(�i'�)Tn('�)�1Tn(�j'�)� Tn('�1�0 �i'�0'�1�0 �j'�0)

1 : (I.8)

Telescoping this difference via appropriate intermediate terms we see that (I.8) is
bounded byn� 12 

Tn('�)�1Tn(�i'�)� Tn('�1� �i'�)

2 n� 12 

Tn('�)�1Tn(�j'�)

2+ 

'�1n;��i'n;�

r 

'�1n;�

q k�j'n;� � �j'n;�k(1�q�1�r�1)�1+ 

'�1n;��i'n;�

2 n� 12 

Tn('�)�1Tn(�j'�)� Tn('�1� �j'�)

2+ 

'�1n;��i'n;�

r 

'�1n;��j'n;� � '�1n;�0�j'n;�0

(1�r�1)�1+ 

'�1n;��i'n;� � '�1n;�0�i'n;�0

(1�r�1)�1 

'�1n;�0�j'n;�0

r :
The second factor in the first term requires special attention. If p�1+q�1+r�1 � 12 ,
then n� 12 

Tn('�)�1Tn(�j'�)

2 � 

'�1n;�

q k�j'n;�k( 12�q�1)�1 ;
and if p < 2, then n� 12 kTn('�)�1Tn(�j'�)k2 is bounded by

�� 12'�1n;�

1� k�1�j'n;�k(1�p�1)�1 k�j'n;�kp +plogn k�j'n;�k1 �;
cf. inequality (I.7). Using these bounds and lemma I.8 it follows, that (I.8) vanishes
uniformly over �; � 2 B(�0; �n), i; j = 1; : : : ; d as n ! 1. Moreover, the normskJ � Jnk1 vanish as n ! 1 since the entries of the matrix Jn converge to those
of J , and (i) easily follows. In order to prove (ii) we use the identity�iTn('�)�1 = �Tn('�)�1Tn(�i'�)Tn('�)�1

(I.13)
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to rewrite the function wn(�) as12 Z 10 tr �Tn('�s)�1Tn�(� � �0)�r'�s�Tn('�s)�1Tn('� '�0)�ds;
where �s = �0+ s(�� �0). Using the standard inequalities we see that the quantitysup�2� j� � �0j�1 n� 12 jwn(�)j
is bounded by the supremum over � 2 �, i = 1; : : : ; d of12n� 12 

Tn('�)�1Tn(�i'�)� Tn('�1� �i'�)

2 

Tn('�)�1Tn('� '�0)

2+12 

'�1n;��i'n;�

r 

'�1n;�

q n 12 k'� 'n;�0k(1�q�1�r�1)�1 : (I.9)

The second term in (I.9) is immediately seen to vanish as n ! 1. Moreover, ifp�1 + q�1 + r�1 � 12 , then the second factor in the first term is bounded by

'�1n;�

q n 12 k'� 'n;�0k( 12�q�1)�1 ;
and if p < 2, then this factor is bounded by

�� 12'�1n;�

1 �n 14 k�1('� 'n;�0)k 12(1�p�1)�1 n 14 k'� 'n;�0k 12p+plognn 12 k'� 'n;�0k1 �:
The second factor of the first term in (I.9) thus grows at most at logarithmic rate.
Since the first factor decreases at polynomial rate by lemma I.8, the first term thus
also vanishes as n ! 1. Concerning (iii) it follows from the maximal inequality
(I.6), that the quantity ��1 E � sup�2B(�0;n�Æ�)n2Æ+"�1 jZn(�)j �
is bounded by2�13 + log(2) + d log(12)� sup�;�2B(�0;n�Æ�):� 6=� kYn(�; �)k 0 ;
where the random variables Yn(�; �) are given byYn(�; �) = j� � �j�1 nÆ+"�1�Zn(�)� Zn(�)�= 12 tr� j� � �j�1 nÆ+"�1�Tn('�)�1 � Tn('�)�1��XnX�n � Tn(')��:
We thus need a uniform bound on the  0-norms of Yn(�; �). Since  0 is an ex-
ponential function this can be achieved via bounds on the cumulants of Yn(�; �).
The first cumulant, i.e. the mean, of Yn(�; �) is zero, and by the product formula

(I.14)
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for cumulants, see Rosenblatt (1985, theorem 2.2), the k’th cumulant, k � 2, ofYn(�; �) is given by
umk Yn(�; �) = (k � 1)!2 tr h� j� � �j�1 nÆ+"�1�Tn('�)�1 � Tn('�)�1�Tn(')�ki:
Thus if Cn;k is a bound forsup�;�2B(�0;n�Æ�) 

j� � �j�1 nÆ+"�1�Tn('�)�1 � Tn('�)�1�Tn(')

k ;
then the k’th cumulant of Yn(�; �) is bounded by (k�1)!2 Ckn;k. The matrix inside the
preceding k-norm can be rewritten asn�1+Æ+" Z 10 Tn('�s)�1Tn� j� � �j�1 (� � �)�r'�s�nTn('�s)�1Tn('� '�0)+ Z 10 Tn('�s)�1Tn�(�0 � �s)�r'�s+u(�0��s)�du+ Ino ds;
where �s = � + s(� � �). If we decompose this representation according to the
three terms in the curly parenthesis, replace Tn('�s)�1Tn� j� � �j�1 (� � �)�r'�s�
by �Tn('�s)�1Tn� j� � �j�1 (� � �)�r'�s�� Tn�'�1�s j� � �j�1 (� � �)�r'�s��+Tn�'�1�s j� � �j�1 (� � �)�r'�s�
in these three terms, and usek � 2; Æ + " � 12 ; j�s � �0j � n�Æ�;
then we see that Cn;k can be chosen as the supremum over �; � 2 B(�0; n�Æ�),i; j = 1; : : : ; d ofn� 12 

Tn('�)�1Tn(�i'�)� Tn('�1� �i'�)

2 

T ('�)�1Tn('� '�0)

1+ 

'�1n;��i'n;�

r 

'�1n;�

q n 12 k'� 'n;�0k(1�q�1�r�1)�1+� n" n� 12 

Tn('�)�1Tn(�i'�)� Tn('�1� �i'�)

2 n� 12 

Tn('�)�1Tn(�j'�)

1+� n"+r�1� 12 

'�1n;��i'n;�

r n� 12 

Tn('�)�1Tn(�j'�)

( 12�r�1)�1+n� 12 

Tn('�)�1Tn(�i'�)� Tn('�1� �i'�)

2+n� 12+(r^k^3)�1 

'�1n;��i'n;�

r^k^3 :
If we insert the crude bounds

T ('�)�1Tn('� '�0)

1 � 

T ('�)�1Tn('� '�0)

2 ;n� 12 

Tn('�)�1Tn(�j'�)

1 � n� 12 

Tn('�)�1Tn(�j'�)

2 ;n� 12 

Tn('�)�1Tn(�j'�)

( 12�r�1)�1 � n� 12 

Tn('�)�1Tn(�j'�)

2 ;

(I.15)
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use inequality (I.7) and lemma I.8, and" < ��1 + 2(12 � q�1)�1���1; r > 2;
then we see that Cn;2 is bounded away from both zero and infinity, and that Cn;3
vanish as n!1. Moreover since Cn;k = Cn;3 for k � 3, we find thatE 0�C�1n;2 jYn(�; �)j � � e� 132 E �eC�1n;2Yn(�;�) + e�C�1n;2Yn(�;�)�� e� 13 exp� 1Xk=2 j
umk Yn(�; �)jk!Ckn �� exp�� 13 + 14 + 1Xk=3 12k Ckn;3Ckn;2� ���!n!1 exp �� 13 + 14) < 1:
This implies kYn(�; �)k 0 � Cn;2 for n sufficiently large. �

Using lemma I.11 we see that the last two terms in (I.4) vanish as n ! 1,
whence the maximum likelihood estimator �̂n is a consistent estimator of �0. We
now use lemma I.9 to prove, that �̂n is

pn-consistent, i.e. that n 12 (�̂n � �0) is tight.
By lemma I.11 and since the Fisher information matrix J is positive definite, we
see that condition (I.3) is satisfied if " < �(1 + 4�)�1 ^ (12 � r�1) and Æ + " � 12 ,
whence it follows that n 12 (�̂n � �0) is tight.

We proceed to prove the uniform version of the LAN-property. By lemma I.11,sup�2B(�0;n� 12 �) ��vn(�) + wn(�) + 12(� � �0)�J (� � �0)�� ���!n!1 0;
whence it only remains to prove thatE� sup�2B(�0;n� 12 �) ��Zn(�)� n 12 (� � �0)�Gn��� ���!n!1 0 (I.10)

for some sequence Gn = (Gni)i=1;::: ;d of d-dimensional random variables converg-
ing in distribution to Nd(0;J ). Now let Gni be given byGni = 12n� 12 tr �Tn('�1�0 �i'�0)Tn(')�1�XnX�n � Tn(')��:
By the product formula for cumulants the joint cumulant of Gni1 ; : : : ; Gnik is given
by n� k22k X�2Sk tr� kYj=1 Tn('�0�i�(j)'�0)�;
where Sk is the set of permutations of f1; : : : ; kg. For k = 2 use lemma I.18 given
below, and for k � 3 use the standard inequalities, to see that these cumulants
converge to the corresponding cumulants of Nd(0;J ), whereby the stated conver-
gence in distribution follows. The property (I.10) is proved by techniques similar
to those used in the proof of lemma I.11. This concludes the proof of theorem I.6.

(I.16)
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I.4 Matrix approximations and matrix inequalities

In this section we prove the properties of Toeplitz matrices which are used in the
proof of theorem I.6. The first inequality provides an easy method of handling
inverse Toeplitz matrices.

Lemma I.12 If f; f�1 2 L1+, then Tn(f)�1 � Tn(f�1) in the partial ordering of

positive semi definite matrices. Especially kTn(f)�1Akp � kTn(f�1)Akp for everyp 2 [1;1℄ and A 2 M 1 .

Proof The proof follows Shaman (1976, theorem 2.1). Since log det f(x) � kf(x)+f�1(x)k1, it follows that log det f 2 L1. By Hannan (1970, lemma III.5.3) there
thus exist coefficient matrices 'j;  j 2 M 1 such that1Xj=0 k'jk22 <1; 1Xj=0 k jk22 <1;
and for the holomorphic functions g(z) =P1j=0 'jzj, h(z) =P1j=0  jzj defined on
the open unit diskf(x) = limr"1 g(re2�ix)�g(re2�ix); f�1(x) = limr"1 h(re2�ix)�h(re2�ix)
holds for almost all x 2 (�12 ; 12 ℄. SinceI1 = f(x)f�1(x) = limr"1 g(re2�ix)�g(re2�ix)h(re2�ix)�h(re2�ix);
it follows by the maximum modulus principle thatg(z)h(z)� = 1Xj=0 � jXl=0 'j�l �l �zj = I1:
Thus if Bn 2 M n has identity matrices on the diagonal directly below the main
diagonal and 0’s elsewhere, �n =Pn�1j=0 'jBjn and 	n =Pn�1j=0  j(B�n)j, then�n	�n = n�1Xj=0 � jXl=0 'j�l �l �Bjn = In: (I.11)

Now let "t, t 2 Z, be independent Nb(0; I1) distributed random variables and
define ~Yt = Pt�1j=0 'j"t�j, Yt = P1j=0 'j"t�j. Since the covariance matrices of then-dimensional random variables ( ~Y1; : : : ; ~Yn) and (Y1; : : : ; Yn) are given byVar �~Y1; : : : ; ~Yn� = �n��n; Var �Y1; : : : ; Yn� = Tn(f);
we see that �n��n � Tn(f). A similar argument yields 	n	�n � Tn(f�1), whenceTn(f)�1 � (�n��n)�1 = 	n	�n � Tn(f�1)
by equation (I.11). �

(I.17)
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To proceed further we need to approximate the involved Toeplitz matrices by
band matrices. In order to do this we approximate the spectral densities by func-
tions with finitely many Fourier coefficients.

Definition I.13 The m’th, m 2 N , Fejér approximation Fm(f) 2 L1 of the matrix
valued function f 2 L1 is defined as the mean of the m first Fourier approxima-
tions, and can by computed byFm(f)(x) = Z f(y)Km(x� y) dy; Km(y) = 1m sin2(m�y)sin2(�y) :

The mathematical reason for using Fejér approximations instead of Fourier ap-
proximation is, that the Fejér kernel Km(y) is a probability density. EspeciallykFm(f)kp � kfkp
by the triangular inequality. Moreover, Km(y) satisfies the boundKm(y) � 14m�1y�2 sin2(m�y); jyj � 12 :
The following two lemmas concern the quality of Fejér approximations. Remember
that �� 2 L1, � > �1, is defined by ��(x) = jxj� I1.
Lemma I.14 If f 2 Lp and kf � f(� � y)kp � 
1 jyj� for some 
1 < 1, � 2 (0; 1),
then kf � Fm(f)kp � 
2m��, where the constant 
2 <1 depend on 
1 and � only.

Proof Let the function h(y) and the normalizing constant 
 > 0 be given byh(y) = kf � f(� � y)kp � 
1 jyj� ; 
 = Z h(y)Km(y) dy:
If p < 1, then by the triangular inequality, the Jensen inequality and the Tonelli
theorem kf � Fm(f)kp is bounded by�Z � Z kf(x)� f(x� y)kp Km(y) dy�p dx�p�1� �Z Z kf(x)� f(x� y)kpp �h(y)
 �1�pKm(y) dy dx�p�1= �Z 
ph(y)
 Km(y) dy�p�1 = Z h(y)Km(y) dy� 12
1m�1 Z 120 jyj��2 sin2(m�y) dy � 12
1 Z 10 u��2 sin2(�u) du| {z }
2 m��:
The inequality follows similarly for p =1. �

(I.18)
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Lemma I.15 For every � 2 (0; 1) there exists 
� <1 such thatZ jyj��Km(x� y) dy � (
�m� if jxj � m�1,
�m�1 log(m)x�1�� if m�1 < jxj � 12 .

Especially k�1Fm(���)k1 is bounded in m 2 N for every � < 1.

Proof Denote the integral by g(x), and observe that g is an even function and
decreasing for x 2 [0; 12 ℄. Hence,g(x) � g(0) � 12m�1 Z 120 y�2�� sin2(m�y) dy � 12m� Z 10 u�2�� sin2(�u) du:
Moreover if x = m�
 > m�1, 
 2 (0; 1), then g(x) is bounded by2 Z m�
0 (m�
 � y)��Km(y) dy + 2 Z 12�m�
0 y��Km(y +m�
) dy: (I.12)

The first term in (I.12) is bounded by12m�1 Z m�
0 (m�
 � y)��y�2 sin2(m�y) dy= 12m
(1+�)�1 Z 10 (1� v)��v�2 sin2(m1�
�v) dv� 12m
(1+�)�1 Z 120 2�v�2 sin2(m1�
�v) dv + 2m
(1+�)�1 Z 112 (1� v)�� dv� 2��1m�
 Z 10 u�2 sin2(�u) du+ 2�(1� �)�1m
(1+�)�1:
The second term in (I.12) is bounded by12m�1 Z 120 y��(y +m�
)�2 sin2(m�(y +m�
)) dy� 12m�1 Z m�
0 y��m2
 dy + 12m�1 Z 12m�
 y�1(y +m�
)�1�� dy� 12(1� �)�1m
(1+�)�1 + 2�2�� log(m)m
(1+�)�1:
Combining these bounds and defining
� = 2��1 Z 10 u�2 sin2(�u) du+ 2�(1� �)�1 + 2�1(1� �)�1 + 2�2��
we see that g(x) = g(m�
) � 
�m�1 log(m)x�1��. �

(I.19)
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In the next two lemmas we establish inequalities between p-norms of Toeplitz
matrices and Lp-norms of functions. For f 2 L1 letT (f) = �f̂(i� j)�i;j2Z2 M 1
be the associated infinite dimensional Toeplitz matrix. For given m � n letPn 2 M 1 , Qnm 2 M n be diagonal matrices with n consecutive, respectively m
not necessarily consecutive, identity matrices on the diagonal and 0’s elsewhere,
and let Qm 2 M 1 be the extension of Qnm constructed by augmenting Qnm with0’s such that Qm � Pn in the partial ordering of positive semi definite matrices.
Then the equalitieskTn(f)kp = kPnT (f)Pnkp ; kTn(f)Qnmkp = kPnT (f)Qmkp
between p-norms on M n respectively M 1 hold true.

Lemma I.16 If f 2 Lp, p � 2, then kT (f)Qmkp � mp�1 kfkp. If f 2 Lp, p < 2, thenkTn(f)Qnmkp � np�1� 12m 12 kfkp.
Proof This proof follows Avram (1988). The statement holds for p = 2 and p =1
since kT (f)Qmk22 = tr �QmT (f �f)Qm� = m kfk22 ; kT (f)k1 = kfk1 ;
and hence also for p 2 (2;1) by the Riesz-Thorin interpolation theorem, see Bergh
& Löfström (1976). If p < 2, let g 2 L(p�1� 12 )�1 , h 2 L2 be given byg(x) = jf(x)j1� p2 ; h(x) = jf(x)j p2�1 f(x):
Then f(x) = g(x)h(x), kfkp = kgk(p�1� 12 )�1 khk2 and hencekTn(f)Qnmkp = kPnT (g)T (h)Qmkp � kPnT (g)k(p�1� 12 )�1 kT (h)Qmk2� np�1� 12 kgk(p�1� 12 )�1 m 12 khk2 = np�1� 12m 12 kfkp : �
Lemma I.17 If f 2 Lp, p < 2, then

Tn(� 12 )Tn(f)Qnm

22 � np�1� 12m 32�p�1 k�1fk(1�p�1)�1 kfkp + log(n)m kfk21 :
Proof The squared norm kTn(� 12 )Tn(f)Qnmk22 is bounded bytr �QmT (f �)PnT (�1f)Qm�� tr �QmT (f �)PnT (�1)(I � Pn)T (f)Qm�:
By the Hölder inequality and lemma I.16 the first term is bounded bynp�1� 12m 32�p�1 k�1fk(1�p�1)�1 kfkp ;

(I.20)
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and since kf̂(k)k2 � kf̂(k)k1 � kfk1, and k�̂1(k)k1 = ���2k�2 for k 6= 0 and even
and vanish for k odd, the second term is bounded byXj2f1;::: ;ngk2Znf1;:::;ngm 

�̂1(j � k)

1 kfk21 � 2m 1Xk=1 n ^ 2k4�k2 kfk21 � log(n)m kfk21 : �

If f 2 Lp and g 2 L1+, then inequality (I.7) follows by the calculationsn� 12 

Tn(g)�1Tn(f)

2 � n� 12 

Tn(g�1)Tn(f)

2� 

�� 12 g�1

1 n� 12

Tn(� 12 )Tn(f)

2� 

�� 12 g�1

1� k�1fk12(1�p�1)�1 kfk 12p +plogn kfk1 �;
where we have used lemma I.12, lemma I.17 and the inequality

pa+ b � pa+pb.
The next two lemmas concern the approximation of the product of Toeplitz

matrices by the Toeplitz matrix of the product. For 2m � n let Anm 2 M n be the
diagonal matrix with identity matrices on the middle (n� 2m) diagonal elements
and 0’s elsewhere. If f; g; gf 2 L1, then the matrix equationsT (g)T (f) = T (gf); Tn�gFm(f)�Anm = Tn(g)Tn�Fm(f)�Anm (I.13)

hold. The first equation in (I.13) is well known. Since the matrix Tn�Fm(f)� has0’s outside the (m � 1) first side diagonals the (n � 2m) middle columns of the
matrices Tn(g)Tn�Fm(f)� and Tn�gFm(f)� coincide, whence the second equation
in (I.13) holds.

Lemma I.18 If f 2 Lp, g 2 Lq, then n�p�1�q�1 kTn(g)Tn(f)� Tn(gf)k(p�1+q�1)�1 is

bounded byminm2N:2m�n �2 kf � Fm(f)kp kgkq + 2n�( 12^p�1)(2m) 12^p�1 kfkp kgkq �:
Proof By equation (I.13) the matrix Tn(g)Tn(f)� Tn(gf) is equal toTn(g)Tn�f � Fm(f)�Anm � Tn�gf � gFm(f)�Anm+Tn(g)Tn(f)(In � Anm)� Tn(gf)(In � Anm): (I.14)

The stated bound thus follows by the Hölder inequalities and lemma I.16. �
Lemma I.19 If f 2 L1 andkf � f(� � y)k1 � 
1 jyj� ; 

�� 12 f�1

1 <1; k��fk1 <1
for some 
1 <1, � > 0 and � < 1, thenn� 12 

Tn(f�1)Tn(f)� In

2 � 
2 n� �2+4� ;
where the constant 
2 <1 depend on 
1, 

�� 12f�1

1 and k��fk1 only.

(I.21)
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Proof By equation (I.14) and lemma I.15 the quantity n� 12 kTn(f�1)Tn(f)� Ink2 is
bounded by a1 + a2 + a3 + a4, wherea21 = n�1 

Tn(f�1)Tn(f � Fm(f))

22� 

�� 12f�1

21� k�1fk1 + k�1Fm(���)k1 k��fk1 � kf � Fm(f)k1+ log(n) 

�� 12 f�1

21 kf � Fm(f)k21 ;a22 = n�1 

Tn(I1 � f�1Fm(f))

22 � 

f�1Fm(f)� I1

22= 

Fm(f �)(f�1)�f�1Fm(f)� Fm(f �)(f�1)� � f�1Fm(f) + I1

1� 

Fm(f �)(f�1)�f�1

1 kFm(f)� fk1 + 

f�1

1 kFm(f)� fk1� �

�� 12 f�1

21 k��fk1 k�1Fm(���)k1 + 

f�1

1 � kf � Fm(f)k1 ;a23 = n�1 

Tn(f�1)Tn(f)(In � Anm)

22� n� 12 (2m) 12 

�� 12 f�1

21 k�1fk1 kfk1 + 2n�1 log(n)m 

�� 12 f�1

21 kfk1 ;a24 = n�1 kIn � Anmk22 � 2n�1m:
Using lemma I.14 and lemma I.15 we see that kf � Fm(f)k1 = O(m��) andk�1Fm(���)k1 = O(1). Thus if m � n(1+2�)�1 , then a1; a2; a3; a4 all are of orderO(n� �2+4� ). �

We are now in a position to prove lemma I.8. Thus suppose assumption I.3
holds. The matrix Tn('�)�1Tn('�0)� Tn('�1� '�0) is equal to�In � Tn('�1� )Tn('�)�Tn('�)�1Tn('�0) + �Tn('�1� )Tn('�0)� Tn('�1� '�0)�: (I.15)

Using lemma I.18 we see that the normalized 1-norm of the second term in (I.15),
i.e. the quantity n�1 

Tn('�1� )Tn('�0)� Tn('�1� '�0)

1, is bounded by the minimum
over m 2 N , 2m � n, of2 k'n;�0 � Fm('n;�0)k(1�q�1)�1 

'�1n;�

q + 2n� 12 (2m) 12 k'n;�0k(1�q�1)�1 

'�1n;�

q :
If p�1 + q�1 + r�1 � 12 , then use lemma I.18, lemma I.12 and lemma I.16 to bound
the normalized 1-norm of first term in (I.15) by the minimum overm 2 N , 2m � n,
of 2 k'n;� � Fm('n;�)k(1�p�1�2q�1)�1 

'�1n;�

2q k'n;�0kp+2n�( 12^(1�p�1�2q�1)) (2m) 12^(1�p�1�2q�1) k'n;�k(1�p�1�2q�1)�1 

'�1n;�

2q k'n;�0kp ;

(I.22)
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and if p < 2, then use lemma I.19 and inequality (I.7) to bound the normalized1-norm of first term in (I.15) by
2 n� �2+4� 

�� 12'�1n;�

1� k�1'n;�0k 12(1�p�1)�1 k'n;�0k 12p +plogn k'n;�0k1 �:
Using lemma I.14 we see that all these bounds are of order O(n� �2+4� logn) whenm � n(1+4�)�1 . To prove the second part of lemma I.8 we use equation (I.13) to
rewrite the matrix Tn('�)�1Tn(�i'�)� Tn('�1� �i'�)
as Tn('�)�1Tn(�i'�)(In � Anm) + Tn('�)�1Tn��i'� � '�Fm('�1� �i'�)�Anm�Tn�'�1� �i'� � Fm('�1� �i'�)�Anm � Tn('�1� �i'�)(In � Anm): (I.16)

The needed regularity conditions and the resulting rates of convergence depend
on the bounds for the two first terms in (I.16) only. If p�1 + q�1 + r�1 � 12 , thenn� 12 kTn('�)�1Tn(�i'�)(In � Anm)k2 is bounded byn� 12+q�1(2m) 12�q�1 

'�1n;�

q k�i'n;�k( 12�q�1)�1 ;
and n� 12 

Tn('�)�1Tn��i'� � '�Fm('�1� �i'�)�

2 is bounded by

'�1n;�

q k'n;�kp 

'�1n;��i'n;� � Fm('�1n;��i'n;�)

( 12�p�1�q�1)�1 :
Using these bounds we see that for m � n(1+( 12�q�1)�1�)�1 all four terms in (I.16)
are of order O(n��(1+( 12�q�1)�1�)�1). This is the exact point in the analysis whereq > 2 and p�1 + q�1 + r�1 � 12 is needed. Otherwise if p < 2, thenn�1 

Tn('�)�1Tn(�i'�)(In � Anm)

22
is bounded bynp�1� 32 (2m) 32�p�1 

�� 12'�1n;�

21 k�1�i'n;�k(1�p�1)�1 k�i'n;�kp+n�1 log(n) (2m) 

�� 12'�1n;�

21 k�i'n;�k21 ;
and n�1 

Tn('�)�1Tn(�i'� � '�Fm('�1� �i'�))

22 is bounded by

�� 12'�1n;�

21 k�1'n;�k1 k'n;�kp 

'�1n;��i'n;� � Fm('�1n;��i'n;�)

22(1�p�1)�1+ log(n) 

�� 12'�1n;�

21 k'n;�k2p 

'�1n;��i'n;� � Fm('�1n;��i'n;�)

2(1�p�1)�1 :
Thus if m � n(1+4�)�1 , then all terms in (I.16) are of order O(n� �1+4�plogn).

(I.23)
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Likelihood inference for a stochastic

partial differential equation

observed at discrete points in time

and space

Abstract

Both parabolic and hyperbolic stochastic partial differential equations in one-
dimensional space driven by Gaussian noise have been proposed as models for
the term structure of interest rates. In the first part of this paper we solve these
equations via the familiar separation of variables technique. The associated co-
efficient processes are found to be Ornstein-Uhlenbeck processes in the parabolic
case, and the first components of two-dimensional Ornstein-Uhlenbeck processes
in the hyperbolic case. Moreover, the sample paths properties of these equations
are studied. In the parabolic case the sample paths are essentially found to be
Hölder continuous of order 12 in space and 14 in time, whereas in the hyperbolic
case the sample paths are essentially found to be Hölder continuous of order 12
simultaneously in time and space. In the second part of the paper we consider
likelihood inference for the parameters in the equation given an observation at
discrete lattice points in time and space. The associated infinite dimensional state
space model is described, and a finite dimensional approximation is proposed. We
present conditions under which the resulting approximate maximum likelihood
estimator is asymptotically efficient when the spatial resolution is fixed and the
number of observations in time increases to infinity at a fixed time step. More-
over, the asymptotical distribution of the approximative likelihood ratio test for a
parabolic equation against the hyperbolic alternative is found to be a truncated
chi-square distribution.

Key words

Stochastic partial differential equation, parabolic equation, hyperbolic equation,
sample paths properties, discrete observations, approximate likelihood inference,
asymptotic efficiency, likelihood ratio test for parabolic equation.
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II.1 Introduction

Motivated by applications in neurophysiology, hydrology, oceanography and fi-
nance statistical inference problems for stochastic partial differential equations has
attained increasingly interest in the recent years, see Huebner & Rozovskii (1995),
Piterbarg & Rozovskii (1997), Huebner (1997), Huebner & Lototsky (2000). In
the cited papers an observation of the N ’th Galerkin approximation of a parabolic
evolution equation, i.e. the N first Fourier coefficient processes, is assumed to be
available at either a continuous interval of time, discrete time points or just at
a single time point. The asymptotic properties of the maximum likelihood es-
timator when the spatial resolution tends towards a continuous observation in
space, i.e. when N !1, is studied and shown to depend heavily on which coeffi-
cients are unknown in the stochastic partial differential equation. The purpose of
the present paper is to propose an approximate likelihood and study the asymp-
totic properties of the associated maximum likelihood estimator for the parameter� = (�1; �2; �0; �1; �2) given observations at discrete points in time and space of the
stationary solution of the parabolic (�2 = 0, �2 > 0) or hyperbolic (�2 > 0, �2 > 0)
stochastic partial differential equation�2 �2�t2V (t; x) + �1 ��tV (t; x) = �0V (t; x) + �1 ��xV (t; x) + �2 ��x2V (t; x) +W�(t; x);

(II.1a)t 2 R, 0 < x < 1, with Dirichlet boundary conditionsV (t; 0) = V (t; 1) = 0; t 2 R: (II.1b)

Here the parameters satisfies �1; �2 > 0, �2 � 0 and the stochastic disturbance termW�(t; x) is related to Brownian white noise W (t; x) via the equationW�(t; x) = e� �12�2 xW (t; x): (II.2)

The motivation for studying this statistical problem is applications in mathe-
matical finance to the modeling of the term structure for bonds of different matu-
rity times, see Cont (1998), Santa-Clara & Sornette (1999). In these models the
spatial component represents time to maturity. In Cont (1998) it is argued that
the short rate (x = 0) and the long rate (x = 1) can be modeled independently
of the profile from the short rate to the long rate, and that the deviation from
the average profile can be modeled by the stochastic partial differential equation
(II.1). Realistic data thus consist of observations at discrete points in time and
space organized in a lattice. The spatial resolution is usually fairly low consisting
of between 10 and 20 maturity times. Calculating the discrete Fourier transforms
and using the Galerkin approximation would thus be inadequate and result in bi-
ased estimates. But since the Galerkin approximation approach yields estimates
on closed forms this might be a good way to get preliminary estimates. The so-
lutions to the parabolic and hyperbolic equations have different properties, see

(II.2)
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the discussion in Cont (1998), whence it is of interest to test the hypothesis of a
parabolic equation against a hyperbolic equation. Since the parabolic hypothesis
lies on a one-sided boundary of the parameter space the likelihood ratio test will
be asymptotically distributed as the mixture of the point measure in 0 and the
chi-square distribution.

The paper is organized as follows. In section II.2 we describe for which param-
eters there exists a stationary solution to (II.1), give a representation of the station-
ary solution, and describe the sample path properties of the solution. In section
II.3 we propose an approximate likelihood and give conditions under which this
approximate likelihood has the same first order asymptotic properties as the exact
likelihood. We show that the approximate likelihood satisfies a uniform version
of the LAN-property, whence the approximate maximum likelihood estimate espe-
cially is asymptotically efficient in the sense of Hájek and Le Cam, see Le Cam &
Yang (2000). Moreover we derive the likelihood ratio test for a parabolic equation
against a hyperbolic equation.

Wherever possible we have tried to avoid using the explicit expression of the
Greens function given by (II.4) and (II.5), and have instead used the associated
differential equations (II.3). Most of the techniques used in this paper thus gen-
eralizes to stochastic partial differential equations, where higher order derivative
w.r.t. time are included on the left hand side of (II.1a). Similarly, it is possible to
alter the boundary conditions (II.1b) within the presented framework.

II.2 The stationary solution and its properties

The solution V (t; x) to the stochastic partial differential equation (II.1) is indexed
by the time parameter t 2 R and the spatial coordinate x 2 (0; 1). Since the
spatial coordinate is one dimensional, there is reason to believe, that V (t; x) exists
as an ordinary stochastic process defined on a sufficient large probability space(
;A ;P), i.e. as a measurable functionV : 
� R � (0; 1)! R:
If this is the case, then the stochastic partial differential equation (II.1) can be
posed and solved in both the Itô type framework of Walsh (1986) and the white
noise calculus of Holden et al. (1996), and the solutions of the two different ap-
proaches will coincide. Since the equation (II.1) contains a second order derivative
w.r.t. time, it is most easily solved in the white noise calculus. However, the Itô cal-
culus is more easily interpretable and probably more familiar to most readers. We
will thus use the white noise calculus to solve the equation, and then afterwards
rewrite the solution as an Itô-integral w.r.t. a Brownian sheet.

Suppose the partial differential equation (II.1) is either parabolic or hyperbolic,
i.e. �2 � 0 and �2 > 0. Then there exists a Greens function G(t; x; y) for the partial

(II.3)
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differential equation given byG(t; x; y) = 1Xk=1 Tk(t)Xk(x)Xk(y);
which can be found using the familiar separation of variables technique. ThusXk(x) and �k, k 2 N , are the eigenfunctions respectively eigenvalues of the dif-
ferential operator �0 + �1 ��x + �2 �2�x2 with boundary conditions X(0) = X(1) = 0.
Moreover, in the parabolic case Tk(t) is the solution of the differential equation�1T 0(t) = �kT (t); T (0) = 1;
and in the hyperbolic case Tk(t) is the solution of the differential equation�2T 00(t) + �1T 0(t) = �kT (t); T (0) = 0; T 0(0) = 1: (II.3)

Solving these differential equations we find that Xk(x) and �k are given byXk(x) = p2 sin(�kx)e� �12�2 x; �k = �0 � �214�2 � �2k2�2; (II.4)

and Tk(t) is given byTk(t) = 8>>>>>><>>>>>>:
exp��k�1 t� if �2 = 0�2p�k� exp���1+p�k2�2 t�� exp���1�p�k2�2 t�� if �2 > 0 and �k > 0t exp���12�2 t� if �2 > 0 and �k = 02�2p��k sin�p��k2�2 t� exp���12�2 t� if �2 > 0 and �k < 0; (II.5)

where �k = �21 + 4�2�k. The eigenfunctions Xk(x), k 2 N , constitute an orthonor-
mal basis for the Hilbert spaceL2�[0; 1℄; exp( �1�2x) dx�;
and if �1 < 0 < �1, then there exists a unique stationary solution V (t; x) to (II.1)
given byV (t; x) = Z t�1 Z 10 G(t� s; x; y)W�(s; y) e �1�2 y dy ds= Z t�1 Z 10 1Xk=1 Tk(t� s)Xk(x)Xk(y)W (s; y) e �12�2 y dy dy= 1Xk=1 Uk(t)Xk(x); (II.6)

where the coefficient processes Uk(t) are given byUk(t) = Z t�1 Tk(t� s)Wk(s) ds = Z t�1 Tk(t� s) dBk(s); (II.7)

(II.4)
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and the pairwise independent white noise processesWk(t), k 2 N , and the pairwise
independent two-sided normalized Brownian motions Bk(t), k 2 N , are given byWk(t) = Z 10 Xk(y)W (t; y) e �12�2 dy; Bk(t) = Z t0 Wk(s) ds:
Observe that the choice (II.2) of the noise process W�(t; x) is made in order for the
Brownian motionsBk(t) to become independent, and thus facilitating the analysis.
Whether this choice also is adequate from a modeling point of view will of course
depend on the particular application. We summarize the above considerations in
the following theorem.

Theorem II.1 If the parameter � = (�1; �2; �0; �1; �2) belongs to the parameter space� � R5 given by�2 � 0; �1; �2 > 0; �0; �1 2 R; �14�2 + �2�2 > �0; (II.8)

then there exists a unique stationary solution V (t; x) = P1k=1 Uk(t)Xk(x) to the

stochastic partial differential equation (II.1), where the deterministic functions Xk(x)
and the coefficient processes Uk(t) are given by (II.4) respectively (II.7).

The coefficient processes are characterized by the following proposition.

Proposition II.2 The coefficient processes Uk(t), k 2 N , are pairwise independent. If�2 = 0, then Uk(t) is a stationary Ornstein-Uhlenbeck process and solves the stochastic

differential equation dUk(t) = �k�1 Uk(t) dt+ dBk(t); (II.9)

and if �2 > 0, then Uk(t) is the first component of the two-dimensional stationary

Ornstein-Uhlenbeck process �Uk(t) = �Uk(t); ~Uk(t)�, where~Uk(t) = Z t�1 T 0k(t� s)Wk(s) ds = Z t�1 T 0k(t� s) dBk(s):
Moreover, �Uk(t) solves the stochastic differential equationd �Uk(t) = � 0 1�k�2 ��1�2 � �Uk(t) dt + �01� dBk(t):
Proof The statement is classical for the parabolic case, cf. Walsh (1986, p. 323). In
the hyperbolic case we use the white noise calculus and the differential equation
(II.3) to see thatddtUk(t) = Z t�1 T 0k(t� s)Wk(s) ds+ Tk(0)Wk(t) = ~Uk(t);

(II.5)
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and ddt ~Uk(t) = Z t�1 T 00k (t� s)Wk(s) ds+ T 0k(0)Wk(t)= Z t�1 ��k�2 Tk(t� s)� �1�2T 0k(t� s)�Wk(s) ds+Wk(t)= �k�2 Uk(t)� �1�2 ~Uk(t) +Wk(t):
If these equations are rewritten as Itô stochastic differential equations, then the
stated equation for �Uk(t) follows. �

Let � > 0 be some fixed time step, and let Uk;�(t), ~Uk;�(t) be the time series
associated with the k’th coefficient processes at the discrete time points t�, t 2 Z,
i.e. Uk;�(t) = Uk(t�); ~Uk;�(t) = ~Uk(t�); �Uk;�(t) = �Uk;�(t); ~Uk;�(t)�:
Proposition II.3 If �2 = 0, then Uk;�(t) is a first order autoregressive process, i.e.Uk;�(t) = �k;� Uk;�(t� 1) + "k;�(t) � N1�0; �2k�;
where the innovations "k;�(t), t 2 Z, are i.id. N1(0; �2k � �2k;��2k), and where the

autoregression coefficient �k;� and the stationary variance �2k are given by�k;� = Tk(�); �2k = �1�2�k :
If �2 > 0, then �Uk;�(t) is a first order autoregressive process, i.e.�Uk;�(t) = ��k;� �Uk;�(t� 1) + �"k;�(t) � N2�0; ��2k�;
where the innovations �"k;�(t), t 2 Z, are i.id. N2(0; ��2k � ��k;���2k ���k;�), and where the

autoregression coefficient ��k;� and the stationary variances ��2k are given by��k;� =  �1�2Tk(�) + T 0k(�) Tk(�)�k�2 Tk(�) T 0k(�)! ; ��2k = ��2k 00 ~�2k� =  �22�2�1�k 00 �22�1! :
Proof We will first consider the hyperbolic case, i.e. when �2 > 0. Since �Uk(t) is an
Ornstein-Uhlenbeck processes it directly follows, that the time series �Uk;�(t) is a
first order autoregressive processes. The stationary variance ��2k can be calculated
by ��2k = Var�Z t�1�Tk(t� s)T 0k(t� s)� dBk(s)� = Z 10 �Tk(s)T 0k(s)��Tk(s)T 0k(s)�� ds:

(II.6)
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The components of �Uk(t) are a priori seen to be independent, i.e.Cov �Uk(t); ~Uk(t)� = Z 10 Tk(s)T 0k(s) ds = 12T 2k (s)��s=1s=0 = 0;
and the marginal variances are found by direct computations of the integrals. In
order to determine the autoregression coefficient we use the equation�Uk;�(t) = Z (t�1)��1 �Tk(t�� s)T 0k(t�� s)� dBk(s)| {z }=��k;� �Uk;�(t�1) + Z t�(t�1)� �Tk(t�� s)T 0k(t�� s)� dBk(s)| {z }

innovation �"k;�(t)
to conclude, that ��k;� satisfies the equation��k;��Tk(u)T 0k(u)� = �Tk(u+�)T 0k(u+�)� for every u � 0. (II.10)

Inserting u = 0 and using the differential equation (II.3) gives the second column
of ��k;�, i.e. ��k;��01� = ��k;��Tk(0)T 0k(0)� = �Tk(�)T 0k(�)� :
Differentiating (II.10) w.r.t. u, inserting u = 0 and using the differential equation
(II.3) gives��k;�� 1��1�2� = ��k;��T 0k(0)T 00k (0)� = �T 0k(�)T 00k (�)� = � T 0k(�)�k�k Tk(�)� �1�2T 0k(�)� ;
and hence the first column of ��k;�, i.e.��k;��10� = ��k;�� 1��1�2� + �1�2 ��k;��01� =  �1�2Tk(�) + T 0k(�)�k�2 Tk(�) ! :
The more easy parabolic case can by analyzed similarly. �

In the hyperbolic case the paths of the coefficient processes Uk(t) are continu-
ous differentiable, cf. proposition II.2. This fact suggests that the solution V (t; x)
is more smooth in the hyperbolic case than in the parabolic case. We conclude this
section by considering the sample path properties of V (t; x).
Lemma II.4 There exists a constant � <1 such thatVar �V (t; x)� V (t; y)� � � jx� yj ;Var �V (s; x)� V (t; x)� � (�pjt� sj if �2 = 0� jt� sj log(jt� sj�1) if �2 > 0
for jt� sj sufficiently small.

(II.7)
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Proof The first estimate and the second estimate in the parabolic case are given
in Walsh (1986, proposition 3.7), whence we only need to consider the second
estimate in the hyperbolic case. For fixed Æ > 0 the representation (II.6) givesVar �V (t+ Æ; x)� V (t; x)� = 1Xk=1X2k(x) �Var �Uk(t + Æ)� Uk(t)�:
The squared eigenfunctions X2k(x) are bounded by the constant 2 + 2 exp(� �1�2 ).
Moreover, using the autoregression with innovations �"k;Æ = ("k;Æ; ~"k;Æ) and the
marginal varianceVar("k;Æ) = �2k � ��1�2Tk(Æ) + T 0k(Æ)�2 �2k � Tk(Æ)2 ~�2k;
cf. proposition II.3, and using the differential equation (II.3) we see thatVar �Uk(t+ Æ)� Uk(t)� = Var���1�2Tk(Æ) + T 0k(Æ)� 1�Uk(t) + Tk(Æ) ~Uk(t) + "k;Æ�= ��1�2Tk(Æ) + T 0k(Æ)� 1�2 �2k + Tk(Æ)2 ~�2k +Var("k;Æ)= 2�1� �1�2Tk(Æ) + T 0k(Æ)� �2k= �2�k�2 Z Æ0 Tk(u) du �2k= �1�2 Z Æ0 Tk(u) du:
Remember that we want to bound the sum of the variances by a constant timesÆ log(Æ�1) for Æ > 0 sufficiently small. Thus given n 2 N we findnXk=1 Var �Uk(t + Æ)� Uk(t)� = �1�2 nXk=1 Z Æ0 Tk(u) du� �1�2 nXk=1 Z Æ0 1k �r�2�2 sin�k�q �2�2u� exp���12�2 u�du= �1�p�2 �2 Z Æ0 fn��q �2�2u� e� �12�2 u du;

(II.11)

where the function fn(x) is defined by fn(x) = Pnk=1 sin(k x)k . Some comments re-
garding the somewhat subtle approximation in (II.11) are needed. Firstly, since
the kernels Tk(u) are bounded, we may replace finitely many of the integrandsTk(u) by arbitrary bounded functions, whence we only need to consider the ap-
proximation of the terms for large k. Secondly, if k is large, then �k < 0 and the
replacement for Tk(u) corresponds to the approximation ��k � 4��2�2k2, cf. equa-
tion (II.5). Thirdly, the approximations of Tk(u) for large k are small perturbations
of lower order in k and may be disregarded.

(II.8)
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If Æ < 12q�2�2 , then the function fn(x) is only employed for 0 � x � �2 . Moreover,

we find thatf 0n(x) = nXk=1 
os(k x) = 1 + 
os(x)2 sin(x) sin�(n+ 1)x�� 1 + 
os((n+ 1)x)2 � �x + 1x
and f(�2 ) � 1, whence for 0 � x � �2 ,0 � fn(x) � 1 + Z �2x u+ 1u du < 4� log(x):
Using this bound we see thatZ Æ0 fn��q �2�2u� e� �12�2 u du � Z Æ0 �4� log ��q �2�2u�� du = 5Æ + Æ log � 1�q�2�2 Æ�1�;
whereby the desired bound for the approximation (II.11) follows. �
Theorem II.5 The solution V (t; x) to the stochastic partial differential equation

(II.1) has a version that is continuous in (t; x). Moreover if for some fixed t0 <1,Ht(Æ) = supx;y2[0;1℄:jx�yj�Æ jV (t; x)� V (t; y)j ; t 2 [0; t0℄;H(Æ) = sups;t2[0;t0℄;x;y2[0;1℄:((s�t)2+(x�y)2) 12�Æ jV (s; x)� V (t; y)j
are the moduli of continuity in space at time t respectively in time and space then

there exists a constant � < 1 and random variables Yt, t 2 [0; t0℄, and Y with

exponential moments such that for 0 � Æ � 1,Ht(Æ) � Yt Æ 12 + � Æ 12plog(Æ�1);H(Æ) � (Y Æ 14 + � Æ 14plog(Æ�1) if �2 = 0Y Æ 12plog(Æ�1) + � Æ 12 log(Æ�1) if �2 > 0.

Proof Using the variance estimates given in lemma II.4 the proof is similar to the
proof of Walsh (1986, theorem 3.8). �

Theorem II.5 states that the solution V (t; x) to (II.1) has paths that essentially
are Hölder continuous of order 12 in space and 14 in time in the parabolic case,
and of order 12 in time and space in the hyperbolic case. The paths are thus sub-
stantially more rough in time in the parabolic case. The roughness present in the
parabolic case is also reflected in the property, that the solution process in that
case have non-vanishing quartic variation, cf. Walsh (1986, theorem 3.10).

(II.9)



56 Paper II. Likelihood inference for a discretely observed SPDE

II.3 Likelihood inference given an discrete observa-

tion

In this section we give a time series representation of the statistical model given
observations of V (t; x) at discrete points in time and space at the lattice points(t; x) given by t = �; 2�; : : : ; n�; x = a1b ; : : : ; aNb (II.12)

where � > 0 and a1; : : : ; aN ; b 2 N , a1 < : : : < aN < b are fixed. Moreover
we describe an approximate maximum likelihood estimation procedure, which is
asymptotically efficient as n!1, and we describe the associated likelihood ratio
test for a parabolic equation against a hyperbolic equation.

Given observations of V (t; x) in the lattice points (II.12) let the N -dimensional
time series V�(t), the 2b-dimensional time series U�(t), the matrices � 2 RN�N
and 	 2 RN�2b be given byV�(t) = V �t�; ajb �j=1;::: ;N ; U�(t) = �X1j=0Uk+2bj;�(t)�k=1;::: ;2b;� = diag

�e� �12�2 ajb �j=1;::: ;N ; 	 = �p2 sin ��k ajb ��j=1;::: ;Nk=1;::: ;2b:
Then the observable time series V�(t) has the state space representationV�(t) = �	U�(t): (II.13)

The components of the time series U�(t) are independent and given as infinite
sums of independent time series. Suppose a sequence K(n), n 2 N , of positive
integers, and sequences � 2k (n), n 2 N , k = 1; : : : ; 2b, of variances are given. We
propose to approximate the tails in the representation of U�(t) by independent
white noise, i.e. to approximate the distribution of V�(t) with the distribution of�	 Û�(t), whereÛ�(t) = �Xj2N0 :k+2bj<K(n)Uk+2bj;�(t) + "̂k;n(t)�k=1;::: ;2b;"̂k;n(t), t = 1; : : : ; n, i.id. N �0; � 2k (n)�. (II.14)

Below we will describe how to choose the cutoff points K(n) and the white noise
variances � 2k (n) such that the resulting approximate likelihood is asymptotically
efficient as n ! 1. Observe that we have an explicit description of the finite
dimensional state space model �	 Û�(t) and can calculate the approximate like-
lihood via the Kalman filter.

In order to measure the quality on the proposed approximation we introduce
metrics on the space of N -dimensional matrices respectively on the space of N -
dimensional spectral densities. The Schatten p-norm kAkp, p 2 [1;1℄, of a matrix

(II.10)



II.3. Likelihood inference given an discrete observation 57A 2 C N�N is defined as the lp-norm of the eigenvalues of the positive semi definite
matrix jAj = (A�A) 12 , i.e. kAk1 is the operator norm of A andkAkp = � tr(A�A) p2�p�1 ; p 2 [1;1):
The Lp-norm k kp, p 2 [1;1℄, of a matrix valued function  : (�12 ; 12 ℄ ! C N�N is
defined as the usual Lp-norm of the real valued function k (�)kp, i.e. k k1 is the
essential supremum of k (�)k1 andk kp = �Z 12� 12 k (!)kpp d!�p�1 ; p 2 [1;1):
These Lp-norms behave much like the usual Lp-norms and especially satisfy the
Hölder inequality. We will measure the quality of the introduced approximation
via the L2-distance between the spectral densities for the exact model respectively
the approximative model. The analysis relies on the following theorem proved in
Markussen (2001d).

Theorem II.6 Let V (t), t 2 Z, be a N -dimensional Gaussian time series, i.e.Vn = �V (1); : : : ; V (T )�� � Nn�N�0;�n( )�;
where �n( ) is the Toeplitz matrix associated to the spectral density  (!). For eachn 2 N let  n;�(!), � 2 � � Rd , be a family of spectral densities and let ln(�) be the

corresponding log likelihood function given byln(�) = �12 log det �n( n;�)� 12 tr ��n( n;�)�1VnV�n�: (II.15)

Let �0 2 � be some fixed and unknown parameter, and suppose that the Fisher

information matrix J given byJ = limn!1�12 Z 12�12 tr � �1n;�0(!)�i n;�0(!) �1n;�0(!)�j n;�0(!)�d!�i;j=1;::: ;d
exists and is positive definite. If n 12 k �  n;�0k2 vanishes as n ! 1, and some

additional mild regularity conditions are satisfied, see Markussen (2001d), then the

maximum likelihood estimator �̂n = argmax�2� ln(�) is a
pn-consistent estimator

for �0, and the localized log likelihood ratio converges uniformly to a Gaussian shift

process, i.e. there exists a sequence Gn, n 2 N , of d-dimensional random variables

converging in distribution to Nd(0;J ) such thatE� supu2Rd:juj�r;�0+n� 12 u2� ��ln(�0 + n� 12u)� ln(�0)� �u�Gn � 12u�J u���� (II.16)

vanishes for every r > 0 as n!1.

(II.11)
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As a consequence of the LAN-property (II.16), the approximative maximum
likelihood estimator �̂n is asymptotically efficient in the sense of Hájek and Le Cam,
cf. Le Cam & Yang (2000, chapter 6.6).

Let � � R5 be the parameter space described in theorem II.1, and suppose that
we have an observation in the lattice points (II.12) of the stochastic partial differ-
ential equation described by the parameter �0 2 �. Then the additional regularity
conditions are satisfied for the corresponding time series model, cf. Markussen
(2001d), and theorem II.6 applies ifn 12 k �0 �  n;�0k2 ���!n!1 0;
where  �0(!) is the exact spectral density and  n;�0(!) is the n’th approximative
spectral density. Using the state space representation (II.13) and the approxima-
tive state vector (II.14) we see that  �0(!) and  n;�0(!) are given by �0(!) = �	 diag

�X1j=0'k+2bj;�(!)�k=1;::: ;2b	� ��; n;�0(!) = �	 diag
�Xj2N0 :k+2bj<K(n)'k+2bj;�(!) + � 2k (n)�k=1;::: ;2b	� ��;

where 'k;�(!) is the spectral densities for the coefficient process Uk;�(t). TheL2-distance between  �0(!) and  n;�0(!) can be estimated with the aid of the fol-
lowing lemma.

Lemma II.7 In the parabolic case the spectral density '��;k(!) satisfies the bounds�1�2�k 1� e�k�1 �1 + e�k�1 � < '��;k(!) < �1�2�k 1 + e�k�1 �1� e�k�1 � :
In the hyperbolic case and for k large enough that �k < 0 the spectral density '��;k(!)
satisfies the bounds'��;k(!) � �22�2�1�k e �12�2� � 1e �12�2� + 1 � �22��kp��k�e �12�2� � e� �12�2���1;'��;k(!) � �22�2�1�k e �12�2� + 1e �12�2� � 1 + �22��kp��k�e �12�2� � e� �12�2���1:
Proof If �2 = 0, then the first order autoregressive process Uk;�(t) have spectral
density 'k;�(!) = �2k (1� �2k;�) �1� 2�k;� 
os(2�!) + �2k;��= �1�2�k �1� e2�k�1 ���1� 2e�k�1 � 
os(2�!) + e2�k�1 ���1;

(II.12)
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whereby the stated bounds immediately follow. If �2 > 0, then we first do a linear
transformation of the autoregressive process �Uk;Æ(t). If the matrix A 2 R2�2 is
invertible, thenA �Uk;�(t+ 1) = �A ��k;�A�1�A �Uk;�(t) + A �"k;�(t+ 1);
where the variance of the innovations A �"k;�(t) equals A ��2k A�. We need to chose
the matrix A such that the powers of the transformed autoregression coefficientA ��k;�A�1 can be calculated easily. Suppose k is large, whence �k < 0, and let the
matrix A be given by A = � 1 0�1p��k 2�2p��k� :
Using lemma II.3 we see that the coefficient A ��k;�A�1 is given byA ��k;�A�1 =  �12�2Tk(�) + T 0k(�) p��k2�2 Tk(�)�p��k2�2 Tk(�) �12�2Tk(�) + T 0k(�)! :
Moreover, the differential equation (II.3) givesdd�he �12�2�� �12�2Tk(�) + T 0k(�)�i = �p��k2�2 �e �12�2��p��k2�2 Tk(�)�;dd�he �12�2�p��k2�2 Tk(�)i = p��k2�2 �e �12�2���1�2Tk(�) + T 0k(�)��;
whence it follows thatA ��k;�A�1 = e� �12�2�0� 
os�p��k2�2 �� sin�p��k2�2 ��� sin�p��k2�2 �� 
os�p��k2�2 ��1A :
Similarly, the variance A ��2k A� is given byA ��2k A� = �2k 1 �1p��k�1p��k �21�2�2�k��k ! ;
whence it follows, that the first component of the time series A �Uk;�(t), i.e. the
coefficient process Uk;�(t), has spectral density 'k;�(!) given by�2k + 2�2k 1Xt=1 e��12�2 �t 
os�p��k2�2 �t� 
os(2�!t)+2 �1p��k�2k 1Xt=1 e� �12�2�t sin�p��k2�2 �t� 
os(2�!t):

(II.13)
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The stated bounds thus follow by inserting the trigonometric relations2 
os(x) 
os(y) = 
os(x + y) + 
os(x� y);2 sin(x) 
os(y) = sin(x+ y) + sin(x� y)
and using the bounds� 1ea + 1 � 1Xn=1 e�an 
os(bn) = ea 
os(b)� 11� 2ea 
os(b) + e2a � 1ea � 1 ;� 1ea � e�a � 1Xn=1 e�an sin(bn) = ea sin(b)1� 2ea 
os(b) + e2a � 1ea � e�a : �

The needed cutoff points K(n) and white noise variances � 2k (n) are given in the
following lemma.

Lemma II.8 If the cutoff points K(n) and the white noise variances � 2k (n) in the

parabolic case are given byK(n) = l1�r �12�2�plogTm; � 2k (n) = 1Xj2N0 :k+2bj�K(n) �1�2�k+2bj ; (II.17a)

and in the hyperbolic case are given such thatn 12K(n)�1 ���!n!1 0; � 2k (n) = 1Xj2N0 :k+2bj�K(n) �22�2�1�k+2bj ; (II.17b)

then n 12 k �0 �  n;�0k2 vanishes as n!1.

Proof We first consider the parabolic case. Using the Hölder inequality, the trian-
gular inequality and lemma II.7 we see thatk �0 �  n;�0k2 � k�k21 k	k21 1Xk=K(n)

'k;� � �1�2�k

2� k�k21 k	k21 1Xk=K(n) �1��k exp��k�1��;
whence if K(n) satisfies the equationn� 12 � 1Xk=K(n) exp�� �2 �2�1�k2� . exp�� �2 �2�1�K(n)2�; (II.18)

(II.14)
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then n 12 k �0 �  n;�0k2 vanishes as n ! 1. If we solve (II.18) w.r.t. K(n), then
the statement of the lemma follows. Similarly, in the hyperbolic case we use the
estimates n 12 1Xk=K(n)

'k;� � �22�2�1�k

 . n 12 1Xk=K(n) k�2 � n 12 K(n)�1
to get the statement of the lemma. �

The following theorem gives the asymptotic properties of the proposed approx-
imative likelihood function.

Theorem II.9 Let �0 = (�1; �2; �0; �1; �2) be the true parameter, and let the cutoff

points K(n) and the white noise variances � 2k (n) be given by (II.17). Then the approx-

imate log likelihood ln(�) given in (II.15) can be calculated via the Kalman filter, and

the approximate maximum likelihood estimator �̂n = argmax�2� ln(�) is an asymp-

totically efficient estimator for �0. Moreover,
pn(�̂n� �0) converges in distribution toN5(0;J �1), where the Fisher information J is given byJ = � 12 Z 12� 12 tr � �1�0 (!)�i �0(!) �1�0 (!)�j �0(!)�d!�i;j=1;::: ;5:

If �2 = 0, then the approximative likelihood ratio test statistic �(n) for a parabolic

against a hyperbolic equation satisfies�(n) = 2 sup�2� ln(�)� 2 sup�2�:�2=0 ln(�) D���!n!1 12�0 + 12�21;
where �0 is the point measure in 0 and �21 is the chi-square distribution with one

degree of freedom.

Proof Using lemma II.8 we see that the conditions of theorem II.6 are satisfied.
The properties of the estimator �̂n then follows from the LAN-property (II.16).
The asymptotic distribution of the likelihood ratio test statistic follows since the
hypothesis �2 = 0 is a hyperplane of one dimension less on the border of the
parameter space, see Self & Liang (1987). �

(II.15)
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Chaos decomposition

and stochastic calculus for the

negative binomial process

Abstract

In this paper stochastic analysis w.r.t. the Lévy process with negative binomial dis-
tributed marginals is investigated. The theory of reproducing kernel Hilbert spaces
is used to describe the structure of the Hilbert space of quadratic integrable func-
tionals of the negative binomial process index by an atomfree measurable space.
In contrast to the well-known Gaussian and Poisson cases, the multiple integrals
no longer are capable of generating the Hilbert space of quadratic integrable func-
tionals. An orthonormal basis consisting of polynomials in the integrals w.r.t. in-
teger powers of the increments are presented, and the chaos expansions for some
polynomial functionals, especially the Meixner polynomial functionals, are calcu-
lated. The negative binomial process can be constructed as compound Poisson
processes with logarithmic distributed jumps, and the constructed chaos decom-
position is used to define and discuss Malliavin calculi based on differentiation
w.r.t. the jump times respectively the jump heights.

Key words

Negative binomial process, reproducing kernel Hilbert space, chaos decompo-
sition, polynomial functionals, Malliavin derivative w.r.t. jump times, Malliavin
derivative w.r.t. jump heights.
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III.1 Introduction

The chaos decompositions of the Hilbert spaces of quadratic integrable function-
als of a Wiener respectively Poisson process have proven to be very useful. In this
paper we derive a chaos decomposition of the quadratic integrable functionals of
the negative binomial process. Although this process has classical applications in
actuarial mathematics, it has been chosen as object of our investigations for purely
mathematical reasons. The negative binomial process can be constructed as a com-
pound Poisson process with bounded intensity and logarithmic distributed jumps,
and is thus only slightly more complicated than the Poisson process. Despite the
close connection to Poisson processes new interesting features are revealed. Es-
pecially in contrast to the Wiener and Poisson cases, the multiple stochastic in-
tegrals are no longer capable of generating all quadratic integrable functionals.
The negative binomial process indexed by the parameter set T is in a natural cor-
respondence with a Poisson process indexed by the parameter set T � N , where
the second component describes the jump heights. It is thus possible to map the
chaos decomposition developed for general Poisson processes to a chaos decom-
position for the negative binomial process, cf. the papers Lytvynov et al. (1997),
Denis (2000). However, to our opinion this construction is rather unnatural, and
the construction presented in this paper is directly connected to the negative bi-
nomial process. After having established the chaos decomposition, which we will
use as the fundamental building block, other elements of stochastic calculus are
naturally considered, e.g. Malliavin calculus, Wick calculus, white noise and other
generalized processes, solutions of stochastic differential equations, and so forth.
In the present paper we will only take the first steps in developing a Malliavin
calculus.

This paper is inspired by Itô (1988), where similar methods are used for the
Poisson process. The author like to think of the present investigation as a generic
example of what could be done in the framework of infinite divisible distributions
and Lévy processes index by measure spaces, and care has been taken to make the
presentation systematic and concise, and to minimize utilization of the particular
form of the negative binomial distribution.

III.1.1 Notational conventions

The positive integers, the non-negative integers, the real numbers, and the com-
plex numbers are denoted by N , N0 , R and C respectively, and the imaginary unit
is denoted by { = p�1. Much of this paper is concerned with analysis of certain
topological spaces F of real or complex valued functions defined on certain setsE. The dual space of continuous linear functionals on F is denoted by F 0, and the
duality between F and F 0 is denoted by h!; fiF 0, ! 2 F 0, f 2 F . If F consists of
real valued functions, then the complexification of F is given byFC = F � {F = �f + {g : f; g 2 F	;

(III.2)
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and the duality with F 0 extends by linearity. If the set E is equipped with a �-
algebra and a positive measure �, then we denote by h�iF and h�; �iF the functionalshfiF = ZE f d�; f 2 L1(E); hf; giF = ZE fg d�; f; g 2 L2(E);
where z is the complex conjugate of z 2 C . If the set E is a product, i.e. E =Em0 , then F̂ consists of the functions f(t1; : : : ; tm) 2 F that are invariant under
permutations of the arguments t1; : : : ; tm 2 E0, and given functions f1; : : : ; fm of
a single argument t 2 E0, the symmetric tensor product 
̂mj=1fj is given by
̂mj=1fj(t1; : : : ; tm) = (m!)�1 X� permutation

of f1; : : : ;mg mYj=1 f�(j)(tj):
Moreover, vectors and multi indices will be used. The coordinates of the vector~n will be denoted by ni. The coordinates of the indexed vector ~ni are thus denoted

by nij and so forth. The set of multi indices I defined byI = �~n 2 NN0 : nk 6= 0 for only finitely many k 2 N	
will have a prominent role. This set is a N0 -module with basis vectors ~"k, k 2 N ,
having a one on the k’th coordinate and zeros elsewhere. Let � be the natural
partial order on I, i.e. ~m � ~n if mk � nk, k 2 N . Given ~n 2 I we define~n+ =Xk2N nk; ~n� =Xk2N knk:
The subsets I(n) of the multi indices defined byI(n) = �~n 2 I : ~n� = n	; n 2 N0 ;
will pop up repeatedly in the calculations and formulae in this paper. As a side
remark we mention, that the number of elements in I(n) equals the numbers of
ways in which n 2 N can be written as a sum of integers. A famous formula by
Hardy & Ramanujan (1918) implies, that��I(n)�� � 14p3n�1e�p 23n asymptotically as n!1:
This estimate indicates, that formulae like equation (III.21) below get rather com-
plicated as n 2 N gets large.

III.2 The negative binomial probability space

Consider the negative binomial distribution NB�;q, 0 < p < 1, q = 1 � p, � > 0,
with point probability massesNB�;qfkg = ���k �p�(�q)k; k 2 N0 :

(III.3)
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The convolution ofNB�1;q andNB�2;q is given by adding the parameters �1 and �2,
i.e. NB�1;q �NB�2;q = NB�1+�2;q. Let T be a �-compact topological space equipped
with the Borel �-algebra BT and a non-atomic, �-finite, positive Radon measure�. Usually T will be the set of d-dimensional spatial parameters Rd equipped
with the Lebesgue measure. Then there exists an abstractly defined Lévy processX = (Xt)t2T with negative binomial distributed marginals. This process can be
interpreted as a discrete random measure on T , where the positions �j of the
point masses Yj follows a Poisson process with intensity � log(1� q), and the point
masses Yj are pairwise independent and logarithmic distributed, i.e.P�Yj = k� = 1� log(1�q)k�1qk; k 2 N :
For convenience we will use the terminology from the case, where T is one-
dimensional time, and refer to �j and Yj as the jump times and jump heights
respectively. Given � 2 L2(T ) and � 2 N0 the stochastic integral of � w.r.t. the �’th
power of the jumps of the process X is well defined as a L2-limit byZT �(t) �dXtdt �� dt = limN!1Xj Y �j �(�j)1(�j2TN );
where TN 2 BT have finite measure and increase to T . Especially denote byI(�) the stochastic integral of � 2 L2(T ) w.r.t. X. Given pairwise disjoint setsA1; : : : ; An 2 BT the random variables I(1A1); : : : ; I(1An) are stochastically inde-
pendent, and moreover I(1A) � NBh1AiL1(T );q; A 2 BT :

Let S = S (T ) be the Schwartz space of rapidly decreasing, smooth, real
valued functions defined on T , let S 0 = S 0(T ) be the dual space of tempered
Schwartz distributions, and let Sq be the subset of the complexification of S
given by Sq = �� 2 SC : jIm(�)j < � log q	:
Using the same technique as in the proof of lemma III.1 below, it follows that the
functional C(�) = E[exp({I(�))℄ is well defined and given byC(�) = exp�log� 1� q1� qe{���L1(T ) ; � 2 Sq: (III.1)

The restriction of the functional C to S satisfies C(0) = 1, is positive definite by
construction, and is easily seen to be continuous in the Fréchet topology onS . By
the Bochner-Minlos theorem, see e.g. Holden et al. (1996, p. 193), there thus exists
a probability measure � on the Borel �-algebra B(S 0) on S 0 with characteristic
functional C, i.e. C(�) = ZS 0 e{h!;�iS 0 d�(!); � 2 S : (III.2)

(III.4)
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Given �; � 2 S , j�j � 1, both sides of (III.2) with � = �+w� are analytic in the open
stripe w 2 C , jIm(w)j < � log q, and coincide for w 2 R. Thus (III.2) also holds
for � 2 Sq. The probability space (S 0;B(S 0); �) will henceforth be called the
negative binomial probability space. Denote by L2(S 0) = L2(S 0;B(S 0); �) the
Hilbert space of quadratic integrable, complex valued random variables equipped
with the inner producth�;  iL2(S 0) = ZS 0 �(!) (!) d�(!); �;  2 L2(S 0):
Easy calculations shows that the random variable h�; �iS 0, � 2 S , have mean value
and variance given byE� h�; �iS 0 = q1� q h�iL1(T ) ; Var� h�; �iS 0 = q(1� q)2 
�2�L1(T ) :
The map J : S ! L2(S 0) given byJ(�) = 1� qpq � h�; �iS 0 � E� h�; �iS 0 � = 1� qpq h�; �iS 0 �pq h�iL1(T )
thus extends to a linear isometry from L2(T ) to L2(S 0). Via this isometry the ab-
stract defined stochastic integral I(�) can be represented on the negative binomial
probability space by I(�) = h�; �iS 0. Similarly, the random variablesh�; �iS 0;� = limN!1Xj Y �j �(�j)1(�j2TN ); � 2 L2(T ); � 2 N0 ;
are well defined on (S 0;B(S 0); �). The following lemma describes the funda-
mental probabilistic behavior of the negative binomial probability space.

Lemma III.1 Given �1; : : : ; �n 2 S and �1; : : : ; �n 2 N0 the identityE� exp �{ nXl=1 h�; �liS 0;�l � = exp*log(1� q) + 1Xk=1 k�1qke{Pnl=1 �lk�l+L1(T )
holds true.

Proof The expectation E� exp({Pnl=1 h�; wl1AiS 0;�l), where w1; : : : ; wn 2 C and A 2BT , is equal to1Xj=0 ejAj log(1�q)(j!)�1 jAjj � 1Xk=1 k�1qke{Pnl=1 wlk�l�j= exp � jAj log(1� q) + jAj 1Xk=1 k�1qke{Pnl=1 wlk�l�:
To complete the proof approximate �l by elementary functions, and use stochastic
independence and dominated convergence. �

(III.5)
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III.3 The Hilbert space of quadratic integrable ran-

dom variables

In this section we describe the structure of the Hilbert space L2(S 0) using the so
called S-transform, see Hida et al. (1993), which transforms L2(S 0) into a Hilbert
space S of non-linear, complex valued functionals on Spq. The structure of the
Hilbert space S can be studied via the theory of reproducing kernel Hilbert spaces
as described in the classical paper by Aronszajn (1950).

The S-transform is the linear operator defined by normalizing the Fourier
transform, see Hida et al. (1993, p. 317), with the characteristic functional, i.e.(S�)(�) = C(�)�1 ZS 0 e{h!;�iS 0�(!) d�(!); � 2 L2(S 0); � 2 Spq:
If A1; : : : ; An 2 BT are pairwise disjoint, and �j 2 L2(S 0) is measurable w.r.t. the�-algebra generated by the jump times and jump heights of X in Aj, j = 1; : : : ; n,
then it easily follows that S nYj=1 �j = nYj=1 S�j:
In order to develop a workable calculus it is of great importance to calculate theS-transform of stochastic monomials. Observe that the mean of the stochastic
monomials are found by inserting � = 0 in lemma III.2.

Lemma III.2 Given �1; : : : ; �n 2 S and �1; : : : ; �n 2 N0 we have for � 2 Spq that�S nYl=1 h�; �liS 0;�l �(�) =X1 mY�=1*
�qe{�;Xl2F� �l � 1� Yl2F� �l+L1(T ) ;
where

P1
is the sum over m = 1; : : : ; n and all partitions F1; : : : ;Fm of f1; : : : ; ng.

Moreover, the functions 
(w;m) =P1k=1 kmwk, m 2 f�1; 0g [ N , are given by
(w;�1) = � log(1� w); 
(w; 0) = w1� w; 
(w;m) = mXj=1 
mj wj(1� w)j+1 ;
where the coefficients 
mj, j = 1; : : : ; m, are given by
m1 = 1; 
mj = j(
m�1;j�1 + 
m�1;j); 
mm = m
m�1;m�1: (III.3)

Proof Using the definition of the S-transform, interchangeability of differentiation

(III.6)
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and integration, lemma III.1, and the rules of differentiation we find that�S nYl=1 h�; �liS 0;�l �(�) = C(�)�1 ZS 0 e{h!;�iS 0 nYl=1 h!; �liS 0;�l d�(!)= C(�)�1{�n �n�w1����wn ZS 0 e{h!;�iS 0+{Pnl=1 wlh!;�liS 0;�l d�(!)���w1=:::=wn=0= {�n �n�w1����wn exp* 1Xk=1 k�1qk�e{�k+{Pnl=1 wl�lk�l � e{�k�+L1(T ) �����w1=:::=wn=0=X1 mY�=1*
�qe{�;Xl2F� �l � 1� Yl2F� �l+L1(T ) ;
where

P1 and 
(w;m) are as defined above. The formulae for 
(w;�1) and
(w; 0) are well known, and the formulae for 
(w;m), m 2 N , are found recur-
sively using the identity��w
(w;m) = 1Xk=1 km+1wk�1 = w�1
(w;m+ 1); m 2 N0 : �

Let E be the algebra of stochastic exponentials, i.e. the algebra generated by
the random variables exp({ h�; �iS 0), � 2 Spq. The S-transform of a stochastic
exponential is given by�Se{h�;�iS 0�(�) = C(�)�1C(� + �); �; � 2 Spq:
The set of stochastic exponentials is known to be dense in L2(S 0), see Hida et al.
(1993, theorem 1.9), and as a consequence the S-transform is injective. The S-
transform is thus an isometric isomorphism between L2(S 0) and the Hilbert spaceS of functionals on Spq defined byS = �S� : � 2 L2(S 0)	;
equipped with the inner product hS�;S iS = h�;  iL2(S 0).
Theorem III.3 The Hilbert space S is a reproducing kernel Hilbert space over the setSpq with reproducing kernelK(�; �) = C(�)�1C(� � �)C(��)�1; �; � 2 Spq:
Proof First observeK(�; �) = C(��)�1�Se�{h�;�iS 0�(�); C(��) = C(�):

(III.7)
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Thus given �; � 2 Spq the inner product

Se{h�;�iS 0 ; K(�; �)�S is equal toC(�)�1 
Se{h�;�iS 0 ;Se�{h�;�iS 0�S = C(�)�1 
e{h�;�iS 0 ; e�{h�;�iS 0�L2(S 0)= C(�)�1C(� + �) = �Se{h�;�iS 0�(�):

This proves the reproducing kernel property for the dense set of stochastic expo-
nentials, and hence the theorem. �

There is a bijective correspondence between reproducing kernel Hilbert spaces
and their reproducing kernels. In order to give an orthogonal decomposition of
the Hilbert space S we thus rewrite the kernel K(�; �) as a sum of more simple
kernels. The remaining analysis contained in this paper relies of the following
particular and somewhat arbitrary decompositionK(�; �) = exp h ZT log�(1� qe{�(t))(1� qe�{�(t))(1� q)(1� qe{�(t)�{�(t)) � dti= exp h� ZT log�1� q 1� e{�(t)1� qe{�(t) 1� e�{�(t)1� qe�{�(t)� dti= exp hXk2N k�1 ZT �q 1� e{�(t)1� qe{�(t) 1� e�{�(t)1� qe�{�(t)�k dti=Yk2N Xn2N0(n!)�1k�n�ZT �q 1� e{�(t)1� qe{�(t) 1� e�{�(t)1� qe�{�(t)�k dt�n= X(nk)k2N2NN0 Yk2N(nk!)�1k�nk�ZT �q 1� e{�(t)1� qe{�(t) 1� e�{�(t)1� qe�{�(t)�k dt�nk=X~n2I K~n(�; �);
where I is the set of integer valued sequences with only finitely many non-zero
coordinates,K~n(�; �) =Yk2N qknkk�nk(nk!)�1 
&(�)k; &(�)k�nkL2(T ) ; �; � 2 Spq; (III.4)

and & : C n fi log pg ! C and &�1 : C n [1; q�1℄! C are defined by&(w) = 1� e{w1� qe{w ; &�1(w) = �{ log� 1� w1� qw�:
Observe the following identities, which will be of importance later,qe{w1� qe{w = q1� q �1� &(w)�; 11� qe{w = 1� q&(w)1� q : (III.5)

By a classical result of I. Schur, the elementwise product of two positive def-
inite matrices is again a positive definite matrix. Using this it easily follows that

(III.8)



III.3. The Hilbert space of quadratic integrable random variables 71

the kernels K~n(�; �) are positive definite. Recall that L̂2(Tm) is the Hilbert space
of quadratic integrable, complex valued functions f(t1; : : : ; tm) that are invariant
under permutations of the arguments t1; : : : ; tm 2 T . We need the following two
technical lemmas, which are proved in the appendix.

Lemma III.4 Let F be a linear subspace of L2(T ) containing an orthonormal basis�n 2 SC , n 2 N , for L2(T ). Then linear mapping Un given byUn(
̂nj=1��j)(�) = (n!) 12�Yi2N jfj : �j = igj!�� 12 
�
n
̂nj=1��j�L̂1(Tn) ; (III.6)� 2 F , ~� 2 Nn , is an isometric isomorphism from L̂2(T n) to the reproducing kernel

Hilbert space generated by the kernel h�; �inL2(T ), �; � 2 F .

Lemma III.5 Given distinct ~n1; ~n2 2 I and fi 2 
k2NL̂2(T nik), i = 1; 2, such thatf1 6= 0, there exists � 2 C10 (T ) such thatXi=1;2 

k2N(�k)
nikfi�L1(T~ni+) 6= 0:
Let S~n, ~n 2 I, be the reproducing kernel Hilbert space over the set Spq gener-

ated by the kernel K~n(�; �) defined in (III.4).

Lemma III.6 Let �n 2 SC , n 2 N, be an orthonormal basis for L2(T ). Then the

linear mapping U~n given byU~n�
k2N 
̂nkj=1��kj�=Yk2N q knk2 k�nk2 �Yi2N jfj : �kj = igj!�� 12 D�&(�)k�
nk
̂nkj=1��kjEL̂1(Tnk ) ; (III.7)~�k 2 Nnk , k 2 N , is an isometric isomorphism from 
k2NL̂2(T nk) to S~n.
Proof We first extend the kernel K~n(�; �) on Spq to the product set S Npq, i.e. let

the kernel ~K~n(~�; ~�) be given by~K~n(~�; ~�) =Yk2N qknkk�nk(nk!)�1 
&(�k)k; &(�k)k�nkL2(T ) ; ~�; ~� 2 S Npq:
By lemma III.4 the linear mapping Un defined in (III.6) is an isometric isomor-
phism from L̂2(T n) to the reproducing kernel Hilbert space generated by the ker-
nel h�; �inL2(T ). Moreover, by Aronszajn (1950, theorem I.8.I) the linear mapping~U~n determined by~U~n�
k2N 
̂nkj=1��kj�(~�)=Yk2N q knk2 k�nk2 �Yi2N jfj : �kj = igj!�� 12 D�&(�k)k�
nk
̂nkj=1��kjEL̂1(Tnk ) ;

(III.9)
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k2NL̂2(T nk) to the
reproducing kernel Hilbert space ~S~n generated by the kernel ~K~n(~�; ~�). Givenf 2 
k2NL̂2(T nk), f 6= 0, there exists by lemma III.5 a vector ~� = (�)k2N, � 2 Spq,
such that ~U~n(f)(~�) 6= 0. The linear mapping from ~S~n to S~n given by restricting
the functionals to the diagonal is thus injective, and (III.7) follows by Aronszajn
(1950, theorem I.5). �
Remark Let two random variables �;  2 L2(S 0) be given. If the pointwise prod-
uct S(�) � S( ) belongs to the space S, then the Wick product � �  is defined
by S(� �  ) = S(�) � S( ):
It follows directly from lemma III.6, cf. also theorem III.10 below, that the Wick
product is easily expressed in the introduced structure. We will however not dis-
cuss the Wick product further.

We are now in position to formulate and prove the main result of this section.

Theorem III.8 The Hilbert space S has a orthogonal sum decompositionS =M~n2I S~n 'M~n2IOk2N L̂2(T nk);
where the isomorphism between S~n and 
k2NL̂2(T nk) is given by (III.7).

Proof It only remains to prove orthogonality of the spacesS~n, ~n 2 I. By Aronszajn
(1950, theorem I.6) it suffices to prove that S~n1 \ S~n2 = f0g for given distinct~n1; ~n2 2 I. If � 2 S~n1 \ S~n2, then by lemma III.6 there exist fi 2 
k2NL̂2(T nik),i = 1; 2, such that � = D
k2N�&(�)k�
nikfiEL1(T~ni+ ) ; i = 1; 2:
By lemma III.5, f1 = 0 since0 = �� � = Xi=1;2D
k2N�&(�)k�
nik(�1)1+ifiEL1(T~ni+) ;
and hence � = 0. �
Remark Consider the subspaces S(n), n 2 N0 , and their corresponding kernelsK(n)(�; �) given byS(n) = M~n2I(n)S~n; K(n)(�; �) = X~n2I(n)K~n(�; �):

(III.10)
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Given � 2 Spq and v 2 [0; 1℄ let �v = &�1(v&(�)) 2 Spq. Then1Xm=0 vmK(m)(�; �) = 1Xm=0K(m)(�; �v) = K(�; �v):
Thus given �; � 2 Spq and v; w 2 [0; 1℄,1Xm;n=0 vmwn 
K(m)(�; �); K(n)(�; �)�S = * 1Xm=0 vmK(m)(�; �);Xn2N0 wnK(n)(�; �)+S= hK(�; �v); K(�; �w)iS = K(�w; �v) = Xn2N0 K(n)(�w; �v)= Xn2N0 vnwnK(n)(�; �):
Comparing the coefficients of the monomials vmwn, m;n 2 N0 , it follows that
K(m)(�; �); K(n)(�; �)�S = (K(n)(�; �) for m = n,0 for m 6= n:
This reprove the orthogonality of the subspaces S(n), n 2 N0 , using direct calcu-
lations on the corresponding kernels. For more simple processes, e.g. the Poisson
processes as treated in Itô (1988), this method might suffice to prove orthogo-
nality of the component spaces, and the use of lemma III.5 can in such cases be
avoided.

III.4 The chaos decomposition

In this section we derive a chaos decomposition of the negative binomial proba-
bility space, i.e. we find a orthonormal basis for the space L2(S 0). The analysis
done in section III.3 gives isometric isomorphisms S and U = �~n2IU~n between the
Hilbert spaces L2(S 0) and S respectively �~n2I 
k2N L̂2(T nk) and S. To find the
chaos decomposition of L2(S 0) we thus need to find the isomorphismV = S�1 Æ U = �~n2IV~n; V~n = S�1 Æ U~n;
that fits into the commuting diagramL2(S 0) S

// S:L~n2INk2N L̂2(T nk)U 77
o

o
o

o
o

o
o

o
o

o
o

o
o

V OO

In this section we describe a direct approach to find the isomorphisms V~n, and
in subsection III.4.1 we discuss the minor role played by the multiple integrals. In
subsection III.4.2 we calculate the chaos expansion for some polynomial function-
als without appealing to theorem III.10. These expansions can be inverted, and
thus describe the isomorphisms V~n indirectly.

(III.11)
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Theorem III.10 Given ~n 2 I(n) and �kj 2 S , k 2 N , j = 1; : : : ; nk, the random

variable V~n�
k2N 
̂nkj=1�kj� (III.8a)

is equal to the sum over all ~n1 � ~n, all Fk � f1; : : : ; nkg with jFkj = n1k, and all~nkj 2 I(k), k 2 N , j 2 {Fk = f1; : : : ; nkg n Fk, of the terms�Yi2N ini2 �n1i�n2i(ni!)� 12�Yk2N Yj2{Fk nkji!��1q� ini2 +in1i(qi � 1)n2i���Yk2N Yj2Fk h�kjiL1(T ) � Yk2N Yj2{Fk h�; �kjiS 0;~nkj+ � XGk�{Fk:PkjGkj�2(�1)PkjGkj�Xk2N jGkj � 1�*�;Yk2N Yj2Gk �kj+S 0;Pk2N;j2Gk ~nkj+Yk2N Yj2({Fk)nGk h�; �kjiS 0;~nkj+ !;
(III.8b)

where ~n2 =Pk;j ~nkj.
Proof For w 2 [0; 1℄, � 2 Spq the identityS�1K��;�&�1(w�)� = C�&�1(w�)��1e{h�;&�1(w�)iS 0 (III.9)

follows from theorem III.3. SinceK~n��;�&�1(�)� =Yk2N qknkk�nk(nk!)�1 
&(�)k�k�nkL1(T )= �Yk2N q knk2 k�nk2 (nk!)� 12�U~n�
k2N (�k)
nk�;
the left hand side of (III.9) is given byX~n2I S�1K~n��;�&�1(w�)� =X~n2I w~n�S�1K~n��;�&�1(�)�= Xn2N0 wn X~n2I(n) �Yk2N q knk2 k�nk2 (nk!)� 12�V~n�
k2N (�k)
nk�:
The two factors on the right hand side of (III.9) are respectively given byC�&�1(w�)��1 = exp*log�1� qe{&�1(w�)1� q �+L1(T )= exp h� log(1� qw�)iL1(T ) = exp*Xk2N k�1qkwk�k+L1(T )=X~n2I w~n�Yk2N qknkk�nk(nk!)�1 
�k�nkL1(T ) ;

(III.12)
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ande{h�;&�1(w�)iS 0 = exp��; log� 1� w�1� qw���S 0 = exp*�;Xk2N k�1(qk � 1)wk�k+S 0=X~n2I w~n�Yk2N(qk � 1)nkk�nk(nk!)�1 
�; �k�S 0 :
Multiplying these two factors and comparing the coefficients of wn, n 2 N0 , on
both sides of (III.9), we see that the random variableX~n2I(n) �Yk2N q knk2 k�nk2 (nk!)� 12�V~n�
k2N (�k)
nk� (III.10a)

is equal toX~n1+~n22I(n)Yk2N qkn1k(qk � 1)n2kk�n1k�n2k(n1k!n2k!)�1 
�k�n1kL1(T ) 
�; �k�n2kS 0 : (III.10b)

By an approximation argument it easily follows that this equation holds for func-
tions � 2 L1(T ) \ L1(T ) too.

Let ~n0 2 I(n) and �kj 2 S with compact support, k 2 N , j = 1; : : : ; n0k, be
fixed. In order to separate the term with ~n = ~n0 in the sum (III.10a), we will use
the fact that ~n0 is characterized in I(n) byf~n0g = n~n =Xk2N n0kXj=1 ~nkj 2 I(n) : ~nkj 2 I(k)o \ �~n 2 I(n) : ~n+ � ~n0+	:
The multi indices in the first set can be isolated via a polarization argument, and
the multi indices in the second set can be isolated via dimensionality.

We start with the polarization argument. Thus let CNm, m 2 N , be successively
finer partitions of T , N 2 N , such that supm2N h1CNmiL1(T ) vanishes as N ! 1,
and let tNm 2 CNm be given. Moreover given N 2 N , pairwise different mkj 2 N ,k 2 N, j = 1; : : : ; n0k, and ~� 2 f�1;+1gn let�N;~m;~� = nXi=1 �i�N;~m;i;
where exactly k of the functions �N;~m;i, i = 1; : : : ; n, equals �kj(tNmkj )1CNmkj . Using
polarization we see that2�n X~�2f�1;+1gn � nYi=1 �i� X~n2I(n) �Yi2N q ini2 i�ni2 (ni!)� 12�V~n�
i2N (�iN;~m;~�)
ni� (III.11a)

(III.13)
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is equal to X~nkj2I(k);k2N;j=1;::: ;n0k;~n=Pk;j ~nkj �~n � �Yi2N q ini2 i�ni2 (ni!)� 12�V~n�
i2N �
̂k2N
̂n0kj=1��ikj(tNmkj )1CNmkj �
nkji��; (III.11b)

where �~n is a combinatorial constant counting the number of times the factor in
(III.11b) occurs when the functions �N;~m;l, l = 1; : : : ; n, are permuted. Actually�~n is sloppy notation since this quantity depends on all the multi indices ~nkj, but
we stick to it for convenience. To compute �~n we first subdivide the numbers of
the k functions �N;~m;l which equal �kj(tNmkj )1CNmkj into ~nkj+ subsets Akjih, i 2 N ,h = 1; : : : ; nkji, such that Akjih has size i. For each k 2 N , j = 1; : : : ; n0k, i 2 N , the
subsets Akjih, h = 1; : : : ; nkji, have already been permuted. We thus continue by
permuting for each i 2 N the subsets Akjih, k 2 N , j = 1; : : : ; n0k, h = 1; : : : ; nkji,
subject to the constraint that subsets Akjih with the same value of (k; j) are kept
in a fixed order, and finally we permute the elements inside the subsets Akjih.
Whence, �~n = �Yk2N n0kYj=1 k!Qi2N(i!)nkji��Yi2N ni!Qk2NQn0kj=1 nkji!��Yi2N(i!)ni�= �Yk2N(k!)n0k��Yi2N ni!Qk2NQn0kj=1 nkji!�:

The argument of the operator V~n is a function of ~n+ variables. Hence if ~n is
one of the multi indices in the sum (III.11b) with ~n+ > ~n0+, then the sum over
pairwise different mkj 2 N , k 2 N , j = 1; : : : ; n0k, of the term corresponding to~n vanishes in L2(S 0) as N ! 1. Since ~n0, i.e. when ~nkj = ~"k, is the only multi
index in the sum (III.11b) with ~n+ = ~n0+, it follows by using the identity
k2N
̂n0kj=1�kkj = limN!1 Xmkj pairwise

different


k2N
̂n0kj=1�kkj(tNmkj )1CNmkj
in 
k2NL̂2(T n0k), that the limit in L2(S 0) as N ! 1 of the sum over pairwise
different mkj 2 N of the random variables (III.11a) equals�Yi2N(i!)n0in0i!�| {z }�~n0 �Yi2N q in0i2 i�n0i2 (n0i!)� 12�V~n0�
i2N 
̂n0ij=1�iij�: (III.12)

Now we use the same procedure on the random variable (III.10b). Polarizing
(III.10b) we similarly find that2�n X~�2f�1;+1gn � nYi=1 �i� X~n1+~n22I(n)Yi2N qin1i(qi � 1)n2ii�n1i�n2i(n1i!n2i!)�1 
�iN;~m;~��n1iL1(T ) h�; �N;~m;~�in2iS 0;1 (III.13a)

(III.14)
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is equal to X~n1kj+~n2kj2I(k);k2N;j=1;::: ;n0k;~nl=Pk;j ~nlkj ;l=1;2 �~n1;~n2Yi2N qin1i(qi � 1)n2ii�n1i�n2i(n1i!n2i!)�1Yk2N n0kYj=1D�ikj(tNmkj )1CNmkjEn1kjiL1(T ) D�; �ikj(tNmkj )1CNmkjEn2kjiS 0;1 ; (III.13b)

where �~n1;~n2 is a combinatorial constant counting the number of times the factor
in (III.13b) occurs when the functions �N;~m;l, l = 1; : : : ; n, are permuted. By an
argument similar to the one above, we find that�~n1;~n2 = �Yk2N n0kYj=1 k!Qi2N(i!)n1kji+n2kji�� Yl=1;2Yi2N nli!Qk2NQn0kj=1 nlkji! (i!)nli�= �Yk2N(k!)n0k�� Yl=1;2Yi2N nli!Qk2NQn0kj=1 nlkji!�:

If there is at most one jump of the underlying Poisson process inside each of
the sets CNm intersecting the support of the functions �kj, then (III.13b) is equal
to X~n1kj+~n2kj2I(k);k2N;j=1;::: ;n0k;~nl=Pk;j ~nlkj ;l=1;2 �~n1;~n2�Yi2N qin1i(qi � 1)n2ii�n1i�n2i(n1i!n2i!)�1Yk2N n0kYj=1D�ikj(tNmkj )1CNmkjEn1kjiL1(T )� Y(k;j):~n2kj 6=0D�; �~n2kj�kj (tNmkj )1CNmkjES 0;~n2kj+ :

(III.14)

Using the same reasoning as above, i.e. counting the dimension of the argu-
ments, it follows that the limit in L2(S 0) as N ! 1 of the sum over pairwise
different mkj of the random variables (III.14) equalsX~n1�~n0Fk�f1;::: ;n0kg;jFkj=n1k~n2kj2I(k);k2N;j2{Fk �Yi2N(i!)n0in1i! n2i!Qk2NQj2{Fk n2kji!�| {z }�~n1;~n2�Yi2N qin1i(qi � 1)n2ii�n1i�n2i(n1i!n2i!)�1 Yj2Fi 
�iij�L1(T )�� limN!1 Xmkj ;k2N;j2{Fk

pairwise different

Yk2N Yj2{Fk D�; �kkj(tNmkj )1CNmkjES 0;~n2kj+ �; (III.15)

(III.15)
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where ~n2 =Pk;j ~n2kj. Using the inclusion-exclusion type algebraic identityXmk pairwise
different

KYk=1 fk(tmk) = KYk=1Xm2N fk(tm)� XG, H partition off1;::: ;Kg;jGj�2(�1)jGj(jGj � 1)�Xm2NYk2G fk(tm)��Yk2HXm2N fk(tm)�;
we see that the last factor in (III.15) is equal to Yk2N Yj2{Fk 
�; �kkj�S 0;~n2kj+ � XGk�{Fk:PkjGkj�2(�1)Pk jGkj�Xk2N jGkj � 1�*�;Yk2N Yj2Gk �kkj+S 0;Pk2N;j2Gk ~n2kj+Yk2N Yj2({Fk)nGk 
�; �kkj�S 0;~n2kj+ !: (III.16)

Since the probability that for fixed N 2 N there exist pairwise different mkj,k 2 N, j = 1; : : : ; n0k, such that (III.13b) and (III.14) differs is bounded byXm2N:CNm\([k;j supp(�kj )) 6=; 1� (1 + �)e������=� log(1�q)�h1CNmiL1(T )� � log(1� q)�2 supm2N h1CNmiL1(T ) Xm2N:C1m\([k;j supp(�kj )) 6=; h1C1miL1(T ) ;
which vanishes as N ! 1, the two L2(S 0) limits (III.12) and (III.15) are equal.
After replacing �kkj by �kj, inserting (III.16) in (III.15), and simplifying and rear-
ranging the factors, the statement of the theorem follows for ~n = ~n0 and functions�kj 2 S with compact support. Since the functions � 2 S with compact support
are dense, the theorem follows. �
Remark The argument allowing us to approximate the random variable (III.13b)
by (III.14) depends on the fact, that the Lévy process under consideration, i.e.

the negative binomial process, is a compound Poisson process with bounded Lévy
measure. If we were to consider a Lévy process with infinite Lévy measure, e.g. a�-process, then care had to be taken at exactly this point.

If we take a close look at equation (III.8b), we see that the random variableV~n0(
k2N
̂n0kj=1�kj) is a linear combination of random variables of the formY(k;j)2F h�; �kjiS 0;�kj or

*�; Y(k;j)2G �kj+S 0;� Y(k;j)2F h�; �kjiS 0;�kj ; (III.17)

(III.16)
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where the coefficients are polynomials in the numbers h�kjiL1(T ). If the set I~n0 is
defined byI~n0 = �~n 2 I : ~n� < ~n0�; ~n+ � ~n0+ or ~n� � ~n0�; ~n+ < ~n0+	;
then it is easily seen thatYk2N n0kYj=1 h�; �kjiS 0;(k~"1)+ =Yk2N n0kYj=1 h�; �kjiS 0;k (III.18)

is the only random variable of the type (III.17) which does not occur in the for-
mula for V~n(
k2N
̂nkj=1�kj) for some ~n 2 I~n0 and some products �kj of the functions�kj. Consequently random variables of the form (III.18) are linearly indepen-
dent for different multi indices ~n0 or linearly independent elements 
k2N
̂n0kj=1�kj
in 
k2NL̂2(T n0k). Thus if 
k2N
̂nkj=1��kj , ~� 2 J~n, is an orthonormal basis for
k2NL̂2(T n0k), then every � 2 L2(S 0) has a unique representation� = �0 + X~n2Inf0g X~�2J~n �~n;~�Yk2N nkYj=1 
�; ��kj�S 0;k :

From this construction it follows that we can define an operator� : L2(S 0)! L2(S 0)
by��Yk2F h�; �kiS 0;�k � =XG�F :jGj�2(�1)jGj� jGj � 1�*�;Yk2G �k+S 0;Pk2G �k Yk2FnG h�; �kiS 0;�k ; (III.19)

where F is finite, and �k 2 S , �k 2 N . Since the diagonals in T ~n+ have zero mea-
sure, the random variable V~n(f) does not depend on the behavior of the argumentf 2 
k2NL̂2(T nk) on the diagonals, i.e. where two or more of the arguments of f
are equal. This is implemented via equation (III.16), where the term subtracted is
the image under � of the first term. The operator � thus describes the effect from
the diagonals. Moreover given ~n 2 I and �kj 2 S we find thatV~n�
k2N 
̂nkj=1�kj� = �Yk2N nk!�� 12 (I ��)�Yk2N nkYj=1V~"k(�kj)�; (III.20)

and specializing theorem III.10 to ~n = ~"n, n 2 N , and given � 2 S , we find thatV~"n(�) = n� 12 q n2 h�iL1(T ) + n 12 q�n2 X~n2I(n) �Yk2N k�nk(qk � 1)nk� h�; �iS 0;~n+ : (III.21)

(III.17)
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Equations (III.19), (III.20) and (III.21) give an alternative description of the
operators V~n, ~n 2 I. In order to illustrate the structure of the basis elementsV~n�
k2N 
̂nkj=1�kj�;
we have calculated the random variables V~"1(�1), V~"2(�1), V2~"1(�1
̂�2), V~"3(�1),V~"1+~"2(�1 
 �2) and V3~"1(�1
̂�2
̂�3), where �1; �2; �3 2 L2(T ). These random vari-
ables are given by q 12 h�1i+ q� 12 (q � 1) h�; �1i1 ;2� 12 q h�1i+ 2� 12 q�1(q2 � 1) h�; �1i1 + 2� 12 q�1(q � 1)2 h�; �1i2 ;2� 12 q h�1i h�2i+ 2� 12 (q � 1)� h�1i h�; �2i1 + h�2i h�; �1i1 �+2� 12 q�1(q � 1)2� h�; �1i1 h�; �2i1 � h�; �1�2i2 �;3� 12 q 32 h�1i+ 3� 12 q� 32 (q3 � 1) h�; �1i1+2�13 12 q� 32 (q � 1)(q2 � 1) h�; �1i2 + 2�13� 12 q� 32 (q � 1)3 h�; �1i3 ;2� 12 q 32 h�1i h�2i+ 2� 12 q 12 (q � 1) h�2i h�; �1i1+2� 12 q� 12 (q2 � 1) h�1i h�; �2i1 + 2� 12 q� 12 (q � 1)2 h�1i h�; �2i2+2� 12 q� 32 (q � 1)(q2 � 1)� h�; �1i1 h�; �2i1 � h�; �1�2i2 �+2� 12 q� 32 (q � 1)3� h�; �1i1 h�; �2i2 � h�; �1�2i3 �;6� 12 q 32 h�1i h�2i h�3i+6� 12 q 12 (q � 1)� h�1i h�2i h�; �3i1 + h�1i h�3i h�; �2i1 + h�2i h�3i h�; �1i1 �+6� 12 q� 12 (q � 1)2h h�1i � h�; �2i1 h�; �3i1 � h�; �2�3i2 �+ h�2i � h�; �1i1 h�; �3i1 � h�; �1�3i2 �+ h�3i � h�; �1i1 h�; �2i1 � h�; �1�2i2 �i+6� 12 q� 32 (q � 1)3� h�; �1i1 h�; �2i1 h�; �3i1 � h�; �1i1 h�; �2�3i2�h�; �2i1 h�; �1�3i2 � h�; �3i1 h�; �1�2i2 + 2 h�; �1�2�3i3 �:
III.4.1 Multiple stochastic integrals

In this subsection the multiple integrals w.r.t. the negative binomial process are
introduced, and their role is discussed. Suppose � 2 L̂2(T n) is elementary, i.e.� = X~�2Nn :�1�:::��n a~�
̂nj=11A�j ; (III.22)

where An 2 BT , n 2 N , is a partition of T , and the coefficient a~� 2 C vanishes if
two coordinates of ~� coincide. Then the multiple integral In(�) and the compen-

(III.18)
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sated multiple integral I�n(�) are defined byIn(�) = X~�2Nn :�1�:::��n a~� nYj=1 D�; 1A�jES 0 ;I�n(�) = X~�2Nn :�1:::��n a~� nYj=1 �D�; 1A�jES 0 � E� D�; 1A�jES 0 �: (III.23)

For non-elementary functions � the multiple integrals are defined by L2-limits.

Theorem III.12 The closure in L2(S 0) of the linear span of the multiple integrals

and of the compensated multiple integrals both equalMn2N0 Vn~"1�L̂2(T n)�:
Moreover given � 2 L̂2(T n),S�I�n(�)� = � �q1� q�n 
&(�)
n��L̂1(Tn) : (III.24)

Proof It is seen from (III.23) that the compensated multiple integrals of elemen-
tary functions can be expressed as sums of multiple integrals of elementary func-
tions, and visa versa. The closure in L2(S 0) of the linear span of these quantities
thus coincide. Moreover if � is given by (III.22), then by lemma III.2S�I�n(�)� = X~�2Nn :�1�:::��n a~�� �q1� q�n nYj=1D&(�)1A�jEL̂1(T ) :
Equation (III.24) thus follows by taking L2-limits. The proof is completed by com-
bining equations (III.7) and (III.24). �
Remark The decomposition given in theorem III.10 is considerably more compli-
cated than the orthogonal decomposition for the corresponding Hilbert spaces in
the Gaussian and in the Poisson case, whereL2(S 0) 'Mn2N L̂2(T n):
Especially the multiple stochastic integrals do not span L2(S 0) in the negative
binomial case as they do in the Gaussian and in the Poisson case. There is an
intuitive explanation for this fact. As a compound Poisson process the negative
binomial process on the parameter set T is in a natural correspondence with a
Poisson process on T � N , whence there exists a natural isomorphism between
the Hilbert spaces supported by the two processes. But in contrast to the negative
binomial process, the integrand in the multiple integrals w.r.t. the Poisson process
on T � N may depend non-linearly on the component N , i.e. the jump heights.

(III.19)
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III.4.2 Polynomial functionals

In this subsection we give the chaos expansion of some polynomial functionals on
the negative binomial probability space. In general these chaos expansions can be
found via lemma III.2. A typical example is the following theorem.

Theorem III.14 Given � 2 S we have thath�; �iS 0;0 = � log(1� q) � h�iL1(T ) � 1Xk=1 k� 12 q k2V~"k(�);h�; �iS 0;1 = q1� q h�iL1(T ) � q 121� qV~"1(�);
and given n � 2, � 2 S , the random variable h�; �iS 0;n is equal ton�1Xj=1 
n�1;j qj(1� q)j+1 h�iL1(T ) + nXk=1(�1)kk 12 1k�2 � 
n�1;k�1 q k2(1� q)k+ n�1Xj=k �� jk � 1�q + �jk��
n�1;j qj� k2(1� q)j+1!V~"k(�);
where 
nj are the coefficients defined in (III.3).

Proof Lemma III.2 and equation (III.5) gives that (S h�; �iS 0;n)(�), where n � 2,� 2 S and � 2 Spq, is equal to

(qe{�;n� 1)��L1(T ) = n�1Xj=1 
n�1;j � (qe{�)j(1� qe{�)j+1��L1(T )= n�1Xj=1 
n�1;j qj(1� q)j+1 
(1� &(�))j(1� q&(�))��L1(T )= n�1Xj=1 jXk=0 
n�1;j qj(1� q)j+1�jk�(�1)k 
�&(�)k � q&(�)k+1���L1(T ) ;
which is equal ton�1Xj=1 
n�1;j qj(1� q)j+1 h�iL1(T ) + nXk=1(�1)k 1k�2 � 
n�1;k�1 qk(1� q)k+ n�1Xj=k �� jk � 1�q + �jk��
n�1;j qj(1� q)j+1! 
&(�)k��L1(T ) :

(III.20)
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The third statement now follows by applying S�1 on both sides, and using lemma
III.6. The first two statements follow similarly from the calculations�S h�; �iS 0;0 �(�) = 
�� log �1� qe{���L1(T ) = �� log�1� q&(�)1� q ��L1(T )= � log(1� q) h�iL1(T ) � 1Xk=1 k�1qk 
�&(�)k�L1(T )= � log(1� q) � h�iL1(T ) � 1Xk=1 k� 12 q k2U~"k(�)(�);
and�S h�; �iS 0;1 �(�) = � qe{�1� qe{� ��L1(T ) = q1� q� h�iL1(T ) � h&(�)�iL1(T ) �: �

Equation (III.21) and theorem III.14 shows, that for every n 2 N there are
linear transformations between the random variables V~"k(�), k = 1; : : : ; n, andh�; �iS 0;k, k = 1; : : : ; n. Alternatively the operators V~"n, n 2 N , can thus be found
by inverting the formulae given in theorem III.14. We similarly see that the oper-
ators V~n, ~n 2 I, can be found by inverting the chaos expansion of the polynomial
functionals (III.18). But since we already have formulae for the operators V~n, we
will not continue this line of investigation further.

We complete this subsection by considering the orthogonal polynomials w.r.t.
the negative binomial distribution, i.e. the Meixner polynomials mn(x; �; 
), n 2N0 , of the first kind with parameters 0 < 
 < 1, � > 0. According to Chihara
(1978, p. 176) these polynomials are defined bymn(x) = mn(x; �; 
) = (�1)nn! nXk=0 �xk���x� �n� k �
�k:
Theorem III.15 Given n 2 N0 and A 2 BT we have thatmn� h�; 1AiS 0 ; h1AiL1(T ) ; q� = n!q�n2 X~n2I(n) �Yk2N k�nk2 (nk!)� 12�V~n�1
~n+A �:
Proof Inserting � = 1A on both sides of (III.9) gives thatXn2N0 wn X~n2I(n) �Yk2N q knk2 k�nk2 (nk!)� 12�V~n�1
~n+A �
is equal toC�&�1(w1A)�e{h�;&�1(w1A)iS 0 = (1� qw)h1AiL1(T )� 1� w1� qw�h�;1AiS 0= (1� w)h�;1AiS 0 (1� qw)�h�;1AiS 0�h1AiL1(T )= Xn2N0 mn� h�; 1AiS 0 ; h1AiL1(T ) ; q�(n!)�1qnwn:

(III.21)
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The last identity follows by Chihara (1978, p. 176, equation (3.3)). The corollary
now follows by comparing the coefficients of wn, n 2 N0 , and rearranging the
factors. �
III.5 Malliavin calculus

In this section we investigate possible choices of a Malliavin calculus on the nega-
tive binomial probability space. Our analysis is based on some abstract properties
of a Malliavin derivative operator D. Usually D is chosen as some kind of varia-
tional derivative with a physical interpretation, and in the subsections we describe
the operators associated to derivation w.r.t. the jump times respectively the jump
heights. A Malliavin derivative operator is a closed, densely defined, unbounded,
linear operator D : L2(S 0)! L2(S 0 � T ) ' L2(S 0)
 L2(T )
that satisfies the product rule, i.e. for �1; �2; �1�2 2 Dom(D) the following identity
holds D(�1�2)(!; t) = (D�1)(!; t) � �2(!) + �1(!) � (D�2)(!; t):
The tensor product L2(S 0) 
 L2(T ) can be identified with the space of linear op-
erators from L2(T ) to L2(S 0). Thus given a Malliavin operator D and a function� 2 L2(T ) let D� : L2(S 0)! L2(S 0) be the associated operator.

Let L2ray(S 0) be the closed linear subspace of L2(S 0) spanned by the random
variables V~"n(�), n 2 N , � 2 L2(T ), and let L2�n(S 0) be the linear subspace ofL2(S 0) consisting of the random variables with finite chaos expansion and smooth
kernels, i.e.L2ray(S 0) = n� = z +Xn2N V~"n(�n) 2 L2(S 0) : z 2 C ; �n 2 L2(T )o;L2�n(S 0) = n� = KXk=1 V~nk(fk) 2 L2(S 0) : K 2 N ; ~nk 2 I; fk 2 
j2NS 
̂nkjC o:
Observe that the elements in L2�n(S 0) can be written as a finite sum of finite prod-
ucts of elements from L2ray(S 0), and that L2�n(S 0) is dense in L2(S 0) and closed
under multiplication.

Lemma III.16 If the operator ~D� : L2
fin(S 0) ! L2(S 0) satisfies the product rule,

commutes with the operator � defined in (III.19), and acts invariantly on L2ray(S 0),
then E� ~D�V~n(f) = 0; f 2 
k2NL̂2(T nk);
for every ~n 2 I with ~n+ � 2.

(III.22)
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Proof Since ~D� acts invariantly on L2ray(S 0), there exist linear functionals An :L2(T )! C and linear operators Anl : L2(T )! L2(T ) such that~D� Æ V~"n = An +Xl2N V~"l ÆAnl; n 2 N :
Let ~n 2 I, ~n+ � 2, and �kj 2 S , k 2 N , j = 1; : : : ; nk, be given. Using equation
(III.20), ~D� Æ� = � Æ ~D� , and the product rule, we thus find thatE� ~D�V~n�
k2N 
̂nkj=1�kj� = �Yk2N nk!�� 12 E� ~D� Æ (I ��)�Yk2N nkYj=1V~"k(�kj)�= �Yk2N nk!�� 12 Xk02N nk0Xj0=1E�(I ��) Æ �~D�V~"k0 (�k0j0) Y(k;j)6=(k0;j0)V~"k(�kj)�= �Yk2N nk!�� 12 Xk02N nk0Xj0=1�Ak0(�k0j0) E�(I ��)� Y(k;j)6=(k0;j0)V~"k(�kj)�+Xl2N E�(I ��)�V~"l�Ak0l(�k0j0)� Y(k;j)6=(k0;j0)V~"k(�kj)��= �Yk2N nk!�� 12 Xk02N nk0Xj0=1�Ak0(�k0j0) E� V~n�~"k0�
k2N 
̂(k;j)6=(k0;j0)�kj�+Xl2N E� V~n�~"k0+~"l��
k2N 
̂(k;j)6=(k0;j0)�kj�
̂(l)Ak0l(�k0j0)��= 0;
where 
̂(l)

means that the symmetric tensor product is taken between the l’th
component of the first factor and the second factor. �

The Malliavin operator D being closed is equivalent to the adjoint operatorÆ : L2(S 0)
 L2(T )! L2(S 0)
being densely defined. Among the unbounded operators are those which are
closed certainly the nicest ones, and in many applications of Malliavin calculus,
e.g. derivations of density criterions or calculations of densities, is the use of the
adjoint operator crucial and if its domain were not dense, then this operator could
often not be employed. Thus if we are given an operator~D : L2�n(S 0)! L2(S 0)
 L2(T )
which satisfies the product rule, then the question is whether there exists a closed
extension D of ~D. Given a vanishing sequence �N 2 L2�n(S 0), N 2 N , such that

(III.23)



86 Paper III. Chaos decomposition and stochastic calculus~D��N converges to �� in L2(S 0) as N ! 1, we thus need to show that �� = 0,� 2 L2(T ). If for every � 2 L2(T ) there exists Æ(�) 2 L2(S 0) such thatE� ~D�V~n(f) = E� �V~n(f)Æ(�)�; ~n 2 I; f 2 
k2NS 
̂nkC ; (III.25)

then for every �0 2 L2�n(S 0),
��; �0�L2(S 0) = limN!1E� �(~D��N)�0� = limN!1E� �~D�(�N�0)� �N(~D��0)�= limN!1E� ~D�(�N�0) = limN!1E� ��N�0Æ(�)�= 0:
Since L2�n(S 0) is dense in L2(S 0), it follows that ~D is closable. The standard
method to construct a Malliavin operator D is thus to find a operator ~D and ran-
dom variables Æ(�) 2 L2(S 0), � 2 L2(T ), such that (III.25) holds. If ~D� commutes
with � and acts invariantly on L2ray(S 0), then equation (III.25) and lemma III.16
give E� Æ(�) = E� ~D�1 = 0;E� �Æ(�)V~n(f)� = E� ~D�V~n(f) = 0; ~n 2 I; ~n+ � 2;E� �Æ(�)V~"n(�)� = E� ~D�V~"n(�); n 2 N :
Thus if �j 2 S , j 2 N , is an orthonormal basis for L2(T ), then the chaos decom-
position of Æ(�) is given byÆ(�) =Xn2NXj2N �E� ~D�V~"n(�j)�V~"n(�j): (III.26)

Concerning the choice of the operator ~D observe that by the product rule ~D is
determined by its action on L2ray(S 0), and hence by the images ~D� h�; �iS 0;n, n 2 N ,�; � 2 S .

III.5.1 Variational derivation w.r.t. jump times

In the case of derivation w.r.t. the jump times ~D is given by~D� h�; �iS 0;n = ~D�Xj Y nj �(�j) =Xj Y nj �(�j) ����(�j + �)=Xj Y nj �(�j) �0(�j) = h�; ��0iS 0;n ; �; � 2 S ; n 2 N :
It is clear that ~D� acts invariantly on L2ray(S 0). Moreover by the Leibniz rule of
differentiation, i.e. �Yk2G �k�0 =Xk2G �0k Yj2Gnfkg �j;

(III.24)
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it follows that ~D� commutes with �. Using equation (III.21) we find that~D�V~"n(�) = V~"n(��0)� n� 12 q n2 h��0iL1(T ) = V~"n(��0) + n� 12 q n2 h� 0�iL1(T ) ;
whence E� ~D�V~"n(�) = n� 12 q n2 h� 0; �iL2(T ). Inserting an orthonormal basis �j 2 S ,j 2 N , for L2(T ) we thus see that Æ(�), � 2 L2(T ), is given byÆ(�) =Xn2N n� 12 q n2 V~"n(� 0)= � log(1� q) � h� 0iL1(T ) + X~n2Inf0g�Yk2N k�nk(qk � 1)nk� h�; � 0iS 0;~n+ ;
which converges in L2(S 0) with squared norm given bykÆ(�)k2L2(S 0) =Xn2N n�1qn k� 0k2L2(T ) = � log(1� q) � k� 0k2L2(T ) :
III.5.2 Variational derivation w.r.t. jump heights

In the case of derivation w.r.t. the jump heights ~D is given by~D� h�; �iS 0;n = ~D�Xj Y nj �(�j) =Xj ���(Yj + �)n �(�j) �(�j)= nXj Y n�1j �(�j) �(�j) = n h�; ��iS 0;n�1 ; �; � 2 S ; n 2 N :
It is clear that ~D� acts invariantly on L2ray(S 0), and ~D� is easily shown to commute
with �. Using equation (III.21) and lemma III.2 we find thatE� ~D�V~"n(�) = n 12 q�n2 � X~n2I(n) ~n+
(q;~n+ � 2)Yk2N k�nk(qk � 1)nk� h��iL1(T ) :

(III.27)

Observe that the factor q n2 in equation (III.27) increases exponentially in n. For
the sumÆ(�) =Xn2N n 12 q�n2 � X~n2I(n) ~n+
(q;~n+ � 2)Yk2N k�nk(qk � 1)nk�V~"n(�) (III.28)

to converge in L2(S 0), the factor consisting of the sum over ~n 2 I(n) must thus
vanish at least exponentially fast in n. There is no immediate structure implying
this to be the case, and explicit calculations of the first terms in (III.28) indicates
that this sum is in fact divergent in L2(S 0). As a consequence the Malliavin calcu-
lus given by derivation w.r.t. the jumps heights is not well-behaved.

(III.25)
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Nevertheless there exists a rather artificial, but certainly implementable, way
to save the Malliavin calculus based on derivation w.r.t. the jump heights. Using
lemma III.16 we see that if we define the subspaces L2n(S 0) of L2(S 0) byL2n(S 0) = M~n2I:~n� � n or ~n+ � 2V~n�
k2N L̂2(T nk)�; n 2 N ;
then there exists a closed extension Dn : L2n(S 0)! L2(S 0)
 L2(T ) of the restric-
tion of ~D to L2

fin(S 0)\L2n(S 0). In this case the random variable Æ(�), � 2 L2(T ), is
given by the finite sumÆn(�) = nXj=1 j 12 q� j2� X~n2I(j) ~n+
(q;~n+ � 2)Yk2N k�nk(qk � 1)nk�V~"j (�):
Although this construction has the flavour of cheating, the spaces L2n(S 0) are still
infinite dimensional and may very well contain functionals of interest, e.g. all the
multiple integrals as is seen from theorem III.12.

Appendix

Proof [Proof of lemma III.4] Let Sn be the reproducing kernel Hilbert space over
the set F generated by the kernelKn(�; �) = h�; �inL2(T ) = X~�2Nn nYj=1 
�; ��j�L2(T ) 
�; ��j�L2(T )= X~�2Nn :�1�:::��n n!�Yi2N jfj : �j = igj!��1 nYj=1 
�; ��j�L2(T ) 
�; ��j�L2(T ):
Using polarization we find thatnYj=1 
�; ��j�L2(T ) = (n!)�12�n X~�2f�1;+1gn � nYj=1 �j�Kn��; nXj=1 �j��j�:
Thus Kn(�; �) =P~�2Nn :�1�:::��n �~�(�)�~�(�), where �~� 2 Sn, ~� 2 Nn , are defined by�~� = (n!)� 12�Yi2N jfj : �j = igj!��12�n X~�2f�1;+1gn � nYj=1 �j�Kn��; nXj=1 �j��j�:
Let the linear mapping Un : L̂2(T n) ! Sn be given by Un(
̂nj=1h�j ) = �~�. Then Un
is isometric and injective since the inner product h�~�1; �~�2iSn is equal to(n!)�1�Yi2N jfj : �1j = igj!��1�Yi2N jfj : �2j = igj!��12�2n X~�1;~�2 � nYj=1 �1j�2j�Kn� nXj=1 �2j��2j ; nXj=1 �1j��1j�;
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which equals

̂nj=1��2j ; 
̂nj=1��1j�L̂2(Tn) = 

̂nj=1h�1j ; 
̂nj=1h�2j�L̂2(Tn) :
Moreover Un is surjective since Un(�
n) = Kn(�; �), � 2 F . �
Proof [Proof of lemma III.5] Since f1 6= 0 there exists pairwise disjoint, bounded,
closed subsets A1; : : : ; A~n1+ of T such thatD�
~n1+j=1 1Aj�f1EL1(T~n1+ ) 6= 0:
Given fixed x1; : : : ; x~n1+ 2 R, let � =P~n1+j=1 xj1Aj . Since the sets Aj are disjoint,�k = ~n1+Xj=1 xkj1Aj ; 
k2N(�k)
nik = X~�2f1;::: ;~n1+g~ni+ �Yk2N nikYj=1 xk��~ni (k;j)�
~ni+j=1 1A�j ;
where �~ni(k; j) =Pk�1l=1 nil + j, andXi=1;2 
�
k2N (�k)
nik�fi�L1(T~ni+ )= Xi=1;2 X~�2f1;::: ;~n1+g~ni+ �Yk2N nikYj=1 xk��~ni (k;j)�D�
~ni+j=1 1A�j �fiEL1(T~ni+) : (III.29)

The right hand side of (III.29) is a polynomial in the variables x1; : : : ; x~n1+, where
the coefficient of the monomial

Qk2NQn1kj=1 xk�~n1 (k;j) due to the symmetry properties
of f1 is given byX�k permutation

of f1; : : : ; n1kgD�
k2N 
n1kj=11A�~n1 (k;�k(j))�f1EL1(T~n1+ )= �Yk2N n1k!�D�
~n1+j=1 1Aj�f1EL1(T~n1+) 6= 0:
Thus the polynomial is non-zero, and we can assume x1; : : : ; x~n1+ 2 R have been
chosen such that the left hand side of (III.29) is non-zero. Now given a smooth
function � 2 C10 (T ) and i = 1; 2, we find that


k2N(�k)
nik �
k2N(�k)
nik

L̂2(T~ni+ )� ~ni+ maxk:nik 6=0 

�k � �k

L2(T ) � maxk:nik 6=0 

�k

L2(T ) + maxk:nik 6=0 

�k

L2(T ) �~ni+�1:
Since C10 (T ) is dense in L2(T ) we see that a sufficiently good approximation � 2C10 (T ) of � satisfies the lemma. �

(III.27)





IV
Simulation of pseudo-likelihoods

given discretely observed data

Abstract

In this paper we study a simulation approach for computing pseudo-likelihoods,
and their partial derivatives w.r.t. the model parameters, given an observation at
discrete points of a stochastic partial differential equation. The method requires
that the chaos expansion of the statistical model is known, e.g. can be calculated
numerically. The needed Malliavin calculus is included in order to make the paper
self contained. The derived formulae for the pseudo-likelihood contain iterated
Skorohod integrals, and a procedure for simulating these iterated integrals is pre-
sented. The complexity of the procedure is shown to grow super-exponentially in
the dimension of the densities used in the pseudo-likelihood. Moreover, the spe-
cial cases corresponding to additive respectively multiplicative observation noise
are discussed, and these cases are used to exemplify the numerical instability of
the proposed method. This instability as well as the super-exponential growths
can be avoided in the cases where observation noise is present.

Key words

Stochastic partial differential equation, discrete observations, pseudo-likelihood,
Malliavin calculus, iterated Skorohod integral, additive observation noise, multi-
plicative observation noise.
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IV.1 Introduction

In this paper we will discuss an approach to calculate pseudo-likelihoods given
observations at discrete points in time and/or space of a parametric model of
stochastic partial differential equations. We will assume that the chaos expansion
of the model under consideration is available or can be computed numerically, e.g.

the Wick-type stochastic PDE’s studied in Holden et al. (1996), Theting (2000)
will fit into our framework. The statistical framework we adobe consists of a
probability space (
;A ;P), a temporal and/or spatial parameter set T , a model
parameter space �, and a stochastic processX : 
� T � �! R (IV.1)

such that X(�; t; �) is measurable given fixed t 2 T and � 2 �. Let �0 2 � be the
true model parameter and assume, that the stochastic process X(�; �; �0) have been
observed at the points T0, where T0 is some fixed finite subset of T . Thus for some
random element !0 2 
 we have observed the dataX(!0; t; �0) = x(t); t 2 T0: (IV.2)

In order to draw statistical inference for the parameter �0 we seek to calculate
the likelihood L(�) for the parameter � 2 � based on the data (IV.2), and on the
model given by (IV.1) and the probability measure P. In many situations this will
however not be possible and some kind of approximation or simulation schemes
have to be implemented. In order to simplify the calculations even more we will
be content with pseudo-likelihoods PL(�) written on the formlog PL(�) = XS�T0wS log �S�(x(s))s2S; ��; (IV.3)

where wS 2 R are some fixed weights, and where �S(y; �) is the density of the S-
dimensional random variable F (�) = (X(�; s; �))s2S. In Aerts & Claeskens (1999)
some general results concerning the asymptotic behavior of the pseudo-likelihoods
(IV.3) are stated. If wT0 = 1 and wS = 0 for S 6= T0, then the pseudo-likelihood
PL(�) is equal to the full likelihood L(�). If wT0 = jT0j, wT0nftg = �1 for t 2 T0,
and wS = 0 otherwise, then PL(�) is the so-called full conditional likelihood. The
advantage of using conditional likelihoods is that normalizing constants not de-
pending on the observed data cancel out. The methods developed in this paper
are intended for models, where it is difficult to calculate not only the normaliz-
ing constants but also the actual form of the densities. We thus aim to calculate
marginal pseudo-likelihoods written on the formlog PL(�) = nXj=1 log �Sj�(x(s))s2Sj ; ��; S1; : : : ; Sn � T0;
where the location subsets Sj each contain few points. If the model and the obser-
vation locations T0 are spatially homogeneous, i.e. if T is equipped with a vector

(IV.2)
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space structure and there exist subsets N and T1 of the parameter space T such
that N + t � T0 for every t 2 T1, and�X(�; s; �)�s2N+t1 D= �X(�; s; �)�s2N+t2; t1; t2 2 T1; (IV.4)

then the corresponding marginal pseudo-likelihood is given bylog PL(�) =Xt2T1 log �N �(x(s))s2N+t; ��; (IV.5)

where �N (y; �) is the common N -dimensional density of the random variables
(IV.4). The purpose of this paper is to discuss the method of simulating the for-
mulae for �N (y; �) derived via Malliavin calculus. In the present investigation we
assume, that the underlying probability space is Gaussian. But the method pre-
sented could also be developed for e.g. Poisson spaces.

The paper is organized as follows. In section IV.2 we review the basic elements
of Malliavin calculus needed in our analysis, in subsection IV.2.1 we derive the
classical formulae for Lebesgue densities known from Malliavin calculus, and in
subsection IV.2.2 we give the formulae for the partial derivatives of the Lebesgue
densities w.r.t. the model parameters. In section IV.3 we discuss a procedure for
calculating iterated Skorohod integrals. Since the computation of general iterated
Skorohod integrals is numerically very demanding, we in section IV.4 describe the
special cases corresponding to independent perturbations of the observations, i.e.

observations with measurement errors. These special cases exemplifies that the
formulae for Lebesgue densities derived via the integration by parts formula from
Malliavin calculus are numerically instable. Finally in section IV.5 we conclude the
findings of our investigation.

IV.2 Chaos decomposition and Malliavin calculus

In this section we give a crash course on the Wiener chaos and Malliavin calculus
for Gaussian processes as presented in e.g. Nualart (1995). We will first introduce
some notation specific to the statistical problem under consideration. Observe that
all functions and spaces used below are real.

Throughout this paper letN be a finite index set equipped with a fixed ordering
and disjoint from the positive integers N . Moreover let H0 be a finite dimensional
abstract Hilbert space with inner product h�; �iH0 and orthonormal basis �n, n 2 N .
The Gaussian process connected to H0 will later be interpreted as observation
noise, and demanding N being disjoint of N is simply a notational convenient
way of introducing stochastic independence. Assume that the spatial parameter
space T is equipped with a �-field B and an atomfree measure �, and let H1 =L2(T;B; �) be the associated Hilbert space of quadratic integrable functions with
inner product h�; �iH1 . Assume that H1 is separable and let �n, n 2 N , be some fixed
orthonormal basis. Define the Hilbert space H as the direct sum of the Hilbert
spaces H0 and H1, i.e. H = H0 �H1 with orthonormal basis �n, n 2 N [ N .

(IV.3)
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Let (
;A ;P) be a complete probability space, and assume that there exists an
isonormal Gaussian process fW (h) : h 2 Hg defined on (
;A ;P), i.e. a family of
centered Gaussian random variables such thatEPW (h)W (g) = hh; giH ; h; g 2 H:
Let Hn(x) denote the n’th Hermite polynomial, which is defined byHn(x) = (�1)n ex22 dndxn e�x22 = [n2 ℄Xk=0 �� 12�k n!k!(n� 2k)! xn�2k; n 2 N; (IV.6)

and H0(x) = 1. The following two properties of the Hermite polynomials,H 0n(x) = nHn�1(x); n 2 N ;Hn(x)Hm(x) = n^mXk=0 n!m!k! (n� k)! (m� k)! Hn+m�2k(x); n;m 2 N0 ; (IV.7)

will be of importance to our considerations later. Let the index set I be defined byI = �a = (an)n2N[N 2 NN[N0 : an 6= 0 for finitely many n 2 N [ N	;
and let "n 2 I, n 2 N [ N , be the vector that have a one on the n’th coordinate
and zero’s elsewhere. Then I is a N0 -module under coordinate wise addition and
scalar multiplication, and the elements "n, n 2 N [ N , constitute a basis for I.
Moreover, let the random variables �a be defined by�a = Yn2N[N(an!)� 12 Han�W (�n)�; a = (an)n2N[N 2 I: (IV.8)

The following theorem due to Wiener (1938) states the Wiener chaos decom-

position, which is an orthonormal decomposition of the Hilbert space of quadratic
integrable random variables. The expansion of a random variable w.r.t. this basis
is called the chaos expansion.

Theorem IV.1 The random variables �a, a 2 I, constitute an orthonormal basis for

the Hilbert space L2(
) = L2(
;G ;P), where G is the �-field generated by the processW (h), h 2 H.

Next we describe the associated Malliavin calculus. Let C1p (Rn) be the space of
infinitely often continuous differentiable functions f : Rn ! R such that f and all
its derivatives have polynomial growth, and denote by �jf the partial derivative off w.r.t. the j’th argument. Moreover let S be the set of smooth random variables,
i.e. a random variable F belongs to S if F can be written on the formF = f�W (h1); : : : ;W (hn)� (IV.9)

for some n 2 N , f 2 C1p (Rn), and h1; : : : ; hn 2 H. Observe that S is dense inL2(
). The following theorem, which is shown in Nualart (1995), defines the
Malliavin derivative operator D.

(IV.4)
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Theorem IV.2 There exists a closed, densely defined, unbounded operatorD : L2(
)! L2(
)
H
such that S � Dom(D) andDF = nXj=1 �jf�W (h1); : : : ;W (hn)�
 hj
for a random variable F 2 S written on the form (IV.9).

The tensor product L2(
) 
 L2(T ) can be identified with the Hilbert spaceL2(
 � T ) of quadratic integrable stochastic processes. Similarly, the elements in
the Hilbert space L2(
) 
 H can be interpreted as stochastic processes indexed
by the disjoint union of T and N . If f 2 Cb(RN ), i.e. the function f and all its
derivatives are bounded, and F = (Fi)i2N with Fi 2 Dom(D) are given, then the
chain rule holds true, i.e. f(F ) 2 Dom(D) with Malliavin derivativeD f(F ) =Xi2N �if(F ) DFi;
see Nualart (1995, proposition 1.2.2). For given � 2 H and n 2 N[N we introduce
the shorthand notationD� F = hDF; �iH ; Dn = D�n :

It immediately follows from the properties (IV.7) of the Hermite polynomials,
that the random variables �a, a 2 I, satisfies the relationsDn�a = pan �a�"n ; n 2 N [ N ; a 2 I; (IV.10a)

and�a �b = X
2I:
n�an^bn �Yn2N pan!bn!(an + bn � 2
n)!
n!(an � 
n)!(bn � 
n)! ��a+b�2
; a; b 2 I: (IV.10b)

Since the domain Dom(D) is dense, the adjoint operator Æ of the Malliavin
derivative operator D, Æ : L2(
)
H ! L2(
);
is uniquely defined by the duality relationEP �Æ(u)F � = EP hu;DF iH ; u 2 Dom(Æ); F 2 Dom(D): (IV.11)

As an adjoint operator Æ is closed. Moreover, since D is closed, the adjoint operatorÆ is densely defined. The operator Æ is called the Skorohod stochastic integral, and
can be shown to be an extension of the Itô stochastic integral. The product Fu of

(IV.5)
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a random variable F 2 Dom(D) and a stochastic process u 2 Dom(Æ) is Skorohod
integrable if and only if FÆ(u)� hDF; uiH 2 L2(
), and if so thenÆ(Fu) = FÆ(u)� hDF; uiH ; F 2 Dom(D); u 2 Dom(Æ); (IV.12)

see Nualart (1995, equation (1.49)). This integration by parts formula will be
crucial to the analysis below, and from the properties (IV.10) we especially find
that Æ(�a �n) = �a �"n �Dn �a = pan + 1�a+"n +pan �a�"n �Dn�a= pan + 1�a+"n :
IV.2.1 Calculation of subdensities

In this subsection we calculate lower approximations to Lebesgue densities of ran-
dom variables. The following analysis is a classical application of the Malliavin
calculus introduced above. For convenience we introduce some shorthand nota-
tion for iterated Skorohod integrals, i.e. for k 2 N and sufficient regular processesv; v1; : : : ; vk 2 L2(
)
H we defineÆ(vk; : : : ; v1) = Æ�vkÆ�vk�1 � � � Æ(v1) � � � ��; Æk(v) = Æ(v; : : : ; v| {z }k times

):
Observe that the iterated Skorohod integral Æ(�; : : : ; �) is linear in each argument,
but it is not symmetric in the arguments. Moreover, let L0(
) denote the space
of random variables, i.e. the space G -measurable functions defined on 
, and
let L0(
) 
 H denote the space of stochastic processes u such that hu; hiH is G -
measurable for every h 2 H.

Proposition IV.3 Let k 2 N , f 2 Ckb (RN ), i1; : : : ; ik 2 N , and a random variableF = (Fi)i2N with Fi 2 Dom(D) be given. If there exist random variables Gi 2 L0(
)
and stochastic processes ui 2 L0(
)
H such thathDFi; GjujiH = 1(i=j)Gj; i; j 2 N ; (IV.13)

and Gi1ui1 ; : : : ; GikuikÆ(Gik�1uik�1 ; : : : ; Gi1ui1) 2 Dom(Æ), then the integration by

parts formulaEP �Gi1 � � �Gik �ki1;::: ;ikf(F )� = EP �f(F ) Æ(Gikuik ; : : : ; Gi1ui1)�
holds true.

Proof If g 2 C(RN ) and i 2 N are given, thenhD g(F ); GiuiiH = GiXj2N h�jg(F ) �DFj; uiiH = Gi �ig(F )
(IV.6)
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follows by the chain rule. Iterating this identity with g substituted by the partial
derivatives �li1;::: ;ilf , l = 1; : : : ; k, we see thatGi1 � � �Gik �ki1;::: ;ikf(F ) = 
D 
D � � � hD f(F ); GikuikiH � � � ; Gi2ui2�H ; Gi1ui1�H :
The statement of the proposition then follows from the duality (IV.11) between D
and Æ. �
Theorem IV.4 Let F = (Fi)i2N , (Gi)i2N and (ui)i2N be as in proposition IV.3, and

moreover assume 0 � Gi � 1. If �(y) is defined by�(y) = EP h�Yi2N 1(Fi>yi)� Æ�(Giui)i2N �i; y = (yi)i2N ;
then the inequality0 � P�F 2 A�� ZA �(y) dy � P�(F 2 A) \ [i2N (Gi < 1)�
holds true for every A 2 B(RN ).
Proof W.l.o.g. we can assume that A is the box �i2N [ai; bi℄. For each n 2 N let (n) 2 CjN j�1(RN ;R+) be a non-negative smooth approximation of
i2N1[ai;bi℄ such
that  (n) grows pointwise to this indicator function as n!1, and let�(n)(x) = Z�i2N (�1;xi℄  (n)(y) dy:
Since Gi � 1 and by proposition IV.3 we find thatEP � (n)(F )� = EP h�jN j(xi)i2N�(n)(F )i� EP h�Yi2N Gi� �jN j(xi)i2N�(n)(F )i= EP ��(n)(F ) Æ�(Giui)i2N ��: (IV.14)

For n!1 dominated convergence and the Tonelli theorem then givesP(F 2 A) = EP �
i2N 1[ai;bi℄(F )�� EP h Z�i2N (�1;Fi℄ 1
i2N [ai;bi℄(y) dy Æ�(Giui)i2N �i= EP h Z�i2N [ai;bi℄ �Yi2N 1(Fi>yi)� Æ�(Giui)i2N �dyi= ZA EP h�Yi2N 1(Fi>yi)� Æ�(Giui)i2N �i dy:
This proves the first inequality stated in the theorem. The second inequality fol-
lows similarly. �

(IV.7)



98 Paper IV. Simulation of pseudo-likelihoods

Theorem IV.4 states that �(y) is a lower approximation of the density of the
absolute continuous part of the law of the N -dimensional random variable F .
Moreover, the approximation error is bounded by intersecting with the event thatGi < 1 for some i 2 N . Since the order in which the partial derivatives are taken
in the proof of theorem IV.4 is irrelevant, we see that the mean value of the random
variable �Yi2N 1(Fi>yi)� Æ�(Giui)i2N �
is both linear and symmetric in the arguments Giui, i 2 N . Using polarization we
thus get the following corollary.

Corollary IV.5 Let F = (Fi)i2N , (Gi)i2N , (ui)i2N and �(y) be as in theorem IV.4. If

we put �i0 = 1 for some fixed i0 2 N , then �(y) is given by(jN j!)�12�jNj+1 X�i2f�1;+1g;i2Nnfi0gEP h�Yi2N 1(Fi>yi)� ÆjN j�Xi2N �iGiui�i:
In order to apply theorem IV.4 or corollary IV.5 we need to find suitable pro-

cesses ui 2 L0(
) 
H and variables Gi 2 L0(
). Let the functions ~G�;� 2 Cm(R),0 < � < � <1, be defined by~G�;�(x) = 8>><>>:0 for jxj 2 [0; �),1B(m;m) R jxj�����0 sm�1(1� s)m�1 ds for jxj 2 [�; �),1 for jxj 2 [�;1),
where B(m;n) denotes the Beta-function with parameters m;n.

Proposition IV.6 For fixed ~ui 2 L0(
) 
 H, i 2 N , let the stochastic matrix � be

defined by � = � hDFi; ~ujiH �i;j2N :
Given a row vector x 2 RN and row index i 2 N , let �x!i be the matrix constructed

by substituting the i’th row in � by x. Then the stochastic processes ui, i 2 N , and

the random variables Gi = G�;�, i 2 N , given byui = 1(det �6=0)det � det �(~uk)k2N!i; G�;� = ~G�;�(det �)
fulfill condition (IV.13).

Proof This is essentially Cramer’s rule, i.e. the linearity of the determinant and the
inner product giveshDFi; GjujiH = ~G�;�(det �)det � det �(hDFi;~ukiH)k2N!j = 1(i=j)Gj: �

(IV.8)
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Remark In theoretical applications, e.g. development of density criterion, the
usual choice of ~ui is DFi, and the resulting � matrix� hDFi;DFjiH �i;j2N ;
which is called the Malliavin covariance matrix, is positive semi definite and has
maximal determinant. The choice ~ui = DFi is thus natural in these situations. But
for the purpose of simulating the subdensity �(y) other choices of ~ui could be used
in order reduce the number of terms in the iterated Skorohod integrals.

Remark Suppose the processes ~ui, i 2 N , have been chosen, and that the pro-
cesses ui 2 L0(
) 
 H, i 2 N , and the variable G�;� 2 L1(
) have been con-
structed via proposition IV.6. To apply theorem IV.4 or corollary IV.5 we still need
to show that the employed Skorohod integrals exist. If the random variables Fi
and the stochastic processes ~ui all have finite chaos expansion, then it is easily seen
that we only take Skorohod integrals of processes v 2 L0(
)
H which satisfy the
condition EP hD v;D viH
H <1
ensuring that v 2 Dom(Æ), see Nualart (1995, p. 40). In the remaining of this pa-
per we will implicitly assume, that all the Skorohod integrals under consideration
exist.

Let ��;�(y) be the subdensity defined in theorem IV.4 with ui and G�;� given
by proposition IV.6 for fixed 0 < � < � < 1. Inspecting the inequality (IV.14) in
the proof of theorem IV.4, we see that the subdensities ��;�(y) satisfy the following
monotinicity property0 < �1 � �2 < �2; 0 < �1 < �1 � �2 =) ��2;�2(y) � ��1;�1(y): (IV.15)

Moreover, ��(y) = lim�#� ��;�(y) is the Lebesgue density of the measureP�(F 2 �) \ (jdet �j > �)�;
and by dominated convergence it follows that ��(y) is given byEP h�Yi2N 1(Fi>yi)� 1(jdet �j>�) Æ�(ui)i2N �i; (IV.16a)

where the iterated Skorohod integral Æ((ui)i2N ) is defined using (IV.12) formally.
Defining u� =Pi2N �iui, �i0 = 1, the subdensity ��(y) is equivalently given by(jN j!)�12�jNj+1 X�i2f�1;+1g;i2Nnfi0gEP h�Yi2N 1(Fi>yi)� 1(jdet �j>�) ÆjN j(u�)i: (IV.16b)

If the matrix � is invertible almost surely, then the law of F is absolute continuous
and the N -dimensional Lebesgue density �(y) is given by�(y) = sup�>0 ��(y) = lim�#0 ��(y):

(IV.9)
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In order to compute the formulae for ��;�(y), the immediate approach is to
replace the mean values by the average �̂(n)�;�(y) of n i.id. samples of�Yi2N 1(Fi>yi)� Æ�(G�;�ui)i2N �; (IV.17)

cf. theorem IV.4, or n i.id. samples of(jN j!)�12�jNj+1�Yi2N 1(Fi>yi)� X�i2f�1;+1g;i2Nnfi0g ÆjN j�G�;�u��; (IV.18)

cf. corollary IV.5. The random variable (IV.18) consists of a weighted sum of2jN j�1 terms, but since the symmetric iterated Skorohod integral ÆjN j(�) is more
easy to calculate than the non-symmetric iterated Skorohod integral Æ(�; : : : ; �) as
demonstrated in section IV.3, it is actually more easily simulated than the random
variable (IV.17). Moreover since the non-symmetric iterated Skorohod integralsÆ(G�;�uijNj; : : : ; G�;�ui1) are different for different permutations (i1; : : : ; ijN j) ofN ,
the variance of (IV.18) is smaller than the variance of (IV.17). It is thus preferable
to use the random variables (IV.18) for the simulation of ��;�(y). The following
theorem states a uniform law of large numbers, which justifies the simulation ap-
proach.

Theorem IV.9 If we defined �(y) = lim0<�<�!0 ��;�(y), then the limit resultsup0<�<��1 �����;�(y)� �̂(n)�;�(y)��� a.s.���!n!1 0; y 2 Rm such that �(y) <1;
holds true.

Proof For fixed 0 < � < � � 1 the strong law of large numbers gives�̂(n)�;�(y) a.s���!n!1 ��;�(y):
A Glivenko-Cantelli argument using the monotonicity property (IV.15) easily gives,
that this statement can be strengthened to hold uniformly over 0 < � < � � 1. �

The uniform convergence stated in theorem IV.9 permits, that the cutoff points0 < � < � � 1 can be chosen after the samples have been drawn. By the chain
rule DG�;� = 0 on the event (jdet �j 62 [�; �℄), whence the average �̂(n)� (y) of n i.id.
samples of(jN j!)�12�jNj+1�Yi2N 1(Fi>yi)� X�i2f�1;+1g;i2Nnfi0g 1(jdet �j>�) ÆjN j(u�); (IV.19)

converges almost surely to ��(y) as n ! 1. Moreover ��(y) increases to �(y)
when � decreases to 0, this however at the cost that the variance of the samples
(IV.19) might increase to possibly infinity. Choosing the cutoff point � > 0 thus
involves a trade off.

(IV.10)
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IV.2.2 Calculation of partial derivatives w.r.t. the model param-

eters

Suppose that the random variable F (�) = (Fi(�))i2N is parameterized by a model
parameter � 2 �. If we use the setup leading to equation (IV.16), then the lower
approximation ��(y; �) of the Lebesgue density of the absolute continuous part of
the law of F (�) is given by(jN j!)�12�jNj+1 X�i2f�1;+1g;i2Nnfi0g EP h�Yi2N 1(Fi(�)>yi)� 1(jdet �(�)j>�) ÆjN j�u�(�)�i:
In this subsection we calculate partial derivatives of ��(y; �) w.r.t. the parameter �.
For ease of notation we will w.l.o.g. assume that � is an open subset of R. Thus
using the product rule for differentiation we find that�� EP h�Yi2N 1(Fi(�)>yi)� 1(jdet �(�)j>�) ÆjN j�u�(�)�i
is equal to �� EP h�Yi2N 1(Fi(�)>yi)� 1(jdet �(�)j>�) ÆjN j�u�(�)�i����=�+�� EP h�Yi2N 1(Fi(�)>yi)� 1(jdet �(�)j>�) ÆjN j�u�(�)�i����=�+�� EP h�Yi2N 1(Fi(�)>yi)� 1(jdet �(�)j>�) ÆjN j�u�(�)�i����=�: (IV.20)

The last term in (IV.20) corresponds to differentiation w.r.t. the truncation variable
and can be rewritten as��� dP�(F (�) 2 �) \ (jdet �(�)j � �)�dLebesgue

(y)����=�:
Thus if ��(y; �) is a good approximation of the Lebesgue density �(y; �), i.e. if the
cutoff point � > 0 is sufficiently small, then this term will be small compared to
the two other terms in (IV.20). Since the last term in (IV.20) also is difficult to
calculate, it is reasonable simply to ignore this term. The second term in (IV.20) is
equal to EP h�Yi2N 1(Fi(�)>yi)� 1(jdet �(�)j>�) ��ÆjN j�u�(�)�i;
where ��ÆjN j(u�(�)) can be found via proposition IV.12 below. To calculate the
first term in (IV.20) we once more use the integration by parts formula. Thus let
the functions  (n) 2 C(R;R+), n 2 N , be non-negative approximations of 1(0;1)
such that  (n) grows pointwise to this indicator function as n!1, and let �(n) 2

(IV.11)



102 Paper IV. Simulation of pseudo-likelihoodsC(RN � RN ;R+) be defined by �(n)(x; y) = Qi2N  (n)(xi � yi). Using the duality
(IV.11), and using the identity���(n)�F (�); y� =Xi2N ��Fi(�) ddx (n)�Fi(�)� yi� Yj 6=i  (n)�Fj(�)� yj�= *D�(n)�F (�); y�;Xi2N ��Fi(�) ui(�)+H
on the event (jdet �(�)j > �), we see that�� EP h�Yi2N 1(Fi(�)>yi)� 1(jdet �(�)j>�) ÆjN j�u�(�)�i����=�= limn!1EP h���(n)�F (�); y� 1(jdet �(�)j>�) ÆjN j�u�(�)�i= limn!1EP*D�(n)�F (�); y�;Xi2N ��Fi(�) ui(�) 1(jdet �(�)j>�) ÆjN j�u�(�)�+H= limn!1EP h�(n)�F (�); y� 1(jdet �(�)j>�) Æ�Xi2N ��Fi(�) ui(�) ÆjN j�u�(�)��i= EP h�Yi2N 1(Fi(�)>yi)� 1(jdet �(�)j>�) Æ�Xi2N ��Fi(�) ui(�) ÆjN j�u�(�)��i:
IV.3 Calculation of iterated Skorohod integrals

In this section we consider the problem of calculating the non-symmetric iterated
Skorohod integrals Æ(vk; : : : ; v1) and the symmetric iterated Skorohod integralsÆk(v) introduced and heavily used in the preceding section. Let us introduce some
more notation. Let the set J and the subsets Jk be defined byJ = �a = (an)n2N 2 NN0 : an 6= 0 for finitely many n 2 N	;Jk = na = (an)n2N 2 J :Xn2N nan = ko; k 2 N0 ;
and let jaj = Pn2N an, a 2 J . Although the sets I and J have similar struc-
ture, these sets are used differently and should not be confused with each other.
Whereas the indices of the coordinates of the elements in I simply are indices with
no special meaning, the index set N of the coordinates of the elements in J is to be
understood as the sequentially ordered integers. Moreover, given sufficient regu-
lar processes v1; : : : ; vk 2 L2(
)
H let the random variable 	(v1; : : : ; vk) 2 L2(
)
be defined recursively by	(v1) = Æ(v1); 	(vn+1; : : : ; v1) = hvn+1;D	(vn; : : : ; v1)iH :

The iterated Skorohod integrals can the be calculated with the aid of the fol-
lowing proposition.

(IV.12)
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Proposition IV.10 Given stochastic processes v1; : : : ; vk 2 Dom(Æ) the integration by

parts formula (IV.12) formally yields that Æ(vk; : : : ; v1) is equal toXa2Jk XAnj ;n2N;j=1;::: ;an;
partition of f1; : : : ; kg

such that jAnj j = n (�1)k�jajYn2N anYj=1	(vin; : : : ; vi1)���i1<���<in; il2Anj :
Proof The statement is proved by induction over k 2 N . For k = 1 the statement
holds true since 	(v1) = Æ(v1). If we introduce the shorthand notation	(Anj) = 	(vin ; : : : ; vi1)���i1<���<in; il2Anj ;
then the induction step follows by the calculationsÆ(vk+1; : : : ; v1) = Æ�vk+1; Æ(vk; : : : ; v1)�= Æ(vk+1)Æ(vk; : : : ; v1)� hvk+1;D Æ(vk; : : : ; v1)iH= Xa2Jk XAnj ;n2N;j=1;::: ;an;

partition of f1; : : : ; kg
such that jAnj j = n (�1)k�jaj� Æ(vk+1)| {z }	(fk+1g)Yn2N anYj=1	(Anj)� Xn02N an0Xj0=1 hvk+1;D	(An0j0)iH| {z }	(An0j0[fk+1g) Y(n;j)6=(n0;j0)	(Anj)�= Xa2Jk+1 XAnj ;n2N;j=1;::: ;an;

partition of f1; : : : ; k; k + 1g
such that jAnj j = n (�1)k+1�jajYn2N anYj=1	(Anj): �

If we insert v1 = : : : = vk = v in proposition IV.10 we immediately get the
following corollary.

Corollary IV.11 Given k 2 N and a stochastic process v 2 Dom(Æ) the integration by

parts formula (IV.12) formally yieldsÆk(v) = Xa2Jk(�1)k�jaj k!Qn2N an!(n!)an Yn2N	ann (v); 	n(v) = 	(v; : : : ; v| {z }n times

):
In order to assess the complexity of these formulae we consider the numberjJkj of elements in the set Jk. The quantity jJkj equals the number of ways in

which k can be written as a sum of integers. The following tablek : 1 2 3 4 5 6 7 8 9 10jJkj : 1 2 3 5 7 11 15 22 30 42

(IV.13)
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contains the numbers jJkj for k = 1; : : : ; 10. A famous result proved in Hardy &
Ramanujan (1918) implies, that the asymptotic behavior is given byjJkj � 14p3k�1e�p 23k as k !1:
Considering the formula for Æk(v) given in corollary IV.11 it is thus tempting to try
to reduce the number of terms in the sum over Jk via rewriting the sum of products
as a sum of products of sums. But since calculating the quantities 	(vn; : : : ; v1),n = 1; : : : ; k, is a rather difficult task, and it is thus not feasible to calculate Æk(v)
for k large anyway, we will not pursue such a refinement further. Before calculat-
ing 	(vn; : : : ; v1) we state the following proposition, which was used in subsection
IV.2.2 above.

Proposition IV.12 Given k 2 N and a family stochastic process v� parameterized by

a one-dimensional real parameter � the integration by parts formula (IV.12) formally

yields ��Æk(v�) = kXj=1(�1)j+1�kj� ��	j(v�) Æk�j(v�);
where Æ0(v�) = 1 by definition. Moreover, ��	n(v�) is given recursively by��	1(v�) = Æ(��v�); ��	n+1(v�) = h��v�;D	n(v�)iH + hv�;D ��	n(v�)iH :
Proof Differentiating the formula given in corollary IV.11 we find that��Æk(v�) = Xa2Jk(�1)k�jaj k!Qn2N an! (n!)an Xj2N aj ��	j(v�)Yn2N	an�1(n=j)n (v�)= kXj=1 ��	j(v�) Xa2Jk�j(�1)k�jaj+1 k!j!Qn2N an! (n!)an Yn2N	ann (v�)= kXj=1(�1)j+1�kj� ��	j(v�) Æk�j(v�);
which proves the first part of the proposition. The second part follows by differ-
entiating the identity 	n+1(v�) = hv�;D	n(v�)iH. �
Remark If the random variables 	(vin ; : : : ; vi1) and the used products of these
random variables all belong to L2(
), then the formulae presented in the two pre-
ceding propositions are not just merely formal calculations but actually equals the
sought for Skorohod integrals. This follows from the more careful interpretation
of the integration by parts formula, which also include a statement regarding the
existence of the Skorohod integrals.

(IV.14)
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In order to make the following considerations as simple as possible we will only
calculate the symmetric operator 	n(v) for a particular structure of the stochastic
process v. But if we use proposition IV.6, then this special case will still be adequate
for our purpose of finding the subdensity ��;�(y). In the sequel let M be a fixed
finite subset of N [N , and let M;N 2 N , M � N , be fixed integers. Let the subsetsIM and IM
 , 
 2 N , of I be defined byIM = �a 2 I : an = 0 for n 2 (N [ N) nM	;IM
 = �a 2 IM : jaj � 
	; 
 2 N0 :

The particular structure we will assume for the stochastic process v is given byv = Y �1 Xj2MXj �j;Y = Xa2I:Pn2M an�M y(a) �a; y(a) 2 R deterministic;Xj = Xa2I:Pn2M an�N xj(a) �a; xj(a) 2 R deterministic; j 2 M: (IV.21)

The random variables Y and Xj, j 2 M, can be rewritten asY = Xa2IMM yM(a) �a; yM(a) = Xb2I(N[N)nM y(a+ b) �b; a 2 IMM ;Xj = Xa2IMN xMj (a) �a; xMj (a) = Xb2I(N[N)nMxj(a+ b) �b; a 2 IMN :
Observe that the stochastic coefficients yM(a), xMj (a) are measurable w.r.t. the�-field generated by the random variables W (�j), j 2 (N [ N) nM.

Proposition IV.14 If the stochastic process v 2 Dom(Æ) can be written on the form

(IV.21), then 	n(v) can be written on the form	n(v) = n+1Xm=1Y 1�n�mXn;m; Xn;m = Xa2IM
n;m xMn;m(a) �a; (IV.22)

where 
n;m = (m�1)M +n(N�1)+2 �1(m�n), and the stochastic coefficients xMn;m(a)
are measurable w.r.t. the �-field generated by W (�j), j 2 (N [ N) nM.

Proof The proof in done by induction over n 2 N . Using the integration by parts
formula (IV.12) and the properties (IV.10) of the random variables �a, a 2 I, the
statement for n = 1 follows from the calculationsÆ(v) = Y �1 Xj2M �Xj �"j � DjXj�+ Y �2 Xj2MXj �Dj Y = Xm=1;2Y �mX1;m;

(IV.15)
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where the random variable X1;1 =Pa2IMN+1 xM1;1(a) �a is given byX1;1 = Xj2M Xa2IMN paj + 1xMj (a) �a+"j ;
and the random variable X1;2 =Pa2IMM+N�1 xM1;2(a) �a is given byX1;2 = Xj2M Xa2IMN Xb2IMM X
2IMN :
�a^(b�"j) xMj (a) yM(b)� � Yn2Mpan!bn!(an + bn � 1n=j � 2
n)!
n!(an � 
n)!(bn � 1n=j � 
n)! ��a+b�"j�2
:

The induction step follows via the identity 	n+1(v) = hv;D	n(v)iH and the
calculations	n+1(v) = n+1Xm=1Y �n�mXj2MXj �DjXn;m � n+1Xm=1Y �n�m�1 �Xj2MXj �Dj Y �| {z }�X1;2 Xn;m= n+2Xm=1Y 1�(n+1)�mXn+1;m;
where Xn+1;1 =Pj2MXj �Dj Xn;1 and Xn+1;n+2 = X1;2Xn;n+1 = Xn+11;2 , and whereXn+1;m = Xj2MXj �Dj Xn;m +X1;2Xn;m�1; m = 2; : : : ; n+ 1;
The coefficients xMn+1;m(a) in the expansions Xn+1;m =Pa2IM
n+1;m xMn+1;m(a) �a are

found by expanding the products via equation (IV.10b). �
The simulation of the iterated Skorohod integral Æk(v) for a stochastic processv written on the form (IV.21) can be done via the following three steps.

1) Simulate the random variables W (�j), j 2 (N [ N) n M, and compute the
coefficients yM(a), a 2 IMM , and xMj (a), j 2 M, a 2 IMN .

2) Compute the coefficients xMn;m(a), n = 1; : : : ; k, m = 1; : : : ; n+ 1, a 2 IM
n;m .

3) Simulate the random variables W (�j), j 2 M, and compute the random
variables Y and Xn;m, n = 1; : : : ; k, m = 1; : : : ; n+ 1.

If these three steps are done, then the needed variables are available in order to
compute Æk(v) via corollary IV.11 and proposition IV.14. Moreover, if the stochastic
component generated by the random variables W (�j), j 2 M, is believed to more
important than remaining stochasticity, then it is possible to repeat the third step
several times every time the two first steps have been performed.

(IV.16)
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Remark Often the chaos expansion of the coefficients yM(a) and xMj (a) will in-
volve infinitely many of the random variables W (�j), j 2 (N [ N) n M, whence
the first step is not practically implementable on a computer. This problem can
be resolved by somehow truncating the chaos expansions. If this is the case, then
bias is introduced and the proper name of the presented inference method should
read “Simulation of approximative pseudo-likelihoods”.

In order to assess the complexity of the proposed simulation procedure we esti-
mate the number of terms in the coefficients for Xn;m. If we let Mm = f1; : : : ; mg,
then we see that jIMm0 j = jIM1
 j = 1 andjIMm
 j = 
Xj=0 jIMm�1
�j j = jIMm
�1 j+ jIMm�1
 j;
whence the addition property of the binomial coefficients yields��IM
 �� = �jMj+ 
 � 1
 �:
If we use the identity JXj=0 �K + j � 1j � = �K + JJ �;
then we see that

Pkn=1Pn+1m=1jIM
n;m j can be estimated bykXn=1 n+1Xm=1�jMj+ 
n;m � 1
n;m � � kXn=1 nXm=0�jMj+mM + nN � 1mM + nN �� kXn=1 1M�jMj+ n(M +N)n(M +N) � � 1M(M +N)�jMj (M +N + 1) + 1jMj (M +N) �:
Suppose for instance that N = f�1; : : : ;�dg, M = f1; : : : ; dg, that the ran-

dom variables Fi can be written on the formFi = Xa2IM� fMi (a) �a; fMi (a) measurable w.r.t. W (�j), j 2 N nM;
and that proposition IV.6 is used with ~ui = ��i. Then M = �d, N = �(d� 1), and
the number of coefficients xMn;m(a) is estimated by1�d(2d� 1)��d(2d� 1) + d� 1�d(2d� 1) �:
This estimate grows at a super-exponential rate, and as a consequence the iter-
ated Skorohod integral can only be simulated for d and � very small using this
approach.

(IV.17)
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IV.4 Observations with measurement errors

As demonstrated in section IV.3 simulating iterated Skorohod integrals can be a
very difficult task. In this section we will discuss two cases, where the needed
computations are very easy. These situations are given by perturbing the random
variables with independent Gaussian noise. In a statistical framework this corre-
sponds to observations with measurement errors.

Let F = (Fi)i2N be a N -dimensional random variable such that each Fi is
measurable w.r.t. the �-field generated by W (�j), j 2 N . Then we have the inde-
pendent random variables W (�j), j 2 N , at our disposal to perturb F . We will
consider the perturbation of F = (Fi)i2N in the position respectively the scale, i.e.

for some fixed parameter � > 0 we defineFpos;i(�) = Fi + �W (�i); Fscale;i(�) = �1 + �W (�i)�Fi:
If we use proposition IV.6 with ~ui = �i, then we find in the position perturbed case�pos(�) = � hDFpos;i(�); �jiH �i;j2N = �IN ; upos;i(�) = ��1�i;
and since Æ((�i)i2N ) = Qi2N W (�i) the Lebesgue density �pos(y; �) of random vari-
able Fpos(�) is given by�pos(y; �) = ��jNj EP hYi2N 1(Fi+�W (�i)>yi)Yi2NW (�i)i: (IV.23)

In the scale perturbed case we find that�scale(�) = diag
�(�Fi)i2N �; uscale;i(�) = ��1F�1i �i;

and since Æ((F�1i �i)i2N ) = Qi2N F�1i W (�i) the Lebesgue density �scale(y; �) of the
random variable Fscale(�) is given by�scale(y; �) = ��jNj EP hYi2N 1((1+�W (�i))Fi>yi)Yi2N F�1i W (�i)i: (IV.24)

The formulae (IV.23) and (IV.24) can be proven without appealing to Malli-
avin calculus, e.g. in the one-dimensional position perturbed case equation (IV.23)
follows by the calculations�pos(y; �) = �y EP �1(F+�W (�)�y)�= �y EP h Z 1�1 1p2�e� 12x21(�1;��1(y�F )℄(x) dxi= �y EP h Z 1�1 x 1p2�e� 12x2 min�x; ��1(y � F )	dxi= EP h Z 1�1 ��1x 1p2�e� 12x21(��1(y�F );1)(x) dxi= ��1 EP �1(F+�W (�)>y)W (�)�;

(IV.18)
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where the third step uses the integration by parts formula from classical analysis.
This should be compared to the formula avoiding the integration by parts step, i.e.�pos(y; �) = �y EP �1(F+�W (�)�y)� = �y EP h Z ��1(y�F )�1 1p2�e� 12x2 dxi= EP h 1p2��2 e� 12�2 (y�F )2i: (IV.25)

Suppose we want to simulate the density �pos(y; �) by replacing the mean value
in (IV.23) or (IV.25) by the average over i.id. samples of the involved random vari-
ables. In formula (IV.25) we would then take average over positive numbers,
whereas in formula (IV.23) we would take average over both positive and nega-
tive numbers. The formulae derived by using the integration by parts formula, see
theorem IV.4, are thus badly suited for use in simulations schemes since the pro-
cedure of taking average over large positive and negative numbers is numerically
instable.

IV.5 Conclusion

The idea of calculating multivariate Lebesgue densities by simulating the mean
values in the formulae derived via the integration by parts setting from Malliavin
calculus is natural, but the method have two major drawbacks. Firstly, the formu-
lae involve iterated Skorohod integrals of order equal to the dimension m of the
density under consideration, and the number of terms in such an integral grows
super-exponentially in m as demonstrated in section IV.3. It is thus only possi-
ble to simulate a single iterated Skorohod integral for rather small m, i.e. m less
than five. However, for spatially homogeneous models each such simulation can
be used for every observation point in marginal pseudo-likelihoods on the form
(IV.5). The second and more gross drawback is the numerical instability demon-
strated in section IV.4. By construction a Skorohod integral has mean equal to
zero, whence the in m super-exponentially many terms of the iterated Skorohod
integrals take both positive and negative values. Moreover, since there is no reason
to hope that most of the terms take small absolute values, the iterated Skorohod
integrals will presumably have very large variance. The simulation approach to
compute the mean value of the iterated Skorohod integrals over certain events is
thus bound to be numerically instable. This numerical instability is tied up with
the integration by parts formula and can be avoided by avoiding the use of this
formula. The immediate way to do this is to add observation noise as illustrated
in equation (IV.25). Moreover, the use of measurement noise is physical meaning-
ful, and this approach also allows any method of simulating the stochastic process
to be used, e.g. Euler schemes and so forth, and there is no need for the chaos
decomposition to be known.

(IV.19)
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