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1. Introduction

A deformation quantization of a Poisson manifold (M, {·, ·}) is an
associative product ∗ on C∞(M)[[~]],

f ∗ g = fg + ~P1(f, g) + ~2P2(f, g) + . . . ,

∗ being ~ linear, Pi bidifferential and

[f, g] = i~{f, g}+O(~)

This notion was first introduced in [BFF+78].
The question of existence and classification of deformation quanti-

zations on general Poisson manifolds was solved in 1997 by Kontsevich
in [Kon97].

The simpler case of existence of deformation quantizations of the
canonical Poisson structure on symplectic manifolds was solved already
in [WL83]. A simple geometric construction of deformation quantiza-
tions of symplectic manifolds were given by Fedosov in [Fed94]. The
advantage of Fedosovs construction compared to the ones in [Kon97]
and [WL83] is, that it is easy to handle and also suitable generaliz-
able. The general most setting of the Fedosov construction is probably
given in [NT01], where deformation quantizations of symplectic Lie al-
gebroids is done. Also the classification of deformation quantizations
becomes amenable in view of the Fedosov construction. In the case of
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symplectic manifolds this was done in [NT95a] and the classification of
deformation quantizations on a symplectic manifold (M,ω) is given by
the points (characteristic classes) θ in the space

ω

i~
+H2(M,C[[~]]).

One of the main examples of deformation quantizations of symplectic
manifolds are those coming from asymptotic calculus of pseudodifferen-
tial operators on manifolds, see for example [NT96]. If we consider the
asymptotic calculus of pseudodifferential operators on a manifold M ,
we will get a deformation quantization of the cotangent bundle T ∗M
of M , where T ∗M is equiped with the canonical symplectic structure.

This example gives the connection to index theory. On a deforma-
tion quantization of any symplectic 2n dimensional manifold there is a
canonical trace, unique up to multiplication by a scalar, of the form

Tr(a) =
1

n!(i~)n

(
∫

M

aωn +O(~)

)

. (1.1)

By an appropriate choice of the representation of the quantisation, i.e.
after applying a linear isomorphism of C∞(M)[[~]] of the form

f → f + ~D1(f) + . . .

one can assure that Tr has the form

Tr(a) =
1

n!(i~)n

∫

M

aωn,

which fixes it uniquely.
In most proofs of the Atiyah-Singer index theorem and related “lo-

cal” index theorems, one of the main difficulty is to compute the trace
of a certain operator on a Hilbert space, usually L2(M) as above. In
order to compute this trace a scaling ~ ∈ R+ of the operator is intro-
duced and the asymptotic expansion of the trace as ~ → 0 becomes
computable, or at least the constant term in the expansion. The com-
putations coming out of this is computations like 1.1. This is why,
computing the canonical trace on deformation quantizations is called
algebraic index theory. Actually computing the trace on deformation
quantizations, in a way that will be described now, implies the Atiyah-
Singer index theorem, according to [NT96].

Many elements, not all, on which computing the trace is interesting,
are first components in classes in cyclic periodic homology. The cyclic
periodic homology or rather cohohmology was invented by Connes in
[Con85]. It is the noncommutative analog of De Rahm cohomology and
was already at the beginning intimately connected to index theory. A



3

complex computing the cyclic periodic homology of a unital algebra A
over a field k is given by

CCper
even(A) =

∏

i

A⊗ Ā⊗2i; CCper
odd(A) =

∏

i

A⊗ Ā⊗2i+1

where Ā = A/k · 1 and the differential

CCper
even(A)

b+B
←→ CCper

odd(A)

is given by

b(a0 ⊗ . . .⊗ an) =
∑n−1

k=0(−1)ka0 ⊗ . . .⊗ akak+1 ⊗ . . .⊗ an + (−1)nana0 ⊗ a1 ⊗ . . .⊗ an−1

and

B(a0 ⊗ . . .⊗ an) =

n
∑

k=0

(−1)k1⊗ ak ⊗ ak+1 . . .⊗ an ⊗ a0 . . . ak−1

If for example p ∈ Mn(A) is a projection, a class in HCper
even(A), the

Chern character of p, is given by the formula

tr(p+
∑

k≥1

(2k)!

k!
(p− 1/2)⊗ p⊗2k),

where

tr : Mn(A)⊗k → A⊗k

is the map given by

(M1 ⊗ a1)⊗ . . .⊗ (Mk ⊗ ak) 7→ Tr(M1 . . .Mk)a1 ⊗ . . .⊗ ak

Therefore tr(p) can be regarded as the first component of a class in
cyclic periodic homology.

Evaluating Tr on the first component gives a morphism of complexes

Tr : CCper
∗ (A~

c )→ C[[~, ~−1], (1.2)

where A~

c is the algebra of compactly supported elements (C∞
c (M)[[[~]])

in a deformation quantization A~, and C[[~, ~−1] is considered as a
complex concentrated at degree zero with the trivial boundary map.

Computing trace on elements, that are first component of a class in
cyclic periodic homology, is therefore the same as computing 1.2 at the
level of homology.

In [NT95a] it is proven that

Tr(·) ∼ (−1)n
∫

M

Â(TM)eθµ̃(·)
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where ∼ means, that the two side define the same morphism at the
level of homology. Here θ is the characteristic class of the deformation
and µ̃ is the map CCper

∗ (A~)→ Ω∗(M) given by

µ̃(a0 ⊗ . . .⊗ ak) =
1

k!
ã0dã1 · · ·dãk, ãi = ai mod ~

This settles the problem of computing the trace at the level of ho-
mology for deformation quantizations of symplectic manifold.

1.1. Content of the thesis. Below I propose a definition of deforma-
tion quantization of endomorphism bundles over a symplectic manifold.
The motivation is clear: Deformation quantizations of the trivial line
bundle is the algebraic analog of pseudodifferential operators in line
bundles and therefore deformation quantization of an endomorphism
bundle End(E), E vector bundle over M , should be the algebraic ana-
log of pseudodifferential operators in any vector bundle having End(E)
as endomorphism bundle.

The definition proposed consist in requiring a product ∗ on Γ(End(E))[[~]],
so the algebra (Γ(End(E))[[~]], ∗) is locally isomorphic toMN(Wn),Wn

being the Weyl algebra, the canonical deformation quantization of the
standard symplectic structure on R2n.

It turns out, that the Fedosov construction also works in this case,
i.e. let MN(A~) be the algebra of jets at zero of elements in MN (Wn).
There is associated to (M,ω,End(E)) an algebra bundle W with fiber
MN(A~). Put g = Der(MN(A~)). There is a short exact sequence

0→
1

~
C[[~]]→ g̃→ g→ 0

of Lie algebras. The Fedosov construction then consist, for a given

θ ∈
ω

i~
+H2(M,C[[~]]),

in constructing a flat connection ∇ in W with values in g, such that
ker∇ ' Γ(End(E))[[~]] linearly and ∇ admits a lift ∇̃ to a connection
with values in g̃ and curvature θ. The product on Γ(W) induces a
product on ker∇ = Γ(End(E))[[~]]. This product gives a deformation
quantization of End(E) and θ will be an isomorphism invariant of the
deformation quantization.

This construction is done in section 3. In this section it is also shown
the following.

Theorem 1. A deformation quantization of End(E) is isomorphic to
the flat sections of a Fedosov connection, and the isomorphism classes
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of deformation quantizations of End(E) are classified by the points in

ω

i~
+H2(M,C[[~]]).

The principle, that a deformation quantization comes as flat sec-
tions in a certain infinite dimensional vector bundle, is not special to
deformation quantizations. In section 2 it is shown, that sections of
Γ(End(E)) are flat sections in an algebra bundle with fibreMN (C[[x̂1, . . . , x̂n]]).

The reason for redoing this construction for End(E) is, that it is no-
tationally simpler, and, hopefully, clarifies the construction. Therefore
in section 3 only the differences in the construction for End(E) and
deformation quantizations of endomorpism bundles are spelled out.

Like in the scalar case there are canonical traces on deformation
quantizations of endomorphism bundles. The rest of the thesis is de-
voted to index theory for these traces. The methods used for this,
are the methods developed by Nest and Tsygan in [NT95a], [NT95b],
[BNT99] and [NT01]. This method is based on the following.

(1) The action of C
λ

∗(A), the reduced cyclic complex, on CCper
∗ (A):

C
λ

∗(A)× CCper
∗ (A)

·
→ CCper

∗ (A)

(2) The construction of a special class, the fundamental class, in

C
λ

∗(A
~

E), A~

E being the deformation quantization of End(E); or

rather the construction of a class in Č∗(M,C
λ

∗(A
~

E)), the Čech

complex with values in the presheaf V → C
λ

∗(A
~

E|V ).

(3) Computations in Lie algebra cohomology in order to identify
the fundamental class at the level of cohomology.

The fundamental class U is lives in C
λ

2n−1(MN (Wn)). Its role is, that
it relates Tr to µ̃ when evaluated at classes that are scalar mod ~. It
has the effect that

Tr(U · a) = (−1)n
∫

˜µ(a), a ∈ CCper
∗ (Wn,c).

Here, as before, the subscript “c” denotes the ideal of compactly sup-
ported elements in the deformation algebra in question.

The following plays the major role.

Theorem 2. The class U has a, in cohomology, unique extension to

a class, also denoted U , in Č∗(M,C
λ

∗(A
~

E)). On classes of the form
a0 ⊗ . . .⊗ ak ∈ CC

per
∗ (A~

E,c), ai scalar mod ~, the following holds.

Tr(U · a) = (−1)n
∫

µ̃(a) mod ~
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It is not difficult to see, that this implies for general classes a0⊗ . . .⊗
ak ∈ CC

per
∗ (A~

E,c) that

Tr(U ·a0⊗. . .⊗ak) = (−1)n
∫

ch(End(E))−1ch(∇)(ã0⊗. . .⊗ãk) mod ~

where ch(End(E)) is the usual Chern character of End(E) as a vector
bundle, ∇ is a connection in End(E) and

ch(∇)(ã0 ⊗ . . .⊗ ãk) =
∫

∆k

tr(ã0e
−t0∇2

∇(ãi)e
−t1∇2

· · ·∇(ãk)e
−tk∇

2

)dt0 · · ·dtk−1,

the J.L.O. cocycle associated to ∇.
To finish the index theory, the fundamental class has to be identified.

This is done via Lie algebra cohomology. There is the Gelfand-Fuks
morphism of complexes

C∗(g, su(N) + u(n);C
λ

∗(MN (A~)))→ Č∗(M,Ω∗(M,C
λ

∗(MN (A~)))),

the latter complex being quasi isomorphic to Č∗(M,C
λ

∗(A
~

E)). As in

the case of MN(Wn), there is fundamental class U ∈ C
λ

∗(MN(A~))
extending uniquely in cohomology to a class in Lie algebra cohomol-
ogy, also denoted U . It turns out, that GF (U) is equivalent to U ∈

Č∗(M,C
λ

∗(A
~

E)) via the quasi isomorphism between Č∗(M,C
λ

∗(A
~

E))

and Č∗(M,Ω∗(M,C
λ

∗(MN (A~)))). Hence the question of computing or
identifying U , is now a question of computations in

C∗(g, su(N) + u(n);C
λ

∗(MN(A~))).

It turns out to be useful to work with the differnential graded alge-
bra MN(A~)[η], where η is a formal variable, η2 = 0 and the dif-
ferential is given by ∂

∂η
. The reason for doing this is to include the

identity operation on CCper
∗ (MN(A~)), i.e. the action of C

λ

∗(MN(A~))

on CCper
∗ (MN(A~)) extends to an action of C

λ

∗(MN (A~)[η]) also on
CCper

∗ (MN(A~)). With this action, the classes η(k+1) = k!η⊗k+1 be-
comes the identity operations. The main technical theorem of this
thesis, theorem 6.0.3, states the following

Theorem 3. U is equivalent to
∑

m≥0

(Â · eθ · ch)−1
2m · η

m

in C∗(g, su(N)+u(n);C
λ

∗(MN(A~)[η])), i.e. defines the same cohomol-
ogy class.
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Here Â is the Lie algebraic Â coming from u(n), ch is the Lie algebraic
Chern character coming from su(N) and θ is the Lie algebraic class of
deformation. Using the Gelfand-Fuks map, the index theorem follows.

Acknowledgements. I would like to thank Boris Tsygan for helpful
conversations and Paulo Almeida and Nuno Martins for having hosted
me for two month at the I.S.T. in Lisbon.

2. Sections of endomorphism bundles as flat sections in a

profinite bundle

Let On = C[[x̂1, . . . , x̂n]] and MN(On) = MN ⊗On, where MN is the
N ×N complex matrices. We give MN (On) a grading by

deg(b⊗ x̂i) = 1, b ∈MN

Furthermore we give MN (On) the I-adic topology, where I is the ideal
generated by elements of degree ≥ 1.

Definition 2.0.1. Let G be the group of continuous automorphisms of
MN(On)with the following property:

An automorphism belongs to G, if the induced automorphism on the
centre On is an automorphism induced by an automorphism on
R[[x̂1, . . . , x̂n]].

Lemma 2.0.2. An automorphism in G is the composition of an auto-
morphism induced by an automorphism of R[[x̂1, . . . , x̂n]] and an inner
automorphism.

Proof. Given an automorphism Φ ∈ G let ϕ be the induced auto-
morphism on On. Considering χ = Φ ◦ (ϕ ⊗ id)−1 we have, that χ is
an On-module map.

For A ∈MN(C) we have

χ(A) = D0(A) + higher order terms , D0(A) ∈MN

Since D0 is an automorphism of MN , it is inner and hence extends to
MN(On). Let χ1 = χ ◦D−1

0 .

χ1(A) = A+
∑

i

x̂iDi(A) + higher order terms

Each Di are derivations of MN and hence given by commutators by
elements Bi ∈ MN . Therefore

χ1 ◦ exp(
∑

i

ad(x̂iBi))(A) = A+ terms of order ≥ 2
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Continuing by induction we get a sequence of elements Ck ∈MN (On),
deg(Ck) = k, with

(χ ◦ exp(ad(C0)) ◦ . . . ◦ exp(ad(Ck))(A) = A+ terms of order ≥ k + 1

Since the product

exp(ad(C0)) ◦ . . . ◦ exp(ad(Ck)) ◦ . . .

converge, we see, by the Hausdorff-Campbel formula, that χ is inner.

¿From lemma 2.0.2 follows

Proposition 2.0.3. The Lie-group G has

W0
n n (glN(On)/centre)

as Lie-algebra, where W0
n is the Lie-algebra of formal vector fields van-

ishing in zero.

We note that Der(MN(On)) is larger than W0
n n (gl(On)/centre),

namely

Wn n (glN(On)/centre)

where Wn are all formal vector fields on Rn.

Lemma 2.0.4. Let X be a contractible open subset of Rk, let Aut(Mn)
be the automorphism group of Mn and let Der(Mn) be the derivations
of Mn. Any smooth maps ϕ1 : X → Aut(Mn) and ϕ2 : X → Der(Mn)
lifts to smooth maps ϕ̃1 : X → Gln and ϕ̃2 : X →Mn.

Proof. First the case of ϕ1:
Let {eij} be the standard matrix units. The families

x→ ϕ1(x)(eii)

of projections over X give rise to a family of line bundles {li} over X
by

li = (ϕ1(x)(eii))(R
n)

Since X is contractible, these line bundles are trivial. Let v1 be a
smooth nowhere vanishing section of l1 and let

vi(x) = (ϕ1(x)(ei1))(v1(x))

Put

(ϕ̃1(x))(ei) = vi(x)

where ei is the vector (a1, . . . , an) ∈ Rn with aj = 0, j 6= i and ai = 1.
We have ϕ̃1 : X → Gln is smooth and

ϕ̃1(x)A(ϕ̃1(x))
−1 = ϕ1(x)(A), A ∈Mn
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since

(ϕ̃1(x)eij(ϕ̃1(x))
−1vk(x) = ϕ̃1(x)eijek = ϕ̃1(x)eiδjk = δjkvi(x)

and

ϕ1(x)(eij)vk(x) = (ϕ1(x)(eij))(ϕ1(x)(ek1))v1(x)

= δkjϕ1(x)(ei1)(v1(x)) = δkjvi(x)

In the case of ϕ2, let ϕ : X × R→ Aut(Mn) be defined by

ϕ(x, t) = exp(tϕ2(x)).

This is clearly smooth and hence by the first part of the lemma we get
a smooth lifting of ϕ to ϕ̃ : X × R→ Gln.

Defining

ϕ̃2(x) =
∂

∂t
(ϕ̃)(x, 0)

the lemma follows.

In view of lemma 2.0.4 the proof of lemma 2.0.2 gives some more

Lemma 2.0.5. A smooth family of elements in G over a contractible
open subset X of Rk lifts to a smooth family over X of elements in the
group of invertible elements in Mn(On).

2.1. Jets. Let A be an algebra bundle over a manifold M . In this case
we let

Im = {a ∈ Γ(A)|a(m) = 0}

Given this, we define

JmA = lim
←

k

Γ(A)/Ikm

Denote by Jm the quotient map from Γ(A) into JmA. In the following
we are only interested in the case where A = End(E), E a vector
bundle. Note that JmA ' MN (On) by choosing a trivialization; and
that any other trivialization leads to an automorphism of MN(On) in
G.

If we are given a smooth path of automorphisms Φt ∈ G, we can,
according to lemma 2.0.5, write it as Φt = ϕt ◦χt, where ϕt is a smooth
path the automorphisms induced by automorphisms of R[[x̂1, . . . , x̂n]]
and χt is a smooth path of inner automorphisms of MN (On). It is well

known, that ϕt lifts to a smooth path of local diffeomorphisms Φ̃t of
Rn preserving zero and since χt lifts to a smooth path of invertible
elements in MN (On), it lifts, by the Borel lemma, to a smooth path of
invertible elements in MN(C∞(U)), where U is an open subset of Rn

containing zero. We thus get
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Proposition 2.1.1. Any smooth path of automorphism in G lifts to a
smooth path of local bundle automorphism of MN (C∞(Rn)) preserving
zero.

2.2. The frame bundle. For a manifold M with a vector bundle E
we define the following

Definition 2.2.1. The frame bundle M̃E is given by

M̃E = {(m,Φ)|m ∈ M,Φ : MN (On)
∼
→ JmEnd(E)}

We note, that M̃E is a profinite manifold and in fact a principal
bundle over M with fibre G.

Proposition 2.2.2. For all (m,Φ) ∈ M̃E there is an isomorphism

ω : T(m,Φ)M̃E → Der(MN(On))

satisfying

ω(A∗) = A A ∈W0
n n (glN(On)/centre)

ϕ∗ω = adϕ−1ω for ϕ ∈ G

dω + 1
2
[ω, ω] = 0

where A∗ is the fundamental vector field corresponding to A.
In other words, ω is a flat connection M̃E with values in Der(MN(On)).

Proof. Let us suppose, we are given a path in M̃E, so γ(t) ∈ M̃E

with γ̇(0) = v, γ(0) = (m,Φ) and γ(t) = (mt,Φt). This lifts to a path
of trivializations γ̃ = (mt, Φ̃t), Φ̃t : MN(C∞(U)) → Γ(End(E)), that
maps 0 to mt.

Define ω(v) to be the derivation

J0(a)→ J0

(

d

dt
(Φ̃−1 ◦ Φ̃t(a))

)

, a ∈MN(C∞(U))

This does not depend on the choice of γ or the lifting to γ̃ and will be
an isomorphism.

The first identity follows, since ω is the canonical one form on the
fibres of M̃E.

For the second identity we have to compute ω(ϕ∗(v)), ϕ ∈ G , but

ω(ϕ∗(v)) =

(

J0(a)→ J0

(

d

dt
(ϕ̃−1 ◦ Φ̃−1 ◦ Φ̃t ◦ ϕ̃(a))

))

= ad(ϕ−1)ω(v)

The third identity is equivalent to

ω([ω−1(X), ω−1(Y )]) = [X, Y ], X, Y ∈ Der(MN(On))
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This will be a consequence of the first identity, because the statement
is obvious for X, Y of the form ∂

∂x̂i
∈ Der(MN(On)) and for X, Y ∈

W0
n n (glN(On)/centre) it follows because ω is the canonical one form

on the fibres of M̃E. Hence it suffices to check the case when X is of
the form ∂

∂x̂i
and Y ∈ W0

n n (glN(On)/centre). Therfore let ϕt be the
one parameter group for Y on G. We have

ω([ω−1(X), ω−1(Y )]) = ω(limt→0
1
t
((ϕt)∗ω

−1(X)− ω−1(X)))

= limt→0
1
t
(ad(ϕ−1

t )(X)−X) = [X, Y ]

The proposition follows from this.

Given M̃E, we define the jet bundle of End(E) by

JE = M̃E ×GMN(On)

The flat connection on M̃E gives a flat connection in JE in the
following way: Choose a trivialization of JE|U

∼
→ U ×MN (On). This

corresponds to a lift σ : U → M̃E|U of the projection P : M̃E →M . In
this trivialization the connection ∇ is given by ∇ = d− σ∗(ω), where
ω is the connection described in proposition 2.1.1.

Proposition 2.2.3. The complex (Ω∗(M,JE),∇) is acyclic and the
cohomology is isomorphic to Γ(End(E))

Proof. There is an obvious map j from Γ(End(E)) into JE given by

j(γ) = ((m,Φ),Φ−1(Jmγ)), γ ∈ Γ(End(E)).

It is clearly injective and the image of j belongs to the kernel of ∇.
To see this, choose a trivialization in the sense of a local bundle map
Φ : MN(C∞(U)) → Γ(End(E)), U open subset of Rn. We will also
denote the induced map from U to M by Φ. From this trivialization
we get a special trivialization of M̃E by letting Φ̃u denote the map
MN(On) = Ju(MN(C∞(U)))→ JΦ(u)(Γ(End(E))) induced from Φ and
then

U ×G 3 (u, g)→ (Φ(u), gΦ̃u)

Using this trivialization, we get a local bundle isomorphism

C∞(U)⊗MN (On)→ JE

and in this trivialization it is not difficult to see, that

∇ = d−
∑

i

dxi ⊗
∂

∂x̂i
(2.1)
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If γ ∈ MN (C∞(U)) we have that j(γ) is just given by the Taylor
expansion in each point, i.e.

j(γ)(u) =
∑

I

∂|I|γ

∂xI
x̂I

where I runs through all multi indices. Hence j(γ) ∈ Ker(∇).
A computation in (Ω∗(U,MN(On)),∇), where ∇ is as in 2.1, gives,

that (Ω∗(U,MN(On)),∇) is acyclic and the cohomology is j(MN (C∞(U)).
We have thus seen, that (Ω∗(M,JE),∇) is locally acyclic and the

cohomology is locally isomorphic to Γ(End(E)). Since we also have
seen, that Γ(End(E)) is globally contained in Ker∇, i.e. the coho-
mology of (Ω∗(M,JE),∇) is a module over Γ(End(E)), the statement
follows.

3. Deformation quantization of endomorphism bundles

We start with looking at R2n with the standard symplectic struc-
ture. We will denote the coordinates by x1, . . . , xn, ξ1, . . . , ξn. On
C∞(R2n)[[~]] we consider the Weyl quantization given by the product

(f ∗ g)(x, ξ) = exp

(

i~

2

n
∑

k=1

(∂xk
∂ηk
− ∂ξk∂yk

)

)

f(x, ξ)g(y, η)|(x=y,ξ=η)

We will denote the Weyl quantization by Wn.
Since the definition of the product in the Weyl quantization of two

functions f, g only uses derivatives of f, g, the Weyl quantization makes
sense over any open subset U of R2n. We will in this case talk about
the Weyl quantization over U .

Let (M,ω) be a symplectic manifold and let E be a vector bundle
over M .

Definition 3.0.4. A deformation quantization of End(E) is a ~-linear
associative product ∗ on Γ(End(E))[[~]], continuous in the ~-adic topol-
ogy and

f ∗ g = fg + ~Bi(f, g) + . . .

where f, g ∈ Γ(End(E)) and the Bi are bidifferential expressions. Fur-
thermore we require, that (Γ(End(E))[[~]], ∗) is locally isomorphic to
MN(Wn), where Wn is the Weyl algebra on some open subset of R2n.

Locally isomorphic in this case means that we are given a local bun-
dle isomorphism Φ : MN (C∞(U))[[~]] → Γ(End(E))[[~]]|U over a lo-
cal symplectomorphism, such that the product ∗′, induced by ∗, on



13

MN(C∞(U))[[~]] is isomorphic to MN (Wn) in the sense, that there
exist differential operators {Di}, such that

ϕ : (MN (C∞(U))[[~]], ∗′)→MN(Wn)

given by

ϕ(a) = a + ~Di(a) + . . . , a ∈MN (C∞(U))

is an isomorhism of algebras.

We want to do the same construction for deformation quantizations
as we did for endomorphism bundles. We therfore need the infinites-
imal version of MN (Wn). This is just given by considering O2n[[~]],

O2n = C[[x̂1, . . . , x̂n, ξ̂1, . . . , ξ̂n]], with the same product as in the Weyl
quantization. With this product we denote the algebra by A~. The
infinitesimal structure of MN(Wn) will then be MN (A~).

Definition 3.0.5. A formal symplectomorphism of O2n is a continuous
automorphism of O2n induced from an automorphism on

R[[x̂1, . . . , x̂n, ξ̂1, . . . , ξ̂n]]

that preserves the formal standard Poison bracket {·, ·} on O2n.
Let G be the subgroup of automorphisms of MN (A~) given by:
Φ ∈ G if Φ is ~ linear, continuous, mod ~ Φ is an automorphism Φ0

of MN (O2n) and Φ0 induces a formal symplectomorphism on O2n.

Let Φ ∈ G and let ϕ be the induced symplectomorphism on O2n. In
this case we will say, that Φ is a automorphism over ϕ.

Lemma 3.0.6. Any automorphism of MN(A~) over the identity sym-
plectomorphism is inner.

Proof. Let Φ be such an automorphism. Since, mod ~, it is an
automorphism over the identity, it is inner mod ~, and we can hence
assume that Φ is the identity mod ~. In other words

Φ(a) = a + ~D1(a) + . . . , a ∈MN (O2n)

Since Φ is an automorphism, D1 is a derivation MN (O2n) and hence on
the form X+[A, ·], where X is a formal vector field and A ∈MN (O2n).
If we assume that a, b ∈ O2n, we have, since Φ is an automorphism,
that

{a,D1(b)}+ {D1(a), b} = D1({a, b})

which means, that X is a formal hamiltonian vector field. Therefore
there exist an element x ∈ O2n such that D1(a) = {x, a}. We hence
have

Φ ◦ exp(−ad(x+ A)) = id mod ~2
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Continuing in this way, the result follows.

Since it is well known from [NT95a], that the Lie algebra of G, in
the case where N = 1, is given by

g0 =

{

ia

~
|a ∈ A~, a real mod ~, a ∈ (x̂1, . . . , ξ̂1, . . . )

2 mod ~

}

/
C[[~]]

~

and that any element of G is of the form exp(g), g ∈ g0.
We therefore see, that the Lie algebra g0 of G for arbitrary N is

given by

g0 =

{

ia

~
+ b|b ∈MN (A~), a ∈ A~, a real mod ~,

a ∈ (x̂1, . . . , ξ̂1, . . . )
2 mod ~

}

/
C[[~]]

~

To this Lie algebra we can add the derivations ∂x̂1
, . . . , ∂ξ̂1 , . . . . With

these derivations added we call the Lie algebra g.
Let us suppose that we are given a deformation quantization A~

E of
End(E). We define

Im = {a ∈ A~

E|a(m) = 0}

and we let Inm denote the n-power of the ideal Im in the undeformed
product. The jet of A~

E in m is defined by

JmA
~

E = lim
←

k

A~

E/I
k
m

Since the value of the product in A~

E in a point only depends on the
derivatives in that point, the product descents to JmA

~

E.
If we choose a trivialization of A~

E around m, we get an isomorphism

JmA
~

E

∼
→MN(A~) and another trivialization will give an automorphism

of MN(A~) in G.
As in the case of End(E) we do the following

Definition 3.0.7. The frame bundle M̃A~

E
is given by

M̃A~

E
= {(m,Φ)|m ∈M,Φ : MN(A~)

∼
→ JmA~

E}

As before, M̃A~

E
is a principal bundle with fibre G.

Proposition 3.0.8. For all (m,Φ) ∈ M̃A~

E
there exist an isomorphism

ω : T(m,Φ)M̃A~

E
→ g
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satisfying

ω(A∗) = A A ∈ g0

ϕ∗ω = adϕ−1ω ϕ ∈ G

dω + 1
2
[ω, ω] = 0

where A is the fundamental vector field corresponding to A.
In other words ω is a flat connection with values in g.

Proof. The same as the case of endomorphism bundles.

As in the case of endomorphism bundles, we get a flat connection ∇
in the bundle

JA~

E = M̃A~

E
×GMN(A~)

Proposition 3.0.9. The complex (Ω∗(M,JA~

E),∇) is acyclic andKer∇
∼
→

A~

E.

Proof. The same as the case of endomorphism bundles.

One sees, that a maximal compact subgroup of G is H = U(n) ×
SU(N). The U(n)-component comes from a maximal compact sub-
group of Sp(2n) and the SU(N) comes from the maximal compact
subgroup of the action of GlN on MN (C).

Since H is a maximal compact subgroup of G, we can reduce the
bundle M̃A~ to a H bundle P , which is easily seen to be a reduction of
the principal bundle consisting of dual symplectic frames and frames
of End(E). We thus see, that JA~

E is in fact isomorphic to P ×H A~.
We will denote this bundle by W.

We introduce a grading on A~ in which x̂1, . . . , x̂n, ξ̂1, . . . , ξ̂n has
degree 1 and ~ has degree 2. This also gives a grading on MN (A~).
Furthermore we see, that the action of U(n) on A~ preserves the grading
and we hence get a grading on W.

We note, that we have an extension of Lie algebras

0→
1

~
iR + C[[~]]→ g̃→ g→ 0 (3.1)

where

g̃ =

{

ia

~
+ b|a ∈ A~, a real mod ~, b ∈ MN(A~)

}

with bracket given by commutators. Since H acts semisimple on g, we
get a H-equivariant lift of the quotient map g̃ → g. We can therefore
lift the connection ∇ to a connection ∇̃ taking values in g̃, meaning a
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collection of local g̃-oneforms {Ai}, i being labels of trivializations of
W satisfying

Ai = gijdgji + gijAjgji

where gij are the transition functions.
This connection however, is not flat, but because of the extension

3.1, the curvature dAi+
1
2
[Ai, Ai] is in Ω2(M, 1

~
iR+C[[~]]). Clearly the

associated cohomology class is independent of the choice of lifting of
∇. By checking the definition of ∇, one sees, that the 1

~
component of

∇̃2 is ω
i~

, where ω is the symplectic structure.
So we have for each deformation quantization of End(E) a connec-

tion ∇ in W, such that Ker∇ is isomorphic to the deformation quan-
tization and the lifting of ∇ to a g̃-valued connection gives an element
in

ω

i~
+H2(M,C[[~]])

Proposition 3.0.10. Let A~

1,E and A~

2,E be deformation quantizations

with characteristic classes θ1 and θ2. Then A~

1,E ' A~

2,E if and only if

θ1 = θ2 in ω
i~

+H2(M,C[[~]]).

The proof of the above proposition relies on the following

Lemma 3.0.11. Let Iω : TM → T ∗M be the bundle isomorphism
induced by ω. Since T ∗M ⊂W, Iω induces an element A in Ω1(M,W).
Put

A−1 =
A

~
∈ Ω(M,

W

~
)

The complex
(Ω∗(M,W), AdA−1)

is acyclic and the cohomology is isomorphic to Γ(End(E))[[~]].

Proof. From lemma 3.12 in [NT01] we know, in the case of a trivial
bundle E, that is (Ω∗(M,Wt), Ad(A−1)) is acyclic and the cohomology
is isomorphic to C∞(M)[[~]]. Since

(Ω∗(M,W), Ad(A−1)) =

(Ω∗(M,Wt), Ad(A−1))⊗C∞(M)[[~]] Γ(End(E))[[~]]

and Γ(End(E)) is projective over C∞(M)[[~]], the result follows.

Proof(of proposition). Let ∇̃1 and ∇̃2 be the two connections with

∇̃2
1 = ∇̃2

2 = θ. Note that we can actually assume, that ∇̃2
1 = ∇̃2

2 in
ω
i~

+ Ω2(M,C[[~]]). We have

∇̃1 − ∇̃2 = R0 +R1 + . . . , Ri ∈ Ω1(M,Wi)
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From the equality of the curvatures we get [A−1, R0] = 0 and hence by
lemma 3.0.11 we have an element g1 ∈ Γ(W1), such that [g1, A−1] = R0.
Therefore considering the connection ∇2,0 = ad(exp g1)∇2 we have

∇̃1 − ∇̃2,0 = R′
1 + . . . , R′

i ∈ Ω1(M,Wi)

Continuing by induction we get an element g ∈ Inv(Γ(W)) conjugating
∇1 into ∇2, and hence the deformations will be isomorphic.

Let us now assume, that A~

1,E and A~

2,E are isomorphic. This induces

an isomorphism between M̃A~

1,E
and M̃A~

2,E
compatible with the con-

nections on M̃A~

1,E
and M̃A~

2,E
. In particular we get an automorphism

of W mapping ∇1 to ∇2, and we hence get, that A~

1,E and A~

2,E have
the same characteristic class.

Theorem 3.0.12. The deformation quantizations of an endomorphism
bundle are classified by the affine space

ω

i~
+H2(M,C[[~]])

Proof. We only need to prove, that for a class θ ∈ ω
i~

+Ω2(M,C[[~]]),
we have a deformation quantization with characteristic class θ. To do
this we start with a connection in P and thus get a H-connection ∇ in
W. We have that

[∇+ A−1,∇+ A−1] =
ω

i~
+ 2[∇, A−1] + [∇,∇]

One checks, that [A−1, [∇, A−1]] = 0 and according to lemma 3.0.11
we get an element A0 ∈ Ω1(M,W) such that [A−1, A0] = [∇, A−1]. If
we put ∇0 = ∇+ A−1 + A0 we have

[∇0,∇0]− θ = 0 mod Ω2(M,W)

Let us assume, that we have constructed ∇n with ∇2
n − θ = 0 mod

Ω2(M,Wi≥n). By the Bianchi identity we have [∇n, [∇n,∇n]] = 0 and
therfore have [A−1, ([∇n,∇n] − θ)n] = 0, where ([∇n,∇n] − θ)n is the
n-th component of [∇n,∇n]− θ. As before, we get an element An with
[A−1, An] = ([∇n,∇n]− θ)n and considering ∇n+1 = ∇n + An we have
[∇n+1,∇n+1]− θ = 0 mod Ω2(M,Wi≥n+1).

We can thus for each class θ in ω
i~

+ Ω2(M,C[[~]]) construct a con-
nection ∇F with values in g̃ and curvature θ. We therefore only need
to check, that the complex (Ω∗(M,W),∇F ) is acyclic, the kernel is
isomorphic to Γ(End(E)[[~]] and the product induced by the product
on W gives a deformation quantization of End(E). These results how-
ever, follows from the proof of the proposition 3.0.10, since we locally
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conjugate ∇F to a connection on the form

d−
n
∑

i=1

(∂x̃i
⊗ dxi + ∂ξ̃i ⊗ dξi)

4. Lie algebra cohomology

Definition 4.0.13. A differential graded Lie algebra (g, d) over a com-
mutative unital ring k is a (Z/2Z or Z) graded k-module g with a
bracket operation [·, ·] : gj × gi → gi+j and a differential ∂ : gi → gi−1

satisfying :

∂[g1, g2] = [∂g1, g2] + (−1)|g1|[g1, ∂g2]

[g1, g2] = −(−1)|g1||g2|[g2, g1]

[g1, [g2, g3]] + (−1)|g3|(|g1|+|g2|)[g3, [g1, g2]]

+(−1)|g1|(|g2|+|g3|)[g2, [g3, g1]] = 0

where | · | is the degree.

A g module L∗ is a complex L∗ with an action of g, i.e. we have a
map gi × Lj → Li+j satisfying

g1g2l − (−1)|g1||g2|g2g1l = [g1, g2]l

and

∂L∗(gl) = (∂gg)l + (−1)|g|g(∂L∗l)

Given a differential graded Lie algebra g, we can define differential
graded Lie algebra g[ε] as follows

g[ε] = g + εg |ε| = 1

[g1, εg2] = ε[g1, g2]

[εg1, εg2] = 0

∂(g1 + εg2) = ∂gg1 + g2 − ε∂gg2

Also one can construct the enveloping algebra by

U(g) = T (g)/(g1 ⊗ g2 − (−1)|g1||g2|g2 ⊗ g1 = [g1, g2])

where T (g) is the tensor algebra. Furthermore U(g) has a differen-
tial induced by the differential on g by the graded Leibniz rule and a
grading.

We note that (U(g[ε]), ∂) is a g module. Let h denote a Lie subalgebra
of g. For a g module L∗ module we define

C∗(g, h; L∗) = HomU(g)(U(g[ε])⊗U(h[ε]) k,L
∗)
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This will have a differential induced by the differential on U(g[ε]) and
the differential on L∗. The homology of this complex will be denoted
by H∗(g, h; L∗).

We are now going to give a construction of classes in C∗(g, h; L∗) in
special cases. First we assume, that L∗ is homotopically constant in
the following sense

Definition 4.0.14. A g-module L∗ is called homotopically constant if
there exist operations

ιg : L∗ → L∗−1

satisfying

[∂, ιg] = Lg [∂, Lg] = 0

[Lg1 , ιg2 ] = ι[g1,g2] [ιg1 , ιg2 ] = 0

where we have denoted the action of g by Lg.
In other words, we have an action of the differential graded algebra

U(g[ε]) on L∗.

If we furthermore assume, that there is a h-equivariant projection
∇ : g → h of the embedding h → g, we get the usual Chern-Weil
homomorphism, i.e. a map of complexes

CW : C∗(h[ε], h; L∗)→ C∗(g, h; L∗)

given in the following way:
For an element g1∧g2 define R(g1∧g2) = [∇(g1),∇(g2)]−∇([g1, g2]).

Taking cup product gives Rn : ∧2ng→ ∧nεh. By composition this gives
a map

ϕ : C∗(h[ε], h; L∗)→ C∗(g,L∗)

There are operations λn on L∗ given by

g1 ∧ . . . ∧ gn → ιg1−∇g1 · · · ιgn−∇gn
l

where l ∈ L∗. Finally we set

CW (a) =
∑

n

λn ∪ ϕ(a)

where ∪ is the cup product. One checks that this gives a morphism of
complexes.

Next we will give a construction of classes in C∗(h[ε], h; L∗) for special
cases of L∗. To this end we need the following
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Definition 4.0.15. A g-module L∗ is called very homotopically con-
stant if L∗ is homotopically constant and we have operations

Lg : L∗ → L∗+1

ιg : L∗ → L∗

satisfying

[∂, ιg] = Lg − ιg [∂, Lg] = Lg [ιg
1
, ιg

2
] = 0 [ιg1 , ιg

2
] = 0

[ιg
1
, Lg2] = ι[g1,g2] [ιg

1
, Lg

2
] = 0 [Lg1 , Lg

2
] = L[g1,g2] [Lg

2
, Lg

2
] = 0

in other words, we have an action of the differential graded algebra
U(g[ε, η]) = U(g[ε][η]) on L∗.

We now assume, that L∗ is a very homotopically constant h-module.
We denote by L∗

h+h elements l ∈ L∗ with Lhl = 0 and Lhl = 0. We

note that this is a complex. We get a morphism of complexes L∗
h+h →

C∗(h[ε], h; L∗) by:

L∗
h+h 3 l → (h1 · · ·hn → ιh1

· · · ιhn
l)

4.1. Examples. We are going to give some examples of relative classes
in Lie algebra cohomology.

Example 1 Consider the extension 3.1 and choose a h-equivariant
lift ∇ : g → g̃ of the quotient map g̃ → g, h being u(n) + su(N). We
then define the class θ in C∗(g, h; 1

~
C[~]) by

θ(g1, g2) = ∇([g1, g2])− [∇g1,∇g2] (4.1)

We want to show, that θ actually comes from a sort of Chern-Weil
map. Let k : g̃→ g denote the quotient map and let h̃ = k−1(h), i.e.

h̃ = h +
i

~
R + C[[~]]

Note that C∗(g, h; L∗) and C∗(g̃, h̃; L∗) are quasi isomorphic, when L∗

is a g module. We have a Chern-Weil homomorphism

CW : C∗(h̃[ε], h̃; L∗)→ C∗(g̃, h̃; L∗)

as before. A Choice of a h̃ equivariant split ∇′ : g̃ → h̃ is given by
∇′ = ∇′′ ◦ k+ id−∇◦ k, where ∇′′ : g→ h is a h-equivariant splitting
of the embedding h → g. Let θ be defined on h̃ to be the projection
on i

~
R + C[[~]]. It is now easy to see, that CW (θ) is, under the quasi

isomorphism between C∗(g, h; L∗) and C∗(g̃, h̃; L∗), the same as the θ
we defined in the start of this example.

Example 2 Some other classes in C∗(g, h), we need, are also coming
from a Chern-Weil construction. We consider an h-equivariant splitting
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∇′ of the embedding h→ g. Composed with the the projection u(n) +
su(N) → su(N) we get an h equivariant map ∇ : g → su(N). Using
this we therefore get a Chern-Weil homomorphism

CW : C∗(su(N)[ε], su(N))→ C∗(g, su(N))

It is clear, that this homomorphism in fact maps into C∗(g, h). We
therefore get the usual classes, for example the usual chern character
ch, which is

exp(R) =
∑ 1

n!
Tr(Rn)

where
R(g1, g2) = [∇g1,∇g2]−∇[g1, g2]

Here Tr denotes the usual non normalized trace on su(N). This class
is off course the Chern Weil map on the symmetric polynomium ch on
su(N) given by

ch(h1, . . . , hn) =
1

n!

∑

σ∈Sn

1

n!
Tr(hσ(1) · · ·hσ(n))

Since C∗(su(N)[ε], su(N)) embeds in C∗(h̃[ε], h̃), the Chern Weil con-
struction given in this example is just a particular case of the Chern
Weil homomorphism

CW : C∗(h̃[ε], h̃)→ C∗(g̃, h̃)

Example 3 We can off course do the construction we did in example
2 for u(n) instead of su(N) and therfore get a Chern-Weil homomor-
phism

C∗(u(n)[ε], u(n))→ C∗(g, h)

that again also can be viewed as the composition

C∗(u(n)[ε], u(n))→ C∗(h̃[ε], h̃)→ C∗(g̃, h̃)

We will in particular be interested in the Â in this setting, that is the
symmetric polynomium coming from

h→ det

(

h/2

sinh(h/2)

)

5. Cyclic homology

We consider a differential graded unital algebra (A, δ) over a com-
mutative ring k containing Q, i.e. an algebra A, A = ⊕nA

n, AnAm ⊂
An+m, δ : A∗ → A∗−1 and δ(ab) = δ(a)b + (−1)|a|aδ(b).

Define an operator τ on A⊗(n+1) by

τ(a0 ⊗ . . .⊗ an) = (−1)(|an |+1)
∑n−1

i=0
(|ai|+1)an ⊗ a0 ⊗ . . .⊗ an−1
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and consider the complex

. . .
b+δ
←− Cn(A)/Im(1− τ)

b+δ
←− Cn+1(A)/Im(1− τ)

b+δ
←− . . .

where Cn+1(A) is elements on the form a0⊗. . .⊗ak with k+
∑

|ai| = n,

b(a0 ⊗ . . .⊗ an) =
n−1
∑

k=0

(−1)k+
∑k

i=0
|ai|a0 ⊗ . . .⊗ akak+1 ⊗ . . .⊗ an

+(−1)(|an|+1)
∑

i<n(|ai|+1)+|an|ana0 ⊗ . . .⊗ an−1

and

δ(a0 ⊗ . . .⊗ an) =

n
∑

k=0

(−1)
∑k−1

i=1
(|ai|+1)a0 ⊗ . . .⊗ δ(ak)⊗ . . .⊗ an

The complex is denoted Cλ
∗ (A), the homology is the cyclic homology

of A and is denoted by HC∗(A).
The reduced cyclic homology is given by the homology of the complex

. . .
b+δ
←− C

n
(A)/Im(1− τ)

b+δ
←− C

n+1
(A)/Im(1− τ)

b+δ
←− . . .

where C
∗
(A) comes from considering Ā⊗∗ instead of A⊗∗, where Ā =

A/k · 1.
The reduced cyclic homology of A is denoted by HC∗(A).
It is well known, see [Lod98] and [BNT99], that there is an exact

sequence

. . .HCn(k)→ HCn(A)→ HCn(A)→ HCn−1(k)→ . . .
(5.1)

We will briefly give a construction, due to Brodzki, of the connecting
morphism HC∗(A)→ HC∗−1(k) at the level of complexes, see [Bro93]
and [BNT99]; i.e. a morphism of complexes

Br : C
λ

∗(A)→ Cλ
∗−1(k)

given the connecting homomorphism at the level of homology. Let
l : A→ k be a k-linear map with l(1) = 1. Put

ρ(a) = l(δ(a)) a ∈ A

ρ(a1 ⊗ a2) = l(a1)l(a2)− l(a1a2) a1 ⊗ a2 ∈ A
⊗2

ρ = 0 on A⊗m, m ≥ 3

and define Br : C
λ

∗(A)→ Cλ
∗−1(k) by:

On C
λ

2n+1,

Br(a0 ⊗ . . .⊗ am) =
∑m

i=0(−1)
∑

k<i(|ak |+1)
∑

k≥i(|ak|+1)(ρ⊗ . . .⊗ ρ)

(ai ⊗ . . .⊗ a0 ⊗ am ⊗ . . .⊗ ai−1)(n+ 1)! · 1⊗2n+1
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On C
λ

2n Br is zero.
We now consider the differential graded algebra k[η], where η has

degree one, η2 = 0 and differential given by ∂η. For a differential
graded algebra A we define A[η] to be A⊗ k[η], where ⊗ is the tensor
product of differential graded algebras. It is not difficult to see, that
HC∗(A[η]) = 0 and we therfore have

Proposition 5.0.1. The morphism

Br : C
λ

∗(A[η])→ Cλ
∗−1(k)

is a quasi isomorphism.

Since it is not standard, we mention, that the reduced cyclic homol-
ogy is Morita invariant, at least in the case of algebras and matrices
over these algebras. To see this, let A be an algebra, and let l : A→ k
be a map, that is needed in the construction of Br. Let tr denote
the normalized trace tr : Mn(A) → A. We now have a commutative
diagram

→ HC∗(MN (A)) → HC
∗
(MN (A))

Br
→ HC∗−1(k) →

↓ tr ↓ tr
∥

∥

→ HC∗(A) → HC
∗
(A)

Br
→ HC∗−1(k) →

where Br : HC
∗
(MN (A))→ HC∗−1(k) is induced by l ◦ tr. According

to [Lod98], tr : HC∗(Mn(A)) → HC∗(A) is an isomorphism. The
result therefore follows from 5.1.

5.1. Operations on the periodic complex. For the periodic cyclic
complex we consider

∏

nA⊗ Ā
⊗n. We give this a Z/2Z grading by

|a0 ⊗ . . .⊗ an| = n+
∑

i

|ai| mod 2

On this we consider the differential b + B + δ where b and δ are given
as before and

B(a0 ⊗ . . .⊗ an)

=
∑n

i=0(−1)
∑

j≤i(|aj |+1)
∑

j≥i+1
(|aj |+1)1⊗ ai ⊗ . . .⊗ an ⊗ a0 ⊗ . . .⊗ ai−1

We will denote this complex by CCper
∗ (A).

The main feature about cyclic periodic homology, that we are going
to need, is the following; see [NT98] for complete formulas

Theorem 5.1.1. There is a morphism of complexes

C
λ

∗(A[η])⊗ CCper
∗ (A)→ CCper

∗ (A)

satisfying the following
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• n!η⊗n+1 · a = a for a ∈ CCper
∗ (A)

• The component in A of (b1 ⊗ . . .⊗ bn) · (a0 ⊗ . . .⊗ am), where

b1 ⊗ . . .⊗ bn ∈ C
λ

∗(A), is zero when m 6= n and equal to
∑

i

1

n!
(−1)i(n−1)a0[bi+1, a1] · · · [bn, an−i][b1, an−i+1] · · · [bi, an]

when m = n.

The framework underlying theorem 5.1.1 also gives other operations
on CCper

∗ (A), see [NT98] for details. Let (C∗(A,A), b) be the Hochshild
cohomological complex, i.e. C∗(A,A) = Homk(Ā

⊗∗, A) and

bϕ(a1,⊗, an+1) = (−1)na1ϕ(a2, . . . , an+1)

+
∑n

j=1(−1)n+jϕ(a1, . . . , aj, aj+1, . . . , an+1)− ϕ(a1, . . . , an)an+1.

Given two elements ϕ ∈ Cn(A,A), ψ ∈ Cm(A,A), define

ϕ ◦ ψ(a1, . . . , an+m−1)

=
∑

j≥0(−1)(n−1)jϕ(a1, . . . , aj, ψ(aj+1, . . . , aj+m), . . . ).

Set
[ϕ, ψ] = ϕ ◦ ψ − (−1)(n+1)(m+1)ψ ◦ ϕ.

With this bracket and with a suitable defined grading, C∗(A,A) actu-
ally becomes a differential graded Lie algebra.

For ϕ ∈ Cn(A,A) one can construct operations

Lϕ : CCper
∗ (A)→ CCper

∗−n+1(A)

Iϕ : CCper
∗ (A)→ CCper

∗−n(A)

such that

[Lϕ, Lψ] = L[ϕ,ψ] [Iϕ, Lψ] = I[ϕ,ψ] [B + b, Iϕ] = Ibϕ + Lϕ

6. The fundamental Class

We consider the reduced cyclic homology complex of MN (A~)[~−1].
According to lemma 5.1.1. in [BNT99] and Morita invariance of re-
duced cyclic homology, the homology is given in the following way

HCi(MN(A~)[~−1]) = C[[~, ~−1], i = 1, 3, . . . , 2n− 1

HCi(MN (A~)[~−1]) = 0 otherwise

A concrete generator for the homology in dimension 2n− 1 is given
by

U0 =
1

2n(i~)n

∑

σ∈S2n

(vσ(1) ⊗ . . .⊗ vσ(2n))

where (v1, . . . , v2n) = (x̂1, ξ̂1, . . . , x̂n, ξ̂n).
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Let h̃ denote the inverse image of h under the map g̃→ g. Note that
U0 is invariant under the action of h̃ and therefore, by the result on
HC∗(MN(A~[~−1])), extends uniquely in homology to a class

U ∈ C∗(h̃[ε], h̃;C
λ

∗(MN(A~[~−1])))

We want to work with the differential graded algebra MN (A~[~−1])[η]
instead of MN (A~[~−1]). In the complex

C
λ

∗(MN (A~[~−1])[η])

we define η(k) = k!η⊗k+1. We note, that the complex C
λ

∗(MN (A~[~−1]))
is homotopically constant as a module over the commutator Lie algebra
of MN(A~[~−1]) by putting

ιg(a0 ⊗ . . .⊗ ap)

=

p
∑

i=0

(−1)
∑

p≥i(|a|p+1)(|g|+1)a0 ⊗ . . .⊗ ai ⊗ g ⊗ . . .⊗ ap

Using these operations, we define classes

η[k] ∈ C∗(h̃[ε], h̃;C
λ

∗(MN (A~[~−1])[η]))

by

(h1ε, . . . , hpε)→ ιh1η · · · ιhpηη
(k)

since η(k) is a class in C
λ

∗(MN(A~[~−1])h+h.
We have

Lemma 6.0.2. One has

U =
∑

m≥0

(Â · eθ · ch)−1
2m · η

[m]

in H∗(h̃[ε], h̃;C
λ

∗(MN (A~[~−1])[η])).

Proof. It is well known from [BNT99], that there is a splitting prin-
ciple, i.e. the inclusion morphism

H∗((h̃)[ε], (h̃);C
λ

∗(MN(A~[~−1])[η]))→

H∗((d̃n + su(N))[ε], (d̃n + su(N));C
λ

∗(MN (A~[~−1])[η]))

where d̃n = dn+~−1C[[~]] and dn is n×n diagonal matrices, is injective.
Therefore, we only have to identify the two classes in

H∗((d̃n + su(N))[ε], (d̃n + su(N));C
λ

∗(MN(A~[~−1])[η])).
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We next note, that we can factor the classes at stake in the following
way: Write

MN(A~[~−1]) = A~

1[~
−1]⊗ . . .⊗ A~

1[~
−1]⊗MN (A~

1)[~
−1]

where A~

1 is the formal Weyl algebra in one variable. We can write U =
U1× . . .×U1×U

′
1, where U1 is the extension of the fundamental class in

C∗(d1[ε], d1;C
λ

∗(A
~[~−1, η])) and U ′

1 is the extension of the fundamental
class in

C∗((d̃1 + su(N))[ε], d̃1 + su(N);C
λ

∗(MN (A~

1[~
−1])[η]))

We thus need to identify U1 and U ′
1.

In the first case we can represent U1 by

U1 =

∞
∑

m=1

1

m
((i~)−1ξ̂ ⊗ x̂)⊗mcm−1

1 (6.1)

where c1 is the first Chern class.
Recall from the definition of A~

1[~
−1], that this is C[[x̂, ξ̂]][[~, ~−1]

with a product ∗. Given an element f ∈ A~

1[~
−1], we can regard f as

a function in the variables x̂, ξ̂ with values in C[[~, ~−1]. Hence given
f ∈ A~

1[~
−1], we can define l(f) = f(0, 0). With this l we get, according

to section 5, a quasi isomorphism of complexes

Br : C
λ

∗(A
~[~−1, η])→ Cλ

∗ (C[[~, ~−1])

One checks, that this gives a morphism of complexes

C∗(d1[ε], d1;C
λ

∗(A
~

1[~
−1, η]))

Br
−→ C∗(d1[ε], d1;C

λ
∗ (C[[~, ~−1]))

and therefore a quasi isomorphism of complexes.
A computation now gives

Br(U1) =

∞
∑

m=0

1(m)Â−1
2m

where 1(m) = m!(m+1)!1⊗(2m+1) and Â is given in example 3 in section
4. On the other hand we have Br(η[m]) = 1(m−1), where η[m] is the class

εd1, . . . , εdk → ιd1 · · · ιdk
η(m), di ∈ d1

Since Br is a quasi isomorphism, we have

U1 =

∞
∑

m=0

η[m]Â−1
2m

in H∗(d1[ε], d1; Ĉ
λ
∗ (A~

1[~
−1, η])).
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We note, that we have a morphism of complexes

C∗((d̃1 + su(N))[ε], d̃1 + su(N);C
λ

∗(MN (A~[~−1])))

Tr ↓

C∗((d̃1 + su(N))[ε], d̃1 + su(N);C
λ

∗(A
~[~−1]))

where in the bottom row su(N) acts trivially and Tr denotes the mor-
phism of complexes

C
λ

∗(MN (A~

1)[~
−1])→ C

λ

∗(A
~

1[~
−1])

induced by the normalized trace Tr.
In the top row we have the class U ′

1, that in homology is the unique
extension of the fundamental class. In the bottom row we have a class
U ′, given by the same formula as in 6.1. Also this is, in homology, a
unique extension of the fundamental class. Therefore Tr(U) = U ′ in

H∗((d̃1 + su(N)[ε], d̃1 + su(N);C
λ

∗(A
~[~−1]))

We further note, that there are morphisms of complexes

C∗((d̃1 + su(N))[ε], d̃1 + su(N);C
λ

∗(MN (A~[~−1])[η]))

Tr ↓

C∗((d̃1 + su(N))[ε], d̃1 + su(N);C
λ

∗(A
~[~−1][η]))

Br ↓

C∗((d̃1 + su(N))[ε], d̃1 + su(N);Cλ
∗ (C[[~, ~−1]))

where Br is the Brodzki map as before. We thus have

Br(Tr(U ′
1)) =

∑

m≤0

Â−1
2m1(m)

Note that

Br(Tr(η[m])) =

∞
∑

l=0

1(m+l)(eθch)2l

where θ is given in example 1 in section 4 and ch is given in example
2 in section 4.

Since Br ◦ Tr is a quasi isomophism we get

U ′
1 =

∞
∑

m=0

(Â · eθ · ch)−1
2mη

[m]

in H∗((d̃1 + su(N))[ε], d̃1 + su(N);C
λ

∗(MN (A~

1[~
−1])[η])).

The lemma now follows, since Â is multiplicative.
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It is well known, see [BNT99], that the restriction homomorphism

C∗(g̃[ε], h̃;C
λ

∗(MN (A~[~−1])[η]))→ C∗(h̃[ε], h̃;C
λ

∗(MN(A~[~−1])[η]))

is a quasi isomorphism. But in C∗(g̃[ε], h̃;C
λ

∗(MN(A~[~−1])[η])) there
are two classes, that under the restriction homomorphism maps to η [m],
namely CW (η[m]) and the class

(g1ε, . . . , gpε)→ ιg1η · · · ιgpηη
(m) (6.2)

Therefore CW (η[m]) and 6.2 are equivalent in

C∗(g̃[ε], h̃;C
λ

∗(MN(A~[~−1])[η]))

Considering the restriction homomorphism

C∗(g̃[ε], h̃;C
λ

∗(MN (A~[~−1])[η]))→ C∗(g̃, h̃;C
λ

∗(MN (A~[~−1])[η]))

we get, that in the righthand side, CW (η[m]) is equivalent to η(m).

For g-modules L∗ we have, that C∗(g̃, h̃; L∗) is quasi isomorphic to
C∗(g, h; L∗). We hence get

Theorem 6.0.3. Let U be an extension of U0 to a class in

C∗(g, h;C
λ

∗(MN (A~[~−1])[η]))

Then we have the following equality

U =
∑

m≥0

(Â · eθ · ch)−1
2m · η

(m)

in H∗(g, h;C
λ

∗(MN(A~[~−1])[η]))

7. The Gelfand-Fuks construction

We now consider a g-module L∗, where g is as in section 3. Given a
deformation quantization A~

E we can consider the bundle

M̃A~

E
×G L∗

and also consider the differential forms with values in this bundle. We
will denote this by Ω∗(M,L∗). Furthermore we get a flat connection

∇ induced from the connection on M̃A~

E
. Using this connection and

the differential on L∗, we get a complex Ω(M,L∗). The Gelfand-Fuks
construction gives a morphism of complexes

GF : C∗(g, h; L∗)→ Ω∗(M,L∗)

defined in the following way:
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Choose U(N) × SU(N) trivializations of M̃A~

E
×G L∗. In a given

trivialization we write ∇ = d+A, where A is the connection one form.
Given vector fields X1, . . . , Xp and l ∈ C∗(g, h; L∗) we define

GF (l)(X1, . . . , Xp) = l(X1, . . .Xp)

If we look at the examples of classes in C∗(g, h; L∗) we constructed
in section 4 we see, that for θ ∈ C∗(g, h; 1

~
C[[~]]) we get, that GF (θ) is

the characteristic class of the deformation quantization. In the case of
Â we see, that GF (Â) is the Â class of TM and the case of ch this is
just the Chern character of End(E).

The main example we are going to look at, is the case where L∗ is

C
λ

∗(MN(A~)[~−1]). We note that

Lemma 7.0.4. Let A~

E be a deformation quantization over R2n. The

complex (Ω∗(R2n, C
λ

∗(MN(A~))),∇) is acyclic and the cohomology is

jets on the diagonal of elements in C
λ

∗(MN(Wn)).

Proof. We can assume, that ∇ is on the form d −
∑

i(∂x̂i
⊗ dxi +

∂ξ̂i ⊗ dξi). We have a short exact sequence of complexes

0→ (Ω∗(R2kn/∆,MN (A~)⊗k),∇)→ (Ω∗(R2kn,MN (A~)⊗k),∇)
ϕ∗

→

(Ω∗(R2k,MN(A~)⊗k),∇)→ 0

where ϕ : R2n → R2kn is the map onto the diagonal δ. From the
associated long exact sequence we see, that (Ω∗(R2k,MN(A~)⊗k),∇) is
acyclic and that the cohomology is jets on the diagonal of elements
of MN (Wn)

⊗k. By considering the following short exact sequence of
complexes

0→ (Ω∗(R2k, 1⊗MN (A~)⊗ . . .⊗MN (A~) + . . .

+MN(A~)⊗ . . .⊗MN (A~)⊗ 1),∇)

→ (Ω∗(R2k,MN(A~)⊗k),∇)→ (Ω∗(R2k,MN(A~)
⊗k

),∇)→ 0

we see, that (Ω∗(R2k,MN(A~)
⊗k

),∇) is acyclic and that the cohomol-

ogy is jets on the diagonal of elements in MN(Wn)
⊗k

.

Let us suppose, we have an element a in Ω∗(M,MN (A~)
⊗k
/Im(1−τ))

with∇(a) = 0. We can then lift a to an element ã ∈ Ω∗(R2k,MN(A~)
⊗k

),

where ∇(ã) ∈ Ω∗(R2k, Im(1− τ)). However b = 1
k

∑k−1
i=0 τ

i(ã) is also a

lift of a and ∇(b) =
∑k−1

i=0 τ
i∇(ã) = 0. The lemma follows from this.
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8. Traces on Deformation quantizations and Index

Theory

We consider a deformation quantization A~

E of an endomorphism
bundle End(E) over a symplectic manifold M of dimension n. Let
A~

E,c be the algebra of elements in A~

E with compact support. This

algebra has a canonical C[[~, ~−1] valued trace defined in the following
way:

Let (Vi,Φi) be a cover of M and Φ−1
i : MN(Wn) → A~

E local iso-
morphisms over Vi. Let ρVi

be a partition of unity with respect to the
covering. For an element a ∈ A~

E,c we define

Tr(a) =
∑

i

∫

1

n!(i~)n
tr(Φi(ρi ∗ a))ω

n
st

where ωst is the standard symplectic form on R2n. That this is inde-
pendent of the choices made and a trace, hinges on the following two
propositions

Proposition 8.0.5. Let E be the trivial line bundle. The Tr is a trace
and independent of the choices made.

Proof. See [Fed96].

Proposition 8.0.6. LetWn be the Weyl algebra over some contractible
open subset U of R2n. Any automorphism over the identity map of
MN(Wn) is inner.

Proof. More or less the same as lemma 3.0.6, see also lemma 2.0.4.

We consider the trace as a functional on CCper
∗ (A~

E,c) and we want
to compute the trace at the level of homology. To this end we consider
the following:

Given an element b in C
λ

∗(A
~

E[~−1, η]), we define χTr(b) in CC∗
per(A

~

E,c)
in the following way

χTr(b)(a) = Tr(b · a)

where · means the action of C
λ

∗(A
~

E[~−1, η]) on CCper
∗ (A~

E,c[~
−1]), see

theorem 5.1.1. We will now extend this to elements in Č∗(M,C
λ

∗(A
~

E[~−1, η]),

the Čech complex with values in the presheaf V → C
λ

∗(A
~

E|V [~−1, η]).
This is done in the following
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Proposition 8.0.7. Let {bV0...Vp
} ∈ Č∗(M,C

λ

∗(A
~

E[~−1, η])) and a ∈
CCper

∗ (A~

E,c[~
−1]). Define

χTr({bV0...Vp
})(a) =

∑

V0,... ,Vp

Tr(IρV0
[B + b, IρV1

] . . . [B + b, IρVp
]a)

This gives a morphism of complexes

Č∗(M,C
λ

∗(A
~

E[~−1, η])⊗ CCper
∗ (A~

E,c[~
−1])→ C[[~, ~−1]

Proof. See [NT95a].

8.1. The fundamental class in the Čech complex. Recall that
we have the canonical coordinates x1, . . . , xn, ξ1, . . . , ξn on R2n. We
will also use this notation for the associated coordinate functions and
consider these coordinate functions as elements in Wn.

We can consider the fundamental class U0 in C
λ

∗(MN (Wn)[~
−1]) given

by

U0 =
1

2n(i~)n

∑

σ∈S2n

(vσ1
⊗ . . .⊗ vσ2n

)

where (v1, . . . , v2n) = (x1, . . . , xn, ξ1, . . . , ξn).
By the same argument as in the section on the fundamental class in

Lie-algebra cohomology, this class extends uniquely in cohomology to

a class U in Č∗(M,C
λ

∗(A
~

E[~−1])). In order to connect this class to the
fundamental class defined in Lie algebra cohomology we introduce the
complex

Č∗(M,Ω∗(M,C
λ

∗(MN (A~[~−1])))

According to lemma 7.0.4 this is quasi isomorphic to Č∗(M,C
λ

∗(A
~

E[~−1])).
Furthermore we have the Gelfand-Fuks morphism

GF : C∗(g, h;C
λ

∗(MN (A~[~−1]))→ Č∗(M,Ω∗(M,C
λ

∗(MN(A~[~−1])))

Because of uniquenes we get, that in cohomology we have GF (U) = U .
Because of theorem 6.0.3 we therefore get

Theorem 8.1.1. In the complex Č∗(M,C
λ

∗(A
~

E[~−1, η])) the two classes
U and

∑

m≤0

(Â · eθ · ch)−1
2m · η

(m)

are equivalent.

With this we are now in position to prove
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Theorem 8.1.2. We have that χTr(U)(a0⊗ . . .⊗ ak) has no singular-
ities in ~ and

χTr(U)(a0 ⊗ . . .⊗ ak) =

∫

ch−1(End(E))ch(∇)(ã0 ⊗ . . .⊗ ãk) mod ~

Here ãi is ai mod ~ and ch(∇) is the J.L.O. cocycle associated to ∇
(see also [Gor99]), i.e.

ch(∇)(ã0 ⊗ . . .⊗ ãk) =
∫

∆k

tr(ã0e
−t0∇2

∇(ãi)e
−t1∇2

· · ·∇(ãk)e
−tk∇

2

)dt0 · · ·dtk−1

where tr is the normalized trace on End(E).
We therefore have, according to theorem 8.1.1, that

Tr(a0 ⊗ . . .⊗ ak · e
θ) =

∫

Â · ch(∇)(ã0 ⊗ . . .⊗ ãk) mod ~

Proof. Because of Morita equivalence it is enough to look at the case
where ãi is scalar for all i. We have that

χTr(U)(a0 ⊗ . . .⊗ ak) =
∑

V0

χtr(U0)(IρV0
(a0 ⊗ . . .⊗ ak)) + . . .

and it is not difficult to see, that . . . is zero modulo ~. The explicit
formula for χTr(U0) gives
∑

V0

χTr(U0)(IρV0
(a0 ⊗ . . .⊗ a2n)) =

1

2n!

∫

ã0dã1 · · ·dã2n mod ~

The result follows from this.
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