
Metrics on non-commutative spaces

Cristina Antonescu

Ph.D. thesis

Approved June 2003

Thesis adviser: Erik Christensen

Evaluating committee: Etienne Blanchard, CNRS, Paris, France.

Ryszard Nest, University of Copenhagen, Denmark

Sergei Silvestrov, Lund Institute of Technology, Swe-

den

Department of Mathematics · Institute for Mathematical Sciences

Faculty of Science · University of Copenhagen

Denmark · June 2003



2

Cristina Antonescu

Matematisk Afdeling

Københavns Universitet

Universitetsparken 5

2100 København Ø

Denmark

chris@math.ku.dk

c© Cristina Antonescu (according to the Danish legislation)

ISBN 87-7834-540-5



Contents

1 Introduction 5

1.1 The general question. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 The results in the thesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2 General results 15
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Chapter 1

Introduction

1.1 The general question.

The main purpose of this thesis is to explore the possibility of constructing Dirac operators

which will induce the weak*-topology on the state space of a general C*-algebra. In the

Chapter 3 of this thesis we present the results we have obtained for some special classes

of C*-algebras. In the course of our study of different types of C*-algebras we also have

obtained some general results which we have included in the first part of the thesis. This

introduction is intended to offer a brief historical account of metrics on non-commutative

spaces combined with an outline of each chapter of the thesis. It is well known that the

Gelfand transform gives a 1-1 correspondence between commutative unital C*-algebras

and compact topological spaces. This correspondence motivates investigations into non-

commutative C*-algebras in order to find counterparts of classical notions on topological

and geometrical spaces. For instance, A. Connes, [Co1], has shown us how Riemannian

metrics on non-commutative spaces (C*-algebras) can be specified by means of a spectral

triple. Although in this setting there is no underlying manifold on which one can obtain

an ordinary metric, A. Connes, [Co1], has constructed in a simple way an ordinary met-

ric on the state space of the C*-algebra, generalizing the Monge-Kantorovich metric on

probability measures. He proposed the following definition:

Definition 1.1.1. Let A be a unital C*-algebra. An unbounded Fredholm module (H,D)

over A is:

(C1): a Hilbert space H which is a left A-module, that is, a Hilbert space H and a *-

5



6 CHAPTER 1. INTRODUCTION

representation of A on H;

(C1): an unbounded, self-adjoint operatorD onH such that the set {a ∈ A : [D, a]is densely defined and extends to a bounded operator onH}
is norm dense in A;

(C3): (1 +D2)−1 is a compact operator (i.e. D has a compact resolvent).

The triple (A, H,D) with the above description is called a spectral triple.

Still following A. Connes, if {a ∈ A : ‖[D, a]‖ ≤ 1}/C1 is bounded, one can then

introduce a metric on the state space of A by the formula

d(ϕ, ψ) = sup{|ϕ(a) − ψ(a)| : a ∈ A, ‖[D, a]‖ ≤ 1}.

We mentioned above a key observation due to A. Connes, [Co1], which he used to extend

the notion of a metric to the non-commutative situation. We recall in the next proposition

this crucial observation.

Proposition 1.1.2. Let M be a compact, spin, Riemannian manifold, A = C(M), H =

L2(M,S) and D the Dirac operator. Then the geodesic distance d(P,Q) between two

points P and Q of M is given by:

d(P,Q) = sup{|a(P ) − a(Q)| : a ∈ A, ‖[D, a]‖ ≤ 1}.

As mentioned above the metric introduced by A. Connes gives us, in the commutative

case, the Monge-Kantorovich metric. Let us recall here the Monge-Kantorovich metric.

Let ρ be an ordinary metric on the compact space X. The Lipschitz semi-norm Lρ,

determined by ρ is defined on C(X) by:

Lρ(f) := sup{|f(x) − f(y)|/ρ(x, y) : x 6= y}.

One can recover ρ from Lρ by the relationship

ρ(x, y) = sup{|f(x) − f(y)| : Lρ(f) ≤ 1}.

A slight extension of this relationship defines a metric, say ρ̄, on the space P(X) of

probability measures on X. Explicitly,

ρ̄(µ, ν) := sup{|
∫

X

fdµ−
∫

X

fdν| : f ∈ C(X), Lρ(f) ≤ 1}
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for all µ, ν ∈ P(X). This is the Monge-Kantorovich metric or the Hutchinson metric in

the Fractal theory. The topology which it defines on P(X) coincides with the weak*-

topology on P(X) coming from viewing it as the state space of the C*-algebra C(X).

Note also this well-known fact: for a compact space X its topology coincides with the

weak*-topology coming from viewing the points of X as linear functionals on the algebra

C(X). Motivated by the case of ordinary compact metric spaces, it is natural to wonder

if for a spectral triple, the topology from the metric on the state space coincides with the

weak*-topology. If the metric topology coincides with the weak*-topology on the state

space, then the metric topology should give the state space finite diameter, since the

state space is compact for the weak*-topology. An elementary characterization of when

the metric is bounded on the state space and furthermore when it induces the weak*-

topology on this space was given by M. A. Rieffel, [Ri1], and B. Pavlović, [Pav]. This

characterization reads:

Theorem 1.1.3. Let (H,D) be an unbounded Fredholm module over a unital C*-algebra

A, and let the metric d on S(A) be defined by the formula:

d(ϕ, ψ) = sup{|ϕ(a) − ψ(a)| : a ∈ A, ‖[D, a]‖ ≤ 1}.

for ϕ, ψ ∈ S(A).

(1) d is a bounded metric on S(A) if and only if

{a ∈ A : ‖[D, a]‖ ≤ 1}

has a bounded image in the quotient space A/C1, equipped with the quotient norm.

(2) the metric topology coincides with the w*-topology if and only if the set

{a ∈ A : ‖[D, a]‖ ≤ 1}

has a precompact image in the quotient space A/C1, equipped with the quotient norm.
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1.2 The results in the thesis.

As we can see from the constructions above, a metric on the state space is based on a set

C which is given by an expression like

C = {a ∈ A : ‖[D, a]‖ ≤ 1}.

It seems natural to propose a definition of a metric in the non-commutative setting in

terms of an object which is related directly to the algebra, and we do show that this is

possible in some cases. Let us return to the theorem above. There the agreement between

the metric topology and the weak*-topology is characterized by certain properties of the

set C so our object should have similar properties. For a general unital and separable

C*-algebra A it seems that any precompact, balanced and convex subset of A which

separates the states on A can give us a metric on the state space which agrees with the

weak*-topology. Our reasons for looking at such a set are partially due to our reading

of works by M. A. Rieffel, [Ri1], [Ri2], and B. Pavlović, [Pav]. The key property in the

above characterization is the pre compactness property. With this in mind we searched

for and found a non-commutative version of Arzelà-Ascoli theorem which tells us how to

determine pre compactness of a subset of a unital C*-algebra. Explicitly the theorem

asserts that once we have given one precompact subset of A, say K which separates the

states then we will know all precompact subsets because they are not far away from K.

These considerations are contained in the first section of Chapter 2 of our thesis which

consists of general results.

We now return to Theorem 0.3. After this characterization was established there were

several attempts to verify for known spectral triples the agreement between the induced

metric topology on the state space and the weak*-topology. A natural spectral triple

to investigate was the one suggested by A. Connes, [Co1], which we will describe here.

Consider a discrete group G endowed with a length function, i.e. a map ` : G→ R+ such

that:

1. `(gh) ≤ `(g) + `(h) for all g, h ∈ G;

2. `(g−1) = l(g) for all g ∈ G;

3. `(e) = 0.
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Then we can define a Dirac operator D on l2(G) by (Dξ)(g) = `(g)ξ(g). A. Connes proved

that if the length function ` is a proper length function, i.e. `−1([0, c]) is finite for each

c ∈ R+, then (l2(G), D) is an unbounded Fredholm module for C∗
r (G). As above we can

define a pseudo metric d on S(C∗
r (G)) by

d(ϕ, ψ) = sup{|ϕ(a) − ψ(a)| : a ∈ S(C∗
r (G)), ‖[D, a]‖ ≤ 1},

and note the only reason why d is not a metric is that it may not be finite. We will

now focus on two classes of discrete groups for which one can construct a metric topology

on the state space of the reduced C*-algebra which coincides with the weak*-topology,

namely groups which satisfy a Haagerup-type condition and groups with rapid decay (or

which satisfy the Haagerup inequality). M. A. Rieffel and N. Ozawa, [ORi], introduced

the general setting of a filtered C*-algebra which satisfies a Haagerup-type condition, and

proved in this set up that A. Connes’ metric induces the weak*-topology. Close to N.

Ozawa and M. A. Rieffel’s article (ideas, techniques, groups to look at...even time for

writing up) is our article in collaboration with Erik Christensen, [AC]. The joint paper

with Erik Christensen is the core of the first section of the Chapter 2I of the thesis. We

would like to sketch now the main ideas and techniques used in this article. To verify

that the metric induced by the Dirac operator gives the state space finite diameter or,

even more, gives the weak*-topology on the state space, one requires estimates on the

norm of an element a of the C*-algebra compared with the norm of the commutator

[D, a]. Using an estimate of the completely bounded norm of a certain Schur multiplier

and some techniques concerning free groups due to U. Haagerup, [Haa], we proved the

boundedness of the metric topology for a free non Abelian group. We first thought that

once the boundedness question was settled the agreement with the weak*-topology would

be easy to prove. A closer analysis shows that the problems involved are much more

complex and of very difficult combinatorial nature. Since we have not been able to solve

these problems we have looked for alternative definitions of metrics which will induce the

weak*-topology on the state space of C∗
r(G). The most obvious thing to do seemed to

be to restrict the attention to the analysis of discrete groups of rapid decay, [Jo]. The

definition of this notion has inspired us to consider a relaxation of the way the Dirac

operator proposed by A. Connes is used in the construction of a metric on the state

space. Let us introduce here the notion of a group of rapid decay and our proposal for a
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metric induced by a Dirac operator. Before we state the definition we briefly explain the

notation: for a discrete group G, let CG denote the group algebra and λ : CG→ B(l2(G))

the left regular representation.

Definition 1.2.1. A discrete group G is said to be of rapid decay (RD) if there exist a

length function ` on G and positive reals C , k such that

∀x ∈ CG : ‖λ(x)‖ ≤ C
( ∑

g∈G

(1 + `(g))2k|xg|2
) 1

2
.

Definition 1.2.2. Let G be a discrete group with a length function ` : G→ N0 such that

`−1(0) = {e}. LetD denote the corresponding Dirac operator and δ the unbounded deriva-

tion on C∗
r(G) given by δ(a) =closure([D, a]), when the commutator [D, a] is bounded and

densely defined. For any natural number k we define a seminorm Lk
D by

domain(Lk
D) = domain(δk) and Lk

D(a) = ‖δk(a)‖.

For a group of rapid decay the suggested construction leads to a lot of metrics, which

all give us the weak*-topology. To summarize:

Theorem 1.2.3. Let G be a discrete group with a length function ` : G → N0 such that

`−1(e) = 0, ` is proper and G is of rapid decay with respect to `. Then there exists a

k0 ∈ N such that for all k ≥ k0 the metric generated by Lk
D on S(C∗

r(G)) is bounded and

the topology generated by the metric equals the w*-topology.

We remark that for these metrics it is very easy to verify the agreement with the

weak*-topology. The relations between the class of groups which satisfy the Haagerup-

tye condition and the class of groups of rapid decay is unclear. However it was proved

that the class of word-hyperbolic groups is contained in both classes. The inclusion in the

class of groups with rapid decay is due to Jolissaint, [Jo], and the inclusion in the class

of groups which satisfy a Haagerup-type condition is due to M. A. Rieffel and N. Ozawa,

[ORi]. We also remark that the free groups Zn with the word-length function for the

standard basis doesn’t satisfy a Haagerup-type condition if n ≥ 2, as was proved by M.

A. Rieffel and N. Ozawa [ORi], but it is easy to verify the fact that they are of rapid decay.

Thus for Zn our proposal via Lk
D gives a metric compatible with the weak*-topology, but

M. A. Rieffel has already considered this case in [Ri3] and proved that A. Connes’ metric
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has all of the right properties. His approach, very different than those from the articles

[ORi] and [AC], involves the A. Connes’ cosphere algebra.

An important aspect of the investigations in this thesis is the search for an extension

Connes’ construction of an unbounded Fredholm module based on a length function on a

discrete group. As mentioned i Connes’ book [Co2] the reduced group C*-algebra comes

with a natural filtration induced by the word length and it also has a canonical trace state.

Hence a natural candidate for a possible generalization of an unbounded Fredholm module

is a filtered C*-algebra with a faithful trace. This set up, outlined by N. Ozawa and M. A.

Rieffel [ORi], comes with a natural candidate for an unbounded Fredholm module, and also

extends in some sense the model of a reduced group C*-algebra. To clarify the concepts, it

is of importance to remark that for any discrete group G endowed with a length function

there is a natural way to see C∗
r (G) as a filtered C*-algebra, [ORi]. There are several well

known C*-algebras fitting into this framework, such as the finitely generated C*-algebras,

the uniformly hyperfinite C*-algebras (UHF), and the approximately finite dimensional

C*-algebras (AF). It seems very natural to start with UHF C*-algebras. The structure

here is so rich and the results so numerous, also on unbounded derivations, that a careful

investigation should be possible. The second section of Chapter 3 of the thesis consists

of our suggestions regarding possible constructions of unbounded Fredholm modules on

UHF algebras which induce the weak*-topology on the state space. The ideas followed are

of the same type as in the group C*-algebras case; we try to obtain estimates of the norm

of an element a of the UHF C*-algebra compared to the norm of the commutator [D, a].

Our first attempt concerned the Dirac operator induced naturally by the *-filtration.

To get more information about this kind of estimate we used a numerical experiment,

via the mathematical software Maple. The statistical approach was done for the case

of CAR C*-algebras and the results so far confirm very well our hopes for the relation

between the norm of a and the norm of commutator [D, a]. Besides the Dirac operator

induced naturally by the *-filtration, we were thinking of another construction which uses

additional structure coming from a certain symmetry. We proved that this Dirac operator

indeed induces the weak*-topology. The main idea in the construction given here is based

on the simple observation that for any von Neumann algebra and an element in this

algebra, the distance from the element to the center is equal to the distance from the



12 CHAPTER 1. INTRODUCTION

element to the commutant of the algebra. Based on this we can introduce a standard

spectral triple for the algebra Mn(C) of complex n× n matrices.

Definition 1.2.4. Let Mn(C) denote the complex n×n matrices, πn the standard repre-

sentation of Mn(C) given as the GNS-representation of Mn(C) with respect to the unique

trace-state on the Hilbert space Hn = L2(Mn(C), 1
n
tr) and Tn the self adjoint unitary

operator on Hn which consists of transposing a matrix. Then the set (Hn, πn, Tn) is called

the standard spectral triple for Mn(C).

Let us remark here that the idea behind the construction of this spectral triple for

the algebra Mn(C) can be extended so that the norm distance on the state space of any

C*-algebra A can be recovered exactly. These considerations are contained in the Section

2 of Chapter 2. We have not seen a proposal for a spectral triple for the algebra K of

compact operators on a separable Hilbert space. We will make a suggestion below based

on an increasing sequence of finite dimensional subspaces of the underlying Hilbert space.

The inspiration for a such suggestion came during our work on UHF C*-algebras. We have

chosen a progression where the dimension is multiplied by some natural number larger

than 1 in each step. The factor may vary from step to step so there are many possible

choices. We have chosen this road because it relates to the natural choice which one can

think of for UHF C*-algebras. There are, however, many possibilities for increasing se-

quences of products of natural numbers, so in some respects the proposed Dirac operators

have very different properties. On the other hand any such operator, say D, will have the

property that the set

{a ∈ K : ‖[D, a]‖ ≤ 1}

is a relatively norm compact subset of K and hence the sets are not too different as the

non commutative Arzelà-Ascoli-Theorem, [AC] shows, and moreover the metric generated

on the state space will be a metric generating the w*-topology on the state space. These

considerations about compact operators are presented in Section 3 of Chapter 3 of the

thesis.
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Chapter 2

General results

2.1 A non-commutative Arzelà -Ascoli Theorem

Given the notion that: a noncommutative compact topological space is a unital C*-algebra,

it seems natural to propose a definition of a metric on such a noncommutative space in

terms of an object which relates directly to the algebra and not only to its state space. For

a general noncommutative, unital and separable C*-algebra A without any particularities

it seems that any precompact balanced and convex subset of A which separates the states

on A contains all the information needed to define a metric on the state space which will

agree with the weak*-topology. We are motivated to consider such sets by both the work

of Rieffel and Pavlović, and the main result of this section (Theorem 1.4).

Definition 2.1.1. Let A be a unital C*-algebra. A subset C of A is called a metric set

if it is norm compact, balanced, convex and separates the states on A.

A subset B of A is balanced if for any complex number µ such that |µ| ≤ 1, we have

µB ⊆ B.

With this definition in hand one can easily construct metric sets for separable unital

C*-algebras. For instance, a metric set in C∗
r(G), where G is a countable group, G =

{gn | n ∈ N} could be given by the following expression, where conv denotes the closed

convex hull.

C := conv
( ∞
∪

n=1
{αλgn

+ βλ∗gn
| α, β ∈ C and |α| + |β| ≤ 1/n}

)
.

The next section will contain results which, hopefully, will justify this introduction of yet

15
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another concept.

The classical Arzelà-Ascoli Theorem gives a characterization of precompact subsets of

C(X) for a compact topological space X. If X is a equipped with a metric ρ generating

the topology on X one can construct a convex subset C̃ of C(X) by

C̃ = {f ∈ C(X) | ∀x, y ∈ X |f(x) − f(y)| ≤ ρ(x, y) }

This set is unbounded since any constant function belongs to C̃. If one normalizes the set

by considering the subset consisting of those elements which all vanish at a certain point

x0 then the classical Arzelá-Ascoli Theorem shows that the set, say C, given by

C = {f ∈ C(X) | ∀x, y ∈ X |f(x) − f(y)| ≤ ρ(x, y) and f(x0) = 0}

will be a compact balanced convex subset of C(X) which separates the points in X. The

Arzelà-Ascoli-Theorem measures any other subset of C(X) against this set in order to

see whether this subset is precompact or not. In the sequel we transfer this measuring

process to the noncommutative case. The methods we use are elementary functional

analytic duality results. We have wondered if this sort of result is valid in a much wider

generality like operator spaces [ER], [Ke]. It seems that the validity of a generalization of

Lemma 2.1.2 below, to this new setting is crucial. Before we start we want to introduce

some more notation. We will be considering the self adjoint part of a unital C*-algebra

which is denoted Ah and we want to think of the elements in A as affine complex w*-

continuous functions on the state space S of A. We will let A(S) denote the space of

w*-continuous affine complex functions on S, and for an element a ∈ A, â will denote

the corresponding affine function in A(S). This presentation of A is called Kadison’s

functional representation of A. It is well known that the functional representation is

isometric on Ah, but for a general element a ∈ A we only have the estimates

‖a‖ ≥ sup |â(ϕ)| = ‖â‖ ≥ 1

2
‖a‖.

In particular this shows that a subset B of A is bounded if and only if the subset B̂ of

A(S) is bounded. We remind the reader that a subscript attached to a Banach space like

Yµ means that we consider the closed ball of radius µ in Y , and Y ∗ means the dual space

of Y . For the pair of Banach spaces like X and X∗, we will use the duality result known

as the Bipolar Theorem. Here the polar of a set B ⊆ X is denoted B◦ and defined by

B◦ = {γ ∈ X∗ : ∀b ∈ B, |γ(b)| ≤ 1 }
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The Bipolar Theorem with respect to this polar then states that the bipolar B◦◦, which

now is a subset of X, is the smallest balanced, convex and norm closed set in X which

contains B. We can now start the presentation of the generalization of the Arzelà-Ascoli

Theorem. Our first lemma is closely connected to some fundamental results on states of a

C*-algebra, namely, that a continuous linear self adjoint functional f can be decomposed

in a unique way into a difference of two positive functionals f+ and f− such that

‖f‖ = ‖f+‖ + ‖f−‖.

Lemma 2.1.2. Let A be a unital C*-algebra and S the state space of A, then

S − S = (A∗
h)2 ∩ {CI}⊥.

Proof. The inclusion ”⊆” is obvious. To prove the remaining inclusion ”⊇”, let us consider

an arbitrary element f in (A∗
h)2 ∩ {CI}⊥. For f in (A∗

h)2 we decompose f = f+ − f− as

a difference of two positive functionals such that ‖f‖ = ‖f+‖ + ‖f−‖. If f = 0 we can

write f as a difference g − g where g is any state on the unital algebra A. If f 6= 0 the

condition f(I) = 0 implies that 0 6= ‖f+‖ = ‖f−‖ = 1
2
‖f‖ ≤ 1. Based on f+ we can then

define a positive functional g of norm ‖g‖ = 1 − ‖f+‖ by

g =
(1 − ‖f+‖)

‖f+‖ f+.

By construction it follows that f+ + g and f− + g are both states, and from the equality

f = (f+ + g) − (f− + g)

we can conclude that f ∈ S − S. The lemma follows.

Following the ideas of Rieffel [Ri1], we deduce the following result

Lemma 2.1.3. Let A be a unital C*-algebra, S the state space of A and C a norm compact

subset of A which separates the points in the state space. Then for states ϕ, ψ on A the

formula

dC(ϕ, ψ) := sup
k∈C

|(ϕ− ψ)(k)|

defines a metric on the state space S which generates the w*-topology.
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Proof. The separation property and the compactness assumption show that dC is a bounded

metric on S. The norm compactness of C and the boundedness of S further implies that

the topology induced by dC is a Hausdorff topology weaker than the compact w*-topology

on S. A well known theorem from topology then tells that the two topologies agree, and

the lemma follows.

We can now state and prove the main result of this section.

Theorem 2.1.4. Let A be a unital C*-algebra and C a metric subset of A. For any subset

H of A the following conditions are equivalent

(i) The set H is norm precompact.

(ii) The set of affine functions {ĥ ∈ A(S) : h ∈ H} is bounded and equi continuous

with respect to the w*-topology on S.

(iii) The set H is bounded and for every ε > 0 there exists a real N > 0 such that

H ⊆ Aε +NC + CI.

Proof. The equivalence between (i) and (ii) follows from the classical Arzelà-Ascoli The-

orem and the fact, mentioned above, that H is bounded if and only if Ĥ is bounded.

To prove the equivalence between (ii) and (iii) we start with (iii) ⇒ (ii). From the

boundedness of H it follows that the set {ĥ : h ∈ H} is bounded. To prove the equi

continuity of this set let us fix an ε > 0 and find a positive real N which fulfills the

condition (iii) with respect to ε
4
. Moreover let ϕ and ψ be two states such that

dC(ϕ, ψ) <
ε

2N
.

then we will show that for any h ∈ H, |ĥ(ϕ) − ĥ(ψ)| ≤ ε. Now let h be an arbitrary

element in H. By (iii) we can find an element a ∈ A1, an element c ∈ C and a complex

number µ such that

h =
ε

4
a+Nc + µI.



2.1. A NON-COMMUTATIVE ARZELÀ -ASCOLI THEOREM 19

We then obtain

|ĥ(ϕ) − ĥ(ψ)| = |(ϕ− ψ)(h)| (2.1.1)

≤ |(ϕ− ψ)(
ε

4
a)| + |(ϕ− ψ)(Nc)| (2.1.2)

≤ ε

2
+NdC(ϕ, ψ) (2.1.3)

< ε, (2.1.4)

and the equi continuity of Ĥ has been established.

To prove the implication (ii) ⇒ (iii) we first recall that H is bounded. Let ε > 0 be given

and find, via the equi continuity assumption on Ĥ, a δ > 0 such that

∀h ∈ H ∀ϕ, ψ ∈ S : dC(ϕ, ψ) ≤ δ ⇒ |(ϕ− ψ)(h)| = |ĥ(ϕ) − ĥ(ψ)| ≤ ε.

We will now use the bipolar theorem and remark that the expression dC(ϕ, ψ) ≤ δ exactly

means that ϕ− ψ ∈ δ(C◦). It is clear that ϕ− ψ ∈ S − S and an application of Lemma

5.1 then shows that the implication above can just as well be expressed as

∀h ∈ H ∀γ ∈ (A∗
h)2 ∩ {CI}⊥ ∩ δ(C◦) : |γ(h)| ≤ ε.

This statement is not sufficient for our computations because it involves the space A∗
h

rather that just A∗. Since a functional on A vanishes on the identity I if and only both

its hermitian and its skew hermitian part vanish on I, we can change from A∗
h to A∗ at

the cost of a factor of 2, so we have

∀h ∈ H ∀γ ∈ A∗
2 ∩ {CI}⊥ ∩ δ(C◦) : |γ(h)| ≤ 2ε.

Since all the sets involved are now convex and balanced the Bipolar Theorem can be

applied very easily. Moreover, C is norm compact so any set of the form Aε + CI + NC
is norm closed, balanced and convex. The relation just established gives immediately the

first inclusion below and the rest follows by some well known “polar techniques” and an

application of the Bipolar Theorem.

H ⊆ 2ε
(
A∗

2 ∩ {CI}⊥ ∩ δ(C◦)
)◦

(2.1.5)

= 2ε
(
A 1

2
∪ CI ∪ 1

δ
C
)◦◦

(2.1.6)

= 2εconv
(
A 1

2
∪ CI ∪ 1

δ
C
)

(2.1.7)

⊆ 2ε
(
A 1

2
+ CI +

1

δ
C
)
. (2.1.8)
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Thus, given ε we have found a number N = 2ε
δ

such that

H ⊆ Aε + CI +NC,

proving the desired implication.
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2.2 The norm metric on the state space

Let A be a unital C*-algebra. In this section we are studying the metric on the state

space S(A) which is induced by the norm on the dual space A∗ of A.

It is well known from the Gelfand transform that for a commutative unital C*-algebra

C(X), where X is a compact topological space, the space X can be computed as the set

of pure states equipped with the weak*-topology. This is in general seen as the guiding

line for non commutative generalizations in the sense that for a spectral triple, we want

the metric induced on the state space to generate the weak* topology. On the other hand

for finite dimensional C*-algebras the 2 topologies agree, so we tried to look for a spectral

triple for the algebra Mn(C) of complex n × n matrices. Since Connes’ suggestion for

a spectral triple for a the reduced C*-algebra of a discrete group with a length function

is based on the left regular representation, it seemed natural to try the “left regular”

representation of Mn(C) as left multipliers on Mn(C) where this algebra is equipped with

the inner product implemented by the trace state. As a Dirac operator the transposition

operator on Mn(C) seems to be a natural suggestion. It turned out that this procedure

works very well and furthermore that one can extend this idea such that it is possible, for

any C*-algebra A, to construct a representation π of A on a Hilbert space H such that

there exists a projection P ∈ B(H) which has the property that the norm distance on the

state space is recovered exactly if this projection P plays the role of the Dirac operator.

Lemma 2.2.1. Let A be a unital C*-algebra and let ρ denote a faithful representation of

A on a Hilbert space H. Let H1 denote the Hilbert space tensor product H1 = H ⊗H, S

the flip on H1 given by S(ξ ⊗ η) = η ⊗ ξ and P the projection P = (I + S)/2. Then the

representation π of A on H1 given by the amplification π(a) = ρ(a) ⊗ I satisfies:

∀a = a∗ ∈ A : inf
λ∈R

‖ a− λI ‖ = ‖ [P, π(a)] ‖

Proof. We will first transform the commutator slightly in order to ease the computations
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and show that the left side dominates the right one.

∀λ ∈ R ∀a = a∗ ∈ A :

‖[P, π(a)]‖ =
1

2
‖[S, π(a)]‖ =

1

2
‖S[S, π(a)]‖

=
1

2
‖π(a) − Sπ(a)S‖ =

1

2
‖π(a− λI) − Sπ(a− λI)S‖

=
1

2
‖ρ(a− λI) ⊗ I − I ⊗ ρ(a− λI)‖ ≤ ‖a− λI‖.

In order to obtain the reverse inequality, for a certain λ, we use the computations above

again but we will first remark that by spectral theory it follows that for a = a∗ ∈ A with

spectrum contained in the smallest possible interval [α, β] ⊆ R one has

inf
λ∈R

‖ a− λI ‖ = ‖ a− α + β

2
‖ =

β − α

2

Let ε > 0 and chose unit vectors ξ, η ∈ H such that (ρ(a)ξ, ξ) ≥ β − ε and (ρ(a)η, η) ≤
α+ ε. Then, ξ ⊗ η is a unit vector in H1 and

1

2
‖ρ(a) ⊗ I − I ⊗ ρ(a)‖ ≥ 1

2
((ρ(a) ⊗ I − I ⊗ ρ(a))ξ ⊗ η, ξ ⊗ η)

≥ (β − α)

2
− ε

= inf
λ∈R

‖ a− λI ‖ − ε.

The lemma follows.

The next lemma is well known ([Ri2]) and easy to prove.

Lemma 2.2.2. Let A be a unital C*-algebra then for any two states ϕ, ψ on A

‖ ϕ− ψ ‖ = sup{| (ϕ− ψ)(a) | : a = a∗ ∈ A and inf
λ∈R

‖ a − λI ‖ ≤ 1 }.

We can now combine the two lemmas above into the main result of this section.

Theorem 2.2.3. Let A be a C*-algebra and ρ a faithful non-degenerate representation

of A on a Hilbert space H. Then there exists a representation π of A on a Hilbert space

H1 which is an amplification of ρ, and a projection P in B(H1) such that for any pair of

states ϕ, ψ on A

‖ ϕ− ψ ‖ = sup{| (ϕ− ψ)(a) | : a = a∗ ∈ A and ‖ [P, π(a)] ‖ ≤ 1 }.
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If H is separable and the commutant of ρ(A) is a properly infinite von Neumann algebra

then π = ρ is possible. If A = Mn(C) and ρ is the standard representation of A on

L2(Mn(C), 1
n
tr) then π = ρ is possible and the projection P = 1

2
(I + T ) where T is the

transposition on Mn(C) can be used.

Proof. If A has no unit then we add a unit in order to obtain a unital C*-algebra Ã. It

is well known that the state space of A embeds isometrically into the state space of Ã.

We can then deduce the result for the non-unital case from the unital one by remarking

that both of the expressions

| (ϕ− ψ)(a) | and ‖ [P, π(a)] ‖

are left unchanged if a is replaced by (a−λI). Let us then assume that A is unital. Then,

by Lemma 2.2.1 we can chose to amplify ρ by the Hilbert dimension ofH, but less might do

just as well. It all depends on the multiplicity of the representation ρ, or rather whether

the commutant of ρ(A) contains a subfactor isomorphic to B(H). In particular, this

situation occurs if H is separable and the commutant is properly infinite. If A = Mn(C)

and ρ is the “left regular representation” of A on L2(Mn(C), tr), then this Hilbert space

is naturally identified with Cn ⊗Cn via the mapping Mn(C) 3 a→
∑n

i=1

∑n

j=1 aijej ⊗ ei,

where the elements ei denote the elements of the standard basis for Cn. From here it is easy

to see that the flip on the Hilbert space tensor product is nothing but the transposition

operator on Mn(C). The Lemma 2.2.1 now applies directly for π = ρ and the projection

P = 1
2
(I + T ), where T is the transposition operator on Mn(C). In the arguments above

we have used the trace rather than the trace-state as stated in the formulation of the

theorem, the reason being that the identification of Mn(C) with Cn ⊗ Cn fits naturally

with the trace. For later use in Section 4.2 (where we discuss UHF C*-algebras) the trace

state is the natural object.
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Chapter 3

Spectral triples for some C*-algebras

3.1 Group C*-algebras

3.1.1 Basic definitions and results

In the sequel we are interested in discrete groups G endowed with a length function `,

i.e. a map ` : G→ R+ such that:

1. `(gh) ≤ `(g) + `(h) for all g, h ∈ G;

2. `(g−1) = `(g) for all g ∈ G;

3. `(e) = 0.

Most of our investigations deal with properties of the reduced group C*-algebra of G,

C∗
r (G). We now recall its definition. Consider the left regular representation λ of the

discrete group G on l2(G). The C*-algebra C∗
r (G) is the norm closure in B(l2(G)) of the

linear span of the left translation unitaries {λ(s) : s ∈ G}. We refer to chapter 6 of [KR]

for the basic properties of this C*-algebra, but we will use a slightly different notation

which is inspired by Connes’ presentations in [Co1] and [Co2]. This means that for an

x ∈ CG we will write λ(x) =
∑

g x(g)λg for the convolution operator on l2(G), and for

g ∈ G, δg denotes the natural basis element in l2(G). Any element x ∈ C∗
r (G) has a

unique representation in l2(G) by x→ xδe so in a natural way we have

l1(G) ⊆ C∗
r(G) ⊆ l2(G)

25
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and, for x ∈ l1(G),

‖x‖2 ≤ ‖λ(x)‖ ≤ ‖x‖1.

There is a subclass of discrete groups of particular interest for our purposes, namely the

groups of rapid decay. For a group of rapid decay one has a kind of inverse to the first

inequality as can be seen in the next definition.

Definition 3.1.1. A discrete group G is said to be of rapid decay (RD) if there exists a

length function ` on G and positive reals C, k such that

∀x ∈ CG : ‖λ(x)‖ ≤ C
( ∑

g∈G

(1 + `(g))2k|xg|2
) 1

2
.

Such an inequality is very powerful as we shall see.

Important examples of discrete groups are of rapid decay. In the very innovative paper

[Haa], Haagerup proved that the free non-Abelian groups Fn are of rapid decay with C = 2

and k = 2. Also, the free Abelian groups Zk are of rapid decay, and one can in fact get

an estimate dominating the norm ‖x‖1. For k = 1 this is obvious since for x ∈ CZ

∑

n∈Z

|xn| ≤
( ∑

n∈Z

(1 + |n|)2|xn|2
) 1

2
( ∑

n∈Z

(1 + |n|)−2
) 1

2

.

The article [Jo] by Jolissaint contains many results on groups of rapid decay. Among

them is a proof that a discrete group is of rapid decay if it is of polynomial growth with

respect to some set of generators and the corresponding length function. Also the word

hyperbolic groups of Gromov are all of rapid decay. This was proved by Jollisaint but

the proof can also be found in [Co2], Theorem 5, p.241. As mentioned before, Connes

defines in [Co1] a metric on a non-commutative C*-algebra via an unbounded Fredholm

module. For a discrete group G with a proper length function ` he obtains in a very

easy way an unbounded Fredholm module as follows: the Fredholm module for C∗
r(G) is

the Hilbert space l2(G) and the Dirac operator D on l2(G) is the selfadjoint unbounded

multiplication operator which multiplies ξ ∈ l2(G) by ` pointwise.

Definition 3.1.2. Let G be a discrete group with a length function ` and let S denote

the state space of C∗
r(G). Then, d` : S × S → [0,∞] is defined by

d`(ϕ, ψ) = sup{|ϕ(a) − ψ(a)| : a ∈ C∗
r(G), ‖[D, a]‖ ≤ 1}.
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A computation involving the properties of a length function shows that for any pair g ∈ G

and ξ ∈ l2(G) we have

(
[D, λg]ξ

)
(k) =

(
`(k) − `(g−1k)

)
ξ(g−1k).

Thus ‖[D, λg]‖ ≤ `(g) and we see that d` must separate the points in S. It is not clear if

d`(ϕ, ψ) < ∞ always, but otherwise d` behaves exactly as a metric on S, so we will call

d` a possibly infinite metric on S.

3.1.2 Schur multipliers on B(H)

We stressed in the introduction the importance for our investigations of certain Schur

multipliers. We will now describe the Schur multipliers and the way in which they relate to

the problems we are considering. We will let Mn(C) denote the n×n complex matrices. A

matrix A ∈Mn(C) induces a mapping As : Mn(C) →Mn(C) by the Schur multiplication

which is given by the expression, Mn(C) 3 X = (xij) → (aijxij) = As(X) ∈Mn(C). Here

we will consider a generalization of this mapping to operators on an abstract Hilbert space

H, which for some discrete group G is decomposed into a sum of orthogonal subspaces

Hg, g ∈ G,H = ⊕
g
Hg. It should be remarked that for any g ∈ G we do permit thatHg = 0,

and we want to emphasize that the results in this section are designed to work for the

well known Abelian group Z; the work in the in rest of the paper aims at general discrete

groups of rapid decay. Despite the fact that this section really is devoted to a result on

the group Z, we present the first result in terms of a general discrete group G, a Hilbert

space H and a decomposition of H indexed by G. In this setting we have a decomposition

of H = ⊕
g
Hg and we get a matrix decomposition of the operators in B(H) such that for

any x in B(H) we can write x = (xs,t), s, t ∈ G where each xs,t is in B(Ht, Hs). It is not

possible to generalize the Schur multiplication directly to this setting since B(Ht, Hs) is

not an algebra unless s = t. On the other hand, it is possible to multiply any operator

xs,t ∈ B(Ht, Hs) by a complex scalar, so for an infinite scalar matrix Λ = (λs,t) it is possible

to perform a formal Schur multiplication B(⊕Hg) 3 x = (xs,t) → (λs,txs,t) = Λs(x).

The latter matrix may not correspond to a bounded operator, but the product is well

defined as an infinite matrix and we will call it a formal Schur product. The theorem

just below provides a criterion on Λ for the boundedness of the Schur product Λs(x)
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for any x in B(H). We do a little more since we do compute the so called completely

bounded norm of Λs : B(H) → B(H). The theory connected to completely bounded

operators is described in Paulsen’s book [Pau]. In order to explain this concept in brief

we consider for n ∈ N the mapping (Λs)n : Mn(C) ⊗ B(H) → Mn(C) ⊗ B(H) given by

(Λs)n = idMn(C) ⊗ Λs. If the sequence of norms defined by ‖Λs‖n := ‖(Λs)n‖ is bounded,

Λs is said to be completely bounded and the completely bounded norm, ‖Λs‖cb is given

as sup
n

‖Λs‖n. Our criterion for ‖Λs‖cb to be finite is based upon a generalization of a

theorem by M. Bożejko and G. Fendler [BF]. In Pisier’s book [Pi], he presents this result

in Theorem 6.4. This theorem deals with the situation where each of the summands Hg

above is one-dimensional, i. e. Hg = C .

Theorem 3.1.3. Let G be a discrete group, H be a Hilbert space which is decomposed

into a sum of orthogonal subspaces Hg, g ∈ G, and let ϕ be a complex function on G. If

the linear operator Tϕ : λ(CG) → λ(CG) which is defined by Tϕ(λg) = ϕ(g)λg extends to

a completely bounded operator on C∗
r(G), then for the matrix Λ given by Λ = (λs,t) s, t ∈

G, λs,t = ϕ(st−1), the mapping Λs is completely bounded, ‖Λs‖cb ≤ ‖Tϕ‖cb and Λs is an

ultraweakly continuous, or normal, operator on B(H).

Proof. Suppose that Tϕ is completely bounded. Then, for the case where Hg = C for

every g ∈ G, the result follows from [Pi]. The proof of the scalar case, as presented in

the proof of the implication [ (i) ⇒ (iii) ] of Theorem 6.4 of [Pi], shows that there exists

a Hilbert space K and two functions, say ξ and η, on G with values in K such that

ϕ(st−1) = (ξ(t), η(s)) ∀s, t ∈ G

and

‖ξ(g)‖ ≤
√
‖Tϕ‖cb , ‖η(g)‖ ≤

√
‖Tϕ‖cb ∀g ∈ G.

We will now turn to the operator Λs and show that it is completely bounded. The

proof of this fact can be obtained as a modification of a part of the proof of Theorem

5.1 of [Pi]. In fact the representation of ϕ we have obtained above makes it possible

to construct operators, say x and y, in B(H,H ⊗ K) such that Λs can be expressed as

a completely bounded operator in terms of these operators. We recall that H = ⊕
g
Hg

and define the operators x and y on a vector α = (αg)g∈G by xα = (αg ⊗ ξ(g))g∈G and

yα = (αg⊗η(g))g∈G, and we find that both operators are of norm at most
√
‖Tϕ‖cb . Let π
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denote the representation of B(H) on H⊗K which is simply the amplification a→ a⊗IK .

Then, an easy computation shows that for any pair of vectors α = (αg), β = (βg) from

H = ⊕
g
Hg and any a in B(H) we have

(π(a)xα, yβ) =
∑

s,t∈G

(aαt, βs)(ξ(t), η(s)) (3.1.1)

=
∑

s,t∈G

(ϕ(st−1)as,tαt, βs) (3.1.2)

= (Λs(a)α, β). (3.1.3)

Consequently, Λs(a) = y∗π(a)x and the cb-norm of Λs is at most ‖Tϕ‖cb . The concrete

description Λs(·) = y∗π(·)x where π is just an amplification shows that Λs is ultraweakly

continuous.

Corollary 3.1.4. If G is an Abelian discrete group and Tϕ extends to a bounded oper-

ator on C∗
r(G) then the mapping Λs is completely bounded, ‖Λs‖cb ≤ ‖Tϕ‖ and Λs is an

ultraweakly continuous, or normal, operator on B(H)

Proof. We have to prove that Tϕ extends to a completely bounded mapping if it extends

to a bounded mapping and that the two norms on Tϕ agree. In order to do so we

remark that for the compact Abelian dual group Ĝ and any natural number k we have

C∗
r(G)⊗Mk(C) = C(Ĝ,Mk(C)), the continuous Mk(C) valued functions on Ĝ. Then for

any finite sum x =
∑
λg ⊗mg in λ(CG) ⊗Mk(C) we have

‖x‖ = max{‖
∑

g

χ(g)mg‖Mk(C) : χ ∈ Ĝ}.

The norm in Mk(C) is determined by the functionals of norm one on this algebra, so let

Mk(C)∗1 denote this unit ball and we get

‖x‖ = max{|
∑

g

χ(g)ψ(mg)| : χ ∈ Ĝ and ψ ∈Mk(C)∗1}.

Let us now suppose that Tϕ extends to a bounded operator on the group algebra of norm

at most 1. For x as above and of norm at most 1 in C∗
r(G) ⊗Mk(C), we have that for

any pair χ, ψ as above |
∑

g χ(g)ψ(mg)| ≤ 1. Hence, for this fixed ψ we get the estimate

‖
∑

g ψ(mg)λg‖ ≤ 1 in C∗
r(G). Since ‖Tϕ‖ ≤ 1 we also get ‖

∑
g ϕ(g)ψ(mg)λg‖ ≤ 1, but

this holds for any ψ so we can go back and note that Tϕ is completely bounded of norm

at most 1.
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The following corollary shows that a square summable function ϕ on a commutative

discrete group G induces a completely bounded operator Λs. Besides these functions and

the positive definite functions on G, we do not know of any other general results which

can guarantee the complete boundedness of Λs.

Corollary 3.1.5. Let G be an Abelian discrete group, ϕ ∈ l2(G) and let Λ : G×G → C

be given by Λ(s, t) = ϕ(st−1). Then Λs is completely bounded and ‖Λs‖cb ≤ ‖ϕ‖2.

Proof. The operator Tϕ on C∗
r(G) can, when we look at the latter algebra as C(Ĝ), be

expressed as the convolution operator implemented by the Fourier transform, ϕ̂ ∈ L2(Ĝ).

Here we have chosen the probability Haar measure on the compact group Ĝ such that

the Fourier transform is an isometric operator between the two Hilbert spaces. It follows

directly from The Cauchy-Schwarz inequality that the norm of the convolution operator

is dominated by the norm ‖ϕ̂‖2, and the corollary follows.

The purpose of the previous corollary is actually to compute the norm of the partial

inverse of certain derivations on B(H). Let D be a possibly unbounded selfadjoint opera-

tor on B(H) with spectrum contained in the set of integers Z. Then, the Hilbert space H

decomposes as a direct sum of the eigenspaces, say Hm, of D. Many of these spaces may

vanish, but we nonetheless write H = ⊕
m∈Z

Hm. We will be able to use the results above

concerning the norm of certain Schur multipliers together with this decomposition. We

wish to give a description of a bounded operator a ∈ B(H) which has the property that

the commutator [D, a] is bounded and of norm at most 1. Clearly, all bounded operators

which commute with D must play a special role in this set up. This set is a von Neumann

algebra and consists of the operators in the main diagonal of B(H), when the latter al-

gebra is viewed as infinite matrices with respect to the decomposition H = ⊕
m∈Z

Hm. We

will let D0 denote the commutant of D and for k ∈ Z we will define the k’th diagonal of

B(H) by

Dk = {(xij) ∈ B(H) | i− j 6= k ⇒ xij = 0}.

For k ∈ Z there is a natural projection of B(H) onto Dk, say Pk given by the expressions

Pk((xi,j))m,n =




xm,n if m− n = k ,

0 if m− n 6= k .
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If one computes Pk(x)
∗Pk(x) it is easy to realize that Pk is a projection onto the k’th

diagonal and of norm at most one. The problem we are facing is analogous to well known

problems concerning convergence of Fourier series; it is not easy to give norm estimates

of the norm of a general finite sum
∑

k∈C Pk(x). If we disregard convergence questions

for some time, it follows from elementary algebraic manipulations that for an operator

a = (am,n) ∈ B(H), the commutator [D, a] must have the formal infinite matrix c = (cm,n)

given by cm,n = (m− n)am,n. So, at least formally, we can write

[D, a] =
∑

k∈Z

kPk(a),

and we see that this operator on B(H) is in fact an unbounded Schur multiplier. Further

it follows that

a− P0(a) =
∑

k∈Z and k 6=0

1

k
Pk([D, a]).

Hence, the partial inverse to the derivation B(H) 3 a→ [D, a] is a Schur multiplier which

according to the results above will turn out to be completely bounded. With this notation

in mind we can offer norm estimates for such sums in the next theorem. The theorem

is a generalization of the well known fact that the Fourier series for a differentiable 2π

periodic function on R is uniformly convergent.

Theorem 3.1.6. Let D be a self adjoint operator on a Hilbert space H such that the

spectrum of H is contained in Z and let C = {a ∈ B(H) : ‖[D, a]‖ ≤ 1 and ρ0(a) = 0}.
Then:

(i) every element in C is of norm at most π√
3
;

(ii) for a ∈ B(H) such that ‖[D, a]‖ ≤ 1 the sum
∑

m∈Z

Pm(a) is norm convergent and

‖
∑

|m|>k

Pk(a)‖ ≤
√

2
k

∀k ∈ N.

Proof. Suppose a ∈ B(H) satisfies ‖[D, a]‖ ≤ 1 and ρ0(a) = 0 . Then the first statement

in the theorem is, as we shall see, just a special case of the second corresponding to k = 0,

although the estimates are slightly different. Let then k ∈ N0 be given and consider

the set of Hilbert spaces Hm, m ∈ Z, where the space Hm is defined as above, i.e. the

eigenspace for D corresponding to the eigenvalue m. We can then apply Corollary 3.1.5
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with G = Z and the function ϕk : Z → R given by

ϕk(m) =




m−1, if |m| > k ,

0 if |m| ≤ k .

This yields

‖a−
k∑

i=−k

Pi(a)‖ ≤ ‖[D, a]‖‖ϕk‖2 ≤ (2
∑

j>k

j−2)
1
2 .

After recalling the well known sum
∑

j∈N
j−2 = π2

6
for k = 0 and the integral estimate

∑
j>k j

−2 < 1
k

for k > 0, the theorem follows.

Remark 3.1.7. The proof of Theorem 3.1.6 depends on the fact that the spectrum of D

is contained in the Abelian discrete group Z. This is not likely to be a relevant condition

for a result of this type and we believe that this theorem must have a more general version

which is valid for an unbounded self adjoint operator whose spectrum consists of points

(sk)k∈Z such that |sk| → ∞ for |k| → ∞ and inf{|sm − sn| | m, n ∈ Z} > 0. We

have already mentioned the fact that an estimate similar to the one above does exist

for ordinary differentiation on C(T), but we have not found a general operator theoretic

treatment of this problem.

3.1.3 Group C*-algebras as non-commutative

compact metric spaces

This section is mainly devoted to the study of some metrics on the state space of a C*-

algebra which is generated by the left regular representation of a discrete group of rapid

decay. We will start by recalling Connes’ construction [Co1] which defines a metric on the

state space of a discrete group C*-algebra in terms of an unbounded Fredholm module.

Let G be a discrete group with a length function ` : G → N0 such that, in the language

of Section 3.1, ` is proper and G is of rapid decay with constants C, k with respect to

`. As described in [Co2] p. 241 such a length function ` on a discrete group G with

values in N0 induces a decomposition of `2(G) into an orthogonal sum of subspaces Hm,

each one being the closed linear span of the basis vectors δg for which `(g) = m. The

Dirac operator on `2(G) is the self adjoint unbounded operator D which is the closure of
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the operator D0 defined on the linear span of the basis vectors δg, g ∈ G and acts by

D0δg = `(g)δg. The operator D clearly has its spectrum contained in Z, the eigenspaces

all vanish for m < 0 and are equal to Hm for m ≥ 0. Theorem 3.1.6 is designed to deal

with this situation, but it does not work as well as expected. The theorem provides a

norm estimate of ‖a−P0(a)‖ in terms of ‖[D, a]‖ for an a in C∗
r(G), and we believed that

from this it would be easy to get an estimate of ‖P0(a)‖, because a group is such a rigid

object. Unfortunately this is not so and we can only get an estimate which also takes

care of the main diagonal part P0 if the group is a one of the free non Abelian groups Fn.

Theorem 3.1.8. Let G be a free non Abelian group on finitely many generators and `

the natural length function on G. Then, the metric d` on the state space S(C∗
r(G)) is

bounded, and the diameter of the state space is at most 5.

Proof. We will prove the boundedness of the metric by studying the convex and balanced

subset C of C∗
r(G) given by C = {a ∈ C∗

r(G) : ‖[D, a]‖ ≤ 1}. By Theorem 3.1.6 we know

that for a ∈ C we will have ‖a− P0(a)‖ ≤ π√
3
, so we only have to get an estimate of the

‖P0(a)‖. In order to control ‖P0(a)‖ we first restrict to the case where a is of finite support

in G and make the extra assumption that (aδe, δe) = 0. If the second assumption does not

hold we simply subtract the corresponding multiple of the unit from a. This operation

has, of course, no effect on the commutator [D, a]. Since we know by assumption that

this commutator is of norm at most 1, we get the first estimate,

1 ≥ ‖[D, a]δe‖2 =
∑

g∈G

`(g)2|a(g)|2.

Let us now pick a unit vector ξ ∈ Hm and let Fm denote the orthogonal projection from

H onto Hm. We can now try to estimate ‖P0(a)‖ by estimating Fmaξ. Let g ∈ G be of

length m. Then g, can be expressed uniquely in terms of generators as g = g1g2 . . . gm.

When we have to compute the value of the convolution a ∗ ξ(g) we must remember that

ξ is supported on words of length m, so the sum will be an expression of the type

a ∗ ξ(g) =

m∑

k=1

∑

{s1,...,sk |sk 6=gk,g−1
k+1}

a(g1 . . . gks
−1
k . . . s−1

1 )ξ(s1 . . . skgk+1 . . . gm).

We can now imitate a trick from the proof of [Haa] Lemma 1.3. In order to do so we

define for a fixed k, 1 ≤ k ≤ m ( remember a(e) = 0 so k > 0 ) a function bk supported
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on words of length k and a vector ηm−k supported on words of length m− k by

bk(g1 . . . gk) = (
∑

{s1,...,sk |sk 6=gk}
|a(g1 . . . gks

−1
k . . . s−1

1 )|2 )
1
2 , (3.1.4)

bm(g1 . . . gm) = |a(g1 . . . gm)| (3.1.5)

ηm−k(gk+1 . . . gm) = (
∑

{s1,...,sk |sk 6=g−1
k+1}

|ξ(s1 . . . skgk+1 . . . gm)|2 )
1
2 (3.1.6)

η0(e) = ‖ξ‖2 = 1. (3.1.7)

With this in hand we get

|a ∗ ξ(g)| ≤
m∑

k=1

bk(g1 . . . gk)ηm−k(gk+1 . . . gm) = (
m∑

k=1

bk ∗ ηm−k)(g).

As in [Haa] we will let χm denote the characteristic function on the words of length m,

and we will further use the statement contained in Lemma 1.3 of [Haa] which says that

for functions like bk which are supported on words of length k and the ηm−k which are

supported on words of length m− k one has

‖bk ∗ ηm−kχm‖2 ≤ ‖bk‖2‖ηm−k‖2.
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A combination of the inequalities above then yields

‖Qmaξ‖2 = ‖a ∗ ξχm‖2 (3.1.8)

≤ ‖
m∑

k=1

bk ∗ ηm−kχm‖2 (3.1.9)

≤
m∑

k=1

‖bk ∗ ηm−kχm‖2 (3.1.10)

≤
m∑

k=1

‖bk‖2‖ηm−k‖2 (3.1.11)

≤
m∑

k=1

‖bk‖2, since ‖ξ‖2 = 1 (3.1.12)

=

m∑

k=1

k‖bk‖2(1/k) (3.1.13)

≤ (
m∑

k=1

k2‖bk‖2
2)

1
2 (

m∑

k=1

k−2)
1
2 (3.1.14)

≤ π√
6
(

m∑

k=1

k2
∑

g,`(g)=2k

|a(g)|2) 1
2 (3.1.15)

≤ π√
6
(
1

4

∑

g∈G

`(g)2|a(g)|2) 1
2 (3.1.16)

≤ π

2
√

6
. (3.1.17)

The computations just above show that for an a ∈ C we have ‖P0(a) − (aδe, δe)I‖ ≤ π

2
√

6
.

From Theorem 3.1.6 we know that ‖a−P0(a)‖ ≤ π√
3
, so we obtain ‖a− (aδe, δe)I‖ < 2.5.

The diameter of the state space is thus at most 5.

In [Ri2], Rieffel introduces the concept of a lower semicontinuous Lipschitz seminorm

L on a C*-algebra A. The term Lipschitz means that the kernel of the seminorm consists

of the scalars and the term lower semicontinuous means that the set {a ∈ A | L(a) ≤ 1}
is norm closed. In our context the operator D induces several Lipschitz seminorms whose

domains of definition always contain the dense subalgebra λ(CG) of C∗
r(G). In order to

define these seminorms we fix the setting as above. Let G be a discrete group with a

length function ` : G → N0 such that `−1(0) = {e}. Let D denote the corresponding

Dirac operator and δ the unbounded derivation on C∗
r(G) given by δ(a) = [D, a], when

the commutator [D, a] is bounded and densely defined. For any natural number k we
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define a seminorm Lk
D by

domain(Lk
D) = domain(δk) and Lk

D(a) = ‖δk(a)‖.

Having this notation we can state a theorem of quite general validity.

Theorem 3.1.9. Let G be a discrete group with a length function ` : G → N0 such

that `−1(0) = {e}. For any natural number k the seminorm Lk
D on C∗

r(G) is a lower

semicontinuous Lipschitz seminorm.

Proof. The condition `−1(0) = {e} implies that the only operators in C∗
r(G) which com-

mute with D are the multiples of the unit in C∗
r(G). Let us define ϕ : Z → R by

ϕ(m) =




m−1, if m 6= 0 ,

0 if m = 0 .

and let Λs denote the Schur multiplier on B(⊕Hm) implemented by the function λ(m,n) =

ϕ(m− n). Then by Theorem 3.1.6 we know that Λs is a completely bounded and ultra-

weakly continuous operator on B(H). Let now B(H)1 denote the unit ball in B(H).

Then, for any k ∈ N we have that Λk
s(B(H)1) is ultraweakly compact. We can now

control most of the set

{a ∈ C∗
r (G) | Lk

D(a) ≤ 1}

the only part missing is the main diagonal P0(C
∗
r(G)). For B(H) we have P0(B(H)) =

D0 i.e., the main diagonal which is clearly ultraweakly closed. The sum Λk
s(B(H)1) +

P0(B(H)) is then ultraweakly closed and consequently also norm closed. The intersection

below

[Λk
s(B(H)1) + ρ0(B(H))] ∩ C∗

r(G) = {a ∈ C∗
r(G) | Lk

D(a) ≤ 1}

is norm closed, too.

It is rather easy to check that the metric d` introduced in Definition 3.1.2 induces

a topology which is finer than the w*-topology. In fact, the norm dense group algebra

λ(CG) is obviously contained in the domain of definition for the derivation δ and the metric

clearly induces a topology on the state space which is finer than pointwise convergence on

the operators λg. The question is whether the two topologies agree. At first we thought

that once the boundedness question has been settled this question would be easy, because
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Theorem 3.1.6 controls problems involving norms of the diagonals with large indices. A

closer analysis shows that the problems involved seems to be much more complex and are,

probably, of a difficult combinatorial nature. The short formulation of the problem is that

for a group element, say g, such that `(g) is “large”, the unitary operator λg may have

a lot of non vanishing diagonals with “small” indices. This makes it possible, at least in

principle, for the algebra CG to have the property that for any natural number N , there

exists an operator x =
∑
x(g)λg such that x(g) 6= 0 ⇒ `(g) > N , and ‖

∑
|k|≤N

Pk(x)‖ is

big whereas ‖ ∑
|k|>N

Pk(x)‖ is small. Since we have not been able to solve these problems

we have looked for alternative constructions of metrics which will induce the w*-topology

on the state space of C∗
r(G). The most obvious thing to do, seemed to be to restrict our

attention to the analysis of discrete groups of rapid decay ([Co2],[Jo]).

Before we state and prove our next result we want to recall Lemma 3.1, but in a more

general version which discusses lower semicontinuity too. From Rieffel’s works [Ri1] and

[Ri2] and the work of Pavlović [Pav] it is known that a lower semicontinuous Lipschitz

seminorm L on a unital C*-algebra A is bounded and induces the w*-topology on the

state space of A if and only if the set

{a ∈ A : L(a) ≤ 1}

has a compact image in the quotient space A/CI, equipped with the quotient norm.

Theorem 3.1.10. Let G be a discrete group with a length function ` : G→ N0 such that

`−1(e) = 0, ` is proper and G is of rapid decay with respect to `. Then there exists a

k0 ∈ N such that for all k ≥ k0, L
k
D is lower semicontinuous, the metric generated by Lk

D

on S(C∗
r(G)) is bounded and the topology generated by the metric equals the w*-topology.

Proof. The statement about lower semicontinuity follows from Theorem 3.1.9, and the

assumption of rapid decay implies that there exist two positive reals C, s such that

∀x ∈ CG ‖λ(x)‖ ≤ C
( ∑

g

(
1 + `(g)

)2s|λ(g)|2
) 1

2 .

The number k0 is then defined by k0 = bsc + 1, and given this we will fix a k ∈ N such

that k ≥ k0. According to the statement immediately above this theorem, we have to

prove that the set C̃k defined by

C̃k := {a ∈ C∗
r(G) | Lk

D(a) ≤ 1}
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has precompact image in C∗
r(G)/CI. We obtain this by choosing the element from each

equivalence class in C̃k which is of trace 0. This set is denoted Ck, and is clearly precompact

if and only if C̃k has precompact image in the quotient space C∗
r(G)/CI. Consequently Ck

is given by

Ck = {a ∈ C∗
r(G) | Lk

D(a) ≤ 1 and (aδe, δe) = 0}.

The first observation we need has already been used before, namely, that any element a ∈
C∗

r(G) can be expressed as an l2 convergent infinite sum
∑
a(g)δg and that ‖a‖2 = ‖aδe‖.

Having this, and the fact that Dδe = 0 we have that for an a ∈ Ck,

1 ≥ Lk
D(a) = ‖δk(a)‖ ≥ ‖δk(a)δe‖ = ‖

∑
`(g)ka(g)δg‖.

In particular we have that

∑
`(g)2k|a(g)|2 ≤ 1 for an a ∈ Ck.

The properness condition on `(g) implies that there are only finitely many group elements

of length less than any natural number n. Hence in order to prove that Ck is precompact

it is sufficient to show that for any positive real ε there exists a natural number n such

that for any a ∈ Ck

‖
∑

`(g)≥n

a(g)λg‖C∗

r(G) ≤ ε.

But this, on the other hand, is easily obtainable from the inequality at the beginning of

the proof. In fact, let n ∈ N then for g ∈ G with `(g) ≥ n ≥ 1. Then,

(1 + `(g))2s ≤ 22s`(g)2s ≤ 22sn(2s−2k)`(g)2k.

Since 2s − 2k < 0 there exists an n ∈ N such that 22sn(2s−2k) ≤ ε2

C2 . For this n we then

obtain

‖
∑

`(g)≥n

a(g)λg‖2
C∗

r(G) ≤ C2
∑

`(g)≥n

(
1 + `(g)

)2s|a(g)|2 ≤ C2 ε
2

C2
Lk

D(a)2 ≤ ε2

and the theorem follows.
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3.2 UHF C*-algebras

3.2.1 Introduction

We have already mentioned the construction of an unbounded Fredholm module of A.

Connes for C∗
r (G), where G is a discrete group endowed with a proper length function

`. It has been the goal of this research to investigate the possibility of constructing

unbounded Fredholm modules for C*-algebras which are not group C*-algebras. In the

same spirit as for group C*-algebras, we focused on those Fredholm modules which will

give the weak*-topology on the state space. M. A. Riffel and N. Ozawa, [ORi], introduced

in their work a very convenient set up for our goal, namely, a filtered C*-algebra. This is a

unital C*-algebra A over C which has a *-filtration {An} by finite-dimensional subspaces.

This means that:

1. Am ⊂ An if m < n;

2.
∞⋃

n=0

An is norm dense in A;

3. A∗
n = An;

4. AmAn ⊆ Am+n;

5. A0 = C1.

One also assumes that A has a faithful trace, τ . For this situation there is a natural

way to define an unbounded Fredholm module. Let H = L2(A, τ) and consider now

the left regular representation of A on H as bounded operators. Identify A with the

corresponding algebra of operators on H. Each An can be viewed as a finite-dimensional

and hence closed subspace of H. We let Pn denote the orthogonal projection of H onto

An. We then set Q0 = P0 and for n > 0 Qn = Pn − Pn−1. The Qn’s are mutually

orthogonal, and
∑
Qn = IH in the strong operator topology. For the described situation

M. A. Rieffel and N. Ozawa defined the following unbounded operator, D, on H by

D =

∞∑

n=1

nQn.

It is quite easy to check that this representation of A on L2(A, τ) together with the

operator D constitutes an unbounded Fredholm module. In [ORi] Ozawa and Rieffel
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introduced a so called Haagerup-type condition which we describe in Definition 4.1 below.

They show for C*-algebras which satisfy the Haagerup-type condition the metric induced

by D on the state space generates the weak*-topology. The Haagerup-type condition

reads:

Definition 3.2.1. Let A and the *-filtration {An} be as above, and let D be defined as

above. For k ∈ N and a ∈ A the operator ak is defined as the one which as vector in H

is given by Qka. The group G is said to satisfy a Haagerup-type condition if there exists

a positive constant C such that for any a ∈ A and any natural numbers k,m, n

‖PmakPn‖ ≤ C‖ak‖2

In the introduction we mentioned that the model of a filtered C*-algebra extends in

a sense the reduced group C*-algebra setting. (We are still following N. Ozawa, M. A.

Rieffel, [ORi].) For a discrete group G and any proper length function ` on G we obtain

a *-filtration {An} of the convolution algebra CG by setting

An = {x ∈ CG : x(g) = 0 if l(g) > n}.

We define a faithful trace, τ on CG by τ(x) = x(e). The resulting GNS Hilbert space

is l2(G), and the GNS representation is the left regular representation of C(G). The

C*-algebra generated by the left regular representation is C∗
r (G). Thus we are in the

setting of filtered C*-algebras. The Dirac operator corresponding to the filtration is just

the operator M` of pointwise multiplication by ` on l2(G).

The concept of filtration gave us the inspiration to investigate spectral triples for UHF

C*-algebras. A UHF C*-algebra A has a natural filtration since A, by definition is the

norm closure of an increasing sequence of finite dimensional full matrix algebras (An)n∈N0

such that A0 = CIA. These algebras were studied by first by Glimm [Gl] and he proved

that they can be characterized by a super natural number which can be computed from

the sequence (An)n∈N by the following procedure. Each algebra An is isomorphic to some

full matrix algebra say Mmn
and it embeds into An+1 = Mmn+1 such that the unit is

preserved. This implies that mn divides mn+1 and consequently the factorization of mn+1

into prime numbers contain the elements from the factorization of mn. The super natural

number associated to A is then the mapping from the primes into N0∪{∞} which counts
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the total number of appearances of each prime.

We have not seen a proposal for a spectral triple for UHF C*-algebras. We will show that

it is possible to construct a Dirac operator which relates to this filtration in a natural way

and which will induce a metric for the w*-topology on the state space of the algebra. In

our construction of a summable Fredholm module for A, we make some choices dependent

upon the concrete sequence (An)n∈N0 and it seems hard to compare Fredholm modules

for different increasing sequences of subalgebras.

3.2.2 A spectral triple for a UHF C*-algebra

In the sequel we will use the notation Mm,n for the complex m × n matrices. If m = n

then we will just write Mm.

Recall again the construction of a spectral triple suggested by Connes [Co1] for a discrete

group with a length function with values in N0. In this case the space of square summable

functions on the group naturally decomposes into a sum of subspaces, where each subspace

consists of the functions which are supported on the words of a given length. Then, the

Dirac operator is the operator which has these spaces as eigenspaces with eigenvalues equal

to the corresponding word lengths. In the case of a UHF C*-algebra the analogy, of the

model immediately above, is, for the sake of the representation, the GNS-representation

based on the trace-state. The algebra becomes a pre Hilbert space and the natural

increasing sequence of finite dimensional Hilbert subspaces is then the sequence of finite

dimensional C*-algebras, but now considered as subspaces of A with respect to the inner

product induced by the trace state. This increasing sequence of finite dimensional Hilbert

spaces naturally induces a sequence of pairwise orthogonal subspaces - the spaces are the

differences of neighboring pairs in the increasing sequence. In analogy with the group case

it seemed natural to investigate the properties of an operator which had the given sequence

of subspaces as eigenspaces and with corresponding eigenvalues somehow related to the

dimension of the C*-algebra which corresponds to the sum of all the previous eigenspaces.

We tried this approach, but could not get it to work. In the next section we will report on

some numerical tests, performed using MAPLE. It seems that the immediate suggestion

for a Dirac operator behaves nicely, but that we just can’t prove it. Instead, we tried

another idea for a Dirac operator. The one we propose is based on the natural one for the
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algebra of complex n×n matrices. This case is treated in this section. Recall that in this

finite dimensional situation the proposal for a Dirac operator is the transposition operator

on the Hilbert space consisting of the entire algebra. An immediate generalization would

give us the uniform metric on the state space, which is not what we want. The next guess

was to take growing multiples of the transposition operator on the summands introduced

before. This becomes too unbounded an operator in the sense that only the operators

which are multiples of the identity will have bounded commutator with such a Dirac

operator. Finally, we tried a Dirac operator where the transposition in each step is used

only on the last factor. More precisely the idea is to write the increasing sequence of

C*-algebras as an increasing sequence of tensor products like

An = Md1 ⊗ · · · ⊗Mdn
⊗ CIMdn+1

⊂ Md1 ⊗ · · · ⊗Mdn+1 = An+1

and then let a multiple of the operator I ⊗ · · · ⊗ I ⊗ Tdn+1 act on the Hilbert difference

space An+1 	 An. Our good friend Ryszard Nest told us that this construction seems

reasonable because the differentiation operator acts on a product by summing products

where just one factor in each product is being differentiated. The construction, which we

introduced above, nearly has this property, but not exactly. The reason why we can not

simply copy the product rule directly is that for this procedure, it has not been possible

to obtain a summable Fredholm module. We will now formulate our result for a UHF

C*-algebra A

Theorem 3.2.2. Let A be an infinite dimensional UHF C*-algebra and let π denote the

GNS-representation induced by the trace state on a Hilbert space H. For any strictly

increasing sequence (An)n∈N0 of finite dimensional factors such that A0 = CIA and the

union of the sequence is dense in A and any increasing sequence of reals (αn)n∈N0 such

that α0 = 1 and
∑
α−2

n <∞ there exists an unbounded selfadjoint operator D on H such

that

(a) ∪n∈N0An ⊂ dom(D)

(b) (I +D2)−1 is of trace class.

(c) The set C = {a = a∗ ∈ A : ‖ [D, a] ‖ ≤ 1} is relatively compact in A and the metric

which C induces on the state space generates the weak* topology.
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Proof. We will continue to use the notation we introduced before we stated the theorem,

i.e., An is isomorphic to Mmn
and m0 = 1. The number mn divides mn+1 and we define

for n ≥ 1, dn = mn/m(n−1). For simplicity in the arguments below we will always assume

that all of the quotients dn satisfy dn > 1. The Hilbert space H is just the completion

of pre Hilbert space A equipped with the inner product (a, b) = τ(b∗a), where τ is the

trace state on A. The algebras An are then closed subspaces, which we will denote (Hn).

The corresponding growing sequence of projections is then denoted (Pn). As remarked

earlier we want to let the Dirac operator have its eigenspaces related to the sequence of

differences H(n) 	H(n−1). We do therefore define a sequence (Fn) of pairwise orthogonal

finite dimensional subspaces of H by F0 = H0 and Fn = H(n) 	 H(n−1) for n ≥ 1. The

corresponding sequence of pairwise orthogonal projections is denoted (Qn), so Q0 = P0

and Qn = Pn−P(n−1) for n ≥ 1. We can now describe the Dirac operator’s action on each

of the spaces Fn. We first remark that the last factor Mdn
of An is a unital subalgebra of A

and we can therefore write A = Mdn
⊗Mc

dn
where Mc

dn
denotes the relative commutant

of Mdn
in A. The transposition operator on Mdn

, say Tn then induces a selfadjoint

unitary , a symmetry, say Sn on H by extension of the operator Tn ⊗ IMc
dn

from A to H.

It is clear that Sn|A(n−1) = id |A(n−1) and Sn : An → An. Hence both of the subspaces

H(n−1) and Hn are invariant for Sn, and since Sn is selfadjoint the difference space Fn

is invariant, too. Finally the projection Qn commutes with Sn. This makes it possible

to define a selfadjoint operator D as the closure of the operator which on span(∪Fn) is

defined by:

DQ0 = Q0 = α0m0Q0, n = 0

and

DQn = αnmnSnQn, n > 0.

Each of the finite dimensional spaces Fn consists of at most two eigenspaces for D, and

it follows directly from the definition of D that the set of eigenvalues must be {1} ∪
{{−αnmn, αnmn} : n ∈ N}. The eigenspace corresponding to an eigenvalue x is denoted

Gx and then we get

• G1 = F0 and dim(G1) = 1

• G−αnmn
⊂ Fn and dim(G−αnmn

) = mn(mn −m(n−1))/2
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• Gαnmn
⊂ Fn and dim(Gαnmn

) = mn(mn +m(n−1))/2 −m2
(n−1)

• G−αnmn
⊕Gαnmn

= Fn.

It is well known that the closure of this operator, say D, is selfadjoint and that its domain

of definition dom(D) will be the space

dom(D) = {(ξn)n∈N0 : ξn ∈ Fn and

∞∑

n=0

α2
nm

2
n‖ξn‖2 <∞ }.

We have now proved the first claim in the theorem, and the considerations with respect

to the dimensions of the eigenspaces yields immediately that that (I +D2)−1 is compact.

The trace can be estimated by the following computation:

tr((I +D2)−1) =
1

2
+

∞∑

n=1

m2
n −m2

(n−1)

α2
nm

2
n + 1

<

∞∑

n=0

α−2
n <∞.

In order to prove the last claim in the theorem we remind the reader of the fact that the

algebras An as finite dimensional C*-algebras are injective von Neumann algebras, and

as such are complemented subspaces of A such that there exists a completely positive An

bimodule projection, πn of norm one from A onto An. Since A has a unique trace state,

τ , the projection πn can be chosen such that it also has the property

τ(axn) = τ(πn(a)xn) for every a ∈ A and xn ∈ An.

This property is used by several authors and for instance explained in [Ch]. The key

to understand this is that for a positive a in A the functional An 3 xn → τ(axn) is a

positive functional on An. Then this functional must have a positive Radon-Nikodym

derivative with respect to the unique tracial state on An which is denoted τn. It is a

matter of routine to show that the positivity of πn(a) ensures that πn will be a projection

of norm one from A onto An with all the desired properties. The identity above has one

fundamental consequence upon which we shall build our arguments, namely, that when

we consider both the operator algebra structure and the Hilbert space structure on A
simultaneously we get

πn(a) = Pna for every a ∈ A.

We will now study commutators [D, a] which are bounded on a dense subset of H. Since

D is a diagonal operator with respect to the decomposition H = ⊕Fn we will, as in Section
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3.3, estimate properties of [D, a] by investigating the matrix of [D, a] with respect to this

decomposition of H. We will use the matrix notation a = (aij) where i, j ∈ N0 and

aij = Qia|Fj ∈ B(Fj, Fi),

but we will also allow the use of the symbol aij with a slightly different meaning as

aij = QiaQj ∈ B(H)

whenever this is most convenient. With this notation we can formally write

[D, a]ij = DQiaij − aijDQj

and we can define the domain of definition for the derivation, say δ : A → B(H), as the

set

dom(δ) = {a ∈ A : ([D, a]ij) ∈ B(H)}.

We have that for a ∈ dom(δ)

δ(a) = closure([D, a]) = ([D, a]ij).

Let us fix an n ∈ N and let a = a∗ ∈ An. We want to study the entries in the matrix (aij)

for i > n, and j > n. The inclusions An ⊂ Am for m ≥ n imply that for any such m, we

have aAm ⊂ Am. When we consider the subspaces Hm of H for m ≥ n we see that these

subspaces are all invariant for a, and since this operator is selfadjoint the projections Pm

all commute with a for m ≥ n. Then, in turn, we get that for m > n the projections Qm

all commute with a. In particular this shows that

∀n ∈ N ∀a ∈ An : aij = 0 for every i, j such that i 6= j and i > n or j > n.

The amm blocks all commute with Dm for m > n since Sm by construction only acts on

the mth tensor factor, so we get

∀m,n ∈ N ∀a ∈ An : [D, a]mm = 0,

and all together we have obtained

∀n ∈ N∀a ∈ An : [D, a] = Pn[D, a]Pn.
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We will continue the investigation of the commutator Pn[D, a]Pn for some selfadjoint

a ∈ A. The way D is defined ensures that this commutator makes sense for any a ∈ A. Let

b, c ∈ An. Then, since D commutes with Pn, we get that x = Db ∈ An and y = Dc ∈ An.

This yields, since D is self adjoint, the following inner product identities:

(Pn[D, a]Pnb, c) = ([D, a]b, c) = (a, yb∗) − (a, cx∗)

= (πn(a), yb∗) − (πn(a), cx∗) = ([D, πn(a)]Pnb, Pnc).

Combined with the computations above this gives us

∀n ∈ N ∀a ∈ A : Pn[D, a]Pn = Pn[D, πn(a)]Pn = [D, πn(a)] (3.2.1)

This last identity has the advantage that for an a ∈ C = {a ∈ A : ‖[D, a]‖ ≤ 1} we do

not have to worry about the closure of this operator since we can get all the information

from the sequence of commutators [D, πn(a)] and each such operator is supported on the

finite dimensional Hilbert space Hn. In particular, for any a ∈ C and any n ∈ N, we get

πn(a) ∈ An. We will now establish the following norm estimate

∀a ∈ A : ‖πn(a) − π(n+1)(a)‖ ≤ 5
√
n + 12−(n+1). (3.2.2)

The estimate will be used to obtain the following estimates

∀a ∈ C ∀n ∈ N : ‖a− τ(a)I‖ ≤ 13 and ‖a− πn(a)‖ ≤ 20
√
n 2−n. (3.2.3)

Based on these inequalities and the fact that the algebra πn(A) = An is finite dimensional,

it follows from 3.2.3 that C/CI is a relatively norm compact set in A/CI.
The estimates above are based on detailed studies of the norm of the commutators:

‖[Sn+1, πn+1(a)]‖. (3.2.4)

The last commutator is studied on the Hilbert space H(n+1) =
n+1
⊕
i=0
Fi and from the fact

that a ∈ C and the equation 3.2.1 we get

‖Qn+1[Sn+1, πn+1(a)]Qn+1‖ =
1

αn+1mn+1
‖Qn+1[D, πn+1(a)]Qn+1‖

=
1

αn+1mn+1
‖Qn+1[D, a]Qn+1‖

≤ 1

αn+1mn+1
.
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In order to make an estimate of

‖Pn[Sn+1, πn+1(a)]Qn+1‖

we remark that

‖Pn[D, πn+1(a)]Qn+1‖ ≤ 1,

and consequently, for each i ∈ {0, 1, . . . , n}, we can estimate the norms of the entries

ai(n+1) of the infinite matrix for a by using that a ∈ C, such as:

‖αimiSiQiai(n+1) − αn+1mn+1ai(n+1)Sn+1Qn+1‖ ≤ 1.

By rough estimates we then have

‖ai(n+1)‖ ≤ 1

αn+1mn+1 − αnmn

≤ 2

αn+1mn+1
, ∀i ∈ {0, 1, . . . , n}.

Thus, by studying the operator X

X = PnaQn+1 +Qn+1aPn

we find that

‖X∗X‖ = ‖PnaQn+1‖2 ≤
n∑

i=0

‖ai(n+1)‖2,

so that

‖PnaQn+1 +Qn+1aPn‖ ≤ 2
√
n+ 1

αn+1mn+1

.

Since the operator Sn+1 commutes with both Pn and Qn+1 we can then see that

‖Pn[Sn+1, a]Qn+1 +Qn+1[Sn+1, a]Pn‖ = ‖[Sn+1, (PnaQn+1 +Qn+1aPn)]‖

≤ 4
√
n+ 1

αn+1mn+1
.

Now in order to estimate ‖[Sn+1, a]‖ we have only to estimate the norm ‖Pn[Sn+1, a]Pn‖,

but again we can use that Sn+1 commutes with Pn, and moreover that PnaPn = πn(a)Pn

and Sn+1 commutes with operators in An. From this we see that

‖Pn[Sn+1, a]Pn‖ = ‖[Sn+1, PnaPn]‖ = ‖[Sn+1, πn(a)Pn]‖ = 0.

Collecting the three inequalities we have

‖[Sn+1, πn+1(a)]‖ ≤ 5
√
n+ 1

αn+1mn+1

. (3.2.5)



48 CHAPTER 3. SPECTRAL TRIPLES FOR SOME C*-ALGEBRAS

In order to obtain estimates on ‖πn+1(a) − πn(a)‖ from the inequality above we have to

look into a concrete description of πn(a) in terms of πn+1(a). We know from the same

projections Pn+1, Pn when considered as orthogonal projections that

Pn+1 ≥ Pn so πn ◦ πn+1 = πn.

The construction of πn, given πn+1, is based on the fact that An+1 is a tensor product of

full matrix algebras where one of the factors is An. With a slight abuse of notation we

can describe the situation as

An+1 = An ⊗Mdn+1

An = An ⊗ CIMdn+1
.

Since the projection Pn is given with respect to the inner product implemented by the

trace state

τ = τAn
⊗ τdn+1 , (3.2.6)

the restriction of πn to An+1 can be described as a tensor product in the form

πn : An+1 → An where πn = idAn ⊗ τdn+1 (3.2.7)

We now describe τdn+1 via an averaging argument. Let U denote the compact group of

unitaries in Mdn+1 and let µ denote the Haar probability measure on U . The translation

invariance of the measure µ implies that

∀x ∈ Md(n+1)
: τdn+1(x)IMd(n+1)

=

∫

U

uxu∗dµ(u), (3.2.8)

We can then combine this with the description of the action of πn on An+1, but first we

give the unitaries in U a special notation when considered as elements in An+1, so we

define

∀u ∈ U : ũ = IAn
⊗ u ∈ An+1. (3.2.9)

We obtain by a combination of the equations 3.2.6, 3.2.7, 3.2.8 and 3.2.9 the following

description of πn as an average,

∀a ∈ An+1 : πn(a) =

∫

U
ũaũ∗dµ(u). (3.2.10)
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We are now ready to continue the estimates of ‖πn(a)− πn+1(a)‖ based on the inequality

3.2.5. We remind the reader that in the tensor decomposition A(n+1) = An ⊗Md(n+1)
we

have

Sn+1 = IAn
⊗ Tn+1

and moreover we get, just as when we considered the case with norm metric on the state

space, that

Tn+1Mdn+1Tn+1 = M′
dn+1

,

i.e., the commutant on the space L2(Mdn
, τdn

).

This commutation property can now be lifted to A(n+1) in a certain way. Let u be a

unitary in Mdn
, then

Sn+1ũSn+1 = IAn
⊗ Tn+1uTn+1

and Sn+1ũSn+1 commutes with An+1. We have the following equalities:

‖ [Sn+1, πn+1(a)] ‖ = ‖πn+1(a) − Sn+1πn+1(a)Sn+1‖

= ‖Sn+1ũSn+1 ( πn+1(a) − Sn+1πn+1(a)Sn+1 )Sn+1ũ∗Sn+1‖

= ‖πn+1(a) − Sn+1ũπn+1(a)ũ∗Sn+1‖.

Using that

∀a ∈ A : Sn+1πn(a)Sn+1 = πn(a)

we get the estimate:

‖πn+1(a) − πn(a)‖ = ‖πn+1(a) − Sn+1πn(a)Sn+1‖

= ‖πn+1(a) − Sn+1(

∫

U
ũπn+1(a)ũ

∗dµ(u) )Sn+1‖

= ‖πn+1(a) −
∫

U
Sn+1ũπn+1(a)ũ

∗Sn+1dµ(u)‖

= ‖
∫

U
( πn+1(a) − Sn+1ũπn+1(a)ũ

∗Sn+1 )dµ(u)‖

≤
∫

U
‖ πn+1(a) − Sn+1ũπn+1(a)ũ

∗Sn+1 ‖dµ(u).

By the computations just before we know, that the last integrand is constant and equal

to

‖ [Sn+1, πn+1(a) ]‖,
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so we have

∀a ∈ A : ‖πn+1(a) − πn(a)‖ ≤ ‖ [Sn+1, πn+1(a)]‖ ≤ 5
√
n+ 1

αn+1mn+1
.

In order to simplify the following computations we remark that mn+1 = mndn+1, m0 = 1

and dn ≥ 2, so we have mn ≥ 2n. By assumption all the αn ≥ 1 so we get the rougher

estimate

∀a ∈ A∀n ∈ N : ‖π(n+1)(a) − πn(a)‖ ≤ 5
√
n+ 1 2−(n+1)

For n ∈ N we have
∞∑

k=n+1

√
k2−k ≤

∫ ∞

n

√
x2−x ≤ 4

√
n2−n.

Then we can get some estimates on ‖a−πn(a)‖ and ‖a−τ(a)I‖ for any a ∈ C. First we

remark that the UHF property yields that for k ∈ N and a ∈ C we have πk(a) → a for k →
∞. In particular this means that for any n ∈ N : ‖a− πn(a)‖ = lim ‖πk(a) − πn(a)‖ and

for operators a ∈ C we can then get

∀a ∈ C∀n ∈ N : ‖a− πn(a)‖ ≤
∞∑

k=n

‖π(k+1)(a) − πk(a)‖ ≤ 20
√
n 2−n. (3.2.11)

and

∀a ∈ C : ‖a− τ(a)I‖ = ‖a− π0(a)‖

≤
∞∑

k=0

‖π(k+1)(a) − πk(a)|

≤ ‖π1(a) − π0(a)‖ + 20
√

1 2−1

≤ 5

α1m1
+ 10 ≤ 13.

In particular we get that C/CI is bounded in norm by 13 and for any ε > 0 we can

approximate elements in C uniformly up to ε by elements from one of the finite dimensional

algebras An. Hence it follows that the set C/CI is precompact A/CI.

3.2.3 Numerical experiments

We will keep the same notation as in the previous section. Consider the sequence of

finite dimensional full matrix algebras (Ak)k∈N where each algebra Ak is isomorphic to
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Md1 ⊗· · ·⊗Mdk
. Define mk := d1 . . . dk. Let A be the UHF C*-algebra generated by the

increasing sequence (Ak)k∈N0 where A0 = C1, and let τ be the trace state on A. Then the

GNS Hilbert space H based on the trace state is just the pre-Hilbert space A completed

with respect to the inner product given by (a, b) = τ(b∗a). Each algebra Ak can be viewed

as a finite dimensional, so closed, subspace of H. We will denote this subspaces Hk. The

corresponding sequence of projections is then denoted (Pk). We then set F0 = H0 and

for k ≥ 1, Fk = Hk 	 Hk−1. It is clear that the spaces Fk are pairwise orthogonal and

H = ⊕
k∈N0

Fk. Also it can be verified that Fk = Hk−1 ⊗M◦
dk

, where by M◦
dk

we mean the

set {x ∈ Mdk
: τdk

(x) = 0}. We let Qk denote the orthogonal projection of H onto Fk.

For the above situation we define an unbounded operator D on H by

D |Fk
is pointwise multiplication by d1 . . . dk.

The left regular representation of A on H is also in this case the GNS representation

coming from the trace state, and we identify A with the corresponding algebra of operators

on H. We let ‖ · ‖ denote the operator norm of A. The notation for a as an operator on

H and a as a vector in H will be the same, so from the context it should be seen which

one is intended. We remark that for any a ∈
∞⋃

n=0

An the operator [D, a] is a bounded

operator. We wonder if the metric induced by this operator D gives the weak*-topology

on the state space of A. The answer can be found by studying the set

C = {a ∈ A : ‖[D, a]‖ ≤ 1}.

More precisely, we try to verify if the image of C is precompact in the quotient space

space A/CI equipped with the quotient norm. The idea is to try to obtain a convenient

estimate of the norm of a from the norm of the commutator [D, a], where a ∈
∞⋃

n=0

An.

We make the extra assumption that τ(a) = 0. If the latter is not the case we simply

subtract the corresponding multiple of the unit from a. Thus, we can assume that a is in

some Fr and also that a is selfadjoint. We will study now the commutator [D,a]. Since

D is a diagonal operator with respect to the decomposition H = ⊕
k∈N0

Fk we will estimate

properties of [D, a] by investigating the matrix of [D, a] with respect to this decomposition

of H. We will use also the matrix notation (akl), where k, l ∈ N0 and

akl = Qka | Fl ∈ B(Fl, Fk).
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We will also allow to use of the symbol akl in a slightly different meaning as,

akl = QkaQl ∈ B(H),

whenever this is most convenient. With this notation we can formally write

[D, a]kl = (mk −ml)akl.

On the following pages we want to investigate in details a the matrix of an element a ∈ A
such that a ∈ Fr for some r ∈ N. We will therefor fix r ∈ N and a ∈ Fr and try to get as

much information as possible on the element akl for any pair k, l ∈ N. In the first place

it turns out that many of the entries akl vanishes. For this purpose we shall consider two

arbitrary elements ξ ∈ Fl and η ∈ Fk, and we will compute (aξ, η). We have the following

cases:

1. If l > r then aξ ∈ Fl. So for k 6= l we have (aξ, η) = 0.

2. If k > r then a∗η ∈ Fl. So for k 6= l we have (aξ, η) = 0.

3. If l < r and k < r then aξ ∈ Fr and k 6= r so we have (aξ, η) = 0.

To summarize we get akl = 0 except in the cases

1. k = r and l < r

2. l = r and k < r

3. k = l ≥ r

For the commutator [D, a] it follows that for diagonal entries we have [D, a]ll = 0. Thus

for an a ∈ Fr the commutator [D, a] has a matrix of the form:
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F0 F1 F2 · · · Fr−1 Fr Fr+1 · · ·
F0 0 0 0 · · · 0 ? 0 · · ·
F1 0 0 0 · · · 0 ? 0 · · ·
F2 0 0 0 · · · 0 ? 0 · · ·
... · · ·

Fr−1 0 0 0 · · · 0 ? 0 · · ·
Fr ? ? ? · · · ? 0 0 · · ·
Fr+1 0 0 0 · · · 0 0 0 · · ·

... · · ·

The standard representation of Ar as left multiplication on Hr is naturally faithful, so we

will have for any a ∈ Fr

‖a‖ = ‖a |Hr
‖.

Based on this we will restrict our attention to a |Hr
and will have the following matrix:

H0 H1 H2 · · · Hr−1 Hr

H0 0 0 0 · · · 0 ?

H1 0 0 0 · · · 0 ?

H2 0 0 0 · · · 0 ?
...

Hr−1 0 0 0 · · · 0 ?

Hr ? ? ? · · · ? ?

As we took a selfadjoint it will be enough to compute only the row r. For the particular

case of a CAR C*-algebra it is possible to compute every element of the two above

matrices and to do a numerical experiment. This straightforward computation could be

done because of the existence of a very convenient basis in M2. The elements of this basis

are called Pauli’s matrices, [BR]. We give now the Pauli’s matrices and those properties

of them that we will use later on.

s0 =


1 0

0 1


 s1 =


0 −i
i 0


 s2 =


0 1

1 0


 s3 =


1 0

0 −1




The Pauli’s matrices have the following properties
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1. they form an orthonormal basis for M2 with respect to the inner product coming

from the trace state.

(si, sj) =





1 i = j

0 otherwise

2. (si)
2 = s0 = I

3. (si)
∗ = si.

It is easy to verify the following table:

sisj s0 s1 s2 s3

s0 I s1 s2 s3

s1 s1 I −is3 is2

s2 s2 is3 I is1

s3 s3 −is2 −is1 I

We can write

• F0 = CI = span{s0};

• F1 = M◦
2 = span{si : 1 ≤ i ≤ 3};

• F2 = M2 ⊗M◦
2 = span{si ⊗ sj : 0 ≤ i ≤ 3, 1 ≤ j ≤ 3};

•
F3 = M2 ⊗M2 ⊗M◦

2

= span{si ⊗ sj ⊗ sk : 0 ≤ i ≤ 3, 0 ≤ j ≤ 3, 1 ≤ k ≤ 3};

...

•
Fr = M2 ⊗ · · · ⊗M2︸ ︷︷ ︸

r−1

⊗M◦
2

= span{si1 ⊗ · · · ⊗ sir : 0 ≤ i1 ≤ 3, . . . , 0 ≤ ir−1 ≤ 3, 1 ≤ ir ≤ 3}.

With this in mind we took an arbitrary selfadjoint a in F1 and we computed the entries

of the matrices (akl) and ([D, a]kl). We can write a = α1s1 +α2s2 +α3s3, where α1, α2, α3
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are real numbers. Then we will have the following matrix for ([D, a]kl):

H0 H1

H0 0 −α1 −α2 −α3

α1 0 0 0

H1 α2 0 0 0

α3 0 0 0

Let γ be a real number, β a complex number and consider

a =


γ β

β̄ −γ


 = Imβs1 + Reβs2 + γs3,

then this operator is a typical element of F1. We shall compute ‖[D, a]‖2. Define A :=(
−α1 −α2 −α3

)
. We obtain

‖[D, a]‖2 =

∥∥∥∥∥∥


 0 A

−A∗ 0




∥∥∥∥∥∥

2

=

∥∥∥∥∥∥


AA∗ 0

0 A∗A




∥∥∥∥∥∥

= max{‖AA∗‖, ‖A∗A‖} = ‖A‖2

= ‖
(
−γ −Reβ −Imβ

)
‖2 = γ2 + |β|2.

On the other hand,

pa(λ) =

∣∣∣∣∣∣
γ − λ β

β̄ −γ − λ

∣∣∣∣∣∣
= λ2 − γ2 − |β|2.

In conclusion,

‖a‖2 = γ2 + |β|2 = ‖[D, a]‖. (3.2.12)

We now consider a in F2. We can write

a =

3∑

i=0

3∑

j=1

αij(si ⊗ sj), where αij ∈ R.

We shall compute the entries of the matrix [D, a]. We start with [D, a]20 = (m2−m0)a20 =

3a20. We have M12,1 3 a20 : F0 → F2. Each component of a20 can be computed using the
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following formula:

(aI, sp ⊗ sr) = τ(
3∑

i=0

3∑

j=1

αij(si ⊗ sj)(sp ⊗ sr))

=

3∑

i=0

3∑

j=1

αijτ(sisp)τ(sjsr))

= αpr,

where 0 ≤ p ≤ 3 and 1 ≤ r ≤ 3. We continue with [D, a]21 = (m2 −m1)a21 = 2a21. We

have M12,3 3 a21 : F1 → F2. Each component of a21 can be computed using the following

formula, where 1 ≤ p ≤ 3, 0 ≤ i ≤ 3 and 1 ≤ j ≤ 3.

(a(sp ⊗ I), si ⊗ sj) = τ(

3∑

m=0

3∑

n=1

αmn(smsp ⊗ sn)(si ⊗ sj))

=

3∑

m=0

3∑

n=1

αmnτ(smspsi)τ(snsj))

=

3∑

m=0

αmjτ(smspsi),
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We can now write the matrix ([D, a])kl:

F0 F1 F2

0 0 0 0 −3α01 −3α02 −3α03 −3α11 −3α12 −3α13 −3α21 −3α22 −3α23 −3α31 −3α32 −3α33

0 0 0 0 −2α11 −2α12 −2α13 −2α01 −2α02 −2α03 2iα31 2iα32 2iα33 −2iα21 −2iα22 −2iα23

F1 0 0 0 0 −2α21 −2α22 −2α23 −2iα31 −2iα32 −2iα33 −2α01 −2α02 −2α03 −2iα11 −2iα12 −2iα13

0 0 0 0 −2α31 −2α32 −2α33 2iα21 2iα22 2iα23 2iα11 2iα12 2iα13 −2α01 −2α02 −2α03

3α01 2α11 2α21 2α31 0 0 0 0 0 0 0 0 0 0 0 0

3α02 2α12 2α22 2α32 0 0 0 0 0 0 0 0 0 0 0 0

3α03 2α13 2α23 2α33 0 0 0 0 0 0 0 0 0 0 0 0

3α11 2α01 2iα31 −2iα21 0 0 0 0 0 0 0 0 0 0 0 0

F2 3α12 2α02 2iα32 −2iα22 0 0 0 0 0 0 0 0 0 0 0 0

3α13 2α03 2iα33 −2iα23 0 0 0 0 0 0 0 0 0 0 0 0

3α21 −2iα31 2α01 −2iα11 0 0 0 0 0 0 0 0 0 0 0 0

3α22 −2iα32 2α02 −2iα12 0 0 0 0 0 0 0 0 0 0 0 0

3α23 −2iα33 2α03 −2iα13 0 0 0 0 0 0 0 0 0 0 0 0

3α31 2iα21 2iα11 2α01 0 0 0 0 0 0 0 0 0 0 0 0

3α32 2iα22 2iα12 2α02 0 0 0 0 0 0 0 0 0 0 0 0

3α33 2iα23 2iα13 2α03 0 0 0 0 0 0 0 0 0 0 0 0

The only component left to be computed is a22. We have M12,12 3 a22 : F2 → F2.

Each component of a22 can be computed using the following formula, where 0 ≤ i ≤ 3,

1 ≤ j ≤ 3, 0 ≤ k ≤ 3 and 1 ≤ l ≤ 3.

(a(si ⊗ sj), sk ⊗ sl) = τ(

3∑

m=0

3∑

n=1

αmn(smsi ⊗ snsj)(sk ⊗ sl))

=

3∑

m=0

3∑

n=1

αmnτ(smsisk)τ(snsjsl)),
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We can now write the matrix (akl):

F0 F1 F2

0 0 0 0 α01 α02 α03 α11 α12 α13 α21 α22 α23 α31 α32 α33

0 0 0 0 α11 α12 α13 α01 α02 α03 −iα31 −iα32 −iα33 iα21 iα22 iα23

F1 0 0 0 0 α21 α22 α23 iα31 iα32 iα33 α01 α02 α03 iα11 iα12 iα13

0 0 0 0 α31 α32 α33 −iα21 −iα22 −iα23 −iα11 −iα12 −iα13 α01 α02 α03

α01 α11 α21 α31 0 iα03 −iα02 0 iα13 −iα12 0 iα23 −iα22 0 iα33 −iα32

α02 α12 α22 α32 −iα03 0 −iα01 −iα13 0 −iα11 −iα23 0 −iα21 −iα33 0 −iα31

α03 α13 α23 α33 iα02 iα01 0 iα12 iα11 0 iα22 iα21 0 iα32 iα31 0

α11 α01 iα31 −iα21 0 iα13 −iα12 0 iα03 −iα02 0 −α33 α32 0 α23 −α22

F2 α12 α02 iα32 −iα22 −iα13 0 −iα11 −iα03 0 −iα01 α33 0 α31 −α23 0 −α21

α13 α03 iα33 −iα23 iα12 iα11 0 iα02 iα01 0 −α32 −α31 0 α22 α21 0

α21 −iα31 α01 −iα11 0 iα23 −iα22 0 α33 −α32 0 iα03 −iα02 0 α13 −α12

α22 −iα32 α02 −iα12 −iα23 0 −iα21 −α33 0 −α31 −iα03 0 −iα01 −α13 0 −α11

α23 −iα33 α03 −iα13 iα22 iα21 0 α32 α31 0 iα02 iα01 0 α12 α11 0

α31 iα21 iα11 α01 0 iα33 −iα32 0 −α23 α22 0 −α13 α12 0 iα03 −iα02

α32 iα22 iα12 α02 −iα33 0 −iα31 α23 0 α21 α13 0 α11 −iα03 0 −iα01

α33 iα23 iα13 α03 iα32 iα31 0 −α22 −α21 0 −α12 −α11 0 iα02 iα01 0

We made a numerical experiment, via the software MAPLE, to obtain information about

the relation between ‖a‖ and ‖[D, a]‖. In this experiment we took random values (normal

distribution) for αij (in the matrix A) and computed the norms of [D, a] ( called DR) and

a. We repeated the experiment 10 times and plotted the pairs (x, y) = (‖[D,αi]‖, ‖αi‖)
in R

2. The plot is printed bellow. The results tell us that it seems that ‖a‖ ≤ 3
4
‖[D, a]‖

or may be even with a smaller factor. The reason why we did choose the factor 3
4

is that

our following experiments for F3 indicate that here a facot of 3
8

might work.

> randentry := proc() stats[random, normald](1) end proc;

randentry := proc() statsrandom, normald (1) end proc
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> norms := proc(n)

> A := randmatrix(4,3, entries = randentry):

> DR:=array(1..16,1..16,[[0,0,0,0,seq(seq(-3*A[i,j],j=1..3),i=1..4)],[0,

> 0,0,0,-2*A[2,1],-2*A[2,2],-2*A[2,3],-2*A[1,1],-2*A[1,2],-2*A[1,3],2*I*

> A[4,1],2*I*A[4,2],2*I*A[4,3],-2*I*A[3,1],-2*I*A[3,2],-2*I*A[3,3]],[0,0

> ,0,0,-2*A[3,1],-2*A[3,2],-2*A[3,3],-2*I*A[4,1],-2*I*A[4,2],-2*I*A[4,3]

> ,-2*A[1,1],-2*A[1,2],-2*A[1,3],-2*I*A[2,1],-2*I*A[2,2],-2*I*A[2,3]],[0

> ,0,0,0,-2*A[4,1],-2*A[4,2],-2*A[4,3],2*I*A[3,1],2*I*A[3,2],2*I*A[3,3],

> 2*I*A[2,1],2*I*A[2,2],2*I*A[2,3],-2*A[1,1],-2*A[1,2],-2*A[1,3]],[3*A[1

> ,1],2*A[2,1],2*A[3,1],2*A[4,1],0,0,0,0,0,0,0,0,0,0,0,0],[3*A[1,2],2*A[

> 2,2],2*A[3,2],2*A[4,2],0,0,0,0,0,0,0,0,0,0,0,0],[3*A[1,3],2*A[2,3],2*A

> [3,3],2*A[4,3],0,0,0,0,0,0,0,0,0,0,0,0],[3*A[2,1],2*A[1,1],2*I*A[4,1],

> -2*I*A[3,1],0,0,0,0,0,0,0,0,0,0,0,0],[3*A[2,2],2*A[1,2],2*I*A[4,2],-2*

> I*A[3,2],0,0,0,0,0,0,0,0,0,0,0,0],[3*A[2,3],2*A[1,3],2*I*A[4,3],-2*I*A

> [3,3],0,0,0,0,0,0,0,0,0,0,0,0],[3*A[3,1],-2*I*A[4,1],2*A[1,1],-2*I*A[2

> ,1],0,0,0,0,0,0,0,0,0,0,0,0],[3*A[3,2],-2*I*A[4,2],2*A[1,2],-2*I*A[2,2

> ],0,0,0,0,0,0,0,0,0,0,0,0],[3*A[3,3],-2*I*A[4,3],2*A[1,3],-2*I*A[2,3],

> 0,0,0,0,0,0,0,0,0,0,0,0],[3*A[4,1],2*I*A[3,1],2*I*A[2,1],2*A[1,1],0,0,

> 0,0,0,0,0,0,0,0,0,0],[3*A[4,2],2*I*A[3,2],2*I*A[2,2],2*A[1,2],0,0,0,0,

> 0,0,0,0,0,0,0,0],[3*A[4,3],2*I*A[3,3],2*I*A[2,3],2*A[1,3],0,0,0,0,0,0,

> 0,0,0,0,0,0]]):

> AA :=

> array(1..16,1..16,[[0,0,0,0,seq(seq(A[i,j],j=1..3),i=1..4)],[0,0,0,0,A

> [2,1],A[2,2],A[2,3],A[1,1],A[1,2],A[1,3],-I*A[4,1],-I*A[4,2],-I*A[4,3]

> ,I*A[3,1],I*A[3,2],I*A[3,3]],[0,0,0,0,A[3,1],A[3,2],A[3,3],I*A[4,1],I*

> A[4,2],I*A[4,3],A[1,1],A[1,2],A[1,3],I*A[2,1],I*A[2,2],I*A[2,3]],[0,0,

> 0,0,A[4,1],A[4,2],A[4,3],-I*A[3,1],-I*A[3,2],-I*A[3,3],-I*A[2,1],-I*A[

> 2,2],-I*A[2,3],A[1,1],A[1,2],A[1,3]],[A[1,1],A[2,1],A[3,1],A[4,1],0,I*

> A[1,3],-I*A[1,2],0,I*A[2,3],-I*A[2,2],0,I*A[3,3],-I*A[3,2],0,I*A[4,3],

> -I*A[4,2]],[A[1,2],A[2,2],A[3,2],A[4,2],-I*A[1,3],0,-I*A[1,1],-I*A[2,3

> ],0,-I*A[2,1],-I*A[3,3],0,-I*A[3,1],-I*A[4,3],0,-I*A[4,1]],[A[1,3],A[2

> ,3],A[3,3],A[4,3],I*A[1,2],I*A[1,1],0,I*A[2,2],I*A[2,1],0,I*A[3,2],I*A

> [3,1],0,I*A[4,2],I*A[4,1],0],[A[2,1],A[1,1],I*A[4,1],-I*A[3,1],0,I*A[2

> ,3],-I*A[2,2],0,I*A[1,3],-I*A[1,2],0,-A[4,3],A[4,2],0,A[3,3],-A[3,2]],

> [A[2,2],A[1,2],I*A[4,2],-I*A[3,2],-I*A[2,3],0,-I*A[2,1],-I*A[1,3],0,-I

> *A[1,1],A[4,3],0,A[4,1],-A[3,3],0,-A[3,1]],[A[2,3],A[1,3],I*A[4,3],-I*

> A[3,3],I*A[2,2],I*A[2,1],0,I*A[1,2],I*A[1,1],0,-A[4,2],-A[4,1],0,A[3,2

> ],A[3,1],0],[A[3,1],-I*A[4,1],A[1,1],-I*A[2,1],0,I*A[3,3],-I*A[3,2],0,

> A[4,3],-A[4,2],0,I*A[1,3],-I*A[1,2],0,A[2,3],-A[2,2]],[A[3,2],-I*A[4,2

> ],A[1,2],-I*A[2,2],-I*A[3,3],0,-I*A[3,1],-A[4,3],0,-A[4,1],-I*A[1,3],0

> ,-I*A[1,1],-A[2,3],0,-A[2,1]],[A[3,3],-I*A[4,3],A[1,3],-I*A[2,3],I*A[3

> ,2],I*A[3,1],0,A[4,2],A[4,1],0,I*A[1,2],I*A[1,1],0,A[2,2],A[2,1],0],[A

> [4,1],I*A[3,1],I*A[2,1],A[1,1],0,I*A[4,3],-I*A[4,2],0,-A[3,3],A[3,2],0

> ,-A[2,3],A[2,2],0,I*A[1,3],-I*A[1,2]],[A[4,2],I*A[3,2],I*A[2,2],A[1,2]

> ,-I*A[4,3],0,-I*A[4,1],A[3,3],0,A[3,1],A[2,3],0,A[2,1],-I*A[1,3],0,-I*

> A[1,1]],[A[4,3],I*A[3,3],I*A[2,3],A[1,3],I*A[4,2],I*A[4,1],0,-A[3,2],-

> A[3,1],0,-A[2,2],-A[2,1],0,I*A[1,2],I*A[1,1],0]]):

> norm(DR,2),
> norm(AA,2);

> end proc:

> l := seq([norms(n)],n = 1..10);

l := [13.25161031, 7.859616443], [13.31668019, 6.766711514],

[8.484770570, 4.621121660], [14.07692584, 7.881939684],

[7.484945620, 4.303144303], [11.62830758, 6.581594766],

[11.37170281, 6.218004504], [9.531035922, 4.935525881],

[17.29650030, 9.423200684], [8.159897084, 4.564419262]
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Based on these computations we computed the corresponding quotients ‖ai‖
‖[D,ai]‖ and

obtained the following list of results:

‖ai‖
‖[D, ai]‖

= (0.59, 0.51, 0.54, 0.56, 0.57, 0.57, 0.55, 0.52, 0.54, 0.56).

From here it seems that

sup{ ‖a‖
‖[D, a]‖ : a ∈ F2 and a 6= 0} ≤ 3

4
.

> plot([l], x=0..15, y=0..15, style=point);

Plot: dirac201.eps

We proceed with a in F3. To make our computations easier we make the following

notation

bi := sk ⊗ sl, with i = k + 4l, where 0 ≤ k ≤ 3, 0 ≤ l ≤ 3.

We can write

a =
15∑

i=0

3∑

j=1

αij(bi ⊗ sj), where αij ∈ R.

We shall compute now the entries of the matrix [D, a]. We start with [D, a]3,0 = (m3 −
m0)a3,0 = 7a2,0. We have M48,1 3 a3,0 : F0 → F3. Each component of a3,0 can be
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computed using the following formula:

(aI, bi ⊗ sj) = τ(

15∑

m=0

3∑

n=1

αmn(bm ⊗ sn)(bi ⊗ sj))

=

15∑

m=0

3∑

n=1

αmnτ(bmbi)τ(snsj))

= αij,

where 0 ≤ i ≤ 15 and 1 ≤ j ≤ 3. We continue with [D, a]3,1 = (m3 −m1)a3,1 = 6a3,1. We

have M48,3 3 a3,1 : F1 → F3. With the introduction of bj we have a basis for the space

F1 given by the set {b1, b2, b3}. The components of a3,1 can, for 1 ≤ p ≤ 3, 0 ≤ k ≤ 15

and 1 ≤ l ≤ 3, be computed by

(a(bp ⊗ I), bk ⊗ sl) = τ(

15∑

i=0

3∑

j=1

αij(bibp ⊗ sj)(bk ⊗ sl))

=
15∑

i=0

3∑

j=1

αijτ(bibpbk)τ(sjsl))

=
15∑

i=0

αilτ(bibpbk).

We continue with [D, a]3,2 = (m3 −m2)a3,2 = 4a3,2. We have M48,12 3 a3,2 : F2 → F3. A

basis for the space F2 is given by the set {b4, . . . , b15} so each component of a3,2 can be

computed by

(a(bp, bk ⊗ sl) = τ(
15∑

i=0

3∑

j=1

αij((bibpbk) ⊗ (sjsl)))

=

15∑

i=0

3∑

j=1

αijτ(bibpbk)τ(sjsl))

=
15∑

i=0

αilτ(bibpbk),

where 4 ≤ p ≤ 15, 0 ≤ k ≤ 15 and 1 ≤ l ≤ 3. The only component left to be computed

is a3,3. We have M48,48 3 a3,3 : F3 → F3. Each component of a2,2 can be computed using

the following formula:

(a(bp ⊗ sl), bm ⊗ sn) = τ(

15∑

i=0

3∑

j=1

αij(bibp ⊗ sjsl)(bm ⊗ sn))

=
15∑

i=0

3∑

j=1

αijτ(bibpbm)τ(sjslsn)),
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where 0 ≤ p ≤ 15, 1 ≤ l ≤ 3, 0 ≤ m ≤ 15 and 1 ≤ n ≤ 3. We made the same

numerical experiment, via the software MAPLE, to obtain information about the

relationship between ‖a‖ and ‖[D, a]‖. We repeated the experiment 5 times and we

collected the values of ‖[D, a]‖, respectively ‖a‖. Then, we plotted the pairs (x, y) =

(‖ai‖, ‖[D, ai]‖) and from here it seems that for a ∈ F3 we have ‖a‖ ≤ 3
8
‖[D, a]‖. The

printouts from MAPLE is shown on the next couple of pages.

> randentry:=proc() stats[random,normald](1) end proc:
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> norms:=proc(a)

> local A, AA, B, S, H1, H2, innerm1, innerm2, produ, P, outerm, H3, M1,

> M2, M3, M4, M5, DR, N1, N2, N3, AAA:

> A:=randmatrix(16,3,entries=randentry):

> AA:=matrix(48,1,[A[1,1],A[1,2],A[1,3],A[2,1],A[2,2],A[2,3],A[3,1],A[3,

> 2],A[3,3],A[4,1],A[4,2],A[4,3],A[5,1],A[5,2],A[5,3],A[6,1],A[6,2],A[6,

> 3],A[7,1],A[7,2],A[7,3],A[8,1],A[8,2],A[8,3],A[9,1],A[9,2],A[9,3],A[10

> ,1],A[10,2],A[10,3],A[11,1],A[11,2],A[11,3],A[12,1],A[12,2],A[12,3],A[

> 13,1],A[13,2],A[13,3],A[14,1],A[14,2],A[14,3],A[15,1],A[15,2],A[15,3],

> A[16,1],A[16,2],A[16,3]]):

> B[1]:=matrix(4,4,[1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]):

> B[2]:=matrix(4,4,[0,-I,0,0,I,0,0,0,0,0,0,-I,0,0,I,0]):

> B[3]:=matrix(4,4,[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0]):

> B[4]:=matrix(4,4,[1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1]):

> B[5]:=matrix(4,4,[0,0,-I,0,0,0,0,-I,I,0,0,0,0,I,0,0]):

> B[6]:=matrix(4,4,[0,0,0,-1,0,0,1,0,0,1,0,0,-1,0,0,0]):

> B[7] :=matrix(4,4,[0,0,0,-I,0,0,I,0,0,-I,0,0,I,0,0,0]):

> B[8] :=matrix(4,4,[0,0,-I,0,0,0,0,I,I,0,0,0,0,-I,0,0]):

> B[9] :=matrix(4,4,[0,0,1,0,0,0,0,1,1,0,0,0,0,1,0,0]):

> B[10]:=matrix(4,4,[0,0,0,-I,0,0,I,0,0,-I,0,0,I,0,0,0]):

> B[11]:=matrix(4,4,[0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0]):

> B[12]:=matrix(4,4,[0,0,1,0,0,0,0,-1,1,0,0,0,0,-1,0,0]):

> B[13]:=matrix(4,4,[1,0,0,0,0,1,0,0,0,0,-1,0,0,0,0,-1]):

> B[14]:=matrix(4,4,[0,-I,0,0,I,0,0,0,0,0,0,I,0,0,-I,0]):

> B[15]:=matrix(4,4,[0,1,0,0,1,0,0,0,0,0,0,-1,0,0,-1,0]):

> B[16]:=matrix(4,4,[1,0,0,0,0,-1,0,0,0,0,-1,0,0,0,0,1]):

> S[1] := matrix(4,4,[0,-I,0,0,I,0,0,0,0,0,0,-I,0,0,I,0]):

> S[2]:=matrix(4,4,[0,1,0,0,1,0,0,0,0,0,0,1,0,0,1,0]):

> S[3]:=matrix(4,4,[1,0,0,0,0,-1,0,0,0,0,1,0,0,0,0,-1]):

> H1 := matrix(48,3, (m,n) -> (1/4)*trace( sum(

> A[j,(floor((m-1)/16)+1)]* B[j] &* S[n] &* B[((m-1)mod 16)+1]

> ,j=1..16) ) ):

> H2 := matrix(48,12, (m,n) -> (1/4)*trace( sum(

> A[i,(floor((m-1)/16)+1)]* B[i] &* B[n+4] &* B[((m-1)mod 16)+1]

> ,i=1..16) ) ):

> innerm1:=(i,m,n)->1/4*trace(B[i]&*B[(n-1)mod 16+1]&*B[(m-1)mod 16+1]):

> innerm2:=(j,m,n)->1/4*trace(S[j]&*S[floor((n-1)/16)+1]&*S[floor((m-1)/

> 16)+1]):

> produ:=(i,j,m,n)->A[i,j]*innerm1(i,m,n)*innerm2(j,m,n):

> P:=[seq([seq([seq([seq(produ(i,j,m,n),i=1..16)],j=1..3)],m=1..48)],n=1

> ..48)]:

> outerm:=(m,n)->sum(sum(P[n][m][j][i],j=1..3),i=1..16):

> H3:=matrix(48,48,(m,n)->outerm(m,n)):

> M1:=matrix(16,16,0):

> M2:=matrix(48,48,0):

> M3:=blockmatrix(3,1,[-7*transpose(AA),-6*transpose(H1),-4*transpose(H2

> )]):

> M4:=blockmatrix(1,4,[7*AA,6*H1,4*H2,M2]):

> M5:=blockmatrix(1,2,[M1,M3]):

> DR:=blockmatrix(2,1,[M5,M4]):

> N1:=blockmatrix(3,1,[transpose(AA),transpose(H1),transpose(H2)]):

> N2:=blockmatrix(1,2,[M1,N1]):

> N3:=blockmatrix(1,4,[AA,H1,H2,H3]):

> AAA:=blockmatrix(2,1,[N2,N3]):

> norm(DR,2), norm(AAA,2)

> end proc:

> l:=seq([norms(a)],a=1..5);

l := [49.23519920, 12.54076608], [44.04473093, 10.66248587],

[50.23041560, 12.00635712], [55.84860974, 14.96886859],

[60.74300472, 15.09481739]



64 CHAPTER 3. SPECTRAL TRIPLES FOR SOME C*-ALGEBRAS

The corresponding quotients of the norms was then computed and they are listed in the

following list.
‖ai‖

‖[D, ai]‖
= (0.26, 0.24, 0.24, 0.27, 0.25).

It seems that the maximal quotient in F3 might not be bigger than 3
8
.

> plot([l],x=10..70,y=10..20,style=point);

Plot: CrErik201.eps

Based on the computations and experiments for F1, F2 and F3 we make the following

conjecture:

sup{ ‖a‖
‖[D, a]‖ : a ∈ Fn, a 6= 0} = O(2−n).
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3.3 Compact operators on l2(N)

In this section we are considering the C*-algebra of compact operators on a separable

Hilbert space H. Our construction is based on a concrete orthonormal basis {ei}i∈N

for H so we will identify H with l2(N) in the sequel. When seeking a spectral triple

for the compact operators, K = K(l2(N)), it seemed natural to look for one where K was

represented as multiplication operators on the Hilbert space consisting of Hilbert-Schmidt

operators. Although we tried several natural candidates we were always forced to use an

argument which was based on the irreducible representation of K on l2(N). It turns out

that a quadruple of this representation will serve as a possibility for the representation

of a spectral triple. The following arguments are based on computations with infinite

matrices. Many of the arguments are similar to, or inspired by, the arguments used in

[ORi] and [AC] for discrete groups. We will rely heavily on techniques taken from [AC].

3.3.1 A spectral triple for K(l2(N))

Theorem 3.3.1. Let K denote the compact operators on l2(N) and let π denote the 4-

fold amplification-representation of K on the Hilbert space H =
4
⊕
1
l2(N). Let S denote the

unilateral shift on l2(N) which acts on the standard orthonormal basis by

∀n ∈ N : Sen = en+1,

and let M denote the unbounded self-adjoint operator on l2(N) which is defined by

∀n ∈ N : Men = n2en,

and

dom(M) = {x ∈ l2(N) :
∑

n4|xn|2 <∞}.

An operator D is defined on H with respect to matrix decomposition of B

(
4
⊕
1
l2(N)

)
as

D :=




0 0 M 0

0 0 0 MS∗

M 0 0 0

0 SM 0 0



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and

dom(D) = {(x1, x2, x3, x4) ∈ H : xi ∈ dom(M), 1 ≤ i ≤ 4}.

The operator D has the following properties:

1. D self-adjoint;

2. the spectrum of D equals {±n2 : n ∈ N0};

3. the operator (I +D2)−1 is compact of trace class;

4. the sum over the nonzero eigenvalues
∑
n∈N

|λn|−s = 4ζ(2s), ( Riemann’s zeta function

);

5. the set C = {k ∈ K : ‖[D, π(k)]‖ ≤ 1} is relatively compact and has the property

that span(C) is dense in K.

Proof. To see that (1) is true we first remark that S∗dom(M) ⊆ M , so it is possible to

define D as postulated, as a densely defined operator, which has an adjoint D∗. The

operator D has the property that in the matrix for D, each row and each column has only

one non-zero element, hence D∗ must be given by

D∗ =




0 0 M 0

0 0 0 (SM)∗

M 0 0 0

0 (MS∗)∗ 0 0




Since S is an isometry we get

(SM)∗ = MS∗

with

dom(MS∗) = S dom(M) ⊕ ker(S∗).

Since n+1
n

→ 1 for n → ∞, dom(MS∗) = dom(M) and D is self-adjoint. The spectrum

of D is clearly the union of the spectra of the operators


 0 M

M 0


 and


 0 MS∗

SM 0



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on l2(N) ⊕ l2(N). The first operator clearly has the eigenvalues {±n2 : n ∈ N}, each

counted with multiplicity one. The second operator has its polar decomposition given as

 0 MS∗

SM 0


 =


0 S∗

S 0





M 0

0 SMS∗


 .

Hence its eigenvalues are {±n2 : n ∈ N0}, where the multiplicity also is one for each

eigenvalue. It is now clear that (I+D2)−1 is compact and that the sum over the numerical

values of the nonzero eigenvalues
∑
n∈N

|λn|−s = 4ζ(2s). In order to prove the last part of the

statement let us first remark that for elements k in K with finite matrices, the commutator

[D, π(k)] is clearly bounded, so the set C has the property that span(C) is dense in K.

Further, we will make the convention that whenever a k ∈ K has the property that

[D, π(k)] is bounded, we let [D, π(k)] denote the closure of this bounded commutator.

With this in mind we extend the convention to commutators of the form [M, k], [MS∗, k]

and [SM, k]. It is clear that [D, π(k)] is bounded if and only if all three of the commutators

above are bounded, so for a k ∈ C we will try to exploit the fact that

‖[M, k]‖ ≤ 1, ‖[MS∗, k]‖ ≤ 1, ‖[SM, k]‖ ≤ 1.

The matrix for [M, k] = ([M, k]ij) is given as

[M, k]ij = (i2 − j2)kij.

Now (i2 − j2) = (i− j)(i+ j), and we can apply our methods from the proof of Theorem

3.6 (or the one used by N. Ozawa and M. A. Rieffel in [ORi]) to prove that the operator

x with the matrix given by

xi,j =





0 if i = j

1
i−j

[M, k]i,j if i 6= j

=





0 if i = j

(i+ j)ki,j if i 6= j

has the property that ‖x‖ ≤ π√
3
.

This inequality does not give any information about the main diagonal of k, which we

will denote kd, but we can approximate the operator koff = k−kd by an operator of finite

rank by establishing norm estimates for the operators koff,n, n ∈ N which are defined by

(koff,n)ij =





0 if i = j

0 if i + j ≤ n

kij if i 6= j and i+ j > n .
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This means that koff,n is the operator one gets from koff when all its SW-NE diagonals

up to and inclusive, number n − 1, all are removed. In order to get an estimate of

koff,n we use a technique similar to the one used when showing that ‖x‖ ≤ π√
3
. For

z ∈ T = {z ∈ C : |z| = 1} let u(z) denote the unitary operator on l2(N) with infinite

matrix given by the following expression,

u(z)ij =





0 if i 6= j

zi if i = j .

Then ‖x‖ = ‖u(z)xu(z)‖ and

(u(z)xu(z))ij =





0 if i = j

(i + j)z(i+j)kij if i 6= j .

Let now n ∈ N and define gn ∈ L2(T),C) by

gn(z) =
∞∑

l=n+1

l−1zl.

Then,

‖gn‖2
2 =

∞∑

l=n+1

l−2 ≤ 1

n
,

so for each vector ξ, η ∈ l2(N) the function h(z) defined by

h(z) = (u(z)xu(z)ξ, η)

will satisfy

‖(h ∗ gn)‖∞ ≤ ‖x‖‖ξ‖‖η‖‖gn‖2 ≤
1√
n
‖x‖‖ξ‖‖η‖.

This means that the operator u(z)koff,nu(z) whose matrix is given by

(u(z)koff , u(z))ij =





0 if i = j

0 if i + j ≤ n

z(i+j)kij if i + j > n

has norm at most π√
3n

, and the same is true for koff,n. We conclude that

∀k ∈ C : ‖koff,n‖ ≤ π√
3n
. (3.3.1)



3.3. COMPACT OPERATORS ON L2(N) 69

Remark that for n = 1 koff,n = koff so ‖koff‖ ≤ π√
3
. The analysis above yields no

information on the diagonal kd for k ∈ C . Here the relation ‖[SM, k]‖ ≤ 1 can be used,

especially if we want to estimate the part of the diagonal kd for k corresponding to the

entries larger than n. Such a result will enable us to get a complete norm estimate of

kn, meaning the operator obtained from k by removing the first n SW-NE diagonals.

Since the unilateral shift S is supported by the first NW-SE diagonal below the main

diagonal we will have to consider this diagonal of the commutator [SM, k] in order to get

information on the main diagonal of k. Let d1 denote the first NW-SE diagonal of [SM, k]

below the main diagonal. Then ‖d1‖ ≤ 1 and

(d1)ij =





0 if i 6= j + 1

j2(kjj − k(j+1)(j+1)) if i = j + 1 .

In particular we get

∀j ∈ N : |kjj − k(j+1)(j+1)| ≤ j−2.

Consequently the sum
∞∑

j=m

(kjj − k(j+1)(j+1))

is absolutely converging with sum

kmm − lim
j→∞

k(j+1)(j+1) = kmm.

So we have

|k11| ≤
π2

6

and for m > 1

|kmm| ≤
1

m− 1
.

Altogether we have

∀k ∈ C : ‖main diag(k)‖ ≤ π2

6
(3.3.2)

and

∀m ∈ N, m > 1 ∀k ∈ C : sup
n≥m

|knn| ≤
1

m− 1
. (3.3.3)

A continuation using the results from (3.3.1), (3.3.2) and (3.3.3) shows that for all k ∈ C
we have

‖k‖ ≤ π√
3

+
π2

6
≤ 4 (3.3.4)
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and

∀n ≥ 9 : ‖kn‖ ≤ π√
3n

+
1

n− 1
≤ π√

3n
+

1√
n
≤ 4√

n
. (3.3.5)

For an ε > 0 we may choose n such that

4√
n
<
ε

2
i.e. n >

64

ε2
.

Then for each k in C we have ‖kn‖ < ε
2

and k − kn is supported on the first n SW-NE

diagonals only. This is a finite dimensional space, actually of dimension at most

1 + 2 + ...+ n− 1 =
n(n− 1)

2
and ‖k − kn‖ ≤ 4 +

ε

2
,

so it can be covered by a finite number of balls of radius ε. We conclude that C is pre

compact.
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