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Abstract

The present thesis deals with asymptotic analysis of financial time series models

with conditional heteroscedasticity. It is well-established within financial econo-

metrics that most financial time series data exhibit time varying conditional

volatility, as well as other types of non-linearities. Reflecting this, all four essays

of this thesis consider models allowing for time varying conditional volatility, or

heteroscedasticity.

Each essay is described in detail below. In the first essay a novel estimation tech-

nique is suggested to deal with estimation of parameters in the case of heavy tails

in the autoregressive (AR) model with autoregressive conditional heteroscedastic

(ARCH) innovations. The second essay introduces a new and quite general non-

linear multivariate error correction model with regime switching and discusses

a theory for inference. In this model cointegration can be analyzed with mul-

tivariate ARCH innovations. In the third essay properties of the much applied

heteroscedastic robust Wald test statistic is studied in the context of the AR-

ARCH model with heavy tails. Finally, in the fourth essay, it is shown that

the stylized fact that almost all financial time series exhibit integrated GARCH

(IGARCH), can be explained by assuming that the true data generating mecha-

nism is a continuous time stochastic volatility model.

Lange, Rahbek & Jensen (2007): Estimation and Asymptotic Inference in

the AR-ARCH Model. This paper studies asymptotic properties of the quasi-

maximum likelihood estimator (QMLE) and of a suggested modified version for

the parameters in the AR-ARCH model.

The modified QMLE (MQMLE) is based on truncation of the likelihood function

and is related to the recent so-called self-weighted QMLE in Ling (2007b). We
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show that the MQMLE is asymptotically normal irrespectively of the existence

of finite moments, as geometric ergodicity alone suffice. Moreover, our included

simulations show that the MQMLE is remarkably well-behaved in small samples.

On the other hand the ordinary QMLE, as is well-known, requires finite fourth

order moments for asymptotic normality. But based on our considerations and

simulations, we conjecture that in fact only geometric ergodicity and finite second

order moments are needed for the QMLE to be asymptotically normal. Finally,

geometric ergodicity for AR-ARCH processes is shown to hold under mild and

classic conditions on the AR and ARCH processes.

Lange (2008a): First and second order non-linear cointegration mod-

els. This paper studies cointegration in non-linear error correction models char-

acterized by discontinuous and regime-dependent error correction and variance

specifications. In addition the models allow for ARCH type specifications of the

variance. The regime process is assumed to depend on the lagged disequilibrium,

as measured by the norm of linear stable or cointegrating relations. The main

contributions of the paper are: i) conditions ensuring geometric ergodicity and fi-

nite second order moment of linear long run equilibrium relations and differenced

observations, ii) a representation theorem similar to Granger’s representations

theorem and a functional central limit theorem for the common trends, iii) to

establish that the usual reduced rank regression estimator of the cointegrating

vector is consistent even in this highly extended model, and iv) asymptotic nor-

mality of the parameters for fixed cointegration vector and regime parameters.

Finally, an application of the model to US term structure data illustrates the

empirical relevance of the model.

Lange (2008b): Limiting behavior of the heteroskedastic robust Wald-

test when the underlying innovations have heavy tails. This paper es-

tablishes that the usual OLS estimator of the autoregressive parameter in the

first order AR-ARCH model has a non-standard limiting distribution with a

non-standard rate of convergence if the innovations have non-finite fourth order

moments. Furthermore, it is shown that the robust t- and Wald test statistics

of White (1980) are still consistent and have the usual rate of convergence, but

a non-standard limiting distribution when the innovations have non-finite fourth

order moment. The critical values for the non-standard limiting distribution are
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found to be higher than the usual N(0,1) and χ2
1 critical values, respectively,

which implies that an acceptance of the hypothesis using the standard robust t-

or Wald tests remains valid even in the fourth order moment condition is not met.

However, the size of the test might be higher than the nominal size. Hence the

analysis presented in this paper extends the usability of the robust t- and Wald

tests of White (1980). Finally, a small empirical study illustrates the results.

Jensen & Lange (2008): On IGARCH and convergence of the QMLE for

misspecified GARCH models. We address the IGARCH puzzle by which

we understand the fact that a GARCH(1,1) model fitted by quasi maximum

likelihood estimation to virtually any financial dataset exhibit the property that

α̂ + β̂ is close to one. We prove that if data is generated by certain types of

continuous time stochastic volatility models, but fitted to a GARCH(1,1) model

one gets that α̂ + β̂ tends to one in probability as the sampling frequency is

increased. Hence, the paper suggests that the IGARCH effect could be caused by

misspecification. The result establishes that the stochastic sequence of QMLEs

do indeed behave as the deterministic parameters considered in the literature

on filtering based on misspecified ARCH models, see e.g. Nelson (1992). An

included study of simulations and empirical high frequency data is found to be

in very good accordance with the mathematical results.
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Resume

Denne afhandling omhandler asymptotisk teori for finansielle tidsrække mod-

eller med tidsvarierende betinget varians. Det er velkendt indenfor finansiel

økonometri, at de fleste finansielle tidsrækker udviser tidsafhængig betinget var-

ians og andre type af ikke-lineariteter. I lyset af dette, analyser alle fire artikler

i denne afhandling modeller, der tillader s̊adanne.

Hver artikel er beskrevet mere uddybende i de følgende afsnit. I den første artikel

introduceres en ny estimationsteknik, der kan h̊andtere parameterestimation un-

der tungt halede innovationer i den autoregressive (AR) model med autoregressiv

betinget heteroskedastisitet (ARCH). Den anden artikel foresl̊ar en ny og ganske

generel ikke-lineær multivariat fejlkorrektionsmodel og diskuterer desuden asymp-

totisk teori. I denne model kan kointegration analyseres med multivariate ARCH

innovationer. Med udgangspunkt i AR-ARCH modellen studeres i den tredje

artikel egenskaberne ved det meget anvendte heteroskedastisk robuste Wald test.

Den fjerde artikel udspringer af det s̊akaldte stylized fact, at stort set alle finan-

sielle tidsrækker udviser integreret GARCH (IGARCH) egenskaben. I artiklen

demonstreres det, at diskrete stikprøver fra kontinuert tids stokastiske volatilitets

modeller kan producere IGARCH effekten.

Lange, Rahbek & Jensen(2007): Estimation and Asymptotic Inference in

the AR-ARCH Model. Denne artikel studerer de asymptotiske egenskaber ved

quasi maksimum likelihood estimatoren (QMLE) og ved en foresl̊aet modificeret

version for parametrene i AR-ARCH modellen.

Den modificerede QMLE (MQMLE) er baseret p̊a trunkering af likelihood funk-

tionen og er relateret til den nyeligt foresl̊aede self-weighted QMLE i Ling (2007b).

Artiklen etablerer at MQMLE’en er asymptotisk normalfordelt uanset om inno-
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vationerne har endelige momenter af en bestemt orden, i det geometrisk ergod-

icitet alene er tilstrækkeligt. Det inkluderede simulationsstudie viser desuden at

MQMLE’en har bemærkelsesværdige fine egenskaber for korte dataserier. En-

delig udledes simple og klassiske betingelser p̊a AR og ARCH paramenterne, der

garanterer at processer genereret af modellen er geometrisk ergodiske.

Lange (2008a): First and second order non-linear cointegration models.

Artiklen omhandler kointegration i ikke-lineære fejl-korrektions modeller med

diskontinuær og regime afhængig fejl-korrektion samt variansspecifikation. Desu-

den tillader modellen ARCH specifikation af variansen. Regime processen antages

at afhænge af tidligere observationer. Artiklens hovedbidrag er: i) betingelser

der sikrer geometrisk ergidicitet og endeligt andet moment af lineære langtid-

sligevægtsrelationer og tilvækster, ii) en repræsentationssætning svarende til

Granger’s repræsentationssætning og en variant af Donsker’s sætning for de delte

stokastiske trends, iii) at etablere at den sædvanlige reducerede rank regressions

estimater af kointegrationsvektoren er konsistent selv i denne udvidede model og

iv) asymptotisk normalitet af parameterestimaterne for fast kointegrationsvektor

og regimeparametre. Den empiriske relevans af resultaterne illustreres med en

anvendelse p̊a amerikanske rentedata.

Lange (2008b): Limiting behavior of the heteroskedastic robust Wald-

test when the underlying innovations have heavy tails. Artiklen etablerer

at den sædvanlige OLS estimater af den autoregressive parameter i første or-

dens AR-ARCH modellen har en ikke-standard grænsefordeling med en ikke-

standard konvergensrate, n̊ar innovationerne ikke har endeligt fjerde moment.

Desuden vises det, at de robuste t- and Wald teststørrelser (se White (1980))

er konsistente med standard konvergensrate, men ikke-standard grænsefordel-

ing n̊ar innovationer ikke har endeligt fjerde moment. De kritiske værdier for

den etablerede grænsefordeling er højere end de tilsvarende for N(0, 1) og χ2
1

fordelingerne, hvilket implicerer at en hypotese accepteret ved hjælp af et stan-

dard robust t- eller Wald test forbliver accepteret selv n̊ar innovationerne ikke

har endeligt fjerde moment. Det skal dog bemærkes, at testets størrelse kan være

højere end den nominelle størrelse. Resultaterne præsenteret i denne artikel ud-

vider dermed anvendelsen af de robuste t- og Wald tests introduceret i White

(1980). Et kort empirisk studie illustrer resultaterne.
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Jensen & Lange (2008): On IGARCH and convergence of the QMLE for

misspecified GARCH models. Vi adresserer IGARCH effekten, ved hvilken

vi forst̊ar det faktum, at en GARCH(1,1), model fittet ved hjælp af quasi mak-

simum likelihood estimation til s̊a godt som ethvert finansielt datasæt besidder

den egenskab at α̂ + β̂ er tæt p̊a én. Vi beviser, at hvis data er genereret af

bestemte typer af kontinuer tids stokastiske volatilitets modeller, men fittet til en

GARCH(1,1) model vil α̂+β̂ konvergere til én i sandsynlighed n̊ar datafrekvensen

g̊ar mod uendelig. Dermed indikerer artiklen, at IGARCH effekten kan være

for̊arsaget af misspecifikation. Resultatet etablerer ogs̊a at følgen af stokastiske

QMLE’ere opfører sig som de deterministiske parametre betragtet i litteraturen

omhandlende filtrering baseret p̊a misspecificerede ARCH modeller, se f.eks. Nel-

son (1992). Det inkluderede studie af simulationer og højfrekvent empirisk data

er i imponerende god overensstemmelse med de matematiske resultater.

ix



x



Content

Preface i

Abstract iii

Resume vii

Estimation and Asymptotic Inference in the AR-ARCH Model 1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

Properties of the AR-ARCH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Estimation and asymptotic theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

Implications and summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

First and Second Order Non-Linear Cointegration Models 29

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

The first and second order non-linear cointegration model . . . . . . . . . . . . . . . . 32

Stability and order of integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

xi



Estimation and asymptotic normality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39

An application to the interest rate spread . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Limiting behavior of the heteroskedastic robust Wald test when

the underlying innovations have heavy tails 61

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

The AR-ARCH model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Limiting behavior of the OLS estimator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Limiting behavior of the robust Wald test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Empirical illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

On IGARCH and convergence of the QMLE for misspecified GARCH

models 87

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .90

Illustrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 119

xii







Estimation and Asymptotic Inference
in the AR-ARCH Model

By Theis Lange, Anders Rahbek, and Søren Tolver Jensen

Department of Mathematical Sciences, University of Copenhagen

E-mail: lange@math.ku.dk, rahbek@math.ku.dk, and soerent@math.ku.dk

Abstract: This paper studies asymptotic properties of the quasi-maximum likelihood
estimator (QMLE) and of a suggested modified version for the parameters in the
autoregressive (AR) model with autoregressive conditional heteroskedastic (ARCH)
errors.
The modified QMLE (MQMLE) is based on truncation of the likelihood function
and is related to the recent so-called self-weighted QMLE in Ling (2007b). We show
that the MQMLE is asymptotically normal irrespectively of the existence of finite
moments, as geometric ergodicity alone suffices. Moreover, our included simulations
show that the MQMLE is remarkably well-behaved in small samples. On the other
hand the ordinary QMLE, as is well-known, requires finite fourth order moments for
asymptotic normality. But based on our considerations and simulations, we conjecture
that in fact only geometric ergodicity and finite second order moments are needed for
the QMLE to be asymptotically normal. Finally, geometric ergodicity for AR-ARCH
processes is shown to hold under mild and classic conditions on the AR and ARCH
processes.

Keywords: ARCH; Asymptotic theory; Geometric ergodicity; QMLE; Modified

QMLE.

1 Introduction

This paper considers likelihood based inference in a general stable autoregres-

sive model with autoregressive conditional heteroskedastic errors, the AR-ARCH

model. The aim of the paper is to contribute towards relaxing the moment re-

strictions currently found in the literature, which are often not met in empirical

findings as noted in Francq & Zaköıan (2004), Ling & McAleer (2003), Ling &

Li (1998), and Weiss (1984). Common to all these is the need for law of large

number type theorems, which in turn induces the need for moment restrictions.

In the pure ARCH model (no conditional mean part) Jensen & Rahbek (2004b)

show how the parameter region in which the QMLE is asymptotically normal at

the usual root T rate, can be expanded to include even non-stationary explosive
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processes. Adapting these techniques to the AR-ARCH model leads to the study

of estimators based on two objective functions. One is the likelihood function and

one is a censored version of the likelihood function based on censoring extreme

terms of the log-likelihood function. The first estimator is the well known quasi-

maximum likelihood function (QMLE) while the second is new and is denoted

the modified quasi-maximum likelihood function (MQMLE).

Recently, and independently of our work, Ling (2007b) provides a theoretical

study of a closely related general estimator denoted self-weighted QMLE. When

computing the self-weighted QMLE the individual terms of the log-likelihood

function are weighted such that the impact of the largest terms is decreased.

The weights suggested in Ling (2007b) are fairly complex functions of the pre-

vious observations. This contrast our censoring scheme, which can be viewed

as weighting with zero-one weights. Apart from the simplicity of our censoring

scheme the main differences are: (i) We do not assume that the process has been

initiated in the stationary distribution, but instead allow for any initial distribu-

tion. (ii) We have included a simulation study, which can provide specific advice

on selecting the proper censoring. The included simulation study shows that the

new estimator performs remarkably well and in many respects is superior to the

ordinary QMLE. Finally our paper also establishes mild conditions for geometric

ergodicity of AR-ARCH processes.

The presence of ARCH type effects in financial and macro economic time

series is a well established fact. The combination of the ARCH specification for

the conditional variance and the AR specification for the conditional mean has

many appealing features, including a better specification of the forecast variance

and the possibility of testing the presence of momentum in stock returns in a

well specified model. Recently the AR-ARCH type models have been used as

the basic ”building blocks” for Markov switching and mixture models as in e.g.

Lanne & Saikkonen (2003) and Wong & Li (2001).

The linear ARCH model model was originally introduced by Engle (1982)

and asymptotic inference for this and other ARCH models have been studied

in, e.g. Strumann & Mikosch (2006), Kristensen & Rahbek (2005), Medeiros

& Veiga (2004) Berkes, Horváth & Kokoszka (2003), Lumsdaine (1996), Lee

& Hansen (1994), and Weiss (1986). Common to these is as mentioned the

assumption that the ARCH process is suitably ergodic or stationary. Recently
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Jensen & Rahbek (2004b) have showed that the maximum likelihood estimator of

the ARCH parameter is asymptotically normal with the same rate of convergence

even in the non-stationary explosive case. However, as we demonstrate these

results do not carry over to the AR-ARCH model due to the conditional mean

part. Asymptotic inference in the AR-ARCH model is also considered in Francq

& Zaköıan (2004), Ling & McAleer (2003), and Ling & Li (1998). The first of

these establishes consistency of the QMLE assuming only existence of a stationary

solution, but as noted the asymptotic normality results in all three references rely

on the assumption of at least finite fourth order moment.

Note finally, that a related model is the so called DAR or double autoregressive

model studied in Ling (2007a), Chan & Peng (2005), and Ling (2004), sometimes

confusingly referred to as the AR-ARCH model. It differs from the AR-ARCH

model, by not allowing the ARCH effect in the errors to vary independently of

the level of the process. In particular, a unit root in the AR mean part of the

DAR process, does not necessarily imply non-stationarity.

The paper proceeds as follows. In Section 2 the model and some impor-

tant properties including geometric ergodicity of processes generated by the AR-

ARCH model are discussed. Section 3 introduces the estimators and states the

main results. In Section 4 we use Monte Carlo methods to compare the finite

sample properties of the estimators and provide advice on how to estimate in

practice. Finally Section 5 concludes. The Appendix contains all proofs.

2 Properties of the AR-ARCH model

In this section we present the model and discuss application of a law of large

numbers to functions of the process, which is a critical tool in the asymptotic

inference. The AR(r)-ARCH(p) model is given by

yt =
r∑

i=1

ρiyt−i + εt(θ) = ρ′ȳt−1 + εt(θ), ρ = (ρ1, ..., ρr) (1)

εt(θ) =
√

ht(θ)zt (2)

ht(θ) = ω +

p∑
i=1

αiε
2
t−i(θ), α = (α1, ..., αp)

′ (3)

3



with t = 1, ..., T , ȳt = (yt, ..., yt−r+1)
′, and zt an i.i.d.(0,1) sequence of random

variables following a distribution P . Furthermore ρ and α denotes r and p dimen-

sional vectors, respectively. For future reference define ε̃t(θ) = (εt(θ), ..., εt−p+1(θ))
′.

As to initial values estimation and inference is conditional on (y0, ..., y1−r−p),

which is observed. The parameter vector is denoted θ = (ρ′, α′, ω)′ and the true

parameter θ0 with α0 and ω0 strictly positive and the roots of the characteristic

polynomial corresponding to (1) outside the unit circle. For notational ease we

adopt the convention εt(θ0) =: εt and ht(θ0) =: ht.

Corresponding to the model, all results regarding inference hold independently

of the values of initial values. In particular, we do not assume that the initial

values are initiated from an invariant distribution. Instead, similar to Kristensen

& Rahbek (2005) where pure ARCH models are considered, we establish geomet-

ric ergodicity of the AR-ARCH process; see also Tjøstheim (1990) for a formal

discussion of geometric ergodicity. Geometric ergodicity ensures that there ex-

ists an invariant distribution, but also as shown in Jensen & Rahbek (2007) that

the law of large numbers apply to any measurable function of current and past

values of the geometric ergodic process, independently of initial values, see (4) in

Lemma 1 below. The application of the law of large numbers is a key part of the

derivations in the next section when considering the behavior of the score and

the information. The next lemma states sufficient (and mild) conditions for geo-

metric ergodicity of the Markov chain xt = (ȳt−1, ε̃t)
′ which appears in the score

and information expressions. Note that the choice of ȳt−1 and ε̃t in the stacked

process is not important, and for instance the same result holds with xt defined

as (yt, ..., yt−r−p+1)
′ instead. Initially two sets of assumptions corresponding to

the general model and the first order model, respectively, are stated.

Assumption 1. Assume that the roots of the characteristic polynomial corre-

sponding to (1) evaluated at the true parameters are outside the unit circle and

that

p∑
i=1

α0,i < 1.

Assumption 2. Assume that r = p = 1, so α and ρ are scalars, and that

E
[
log(α0z

2
t )

]
< 0 and |ρ0| < 1.
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Lemma 1. If either Assumption 1 or 2 holds and if zt has a density f with re-

spect to the Lebesgue measure on R, which is bounded away from zero on compact

sets then the process xt = (ȳ′t−1, ε̃
′
t)
′ generated by the AR-ARCH model, is geo-

metrically ergodic. In particular there exists a stationary version and moreover

if E|g(xt, ..., xt+k)| < ∞ where expectation is taken with respect to the invariant

distribution, the Law of Large Numbers given by

lim
T→∞

1

T

T∑
t=1

g(xt, ..., xt+k)
a.s.
= E [g(xt, ..., xt+k)] , (4)

holds irrespectively of the choice of initial distribution.

Note that the formulation of the lemma allows the application of the law of

large numbers to summations involving functions of the Markov chain xt even

when the xt has a non-finite expectation. The proof which utilizes the drift

criterion can be found in the Appendix. Note that in recent years evermore

general conditions for geometric ergodicity for generalized ARCH type processes

have been derived, see e.g. Francq & Zaköıan (2006), Meitz & Saikkonen (2006),

Kristensen (2005), Liebscher (2005), and the many references therein. Common

to these is however, that they do not allow for an autoregressive mean part or

belong to the category of DAR models. To the best of our knowledge the only

results regarding geometric ergodicity of processes generated by the AR-ARCH

model can be found in Cline & Pu (2004), Meitz & Saikkonen (2008), and Cline

(2007), but their conditions are considerably more restrictive than the above since

the very general setup employed does not utilize the exact specification of the

simple AR-ARCH model.

With regards to the asymptotic theory the main contribution of Lemma 1 is to

enable the use of the law of large numbers. Since the conditions of Assumption 1

imply the existence of finite second order moment, which it not needed for the first

order model, it seems to be overly restrictive. We therefore state the following

high order condition, which simply enables the use of the law of large numbers.

Assumption 3. Assume that zt has a density f with respect to the Lebesgue

measure on R, which is bounded away from zero on compact sets, that there

5



exists an invariant distribution for the Markov chain xt = (ȳ′t−1, ε̃
′
t)
′, and that

1

T

T∑
t=1

g(xt, ..., xt+k)
P→ E [g(xt, ..., xt+k)] as T →∞,

for any measurable functions satisfying E [g(xt, ..., xt+k)] < ∞.

This mild assumption is trivially satisfied if the drift criterion is used to es-

tablish stability of the chain. In the following we will discuss estimation and

asymptotic theory under either of the three assumptions.

3 Estimation and Asymptotic Theory

In this section we study two estimators for the parameter θ in the AR-ARCH

model. The first is the classical quasi maximum likelihood estimator (QMLE).

Second, we propose a different estimator (the MQMLE) based on a modifica-

tion of the Gaussian likelihood function which censors a few extreme observa-

tions. We show that both estimators are consistent and asymptotically normally

distributed, and illustrate this by simulations. The proofs are based on verify-

ing classical asymptotic conditions given in Lemma A.1 of the appendix. This

involves asymptotic normality of the first derivative of the likelihood functions

evaluated at the true values, convergence of the second order derivative evaluated

at the true values and finally a uniform convergence result for the second order

derivatives in a neighborhood around the true value, conditions (A.1), (A.2), and

(A.4), respectively. For both estimators we verify conditions (A.1) and (A.2) un-

der the assumption of only second order moments of the ARCH process for the

QMLE, and no moments (but under Assumption 3) for the MQMLE in Lemma 2.

The uniform convergence is established for the MQMLE without any moment re-

quirements and only the assumption of geometric ergodicity of the AR-ARCH

process is therefore needed for this estimator to be asymptotically normal. The

uniform convergence for the QMLE we can establish under the assumption of fi-

nite fourth order moment as in Ling & Li (1998). However, based on simulations,

this assumption seems not essential at all and the result is conjectured to hold

for the QMLE with only second order moments assumed to be finite.

Thus for the MQMLE consistency and normality holds independently of exis-

6



tence of any finite moments, only existence of a stationary invariant distribution

is needed. In addition, the MQMLE have some nice finite sample properties as

studied in the simulations. In particular, for the estimator of the autoregressive

parameter ρ the finite sample distribution corresponding to the MQMLE approxi-

mates more rapidly the asymptotic normal one than the finite sample distribution

of the QMLE of ρ. Furthermore the bias when estimating the ARCH parame-

ter α is smaller when using the MQMLE than when using the classical QMLE.

Of course since we are ignoring potentially useful information by censoring, the

asymptotic variance for the MQMLE will be higher than for the QMLE.

We will consider the estimators based on minimizing the following functions

Li
T (θ) =

1

T

T∑
t=1

lit(θ) where lit(θ) = γi
t

(
log ht(θ) +

ε2
t (θ)

ht(θ)

)
,

for i = 0, 1 and with

γ0
t = 1, and γ1

t = 1{|yt−1|<M,...,|yt−r−p|<M} (5)

for any positive constant M . The QMLE denoted θ̂0
T and the MQMLE denoted

θ̂1
T will be the estimators based on minimizing L0

T and L1
T , respectively.

The MQMLE estimator differs from the QMLE by introducing censoring.

Clearly, the role of the censoring depends on the tail behavior of yt. Davis &

Mikosch (1998) show that under the assumptions of Lemma 1 the invariant dis-

tribution for εt is regularly varying with some index λ, and by Lange (2006) the

invariant distribution for yt is regularly varying with the same index. The inter-

pretation of the tail index is, that the AR-ARCH process has finite moments of all

orders below λ, but E|yt|λ = ∞ or, equivalently, that the density of the invariant

distribution of yt behaves like |yt|−λ−1 for |yt| large. Hence the probability of get-

ting extreme observations is closely related to moment restrictions on the ARCH

process. And since large observations provide the most precise estimates of the

autoregressive parameter ρ, we have that if the probability of getting extreme

observations becomes too large the QMLE has a non-standard (faster) rate of

convergence. This is confirmed by the fact that when the second order moment

of εt tends to infinity the asymptotic variance of the QMLE tends to zero (the

exact expressions can be found in Conjecture 1). Unlike the QMLE the MQMLE

7



censors away these extreme observations and is therefore asymptotically normal

without any moment restrictions (see Theorem 1).

In practice, based on the simulations, we propose to use a censoring constant

M which corresponds to censoring away at most 5% of the terms in the likelihood

function (see Section 4 for further discussion). This choice is similar to the choice

in the threshold- and change-point literature where for testing a priori certain

quantiles of the observations are assumed to be in each of the regimes, see Hansen

(1996, 1997). Note that if M is chosen in a data dependent fashion it may formally

only depend on some finite number of observations. While this is crucial from a

mathematical point of view, it is of no importance in practice.

The last part of this section contains the formal versions of our results.

Lemma 2. Under either Assumption 1, 2, or 3 and the additional assumption

that zt has a a symmetric distribution with E [(z2
t − 1)2] = κ < ∞ and density

with respect to the Lebesgue measure, which is bounded on compact sets, the score

and the observed information satisfy

√
TDL1

T (θ0)
D→ N(0, Ω1

S)

D2L1
T (θ0)

P→ Ω1
I .

If the true parameter θ0 is such that in addition to the above the ARCH process

has finite second order moment it holds that

√
TDL0

T (θ0)
D→ N(0, Ω0

S)

D2L0
T (θ0)

P→ Ω0
I .

The matrices Ωi
S and Ωi

I > 0 are positive definite block diagonal and the exact

expressions can be found in the appendix.

The notation defined in this lemma will be used throughout the rest of the

paper. We can now state our main results regarding the MQMLE. Note that the

proof can be found in the Appendix.

Theorem 1. Under the assumptions of Lemma 2 regarding L1
T there exists a

fixed open neighborhood U = U(θ0) of θ0 such that with probability tending to

one as T →∞, L1
T (θ) has a unique minimum point θ̂1

T in U . Furthermore θ̂1
T is
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consistent and asymptotically Gaussian,

√
T (θ̂1

T − θ0)
D→ N(0, (Ω1

I)
−1Ω1

S(Ω1
I)
−1).

If zt is indeed Gaussian we have κ = 2 and therefore

(Ωi
I)
−1Ωi

S(Ωi
I)
−1 = 2(Ωi

I)
−1

for i = 0, 1. Note that Theorem 1 is a local result in the sense that it only

guarantees the existence of a small neighborhood around the true parameter

value in which the function L1
T (θ) has a unique minimum point, denoted θ̂1

T ,

which is consistent and asymptotically Gaussian. In contrast to this Ling (2007b)

establishes consistency and asymptotic normality over an arbitrary compact set.

However, unlike Ling (2007b) we do not work with a compact parameter set

during the estimation and hence our focus is on local behavior.

In the next section we provide numerical results, which indicate that the

QMLE is asymptotically normal with an asymptotic variance given by Lemma A.1

and Lemma 2 as long as the ARCH process has finite second order moment.

The required uniform convergence for the QMLE we can establish under the

assumption of finite fourth order moment as in Ling & Li (1998). However,

based on simulations, this assumption seems not essential at all and the result is

conjectured to hold for the QMLE with only second order moments assumed to

be finite. Hence we put forward the following conjecture.

Conjecture 1. Under the assumptions of Lemma 2 regarding L0
T there exists a

fixed open neighborhood U = U(θ0) of θ0 such that with probability tending to one

as T → ∞, the likelihood function L0
T (θ) has a unique minimum point θ̂0

T in U .

Furthermore θ̂0
T is consistent and asymptotically Gaussian,

√
T (θ̂0

T − θ0)
D→ N(0, (Ω0

I)
−1Ω0

S(Ω0
I)
−1).

It should be noted that consistency of the QMLE has been established in

Francq & Zaköıan (2004) in which they also discuss (p. 613) whether the QMLE

might indeed be asymptotically normal under the mild assumption of finite second

order moment of the innovations. However, the result has still not been formally

established.
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4 Simulation Study

In this section we examine the finite sample properties of the two estimators

by Monte Carlo simulation methods. Furthermore we provide advice on how to

estimate AR-ARCH models in applications. We generate data from the DGP

given by (1) - (3), with r = p = 1 and zt ∼ i.i.d.N(0, 1), setting ω0 = 1 with

no loss of generality1. The autoregressive parameter ρ0 will be kept fixed at

0.5. Other values of this parameter were also considered, but these led to the

same qualitative results as long as the absolute value of ρ0 was not very close to

unity. In the first part of this section we investigate the case where α0 = 0.8,

corresponding to finite second order moment but non-finite fourth order moment

of the ARCH process. With these parameter values the model does not meet the

moment restrictions employed in the literature, but the model does satisfy the

conditions of Conjecture 1 and Theorem 1. In the second part of this section

we consider the case where α0 = 1.5, corresponding to non-finite second order

moment of the ARCH process. With these parameter values the conditions of

Conjecture 1 are not meet, but the conditions of Theorem 1 are. This part

therefore serves as an illustration of the robustness of the MQMLE. Using the

notation of the previous sections, we investigate the impacts of varying the sample

size T , among T = 250, 500, 1,000, 4,000 and the truncation constant M , among

M = 2, 3, 5.

Table 1 reports the bias of the estimators, sample standard deviation of√
T (θ̂i

T − θ0) and in parentheses the deviation between the sample standard devi-

ation and the true asymptotic standard deviation (from Conjecture 1 and Theo-

rem 1 obtained by a different simulation study using 107 replications) in percent

of the true asymptotic standard deviation. The table also reports skewness and

excess kurtosis of the estimators normalized by their asymptotic standard devia-

tion and finally the average truncation frequency. Note that M = ∞ corresponds

to the QMLE.

Figure 1 reports QQ-plots of the two estimators (
√

T (θi
T − θ0)) normalized by

their respective true asymptotic variances (from Conjecture 1 and Theorem 1)

against a standard normal distribution. The dotted lines correspond to (point-by-

point) 95% confidence bands and are constructed using the empirical distribution

1All experiments were programmed using the random-number generator of the matrix pro-
gramming language Ox 3.40 of Doornik (1998) over N = 10,000 Monte Carlo replications.
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functions. The normalization allows one to compare how close the finite sample

distribution is to the asymptotic distribution directly between the MQMLE and

the QMLE.

We will first consider the properties of the QMLE of the autoregressive pa-

rameter. Recall that known asymptotic results only guarantees consistency, see

Francq & Zaköıan (2004), but not asymptotic normality since the ARCH process

has non-finite fourth order moment when α0 = 0.8. However, both the QQ-plot

and the numeric results of Table 1 indicate that the estimator based on L0
T (the

maximum likelihood estimator) is asymptotically normal distributed with the

claimed asymptotic variance. This is in good accordance with Lemma 2, which

states that both the first- and second derivatives of L0
T evaluated at the true

values have the right limits as long as the ARCH process has finite second order

moment. This forms the motivation for Conjecture 1. The plots and tables also

confirm that the QMLE of the ARCH parameters α and ω are asymptotically

Gaussian.

Next we will compare the performance of the two estimators of the autoregres-

sive parameter. From Table 1 it is noted that the observed standard deviation,

skewness, and excess kurtosis of the normalized estimator ρ̂1
T are consistently

closer to their true asymptotic values than those of the maximum likelihood esti-

mator. Furthermore from Figure 1 it is evident that the finite sample distribution

of the MQMLE is ”closer” to the claimed normal distribution than the finite sam-

ple distribution of the QMLE. Note that the left part of the confidence bands

for the two estimators are non-overlapping, which indicates that the observed

difference is statistically significant. This is true for all values of the trunca-

tion constant M , but is most evident when M is small. From Table 1 it it also

clear that the asymptotic variance for ρ̂1
T increases as the censoring constant is

decreased, this is due to the fact that the censoring in effect ignores useful infor-

mation. However, for M = 5, which in this case corresponds to ignoring around

5% of the terms of the likelihood function, the asymptotic standard deviation is

only around 15% larger than that of the maximum likelihood estimator.

When comparing the estimators of the ARCH parameter α, the conclusions

become less clear cut. Table 1 and Figure 1 indicate that unlike when estimating

the autoregressive parameter, the traditional QMLE is the one that approaches

its asymptotic distribution fastest (both when measured by the sample standard
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Figure 1: QQ-plots of
√

T (θ̂i
T − θ0) normalized by their asymptotic standard deviation

(from Conjecture 1 and Theorem 1) against a standard normal distribution. The left column
corresponds to the QMLE and the right to the MQMLE (with M = 2). The parameters are
kept fixed at θ0 = (0.5, 0.8, 1)′ and T = 500 and the plot is based on 10,000 Monte Carlo
replications. The dotted lines correspond to 95% confidence bands based on the empirical
distribution function.
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deviation, skewness, and excess kurtosis, and when inspected graphically). How-

ever, the MQMLE seems to have a lower bias than the QMLE.

Finally Table 1 and the bottom row of Figure 1 show that the estimation

of the scale parameter ω is relatively unaffected by the choice of estimator and

censoring constant.

Hence the choice of how to estimate in the AR-ARCH model depends on which

parameters that are of most interest to the problem at hand. All in all we would

suggest using the MQMLE, because it avoids the need for moment restrictions,

and selecting the censoring constant such that around 5% of the observations are

censored away, as this makes the price in the form of higher asymptotic standard

deviation fairly small.

In the following we will consider the case where α0 = 1.5, which corresponds

to non-finite second order moment of the ARCH process. It should be noted that

in this case the asymptotic variance associated with ρ̂0
T cannot be guaranteed

to be finite, which makes the rescaling used in Figure 1 meaningless. Hence

Figure 2 reports QQ-plots of the two estimators against a normal distribution

with mean zero and the same variance as
√

T (θi
T −θ0). When varying the sample

length T this approach allows one to see directly whether
√

T is the right rate of

convergence. The confidence intervals are constructed as in Figure 1.

From Figure 2 and Figure 3 the most striking feature is the bended shape

of the curve corresponding to the QMLE estimator of the autoregressive para-

meter. The hypothesis that the QMLE has a non-standard rate of convergence

is further strengthed by observing that the sample standard deviation decreases

as the sample size increases. This is in good accordance with the fact that the

asymptotic variance in Conjecture 1 is zero when the ARCH process has non-

finite second order moment. Hence it does not seem reasonable to assume that

the conditions of Conjecture 1 can be relaxed any further. It is also noted that

the asymptotic normality of the QMLE estimators of the ARCH parameter α

and the scale parameter ω seems to hold even though the ARCH process has

non-finite second order moment. This is in accordance with Jensen & Rahbek

(2004b). Finally Figure 2 and Figure 3 confirm the asymptotic normality of the

MQMLE claimed in Theorem 1.
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Figure 2: QQ-plots of
√

T (θ̂i
T − θ0) against a standard normal distribution with mean zero

and the same variance as
√

T (θ̂i
T − θ0). The left column corresponds to the QMLE and the

right to the MQMLE (with M = 3). The parameters are kept fixed at θ0 = (0.5, 1.5, 1)′ and
T = 500 and the plot is based on 10,000 Monte Carlo replications. The dotted lines correspond
to 95% confidence bands based on the empirical distribution function.
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Figure 3: QQ-plots of
√

T (θ̂i
T − θ0) against a standard normal distribution with mean zero

and the same variance as
√

T (θ̂i
T − θ0). The left column corresponds to the QMLE and the

right to the MQMLE (with M = 3). The parameters are kept fixed at θ0 = (0.5, 1.5, 1)′ and T

= 4,000 and the plot is based on 10,000 Monte Carlo replications. The dotted lines correspond
to 95% confidence bands based on the empirical distribution function.
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5 Implications and Summary

We have initially derived minimal conditions under which processes generated

by the AR-ARCH model are geometrically ergodic. For the maximum likeli-

hood estimator in this model we have conjectured that the parameter region for

which the estimator is asymptotically normal can be extended from the fourth

order moment condition of Ling & Li (1998) to a second order moment condition.

As mentioned similar considerations have been made in Francq & Zaköıan (2004)

and Ling (2007a). The paper also suggests a different estimator (MQMLE) which

we prove to be asymptotically normal without any moment restrictions. By a

Monte Carlo study we show that the MQMLE of the autoregressive parameter

approximates its asymptotic distribution faster than the maximum likelihood es-

timator and that its asymptotic variance is only slightly larger. For the estimator

of the ARCH parameter α the gain from using the MQMLE is a slightly lower

bias, while the estimator of the scale parameter ω is unaffected by the choice of

estimator.

On the basis of our results we suggest to implement the MQMLE choosing

a censoring constant such that the observed censoring frequency is around 5%2.

In our view this provides a good balance between low standard deviation on

the estimator and a good normal approximation for the sample lengths usually

encountered in financial econometrics, however, one should also consider the use

of the estimates when deciding the estimation procedure (see the discussion in

the previous section), since the two procedures have different strengths.

A Appendix

Proof of Lemma 1. This proof can be seen as verifying the high level conditions

(CM.1)-(CM.4) in Kristensen (2005), for geometric ergodicity of general non-

linear state space models. Under Assumption 1 the result follows by combining

two well known drift criterions for autoregressive- and ARCH processes, respec-

tively. A detailed derivation can be found in Lange (2008a). The remaining part

of the proof will therefore focus on Assumption 2 where α and ρ are both scalars.

Note first that xt is a Markov chain. Using (1) - (3) twice one can express xt

2Ox code for employing both estimators discussed in this paper can be downloaded from
www.math.ku.dk/∼lange.
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in terms of xt−2 and the two innovations zt and zt−1 as

xt =

(
ρ2

0yt−3 + zt−1(ω0 + α0ε
2
t−2)

1/2 + ρ0εt−2

zt(ω0 + α0(ω0 + α0ε
2
t−2)z

2
t−1)

1/2

)
.

Conditional on xt−2 the map from (zt−1, zt) to xt is a bijective and all points are

regular (the determinant of the Jacobian matrix is non-zero for all points). Since

the pair (zt−1, zt) has a density with respect to the two dimensional Lebesgue mea-

sure, which is strictly positive on compacts, a classical result regarding transfor-

mations of probability measures with densities yields that the two step transition

kernel for the chain xt has strictly positive density on compact sets. By Chan &

Tong (1985) the 2-step chain is aperiodic, Lebesgue-irreducible, and all compact

sets are small.

Below we establish that the 1-step chain satisfies a drift criterion, which for

a drift function V (x) can be formulated as

E[V (xt) | xt−1 = x] ≤ aV (x) + b,

with 0 < a < 1 and b > 0. For the 2-step chain the law of the iterated expectation

yields

E[V (xt) | xt−2 = x] ≤ E[aV (xt−1) + b | xt−2 = x] ≤ a2V (x) + ab + b.

Hence the 2-step chain also satisfies a drift criterion and it is therefore geometri-

cally ergodic by Tjøstheim (1990). By Lemma 3.1 of Tjøstheim (1990) it therefore

holds that the 1-step chain is geometrically ergodic as well.

In order to establish the drift criterion for the 1-step chain define the drift

function

V (xt) = 1 + |yt−1|δ + C|εt|δ,

where C > 0 and 1 > δ > 0. Since V is continuous xt is geometrically ergodic by

the drift criterion of Tjøstheim (1990) if

E [V (xt) | xt−1]

V (xt−1)
< 1, (6)
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for all xt−1 outside some compact set K. Simple calculations yield

E [V (xt) | xt−1]

V (xt−1)
=

1 + |ρ0yt−2 + εt−1|δ + C(ω0 + α0ε
2
t−1)

δ/2E
[|zt|δ

]

V (xt−1)

≤ 1 + Cω
δ/2
0

V (xt−1)
+
|ρ0|δ|yt−2|δ + (1 + Cα

δ/2
0 E

[|zt|δ
]
)|εt−1|δ

V (xt−1)
.

With K(r) = {x ∈ R2 | ‖x‖ < r} the first fraction can be made arbitrarily

small outside K by choosing r large enough. Next define the function h(δ) =

α
δ/2
0 E

[|zt|δ
]
and note that h(0) = 1 and h′(0) = E [log(α0z

2
t )] /2. The existence of

the derivative from the right is guaranteed by Lebesgue’s Dominated Convergence

Theorem and the finite second order moment of zt. Hence by assumption there

exists a δ ∈]0, 1[ such that h(δ) < 1 and |ρ0| < 1. Therefore the constant C can

be chosen large enough such that (6) holds for all xt−1 outside the compact set

K.

Finally the law of large numbers (4) follows from Theorem 1 of Jensen &

Rahbek (2007). This completes the proof of Lemma 1.

All our asymptotic results are based on applying Lemma A.1, which follows.

Note that conditions (A.1) - (A.4) are similar to conditions stated in the literature

on asymptotic likelihood-based inference, see, e.g. Jensen & Rahbek (2004a)

Lemma 1; Lehmann (1999) Theorem 7.5.2. The difference is that (A.1) - (A.4)

avoid making assumptions on the third derivatives of the estimating function.

Lemma A.1. Consider `T (φ), which is a function of the observations X1, ..., XT

and the parameter φ ∈ Φ ⊆ Rk. Introduce furthermore φ0, which is an interior

point of Φ. Assume that `T (·) : Rk → R is two times continuously differentiable

in φ and that

(A.1) As T →∞,
√

T∂`T (φ0)/∂φ
D→ N(0, ΩS), ΩS > 0.

(A.2) As T →∞, ∂2`T (φ0)/∂φ∂φ′
P→ ΩI > 0.

(A.3) There exists a continuous function F : Rk → Rk×k such that ∂2`T (φ)/∂φ∂φ′
P→ F (φ) for all φ ∈ N(φ0).

(A.4) supφ∈N(φ0) ‖∂2`T (φ)/∂φ∂φ′ − F (φ)‖ P→ 0,

where N(φ0) is a neighborhood of φ0. Then there exists a fixed open neighborhood

U(φ0) ⊆ N(φ0) of φ0 such that
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(B.1) As T →∞ it holds that

P (there exists a minimum point φ̂T of `T (φ) in U(φ0)) → 1

P (`T (φ) is convex in U(φ0)) → 1

P (φ̂T is unique and solves ∂`T (φ)/∂φ = 0) → 1

(B.2) As T →∞, φ̂T
P→ φ0.

(B.3) As T →∞,
√

T (φ̂T − φ0)
D→ N(0, Ω−1

I ΩSΩ−1
I ).

Note that assumptions (A.3) and (A.4) could have been stated as a single

condition, but for ease of exposition in the following proofs we have chosen this

formulation.

Proof of Lemma A.1. By definition the continuous function `T (φ) attains its min-

imum on any compact set K(φ0, r) = {θ | ‖φ − φ0‖ ≤ r} ⊆ N(φ0). With

vφ = (φ− φ0), and φ∗ on the line from φ to φ0, Taylor’s formula gives

`T (φ)− `T (φ0) = D`T (φ0)vφ +
1

2
v′φD

2`T (φ∗)vφ

= D`T (φ0)vφ +
1

2
v′φ[ΩI + (D2`T (φ0)− ΩI)

+(D2`T (φ∗)−D2`T (φ0))]vφ. (7)

Note that

‖D2`T (φ∗)−D2`T (φ0)‖
= ‖D2`T (φ∗)− F (φ∗) + (F (φ∗)− F (φ0)) + (F (φ0)−D2`T (φ0))‖
≤ ‖D2`T (φ∗)− F (φ∗)‖+ ‖F (φ∗)− F (φ0)‖+ ‖F (φ0)−D2`T (φ0)‖
≤ 2 sup

φ∈K(φ0,r)

‖D2`T (φ)− F (φ)‖+ sup
φ∈K(φ0,r)

‖F (φ)− F (φ0)‖.

The first term converges to zero as T tends to infinity by (A.4) and the last term

can be made arbitrarily small by the continuity of F . The remaining part of the

proof is identically to the proof of Lemma 1 in Jensen & Rahbek (2004a). The

only exception is that the upper bound on ‖D2`T (φ∗) −D2`T (φ0)‖ is not linear

in r, but is a function which decreases to zero as r tends to zero.

Proof of Lemma 2. We will begin by proving the part of the lemma regarding

the log-likelihood function L0
T . For exposition only we initially focus on the

autoregressive parameter ρ ∈ Rr. The derivations regarding the ARCH parameter

α and the scale parameter ω are simple when compared with the ones with respect
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to ρ and are outlined in the last part of the proof. It is also there that the

asymptotic results for the joint parameters are given.

Initially introduce some notation

ε̃t(θ) = (εt(θ), ..., εt−p+1(θ))
′, ȳt = (yt, ..., yt−r+1)

′, ¯̃yt = (ȳt, ..., ȳt−p+1)
′, (8)

and A as the r by r matrix with the ARCH parameters (α) on the diagonal. The

first and second derivatives of L0
T with respect to the autoregressive parameter

are given below.

∂L0
T (θ)

∂ρ
=

1

T

T∑
t=1

2ηt(θ)

ht(θ)
ε̃t−1(θ)

′A¯̃yt−2 − 2εt(θ)

ht(θ)
ȳt−1

=:
1

T

T∑
t=1

s
(ρ)
t (θ)′

∂2L0
T (θ)

∂ρ2
=

1

T

T∑
t=1

8ηt(θ)

h2
t (θ)

¯̃y′t−2Aε̃t−1(θ)ε̃t−1(θ)
′A¯̃yt−2

+
4

h2
t (θ)

¯̃y′t−2Aε̃t−1(θ)ε̃t−1(θ)
′A¯̃yt−2

−2ηt(θ)

ht(θ)
¯̃y′t−2A¯̃yt−2 − 8εt(θ)

h2
t (θ)

ȳt−1ε̃t−1(θ)
′A¯̃yt−2 +

2

ht(θ)
ȳt−1ȳ

′
t−1,

=:
1

T

T∑
t=1

s
(ρρ)
t (θ),

where ηt(θ) =
ε2
t (θ)

ht(θ)
− 1. Recall the notational convention that εt(θ0) =: εt etc.

Note that the sequence (s
(ρ)
t )T

t=1 is a Martingale difference sequence with respect

to the filtration Ft = F(yt, yt−1, ..., y0, y−1) and applying a standard CLT for Mar-

tingale differences (e.g. from Brown (1971)) leads to consider first the conditional

second order moment

1

T

T∑
t=1

E
[
s
(ρ)
t s

(ρ)
t
′ | Ft−1

]

=
4

T

T∑
t=1

(
κ

h2
t

¯̃yt−2Aε̃t−1ε̃
′
t−1A¯̃y′t−2 +

1

ht

ȳt−1ȳ
′
t−1

)

P→ 4κE

[
1

h2
t

¯̃yt−2Aε̃t−1ε̃
′
t−1A¯̃y′t−2

]
+ 4E

[
1

ht

ȳt−1ȳ
′
t−1

]
, (9)
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where the convergence is due to either Lemma 1 or Assumption 3. Note that

the cross products vanish since we have assumed a symmetric distribution for

zt. Before addressing the Lindeberg condition of Brown (1971) it is noted that

since the parameter region for which an ARCH(p) process has finite second order

moment is given by a sharp inequality there exists a small constant, λ, such that

it also has finite 2 + λ moment, see Lemma 3. Hence the Lindeberg condition is

satisfied as

1

T

T∑
t=1

E

[
‖s(ρ)

t ‖21n‖s(ρ)
t ‖>δ

√
T
o | Ft−1

]
≤ 1

T 1+λ/2δλ

T∑
t=1

E
[
‖s(ρ)

t ‖2+λ | Ft−1

]
→ 0,

for all δ > 0 as T →∞, which holds since E
[
‖s(ρ)

t ‖2+λ
]

< ∞ by Lemma 3.

By Lemma 1 it holds that

1

T

T∑
t=1

s
(ρρ)
t

P→ 4E

[
1

h2
t

¯̃y′t−2Aε̃t−1ε̃
′
t−1A¯̃yt−2

]
+ 2E

[
1

ht

ȳt−1ȳ
′
t−1

]
. (10)

The necessary finiteness of the moments is easily verified by utilizing that ηt(θ0) =

z2
t − 1 and ‖ε̃t−1/h

1/2
t ‖ < p/ min{α0}1/2 < ∞.

The arguments with respect to the ARCH parameter α and the scale para-

meter ω, and hence the joint variation, are completely analogous to the ones

applied above, and use repeatedly the inequalities ‖ε̃t−1/h
1/2
t ‖ < p/ min{α0}1/2

and 1/ht < 1/ω0. For reference all first and second order derivatives are reported

at the end of the Appendix.

Turning to the result regarding L1
T one notes that since γ1

t = 1{|yt−1|,...,|yt−r−p−2|<M}
the moments of interest can be bounded from above as follows

E

[
γ1

t

h2
t

¯̃y′t−2Aε̃t−1ε̃
′
t−1A¯̃yt−2

]
+ E

[
γ0

t

ht

ȳt−1ȳ
′
t−1

]

≤ max{α0}2

min{α0}2
M2 +

1

ω0

M2 < ∞.

Hence the expectations in (9) and (10) are finite and the result can be derived

using the same arguments as for L0
T . Direct calculations yield the following

expressions for the matrices ΩI and ΩS.

Ωi
S =




4κµi
1 + 4µi

2 0 0

0 κµi
3 κµi

5
′

0 κµi
5 κµi

4


 , Ωi

I =




4µi
1 + 2µi

2 0 0

0 µi
3 µi

5
′

0 µi
5 µi

4


 , (11)
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where

µi
1 = E

[
γi

t

h2
t

¯̃yt−2Aε̃t−1ε̃
′
t−1A¯̃y′t−2

]
µi

2 = E
[

γi
t

ht
ȳt−1ȳ

′
t−1

]

µi
3 = E

[
γi

t

h2
t
(ε̃t−1 ¯ ε̃t−1)(ε̃t−1 ¯ ε̃t−1)

′
]

µi
4 = E

[
γi

t

h2
t

]

µi
5 = E

[
γi

t

h2
t
(ε̃t−1 ¯ ε̃t−1)

′
]
,

for i = 0, 1 where ¯ denote element by element multiplication and expectation

is taken with respect to the invariant distribution.

In order to show that Ωi
S is positive definite one must establish that for any

non-zero vector ξ = (ξ′1, ξ
′
2)
′ ∈ Rr+p it holds that ξ′Ωi

Sξ is strictly positive. Ini-

tially note that under Assumption 1 or Assumption 2 the drift criterion ensures

that the invariant distribution for the Markov chain xt = (ȳ′t−1, ε̃
′
t)
′ has a density

with respect to the Lebesgue measure on Rr+p. Since the roots of a non-trivial

polynomial has zero Lebesgue measure it holds that under the invariant measure

P (ξ′1ȳt−1ȳ
′
t−1ξ1 = 0) = 0. Furthermore, since the set ] −M, M [r×Rp has strictly

positive Lebesgue measure for all M > 0 it holds that under the invariant distri-

bution P (γi
t = 1) > 0. Finally, note that ht ≥ ω0 > 0, which implies that under

the invariant measure it holds that P (ξ′1
γi

t

ht
ȳt−1ȳ

′
t−1ξ1 > 0) > 0. Hence it can be

concluded that under the invariant measure

E[ξ′1
γi

t

ht

ȳt−1ȳ
′
t−1ξ1] > 0

and µi
2 is therefore positive definite. By symmetry µi

1 is positive semi-definite and

it can therefore be concluded that 4κµi
1 + 4µi

2 is also positive definite. Likewise

it can be shown that the matrix

κ

(
µi

3 µi
5
′

µi
5 µi

4

)

is positive definite. It can therefore holds that under either Assumption 1 or

Assumption 2 the matrix Ωi
S is positive definite. Finally, one notes that the

preceding arguments also guarantee that Ωi
I is positive definite.

Under Assumption 3 one notes that since the innovations, zt, have a strictly
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positive density with respect to the Lebesgue measure there exists an integer n

such that the n-step transition kernel for the Markov chain xt has strictly positive

density with respect to the Lebesgue measure. This implies that the invariant

measure also has a strictly positive density with respect to the Lebesgue measure.

By combining this with the previous arguments one has that both Ωi
S and Ωi

I are

positive definite. This completes the proof of Lemma 2.

Proof of Theorem 1. The proof of Theorem 1 is based on applying Lemma A.1.

By Lemma 2 conditions (A.1) and (A.2) are satisfied. As in the proof of Lemma 2

we will focus on the vector of autoregressive parameters (ρ), and only briefly

discuss the other parameters at the end of the proof.

Introduce lower and upper values for each parameter in θ, αL < α0 < αU

(element by element), ωL < ω0 < ωU , and a positive constant δ. In terms of

these, the neighborhood N(θ0) around the true value θ0 is defined as

N(θ0) = {(ρ, α, ω)′ ∈ Rr+p+1 | ‖ρ− ρ0‖ < δ, αL < α < αU , ωL < ω0 < ωU}.

As in the previous proof set s
(ρρ)
t (θ) = ∂2l1t (θ)/∂ρ∂ρ′. In the following the exis-

tence of a stochastic variable u
(ρρ)
t , which satisfies

sup
θ∈N(θ0)

‖s(ρρ)
t (θ)‖ < u

(ρρ)
t (12)

and has finite expectation with respect to the invariant measure is established.

All terms of s
(ρρ)
t (θ) can be treated using similar arguments and we therefore only

report the derivations regarding the most involved term. Note that

sup
θ∈N(θ0)

γ1
t ε

2
t (θ)

h3
t (θ)

‖¯̃y′t−2Aε̃t−1(θ)ε̃t−1(θ)
′A¯̃yt−2‖

≤ 2r2 max{αU}2

min{αL}2
M2γ1

t (εt(θ0)
2 + 2(ρ0 ¯ ρ0 + δ2)′(ȳt−1 ¯ ȳt−1))

≤ ztC1 + C2 =: ut,

for some positive constants C1 and C2. By assumption E|ut| < ∞ and by the

triangle inequality there exists a constant K such that (12) holds with u
(ρρ)
t =

Kut. Hence by Lemma 1 one can define a function F as the point-by-point

probability limit of the average of the s
(ρρ)
t (θ)’s. Next by dominated convergence

and the continuity of the function s
(ρρ)
t (θ) in θ the function F is also continuous,
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so (A.3) holds.

Finally we must verify (A.4). By (A.1) - (A.3) and Theorem 4.2.1 of Amemiya

(1985) it suffices to show

E

[
sup

ρ∈N(ρ0)

‖s(ρρ)
t (θ)‖

]
< ∞,

which follows follows from (12). Note that Theorem 4.2.1 is applicable in our

setup by Amemiya (1985) p. 117 as the law of large numbers apply by Lemma 1.

By inspecting the remaining derivatives, reported below, it is evident that the

arguments above can be applied to all other derivatives, and applying Lemma A.1

completes the proof of Theorem 1.

Lemma 3. Under Assumption 1, 2, or 3, the assumptions from Lemma 1, and

the additional assumption that the ARCH(p) process εt has finite second order

moment, that is
∑p

i=1 α0,i < 1, it holds that there exists a constant λ > 0 such

that E[|εt|2+λ] and E[|yt|2+λ] are both finite.

Proof. With out lose of generality we give the proof for the case where p = 2.

From earlier results the drift criterion is applicable. Corresponding to the ARCH

process we therefore define the Markov chain xt = (εt, ..., εt−p+1)
′ and the drift

function

g(xt) = 1 + |εt|2+λ + b1|εt−1|2+λ,

for some positive constant λ. Verifying (2.4) and (2.5) of Lu (1996) establishes

the first part of the lemma. Direct calculations yield

E[g(xt) | xt−1 = (x1, x2)
′]

= 1 + E[|zt|2+λ](ω0 + α0,1x1 + α0,2x2)
1+λ/2 + b1|x1|2+λ

≤ 1 + E[|zt|2+λ]
(ω0 + α0,1 + α0,2)

1+λ/2

ω0 + α0,1 + α0,2

(ω0 + α0,1|x1|2+λ + α0,2|x2|2+λ) + b1|x1|2+λ

= 1 + c(λ)ω0 + (b1 + c(λ)α0,1)|x1|2+λ + c(λ)α0,2|x2|2+λ.

Where the inequality holds as the mapping x 7→ |x|1+λ is convex. Since the

innovations zt have finite fourth order moment it holds by bounded convergence

that c(λ) tends to 1 as λ tends to zero. Hence there exists a λ > 0 such that

c(λ)(α0,1 + α0,2) < 1 and by mimicking the proof of Theorem 1 in Lu (1996)
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conditions (2.4) and (2.5) can be verified. The second half of the lemma follows

directly from the infinite representation of the autoregressive process yt.

Derivatives: Recall the definition ηt(θ) =
ε2
t (θ)

ht(θ)
− 1 and the definitions in (8).

In the following A¯B denotes element by element multiplication of two matrices

of identical dimensions and 1r×p a r by p matrix of ones. The first order partial

derivatives of L0
T and L1

T are stated below.

∂Li
T (θ)

∂θ
=

1

T

T∑
t=1

∂lit(θ)

∂θ
,

∂lit(θ)

∂ρ
=

2γi
tηt(θ)

ht(θ)
ε̃t−1(θ)

′A¯̃yt−2 − 2γi
tεt(θ)

ht(θ)
ȳt−1,

∂lit(θ)

∂α
=

−γi
tηt(θ)

ht(θ)
(ε̃t−1(θ)¯ ε̃t−1(θ))

′,

∂lit(θ)

∂ω
=

−γi
tηt(θ)

ht(θ)
.

The second derivatives:

∂2lit(θ)

∂ρ∂ρ′
=

8γi
tηt(θ)

h2
t (θ)

¯̃yt−2Aε̃t−1(θ)ε̃t−1(θ)
′A¯̃y′t−2 +

4γi
t

h2
t (θ)

¯̃y′t−2Aε̃t−1(θ)ε̃t−1(θ)
′A¯̃yt−2

−2γi
tηt(θ)

ht(θ)
¯̃y′t−2A¯̃yt−2 − 8γi

tεt(θ)

h2
t (θ)

ȳt−1ε̃t−1(θ)
′A¯̃yt−2 +

2γi
t

ht(θ)
ȳt−1ȳ

′
t−1,

∂2lit(θ)

∂α∂α′
= (

2γi
tηt(θ)

h2
t (θ)

+
γi

t

h2
t (θ)

)(ε̃t−1(θ)¯ ε̃t−1(θ))(ε̃t−1(θ)¯ ε̃t−1(θ))
′,

∂2lit(θ)

∂ω2
=

2γi
t

h2
t (θ)

ηt(θ) +
γi

t

h2
t (θ)

,

∂2lit(θ)

∂ρ∂α′
=

2γi
tηt(θ)

ht(θ)
(ε̃t−1(θ)⊗ 11×r)¯ ¯̃yt−2 − 4γi

tηt(θ)

h2
t (θ)

(ε̃t−1(θ)¯ ε̃t−1(θ))ε̃
′
t−1A¯̃yt−2

− 2γi
t

h2
t (θ)

(ε̃t−1(θ)¯ ε̃t−1(θ))ε̃
′
t−1A¯̃yt−2 +

2γi
tεt(θ)

h2
t (θ)

(ε̃t−1(θ)¯ ε̃t−1(θ))ȳ
′
t−1,

∂2lit(θ)

∂ρ∂ω
=

−4γi
tηt(θ)

h2
t (θ)

ε̃′t−1A¯̃yt−2 +
2γi

tεt(θ)

h2
t (θ)

ȳ′t−1 −
2γi

t

h2
t (θ)

ε̃′t−1A¯̃yt−2,

∂2lit(θ)

∂α∂ω
= (

2γi
tηt(θ)

h2
t (θ)

+
γi

t

h2
t (θ)

)(ε̃t−1(θ)¯ ε̃t−1(θ))
′,

where i = 0, 1.
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Abstract: This paper studies cointegration in non-linear error correction mod-
els characterized by discontinuous and regime-dependent error correction and vari-
ance specifications. In addition the models allow for autoregressive conditional het-
eroscedasticity (ARCH) type specifications of the variance. The regime process is
assumed to depend on the lagged disequilibrium, as measured by the norm of linear
stable or cointegrating relations. The main contributions of the paper are: i) con-
ditions ensuring geometric ergodicity and finite second order moment of linear long
run equilibrium relations and differenced observations, ii) a representation theorem
similar to Granger’s representations theorem and a functional central limit theorem
for the common trends, iii) to establish that the usual reduced rank regression es-
timator of the cointegrating vector is consistent even in this highly extended model,
and iv) asymptotic normality of the parameters for fixed cointegration vector and
regime parameters. Finally, an application of the model to US term structure data
illustrates the empirical relevance of the model.

Keywords: Cointegration, Non-linear adjustment, Regime switching, Multivariate

ARCH.

1 Introduction

Since the 1980’s the theory of cointegration has been hugely successful. Espe-

cially Granger’s representation theorem, see Johansen (1995), which provides

conditions under which non-stationary vector autoregressive (VAR) models can

exhibit stationary, stable linear combinations. This very intuitive concept of sta-

ble relations is probably the main reason why cointegration models have been so

widely applied (even outside the world of economics). For an up to date discussion

see the survey Johansen (2007).

However, recent empirical studies suggest that the adjustments to the stable re-

lations might not be adequately described by the linear specification employed
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in the traditional cointegration model. When modeling key macroeconomic vari-

ables such as GNP, unemployment, real exchange rates, or interest rate spreads,

non-linearities can be attributed to transaction costs, which induces a band of

no disequilibrium adjustment. For a more thorough discussion see e.g. Dumas

(1992), Sercu, Uppal & Van Hulle (1995), Anderson (1997), Hendry & Ericsson

(1991), and Escribano (2004). Furthermore, policy interventions on monetary

or foreign exchange markets may also cause non-linear behavior, see Ait-Sahalia

(1996) and Forbes & Kofman (2000) among others. Such non-linearities can also

explain the problem of seemingly non-constant parameters encountered in many

applications of the usual linear models. To address this issue Balke & Fomby

(1997) suggested the threshold cointegration model, where the adjustment coeffi-

cients may switch between a specific set of values depending on the cointegrating

relations. Generalizations of this model has lead to the smooth transition models,

see Kapetanios, Shin & Snell (2006) and the references therein and the stochas-

tically switching models, see e.g. Bec & Rahbek (2004), and Dufrenot & Mignon

(2002) and the many references therein.

Parallel to this development the whole strain of literature devoted to volatility

modeling has documented that non-linearities should also be included in the spec-

ification of the variance of the innovations. A large, and ever growing, number

of autoregressive conditional heteroscedasticity (ARCH) type models, originally

introduced by Engle (1982) and generalized by Bollerslev (1986), has been sug-

gested, see e.g. Bauwens, Laurent & Rombouts (2006) for a recent discussion of

multivariate generalized ARCH models.

Motivated by these findings, this paper proposes a cointegration model, which

allows for non-linearities in both the disequilibrium adjustment and the vari-

ance specifications. The model will be referred to as the first and second order

non-linear cointegration vector autoregressive (FSNL-CVAR) model. The adjust-

ments to the stable relations are assumed to be switching according to a threshold

state process, which depends on past observations. Thus, the model extends the

concept of threshold cointegration as suggested in Balke & Fomby (1997). The

main novelty of the FSNL-CVAR model is to adopt a more general variance

specification in which the conditional variance is allowed to depend on both the

current regime as well as lagged values of the innovations, herby including an
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important feature of financial time series.

Constructing a model which embeds many of the previously suggested models

opens up the use of likelihood based tests to assess the relative importance of these

models. For instance, does the inclusion of a regime dependent covariance matrix

render the traditional ARCH specification obsolete or vice versa? Furthermore,

since both the mean- and variance parameters depend on the current regime a

test for no regime effect in for example the mean equation can be conducted as a

simple χ2-test, since the issue of vanishing parameters under the null hypothesis,

and resulting non-standard limiting distributions see e.g. Davies (1977), has

been resolved by retaining the dependence on the regime process in the variance

specification.

The present paper derives easily verifiable conditions ensuring geometric ergod-

icity, and hence the existence of a stationary initial distribution, of the first

differences of the observations and of the linear cointegrating relationships. Sta-

bility and geometric ergodicity results form the basis for law of large numbers

theorems and are therefore an important step not only towards an understanding

of the dynamic properties of the model, but also towards the development of an

asymptotic theory. The importance of geometric ergodicity has recently been

emphasized by Jensen & Rahbek (2007), where a general law of large numbers

is shown to be a direct consequence of geometric ergodicity. It should be noted

that the conditions ensuring geometric ergodicity do not involve the parameters

of adjustment in the inner regime, corresponding to the band of no action in the

example above. The paper also derives a representation theorem corresponding

to the well known Granger representation theorem and establishes a functional

central limit theorem (FCLT) for the common trends. Finally, asymptotic nor-

mality of the parameter estimates is shown to hold under the assumption of

known cointegration vector and threshold parameters. The results are applied to

US term structure data. The empirical analysis finds clear evidence indicating

that the short-term and long-term rates only adjusts to one another when the

spread is above a certain threshold. In order to achieve a satisfactory model fit

the inclusion of ARCH effects is paramount. Hence the empirical analysis support

the need for cointegration models, which are non-linear in both the mean and the

variance. Finally, the empirical study shows that adjustments occurs through the
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short rate only, which is in accordance with the expectation hypothesis for the

term structure.

The rest of the paper is structured as follows. Section 2 presents the model and

the necessary regularity conditions. Next Section 3 contains the results regarding

stability and order of integration. Estimation and asymptotic theory is discussed

in Section 4 and the empirical study presented in Section5. Conclusions are

presented in Section 6 and all proofs can be found in Appendix.

The following notation will be used throughout the paper. For any vector ‖ · ‖
denotes the Euclidian vector norm and Ip a p-dimensional unit matrix. For some

p×r matrix β of rank r ≤ p, define the orthogonal complement β⊥ as the p×(p−
r)-dimensional matrix with the property β′β⊥ = 0. The associated orthogonal

projections are given by Ip = β̄β′+ β̄⊥β⊥ with β̄ = β(β′β)−1. Finally εi,t denotes

the i’th coordinate of the vector εt. In Section 2 and 3 and the associated proofs

only the true parameters will be considered and the usual subscript 0 on the true

parameters will be omitted to avoid an unnecessary cumbersome notation.

2 The first and second order non-linear cointe-

gration model

In this section the model is defined and conditions for geometric ergodicity of

process generated according to the model are stated. As discussed the model

is non-linear in both the mean- and variance specification, which justifies refer-

ring to the model as the first and second order non-linear cointegration vector

autoregressive (FSNL-CVAR) model.

2.1 Non-linear adjustments

Let Xt be a p-dimensional observable stochastic process. The process is driven

by both an unobservable i.i.d. sequence νt and a zero-one valued state process

st. It is assumed that the distribution of the latter depends on lagged values of

the observable process and that νt is independent of st. The evolution of the

observable process is governed by the following generalization of the usual CVAR
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model, see e.g. Johansen (1995).

∆Xt = st

(
a(1)β′Xt−1 +

q−1∑
j=1

Γj∆Xt−j

)

+(1− st)

(
a(0)β′Xt−1 +

q−1∑
j=1

Gj∆Xt−j

)
+ εt (1)

εt = H1/2(st, εt−1, ..., εt−q)νt = H
1/2
t νt,

where a(0), a(1), and β are p× r matrices, (Γj, Gj)j=1,...,q−1 are p×p matrices, and

νt an i.i.d.(0, Ip) sequence. By letting the covariance matrix Ht depend on lagged

innovations εt−1, ..., εt−q the model allows for a very broad class of ARCH type

specifications. The exact specification of the covariance matrix will be addressed

in the next section, but by allowing for dependence of the lagged innovations the

suggested model permits traditional ARCH type dynamics of the innovations.

Saikkonen (2008) has suggested to use lagged values of the observed process Xt

in the conditional variance specification, however, this leads to conditions for

geometric ergodicity, which cannot be stated independently for the mean- and

variance parameters and a less clear cut definition of a unit root.

As indicated in the introduction the proposed model allows for non-linear and dis-

continuous equilibrium correction. The state process could for instance be spec-

ified such that if the deviation from the stable relations, measured by ‖β′Xt−1‖,
is below some predefined threshold adjustment to the stable relations occurs

through a(0) and as a limiting case no adjustment occurs, which could reflect

transaction costs. However, if ‖β′Xt−1‖ is large adjustment will take place

through a(1). For applications along theses lines, see Akram & Nymoen (2006),

Chow (1998), and Krolzig, Marcellino & Mizon (2002).

33



2.2 Switching autoregressive heteroscedasticity

Depending on the value of the state process at time t the covariance matrix is

given by

Ht = D
1/2
t Λ(l)D

1/2
t (2)

Dt = diag(Πt)

Πt = (π1,t, ..., πp,t)
′

πi,t = 1 + gi(εi,t−1, ..., εi,t−q), i = 1, ..., p (3)

with Λl a positive definite covariance matrix, gi(·) a function onto the non-

negative real numbers for all i = 1, ..., p, and l = 0, 1 corresponds to the possible

values of the state process.

The factorization in (2) isolates the effect of the state process into the matrix Λ(l)

and the ARCH effect into the diagonal matrix Dt. This factorization implies that

all information about correlation is contained in the matrix Λ(l), which switches

with the regime process. In this respect the variance specification is related to

the constant conditional correlation (CCC) model of Bollerslev (1990) and can

be viewed as a mixture generalization of this model.

For example, suppose that p = 2, q = 1, gi(εi,t−1) = αiε
2
i,t−1, and st = 1 almost

surely for all t. Then the conditional correlation between X1,t and X2,t is given

by the off-diagonal element of Λ1, which illustrates that the model in this case

is reduced to the traditional cointegration model with the conditional variance

specified according to the CCC model.

Since the functions g1, ..., gp allow for a feedback from past realizations of the inno-

vations to the present covariance matrix it is necessary to impose some regularity

conditions on these functions in order to discuss stability of the cointegrating

relations β′Xt and ∆Xt.

Assumption 1. (i) For all i = 1, ..., p there exists constants, denoted αi,1, ..., αi,q,

such that for ‖(ε′t−1, ..., ε
′
t−q)

′‖ sufficiently large it holds that gi(εi,t−1, ..., εi,t−q) ≤∑q
j=1 αi,jε

2
i,t−j.

(ii) For all i = 1, ..., p the sequence of constants satisfies maxl=0,1 Λ
(l)
i,i

∑q
j=1 αi,j <

1.
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The assumption essentially ensures that as the lagged innovations became large

the covariance matrix responds no more vigorously than an ARCH(q) process

with finite second order moment. However, for smaller shocks the assumption

allows for a broad range of non-linear responses.

2.3 The State Process

Initially recall that the state or switching variable st is zero-one valued. Next

define the r + p(q − 1)-dimensional variable zt as

zt = (X ′
t−1β, ∆X ′

t−1, ..., ∆X ′
t−q+1)

′. (4)

By assumption the dynamics of the state process are given by the conditional

probability

P (st = 1 | Xt−1, ..., X0, st−1, ..., s0) = P (st = 1 | zt) ≡ p(zt). (5)

Some theoretical results regarding univariate switching autoregressive models

where the regime process is similar to (5) can be found in Gourieroux & Robert

(2006).

The transition function p(·) will be assumed to be an indicator function taking

the value one outside a bounded set as suggested by Balke & Fomby (1997).

In the transaction cost example it is intuitively clear that as the distance from

the stable relation increases so does the probability of adjustment to the stable

relation. This leads to:

Assumption 2. The transition probability p(z) defined in (5) is zero-one valued

and tends to one as ‖z‖ → ∞.

On the basis of Assumption 2 it is natural to refer to the regime where st = 0

as the inner regime and the other as the outer regime. As in Bec & Rahbek

(2004) additional inner regimes can be added without affecting the validity of the

results, the only difference being a more cumbersome notation. Extending the

model to include additional outer regimes, as in Saikkonen (2008), leads inevitable

to regularity conditions expressed in terms of the joint spectral radius of a class
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of matrices, which are in most cases impossible to verify.

It follows that the FSNL-CVAR model allows for epochs of equilibrium adjust-

ments and epochs without. Furthermore the model allows these epochs to be

characterized by different correlation structures and have general ARCH type

variance structure. In the next section stationarity and geometric ergodicity of

β′Xt and β′⊥∆Xt are discussed.

3 Stability and order of integration

In the first part of this section conditions which ensure geometric ergodicity of

β′Xt and ∆Xt will be derived. In the second part of the section we derive a

representation theorem corresponding to the well known Granger representation

theorem and establish a FCLT for the common trends. The results presented

in this section rely on by now classical Markov chain techniques, see Meyn &

Tweedie (1993) for an introduction and definitions.

3.1 Geometric Ergodicity

Note initially that the process Xt generated by (1), (2), and (5) is not in itself

a Markov chain due to the time varying components of the covariance matrix.

Define therefore the process Vt = (X ′
tβ, ∆X ′

tβ⊥)′ where the orthogonal projection

Ip = β̄β′ + β̄⊥β′⊥, has been used. Furthermore define the stacked processes

V̄t = (V ′
t , ..., V

′
t−q+1)

′, ε̄t = (ε′t, ..., ε
′
t−q+1)

′,

and the selection matrix

ϕ = (Ip, 0p×(q−1)p)
′.

By construction the process V̄t is generated according to the VAR(1) model given

by

V̄t = stAV̄t−1 + (1− st)BV̄t−1 + ηt, (6)
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where ηt = ϕ(β′, β′⊥)′εt and hence is a mean zero random variable with variance

(β′, β′⊥)′Ht,st(β
′, β′⊥). The matrices A and B are implicitly given by (1), see

(19) in the appendix for details. Finally the Markov chain to be considered

can be defined as Yt = (ε̄′t, V̄
′
t−q)

′. Note that Vt, ..., Vt−q+1 and st, ..., st−q+1 are

computable from Yt, which can be seen by first computing st−q+1 then Vt−q+1 and

repeating.

As hinted earlier it suffices to assume that the usual cointegration assumption is

satisfied for the parameters of the outer regime;

Assumption 3. Assume that the rank of a(1) and β equals r and furthermore

that there are exactly p− r roots at z = 1 for the characteristic polynomial

A(z) = Ip(1− z)− a(1)β′z −
q−1∑
i=1

Γi(1− z)zi, z ∈ C (7)

while the remaining roots are larger than one in absolute value.

Next the main result regarding geometric ergodicity of the Markov chain Yt will

be stated, with the central conditions expressed in terms of the matrices A and

B. In the subsequent corollaries some important special cases are considered.

Theorem 1. Assume that:

(i)
For some qp× n, qp ≥ n ≥ 0 matrix µ of rank n, it holds that

(A−B)µ = 0.

(ii) The largest in absolute value of the eigenvalues of A is smaller than one.

(iii)

The stochastic state variable st is zero-one valued and the state probability

is zero-one valued and satisfies p(γ′v̄) → 0 as ‖γ′v̄‖ → ∞ with γ = µ⊥
and v̄ ∈ Rpq

(iv)
νt is i.i.d.(0,Ip) and has a continuous and strictly positive density with

respect to the Lebesgue measure on Rp.

(v)
The generalized ARCH functions g1, ..., gp satisfy the conditions listed in

Assumption 1.

Then Yt is a geometrically ergodic process, which has finite second order moment.
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Furthermore there exists a distribution for Y0 such that the sequence (Yt)
T
t=1 is

stationary.

The formulation of the FSNL-CVAR model is in essence a combination of the non-

linear cointegration model of Bec & Rahbek (2004) and the constant conditional

correlation model of Bollerslev (1990). It is therefore not surprising that the

following corollaries show that the stability conditions for the FSNL-CVAR model

are simply a combination of the stability conditions associated with the these two

”parent” models.

Corollary 1. Under Assumption 1, 2, and 3, and (iv) of Theorem 1 it holds

that Yt is a geometrically ergodic process with finite second order moment and

that there exists a distribution for Y0 such that the sequence (Yt)
T
t=1 is stationary.

In the special case where the transition probability in (5) only depends on β′Xt

Assumption 2 does not hold. However, using Theorem 1 the following result can

be established.

Corollary 2. Consider the case where the transition probability in (5) only de-

pends on zt = β′Xt and that Γj = Gj for j = 1, ..., q − 1. Under Assumption 1,

2, and 3 and (iv) of Theorem 1 it holds that Yt is a geometrically ergodic process

with finite second order moment and that there exists a distribution for Y0 such

that the sequence (Yt)
T
t=1 is stationary.

3.2 Non-stationarity

When considering linear VAR models the concept of I(1) processes is well defined,

see Johansen (1995). This is in contrast to non-linear models, such as the FSNL-

CVAR model, where there still exists considerable ambiguity as to how to define

I(1) processes. In this paper we follow Corradia, Swanson & White (2000) and

Saikkonen (2005) and simply define an I(1) process as a process for which a

functional central limit theorem (FCLT) applies. In Theorem 2 below we establish

conditions for which the (p−r) common trends of Xt have a non-degenerate long-

run variance and a FCLT applies.
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Theorem 2. Under the assumptions of Theorem 1 the process Xt given by (1),

(2), and (5) has the representation

Xt = C

t∑
i=1

(εt + (Φ(0) − Φ(1))ut) + τt, (8)

where the processes τt, see 20, and ut = (1− st)zt are stationary and zt is defined

in (4). Furthermore the parameters C, Φ(0), and Φ(1) are defined by

C = β⊥(a(1)′
⊥(Ip −

k−1∑
i=1

Γi)β⊥)−1a(1)′
⊥, Φ(0) = (a(0), G1, ..., Gk−1),

Φ(1) = (a(1), Γ1, ..., Γk−1).

The (p − r) common trends of Xt are given by
∑t

i=1 ci, where ct = a(1)′
⊥(εt +

(Φ(0) − Φ(1))ut). A FCLT applies to ct − EcT , if

Υ = ψ′
(

Σεε Σεu

Σuε Σuu

)
ψ > 0, where ψ′ = a(1)′

⊥(Ip, Φ
(0) − Φ(1)). (9)

The Σ matrices are the long run variances and the exact expression can be found

in (21).

Note that sufficient conditions for Υ being positive definite are sp(Φ(0)) = sp(Φ(1))

or a(1)′
⊥Σεβ = 0.

4 Estimation and asymptotic normality

In this section it is initially established that the usual estimator in the linear

cointegrated VAR model of the cointegration vector β, which is based on reduced

rank regression (RRR), see Johansen (1995), is consistent even when data is

generated by the much more general FSNL-CVAR model. The second part of this

section considers estimation and asymptotic theory of the remaining parameters.

Define β̂ as the usual RRR estimator of the cointegration vector defined in Jo-

hansen (1995) Theorem 6.1. Introduce the normalized estimator β̃ given by
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β̃ = β̂(β̄′β̂)−1, where β̄ = β(β′β)−1. Note that this normalization is clearly not

feasible in practice as the matrix β is not know, however, the purpose of the nor-

malized version is only to facilitate the formulation of the following consistency

result.

Theorem 3. Under the assumptions of Theorem 1 and the additional assumption

that Υ defined in (9) is positive definite, β̃ is consistent and β̃ − β = op(T
1/2).

Theorem 3 suggests that once the cointegrating vector β has been estimated using

RRR the remaining parameters can be estimated by quasi-maximum likelihood

using numerical optimization. To further reduce the curse of dimensionality the

parameters Λ(1) and Λ(0) can be concentrated out of the log-likelihood function

as discussed in Bollerslev (1990). An Ox implementation of the algorithm can be

downloaded from www.math.ku.dk/∼lange.

In order to discuss asymptotic theory restrict the variance specification in (2) to

linear ARCH(q), that is replace (3) by

πi,t = 1 +

q∑
j=1

αi,jε
2
i,t−j (10)

and define the parameter vectors

θ(1) = vec(Φ(1), Φ(0)), θ(2) = (α1,1, ..., αp,1, α2,1, ..., αp,q),

θ(3) = (vech(Λ(1))′, vech(Λ(0))′)′,

and θ = (θ(1)′, θ(2)′, θ(3)′)′. As is common let θ0 denote the true parameter value.

If the cointegration vector β and the threshold parameters are assumed known the

realization of state process is computable and the quasi log-likelihood function

to be optimized is, apart from a constant, given by

LT (θ) =
1

T

T∑
t=1

lt(θ), lt(θ) = − log(|Ht(θ)|)/2− εt(θ)
′Ht(θ)

−1εt(θ)/2, (11)

where εt(θ) and Ht(θ) are given by (1) and (2), respectively. The assumption of

known β and λ is somewhat unsatisfactory, but at present necessary to establish

the result. Furthermore, the assumption can be partly justified by recalling that
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estimators of both the cointegration vector and the threshold parameter are usu-

ally super consistent. The proof of the following asymptotic normality result can

be found in the appendix.

Theorem 4. Under the assumptions of Corollary 1 and the additional assump-

tion that there exists a constant δ > 0 such that E[‖εt‖4+δ] and E[‖νt‖4+δ] are

both finite and θ(2) > 0 it holds that when β and the parameters of the regime

process are kept fixed at true values there exists a fixed open neighborhood around

the true parameter N(θ0) such that with probability tending to one as T tends

to infinity, LT (θ) has a unique minimum point θ̂T in N(θ0). Furthermore, θ̂T is

consistent and satisfies

√
T (θ̂T − θ0)

D→ N(0, Ω−1
I ΩSΩ−1

I ),

where ΩS = E[(∂lt(θ0)/∂θ)(∂lt(θ0)/∂θ′)] and ΩS = E[∂2lt(θ0)/∂θ∂θ′].

The proof is given in the appendix, where precise expressions for the asymptotic

variance are also stated.

5 An application to the interest rate spread

In this section an analysis of the spread between the long and the short U.S.

interest rates using the FSNL-CVAR model is presented. The analysis is similar

to the analysis of German interest rate spreads presented in Bec & Rahbek (2004).

However, since the FSNL-CVAR model allows for heteroscedasticity the present

analysis will employ daily data unlike the analysis in Bec & Rahbek (2004),

which is based on monthly averages. The well-known expectations hypothesis

of the term structure implies that, under costless and instantaneous portfolio

adjustments and no arbitrage the spread between the long and the short rate can

be represented as

R(k, t)−R(1, t) =
1

k

k−1∑
i=1

i∑
j=1

Et[∆R(1, t + j)] + L(k, t), (12)
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where R(k, t) denotes the k-period interest rate at time t, L(k, t) represents the

term premium, accounting for risk and liquidity premia, and Et[·] the expectation

conditional on the information at time t, see e.g. Bec & Rahbek (2004) for

details. Clearly, the right hand side is stable or stationary provided interest rate

changes and the the term premium are stationary (see Hall, Anderson & Granger

(1992)). In fact portfolio adjustments are neither costless nor instantaneous. It

is therefore reasonable to assume that the spread S(k, 1, t) = R(k, t) − R(1, t),

will temporarily depart from its equilibrium value given by (12). However, once

portfolio adjustments have taken place (12) will again hold. Hence, the long

and the short interest rate should be cointegrated with a cointegration vector of

β = (1,−1)′. Testing this implication of the expectations hypothesis of the term

structure has been the focus for many empirical papers, however, the results are

not clear cut. Indeed the U.S. spread is found to be stationary in e.g. Campbell &

Shiller (1987), Stock & Watson (1988), Anderson (1997), and Tzavalis & Wickens

(1998), but integrated of order 1 in e.g. Evans & Lewis (1994), Enders & Siklos

(2001), and Bec, Guayb & Guerre (2008). Note however, that when allowing for

a stationary non-linear alternative the last two papers reject the hypothesis of

non-stationarity of the U.S. spread. Indeed Anderson (1997) establishes that if

one considers homogeneous transaction costs which reduces the investors yield

on a bond by a constant amount, say λ, then one expects that the yield spread is

stationary, but non-linear, since portfolio adjustments will only occur when the

difference between the actual spread S(k, 1, t) and the value predicted by (12) is

larger in absolute value than λ.

According to Anderson’s argument the joint dynamics of short-term and long-

term interest rates could be described by the non-linear error correction model

given by (1):

∆Xt = (sta
(1) + (1− st)a

(0))β′Xt +
k−1∑
j=1

∆Xt−j + εt, (13)

where Xt = (RS
t , RL

t ), denotes the short and the long rates and the transition

function is defined in accordance with Anderson’s argument. However, as it is a

well established fact that daily interest rates exhibit considerable heteroscedas-

ticity the model must include time dependent variance as in (10).
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Figure 1: The 3-month and 10-year interest rates (top panel) and the spread
between the two series adjusted for their mean (bottom panel). The dashed lines
indicate the threshold λ = 1.65.

In the following the proposed FSNL-CVAR model will be applied to daily record-

ings of the U.S. 3-Month Treasury Constant Maturity Rate and the U.S. 10-Year

Treasury Constant Maturity Rate spanning the period from 1/1-1988 to 1/1-2007

yielding a total of 4,500 observations. Data have been downloaded from the web-

page of the Federal Reserve Bank of St. Louis. Following Bec & Rahbek (2004)

both series are corrected for their average and the state process is therefore given

by st = 1{|SG
t−1|≥λ}, with SG

t−1 = β′Xt−1. This amounts to approximate the long-

run equilibrium given by (12) by the average of the actual spread, as is common

in the literature. Figure 1 depicts the data.

Initially a self-exiting threshold autoregressive (SETAR) model was fitted to the

series SG
t , which indicated a threshold parameter of λ = 1.65. This value is very

close to the threshold parameter value of 1.7 reported in Bec & Rahbek (2004) for

a similar study based on monthly German interest rate data. For the remaining

part of the analysis the threshold parameter will be kept fixed at 1.65. However,
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it should be noted that by determining the threshold parameter in such a data

dependent way the conditions for the asymptotic results given in Theorem 4 are

formally not met. In this respect, recall from the vast literature on univariate

threshold models that the threshold parameter is super-consistent and hence can

be treated as fixed when making inference on the remaining parameters, we would

expect this to hold in this case as well. Furthermore, as can be seen from (13)

the short-term parameters Γi are assumed to be identical over the two regimes,

the estimators and covariances in Theorem 4 should be adjusted accordingly.

Concerning the specification of lag lengths in (13), additional lags were included

until there were no evidence of neither autocorrelation nor additional heteroscedas-

ticity in the residuals. This lead us to retain seven lags in the mean equation and

six lags in the variance equation. The choice of lag specification was confirmed

by both the AIC as well as statistical test indicating that additional lags were

not statistically significant at the 5% level.

The parameter estimates of the mean equation are reported in the first two

columns of Table 1. Initially it is noted that the estimated parameters seem

to confirm our conjecture that when the spread is below the threshold value no

adjustment towards the equilibrium occurs. This is confirmed by testing the hy-

pothesis that a(0) = (0, 0)′, which is accepted with a p-value of 0.60 using the LR

test. In addition the estimates of a(1) indicate that long-term rates do not seem

to adjust to disequilibrium. This is confirmed by the LR test of the hypothesis

a
(0)
1 = a

(0)
2 = a

(1)
2 = 0 which cannot be rejected. The test statistic equals 2.2 cor-

responding to a p-value of 0.53. The result implies that big spreads significantly

affects the short-term rate only, which is in accordance with the expectation hy-

pothesis for the term structure. This conclusion as well as the sign of the estimate

of a
(1)
1 coincides with the findings of Bec & Rahbek (2004). Estimates of this re-

stricted model are reported in the last two columns of Table 1 for the parameters

of the mean equation and Table 2 for the parameters of the variance equation.

Table 2 reports the estimates of the variance equations. In order to ease com-

parison with traditional ARCH models the parametrization has been changed

slightly from the one presented in (2) to directly reporting the coefficients of the

equation Λ
(1)
1,1π1,t = Λ

(1)
1,1 +

∑6
j=1 Λ

(1)
1,1αi,jε

2
1,t−j, which gives the conditional vari-

ance for the first element of εt when st = 1 and likewise for the other cases. It
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Unrestricted Restricted
∆RS

t ∆RL
t ∆RS

t ∆RL
t

1{|SG
t−1|≥1.65}S

G
t−1 -0.00116 0.000996 -0.00136 -

(-2.26) (1.09) (-2.86)
1{|SG

t−1|<1.65}S
G
t−1 0.000478 -9.81e-005 - -

(0.92) (-0.11)
∆RS

t−1 0.0687 0.00626 0.0687 0.00693
(3.77) (0.30) (3.79) (0.34)

∆RL
t−1 -0.0163 0.0636 -0.0163 0.0629

(-1.82) (3.80) (-1.83) (3.84)
∆RS

t−2 -0.0717 -0.00262 -0.0713 -0.00175
(-3.91) (-0.13) (-3.88) (-0.09)

∆RL
t−2 8.56e-005 -0.0295 -0.000117 -0.0301

(0.01) (-1.80) (-0.01) (-1.86)
∆RS

t−3 -0.0587 0.0107 -0.0582 0.0115
(-2.71) (0.53) (-2.85) (0.58)

∆RL
t−3 0.00217 -0.0531 0.00212 -0.0537

(0.24) (-3.28) (0.24) (-3.35)
∆RS

t−4 0.0583 -0.0177 0.0589 -0.0165
(3.14) (-0.89) (3.17) (-0.82)

∆RL
t−4 -0.0111 -0.0224 -0.0111 -0.0231

(-1.18) (-1.37) (-1.19) (-1.41)
∆RS

t−5 0.158 0.0476 0.158 0.0483
(8.47) (2.46) (8.54) (2.50)

∆RL
t−5 -0.0162 -0.0116 -0.0159 -0.0121

(-1.71) (-0.66) (-1.69) (-0.70)
∆RS

t−6 -0.0747 -0.0282 -0.0749 -0.0278
(-4.29) (-1.43) (-4.30) (-1.45)

∆RL
t−6 0.0270 -0.00558 0.0271 -0.00614

(3.07) (-0.34) (3.10) (-0.37)

LM(ARCH 1-8) 0.6966 0.6596 0.6963 0.6598
[p-value] [0.69] [0.73] [0.70] [0.73]
LM(AR 1-8) 34.99 34.79
[p-value] [0.32] [0.34]
log-L 14,909.10 14,908.00

Table 1: Model (13) estimates. t-statistics are reported in parentheses. LM tests
of no remaining ARCH and no vector autocorrelation, respectively. Statistically
significant parameters are indicated in bold.
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st = 1 st = 0

Λ
(1)
1,1π1,t Λ

(1)
2,2π2,t Λ

(0)
1,1π1,t λ

(0)
2,2π2,t

Intercept 0.000412 0.00195 0.000475 0.00226
(0.02) (0.12) (0.02) (0.25)

ε2
t−1 0.148 0.0270 0.171 0.0313

(18.30) (2.80) (21.87) (2.79)
ε2

t−2 0.159 0.0430 0.183 0.0499
(18.14) (3.54) (21.51) (3.60)

ε2
t−3 0.235 0.0241 0.271 0.0279

(24.48) (1.72) (35.49) (1.72)
ε2

t−4 0.112 0.0540 0.129 0.0626
(18.44) (4.24) (22.30) (4.34)

ε2
t−5 0.170 0.115 0.196 0.134

(18.63) (7.25) (22.70) (7.65)
ε2

t−6 0.0603 0.0558 0.0695 0.0647
(8.84) (4.70) (9.22) (4.74)

Correlation 0.425 0.396
(16.56) (29.75)

Table 2: Estimates of the variance parameters. The parameters in e.g. the first
column correspond to the coefficients in the variance equation Λ

(1)
1,1π1,t = Λ

(1)
1,1 +∑6

j=1 Λ
(1)
1,1αi,jε

2
1,t−j. t-statistics are reported in parentheses and were computed

by the delta-method based on the expressions for the asymptotic variance in
Theorem 4. Statistically significant parameters are indicated in bold.

should be noted that the change of parametrization has been performed after

estimating the parameters using the parametrization of (2), which is preferable

when performing the numerical optimization of the log-likelihood function as the

parameters in Λ(1) and Λ(1) can be concentrated out. The reported t-statistics

have therefore been computed using the delta-method.

The reported parameter estimates clearly demonstrates the presence of het-

eroscedasticity in the residuals. Examining the covariance matrix of the parame-

ters collected in θ(3) (covariance matrix not reported) indicates that Λ
(1)
i,i and Λ

(1)
i,i

are statistically different for both the short- and the long rate. As expected the

correlation is highest when adjustment to disequilibrium occurs (st = 1), but the

hypothesis that the correlations are identical cannot be rejected at the 5% level.

Hence the parameter estimates indicates the overall level of variance is highest in

the regime where no adjustment occurs, but the correlation might be the same.
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Since the parameters of the switching mechanism can be identified based solely

on the variance specification the central hypothesis a(1) = a(0), corresponding

to no switching in the mean equation, can be tested by the standard LR test

statistic, which will be asymptotically χ2 distributed with two degrees of freedom.

Thus avoiding the usual problems of unidentified parameters under the null, see

e.g. Davies (1977), Davies (1987), and the survey Lange & Rahbek (2008), often

encountered when testing no-switching hypothesis. The test statistic is 18.78 and

the hypothesis of no switching in the mean equation is therefore clearly rejected.

It should be noted that the sum of the ARCH coefficients in each column of

Table 2 are very close to one, which violates the fourth order moment condition

of Theorem 4. However, as argued in Lange, Rahbek & Jensen (2007) based on

a univariate model, we expect the asymptotic normality to hold even under a

weaker second order moment condition.

6 Conclusion

In this paper we have suggested a cointegrated vector error correction model

with a non-linear specification of both adjustments to disequilibrium and vari-

ance characterized by regime switches. Since the FSNL-CVAR model embeds

many previously suggested models, see the discussion in the introduction, it pro-

vides a framework for assessing the relative importance of these models in a

likelihood based setup. Furthermore tests of hypothesis such as linearity of the

mean equation, which previously led to non-standard limiting distributions, can

be conducted as standard χ2-tests in the FSNL-CVAR model since the state

process can be identified through the variance specification.

Using Markov chain results we derive easily verifiable conditions under which

β′Xt and ∆Xt are stable with finite second order moment and can be embedded

in a Markov chain, which is geometrically ergodic. The usefulness of this result

is enhanced by the recent work of Jensen & Rahbek (2007), which provides a

general law of large numbers assuming only geometric ergodicity. Furthermore,

a representation theorem corresponding to Granger’s representation theorem has

been derived and a functional central limit theorem for the common trends estab-
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lished. This is utilized to show that the usual RRR estimator of Johansen (1995)

for the cointegrating vector, β, is robust to the model extensions suggested by

the FSNL-CVAR model.

Finally, we establish asymptotic normality of the estimated parameters for fixed

and known cointegration vector and threshold parameters. Applying the model

to daily recordings of the US term structure documents the empirical relevance

of the FSNL-CVAR model and the empirical results are in accordance with the

expectation hypothesis of the term structure. Specifically it is found that small

interest rate spreads are not corrected, while big ones have a significant influence

on the short rate only.

Appendix

Proof of Theorem 1

Consider initially the homogenous Markov chain Yt = (ε̄′t, V̄
′
t−q)

′. Before applying

the drift criterion, see e.g. Tjøstheim (1990) or Meyn & Tweedie (1993) it must

be verified that the Markov chain Yt is irreducible, aperiodic, and that compact

sets are small. In order to do so it will be verified that the 2q-step transition

kernel has a density with respect to the Lebesgue measure, which is positive and

bounded away from zero on compact sets.

Note that Vt, ..., Vt−q+1 and st, ..., st−q+1 are computable from Yt, which can be

seen by first computing st−q+1 then Vt−q+1 and repeating this procedure. With

h(· | ·) denoting a generic conditional density with respect to an appropriate

measure the 2q-step transition kernel can be rewritten as follows (for exposition

only the derivations for q = 2 are presented).

h(Yt | Yt−4) = h(εt | εt−1, Vt−2, Vt−3, Yt−4)h(εt−1 | Vt−2, Vt−3, Yt−4)

h(Vt−2 | Vt−3, Yt−4)h(Vt−3 | Yt−4)

= h(εt | st, εt−1, εt−2)h(εt−1 | st−1, εt−2, εt−3)

h(Vt−2 | st−2, Vt−3, Vt−4, εt−3, εt−4))

h(Vt−3 | st−3, Vt−4, Vt−5, εt−4, εt−5)).
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By (iv) and since the conditional covariance matrices are always positive definite

the last four densities are Lebesgue densities, strictly positive, and bounded away

from zero on compact sets. Hence the 2q-step transition kernel for Yt will also

have a strictly positive density, which is bounded away from zero on compact

sets. This establishes that the Markov chain Yt is irreducible, aperiodic, and

that compact sets are small and we proceed by applying the drift criterion of

Tjøstheim (1990).

Denote a generic element of the Markov chain Yt by y = (v̄′, ē′)′ and define the

drift function f by

f(Yt) = 1 + kV̄ ′
t−qDV̄t−q +

p∑
i=1

q−1∑
j=0

ki,jε
2
i,t−j, D ≡

∞∑
i=0

Aj′Aj, (14)

where D is well defined as ρ(A⊗A) < 1 by assumption and the positive constants

k, ki,j will be specified later. The choice of the matrix D follows Feigin & Tweedie

(1985) and it implies the existence of second-order moments of Yt. Using (6) and

following Bec & Rahbek (2004) it holds that

E[V̄ ′
t−qDV̄t−q | Yt−1 = y]

= v̄′A′DAv̄ + (1− p(γ′v̄)) {v̄′B′DBv̄ − v̄′A′DAv̄}+ E[η′t−qDηt−q | Yt−1 = y]

= v̄′A′DAv̄ + (1− p(γ′v̄)) {v̄′(A−B)′D(A−B)v̄ − 2v̄′A′D(A−B)v̄}
+E[η′t−qDηt−q | Yt−1 = y]

= v̄′Dv̄ − v̄′v̄ + (1− p(γ′v̄)) {(v̄′γ)γ̄′(A−B)′D(A−B)γ̄(γ′v̄)

−2v̄′A′D(A−B)γ̄(γ′v̄)}+ E[η′t−qDηt−q | Yt−1 = y]. (15)

In the last equality the projection Ipq = γ̄γ′+ µ̄µ′ and (i) have been used. Define

for some λc > 1 the compact set

Cv = {v̄ ∈ Rpq | v̄′Dv̄ ≤ λc}.

On the complement of Cv it holds that

v̄′Dv̄ − v̄′v̄
v̄′Dv̄

= 1− v̄′v̄
v̄′Dv̄

≤ 1− inf
v̄ 6=0

v̄′v̄
v̄′Dv̄

≤ 1− 1

ρ(D)
,
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where ρ(·) denotes the spectral radius of a square matrix. Furthermore note that

(v̄′γ)γ̄′(A−B)′D(A−B)γ̄(γ′v̄) ³ ‖γ′v̄‖2

and that

2v̄′A′D(A−B)γ̄(γ′v̄) ³ ‖v̄‖ ‖γ′v̄‖,

where h1(x) ³ h2(x) denotes that h1(x)/h2(x) tends to a non-zero constant

as ‖x‖ tends to infinity. However, by assumption the drift function satisfies

f(y) ³ ‖y‖2 = ‖γ̄γ′v̄ + µ̄µ′v̄‖2 + ‖ē‖2 and since (1 − p(γ′v̄)) → 0 as ‖γ′v̄‖ → ∞
it can be concluded that

k(1− p̃(γ′v̄)) {(v̄′γ)γ̄′(A−B)′D(A−B)γ̄(γ′v̄)− 2v̄′A′D(A−B)γ̄(γ′v̄)}
f(y)

→ 0,

as ‖v̄‖ → ∞. Or in other words, for λc adequately large it holds that on the

complement of Cv will

kE[V̄t−qDV̄t−q | Yt−1 = y] ≤ (1− δ∗)kv̄′Dv̄

f(y)
f(y)+kE[η′t−qDηt−q | Yt−1 = y]. (16)

The constant δ∗ should be chosen such that δ∗ ∈]0, 1[ and 1
ρ(D)

> δ∗ > 0. Next

consider the final term of (16). By construction it will be positive and there exists

positive constants c, ci where i = 1, ..., p such that

kE[η′t−qDηt−q | Yt−1 = y] = kE[ε′t−q(β
′, β′⊥)ϕ′Dϕ(β′, β′⊥)′εt−q | Yt−1 = y]

≤ ck + k

p∑
i=1

cie
2
i,q. (17)

As previously define the compact set Ce = {ē ∈ Rpq | ‖ē‖2 ≤ λc}. Furthermore if
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λc is chosen large enough (v) yields that on the complement of Ce it holds that

cike2
i,q +

q−1∑
j=0

ki,jE[ε2
i,t−j | Yt−1 = y]

= cike2
i,q + ki,0E[ε2

i,t | Yt−1 = y] +

q−1∑
j=1

ki,je
2
i,j

≤ cike2
i,q + ki,0σ̄i

(
1 +

q∑
j=1

αi,je
2
i,j

)
+

q−1∑
j=1

ki,je
2
i,j

= K + (ki,0σ̄iαi,1 + ki,1)e
2
i,1 +

q−1∑
j=2

(ki,0σ̄iαi,j + ki,j)e
2
i,j

+(cik + ki,0σ̄iαi,q)e
2
i,q (18)

for all i = 1, ..., p where K is some positive constant and σ̄i = maxl=0,1 Λ
(l)
i,i . When

σ̄i

∑q
j=1 αi,j < 1 the positive constants k and ki,j can be chosen such that the

inequalities

ki,0σ̄iαi,1 + ki,1 < ki,0

ki,0σ̄iαi,j + ki,j < ki,j−1, j = 2, ..., q − 1

cik + ki,0σ̄iαi,q < ki,q−1

are all satisfied, which can be seen by setting ki,0 = 1 and choosing k very small,

see Lu (1996) for details. Hence there exists a constant δ∗∗i ∈]0, 1[ such that the

coefficient of e2
i,j+1 in (18) is smaller than (1− δ∗∗i )ki,j for all j = 0, ..., q − 1.

By combing (16)-(18) it can be concluded that for y outside the compact set

C = Cv × Cε will

E[f(Yt) | Yt−1 = y] ≤ (1− δ)v̄′Dv̄ + (1− δ)
∑p

i=1

∑q−1
j=0 ki,je

2
i,j+1

1 + v̄′Dv̄ +
∑p

i=1

∑q−1
j=0 ki,je2

i,j+1

f(y)

≤ (1− δ)f(y),

where δ = min(δ∗, δ∗∗1 , ..., δ∗∗p ) > 0. Inside the compact set C the function
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E[f(Yt) | Yt−1 = y] is continuous and hence bounded. This completes the verifi-

cation of the drift criterion.

Proof of Corollary 1

Assume without loss of generality that q = 2. Under the assumptions listed in

the corollary the coefficient matrices of (6) are given by

A =




β′a(1) − Ir + β′Γ1β̄ β′Γ1β̄⊥ −β′Γ1β̄ 0

β′⊥a(1) + β′⊥Γ1β̄ β′⊥Γ1β̄⊥ −β′⊥Γ1β̄ 0

0 0 Ir 0

0 0 0 Ip−r




, (19)

and likewise for B. Hence

(A−B) =




β′(a(1) − a(0)) + β′(Γ1 −G1)β̄ β′(Γ1 −G1)β̄⊥ −β′(Γ1 −G1)β̄ 0

β′⊥(a(1) − a(0)) + β′⊥(Γ1 −G1)β̄ β′⊥(Γ1 −G1)β̄⊥ −β′⊥(Γ1 −G1)β̄ 0

0 0 0 0

0 0 0 0




.

So the matrices γ and µ can be chosen as

γ =




Ir 0 0

0 Ip−r 0

0 0 Ir

0 0 0




, µ =




0

0

0

Ip−r




,

which satisfies µ = γ⊥ and the remaining assumptions of Theorem 1. Finally

Theorem 1 yields the desired result.
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Proof of Corollary 2

Assume again without loss of generality that q = 2. In this case the matrices γ

and µ can be chosen as

γ =




Ir

0

0

0




, µ =




0 0 0

Ip−r 0 0

0 Ir 0

0 0 Ip−r




,

and an application of Theorem 1 completes the proof.

Proof of Theorem 2

The formulation of the theorem as well as the proof owes much to Theorem 4 of

Bec & Rahbek (2004). Initially note that the process Xt given by (1), (2), and

(5) can be written as

A(L)Xt = (Φ(0) − Φ(1))ut + εt,

where L denotes the lag-operator and the polynomial A(·) is defined in (7). By

the algebraic identity

A(z)−1 = C
1

1− z
+ C(z),

where C(z) =
∑∞

i=0 Ciz
i with exponentially decreasing coefficients Ci it holds

that

Xt = C

t∑
i=1

((Φ(0) − Φ(1))ui + εi) + C(L)((Φ(0) − Φ(1))ut + εt)

= C

t∑
i=1

((Φ(0) − Φ(1))ui + εi) + τt. (20)

Next Theorem 1 yields that β′Xt and ∆Xt−i are stationary and in turn that

ut = (1− st)zt is stationary. Since C(L) has exponentially decreasing coefficients
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it therefore holds that τt is stationary. Hence the common trends of Xt are given

by

t∑
i=1

ci = a(1)′
⊥

t∑
i=1

((Φ(0) − Φ(1))ui + εi).

Since ‖ut‖ ≤ ‖zt‖ it holds by Theorem 17.4.2 and Theorem 17.4.4 of Meyn &

Tweedie (1993) that a FCLT applies to ct provided the long run variance Υ,

Υ = γcc(0) +
∞∑

h=1

(γcc(h) + γcc(h)′), γcc(h) = Cov(ct, ct+h),

is positive definite. Note that the long run variance can be written as

Υ = ψ′
(

Σεε Σεu

Σuε Σuu

)
ψ, Σεu = γεu(0) +

∞∑

h=1

(γεu(h) + γεu(h)′). (21)

With similar expressions for the remaining Σ matrices.

Proof of Theorem 3

By combining Theorem 1 and Theorem 2 one can mimicking the proof of Lemma 13.1

of Johansen (1995) in order to establish the result.

Proof of Theorem 4

Before proving Theorem 4 we initially state and prove some auxiliary lemmas.

For notational ease we adopt the convention εt(θ0) = εt and likewise for other

functions of the parameter vector evaluated in the true parameters. Furthermore,

define εd
t = diag(εt) and let 1(d1×d2) denote a d1 times d2 matrix of ones.

Lemma 1. Under the assumptions of Theorem 4 it holds that

1√
T

T∑
t=1

∂lt(θ0)

∂θ

D→ N(0, ΩS),

with ΩS = E[(∂lt(θ0)/∂θ)(∂lt(θ0)/∂θ′)] > 0 as T tends to infinity.
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Proof. Initially note that by utilizing the diagonal structure of Dt the first deriv-

atives evaluated at the true parameters can be written as

∂lt
∂θ(1)

= − ∂ε′t
∂θ(1)

H−1
t εt − 1

2

∂Π′
t

∂θ(1)
D−1

t ξt1(p×1) (22)

∂lt
∂θ(2)

= −1

2

∂Π′
t

∂θ(2)
D−1

t ξt1(p×1) (23)

∂lt
∂θ(3)

= st
∂vec(Λ1)

′

∂θ(3)
vec(Λ−1

1 − Λ−1
1 D

−1/2
t εtε

′
tD

−1/2
t Λ−1

1 )

+(1− st)
∂vec(Λ0)

′

∂θ(3)
vec(Λ−1

0 − Λ−1
0 D

−1/2
t εtε

′
tD

−1/2
t Λ−1

0 ) (24)

∂Π′
t

∂θ(1)
= 2

q∑
j=1

∂ε′t−j

∂θ(1)
Ajε

d
t−j, Aj = diag(α1,j, ..., αp,j)

∂ε′t
∂θ(1)

= stJ1zt + (1− st)J2zt

ξt = Ip − εd
t H

−1
t εd

t ,

where J1 is a 2p(r + p(q − 1)) times r + p(q − 1) matrix with all ones on the

first p(r + p(q− 1)) rows and zeros on the remaining rows and the matrix J2 the

opposite. Finally, the derivative of Π′
t with respect to θ(2) is a block diagonal

matrix with the vectors (ε1,t−1, ..., ε1,t−q)
′ to (εp,t−1, ..., εp,t−q)

′ on the diagonal

blocks.

Next, note that since the ARCH parameters are all bounded away from zero there

exists a constant k1 > 0 such that ε2
i,t−j/πi,t ≤ 1/αi,j < k1 for all j = 1, ..., q. By

repeating this argument one can conclude that there exists a constant k2 such that

‖(∂Π′
t/∂θD−1

t ‖ < k2. Combining this with the observations that E[‖ξt‖2] < ∞
and E[‖νt‖4] < ∞ yields that E[‖∂lt/∂θ‖2] < ∞ and Ω < ∞.

For any vector c with same dimension as θ define the sequence l
(1)
t = c′∂lt/∂θc,

which is a martingale difference sequence with respect to the natural filtration

Ft = σ(Xt, Xt−1, ...) since E[ξt | Ft−1] = 0 and st is Ft−1 measurable. Under the

stated conditions Theorem 1, the law of large number for geometrically ergodic

time series, and the central limit of Brown (1971) yield that T−1/2
∑T

t=1 l
(1)
t

D→
N(0, c′ΩSc) and the Cramér-Wold device establishes the lemma.

The positive definiteness of ΩS can be established by noting that Theorem 1

guarantees that P (st = 1) > 0, P (st = 0) > 0, and that all elements of Yt have
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strictly positive densities. Hence is holds that the c′Ωc = 0 if and only if c = 0

and ΩS is therefore positive definite, see Lange et al. (2007) for details.

Lemma 2. Under the conditions of Theorem 4 there exists an open neighborhood

around the true parameter value N(θ0) and a positive constant k3, such that

sup
θ∈N(θ0)

‖Πt(θ)
′

∂θ(1)
D−1

t ‖max < k3, sup
θ∈N(θ0)

‖Πt(θ)
′

∂θ(2)
D−1

t ‖max < k3,

and ‖Λ(l)−1‖max < k3 for l = 0, 1, where ‖ · ‖max denotes the max norm.

Proof. Let N(θ0) = {θ ∈ Rdim(θ0) | ‖θ0 − θ‖max < δ}. Next, note that by

construction any term in ∂lt(θ)

∂θ(1) will also be in the relevant part of Dt, hence it

can be concluded that if δ is sufficiently small there exists a positive constant k3

such that

sup
θ∈N(θ0)

‖Πt(θ)
′

∂θ(1)
D−1

t ‖max ≤ 1

minθ∈N(θ0) θ(2)
< k3

and likewise for the derivative with respect to θ(2). Finally, note that since the

true value of both Λ(1) and Λ(0) are positive definite and the eigenvalues of a

matric is a continuous function of the matrix itself it holds that δ can be chosen

such that ‖Λ(l)−1‖max < k3 for l = 0, 1.

Proof of Theorem 4. The proof is based on a Taylor expansion of the log-likelihood

function. To avoid the need for third derivatives we will verify conditions (A.1)-

(A.4) of Lemma A.1 in Lange et al. (2007). The asymptotic normality of the

score evaluated at the true parameter values has been established in Lemma 1,

hence condition (A.1) is satisfied. By directly differentiating (22), (23), and (24)

and adopting the notation of Lemma 1 one obtains the following expressions for

the second derivatives.
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∂2lt(θ)

∂θ(1)∂θ(1)′

= −∂εt(θ)
′

∂θ(1)
Ht(θ)

−1∂εt(θ)

∂θ(1)′

−1

4

∂Πt(θ)
′

∂θ(1)
Dt(θ)

−1(diag{εt(θ)
dHt(θ)

−1εt(θ)
d1(p×1)} − ξt + Ip)Dt(θ)

−1∂Πt(θ)

∂θ(1)′

+
∂εt(θ)

′

∂θ(1)
Ht(θ)

−1εt(θ)
dDt(θ)

−1∂Πt(θ)

∂θ(1)′ −
1

2

∂Πt(θ)
′

∂θ(1)
Dt(θ)

−2diag{ξt(θ)1(p×1)}∂Πt(θ)

∂θ(1)′

−
q∑

j=1

∂εt−j(θ)
′

∂θ(1)
AjDt(θ)

−1diag{ξt(θ)1(p×1)}∂εt−j(θ)

∂θ(1)′

+
1

2

∂Πt(θ)
′

∂θ(1)
Dt(θ)

−1(diag{εt(θ)
dHt(θ)

−11(p×1)}+ εd
t H

−1
t )

∂εt(θ)

∂θ(1)′

∂2lt(θ)

∂θ(1)∂θ(2)′ =
∂εt(θ)

′

∂θ(1)
Ht(θ)

−1εt(θ)
dDt(θ)

−1∂Πt(θ)

∂θ(2)′

+
1

4

∂Πt(θ)
′

∂θ(1)
D−1

t [2diag{ξt(θ)1(p×1)} − diag{εt(θ)
dHt(θ)

−1εt(θ)
d1(p×1)}

−εt(θ)
dHt(θ)

−1εt(θ)
d]D−1

t

∂Πt(θ)

∂θ(2)′

−
q∑

j=1

∂εt−j(θ)
′

∂θ(1)
εd

t−jDt(θ)
−1ξt(θ)

d ∂(Aj1(p×1))

∂θ(2)′

∂2lt(θ)

∂θ(1)∂θ(3)′ = st
∂εt(θ)

′

∂θ(1)

(
(εt(θ)

′D−1/2
t Λ−1

1 )⊗ (Λ−1
1 D

−1/2
t )

)∂vec(Λ1)

∂θ(3)′

+(1− st)
∂εt(θ)

′

∂θ(1)

(
(εt(θ)

′D−1/2
t Λ−1

0 )⊗ (Λ−1
0 D

−1/2
t )

)∂vec(Λ0)

∂θ(3)′

−1

2

∂Πt(θ)
′

∂θ(1)
D−1

t

∂(ξt(θ)1(p×1))

∂θ(3)′

∂2lt(θ)

∂θ(2)∂θ(2)′ =
1

4

∂Πt(θ)
′

∂θ(2)
Dt(θ)

−1[2diag{ξt(θ)1(p×1)}

−diag{εt(θ)
dHt(θ)

−1εt(θ)
d1(p×1)}+ ξt − Ip]Dt(θ)

−1∂Πt(θ)

∂θ(2)′
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∂2lt(θ)

∂θ(2)∂θ(3)′ = −1

2

∂Πt(θ)
′

∂θ(2)
Dt(θ)

−1∂(ξt(θ)1(p×1))

∂θ(3)′

∂2lt(θ)

∂θ(3)∂θ(3)′ = st
1

2

∂vec(Λ1)
′

∂θ(3)
(Λ−1

1 ⊗ Ip)
[− (Λ−1

1 Dt(θ)
−1/2εt(θ)εt(θ)

′Dt(θ)
−1/2)⊗ Ip

−Ip ⊗ (Λ−1
1 Dt(θ)

−1/2εt(θ)εt(θ)
′Dt(θ)

−1/2)− Ip

]
(Ip ⊗ Λ−1

1 )
∂vec(Λ1)

∂θ(3)′

(1− st)
1

2

∂vec(Λ0)
′

∂θ(3)
(Λ−1

0 ⊗ Ip)
[− (Λ−1

0 Dt(θ)
−1/2εt(θ)εt(θ)

′Dt(θ)
−1/2)⊗ Ip

−Ip ⊗ (Λ−1
0 Dt(θ)

−1/2εt(θ)εt(θ)
′Dt(θ)

−1/2) + Ip

]
(Ip ⊗ Λ−1

0 )
∂vec(Λ0)

∂θ(3)′

∂(ξt(θ)1(p×1))

∂θ(3)′ = stεt(θ)
d
(
(εt(θ)Dt(θ)

−1/2Λ−1
1 )⊗ (Λ−1

1 D
−1/2
t )

)∂vec(Λ1)

∂θ(3)′

+(1− st)εt(θ)
d
(
(εt(θ)Dt(θ)

−1/2Λ−1
0 )⊗ (Λ−1

0 D
−1/2
t )

)∂vec(Λ0)

∂θ(3)′

By combing Theorem 1 with the law of large numbers for geometrically ergodic

time series and Lemma 2 it can be concluded that the

1

T

T∑
t=1

∂2lt(θ0)

∂θ∂θ′
P→ ΩI ,

as T tends to infinity. By the same arguments as in the proof of Lemma 1 ΩI is

positive definite. Hence condition (A.2) of Lemma A.1 in Lange et al. (2007) is

satisfied.

Next, let N(θ0) = {θ ∈ Rdim(θ0) | ‖θ0 − θ‖max < δ} denote an open neighborhood

around the true parameter value. By inspecting the second derivatives and uti-

lizing Lemma 2 it is evident that δ > 0 can be chosen such that there exists a

positive constant k4 and vector k of positive constants such that

E[ sup
θ∈N(θ0)

∥∥∥∂2lt(θ)

∂θ∂θ′

∥∥∥] ≤ E[k4(1 + ‖νtν
′
tνtν

′
t‖max)k

′(z′t, ..., z
′
t−q)

′], (25)

which is finite by assumption. One can therefore define a function F as the point-

by-point (in θ) limit of T−1
∑T

t=1 ∂2lt(θ)/∂θ∂θ′ and by dominated convergence the

function is continuous. Hence condition (A.3) is also satisfied.
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Finally, by Theorem 4.2.1 of Amemiya (1985) the required uniform convergence

follows from (25) and condition (A.4) is therefore satisfied. Note that Theorem

4.2.1 is applicable in our setup by Amemiya (1985) p. 117 as the law of large num-

bers applies due to geometric ergodicity of the Markov chain zt. This completes

the proof.
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Limiting behavior of the heteroskedastic
robust Wald test when the underlying

innovations have heavy tails

By Theis Lange

Department of Mathematical Sciences, University of Copenhagen
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Abstract: This paper initially establishes that the usual OLS estimator of the autore-
gressive parameter in the first order stable autoregressive model with autoregressive
conditional heteroskedastic errors, the AR-ARCH model, has a non-standard limiting
distribution with a non-standard rate of convergence when the innovations have non-
finite fourth order moment. Furthermore, it is shown that the robust t- and Wald
test statistics of White (1980) are still consistent and have the usual rate of conver-
gence, but a non-standard limiting distribution when the innovations have non-finite
fourth order moment. The critical values for the non-standard limiting distribution
are higher than the usual N(0,1) and χ2

1 critical values, respectively, which implies
that an acceptance of a hypothesis using the standard robust t- or Wald tests remains
valid even if the fourth order moment condition is not met. However, the size of the
test might be higher than the nominal size. Hence the analysis presented in this paper
extends the usability of the robust t- and Wald tests of White (1980). Finally, a small
empirical study illustrates the results.

Keywords: ARCH; Robust t- and Wald tests; Heavy tails.

1 Introduction

Given a process (yt)
T
t=1 this paper studies the OLS estimator from the regression

of yt on yt−1 when the process is assumed to be generated by a stable autoregres-

sive model with autoregressive conditional heteroskedastic errors, the AR-ARCH

model. By now the presence of ARCH type effects in financial and macro eco-

nomic time series is a well established fact. The seminal paper by Engle (1982) in

which the linear ARCH model model was originally introduced has been followed

by countless papers studying various aspects ARCH type models.

Recognizing that unmodeled heteroscedasticity in the innovations might seriously

compromise the validity of traditional t- and Wald tests of the significance of
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parameters estimated by OLS White (1980) introduced the heteroscedastic robust

t- and Wald tests. These tests are now so widely applied that they are routinely

reported by many statistical software packages. However, Whites results depend

on the innovations to have finite fourth order moment, which is often not met in

empirical studies.

In this paper we show that the robust t- and Wald test statistics have the correct

normalization, but a non-standard limiting distribution when the innovations

have non-finite fourth order moment. The critical values for the non-standard

limiting distributions are higher than the usual N(0,1) and χ2
1 critical values, re-

spectively, which implies that an acceptance of a hypothesis using the standard

robust t- or Wald test procedures remains valid even if the fourth order moment

condition is not met. However, the size of the test might be higher than the

nominal size. Hence the analysis presented in this paper extends the usability

of the robust t- and Wald tests of White (1980), which, to our knowledge, has

not previously been done in the literature. In addition the paper establishes that

the OLS estimator of the autoregressive parameter will have a stable limit with a

non-standard rate of convergence. As the tools for handling stable distributions

are less evolved than similar tools for normal distributions we are forced to re-

strict attention to a fairly simple first order model as the true data generating

mechanism. Finally, a small empirical study shows how the evidence of no corre-

lation between consecutive movements of interest rates critically depends on our

extension of the usability of the robust Wald test.

The paper proceeds as follows. In Section 2 the model and some important prop-

erties including geometric ergodicity and tail heaviness are discussed. Section 3

presents the limiting distributions for the OLS estimator and Section 4 states

the limiting distributions for the robust t- and Wald test statistics and discusses

implications of the results on the standard testing procedures. Finally, Section 5

contains a small empirical study and Section 6 concludes. All proofs are contained

in the Appendix.
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2 The AR-ARCH Model

The model can be stated as

yt = ρyt−1 + εt(θ), (1)

εt(θ) =
√
ht(θ)zt (2)

ht(θ) = ω + αε2
t−1(θ) (3)

with t = 1, ..., T and zt an i.i.d.(0,1) sequence of random variables. The parameter

vector is denoted θ = (ρ, α, ω)′ and the true parameter θ0. In order to ease

notation we adopt the convention εt = εt(θ0) etc. for expressions evaluated at

the true parameter values. The analysis is conditional on the initial values y0 and

ε−1.

In the context of the AR-ARCH model heavy tails can be introduced either by

choosing the value of the ARCH parameter α sufficiently large while keeping the

underlying error process zt light tailed or through the tails of the underlying error

process zt. In this paper the first approach will be explored. The second approach

has been investigated in e.g. Davis & Mikosch (1998).

For a fixed value of the ARCH parameter α the tail index, denoted λ, can be

found as the unique strictly positive solution to the equation E[(αz2
t )
λ/2] = 1

as shown in Davis & Mikosch (1998) p. 2062. Note that a tail index of λ has

the implication that the ARCH process has finite moments of all orders below λ,

but E[|εt|λ] = ∞. Figure 1 depicts the correspondence between α and λ when

zt is assumed Gaussian. Using the moment interpretation of the tail index and

Figure 1 it is evident that the ARCH process has finite fourth order moment, but

non-finite second order moment if the ARCH parameter belongs to the interval

]0.57, 1]. This part of the parameter space will be the focus for much of the rest

of the paper.

The following lemma, which has been proved in Lange, Rahbek & Jensen (2007),

establishes minimal conditions under which processes generated by the AR-ARCH

model are geometrically ergodic. Geometric ergodicity, and the laws of large

numbers implied by this concept, constitutes an important tool when establish-
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Figure 1: Correspondence between the ARCH parameter α and the tail index λ when zt is
assumed Gaussian.

ing asymptotic theory, but for our intended applications it is of equal importance

that the lemma establishes minimal conditions under which there exists an initial

distribution such that the process is stationary.

Lemma 1. Assume that zt has a density f with respect to the Lebesgue measure

on R, which is bounded away from zero on compact sets and furthermore that

E[log(α0z
2
t )] < 0 and |ρ0| < 1

then the process xt = (yt−1, εt)
′ generated by the AR-ARCH model, is geomet-

rically ergodic. In particular there exists a stationary version and moreover if

E|g(xt, ..., xt+k)| < ∞, where expectation is taken with respect to the invariant

distribution, the Law of Large Numbers given by

lim
T→∞

1

T

T∑
t=1

g(xt, ..., xt+k)
a.s.
= E[g(xt, ..., xt+k)], (4)

holds irrespectively of the choice of initial distribution.
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3 Limiting behavior of the OLS estimator

In this section the limiting behavior of the OLS estimator of the autoregressive

parameter ρ is derived under two sets of moment assumptions on the innovation

sequence. Initially the section reviews the well known result that the OLS es-

timator is asymptotically normal when the innovations have finite fourth order

moment and states precise expressions for the parameters of the limiting distribu-

tion. In the second part of this section the limiting behavior of the OLS estimator

when the innovations only have finite second order moment, is derived. To our

knowledge this result has not previously been established in the literature. The

final part of this section discusses some implications of the limiting results.

3.1 The normal case: Finite fourth order moment

Standard techniques combined with Lemma 1 give the following result regarding

the OLS estimator of ρ when the innovations have finite fourth order moment.

Theorem 1. In addition to the assumptions in Lemma 1 assume that

(i) E[α2
0z

4
t ] = α2

0κ < 1

(ii) and zt’s distribution is symmetric.

Then the OLS estimator of the autoregressive parameter ρ in the AR-ARCH

model given by (1) - (3) is consistent with the following limiting distribution

√
T (ρ̂OLS − ρ0) =

T−1/2
∑T

t=1 yt−1εt

T−1
∑T

t=1 y
2
t−1

D→ N(0,Σ), (5)

where

Σ = (1− ρ2
0) +

(κ− 1)(1− ρ2
0)2α0

(1− κα2
0)(1− α0ρ2

0)
.

Remark 1. Condition (i) implies that εt has finite fourth order moment under

the invariant measure and that zt has finite fourth order moment.

The proof can be found in the appendix. As the parameter values approaches

the value for which the ARCH process no longer have finite fourth order moment
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(α2
0κ = 1) the asymptotic variance Σ converges toward infinity. One could there-

fore conjecture that in this case the limiting distribution would be a stable law

with a slower than square root T rate of convergence. In the following section we

will prove this conjecture.

3.2 The stable case: Non-finite fourth order moment

Next, we will analyze the effect of relaxing the fourth order moment condition of

Theorem 1 to a second order condition. As conjectured this leads to both a non-

standard limiting distribution as well as non-standard rate of convergence. Since

the tools for manipulating stable laws are somewhat less evolved than similar

tools for normal distributions it is necessary to assume stationarity of the process

as geometric ergodicity does not suffice in the present version of the proof, which

can be found in the appendix.

Theorem 2. In addition to the assumptions in Lemma 1 assume that

(i) the initial values are distributed according to the stationary distribution,

(ii) the ARCH parameter α0 is such that the ARCH process has finite second

order moment, but non-finite fourth order moment; that is the tail index

λ belongs to the interval ]2, 4],

(iii) and zt’s distribution is symmetric

then it holds that

T 1−2/λ(ρ̂OLS − ρ0)
D→ S0, (6)

where S0 is a λ/2 stable random variable, with the remaining parameters un-

known.

Remark 2. The existence of a stationary distribution is guaranteed by Lemma 1.

3.3 Implications

As Theorem 1 is a standard result this section will only address the implications

of Theorem 2, which has the most direct implications for the construction of

confidence bands. When constructing confidence bands one needs to know both
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the asymptotical distribution (usual the normal distribution) including parame-

ter estimates as well as the rate of convergence (usual square root T ). However,

if the true α0 is such that the innovation sequence εt does not have finite fourth

order moment the result implies that the rate of convergence will be non-standard

and unknown and the parameters of the limiting distribution unknown as well.

Since the rate of convergence in Theorem 2 is slower than the usual square root

T the usually constructed confidence bands, based on normality and standard

rate of convergence, might be way to narrow leading to erroneous conclusions.

Unfortunately, since λ in unknown in practice and Theorem 2 does not include a

precise specification of the remaining parameters of the limiting stable distribu-

tion, one cannot easily derive a corrected confidence band based on the theorem.

In the next section we will address this problem by considering the heteroskedas-

tic robustt- and Wald tests of White (1980).

4 Limiting behavior of the robust Wald test

In this section we will examine the behavior of the heteroskedastic robust t-

and Wald tests of White (1980). The robust t-test statistic for the hypothesis

H0 : ρ0 = 0 is given by

VT =
√
T (ρ̂OLS − ρ0)

( 1

T

T∑
t=1

ε2
ty

2
t−1

)−1/2( 1

T

T∑
t=1

y2
t−1

)
,

and the robust Wald test statistic is V 2
T . Under the hypothesis VT can be rewritten

as

VT =
( T∑
t=1

εtεt−1

)( T∑
t=1

ε2
t ε

2
t−1

)−1/2
,

which is sometimes refereed to as a self normalizing sum. If the innovations εt

have finite fourth order moment it is well known, see e.g. White (1980), that

VT converges to standard normal distribution under H0 as T tends to infinity

irrespectively of possible heteroscedasticity of the innovations. This result forms

the basis for the usual robust t- and Wald test. However, if the the innovations

do not have finite fourth order moment the limiting behavior of VT has not been
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examined in the litterateur. From the theory for self normalizing sums of i.i.d.

random variables, see Giné, Götze & Mason (1997), it is known that a self nor-

malized sum of i.i.d. random variables converges to a normal distribution if and

only if the numerator belongs to the domain of attraction for a normal distribu-

tion (loosely speaking this corresponds to requiring that the Lindeberg condition

holds for the numerator), however, since the sequence (εt)
T
t=1 is not i.i.d. the

results of Giné et al. (1997) are not applicable in our setup. Based on this result

one would still conjecture that VT does not have a Gaussian limiting distribution

since Theorem 2 establishes that the numerator belongs to the domain of attrac-

tion of a stable law. Theorem 3 below formalizes this conjecture and the proof

can be found in the appendix.

Theorem 3. In addition to the assumptions in Lemma 1 assume that

(i) the initial values are distributed according to the stationary distribution,

(ii) the ARCH parameter α0 is such that the ARCH process has finite second

order moment, but non-finite fourth order moment; that is the tail index

λ belongs to the interval ]2, 4],

(iii) and the distribution of zt is symmetric

then under H0 it holds that

VT
D→ S1

S
1/2
2

(7)

where the vector (S1, S
1/2
2 ) is jointly a λ/2 stable random variable, with the re-

maining parameters and dependence structure unknown.

Remark 3. A natural question is what happens when λ ∈]0, 2], corresponding to

E[ε2
t ] =∞, but in this case Theorem 2 indicates that ρ̂OLS is not even consistent

rendering a test for a particular value fruitless.

Corollary 1. Under the conditions of Theorem 3 the heteroskedastic robust Wald

test given by V 2
T converges in distribution to S2

1/S2 where the vector (S2
1 , S2) is

jointly a λ/4 stable random variable, with the remaining parameters and depen-

dence structure unknown.

In the following section the implications of Theorem 3 on the usual testing pro-

cedure will be discussed.
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4.1 Implications for the standard testing procedure

Arguably the most important implication of Theorem 3 and Corollary 1 is that

the normalization required to ensure a non-degenerate limiting distribution for

both the robust t- and Wald tests does not depend on the fourth order moment

being finite. However, since the limiting distribution is no longer Gaussian when

the innovations have non-finite fourth order moment the critical values are not

the usual ones.

In the usual Gaussian case, obtained when the innovations have finite fourth

order moment, it can be directly established by utilizing the properties of the

normal distribution that the limiting distribution for the robust t- and Wald test

statistics are nuisance parameter free (indeed even in higher order models than

the one considered in this paper). In contrast to this, it is not possible to verify

that the stable limits in Theorem 3 and Corollary 1 do not depend on additional

parameters besides the tail index, since a precise mathematical expression for

parameter values and dependence structure is not available. However, in the first

order AR-ARCH model considered in this paper the only remaining unknown

parameter is the scale parameter ω0 and the test statistic VT is clearly invariant

to the scale of the innovations.

Since the scale parameter ω0 does not affect the limiting distributions in Theo-

rem 3 and Corollary 1 the critical values for the hypothesis H0 will only depend

on the ARCH parameter α0 and perhaps the exact distribution of the innovations

zt. Based on simulations Figure 2 Panel A-C illustrate how the critical values

change as the tail index λ is decreased. Panel D shows the correspondence be-

tween the tail parameter and the ARCH parameter for the different choices of

the distribution for zt.

From Figure 2 it is evident that the critical values for the non-standard limiting

distribution are higher than usual χ2
1 critical values and increase as the tail index

decreases (corresponding to increasing the ARCH parameter). In addition it

is seen that the distribution of the underlying innovations zt only affects the

limiting distribution through the tail index. This implies that an acceptance of

a hypothesis using the standard robust Wald test procedure remains valid even

if the fourth order moment condition is not met. However, the size of the test
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Figure 2: Quantiles for the limiting distribution for the robust Wald test statistic (S2
1/S2

from Corollary 1) computed by simulating from the AR-ARCH model with ρ0 = 0, ω0 = 1 for
a range of values for α0 (to ease comparison the critical values are reported as functions of the
tail index). In Panel A and B the innovations zt follow a standardized student-t distribution
with 5 and 7 degrees of freedom, respectively, while zt ∼ N(0, 1) in Panel C. Each simulated
path was 5,000 data points long and 100,000 Monte Carlo replications were conducted for each
value of α0. The two vertical lines corresponds to the values of the tail index where the process
does no longer have finite fourth order and second order moment, respectively. Finally, Panel D
shows the correspondence between the ARCH parameter and the tail index for the different
distributions.
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might be higher than the nominal size. Furthermore, Theorem 2 implies that the

robust t− and Wald tests are still consistent as long as the innovations have finite

second order moment. Hence the analysis of this paper extends the usability of

the robust t− and Wald tests of White (1980).

5 Empirical illustration

In this section we will reexamine the evidence of linear predictability in the daily

movements of interest rates. The data set consists of daily recordings of the 3-

months US t-bill rate (rt) covering the period from the 2nd of January 1990 to

the 29th of February 2008, yielding a total of 4,544 observations, see Figure 3.
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Figure 3: Daily recordings of the 3-months US t-bill rate.

To examine whether past interest rate movements are correlated with future inter-

est rate movements we will test if the coefficient in the regression of xt = rt−rt−1

on xt−1 is statistically significantly different from zero. As it is well documented

that daily interest rates exhibit heteroscedasticity we will conduct both the usual

Wald test as well as the robust Wald test of White (1980). Finally we will employ

the full AR-ARCH model to estimate the magnitude of the ARCH effect by quasi

maximum likelihood and thereby assess the potential size distortion of the robust

Wald test caused by heavy tails.
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Wald test Robust Wald test
Test statistic 30.27 3.44
p-value 0.000 0.065
Corrected p-value† - 0.126

Table 1: Summary of test results for the hypothesis of a zero coefficient in the regression of
xt on xt−1. The unrestricted OLS estimator is 0.081. †Computed using the estimated ARCH
coefficient of 0.91 and Student-t degree of freedom of 2.45 from the full AR-ARCH model and
the non-standard distribution from Corollary 1.

Based on the the test statistics and p-values presented in Table 1 it is evident that

if the heteroscedasticity of the errors is ignored one would reject the hypothesis

that the coefficient in the regression is zero. If the test is instead based on

the robust Wald test statistic compared to the χ2
1 distribution the hypothesis

is accepted with a p-value of 0.065. Estimating the full AR-ARCH model with

standardized Student-t innovations with ν degrees of freedom by quasi maximum

likelihood provides the estimates α̂ = 0.91 and ν̂ = 2.45, corresponding to a

tail index of 2.2. Hence the conditions for employing the robust Wald test of

White (1980) are not met. However, by employing the non-standard limiting

distribution from Corollary 1 the p-value increases to 0.126. Thus taking the

magnitude of the ARCH effect into account reveals that the robust Wald test is

somewhat size distorted, but as previously discussed this only strengthens the

conclusion of no linear predictability.

It should be stressed that we do not suggest that practitioners do full quasi

maximum likelihood estimation just to correct their robust Wald test inference.

The purpose of this section is merely to illustrate the necessity of the extended

usability of the robust tests and quantify the potential size distortion.

6 Conclusion

In this paper we have established that the usual OLS estimator of the autoregres-

sive parameter in the AR-ARCH model has a non-standard limiting distribution

with a non-standard rate of convergence if the innovation process is a realiza-

tion of an ARCH(1) process with non-finite fourth order moment. Furthermore,
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we have established that the robust t- and Wald test statistics of White (1980)

for the hypothesis ρ0 = 0 have the correct normalization, but a non-standard

limiting distribution when the innovations have non-finite fourth order moment.

The critical values for the non-standard limiting distribution are higher than the

usual N(0,1) and χ2
1 critical values, respectively, which implies that an accep-

tance of the hypothesis using the standard robust t- or Wald tests remains valid

even in the fourth order moment condition is not met. However, the size of the

tests might be higher than the nominal size. Hence the analysis presented in

this paper extends the usability of the robust t- and Wald tests of White (1980).

In Figure 2 the critical values are summarized. Finally, a small empirical study

shows how the extended usability of the robust test is required to establish that

consecutive movements of interest rates are not correlated. In addition the em-

pirical study quantifies the potential size distortion caused by the heavy tails of

the innovations.

Appendix

Proof of Theorem 1. Note initially that since we have assumed finite fourth or-

der moment and hence also finite second order moment, yt has the stationary

representation y∗t =
∑∞

t=0 ρ
iεt−i, which will be used when calculating expected

values under the stationary distribution. The second order moments of the ARCH

process and the volatility process are given by E[ε2
t ] = E[ht] = ω0

1−α0
. Next the

fourth order moment can be derived from

E[ε4
t ] = E[z4

t h
2
t ] = κ(ω2

0 + α2
0E[ε4

t−1] + 2ω0α0E[ε2
t−1]).

Since the expectation is taken with respect to the stationary distribution it holds

that

E[ε4
t ] = κ

ω2
0 + 2ω2

0
α0

1−α0

1− κα2
0

= κ
ω2

0(1 + α0)

(1− κα2
0)(1− α0)

,

and E[h2
t ] = ω2

0(1 + α0)(1 − κα2
0)−1(1 − α0)−1. Utilizing the representation for

ht as a function of zt, ..., zt−k and ht−k from Nelson (1990) it holds that for some
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k ∈ N0

E[ε2
t−kε

2
t ] = E

[
ε2
t−kz

2
t

(
ht−k

k∏
i=1

α0z
2
t−i + ω0

(
1 +

k−1∑

k=1

k∏
i=1

α0z
2
t−i

))]

= κE[αk0h
2
t−k] + ω0E

[
ε2
t−k

1− αk0
1− α0

]

= καk0ω
2
0

1 + α0

(1− κα2
0)(1− α0)

+ ω2
0

1− αk0
(1− α0)2

=
ω2

0

(1− α0)2
+

ω2
0α

k
0(κ− 1)

(1− κα2
0)(1− α0)2

.

Using the symmetry of zt’s distribution and the infinite representation of yt yields

E[y2
t−1ht] = E



( ∞∑

i=0

ρi0εt−1−i

)2

(ω0 + α0ε
2
t−1)




= ω0

∞∑
i=0

ρ2i
0 E[ε2

t−i−1] + α0

∞∑
i=0

ρ2i
0 E[ε2

t−hε
2
t ]

=
ω2

0

(1− α0)(1− ρ2
0)

+
α0ω

2
0

(1− α0)2(1− ρ2
0)

+
ω2

0α
2
0(κ− 1)

(1− κα2
0)(1− α0)2

∞∑
i=0

αi0ρ
2i
0

=
ω2

0

(1− α2
0)(1− ρ2

0)
+

ω0(κ− 1)

(1− κα2
0)(1− α0)2(1− α0ρ2

0)
,

and

E[y2
t−1] = E



( ∞∑

i=0

ρi0εt−1−i

)2

 =

ω0

(1− α0)(1− ρ2
0)
.

Next, define the filtration Ft = σ(εt, yt, ...). In order to apply a standard CLT for

martingale difference sequences (e.g. Brown (1971)) we first verify the Lindeberg

condition

1

T

T∑
t=1

E[y2
t−1ε

2
t1{|yt−1εt|>δ

√
T} | Ft] ≤

k

δξT 1+ξ/2

T∑
t=1

(yt−1

√
ht)

2+ξ → 0,

where k is a positive constant and ξ > 0 is chosen such that E[(yt−1

√
ht)

2+ξ] is

finite. The constant ξ exists because the inequality which ensures finite fourth
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order moment is a sharp inequality, see Lange et al. (2007) for details. Further-

more

1

T

T∑
t=1

E[y2
t−1ε

2
t | Ft−1] =

1

T

T∑
t=1

y2
t−1ht

P→ E[y2
t−1ht].

Hence

√
T (ρ̂OLS − ρ0)

D→ N(0,Σ) as T →∞,

where

Σ =
(1− α0)2(1− ρ2

0)2

ω2
0

E[y2
t−1ht] = (1− ρ2

0) +
(κ− 1)(1− ρ2

0)2α0

(1− κα2
0)(1− α0ρ2

0)
.

This completes the proof.

The proof of the Theorem 2 rests to a large extent on the following lemma.

Lemma 2. Under the assumptions of Theorem 2 all finite dimensional vectors

yt(k) = (yt, ..., yt+k) have regularly varying tails as defined in Resnick (1987) with

the same tail index λ as the ARCH process.

The proof is inspired by the proofs of Lemma A.3.26 in Embrechts, Klüppelberg

& Mikosch (1997) and Lemma 4.24 in Resnick (1987). However none of these

results are directly applicable since the innovations are not independent.

Proof of Lemma 2. We begin by showing a tamer result, namely that yt is reg-

ularly varying with tail index λ. Since regular variation is a property of the

marginal distribution, the subscript t on yt will be omitted. In addition due to

symmetry of the distribution of yt and εt all arguments will be given using the

absolute value of both only.

Since the ARCH process has finite second order moment y has the representation

y =
∑∞

i=0 ρ
iε−i. Define y(m) =

∑m−1
i=0 ρiε−i for any m ≥ 1. We will now show that

the remainder y− y(m) has negligible influence on the tails of y for m sufficiently
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large. Observe that for any δ ∈]0, 1[ and x > 0 it holds that,

P (|y| > x) ≤ P (|y(m)| > (1− δ)x) + P (
∞∑
i=m

|ρ|i|ε−i| > δx) (8)

and

P (|y| > x) ≥ P (|y(m)| > (1 + δ)x)− P (
∞∑
i=m

|ρ|i|ε−i| > δx) (9)

In the following we show

lim
m→∞

lim sup
x→∞

P (
∑∞

i=m |ρ|i|ε−i| > x)

P (|ε0| > x)
= 0. (10)

Rewrite the numerator as

P

( ∞∑
i=m

|ρ|i|ε−i| > x

)

= P

( ∞∑
i=m

|ρ|i|ε−i| > x,

∞∨
i=m

|ρ|i|ε−i| > x

)

+P

( ∞∑
i=m

|ρ|i|ε−i| > x,

∞∨
i=m

|ρ|i|ε−i| ≤ x

)

≤ P

( ∞⋃
i=m

(|ρ|i|ε−i| > x
)
)

+P

( ∞∑
i=m

|ρ|i|ε−i|1{|ρ|i|ε−i|≤x} > x,

∞∨
i=m

|ρ|i|ε−i| ≤ x

)

≤
∞∑
i=m

P (|ε−i| > x|ρ|−i) + P

( ∞∑
i=m

|ρ|i|ε−i|1{|ρ|i|ε−i|≤x} > x

)
.

Hence by Markov’s inequality it holds that

P (
∑∞

i=m |ρ|i|ε−i| > x)

P (|ε0| > x)

≤
∞∑
i=m

P (|ε0| > x|ρ|−i)
P (|ε0| > x)

+ x−1

∞∑
i=m

|ρ|iE[|ε0|1{|ε0|≤x|ρ|−i}]
P (|ε0| > x)

= I + II. (11)
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By Basrak, Davis & Mikosch (2002b) the random variable ε0 has regular varying

tails and by Proposition 0.8(ii) of Resnick (1987) it holds that for all τ > 0 there

exists a x0 such that for all x > x0

P (|ε0| > x|ρ|−i)/P (|ε0| > x) ≤ (1 + τ)|ρ|i(λ−τ).

For τ adequately small this bound is summable and hence by dominated conver-

gence and the regular variation of ε0 it holds that

lim sup
x→∞

I ≤ (1 + τ)
∞∑
i=m

|ρ|i(λ−τ).

In considering II, suppose temporarily that 0 < λ < 1 (this will never be the

case when E[ε2
0] <∞, but it is a necessary steep towards proving the full result).

From an integration by parts it holds that

E[|ε0|1{|ε0|≤x}]
xP (|ε0| > x)

≤
∫ x

0
P (|ε0| > u)du

xP (|ε0| > x)

and applying Karamata’s Theorem (from e.g. Resnick (1987)) this converges to

(1 − λ)−1 as x tends to infinity. Thus the function x 7→ E[|ε0|1{|ε0|≤x|ρ|−i}] is

regular varying with tail index 1 − λ and applying again Proposition 0.8(ii) we

have that for any τ > 0, some constant k, and x sufficiently large it holds that

|ρ|iE[|ε0|1{|ε0|≤x|ρ|−i}]
xP (|ε0| > x)

= |ρ|i
(
E[|ε0|1{|ε0|≤x|ρ|−i}]
E[|ε0|1{|ε0|≤x}]

)
E[|ε0|1{|ε0|≤x}]
xP (|ε0| > x)

≤ |ρ|i(|ρ|−i)−(1−λ+τ)k = k|ρ|i(λ−τ),

which is summable for τ adequately small. So we conclude

lim sup
x→∞

II ≤ k

∞∑
i=m

|ρ|i(λ−τ)

and hence when 0 < λ < 1 there exists constants τ̃ ∈]0, 1[ and k̃ > 0 such that

lim sup
x→∞

P (
∑∞

i=m |ρ|i|ε−i| > x)

P (|ε0| > x)
≤ k̃

∞∑
i=m

|ρ|iτ̃ <∞. (12)
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If λ ≥ 1 we get a similar inequality by reducing to the case 0 < λ < 1 as

follows. Pick η ∈]λ, λτ̃−1[ and set c =
∑∞

i=m |ρ|i and pi = |ρ|i/c then by Jensen’s

inequality (e.g. Feller (1971) p. 153) we get

( ∞∑
i=m

|ρ|i|ε−i|
)η

= cη

( ∞∑
i=m

pi|ε−i|
)η

≤ cη
∞∑
i=m

pi|ε−i|η = cη−1

∞∑
i=m

|ρ|i|ε−i|η.

Thus

P (
∑∞

i=m |ρ|i|ε−i| > x)

P (|ε0| > x)
≤ P (

∑∞
i=m |ρ|i|ε−i|η > c1−ηxη)
P (|ε0|η > xη)

.

By Bingham, Goldie & Teugels (1987) Proposition 1.5.7(i) the function P (|ε0|η >
xη) is regularly varying with tail index η−1λ ∈]0, 1[. Hence (12) gives

lim sup
x→∞

P (
∑∞

i=m |ρ|i|ε−i| > x)

P (|ε0| > x)
≤ k̃

∞∑
i=m

|ρ|iλη−1

cλ(1−η−1) <∞. (13)

This proves (10). Combine (8) and (9) with the above to obtain the relations

lim inf
x→∞

P (|y| > x)

P (|ε0| > x)

≥ lim inf
x→∞

P (|y(m)| > (1 + δ)x)

P (|ε0| > x)
− lim sup

x→∞

P (
∑∞

i=m |ρ|i|ε0| > δx)

P (|ε0| > x)

→ lim inf
x→∞

P (|y(m)| > (1 + δ)x)

P (|ε0| > x)
as m→∞

and

lim sup
x→∞

P (|y| > x)

P (|ε0| > x)

≤ lim sup
x→∞

P (|y(m)| > (1− δ)x)

P (|ε0| > x)
+ lim sup

x→∞

P (
∑∞

i=m |ρ|i|ε0| > δx)

P (|ε0| > x)

→ lim sup
x→∞

P (|y(m)| > (1 + δ)x)

P (|ε0| > x)
as m→∞
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By Basrak et al. (2002b) equation (2.6) y(m) is regular varying with tail index λ

and hence will

lim
x→∞

P (|y(m)| > x)

P (|ε0| > x)
= cm

for a sequence of constants cm. Using the same type of arguments as for y− y(m)

one can conclude that cm tends to a finite limit c as m tends to infinity. Hence

it can be concluded that

(c− δ)(1 + δ)−λ ≤ lim inf
x→∞

P (|y| > x)

P (|ε0| > x)

≤ lim sup
x→∞

P (|y| > x)

P (|ε0| > x)

≤ (c+ δ)(1− δ)−λ.

Now by letting δ go towards zero it can be concluded that y is regular varying

with index λ.

Finally we wish to extent this result to all vectors of the form y(k) = (y0, ..., yk).

By Basrak, Davis & Mikosch (2002a) Theorem 1.1(ii) it suffices to show that all

linear combinations v ∈ Rk \ {0} are regular varying. However, for all v

v′y(k) =
∞∑
i=0

ciε−i,

where the coefficients are absolutely summable and smaller than one in absolute

value for i sufficiently large. Hence can regular variation of y(k) be verified by

the same arguments as above. This completes the proof of Lemma 2

Proof of Theorem 2. Define the empirical autocovariance and the empirical au-

tocorrelation as

γT (r) =
1

T

T∑
t=1

ytyt+r, r = 0, 1

ρT (1) = γT (1)/γT (0).

These are clearly closely related to the OLS estimator of the autoregressive pa-
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rameter. We will therefore in the following prove that γT (r) − E[γT (r)] and

ρT (1)− E[γT (1)]/E[γT (0)] are both asymptotically stable with index λ/2.

Define yt(k) = (yt, ..., yt+k)
′ and let aT be a sequence such that TP (|yt| > aT )→ 1

(one can choose aT to be the 1−1/T quantile of the distribution function for |yt|).
The proof is structured as the proof of Theorem 2.10 in Basrak et al. (2002b) and

we must therefore verify that

(A.1) yt(k) is regularly varying for all k ≥ 1,

(A.2) the mild mixing condition A(aT ) from Davis & Mikosch (1998) p. 2052,

(A.3) condition (2.10) of Davis & Mikosch (1998), and

(A.4) condition (3.3) of Davis & Mikosch (1998).

(A.1) follows straight from Lemma 2. Furthermore Lemma 1 establishes that the

Markov chain (yt−1, εt)
′ is geometrically ergodic, this implies in particular that the

stationary version is strongly mixing (actually even β-mixing) with geometrically

decreasing rate function. And since the condition A(aT ) is implied by strong

mixing the verification of (A.2) is complete.

The two remaining conditions require a bit more work. With | · | denoting the

max norm condition (2.10) of Davis & Mikosch (1998) can be stated as

lim
m→∞

lim sup
T→∞

P
( ∨

m≤|t|≤rT
|yt(k)| > aTx

∣∣|y0(k)| > aTx
)

= 0, x > 0, (14)

where rT is an integer sequence such that rT →∞ and rT/T → 0 as T →∞. By

the definition of conditional probabilities, Markov’s inequality, and the symmetry

of the distributions it holds for t > 0 that

P (|yt| > aTx | |y0| > aTx) ≤ E[1{|y0|2>a2
T x

2}|yt|2]

a2
Tx

2P (|y0|2 > a2
Tx

2)

=
E
[
1{|y0|2>a2

T x
2}(ρ

2t|y0|2 +
∑t−1

i=0 ρ
2iε2

t−i)
]

a2
Tx

2P (|y0|2 > a2
Tx

2)
= It,T .
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The recursion of Nelson (1990) gives

E0[ε2
t ] = ε0α

t + ω
1− αt
1− α ≤ ε0α

t + C0,

for some positive constant C0 independent of t. Direct calculations provide the

relation

t−1∑
i=0

ρ2iαt−i =

{
α(ρ2t−αt)
ρ2−α if α 6= ρ2

tαt if α = ρ2
.

Note that the sum converges to zero as t tends to infinity for all ρ, α smaller than

one in absolute value. Introduce the auxiliary process ỹt =
∑∞

i=0 |ρ|i|εt−i|, which

is clearly positive. Inspecting the proof of Lemma 2 reveals that ỹt is regularly

varying with tail index λ. In addition one has the relation ỹt ≥ |yt| for all t and

ỹ0 ≥ |ε0|. Hence it holds that

E[1{|y0|>aT x}ε
2
0]

a2
Tx

2P (|y0| > aTx)
≤ E[1{|ỹ0|2>a2

T x
2}ỹ

2
0]

a2
Tx

2P (|ỹ2
0| > a2

Tx
2)

P (|ỹ0| > aTx)

P (|y0| > aTx)
,

and by Karamata’s Theorem (e.g. Resnick (1987) Proposition 0.6)

lim sup
T→∞

E[1{|y0|>aT x}ε
2
0]

a2
Tx

2P (|y0| > aTx)
≤ C1

λ− 2
,

for some constant C1. Applying Karamata’s Theorem again it can concluded

that there exists T0 such that for all T > T0 it holds

It,T ≤
E
[
1{|y0|>aT x}

(
ρ2t|y0|2 + ε2

0
α(ρ2t−αt)
ρ2−α + C2

)]

a2
Tx

2P (|y0| > aTx)

≤ C3ρ
2t + C4

α(ρ2t − αt)
ρ2 − α +

C2

a2
Tx

2

≤ C5a
t +

C2

a2
Tx

2
,

for some positive constants C2, ..., C5 and a ∈]0, 1[ all independent of t, since by

assumption both ρ and α are smaller that one in absolute value. Note that the

special case α = ρ2 can be treated using the same arguments. We are now ready
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to verify (14).

lim
m→∞

lim sup
T→∞

P
( ∨

m≤|t|≤rT
|yt(k)| > aTx

∣∣|y0(0)| > aTx
)

≤ lim
m→∞

lim sup
T→∞

2(k + 1)

rT+k∑
t=m

P (|yt| > aTx | |y0| > aTx)
P (|y0| > aTx)

P (|y0(k)| > aTx)︸ ︷︷ ︸
≤1

≤ lim
m→∞

2(k + 1)
∞∑
t=m

C5a
t + lim

m→∞
lim sup
T→∞

2(k + 1)(rT + k)/(a2
Tx

2)

= 0,

by choosing rT such that rT/a
2
T → 0. Note that negative values of t are dealt

with by noting that due to stationarity the following relation holds for t > 0

P (|y−t| > aTx | |y0| > aTx) = P (|y−t| > aTx, |y0| > aTx)/P (|y0| > aTx)

= P (|y−t| > aTx, |y0| > aTx)/P (|y−t| > aTx)

= P (|yt| > aTx | |y0| > aTx)

This completes the verification of (A.3). Finally (A.4) is considered. In the setup

of the AR-ARCH model condition (3.3) of Davis & Mikosch (1998) reads

lim
x→0

lim sup
T→∞

P
(∣∣a−2

T

T∑
t=1

ytyt+11{|ytyt+1|≤a2
T x} − E

[
a−2
T

T∑
t=1

ytyt+11{|ytyt+1|≤a2
T x}
]∣∣ > δ

)

= 0,

for all δ > 0, which can also be found in Davis & Hsing (1995) p. 895. Markov’s

inequality and Kamarata’s Theorem (the required regular variation of ytyt+1 can
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be verified by the same arguments as for yt) now give

P (|a−2
T

T∑
t=1

ytyt+11{|ytyt+1|≤a2
T x} − E[a−2

T

T∑
t=1

ytyt+11{|ytyt+1|≤a2
T x}]| > δ)

≤ 1

δ2
a−4
T

T∑
t=1

E[(ytyt+11{|ytyt+1|≤a2
T x} − E[ytyt+11{|ytyt+1|≤a2

T x}])
2]

≤ 4

δ2
a−4
T

T∑
t=1

E[y2
t y

2
t+11{|ytyt+1|2≤a4

T x
2}]

=
4

δ2
a−4
T TE[y2

0y
2
11{|y0y1|2≤a4

T x
2}]

∼ C6x
2TP (|y0y1|2 > a4

Tx
2) for large T

→ C7x
2 as T →∞

→ as x→ 0.

Using the same arguments, it can be shown that (A.4) also holds for the sequence

y2
t . This completes the verification of (A.4). Due to (A.1) - (A.4) one can apply

Theorem 3.5 of Davis & Mikosch (1998). Note that their condition (3.4) is not

meet, but by inspecting the proof it becomes clear that (A.4) suffices. Hence it

holds that

Ta−2
T (γT (r)− E[γT (r)])

D→ Wr as T →∞, r = 0, 1

Ta−2
T (ρT (1)− E[γT (1)]/E[γT (0)])

D→ S0 as T →∞,

where W0,W1, and S0 are λ/2-stable random variables. As the convergence result

in Theorem 3.5 of Davis & Mikosch (1998) is based on an application of the

continuous mapping theorem the stated convergence results hold jointly. Since

aT can be chosen to be the 1 − 1/T quantile of the distribution function of |yt|
one gets that aT can be chosen as aT = T 1/λ. This implies that the normalizing

sequence Ta−2
T can be chosen as T 1−2/λ. Hence it holds that

T 1−2/λ(ρ̂OLS − ρ0) = T 1−2/λ(ρT (1)− E[γT (1)]/E[γT (0)])
D→ S0.

This completes the proof.
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Proof of Theorem 3. Since the process (εt)
T
t=1 is an ARCH(1) process it follows

directly from Davis & Mikosch (1998) pp. 2069 - 2070 that

T−2/λ

T∑
t=1

εtεt−1
D→ S1 and T−4/λ

T∑
t=1

ε2
t ε

2
t−1

D→ S2,

where S1 is a λ/2 stable random variable and S2 is a λ/4 stable random variable.

Again the convergence hold jointly, but the remaining parameters and dependence

structure are unknown. Under H0 we can rewrite VT as

VT =
(
T−2/λ

T∑
t=1

εtεt−1

)(
T−4/λ

T∑
t=1

ε2
t ε

2
t−1

)−1/2
,

and the continuous mapping theorem completes the proof.

84



85



86



On IGARCH and convergence of the QMLE
for misspecified GARCH models
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Abstract: We address the IGARCH puzzle by which we understand the fact that a
GARCH(1,1) model fitted by quasi maximum likelihood estimation to virtually any
financial dataset exhibit the property that α̂ + β̂ is close to one. We prove that if
data is generated by certain types of continuous time stochastic volatility models, but
fitted to a GARCH(1,1) model one gets that α̂ + β̂ tends to one in probability as
the sampling frequency is increased. Hence, the paper suggests that the IGARCH
effect could be caused by misspecification. The result establishes that the stochastic
sequence of QMLEs do indeed behave as the deterministic parameters considered in
the literature on filtering based on misspecified ARCH models, see e.g. Nelson (1992).
An included study of simulations and empirical high frequency data is found to be in
very good accordance with the mathematical results.

Keywords: GARCH; Integrated GARCH; Misspecification; High frequency exchange

rates.

1 Introduction

A complete characterization of the volatility of financial assets has long been one

of the main goals of financial econometrics. Since the seminal papers of Engle

(1982) and Bollerslev (1986) the class of generalized autoregressive heteroskedas-

tic (GARCH) models has been a key tool when modeling time dependent volatil-

ity. Indeed the GARCH(1,1) model has become so widely used that it is often

referred to as “the workhorse of the industry” (Lee & Hansen 1994).

Recall that given a sequence of returns (yt)t=0,...,T the GARCH(1,1) model defines

the conditional volatility as

σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ), (1)
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for some non-negative parameters θ = (ω, α, β)′. Quasi maximum likelihood

estimation of GARCH(1,1) models on financial returns almost always indicates

that α̂ is small, β̂ is close to unity, and the sum of α̂ and β̂ is very close to

one and approaches one as the sample is increased, see e.g. Engle & Bollerslev

(1986), Bollerslev & Engle (1993), Baillie, Bollerslev & Mikkelsen (1996), Ding

& Granger (1996), Andersen & Bollerslev (1997), and Engle & Patton (2001).

This feature seems to be present independently of the considered asset class or

sampling frequency. Engle & Bollerslev (1986) proposed the integrated GARCH

(IGARCH) model specifically to reflect this fact. Also in the recent litterateur on

quasi maximum likelihood estimation in GARCH models it has been paramount

to allow for α + β to be close to or even exceeding one, see e.g. Jensen &

Rahbek (2004a) and Francq & Zaköıan (2004). IGARCH implies that the return

series is not covariance stationary and multiperiod forecasts of volatility will

trend upwards. Recently it has been suggested that either long memory, see e.g.

Mikosch & Stărică (2004), or parameter changes, see e.g. Hillebrand (2005), in

the data generating process can give the impression of IGARCH.

In a series of seminal papers Nelson (1992), Nelson & Foster (1994), and Nel-

son & Foster (1995) explore the consequences of applying ARCH type filters on

discrete samples from continuous time stochastic volatility models. One impor-

tant result demonstrates the existence of a deterministic sequence of parameters

for the GARCH(1,1) model such that the difference between the GARCH condi-

tional volatility estimates based on (1) and the true volatility converges to zero in

probability as the sampling frequency is increased. This may explain the success

of ARCH type models at recovering and forecasting volatility even though they

are, no doubt, misspecified. The result, however, depends on the fact that the

chosen parameters have the IGARCH property and do not depend on the data.

Indeed Nelson & Foster (1994) stress the need for extending their results to cover

filters based on quasi maximum likelihood estimators (QMLEs) from ARCH type

models. In addition a number of papers (see, e.g. Drost & Nijman (1993), Drost

& Werker (1996), and Francq & Zaköıan (2000)) explore the connection between

continuous time stochastic volatility models and discrete time GARCH models.

They establish a link between parameters of the two classes of models and conse-

quently suggest that one estimates parameters in the continuous time model from

the GARCH estimates. However, Wang (2002) warns against applying statistical
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inference based on a GARCH model to its continuous time counterpart as this

may lead to erronerous conclusions. The concerns of Nelson & Foster (1995) and

Wang (2002) illustrate the need to understand better the behaviour of QMLEs

for misspecified GARCH models.

In this paper we propose a simple stochastic volatility type model that enables us

to study the statistical properties of the QMLE based on the GARCH(1,1) model

(1). We prove in Theorem 1 that as the sampling frequency is increased certain

data generating processes will spuriously lead to the conclusion of IGARCH. The

employed infill asymptotics has recently been much used in the literature on

realized volatility, see e.g. Andersen, Bollerslev, Diebold & Labys (2003) and

Barndorff-Nielsen & Shephard (2001).

The paper also provides a more intuitive explanation of the IGARCH puzzle

by exposing similarities between the GARCH model and non-parametric estima-

tion of a volatility process, see Stărică (2003) for a related study. The GARCH

model provides a filter for computing the present volatility as, roughly speaking,

a weighted average of past squared observations and a constant. Examination of

the weights and the shape of the quasi likelihood function makes it plausible to

believe that the performance of the filter is optimized when α and β sum to one.

Finally, since the theoretical results not only establish that the sum of the

GARCH parameters will tend to one, but also indicate that they will do so

at a polynomial rate, an illustration using high frequency exchange rates as well

as simulated data is provided. The results are found to be in remarkably good

accordance with the theoretical results and furthermore indicates that Theorem 1

is valid for other models than the ones covered by the present proof.

The rest of the paper is organized as follows. Section 2 presents the main result

and explores connections between the GARCH(1,1) model and non-parametric

estimation of volatility. Section 3 illustrates our results by both simulations and

empirical data, while Section 4 concludes and presents ideas for future research.

All technical lemmas are deferred to the Appendix.
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2 Main Results

Based on a large class of volatility models this section initially provides a more

heuristic explanation of the IGARCH puzzle by exposing similarities between

the GARCH model and non-parametric estimation of a volatility process. In the

second part of the section we present a mathematical setup where these heuristic

arguments can be formalized and we state our main theorem.

2.1 An Intuitive Explanation of the IGARCH Puzzle

Essentially all volatility models for a sequence (yt)t=0,...,T can be captured by the

formulation

yt =
√
ft · zt, (2)

where zt is a sequence of zero mean random variables with unit variance and

(ft)t=0,...,T a sequence of stochastic volatilities such that zt is independent of

(ft, yt−1, . . . , y0). Define σ2
t (θ) to be the conditional variance process correspond-

ing to the GARCH(1,1) model with parameters θ = (ω, α, β)′

σ2
t (θ) = ω + αy2

t−1 + βσ2
t−1(θ)

= ω

t−1∑
i=0

βi + α

t−1∑
i=0

βiy2
t−1−i + βtσ2

0, (3)

with σ2
0 a fixed constant. Consider the usual quasi log-likelihood function

lT (θ) = − 1

T

T∑
t=1

(log(σ2
t (θ)) +

y2
t

σ2
t (θ)

) (4)

and note that under the data generating process given by (2) the likelihood

function may be rewritten as

lT (θ) =
1

T

T∑
t=1

(1− z2
t )

ft
σ2
t (θ)
− 1

T

T∑
t=1

(log(σ2
t (θ)) +

ft
σ2
t (θ)

). (5)
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Strictly speaking this is not a likelihood function, but just an objective function

for the GARCH(1,1) model, but the terminology emphasizes the connection to the

literature on estimation of GARCH models. Since the first term has zero mean (if

finite) and the function x 7→ − log(x)−a/x has a unique maximum at x = a, the

decomposition (5) suggests that for a large class of data generating processes it is

plausible that the likelihood function is optimized when the conditional variance

process is close to the true unobserved volatility process ft.

For large values of t the conditional variance process in (3) can be viewed as

a kernel estimator of the unobserved volatility at time t with kernel weights

αβi, i = 0, . . . , t − 1 on past observations y2
t−1, . . . , y

2
0 plus the constant ω

1−β . In

order for this to be an unbiased estimator of the non-constant volatility f on

average over the entire sample one must have
∑∞

i=0 αβ
i = α

1−β ≈ 1 and the

constant ω
1−β small. Hence, when considering the conditional variance process,

σ2
t (θ), as a non-parametric estimator of the unobserved volatility one must have

α+β ≈ 1 and ω small in order to avoid introducing a systematical bias. Clearly,

the method above is not always the optimal way to match the conditional variance

process, σ2
t (θ), with the volatility process, ft. For instance if the data generating

process is in fact the GARCH(1,1) model one should choose θ to be the true

parameter value and hence obtain σ2
t (θ) = ft.

2.2 A Mathematical Explanation of the IGARCH Puzzle

In the following we introduce a mathematical framework allowing us to formalize

the considerations above. Clearly, we cannot give unified mathematical proofs

of our results covering all interesting stochastic volatility models. However, the

framework below offers a compromise between flexibility of the model class and

clarity of the formal mathematical arguments. Following Theorem 1 we discuss

possible generalizations.

Let the continuous time process (Su)u∈[0,1] be a solution to the stochastic differ-

ential equation

dSu =
√
f(u)dWu, (6)
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where W is a standard Brownian motion and f is a strictly positive continuous

function on the unit interval. Consider a discrete sample (rt)t=1,...,T of returns

given by

rt = St/T − S(t−1)/T ∼ N(0,

∫ t/T

(t−1)/T

f(u)du).

For large T the distribution of the returns (scaled by
√
T ) will resemble the

distribution of a sequence (yt)t=1,...,T generated by

yt =
√
f(t/T ) · zt, (7)

where zt is an i.i.d. sequence of zero mean unit variance Gaussian random vari-

ables. By extending the model in (6) to allow for a stochastic volatility process

f the formulation encompasses a number of applied stochastic volatility models.

Thus we claim that results based on (7) will also be relevant for the continuous

time model (6), see Remark 2. Indeed many of the results by D.B. Nelson con-

cerning misspecified ARCH models, see e.g. Nelson (1992), are based on models

of the type captured by (6) and also make use of rescaling increments of discrete

samples from these models.

Consider the sequence of parameters θT = (0, T−d, 1 − T−d)′ and introduce the

stochastic processes

hT (u) = σ2
bTuc(θT )

on u ∈ [0, 1], where σt(θ) is given by the GARCH(1,1) recursion (3). Here and

throughout the paper bxc denotes the integer part of x. Further, let D([a, b])

denote the space of càdlàg functions on the interval [a, b].

Lemma 1. If E[z8
t ] < ∞ then for any d ∈]1/2, 1[ and γ ∈]0, 1] the process

hT
P→ f in the uniform norm on D([γ, 1]) as T tends to infinity.

The lemma establishes that there exists a sequence of parameters such that the

conditional variance process associated with the GARCH(1,1) model gets arbi-

trarily close to the unobserved volatility process when the sampling frequency is

increased. The lemma is an analogue to Theorem 3.1 of Nelson (1992), however,
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our result is given for the uniform norm, but assuming a somewhat simpler data

generating process.

Proof of Lemma 1. Introduce the notation gT (u) := E[hT (u)] for u ∈ [0, 1]. For

γ, η > 0

P( sup
u∈[γ,1]

|hT (u)− f(u)| > η)

≤ P( sup
u∈[γ,1]

|hT (u)− gT (u)| > η/2) + P( sup
u∈[γ,1]

|gT (u)− f(u)| > η/2).

By Lemma 3 in the Appendix the last term converges to zero as T tends to

infinity. To handle the first term note that by Lemma 2 in the Appendix it holds

that

P( sup
u∈[γ,1]

|hT (u)− gT (u)| > η/2)

= P( max
t=bTγc−1,...,T

|hT (t/T )− gT (t/T )| > η/2)

≤
T∑

t=bTγc−1

P(|hT (t/T )− gT (t/T )| > η/2)

≤ Aη−4Tα2
T

which converges to zero as T tends to infinity since αT = T−d with d > 1/2. �

Before stating our main theorem define the parameter set

Θ = {(ω, α, β)′ ∈ R3 | 0 ≤ ω, 0 ≤ α ≤ 1, 0 ≤ β ≤ 1} (8)

and let θ̂T = (ω̂T , α̂T , β̂T )′ = arg maxθ∈Θ lT (θ) be the usual quasi maximum like-

lihood estimator based on (4).

Theorem 1. Suppose that the data generating process is given by (7) where f

is non-constant and E[z8
t ] < ∞. Then the QMLE based on (4) satisfies that

(ω̂T , α̂T , β̂T )′
P→ (0, 0, 1)′ as T tends to infinity.

Remark 1. The initial value σ2
0 for the conditional volatility process σ2

t (θ) does

not need to be a constant. For instance Theorem 1 still holds if σ2
0 is merely
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bounded in probability as T tends to infinity. This includes defining σ2
0 as the

unconditional variance of the full sample, which is implemented in many software

packages.

Remark 2. When defining σ2
0 as the unconditional variance of the full sample

it is a simple consequence of the GARCH(1,1) recursion that any scaling of the

observations only affects the estimate of the scale parameter ω. Hence, if the

QMLE is based on the unscaled returns, rt, from the continuous time model (6)

Theorem 1 remains valid. When extending the model (6) to allow for a stochastic

volatility the present proof of Theorem 1 requires that the volatility process be

independent of the Brownian motion. In this case the result should be read as

conditional on the sample path of the volatility process.

Remark 3. To facilitate the presentation we have assumed that the volatility

process f is a continuous function. However, the proofs can be extended to cover

a finite number of discontinuities at the price of a somewhat more cumbersome

notation and Theorem 1 therefore remains valid.

Remark 4. The proof is given for the case of Gaussian innovations zt, however,

it can easily be adapted to most other distributions such as the t-distribution as

long as the moment condition in Theorem 1 is met. Another generalization is to

allow for some dependence in the sequence of innovations. For instance including

an autoregressive structure on zt would permit modeling leverage effects, but

leads to considerably more complicated proofs.

Proof of Theorem 1. For ωU > 0 divide the full parameter space Θ defined in (8)

into the compact subset

ΘωU := {θ = (α, β, ω)′ ∈ Θ | ω ≤ ωU}

and its complement Θc
ωU
. Let

Vε(0, 0, 1) = {(ω, α, β)′ ∈ Θ | ||(ω, α, β)′ − (0, 0, 1)′|| < ε}

and use Lemma 6 in the Appendix to construct a finite covering

∪ki=1V (θi) ⊃ ΘωU\Vε(0, 0, 1)

of the compact set ΘωU\Vε(0, 0, 1) with open subsets of Θ and let γθ1 , . . . , γθk > 0
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be constants such that according to Lemma 6

lim
T→∞

P( sup
θ∗∈V (θi)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθi) = 1

for i = 1, . . . , k. With γ = min(γθ1 , . . . , γθk) we conclude that

1 ≥ P( sup
θ∈Θ\Vε(0,0,1)

lT (θ) < −
∫ 1

0

log(f(u))du− 1− γ)

≥ P( sup
θ∈∪ki=1V (θi)∪ΘcωU

lT (θ) < −
∫ 1

0

log(f(u))du− 1− γ)

≥ 1−
k∑
i=1

P( sup
θ∈V (θi)

lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− γ) (9)

− P( sup
θ∈ΘcωU

lT (θ) ≥ −
∫ 1

0

log(f(u)))du− 1− γ) (10)

where by construction (9) converges to one as T tends to infinity. Further, as

σ2
t (θ) ≥ ωU on Θc

ωU
we get that

sup
θ∈ΘcωU

lT (θ) = sup
θ∈ΘcωU

− 1

T

T∑
t=1

(log(σ2
t (θ)) +

y2
t

σ2
t (θ)

) ≤ − log(ωU)

hence the probability in (10) is zero if we choose ωU large enough. By Lemma 4

in the Appendix it holds that lT (θT )
P→ − ∫ 1

0
log(f(u))du− 1 and since lT (θ̂T ) ≥

lT (θT ) we conclude that for any ε > 0

lim
T→∞

P(θ̂T ∈ Vε(0, 0, 1)) = 1.

�

3 Illustrations

The main result (Theorem 1) establishes that for certain data generating processes

the quasi maximum likelihood estimators for the GARCH(1,1) model will con-

verge to (0, 0, 1)′ as the sampling frequency increases. In this section we illustrate
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the convergence results and go a step further by examining the rate of conver-

gence as well. Based on Lemma 1 one could conjecture that α̂T and 1 − β̂T are

proportional to T−d for some d ∈ (0, 1). This assertion can be visualized by plot-

ting log(α̂T ) and log(1− β̂T ) against log(T ). If a linear relationship is found the

parameter d can be estimated by ordinary least squares.

The first part of the study is based on high frequency recordings of the EUR-USD

exchange rate. To increase the empirical relevance of the simulation part we use

broadly applied continuous time models as data generating processes. However,

formally these models do not satisfy the assumptions of Theorem 1. In this

respect the simulation study actually demonstrates that the scope of the results

might be extended to a wider class of models.

EUR-USD. Based on 30-minute recordings of the EUR-USD exchange rate span-

ning the period from the 2nd of February 1986 to the 30th of March 20071 log-

returns are computed corresponding to 4 through 72 hour returns. This gives

estimates θ̂T for T between 3.687 and 64.525.

Simulations. We consider three different simulation setups including the Heston

model and the continuous GARCH model (obtained as the diffusion limit of

a GARCH(1,1) model, see Nelson (1990)). The considered models can all be

embedded in the formulation

dSu = SuV
1/2
u dW1u, dVu = κV a

u (µ− Vu)du+ σV b
udW2u,

where W1 and W2 are standard Brownian motions with a possibly non-zero cor-

relation denoted by ρ. For ease of exposition we have omitted a drift term in the

equation for dSu. We will consider three configurations for the parameters a and

b, corresponding to the Heston model, the continuous GARCH model, and the

3/2N model suggested in Christoffersen, Jacobs & Mimouni (2007). To make the

simulations comparable to the empirical study we consider a fixed time span of

21 years. For the remaining parameters we choose the estimated values stated

in Christoffersen et al. (2007), which are based on fitting the models to S&P-500

data. By this choice of time span and parameter values it is reasonable to com-

1Prior to January 1999 the series is generated from the DEM-USD exchange rate using a
fixed exchange rate of 1.95583 DEM per EUR. Preceding the analysis the dataset has been
cleaned as described in Andersen et al. (2003).
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Name a b κ µ σ ρ
Heston 0 1/2 6.5200 0.0352 0.4601 -0.7710
Continuous GARCH 0 1 3.9248 0.0408 2.7790 -0.7876
3/2N 1 3/2 60.1040 0.0837 12.4989 -0.7591

Table 1: Parameter values used in the simulation study.

pare the empirical study and the simulation study directly. GARCH(1,1) models

are fitted to log-returns based on a discrete sample from the S process2. Table 1

summarizes the parameters (per annum) for the included models. We will con-

sider log-returns corresponding to weekly through 5 minute returns, which gives

estimates θ̂T for T between 1,000 and 300,000.

Figure 1 reports the correspondence between the estimates of α and T for the

four setups. The conjectured linear relationship between log(α̂T ) and log(T ) is

clearly present. The corresponding plots for 1− β̂T have been omitted since they

are indistinguishable from Figure 1. In particular we have verified the IGARCH

property, i.e. that (α̂T , β̂T ) → (0, 1). The estimated values for d are in all cases

found to be between 0.25 and 0.5, but explaining this phenomenon is left for

future research.

The fact that none of the simulations satisfy the assumptions clearly indicates

that Theorem 1 holds for a far larger class of models than those covered by the

present version of our proof. This emphasizes that the IGARCH effect can be

caused by the mathematical structure of a GARCH model alone and hence might

not be a property of the true data generating mechanism. That the apparent

polynomial convergence of the QMLEs is not only a property of the simulated

series is illustrated by the striking similarities between plots based on simulated

and real data.

4 Conclusion

In this paper we have established that when a GARCH(1,1) model is fitted to

a discrete sample from a certain class of continuous time stochastic volatility

models then the sum of the quasi maximum likelihood estimates of α and β will

2The continuous time process is simulated by a standard Euler scheme using 108 data points.
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Figure 1: Correspondence between α̂T and T in log-scale for the four configu-
rations. The estimate of d is obtained by regressing log(α̂T ) on log(T ) and a
constant.

converge to one in probability as the sampling frequency is increased. Our results

therefore indicate that the IGARCH property often found in empirical work could

be explained by misspecification.

The work of Nelson (1992) showed that it is possible to make the conditional

variance process based on ARCH type models with deterministic parameters

converge to the true unobserved volatility process. The parameters must here

satisfy that (ωT , αT , βT ) → (0, 0, 1) as the number of sample points T tends to

infinity. Our main result states that the same convergence holds for the stochastic

sequence of quasi maximum likelihood estimators.

The simulations and the empirical study confirm the theoretical results and fur-

ther suggest that: i) the assumptions of the main results may be weakened con-

siderably and ii) that it may be possible to derive the exact rate of convergence

of the estimators in specific mathematical frameworks. These questions are left

for future research.
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Appendix: Auxiliary lemmas

Lemma 2. If E[z8
t ] <∞ there exists some A > 0 such that for any η > 0

sup
u∈[0,1]

P[|hT (u)− gT (u)| > η] ≤ Aη−4α2
T .

Proof. It follows from Chebychev’s inequality that

P(|hT (u)− gT (u)| > η)

≤ η−4E[|hT (u)− gT (u)|4]

≤ η−4E[(αT

bTuc−1∑
t=0

βtTf( bTuc−1−t
T

)(z2
bTuc−1−t − 1))4]

≤ η−4||f ||∞α4
T{
bTuc−1∑
t=0

β4t
T κ4 + 2η−4α4

T

bTuc−1∑
t=1

t−1∑
j=0

β2t+2j
T κ2

2}

≤ A1η
−4α4

T (
∞∑
t=0

β4t
T +

∞∑
t=1

β2t
T

1−β2t
T

1−β2
T

),

where we make use of the fact that f is bounded and that κ1 = 0 with kr :=

E[(z2
t − 1)r]. Evaluating the geometric series above, using that αT = 1− βT , and

that the last expression does not depend on u one arrives at an inequality of the

form stated in the lemma. �

Lemma 3. For any γ > 0 then supu∈[γ,1] |gT (u)−f(u)| → 0 as T tends to infinity.

Proof. For any sequence cT and any u ∈ [γ, 1] we get

|gT (u)− f(u)|

= |βbTucT σ2
0 + αT

bTuc−1∑
t=0

βtT (f( bTuc−t−1
T

)− f(u))− αT
∞∑

t=bTuc
βtTf(u)|

≤ β
bTuc
T σ2

0 + αT

cT−1∑
t=0

βtT |f( bTuc−t−1
T

)− f(u)|+ αT

∞∑
t=cT

βtT ||f ||∞

≤ β
bTγc
T σ2

0 + αT
1− βcTT
1− βT sup

v∈[u− cT
T
,u]

|f(v)− f(u)|+ αT
βcTT

1− βT ||f ||∞.
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If cT/T = o(1) the uniform continuity of f implies that the middle term can be

made arbitrary small by choosing T adequately large and that the convergence

is uniform over u ∈ [γ, 1]. To complete the proof note that

log(βcTT ) = cT log(1− T−d) = −cTT−d log(1− T−d)− log(1)

T−d
→ −∞

as T tends to infinity provided that we choose cT so that cT/T
d tends to infinity

as T tends to infinity. �

Lemma 4. For d > 1/2 then

lT (θT )
P→ −

∫ 1

0

log(f(u))du− 1, as T →∞.

Proof of Lemma 4. Rewriting the expression for lT (θT ) yields

lT (θT ) = − 1

T

T∑
t=1

(log(σ2
t (θT )) +

f(t/T )

σ2
t (θT )

) (11)

− 1

T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1) (12)

By the law of large numbers for martingale difference sequences (12)
P→ 0. For-

mally, since E[z2
t − 1] = 0 and σ2

t (θT ) is Ft−1−measurable we get by applying

Chebechev’s inequality that

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1)| > η)

≤ B1

T 2

T∑
i=1

T∑
j=i

E[E[
(z2
i − 1)(z2

j − 1)

σ2
i (θT )σ2

j (θT )
| Fj−1]]

=
B2

T 2

T∑
t=1

E[
1

σ4
t (θT )

] ≤ B3

Tα2
Tβ

2cT
T

E[
1

(z2
1 + . . .+ z2

cT
)2

],

where cT is a sequence of positive integers. For T sufficiently large (Mathai &
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Provost (1992), p. 59)

E[
1

(z2
1 + . . .+ z2

cT

)2] ≤ B4

c2
T

hence

0 ≤ lim sup
T→∞

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θT )

(z2
t − 1)| > η) ≤ lim sup

T→∞

B5

Tα2
Tβ

2cT
T c2

T

and by choosing cT = bα−1
T c = bT dc the right hand side is zero.

For any γ > 0 (11) may be written as

− 1

T

bTγc−1∑
t=1

log(σ2
t (θT ))− 1

T

bTγc−1∑
t=1

f(t/T )

σ2
t (θT )

−
∫ 1

γ

log(hT (u))du−
∫ 1

γ

f(u)

hT (u)
du+

T∑

t=bTγc

∫ t/T

(t−1)/T

f(u)− f(t/T )

hT (u)
du,

using that hT (u) is piecewise constant on intervals of the form [(t − 1)/T, t/T [.

We deduce from Theorem 1 and the continuous mapping theorem that

∫ 1

γ

log(hT (u))du
P→

∫ 1

γ

log(f(u))du

∫ 1

γ

f(u)

hT (u)
du

P→ 1− γ
∫ 1

γ

1

hT (u)
du

P→
∫ 1

γ

1

f(u)
du.

By the uniform continuity of f we conclude that

T∑

t=bTγc

∫ t/T

(t−1)/T

f(u)− f(t/T )

hT (u)
du

P→ 0.
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For η > 0 then

P(| 1
T

bTγc−1∑
t=1

1

σ2
t (θT )

| > η) ≤ P( max
t=1,...,bTγc−1

1

T

1

σ2
t (θT )

>
η

bTγc − 1
)

≤ P( min
t=1,...,bTγc−1

σ2
t (θT ) ≤ γ

B6

)

≤
bTγc∑
t=1

P(σ2
t (θT ) ≤ γ

B6

).

Noting that E[σ2
t (θT )] ≥ min(f, σ2

0) ≡ σ2 > 0 uniformly in t and T we find that

for γ > 0 sufficiently small then

P(σ2
t (θ) ≤

γ

B6

) ≤ P(|σ2
t (θT )− E[σ2

t (θT )]| ≥ E[σ2
t (θT )]− γ

B6

)

≤ P(|σ2
t (θT )− E[σ2

t (θT )]| ≥ σ2 − γ

B6

)

we get by applying Lemma 2 that

P(| 1
T

bTγc−1∑
t=1

1

σ2
t (θT )

| > η) ≤ B7bTγcα2
T

which tends to zero as T tends to infinity. For η > 0 given we get

P(| 1
T

bTγc−1∑
t=1

log(σ2
t (θT ))| > η)

≤ P( max
t=1,...,bTγc−1

| 1
T

log(σ2
t (θT ))| > η

bTγc − 1
)

≤ P( max
t=1,...,bTγc−1

σ2
t (θT ) ≥ exp(B8/γ)) + P( min

t=1,...,bTγc−1
σ2
t (θT ) ≤ exp(−B8/γ))

≤
bTγc−1∑
t=1

P(σ2
t (θT ) ≥ exp(B8/γ)) +

bTγc−1∑
t=1

P(σ2
t (θT ) ≤ exp(−B8/γ)).
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From the previous argument we find that for γ > 0 sufficiently small

P(σ2
t (θT ) ≥ exp(B8/γ)) ≤ P(|σ2

t (θT )− E[σ2
t (θT )]| ≥ exp(B8/γ)− σ2)

P(σ2
t (θT ) ≤ exp(−B8/γ)) ≤ P(|σ2

t (θT )− E[σ2
t (θT )]| ≥ σ2 − exp(−B8/γ)),

where σ2 = σ2
0 + ‖f‖∞. From Lemma 2 we get that

P(| 1
T

bTγc−1∑
t=1

log(σ2
t (θT ))| > η) ≤ B9bTγcα2

T

as T tends to infinity. �

Lemma 5. For any θ ∈ Θ it holds that if f is non-constant there exists a constant

cθ > 0 such that

lim
T→∞

P(lT (θ)− {−
∫ 1

0

log(f(u))du− 1} < −cθ) = 1.

Proof of Lemma 5. Assume initially that θ is such that α 6= 0 and β 6= 0, 1 and

rewrite the log-likelihood function as follows

lT (θ)− {−
∫ 1

0

log(f(u))du− 1}

=

∫ 1

0

log(f(u))du− 1

T

T∑
t=1

log(f(t/T ))− 1

T

T∑
t=1

f(t/T )

σ2
t (θ)

(z2
t − 1) (13)

+
1

T

T∑
t=1

{log(
f(t/T )

σ2
t (θ)

) +
σ2
t (θ)− f(t/T )

σ2
t (θ)

}. (14)

By the LLN for martingale differences (13) tends to zero in probability as T tends

to infinity. Formally, since E[z2
t − 1] = 0 and σ2

t (θ) is measurable with respect to
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Ft−1 = F(z0, ..., zt−1) we get by applying Chebechev’s inequality that

P(| 1
T

T∑
t=1

f(t/T )

σ2
t (θ)

(z2
t − 1)| > η)

≤ C1

T 2

T∑
i=1

T∑
j=i

E[E[
(z2
i − 1)(z2

j − 1)

σ2
i (θ)σ

2
j (θ)

| Fj−1]]

=
C2

T 2

T∑
t=1

E[
1

σ4
t (θ)

] ≤ C3

T
E[

1

(α(z2
5 + βz2

4 + . . .+ β4z2
1))2

]

and the expectation on the right hand side is finite if α, β > 0 c.f. Mathai &

Provost (1992).

Next turn to the expression in (14) which we decompose into

1

T

T∑
t=1

(log(
f(t/T )

σ2
t (θ)

)− E[log(
f(t/T )

σ2
t (θ)

)]) (15)

+
1

T

T∑
t=1

(E[
f(t/T )

σ2
t (θ)

]− f(t/T )

σ2
t (θ)

) (16)

+
1

T

T∑
t=1

E[log(
f(t/T )

σ2
t (θ)

) +
σ2
t (θ)− f(t/T )

σ2
t (θ)

] (17)

Initially we will establish that (15) converges in probability to zero. For any

η > 0 direct calculations yield

P(|T−1

T∑
t=1

log(
f(t/T )

σ2
t (θ)

)− E[log(
f(t/T )

σ2
t (θ)

)]| > η)

= P(|T−1

T∑
t=1

log(σ2
t (θ))− E[log(σ2

t (θ))]| > η)

≤ 2

T 2η2

T∑
i=1

T∑
j=i

|cov(log(σ2
i (θ)), log(σ2

j (θ)))|. (18)
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Utilizing the following inequalities

− 1√
x
≤ log(x) ≤ √x, 0 ≤ log(1 + x) ≤ x,

which hold for all strictly positive x, it can be concluded that

|Cov(log(σ2
i (θ)), log(σ2

j (θ)))|

= |Cov(log(σ2
i (θ)), log(βj−iσ2

i (θ) + ω
1− βj−i

1− β + α

j−i−1∑

k=0

βky2
j−1−k

︸ ︷︷ ︸
:=Z(i,j)

))|

= |Cov(log(σ2
i (θ)), log(Z(i, j)(1 +

βj−iσ2
i (θ)

Z(i, j)
)))|

= |Cov(log(σ2
i (θ)), log(1 +

βj−iσ2
i (θ)

Z(i, j)
))|

≤
√
E[(log(σ2

i (θ)))
2]

√
E[(log(1 +

βj−iσ2
i (θ)

Z(i, j)
))2]

≤
√
E[(

1√
σ2
i (θ)

+
√
σ2
i (θ))

2]

√
E[(

βj−iσ2
i (θ)

Z(i, j)
)2]

≤ βj−i
√
E[(σ2

i (θ) +
1

σ2
i (θ)

+ 2)]
√
E[σ4

i (θ)]

√
E[

1

Z(i, j)2
].

For j > i+ 1 the right hand side can be bounded by βj−1C4, where the constant

C4 does not depend on either i nor j. In the derivations it is used repeatedly

that σ2
i (θ) is independent of Z(i, j). Since T−2

∑T
i=1

∑T
j=i β

j−i tends to zero as T

tends to infinity it can be concluded that (18) and hence also (15) tends to zero.
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To show that (16) tends to zero in probability note that

|Cov(
f(i/T )

σ2
i (θ)

,
f(j/T )

σ2
j (θ)

)|

= |f(
i

T
)f(

j

T
)(E[

1

σ2
i (θ)

1

βj−iσ2
i (θ) + Z(i, j)

]− E[
1

σ2
i (θ)

]E[
1

βj−iσ2
i (θ) + Z(i, j)

])|

≤ f(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

] | E[
1

Z(i, j)
]− E[

1

βj−iσ2
i (θ) + Z(i, j)

]|

≤ f(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

]E[
βj−iσ2

i (θ)

Z(i, j)(βj−iσ2
i (θ) + Z(i, j))

]

≤ βj−if(
i

T
)f(

j

T
)E[

1

σ2
i (θ)

]E[σ2
i (θ)]E[

1

Z(i, j)2
].

As before if j > i + 4 the expression can be bounded by βj−1C5, where the

constant C5 does not depend on either i nor j. Hence it can be concluded that

(16) tends to zero. Before turning towards (17) note that for any η > 0 it holds

that

P(σ2
t (θ) /∈ [f − η, ‖f‖∞ + η]) ≥ P(σ2

t (θ) > ‖f‖∞ + η)

≥ P(αfz2
t > ‖f‖∞ + η) = C6 > 0.

Furthermore since the function x 7→ log(a/x) + (x−a)/x has a unique maximum

at a with the value 0 and the function f is strictly positive and bounded there

exists a constant C7 > 0 such that

sup
a∈[f,‖f‖∞]

sup
x∈[0,a−η]∪[a+η,∞]

log(a/x) + (x− a)/x < −C7.
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Finally it can be concluded that (17) can be bounded by

1

T

T∑
t=1

E[log(
f(t/T )

σ2
t (θ)

) +
σ2
t (θ)− f(t/T )

σ2
t (θ)

]

≤ 1

T

T∑
t=1

−C7P(σ2
t (θ) /∈ [f − η, ‖f‖∞ + η])

≤ 1

T

T∑
t=1

−C7C6 = −C7C6 = cθ < 0,

which verifies the claim of the lemma. For the special cases α = 0 or β = 0

the lemma is trivially satisfied. If β = 1 the lemma follows from observing σ2
t (θ)

tends to infinity almost surely as t grows. �

Lemma 6. For θ ∈ Θ\(0, 0, 1) there exists an open subset of Θ around θ denoted

V (θ) and a constant γθ > 0 such that

P( sup
θ∗∈V (θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθ)

tends to one as T tends to infinity.

Proof of Lemma 6. We divide the proof into seven cases mainly because we have

to be very careful when θ lies on the boundary of Θ.

1. θ = (ω, α, β)′ ∈ (0,∞)× [0, 1]× [0, 1)

2. θ = (ω, α, β)′ ∈ (0,∞)× (0, 1]× {1}

3. θ = (ω, α, β)′ ∈ (0,∞)× {0} × {1}

4. θ = (ω, α, β)′ ∈ {0} × (0, 1]× {0}

5. θ = (ω, α, β)′ ∈ {0} × (0, 1]× (0, 1)

6. θ = (ω, α, β)′ ∈ {0} × (0, 1]× {1}

7. θ = (ω, α, β)′ ∈ {0} × {0} × [0, 1)
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Case 1. Choose according to Lemma 5 a cθ > 0 such that

lim
T→∞

P(lT (θ)− {−
∫ 1

0

log(f(u))du− 1} ≥ −cθ) = 0.

For ε > 0 denote by

Vε(θ) = {θ∗ ∈ Θ | ||θ∗ − θ|| ≤ ε}

and note that for T sufficiently large

P( sup
θ∗∈Vε(θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− cθ/2)

= 1− P( sup
θ∗∈Vε(θ)

lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− cθ/2)

≥ 1− P(lT (θ) ≥ −
∫ 1

0

log(f(u))du− 1− cθ)− P( sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)| ≥ cθ/2).

To complete the proof we only need to show that for some sufficiently small ε > 0

then

lim
T→∞

P( sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)| ≥ cθ/2) = 0. (19)

Note that this is much weaker than proving that

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

converges to zero in probability since the probability in (19) should not necessarily

converge to zero for this particular ε if cθ is replaced by an arbitrarily small

positive number. We proceed by showing that there exists a constant, D1 > 0,

such that for any small ε > 0 then

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

can be bounded above by something that converges in probability to D1ε as T

tends to infinity. In particular, the conclusion given by (19) holds for ε > 0 such

108



that D1ε < cθ/2.

Trivially, for ε sufficiently small we get the inequalities

sup
θ∗∈Vε(θ)

|βt − β∗t| ≤ εt(β + ε)t−1

sup
θ∗∈Vε(θ)

|αβt − α∗β∗t| ≤ εαt(β + ε)t−1 + ε(β + ε)t

sup
θ∗∈Vε(θ)

|ω
t−1∑
i=0

βi − ω∗
t−1∑
i=0

β∗i| ≤ ε
1

1− β + ε(ω + ε)
∞∑
i=0

i(β + ε)i−1.

Hence

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D1ε+ ||f ||∞ε
t−1∑
i=0

z2
t−1−i [αi(β + ε)i−1 + (β + ε)i]︸ ︷︷ ︸

:=ci

+εt(β + ε)t−1σ2
0 (20)

and

sup
θ∗∈Vε(θ)

1

T

T∑
t=1

|σ2
t (θ)− σ2

t (θ
∗)|

≤ 1

T

T∑
t=1

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D1ε+ ||f ||∞ε
T∑
t=1

t−1∑
i=0

z2
t−1−ici +

1

T

T∑
t=1

t(β + ε)t−1σ2
0ε

≤ D2ε+ ||f ||∞ε{
∞∑
i=0

ci} 1

T

T−1∑
t=0

z2
t

P→ D3ε

as T tends to infinity. As σ2
t (θ
∗) is bounded below by ω−ε on Vε(θ) the derivations

just above demonstrate that

sup
θ∗∈Vε(θ)

1

T

T∑
t=1

| log(σ2
t (θ))− log(σ2

t (θ
∗))| ≤ sup

θ∗∈Vε(θ)

1

T

T∑
t=1

1

ω − ε |σ
2
t (θ)− σ2

t (θ
∗)|
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is bounded above by something that converges in probability to D4ε as T tends

to infinity. Consider now the decomposition

sup
θ∗∈Vε(θ)

|lT (θ)− lT (θ∗)|

≤ sup
θ∗∈Vε(θ)

1

T

T∑
t=1

| log(σ2
t (θ))− log(σ2

t (θ
∗))|

+ ||f ||∞ 1

T

T∑
t=1

z2
t sup
θ∗∈Vε(θ)

| 1

σ2
t (θ)
− 1

σ2
t (θ
∗)
|

≤ sup
θ∗∈Vε(θ)

1

T

T∑
t=1

1

ω − ε |σ
2
t (θ)− σ2

t (θ
∗)| (21)

+
||f ||∞

(ω − ε)2

1

T

T∑
t=1

(z2
t − 1) sup

θ∗∈Vε(θ)
|σ2
t (θ)− σ2

t (θ
∗)| (22)

+
||f ||∞

(ω − ε)2

1

T

T∑
t=1

sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|. (23)

It follows by previous computations that (21) and (23) can be bounded above by

variables converging in probability to constants of the form Dε. The remaining

term (22) is a martingale difference and by (20) we find that for ε > 0 sufficiently

small

0 ≤ sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|

≤ D5ε+D6ε
t−1∑
i=0

(z2
t−1−i − 1)ci.

110



This implies that

E[(
1

T

T∑
t=1

(z2
t − 1) sup

θ∗∈Vε(θ)
|σ2
t (θ)− σ2

t (θ
∗)|)2]

≤ κ2
2

1

T 2

T∑
t=1

E[( sup
θ∗∈Vε(θ)

|σ2
t (θ)− σ2

t (θ
∗)|)2]

≤ 1

T
D2

5ε
2 +D2

6ε
2 1

T 2

T∑
t=1

E[(z2
1 − 1)2]

t−1∑
i=0

c2
i

≤ 1

T
D2

5ε
2 +

1

T
D2

6ε
2κ2

∞∑
i=0

c2
i

verifying that (22) tends to zero in probability which is much stronger that what

we need.

Case 2 and 6. Note initially that for ε adequately small

inf
θ∗∈Vε(θ)

σ2
t (θ
∗) ≥ (α− ε)

t−1∑
i=0

(1− ε)ifz2
t−1−i ≡ σ2

t (ε).

Hence

sup
θ∗∈Vε(θ)

lT (θ∗) = sup
θ∗∈Vε(θ)

− 1

T

T∑
t=1

(log(σ2
t (θ
∗)) +

y2
t

σ2
t (θ
∗)

) ≤ 1

T

T∑
t=1

− log(σ2
t (ε)),

which can be bounded by

− log(α− ε)− log(f)− k log(1− ε)− 1

T

T∑
t=1

log(
t∧k−1∑
i=0

z2
t−i−1)

P→ − log(α− ε)− log(f)− k log(1− ε)− E[log(Uk)] (24)

where the convergence is due to the the law of large numbers and Uk = z2
1+· · ·+z2

k.

Now choose k ∈ N and ε so small that (24) is strictly less then
∫ 1

0
log(f(u))−1du

as desired.
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Case 3. Note initially that for ε adequately small

inf
θ∗∈Vε(θ)

σ2
t (θ
∗) ≥ (ω − ε)

t−1∑
i=0

(1− ε)i ≡ σ2

t
(ε).

Hence for suitably large T

sup
θ∗∈Vε(θ)

lT (θ∗) ≤ 1

T

T∑
t=1

− log(σ2

t
(ε)) ≤ − log(ω − ε) + log(2) + log(ε),

and since the right hand side converges to minus infinity as ε tends to zero the

desired result has been established.

Case 4. Note that for ε sufficiently small then infθ∗∈Vε(θ) σ
2
t (θ
∗) ≥ (α − ε)y2

t−1.

In particular

lT (θ∗) ≤ − 1

T

T∑
t=1

(log((α− ε)y2
t−1) +

y2
t

σ2
t (θ
∗)

)

= − log(α− ε)− 1

T

T∑
t=1

log(f(
t− 1

T
))− 1

T

T∑
t=1

log(z2
t−1)− 1

T

T∑
t=1

y2
t

σ2
t (θ
∗)
.

Now, working on a probability space where we have a doubly infinite sequence,

(zt)t∈Z, of innovations we get that

inf
θ∗∈Vε(θ)

1

T

T∑
t=1

y2
t

σ2
t (θ
∗)
≥ 1

T

T∑
t=1

y2
t

ε
1−ε + (α + ε)

∑t−1
i=0 ε

iy2
t−1−i + εtσ2

0

≥ D7
1

T

T∑
t=1

z2
t

ε+D8

∑t−1
i=0 ε

iz2
t−1−i

≥ D7
1

T

T∑
t=1

z2
t

ε+D8

∑∞
i=0 ε

iz2
t−1−i

.

By the ergodic theorem the right hand side converges in probability towards its
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mean, and since by Fatou’s lemma

lim inf
ε→0

E[
1

T

T∑
t=1

z2
t

ε+D8

∑∞
i=0 ε

iz2
t−1−i

]

= lim inf
ε→0

E[
z2
t

ε+D8

∑∞
i=0 ε

iz2
t−1−i

]

≥ E[lim inf
ε→0

z2
t

ε+D8

∑∞
i=0 ε

iz2
t−1−i

] = E[
z2
t

Dz2
t−1

] = +∞

we conclude that for ε > 0 sufficiently small

lim
T→∞

P( sup
θ∗∈Vε(θ)

lT (θ∗)− {−
∫ 1

0

log(f(u))du− 1} < −1) = 1.

Case 5. Since for ε > 0 sufficiently small

sup
θ∗∈Vε(θ)

|σ2
t (θ
∗)− σ2

t (θ)|

≤ ε

1− (β + ε)
+ ε

t−1∑
i=0

(β + ε)iy2
t−1−i + α

t−1∑
i=1

iε(β + ε)i−1y2
t−1−i + (β + ε)tσ2

0

and for any k ∈ N

inf
θ∗∈Vε(θ)

σ2
t (θ
∗) ≥ (α− ε)

k∑
i=1

(β − ε)iy2
t−1−i

we deduce from previous arguments that

sup
θ∗∈Vε(θ)

|lT (θ∗)− lT (θ)|

≤ 1

T

T∑
t=1

1

infθ∗∈Vε(θ) σ
2
t (θ
∗)

sup
θ∗∈Vε(θ)

|σ2
t (θ
∗)− σ2

t (θ)|

+
1

T

T∑
t=1

y2
t

(infθ∗∈Vε(θ) σ
2
t (θ
∗))2

sup
θ∗∈Vε(θ)

|σ2
t (θ
∗)− σ2

t (θ)|

In particular, to demonstrate that supθ∗∈Vε(θ) |lT (θ∗)− lT (θ)| is bounded in prob-
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ability by εD we only need to work with terms of the form

1

T

T∑
t=1

ε
∑t−1

i=0(β + ε)iz2
t−1−i

(α− ε)∑k
i=1(β − ε)iz2

t−1−i
(25)

1

T

T∑
t=1

αε
∑t−1

i=1 i(β + ε)i−1z2
t−1−i

(α− ε)∑k
i=1(β − ε)iz2

t−1−i
(26)

1

T

T∑
t=1

εz2
t

∑t−1
i=0(β + ε)iz2

t−1−i
[(α− ε)∑k

i=1(β − ε)iz2
t−1−i]2

(27)

1

T

T∑
t=1

αεz2
t

∑t−1
i=1 i(β + ε)i−1z2

t−1−i
[(α− ε)∑k

i=1(β − ε)iz2
t−1−i]2

. (28)

As in the proof of Case 4 introduce a doubly infinite sequence, (zt)t∈Z, of inno-

vations and note that for ρ1, ρ2 ∈ (0, 1) then by the ergodic theorem

1

T

T∑
t=1

∑∞
i=0 iρ

i
1z

2
t−1−i∑k

i=1 ρ
i
2z

2
t−1−i

P→ E[

∑∞
i=0 iρ

i
1z

2
t−1−i∑k

i=1 ρ
i
2z

2
t−1−i

]

where

E[

∑∞
i=0 iρ

i
1z

2
t−1−i∑k

i=1 ρ
i
2z

2
t−1−i

]

=
k∑
i=0

E[
iρi1z

2
t−1−i∑k

i=1 ρ
i
2z

2
t−1−i

] + E[
1∑k

i=1 ρ
i
2z

2
t−1−i

]E[
∞∑

i=k+1

iρi1z
2
t−1−i]

≤
k∑
i=1

i(ρ1/ρ2)i + E[
1∑k

i=1 ρ
i
2z

2
t−1−i

]
∞∑

i=k+1

iρi1

and the right hand side is finite for k ≥ 5, c.f. Mathai & Provost (1992). This

shows that asymptotically for T large then (25) and (26) may be bounded above

in probability by εD. To show that (27) and (28) may be bounded in probability
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by εD note that

1

T

T∑
t=1

z2
t

∑∞
i=0 iρ

i
1z

2
t−1−i

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

P→ E[
z2
t

∑∞
i=0 iρ

i
1z

2
t−1−i

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

]

where

E[
z2
t

∑∞
i=0 iρ

i
1z

2
t−1−i

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

]

≤
k∑
i=1

E[
iρi1z

2
t−1−i

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

] + E[
1

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

]E[
∞∑

i=k+1

iρi1z
2
t−1−i]

≤
k∑
i=1

{1

2
E[(iρi1z

2
t−1−i)

2] +
1

2
E[

1

(
∑k

i=1 ρ
i
2z

2
t−1−i)4

]}

+ E[
1

(
∑k

i=1 ρ
i
2z

2
t−1−i)2

]
∞∑

i=k+1

iρi1

with the right hand side finite for k large enough.

Case 7. For θ = (0, 0, β)′, 0 ≤ β < 1 and ε > 0 small enough we get that

sup
θ∗∈Vε(θ)

σ2
t (θ
∗) ≤ 1

1− (β + ε)
ε+ ε||f ||∞

t−1∑
i=0

(β+ ε)iz2
t−1−i + (β+ ε)tσ2

0 := σ2
t (ε).

Using the inequality −1/x ≤ 2 log(x) we get that

sup
θ∗∈Vε(θ)

lT (θ∗) = sup
θ∗∈Vε(θ)

1

T

T∑
t=1

(− log(σ2
t (θ
∗))− y2

t

σ2
t (θ
∗)

)

≤ sup
θ∈Vε(θ)

T∑
t=1

(log(σ2
t (θ
∗))− 2 log(y2

t ))

≤ 1

T

T∑
t=1

(log(σ2
t (ε))− 2 log(z2

t )− 2 log(f(t/T )))

≤ log(
1

T

T∑
t=1

σ2
t (ε))−

2

T

T∑
t=1

log(z2
t )−

2

T

T∑
t=1

log(f(t/T )).
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Clearly, the last two terms tend to a constant and since

1

T

T∑
t=1

σ2
t (ε) ≤

ε

1− (β + ε)
+

ε

1− (β + ε)

||f ||∞
T

T∑
t=1

z2
t +

1

T

1

1− (β + ε)
σ2

0

we conclude that for ε > 0 small and a suitable γθ > 0 then

lim
T→∞

P( sup
θ∗∈Vε(θ)

lT (θ∗) < −
∫ 1

0

log(f(u))du− 1− γθ) = 1.

�
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Stărică, C. (2003), Is GARCH(1,1) as good a model as the accolades of the

Nobel prize would imply? Department of Mathematical Statistics, Chalmers

University of Technology.

Tjøstheim, D. (1990), ‘Non-linear time series and Markov chains’, Advances in

Applied Probability 22, 587–611.

Tzavalis, E. & M. Wickens (1998), ‘A re-examination of the rational expectations

hypothesis of the term structure: Reconciling the evidence from long-run and

short-run tests’, International Journal of Finance & Economics 3, 229–239.

Wang, Y. (2002), ‘Asymptotic nonequivalence of GARCH models and diffusions’,

Annals of Statistics 30(3), 754–783.

Weiss, A. A. (1984), ‘ARMA models with ARCH errors’, Journal of Time Series

Analysis 5(2), 129–143.

127



Weiss, A. A. (1986), ‘Asymptotic theory for ARCH models’, Econometric Theory

2, 107–131.

White, H. (1980), ‘A heteroskedasticity-consistent covariance matrix estimator

and a direct test for heteroskedasticity’, Econometrica 48, 817–838.

Wong, C.S. & W.K. Li (2001), ‘On a mixture autoregressive conditional het-

eroscedastic model’, Journal of the American Statistical Association 96, 982–

995.

128




