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Phan Thành Nam
Department of Mathematical Sciences
University of Copenhagen
Universitetsparken 5
DK-2100 Copenhagen Ø
Denmark
ptnam@math.ku.dk
ptnam373@yahoo.com

c© 2011 by the author except the following paper
P.T. Nam, F. Portmann and J.P. Solovej, Asymptotics for two dimen-
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Summary

The thesis is concerned to some mathematical problems on the structure
of atoms within the Born-Oppenheimer approximation: the existence and
nonexistence of ground states; the asymptotics of the ground state energy
of large atoms; and the asymptotics of the radius of large atoms.

In Paper I we provide a new upper bound on the maximum number
of electrons that a nucleus can bind. The bound is first proved for non-
relativistic atoms without magnetic field, but it can be also extended to
non-relativistic atoms in magnetic field and to pseudo-relativistic atoms.

In Paper II we consider large atoms confined to two dimensions. We
compute the ground state energy of the atoms up the the leading order and
the first correction. Moreover, we show that in two dimensions, the radius
of a neutral atom is unbounded when the nuclear charge tends to infinity,
which is contrary to the expected behavior of three-dimensional atoms.

In Paper III we consider the ground state energy of bosonic atoms,
namely the atoms with “bosonic electrons”. It is well-known that the leading
order of the ground state energy is determined by the Hartree model, and we
expect that the first correction is given by the Bogoliubov approximation.
We first formulate the general Bogoliubov theory as a variational model,
and then we study the Bogoliubov theory for bosonic atoms in details. The
comparison between the Bogoliubov ground state energy and the quantum
ground state energy up to the second order, however, is still heuristic, and
some further works are required to make everything rigorous.

Resumé

Denne afhandling drejer sig om matematiske problemer vedrrende strukturen
af atomer i Born-Oppenheimer tilnærmelsen: Eksistens og ikke-eksistens
af grundtilstande; Asymptotik af grundtilstandsenergien for store atomer;
Asymptotik af atomradius af store atomer.

I artikel I giver vi en ny vre grnse p̊adet maksimale antal elektroner en
kerne kan binde. Begrnsningen vises først for ikke-relativistiske atomer uden
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magnetfelter, men kan udvides til ikke-relativistiske atomer i magnetfelter
og til pseudo-relativistiske atomer.

I artikel II studeres store atomer begrænset til to dimensioner. Vi bereg-
ner grundtilstandsenergien til ledende orden samt første korrektion. Desuden
viser vi, at i to dimensioner er atomets radius ubegrnset n̊ar kerneladnin-
gen g̊ar mod uendelig, hvilket er i kontrast til den forventede opførsel af
tre-dimensionelle atomer.

I artikel III betragter vi grundtilstandsenergien af bosoniske atomer,
nemlig atomer med ”bosoniske elektroner”. Det er velkendt, at grundtil-
standsenergien til ledende orden er bestemt af Hartree-modellen og vi for-
venter, at den første korrektion er givet ved Bogolubov tilnærmelsen. Vi
formulerer først Bogolubovteori som en variationel model og studerer Bogol-
ubovteorien for bosoniske atomer i detaljer. Sammenligningen op til anden
orden mellem grundtilstandsenergien i Bogolubovteori og grundtilstandsen-
ergien i kvantemekanik er kun heuristisk og kræver yderligere arbejde for at
være stringent.

Abstract

The thesis is concerned to some mathematical problems on the structure
of atoms. We provide a new upper bound on the maximum number of
electrons that a nucleus can bind, consider the ground state energy and the
radius of a large atom confined to two dimensions, and study the Bogoliubov
approximation for bosonic atoms.
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Chapter 1

Introduction

1 Born-Oppenheimer approximation

Let us consider an atom with an infinitely heavy nucleus of charge Z > 0
and N non-relativistic quantum electrons in R3. The nucleus is fixed at the
origin and the N -electron system is described by the Hamiltonian

HN,Z =
N∑

i=1

(
−1

2
∆xi −

Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj|
.

An N -electron wave function Ψ is a normalized function in L2((R3)N) which
is antisymmetric, namely

Ψ(x1, ..., xi, ..., xj, ..., xN) = −Ψ(x1, ..., xj, ..., xi, ..., xN)

for any xi ∈ R3. Here L2((R3)N) is a Hilbert space with the inner product

〈Ψ1,Ψ2〉 =

∫

(R3)2N

Ψ1(x1, ..., xN)Ψ2(y1, ..., yN)dx1...dxNdy1...dyN .

The Hamiltonian HN,Z consists of the electron kinetic operators and
the electron-nucleus and electron-electron Coulomb interactions. The anti-
symmetry of the wave function is the condition to take the Pauli exclusion
principle into account. Because the spin number plays no important role in
our analysis here, for simplicity we may take q = 1 (spinless). The nuclear
charge Z is allowed to be any positive number, although it is an integer in
the physical case.

Here we choose the units such that all of the reduced Plancks constant,
the mass of the electron and (−1)× the charge of the electron are equal to
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1. The factor 1/2 in front of the kinetic operators −∆i := −∆xi can be
replaced by any positive constant, by changing the units.

The ground state energy of the N electrons is the bottom of the spectrum
of HN,Z ,

E(N,Z) = inf spec HN,Z = inf
||Ψ||L2=1

〈Ψ, HN,ZΨ〉 .

A ground state ΨN,Z is a wave function with the lowest energy, i.e.

(ΨN,Z , HN,ZΨN,Z) = E(N,Z).

By the standard variational calculation, we may see that ΨN,Z is a ground
state if and only if it is a solution to the Schrödinger equation

HN,ZΨN,Z = EN,ZΨN,Z .

Of our interests are the properties of the ground state energy and the
ground states (if exist) of HN,Z . Among other things, there are three im-
portant questions which we shall discuss in details below: the existence (or
nonexistence) of ground states; the asymptotics of the ground state energy
of large atoms; and the asymptotics of the radius of large atoms.

2 Existence of ground states

It is well known that HN,Z is bounded from below and its essential spectrum
is given by the HVZ Theorem (see e.g. Theorem 11.2 in [73] or Theorem 2.1
in [27] for a proof)

ess-spec HN,Z = [E(N − 1),∞).

As a consequence, if E(N,Z) < E(N − 1, Z) then E(N,Z) is an isolated
eigenvalue of HN,Z and hence there exists a ground state ΨN,Z . In this case,
we say that theN electrons can be bound and the wave function ΨN,Z is called
a bound state. Physically, the binding inequality E(N,Z) < E(N − 1, Z)
means that one cannot remove any electron without paying some positive
energy.

Zhislin (1960) [77] showed that the binding inequality E(N,Z) < E(N−
1, Z) occurs provided that N < Z+ 1. It is a very interesting open problem,
sometimes referred to as the ionization conjecture, that the maximum num-
ber Nc = Nc(Z) of electrons that can be bound is either Z + 1 or Z + 2 (see
[62, 63, 65, 67, 35]). Because Nc ≥ Z due to Zhislin’s Theorem, it remains
to find an upper bound on Nc.

Sigal (1982, 1984) [60, 61] and Ruskai (1982) [54] were the first ones
proving that Nc is not too large. In fact, Ruskai [54] showed that Nc =
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O(Z6/5) and Sigal [61] proved that Nc ≤ 18Z and lim infZ→∞Nc/Z ≤ 2.
Then Lieb (1984) [32] proved that Nc < 2Z + 1 for all Z > 0.

In fact, Lieb’s result is a slightly stronger, which says that if N ≥ 2Z+ 1
then the Schrödinger equation

(HN,Z − E(N,Z))Ψ = 0

has no solution. Because his proof is very simple and elegant, let us revisit
it below.

Proof of Lieb’s upper bound. Multiplying the Schrödinger equation

(HN,Z − E(N,Z))Ψ = 0 (1.1)

by |xN |Ψ and then integrating, one gets

0 = 〈|xN |Ψ, (HN−1,Z − E(N,Z))Ψ〉+
1

2
〈|xN |Ψ,−∆NΨ〉

+

〈
Ψ,

[
−Z +

N−1∑

i=1

|xN |
|xi − xN |

]
Ψ

〉
. (1.2)

The first term in the right hand side of (1.2) is non-negative since

HN−1,Z ≥ E(N − 1, Z) ≥ E(N,Z)

in the space of (N − 1) particles x1,...,xN−1. The second term is also non-
negative due to the inequality

Re 〈|x|f,−∆f〉 ≥ 0 for all f ∈ H1(R3). (1.3)

Thus the third term in (1.2) must be non-positive. Using the antisym-
metry and the triangle inequality |xi|+ |xj| ≥ |xi − xj| we arrive at

0 ≥
〈

ΨN,Z ,

(
−Z +

1

N

∑

1≤i<j≤N

|xi|+ |xj|
|xi − xj|

)
ΨN,Z

〉
> −Z +

N − 1

2
.

The inequality is strict since the triangle inequality is strict almost every-
where.

Lieb’s upper bound settles the conjecture for hydrogen but it is around
twice of the conjectured bound for large Z.

For large atoms, the asymptotic neutrality limZ→∞Nc/Z = 1 was first
proved by Lieb, Sigal, Simon and Thirring (1988) [36]. Later, it was im-
proved to Nc ≤ Z + O(Z5/7) by Seco, Sigal and Solovej (1990) [57] and
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by Fefferman and Seco (1990) [18]. The bound Nc ≤ Z + const, for some
Z-independent constant, is still unknown, although it holds true for some
important approximation models such as the Thomas-Fermi and related the-
ories [30, 8] and the Hartree-Fock theory [65, 67]. The Thomas-Fermi and
the Hartree-Fock theories will be recalled below.

The main result in Paper I is to improve Lieb’s upper bound for small
Z.

3 Ground state energy

To discuss about the ground state energy, let us for simplicity consider only
neutral atoms (N = Z). It was already known that

E(Z,Z) = cTFZ7/3 + cSZ2 + cDSZ5/3 + o(Z5/3) (1.4)

where the leading (Thomas-Fermi [75, 20]) term was established in [37],
the second (Scott [56]) term was proved in [24, 59], and the third (Dirac-
Schwinger [12, 55]) term was shown in [19]. In the following, we shall explain
heuristically these terms, and we will see that the asymptotic energy (1.4)
is still correct with E(Z,Z) replaced by E(N,Z) for any N ≥ Z.

Thomas-Fermi term

The Thomas-Fermi term of order Z7/3 may be understood entirely from
semiclassics. The Thomas-Fermi theory involves two approximations. First,
the semiclassical approximation for the kinetic energy is (see [43, 37])

1

2

〈
Ψ,

N∑

i=1

∆iΨ

〉
=

1

2
Tr(−∆γΨ) ≈ 1

2
Ksc

∫

R3

[ρΨ(x)]5/3dx withKsc =
3

5

(
3π2
)2/3

.

Here γΨ is the one-body density matrix of Ψ, which is an operator on L2(R3)
with the kernel given by

γΨ(x, y) := N

∫

R3(N−1)

Ψ(x, x2, ..., xN , σN)Ψ(y, x2, ..., xN , σN)dx2...dxN

and ρΨ(x) = γΨ(x, x). Note that 0 ≤ γΨ ≤ 1 and Tr(γΨ) =
∫
R3 ρ = N .

In fact, Lieb and Thirring [43] showed the rigorous lower bound, for any
density matrix 0 ≤ γ ≤ 1,

Tr(−∆γ) ≥ RLTKsc

∫

R3

[ργ(x)]5/3dx
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with RLT = 0.185 and they conjectured that we can take RLT = 1. Cur-
rently, the best constant is given by Dolbeault, Laptev and Loss [13] that
we can take RLT = 0.672.

The second estimate we need in the Thomas-Fermi Theory is the approx-
imation between the electron-electron interaction and the self-electrostatic
energy

〈
Ψ,

∑

1≤i<j≤N

1

|xi − xj|
Ψ

〉
≈ 1

2

∫∫

R3×R3

ρΨ(x)ρΨ(y)

|x− y| dxdy =: D(ρΨ, ρΨ).

Lieb and Oxford [29, 34] verified this approximation by the lower bound

〈
Ψ,

∑

1≤i<j≤N

1

|xi − xj|
Ψ

〉
≥ D(ρΨ, ρΨ)− 1.68

∫

R3

[ρΨ(x)]4/3dx.

Put these above approximation together, we obtain the Thomas-Fermi
functional

ETF(ρ, Z) :=
Ksc

2

∫

R3

[ρ(x)]5/3dx− Z
∫

R3

ρ(x)

|x| dx+D(ρ, ρ)

and the Thomas-Fermi energy

ETF(N,Z) := inf

{
ETF(Z, ρ) : ρ ≥ 0,

∫
ρ = N

}
.

By the scaling ρ(x) = Z2ρ̃(Z1/3x) we obtain

ETF(Z,Z) = cTFZ7/3 where cTF = ETF(N = Z = 1).

This is the leading term in (1.4). The above scaling and the properties of the
Thomas-Fermi minimizer also suggest that almost of electrons are located
mainly at a distance of order Z−1/3 from the nucleus and they are the source
of the leading term of the ground state energy.

Scott term

The Scott term of order Z2 is a pure quantum correction coming from the
essentially finitely many inner most electrons at a distance of order Z−1 from
the nucleus. To see it, let us assume that the Thomas-Fermi minimizer ρTF

Z

is a good approximation to the density ρΨ of the ground state (at least at the
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small distance) and arrive at the following estimate on the electron-electron
interaction

〈
Ψ,

∑

1≤i<j≤N

1

|xi − xj|
Ψ

〉
≈ D(ρΨ, ρΨ) ≈ D(ρΨ, ρ

TF
Z ).

Putting this into the Hamiltonian HN,Z we get

〈Ψ, HN,ZΨ〉 ≈ TrL2(R3)

[(
−1

2
∆− V TF

Z (x)

)
ρΨ

]
,

where

V TF
Z (x) =

Z

|x| − ρ
TF
Z ∗ |x|−1.

If we allow ρΨ to be any density matrix and take the infimum both sides,
we arive at the asymptotic estimate

E(Z,Z) = Tr

[(
−1

2
∆− VZTF(x)

)

−

]
+ o(Z2),

where Tr[H−] means the sum of all of negative eigenvalues of H.

Note that we may recover the leading term by the semiclassical approx-
imation

Tr

[(
−1

2
∆− VZTF(x)

)

−

]
=

∫∫

R3×R3

(
1

2
(2πp)2 − VZTF(x)

)

−
dpdx+ o(Z3)

= cTFZ7/3 + o(Z3).

Moreover, observe that the most singular part of the Thomas-Fermi potential
V TF
Z comes from the region near the origin, where V TF

Z ≈ Z|x|−1 if |x| ∈
O(|Z|−1). By comparing (−1

2
∆ − VZ

TF(x)) to the hydrogen Hamiltonian

Hhyd
Z = −1

2
∆− Z|x|−1 in this region, ones can obtain the first correction to

the semiclassics (see [71], Theorem 16)

Tr

[(
−1

2
∆− VZTF(x)

)

−

]
=

∫∫

R3×R3

(
1

2
(2πp)2 − VZTF(x)

)

−
dpdx+

1

2
Z2+o(Z2).

This explains the Scott term cSZ2 = (1/2)Z2 in the asymptotic energy (1.4).
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Dirac-Schwinger term

Finally, to reach at the Dirac-Schwinger term cDSZ5/3 in (1.4), we can not
simply replace the electron-electron interaction by the direct term D(ρΨ, ρΨ),
but we have to also take the electron correlation into account. The Hartree-
Fock theory does this job by restricting the wave functions among the forms
Ψ = u1 ∧ u2 ∧ ... ∧ uN , where {ui}Ni=1 is any orthonormal family in L2(R3 ×
{1, ..., q}). Such a wave function is called a Slater determinant because it
can be rewritten as

Ψ(z1, ..., zN) =
1√
N !

det




u1(z1) u1(z2) . . . u1(zN)
u2(z1)
...

u2(z2) . . .
...

u2(zN)
...

aN(z1) uN(z2) · · · uN(zN)


 .

It is straightforward to see that if Ψ = u1 ∧ u2 ∧ ... ∧ uN then γΨ(x, y) =
N∑
i=1

ui(x)ui(y) and the energy 〈Ψ, HN,ZΨ〉 is equal to

EHF(Z, γΨ) := Tr

[(
−1

2
∆− Z

|x|

)
γΨ

]
+D(ρΨ, ρΨ)− 1

2

∫∫

R3×R3

|γΨ(x, y)|2
|x− y| dxdy.

Thus the Hartree-Fock theory involves the one-body density matrices of the
wave functions while the Thomas-Fermi theory involves only the density
functionals. The Hartree-Fock energy is

EHF(N,Z) := inf{(Ψ, HN,ZΨ)|Ψ is a Slater determinant}
= inf{EHF(Z, γ) : 0 ≤ γ ≤ 1,Tr(γ) = N}

where the second identity is due to Lieb’s variational principle [31]. Note
that by the definition, the Hartree-Fock energy is always an upper bound to
the quantum ground state energy.

It is widely believed by the chemists and physicists that the ground state
energy E(N,Z) can be approximated very precisely by (Ψ, HN,ZΨ) when Ψ
is the Slater determinant made up by the first N negative eigenfunctions of
(−1

2
∆ − V TF

Z ), the Schrödinger operator with the Thomas-Fermi potential.
Starting by verifying this experience, Fefferman and Seco [19] showed that
the absolute ground state energy

E(Z) = inf
N
E(N,Z) = E(Nc(Z), Z)

obeys the asymptotics

E(Nc(Z), Z) = cTFZ7/3 + cSZ2 + cDSZ5/3 + o(Z5/3−ε). (1.5)
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for some universal constant ε > 0. In fact, (1.5) is still slightly different from
(1.4) because the neutral atom (N = Z) is replaced by the maximum neg-
ative ionization (N = Nc(Z)). However, with the help from the knowledge
of the Hartree-Fock theory, we can obtain (1.4) from (1.5) as follows.

An implicit consequence of Fefferman and Seco’s approach is that the
Hartree-Fock ground state energy EHF(Nc(Z), Z) agrees with the quantum
ground state energy E(Nc(Z), Z) up to an error of order o(Z5/3). Bach [3]
generalized this result by proving that the same estimate is correct for all
N near Z, namely if Z −O(Z1/3) ≤ N ≤ Z +O(Z5/7) then

0 ≤ EHF(N,Z)− E(N,Z) ≤ o(Z5/3−ε).

Note that Nc(Z) ≤ Z +O(Z5/7) [57, 18].
On the other hand, Solovej [67] showed that within the Hartree-Fock the-

ory, the maximum negative ionization and the ionization energy are bounded
by some universal constants, namely there exist C1 and C2 such that

EHF(N,Z) = EHF(Z + C1, Z)

for any N ≥ Z + C1 and

0 ≤ EHF(N − 1, Z)− EHF(N,Z) ≤ C2

for any N ≥ Z. (In fact, it was just stated explicitly in [67] that 0 ≤
EHF(Z − 1, Z)−EHF(Z,Z) ≤ C2, but the approach in [67] indeed gives the
stronger bound as we stated above.)

Thus putting the above estimates together, we find that for any N ≥ Z
one has

|E(N,Z)− E(Nc(Z), Z)|
≤ |E(N,Z)− EHF(N,Z)|+ |EHF(N,Z)− EHF(Nc(Z), Z)|

+|E(Nc(Z), Z)− EHF(Nc(Z), Z)|
≤ O(Z5/3−ε) +O(1) +O(Z5/3−ε) = O(Z5/3−ε).

Therefore, (1.5) implies that for any N ≥ Z,

E(N,Z) = cTFZ7/3 + cSZ2 + cDSZ5/3 + o(Z5/3−ε).

In the case N = Z we obtain (1.4).
In Paper II, we compute the ground state energy of a large atoms confined

in two dimensions; and in Paper III we consider the ground state energy of
bosonic atoms.
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4 Radius of atom

It is an interesting fact from the periodic table that the neutral atoms in
the same group often have comparable radii, even if their nuclear charge are
very different. So people may conjecture that the radii of atoms are bounded
by some universal constant [62, 63, 65, 67].

To state the conjecture rigorously, let us assume that the Hamiltonian
HZ,Z has a ground state ΨZ . The radius RZ is the distance from the nucleus
to the outermost surface of the atom, such that outside the ball B(0, RZ)
the expectation number of electron is 1. Thus RZ satisfies

∫

|x|≥RZ

ρΨZ
(x)dx = 1. (1.6)

where ρΨZ
is the density of the wave function ΨZ . Note that both of the

wave function ΨZ and the radius RZ maybe not unique. The conjecture is
that there exist universal constant 0 < c < C <∞ (independent of Z) such
that

c ≤ RZ ≤ C (1.7)

for all Z > 0 and for all RZ satisfying (1.6).
As we discussed before, it is suggested from the Thomas-Fermi theory

that almost of electrons live in the distance of order Z−1/3 from the nucleus.
In fact, it is well-known that

∫

R3

|x|ρΨZ
(x)dx ≥ C0Z

2/3

for some universal constant C0 > 0 (see e.g. Lemma 2 in [48] for an explicit
constant). Consequently, we obtain the lower bound RZ ≥ CZ−1/3.

By a more careful analysis in comparison with the Thomas-Fermi the-
ory, Seco, Sigal and Solovej [57] proved the improved lower bound RZ ≥
C2Z

−5/21. Solovej [67] also showed the bound (1.7) within the Hartree-Fock
theory. However, it is still an open problem to prove the universal bound in
the quantum theory.

In Paper II, we show that the conjecture fails in two dimensions. More
precisely, if a neutral atom is confined in two dimensions then its radius is
unbounded when the nuclear charge tends to infinity.
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Chapter 2

Overview of the results

1 Overview of Paper I. New bounds on the

maximum ionization of atoms

In this paper we give an explicit upper bound to the maximum number of
electrons that a nucleus can bind. Because one of our constants depends on
the spin number (as we shall explain below), let us include the physical spin
q = 2 and consider the Hamiltonian

HN,Z =
N∑

i=1

(
−1

2
∆i −

Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj|

on the antisymmetric space
N∧
i=1

(L2(R3) ⊗ C2). We denote by E(N,Z) the

ground state energy of HN,Z and we say that N electrons can be bound if
E(N,Z) < E(N−1, Z). As discussed in the Introduction, by HVZ Theorem
the binding condition means that E(N,Z) is an isolated eigevalue of HN,Z .

Of our interest is the maximum number Nc = Nc(Z) of electrons that
can be bound. It is an interesting conjecture that Nc is either N+1 or N+2.
Note that the ionization conjecture only concerns fermions since for bosonic
atoms it was shown that limZ→∞Nc/Z ≈ 1.21 by Benguria and Lieb [7] and
Solovej [66] (the numerical value 1.21 is taken from [6]).

In spite of the asymptotic neutrality limZ→∞Nc/Z = 1 [36, 57, 18],
Lieb’s upper bound Nc < 2Z + 1 [32] is still the best one for realistic atoms
(corresponding to the range 1 ≤ Z ≤ 118 in the current periodic table). The
purpose in our work is to find an improved upper bound for all Z > 0. As
in [32], we do not need the binding inequality; more precisely, that E(N,Z)
is an eigenvalue of HN,Z is sufficient for our analysis. Our main result is the
following.
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Theorem 1.1 (Bound on maximum ionization of non-relativistic atoms).
Let Z > 0 (not necessarily an integer). If E(N,Z) is an eigenvalue of HN,Z

then either N = 1 or
N < 1.22Z + 3Z1/3.

The factor 1.22 can be replaced by β−1 with β being defined by (2.1).

Remark. (i) The bound 1.22Z + 3Z1/3 is less than Lieb’s bound 2Z + 1
when Z ≥ 6.

(ii) It can be seen from our proof that the factor 3 in front of the second
term of order Z1/3 in our bound is proportional to q2/3 where q is
the spin number. Therefore, our result only holds for fermions. For
bosonic atoms, one may take q = N and hence our bound becomes
CZ, which is worse than Lieb’s one. In our proof, the Pauli exclusion
principle hides in the fact that we use the Lieb-Thirring inequality to
show that the average distance from the electrons to the nucleus of
charge Z is at least of order Z−1/3. In contrast, the corresponding
distance in the bosonic atoms is of order Z−1.

(iii) Although Lieb’s method [32] can be generalized to molecules, we have
not yet been able to adapt our method to this case.

Let us discuss briefly the strategy of proof of Theorem 1.1. As the first
step, we modify Lieb’s proof in [32] by multiplying the Schrödinger equa-
tion (HN,Z − E(N,Z))Ψ = 0 by |xN |Ψ. Then employing the Lieb-Thirring
inequality to control error terms, we arrive at the bound

αN(N − 1) < Z(1 + 0.83 N−2/3),

where

αN := inf
x1,...,xN∈R3

∑
1≤i<j≤N

|xi|2+|xj |2
|xi−xj |

(N − 1)
N∑
i=1

|xi|
.

Roughly speaking, the number α−1
N yields an upper bound on N/Z. This

bound improves previous results since αN is bigger than 1/2. To derive some
effective estimates on αN , we may think of αN as the lowest energy of N
classical particles acting on R3 via the potential V (x, y) = x2+y2

|x−y| , under some
normalizing condition. It is natural to believe that if N becomes large then
αN converges to the statistical limit

β := inf





∫∫
R3×R3

x2+y2

2|x−y| dρ(x) dρ(y)

∫
R3

|x| dρ(x)
∫
R3

dρ(x)
: ρ a positive measure in R3




. (2.1)
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Results of this form in bounded domain have already appeared in [47]. In
our case, we can show the explicit estimate

αN ≥
N

N − 1
[β − 3(β/6)1/3N−2/3],

with β being defined by (2.1). Thus we get

N [β − 3(β/6)1/3N−2/3] < Z(1 + 0.83 N−2/3).

This inequality gives an upper bound of N in terms of Z and β. We can
show that β ≥ 0.8218 and this lower bound ensures the inequality N <
1.22 Z + 3 Z1/3 in Theorem 1.1 (here 1.22 ≈ 1/0.8218).

Remark. We do not know the exact numerical value of β, but if in the
variational definition we restrict ρ to radially symmetric measures in (2.1)
then we obtain the upper bound β ≤ 0.8705. Therefore, the lower bound
β ≥ 0.8218 is already rather precise, although there is of course still room
for improvement.

Now we explain the lower bound β ≥ 0.8218. We need to use the follow-
ing inequalities (see [48] Lemma 5)

∫∫

R3×R3

x2 + y2

|x− y| dρ(x) dρ(y)

≥
∫∫

R3×R3

(
max{|x|, |y|}+

(min{|x|, |y|})2

|x− y|

)
dρ(x) dρ(y), (2.2)

and
∫∫

R3×R3

x2 + y2

|x− y| d ρ(x) dρ(y)

≥
∫∫

R3×R3

(
|x− y|+ 2

3

(min{|x|, |y|})2

max{|x|, |y|}

)
dρ(x) dρ(y). (2.3)

Note that both of (2.2) and (2.3) will become identities if the measure ρ
is radially symmetric. The inequality (2.2) follows from a key result of the
original proof of the asymptotic neutrality in [36] (Theorem 3.1), that for
any ε > 0, if N large enough then for all {xi}Ni=1 ⊂ R3,

max
1≤j≤N

{ ∑

1≤i≤N,i6=j

1

|xi − xj|
− N(1− ε)

|xj|

}
≥ 0.
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The inequality (2.3) is a consequence of the kernel expression

x2 + y2

|x− y| = |x− y|+ 2x.y

|x− y|
and the observation that 2x.y/|x− y| is a positive kernel.

Using a convex combination of (2.2) and (2.3), we arrive at

∫∫

R3×R3

x2 + y2

|x− y| dρ(x) dρ(y) ≥
∫∫

R3×R3

Wλ(x, y) dρ(x) dρ(y)

for any positive measure ρ on R3 and λ ∈ [0, 1], where

Wλ(x, y) := λ

(
max{|x|, |y|}+

(min{|x|, |y|})2

|x− y|

)

+(1− λ)

(
|x− y|+ 2

3

(min{|x|, |y|})2

max{|x|, |y|}

)
. (2.4)

It turns out that

β ≥ sup
λ∈[0,1]

inf
x,y∈R3

Wλ(x, y)

|x|+ |y| ≈ 0.8218

Note that our method also applies to other models of atoms, such as the
non-relativistic atoms in magnetic fields and the relativistic atoms.

With the presence of a magnetic field, the atoms are described by the
Hamiltonian

HN,Z,A =
N∑

i=1

(
T

(i)
A −

Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj|

acting on the fermionic space
N∧

(L2(R3) ⊗ C2). The kinetic operator is the
Pauli operator

TA = |σ · (−i∇+A(x))|2 = (−i∇+A(x))2 + σ · B,

where A is the magnetic potential, B = curl(A) is the magnetic field and
σ = (σ1, σ2, σ3) are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

For simplicity we shall always assume that A ∈ L4
loc(R3,R3), ∇ · A ∈

L2
loc(R3) and |B| ∈ L3/2(R3) + L∞(R3). Under these assumptions, it is well
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known that (−i∇ + A(x))2 is essentially selfadjoint on L2(R3) with core
C∞c (R3) [45], and |B| + Z/|x| is infinitesimally bounded with respect to
(−i∇+A(x))2 (see e.g. [58, 46]). In particular, the ground state energy

E(N,Z,B) = inf spec HN,Z,A

is finite. We shall also assume that N 7→ E(N,Z,B) is non-increasing (for
example, this is the case if B = (0, 0, B) is a constant magnetic field [40]).
Note that the ground state energy depends on A only through B by gauge
invariance (see e.g. [35] p. 21).

Of our interest is the maximum number Nc such that E(Nc, Z,B) is an
eigenvalue of HN,Z,A. Seiringer (2001) [58] showed that

Nc < 2Z + 1 +
1

2

E(Nc, Z,B)− E(Nc, Z,B)

NcZ(k − 1)
(2.5)

for all k > 1. In the homogeneous case, B = (0, 0, B), his bound yields

Nc < 2Z + 1 + C1Z
1/3 + C2Z min

{
(B/Z3)2/5, 1 + | ln(B/Z3)|2

}
. (2.6)

This improves the earlier bound Nc < 2Z+1+cB1/2 in [9] (where the Hamil-
tonian HN,Z,A is restricted to a small class of wavefunctions in the lowest
Landau band). In particular, in the semiclassical regime limZ→∞(B/Z3) = 0,
Seiringer’s bound implies that

lim sup
Z→∞

Nc

Z
≤ 2.

In contrast, it was shown by Lieb, Solovej and Yngvason (1994) [40] that if
limZ→∞(B/Z3) =∞, then

lim inf
Z→∞

Nc

Z
≥ 2.

We can improve these bounds as follows.

Theorem 1.2 (Bounds on maximum ionization of atoms in magnetic fields).
Let Z > 0 and let B satisfy the assumption stated above. Then we have, for
every k > 1,

Nc < (1.22Z + 3Z1/3)

(
1 +

E(Nc, Z,B)− E(Nc, kZ,B)

NcZ2(k − 1)

)
. (2.7)

If B = (0, 0, B) is a constant magnetic field then

Nc < (1.22 Z + 3Z1/3) ×
(
1 + 11.8 Z−2/3+

+ min
{

0.42
(
B/Z3

)2/5
, C(1 + | ln(B/Z3)|2)

})
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for some universal constant C (independent of Z and B). In particular, if
limZ→∞(B/Z3) = 0 then

lim inf
Z→∞

Nc

Z
≤ 1.22.

The number 1.22 in all bounds can be replaced by β−1 with β being defined
by (2.1).

Remark. As shown in [46], one can make a slight improvement on our bounds
by using the Hardy-type inequality TA ≥ (dB/4)|x|−2 instead of TA ≥ 0, for
some 0 < dB ≤ 1. It allows us to include a factor (1 − dB) in front of the
term involved to E(N,Z,B)− E(N, kZ,B) in (2.7).

Now we consider the pseudo-relativistic atoms, which are described by
the Hamiltonian

Hrel
N,Z =

N∑

i=1

(
α−1(

√
−∆i + α−1 − α−1)− Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj|

acting on the fermionic space
N∧

(L2(R3) ⊗ C2). Here α > 0 is the fine-
structure constant. It is well known that the ground state energyErel(N,Z) :=
inf spec Hrel

N,Z is finite if and only if Zα ≤ 2/π (see e.g. [35]). The physical
value is α = e2/(~c) ≈ 1/137 and hence Z < 87.22. However, in our math-
ematical setting we allow α and Z to be any positive numbers as long as
Zα ≤ 2/π.

As in the previous dicussions, we are also interested in the maximum
number Nc such that the ground state energy Erel(Nc, Z) is an eigenvalue
of Hrel

Nc,Z
. Note that Lieb’s bound Nc < 2Z + 1 still holds in this case. In

fact, due to a technical gap the original proof of Lieb in [32] works properly
only when Zα < 1/2. However, it is posible to fill this gap to obtain the
bound up to Zα < 2/π [11]. On the other hand, up to our knowledge,
no result about asymptotic behavior of Nc/Z is available for the pseudo-
relativistic model, although within pseudo-relativistic Hartree-Fock theory
it was recently shown by Dall’Acqua and Solovej (2010) [10] that Nc ≤
Z + const.

We have the following result.

Theorem 1.3 (Bound on maximum ionization of pseudo-relativistic atoms).
For every Z > 0 such that Zα ≤ κ < 2/π we have either Nc = 1 or

Nc < 1.22Z + CκZ
1/3

for some constant Cκ depending only on κ. The number 1.22 can be replaced
by β−1 with β being defined by (2.1).
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2 Overview of Paper II. Asymptotic for two-

dimensional atoms

In this joint work with Fabian Portmann and Jan Philip Solovej, we consider
atoms confined to two dimensions with particles interacting via the three-
dimensional Coulomb potential. The atom with a fixed nucleus of charge
Z > 0 and N non-relativistic quantum electrons of charge −1 is described
by the Hamiltonian

HN,Z =
N∑

i=1

(
−1

2
∆i −

Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj|

acting on the antisymmetric space
∧N
i=1 L

2(R2). Here for simplicity we shall
assume that electrons are spinless because the spin only complicates the
notation and our coefficients in an obvious way.

One possible approach to obtain the above Hamiltonian is to consider
a three-dimensional atom confined to a thin layer R2 × (−a, a) in the limit
a→ 0+ (see [14], Section 3, for a detailed discussion on the hydrogen case).

To the best of our knowledge, there is no existing result on the ground
state energy and the ground states of the system, except for the case of
hydrogen [76, 52]. The purpose of this article is to give a rigorous analysis
for large Z-atom asymptotics.

Theorem 2.1 (Ground state energy). Fix λ > 0. When Z → ∞ and
N/Z → λ, the ground state energy E(N,Z) of HN,Z is

E(N,Z) = −1

2
Z2 lnZ +

(
ETF(λ) +

1

2
cH

)
Z2 + o(Z2)

where ETF(λ) is the Thomas-Fermi energy (defined below) and cH = −3 ln(2)−
2γE + 1 ≈ −2.2339 with γE ≈ 0.5772 being Euler’s constant [16]. In
particular, λ 7→ ETF(λ) is strictly convex and decreasing on (0, 1] and
ETF(λ) = ETF(1) if λ ≥ 1.

Remark. (i) The two-dimensional atom has two regions. The innermost
region of size Z−1 contains a finite number of electrons and contributes
with Z2 to the total energy. The outer region from Z−1 to order 1 has
a high density of electrons and can be understood semiclassically. It
contributes to the energy Z2 ln(Z) from the short distance divergence
and Z2 from the bulk at distance 1.

(ii) By considering the hydrogen semiclassics we conjecture that the next
term of E(λZ,Z) is of order Z3/2.

16



Theorem 2.2 (Extensivity of neutral atoms). Assume that N/Z → 1 and
ΨN,Z is a ground state of HN,Z. Then, for any R > 0 there exists CR > 0
such that ∫

|x|≥R
ρΨN,Z

(x)dx ≥ CRZ + o(Z).

Remark. If we define the radius RZ of a neutral atom (N = Z) by
∫

|x|≥RZ

ρΨZ,Z
(x)dx = 1

then Theorem 2.2 implies that limZ→∞RZ =∞. In three dimensions, how-
ever, the radius is expected to be bounded independently of Z (see [57, 67]).

Our main tool to understand the ground state energy and the ground
states is the two-dimensional Thomas-Fermi (TF) theory below. In this
theory, the Z-ground state scales as ZρTF

N/Z(x) and it suffices to introduce

only the Z-independent theory (the Z-dependent TF theory can be defined
from the TF theory below by scaling ρ 7→ Zρ). The three-dimensional TF
theory was studied in great mathematical detail by Lieb-Simon [37, 30] (see
also [33], Chap. 11 for the the simplest version of the TF theory).

Definition (Thomas-Fermi functional). For any nonnegative function ρ ∈
L1(R2) we define the TF functional as

ETF(ρ) :=

∫

R2

(
πρ2(x)− ρ(x)

|x| + (4π)−1[|x|−1 − 1]2+

)
dx+D(ρ, ρ).

For any λ > 0 we define the TF energy as

ETF(λ) := inf
{
ETF(ρ)|ρ ≥ 0, ‖ρ‖L1(R2) ≤ λ

}
. (2.8)

Let us explain the terms in the TF functional. The term πρ2 comes from
the semiclassics of the kinetic energy while −

∫
ρ(x)|x|−1 and the direct term

D(ρ, ρ) =
1

2

∫∫
ρ(x)ρ(y)|x− y|−1dxdy

stands for the Coulomb interactions. The appearance of (4π)−1[|x|−1 − 1]2+
ensures that the TF functional is bounded from below,

ETF(ρ) =

∫

|x|≤1

π

(
ρ(x)− 1

2π|x|

)2

dx+

∫

|x|>1

(
πρ2(x)− ρ(x)

|x|

)
dx

+D(ρ, ρ)− 3

4

≥ −
∫
ρ− 3

4
.
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Basic information about the TF theory is collected in the following the-
orem.

Theorem 2.3 (Thomas-Fermi theory). Let λ > 0.

(i) (Existence) The variational problem (2.8) has a unique minimizer ρTF
λ .

Moreover, the functional λ 7→ ETF(λ) is strictly convex, decreasing on
(0, 1] and ETF(λ) = ETF(1) if λ ≥ 1.

(ii) (TF equation) The TF minimizer ρTF
λ satisfies the TF equation

2πρTF
λ (x) =

[
V TF
λ

]
+

where V TF
λ (x) is the TF potential defined by

V TF
λ (x) := |x|−1 − (ρTF

λ ∗ | . |−1)(x)− µTF
λ .

Here µTF
λ is a constant satisfying µTF

λ > 0 if λ < 1 and µTF
λ = 0 if

λ ≥ 1.

(iii) (TF minimizer) ρTF
λ is radially symmetric;

∫
ρTF
λ = min{λ, 1} and

0 ≤ |x|−1 − 2πρTF
λ ≤ C|x|−1/2 for all x 6= 0.

Moreover, supp ρTF
λ is compact if and only if λ < 1.

By using the standard strategy in three dimensions, we can show that
if Ψ is a ground state for HN,Z with N ≈ λZ then we have the density
approximations ρΨ ≈ ZρTF

λ (in some appropriate sense) and the energy
approximation

E(N,Z) = Tr

[(
−1

2
∆− Z|x|−1

)
γΨ

]
+D(ρΨ, ρΨ) + o(Z2)

= Z Tr
[(
−(2Z)−1∆− V TF

λ

)
−

]
− Z2

[
µTF
λ (N/Z) +D(ρTF

λ )
]

+ o(Z2).

However, there are two important differences from the three-dimensional
case. First, recall that the TF theory has the Z-ground state ZρTF

N/Z(x)

and ρTF
1 has unbounded support. Roughly speaking, the extensivity of the

TF ground state implies the extensivity of neutral atoms (in contrast, the
three-dimensional TF Z-ground state scales as Z2ρTF(Z1/3x), i.e. its core
shrinks as Z−1/3). Second, the two-dimensional TF potential V TF

λ (x) is not
in L2

loc(R2) (it behaves like |x|−1 near the origin). Consequently, one cannot
write the semiclassics of Tr

[
−h2∆− V TF

]
− in the usual way because

(2π)−2

∫∫
[h2p2 − V TF(x)]−dpdx = −(8πh2)−1

∫
[V TF(x)]2+dx = −∞.
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In contrast, the three-dimensional semiclassical approximation leads to the
behavior

−(15π2h3)−1

∫

R3

[V TF(x)]
5/2
+ dx

which is finite for the Coulomb singularity V TF(x) ∼ |x|−1 ∈ L5/2
loc (R3).

To deal with the singularity near the origin, we shall follow the strategy of
proving the Scott’s correction given by Solovej and Spitzer [71] (see also [70]),
that is to compare the semiclassics of TF-type potentials with hydrogen.
More precisely, in the region close to the origin we shall compare directly
with hydrogen, whereas in the exterior region we can employ the coherent
state approach. We do not use the new coherent state approach introduced
in [71], since the usual one [30, 74] is sufficient for our calculations. In
fact, we can prove the following semiclassical estimate for potentials with
Coulomb singularities in two dimensions.

Theorem 2.4 (Semiclassics for Coulomb singular potentials). Let V ∈
L2

loc(R2\{0}) be a real-valued potential such that 1{|x|≥1}V+ ∈ L2(R2) and

|V (x)− κ|x|−1| ≤ C|x|−θ for all |x| ≤ δ,

where κ > 0, δ > 0, 1 > θ > 0 and C > 0 are universal constants. Then, as
h→ 0+,

Tr
[
−h2∆− V

]
− = −(8πh2)−1

∫

R2

(
[V (x)]2+ − κ2[|x|−1 − 1]2+

)
dx

+κ2(4h2)−1
[
ln(2κ−1h2) + cH

]
+ o(h−2),

where cH = −3 ln(2) − 2γE + 1 ≈ −2.2339 with γE ≈ 0.5772 being Euler’s
constant [16].

The Thomas-Fermi potential V TF
λ (x) is a special case of the Coulomb

singular potential in Theorem 2.4. In fact, it satisfies that [V TF
λ ]+ ∈ L1(R2)

and
|V TF
λ (x)− |x|−1| ≤ C(|x|−1/2 + 1) for all x 6= 0.

The following theorem will turn out to be the main ingredient to prove
Theorems 2.1 and 2.2. The parameter h will eventually be replaced by
(2Z)−1/2 in our application.

Theorem 2.5 (Semiclassics for Thomas-Fermi potential). When h → 0+

one has

Tr
[
−h2∆− V TF

λ

]
− = −(8πh2)−1

∫

R2

(
[V TF
λ (x)]2+ − [|x|−1 − 1]2+

)
dx

+(4h2)−1
[
ln(2h2) + cH

]
+ o(h−2).
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where cH = −3 ln(2)− 2γE + 1 ≈ −2.2339.
Moreover, there is a density matrix γh such that

Tr
[
(−h2∆− V TF

λ )γh
]

= Tr
[
−h2∆− V TF

λ

]
− + o(h−2)

and

2h2 Tr(γh) ≤
∫
ρTF
λ , D((2h2)ργh − ρTF

λ ) = o(1).

3 Overview of Paper III. Bogoliubov theory

and bosonic atoms

In this paper we formulate the Bogoliubov variational principle in the same
spirit of the generalized Hartree-Fock theory [5]. Our formulation bases on
the earlier discussions in [67, 69]. Then we analyze the Bogoliubov approx-
imation for bososnic atoms.

We start by introducing some conventional notations. Let h be a complex
separable Hilbert space with the inner product (., .) and let F = F(h) :=⊕∞

N=0 hN be the bosonic Fock space. We denote by a(f) and a∗(f) the
usual annihilation and creation operators and denote by N :=

∑∞
N=0 N1hN

the number particle operator on F .
Let J : h→ h∗ be the anti-unitary defined by

J(x)(y) = (x, y)h, for all x, y ∈ h.

We can define the generalized annihilation and creation operators

A(f ⊕ Jg) = a(f) + a∗(g),

A∗(f ⊕ Jg) = a∗(f) + a(g), for all f, g ∈ h.

It is straightforward to check the conjugate relation

A∗(F ) = A(JF ) for all F ∈ h⊕ h∗

and the canonical commutation relation (CCR)

[A(F1), A∗(F2)] = (F1,SF2) for all F1, F2 ∈ h⊕ h∗

where

S =

(
1 0

0 − 1

)
, J =

(
0 J∗

J 0

)
.
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Definition (Bogoliubov transformations). A bosonic Bogoliubov transfor-
mation is a linear bounded isomorphism V : h⊕ h∗ → h⊕ h∗ satisfying

JVJ = V and V∗SV = S.
The Bogoliubov transformations form a subgroup of the isomorphisms

in h ⊕ h∗ which preserve the conjugate relation and the canonical commu-
tation relation. We say that a Bogoliubov transformation V is unitarily
implementable if it is implemented by a unitary mapping UV : F → F ,
namely

A(VF ) = UVA(F )U∗V for all F ∈ h⊕ h∗. (2.9)

Because the Bogoliubov transformation V satisfies JVJ = V , it must
have the form

V =

(
U V

JV J JUJ∗

)
(2.10)

for some linear operators U : h → h, V : h∗ → h. It is well-known that
V is unitarily implementable if and only if it satisfies Shale’s condition [64]
Tr(V V ∗) < ∞ (see [5], Theorem 2.2 for the fermionic analogue, the Shale-
Stinespring condition).

We call a mapping ρ on B(F), the space of bounded operators on the
Fock space, is a state if ρ ≥ 0 and Tr ρ = 1. We can define the one-particle
density matrix (1-pdm for short) Γ : h⊕ h∗ → h⊕ h∗ of a state ρ by

(F1,ΓF2) = ρ(A∗(F2)A(F1)) for all F1, F2 ∈ h⊕ h∗.

Note that if Γ is 1-pdm then Γ ≥ 0 and

Γ =

(
γ α

JαJ 1 + JγJ∗

)
(2.11)

where γ : h→ h and α : h∗ → h are linear bounded operators defined by

(f, γg) = ρ(a∗(g)a(f)), (f, αJg) = ρ(a(g)a(f)) for all f, g ∈ h.

Moreover, if Γ has the form (2.11) then Γ ≥ 0 if and only if γ ≥ 0, α∗ = JαJ
and γ ≥ αJ(1 + γ)−1J∗α∗ (see [49], Lemma 1.1).

If a state ρ has the 1-pdm of the form (2.11) then its particle number ex-
pectation is ρ(N ) = Tr(γ). Of primary physical interest are the states with
finite particle number expectation. Note that any 1-dpm with finite par-
ticle number expectation can be diagonalized by a unitarily implementable
Bogoliubov transformation. The finite-dimensional case of the following the-
orem was already proved in [69] (Theorem 9.8). For the fermionic analogue,
see [5] (the proof of Theorem 2.3).
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Theorem 3.1 (Diagonalization 1-dpm’s by Bogoliubov transformations). If
Γ has the form (2.11) with Γ ≥ 0 and Tr(γ) <∞ then there is a Bogoliubov
unitarily implementable transformation V : h⊕h∗ → h⊕h∗ and a trace class
operator ξ : h→ h such that

V∗ΓV =

(
ξ 0
0 1 + JξJ∗

)
.

Similarly to generalized Hartree-Fock theory [5], of our particular interest
are the quasi-free states, which satisfy Wick’s Theorem, namely

ρ[A(F1)...A(F2m−1)] = 0 for all m ≥ 1

and

ρ[A(F1)...A(F2m)] =
∑

σ∈P2m

ρ[A(Fσ(1))A(Fσ(2))]...ρ[A(Fσ(2m−1))A(Fσ(2m))]

where P2m is the set of pairings

P2m = {σ ∈ S2m | σ(2j − 1) < σ(2j + 1), j = 1, . . . ,m− 1,

σ(2j − 1) < σ(2j), j = 1, . . . ,m}.
It is obvious that a quasi-free state is determined completely from its

1-dpm. The crucial point is that among all states having the same 1-pdm
(with finite particle number), there exists a unique quasi-free state. See [5]
for fermionic analogue.

Theorem 3.2 (Quasi-free states and quasi-free pure states).

(i) Any operator Γ : h ⊕ h∗ → h ⊕ h∗ of the form (2.11) satisfying Γ ≥ 0
and Tr(γ) < ∞ is the 1-pdm of a quasi-free state with finite particle
number expectation.

(ii) A pure state |Ψ〉 〈Ψ| with finite particle number expectation is a quasi-
free state if and only if Ψ = UV |0〉 for some Bogoliubov unitary map-
ping UV as in (2.9).

Any operator Γ : h ⊕ h∗ → h ⊕ h∗ of the form (2.11) satisfying Γ ≥ 0
and Tr(γ) < ∞ is the 1-pdm of a quasi-free pure state if and only if
ΓSΓ = −Γ.

One of the motivation of considering the quasi-free pure states is that
they minimize the quadratic Hamiltonians. For a positive semi-definite op-
erator A on h⊕ h∗ such that JAJ = A, the operator

HA =
∑

i,j=1

(Fi,AFj)A∗(Fi)A(Fj),
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acting on F is called a quadratic Hamiltonian corresponding to A. Here
{Fi}i≥1 is an orthonormal basis for h ⊕ h∗ (the sum is independent of the
choice of {Fi}i≥1).

We consider ground state energy of HA,

E(HA) := inf{ρ(HA)|ρ is a state with ρ(N ) <∞} (2.12)

Theorem 3.3 (Minimizing quadratic Hamiltonians). Let A, HA and E(HA)
as above.

(i) We have E(HA) = inf{ρ(HA)|ρ is a quasi-free pure state}.

(ii) If there is a unitarily implementable Bogoliubov transformation VA
such that V∗AAVA is diagonal then there is a quasi-free pure state ρ0

such that ρ0(HA) = E(HA). Moreover, if A is positive definite then ρ0

is unique.

(iii) If the variational problem (2.12) has a minimizer then A is diago-
nalized by a unitarily implementable Bogoliubov transformation VA.
Moreover, if Γ is the 1-pdm of the minimizer then we have

AΓ = −AS1(−∞,0)[AS].

In particular, AΓS = SΓA ≤ 0.

Remark. If an operator W is not self-adjoint but U−1WU is self-adjoint for
some invertible operator U then we can still define the projection 1(−∞,0)[W ]
by

1(−∞,0)[W ] := U1(−∞,0)[U
−1WU ]U−1.

It is easy to check that the definition is independent on the choice of U . In
particular, we can define

1(−∞,0)[AS] := (V∗A)−11(−∞,0)[V∗AAS(V∗A)−1]V∗A

where V∗AAS(V∗A)−1 is self-adjoint.

The Bogoliubov variational states should include not only the quasi-
free states but also the coherent states, which correspond to the condensa-
tions. Recall that (see [69], or [49] for a proof) for every φ ∈ h, there exists
(uniquely up to a complex phase) a coherent unitary (or a Weyl operator)
Uφ : F → F such that

U∗φa(f)Uφ = a(f) + (f, φ) for all f ∈ h.
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A Bogoliubov variational state is a triple (γ, α, φ) ∈ GB × h where

GB :=

{
(γ, α)|Γγ,α =

(
γ α

JαJ 1 + JγJ∗

)
≥ 0,Tr(γ) <∞

}
.

Given a Hamiltonian H : F → F , we can define the Bogoliubov energy
functional

EB(γ, α, φ) := ργ,α(U∗φHUφ)

where ργ,α is the quasi-free state with the 1-dpm Γγ,α. The Bogoliubov ground
state energy is

EB(λ) = inf
{
EB(γ, α, φ)|(γ, α, φ) ∈ GB × h,Tr(γ) + ||φ||2 = λ

}

where λ stands for the total particle number of the system.
We now concentrate on the case of bosonic atoms. For a bosonic atom

we mean a system including a nucleus fixed at the origin in R3 with nucleus
charge Z > 0 and N “bosonic electrons” with charge −1. The system is
described by the Hamiltonian

HN,Z =
N∑

i=1

(
−∆i −

Z

|x|

)
+

∑

1≤i<j≤N

1

|xi − xj|

acting on the symmetric spaceHN =
⊗N

sym L
2(R3). The ground state energy

of the system is given by

E(N,Z) = inf{(Ψ, HN,ZΨ)|Ψ ∈ HN , ||Ψ||L2 = 1}.

Due to the HVZ Theorem (see e.g. [35] Lemma 12.1), E(N,Z) ≤ E(N−
1, Z) and if E(N,Z) < E(N − 1, Z) then E(N,Z) is an isolated eigenvalue
of HN,Z . Unlike the asymptotic neutrality of fermionic atoms, in the bosonic
case the binding E(N,Z) < E(N − 1, Z) holds for all 0 ≤ N ≤ Nc(Z) with
limZ→∞Nc(Z)/Z = tc ≈ 1.21 (see [7, 66, 6, 2]).

The leading term of the ground state energy E(N,Z) is given by the
Hartree theory [7]. In the Hartree theory, the ground state energy is

EH(N,Z) = inf{EH(u, Z) : ||u||2L2 = N}

where

EH(u, Z) =

∫

R3

|∇u(x)|2 dx−
∫

R3

Z|u(x)|2
|x| +

∫∫

R3×R3

|u(x)|2|u(y)|2
|x− y| dxdy.
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By the scaling u(x) = Z2u1(Zx) we have

EH(u, Z) = Z3EH(u1, 1).

Therefore,

EH(N,Z) = Z3e(N/Z, 1) where e(t) = EH(t, 1).

It is well-known (see [6, 30]) that e(t) is convex, e(t)′ < 0 when t < tc ≈ 1.21
and e′(t) = 0 when t ≥ tc. Moreover, for any 0 < t < tc ≈ 1.21, e(t) has
a unique minimizer φt, which is positive, radially-symmetric and it is the
unique solution to the nonlinear equation htφt = 0 where

ht = −∆− 1

|x| + |φt|2 ∗
1

|x| − e
′(t).

As a consequence, ht ≥ 0. Moreover, since σess(ht) = [−e′(t), 0], there is a
gap ∆t > 0 if t < tc such that (ht −∆t)P

⊥
t ≥ 0 where P⊥φt = 1− Pt with Pt

being the one-dimensional projection onto Span{φt}.
By scaling back, we conclude that EH(tZ, Z) has the unique minimizer

and the operator

ht,Z = −∆− Z

|x| + |φt,Z |2 ∗
1

|x| − Z
2e′(t)

satisfies ht,Zφt,Z = 0 and (ht,Z − Z2∆t)P
⊥
φt,Z
≥ 0 when t < tc.

Our aim is to investigate the first correction to the ground state energy
E(tZ, Z). We shall analyze the Bogoliubov variational model for bosonic
atoms and compare to the full quantum theory. From the general discussion
on the Bogoliubov theory, we have the Bogoliubov variational problem

EB(N,Z) = inf
{
EB(γ, α, φ, Z)|(γ, α, φ) ∈ GB,Tr(γ) + ||φ||2 = N

}

(2.13)

where

EB(γ, α, φ, Z) = Tr(−[∆− Z|x|−1]γ̃) +D(ργ̃, ργ̃) +X(γ, γ) +X(α, α)

+

∫∫

R3×R3

γ(x, y)φ(x)φ(y)

|x− y| dxdy + Re

∫∫

R3×R3

α(x, y)φ(x)φ(y)

|x− y| dxdy.

Here we are using the notations γ̃ := γ + |φ〉 〈φ| and

D(f, g) =
1

2

∫∫

R3×R3

f(x)g(y)

|x− y| dxdy, X(γ, γ′) =
1

2

∫∫

R3×R3

γ(x, y)γ′(x, y)

|x− y| dxdy.

The properties of the Bogoliubov theory for bosonic atoms are the fol-
lowing.
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Theorem 3.4 (Existence of minimizers). Let the nucleus charge Z and the
electron number N be any positive numbers (not necessarily integers).

(i) If the binding inequality

EB(N,Z) < EB(N ′, Z) for all 0 < N ′ < N

holds then EB(N,Z) has a minimizer.

(ii) The energy EB(N,Z) is strictly decreasing on N ∈ [0, Nc(Z)] with
Nc(Z) ≥ Z for all Z and

lim inf
Z→∞

Nc(Z)

Z
≥ tc ≈ 1.21.

Theorem 3.5 (Bogoliubov ground state energy). If Z → ∞ and N/Z =
t ∈ (0, tc) then

EB(N,Z) = Z3e(t) + Z2µ(t) + o(Z2)

where

µ(t) := inf
(γ,α)∈GB


Tr[htγ] + Re

∫∫

R3×R3

[γ(x, y) + α(x, y)]φt(x)φt(y)

|x− y| dxdy


 .

(2.14)

The coefficient µ(t) is finite and satisfies the lower bound

µ(t) ≤ t−1e(t)− e′(t) + µ̃(t) < t−1e(t)− e′(t) < 0,

where

µ̃(t) := min
(γ′,α′)∈GB ,γ′φt=0



Tr[htγ

′] + Re

∫∫

R3×R3

[γ′(x, y) + α′(x, y)]φt(x)φt(y)

|x− y|



 .

Note that if we restrict the Hamiltonian HN,Z into the class of N -
particle product functions Ψu = u ⊗ u ⊗ ... ⊗ u then by scaling u(x) =
(N − 1)−1/2Z2u0(Zx) we have

inf
||u||=1

〈Ψu, HN,ZΨu〉 = Z3e(t) + Z2[t−1e(t)− e′(t)] + o(Z2).

Because µ(t) < t−1e(t)−e′(t), the Bogoliubov ground state energy is strictly
lower than the lowest energy of the product wave functions at the second
oder.

We conjecture that the Bogoliubov theory determines the first correction
to the leading term of the quantum energy.
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Conjecture 3.6 (First correction to the leading energy). If Z → ∞ and
N/Z = t ∈ (0, tc) then

E(N,Z) = EB(N,Z) + o(Z2) = Z3e(t) + Z2µ(t) + o(Z2).

Now we give a heuristic discussion supporting the conjecture. While
the picture is rather clear, some technical work is still needed to make the
argument rigorous.

First at all, due to the variational principle, the Bogoliubov energy
EB(N,Z) is a rigorous upper bound to the quantum grand canonical en-
ergy

Eg(N,Z) = inf{(Ψ,
∞⊕

N=0

HN,ZΨ),Ψ ∈ F , ||Ψ|| = 1}.

On the other hand, if the conjecture on the convexity of function N 7→
E(N,Z) (see [35], p. 229) is correct then Eg(N,Z) = E(N,Z), and hence
EB(N,Z) is an upper bound to E(N,Z).

To see the lower bound, let us choose an orthonormal basis {un}∞n=0 for
h with u0 = φt,Z/||φt,Z || and represent the Hamiltonian HZ =

⊕∞
N=0HN,Z

in the second quantization

HZ =
∑

m,n≥0

hm,na
∗
man +

1

2

∑

m,n,p,q≥0

Wm,n,p,qa
∗
ma
∗
napaq

where an = a(un) and

hm,n = (um, (−∆− Z|x|−1)un),Wm,n,p,q =

∫∫

R3×R3

um(x)un(y)up(x)uq(y)

|x− y| .

Assume that Ψ is a ground state for E(N,Z). We shall denote by 〈HZ〉Ψ
the expectation 〈Ψ,HZΨ〉. As in [4] we have the condensation Tr(P⊥γΨ) ≤
C where P is the one-dimensional projection onto u0. If we denote γ =
P⊥γΨP

⊥ and α = P⊥αΨP
⊥ then (γ, α) ∈ GB and Tr(γ) ≤ C. We now

consider the terms in HZ .
The leading term Z3e(t) of the ground state energy E(N,Z) comes from

the terms of full condensation

h00 〈a∗0a0〉Ψ +W0000 〈a∗0a∗0a0a0〉Ψ
≥ Z3e(t)− Z2e′(t) Tr(γ) + Z2[t−1e(t)− e′(t)] + o(Z2).

Because almost of particles live in the condensation u0, we may ignore
all terms in the two-body interaction with 0 or 1 operators a#

0 (where a#
0 is

either a0 or a∗0). Moreover, we apply the Bogoliubov principle in which we
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replace any a#
0 by

√
N0 ≈

√
N . A direct computation shows that the terms

with 1 and 3 operators a#
0 should be canceled together, and the terms with

0 and 2 operator a#
0 contribute the energy

Tr
[(
−∆− Z|x|−1 +N |u0|2 ∗ |.|−1

)
γ
]

+ Re

∫∫

R3×R3

(γ(x, y) + α(x, y))φt,Z(x)φt,Z(y)

|x− y| dxdy.

Putting the above approximation together we arrive at the desired lower
bound

〈HZ〉Ψ ≥ Z3e′(t) + Z2[t−1e(t)− e′(t)]

+ Tr[ht,Zγ] + Re

∫∫

R3×R3

[γ(x, y) + α(x, y)]φt(x)φt(y)

|x− y| + o(Z2)

≥ Z3e′(t) + Z2[t−1e(t)− e′(t) + µ̃(t)] + o(Z2)

≥ Z3e′(t) + Z2µ(t) + o(Z2).

Note that this estimate also implies the identity µ(t) = t−1e(t)− e′(t) +
µ̃(t) (thus Z2µ̃(t) < 0 is the difference between the Bogoliubov energy and
the lowest energy of product functions).
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Chapter 3

Conclusions and perspectives

In this chapter, we describe some problems for future research, which are
related to the subject represented in the thesis.

Problem 1. The ionization conjecture.
A very interesting open problem is to understand the experimental fact

that a neutral atom can bind at most one or two extra electrons (see e.g.
[32]). Rigorously, if we denote by E(N,Z) the ground state energy of the
atoms with a fixed nucleus and N electrons, and denote by Nc = Nc(Z) the
largest number such that Nc electrons can be bound, namely E(Nc, Z) <
E(Nc − 1, Z), then the conjecture says that Nc ≤ Z + 2.

It is well-known that Z ≤ Nc < 2Z + 1 [32] and Nc/Z → 1 as Z → ∞
[36]. We proved that Nc < 1.22 Z + 3 Z1/3, which improves Lieb’s upper
bound 2Z + 1 when Z ≥ 6 [48]. In the next step, we expect to prove the
asymptotic neutrality Nc/Z → 1 for some other models, such as the non-
relativistic atoms with magnetic-fields and pseudo-relativistic atoms. The
further step, which may be very difficult, is to prove the universal bound
Nc ≤ N + C.

Problem 2. Energy of 2-dimensional atoms.
In the joint work with F. Portmann and J.P. Solovej [50] we showed that

the ground state energy of a two-dimensional atom with the nuclear charge
Z and N electrons is given by

E(N,Z) = −1

2
Z2 ln(Z) + e(λ)Z2 + o(Z2)

when Z →∞ and N/Z = λ + o(| lnZ|−1). Unlike what ones expect on the
the usual 3-dimensional atoms, the 2-dimensional atom is extensive, which
in particular implies that the radius of the atom is unbounded when Z →∞.

By observing the spectrum of the hydrogen, we expect the next term
is of order Z3/2. To understand this term, we need to improve the error of
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the semiclassical approximation for the Thomas-Fermi potential to o(h−2+1),
instead of o(h−2). However, the challenging point in two dimension is that
the TF potential is not in L2

loc(R2) (it behaves like |x|−1 near the origin).

Problem 3. The first correction to the energy of bosonic atoms.
We consider the Bogoliubov theory for bosonic atoms. In [49] we showed

that within the Bogoliubov approximation, the ground state energy of an
atom with a fixed nucleaus with charge Z and N = tZ non-relativistic
electrons is

EB(N,Z) = Z3e(t) + Z2µ(t) + o(Z2)

as Z → ∞. The leading term is determined by the Hartree theory, which
is already known to be correct to the ground state energy E(N,Z) in the
full quantum theory [7]. The next step is to verify the conjecture that the
second term is also correct to the quantum theory, namely

E(N,Z) = EB(N,Z) + o(Z2).

Problem 4. Bogoliubov ground state for two-component charged
Bose gases.

It is a remarkable fact that the matter made of two-component charged
bosons is not stable in the second kind. More precisely, the ground state
energy of the Hamiltonian

HN = −1

2

N∑

i=1

∆i +
∑

1≤i<j≤N

eiej
|xi − xj|

acting on the symmetric subspace of L2((R3 × {±1})N) is of order N7/5

(instead of N in fermionic matter).
The correct leading term −AZ7/5 was predicted by F. Dyson in 1967

and then proved Lieb and Solovej [39] (lower bound) and Solovej [68] (upper
bound) using the argument of the Bogoliubov approximation. We may put
the question on the existence of Bogoliubov ground states for this model.
Moreover, Groh [23] proved that if we allow the charged bosons have different
masses then the Bogoliubov approximation still gives the upper bound to
the ground state energy. It would be nice if ones can show the same thing
for the lower bound, and hence validate the Bogoliubov theory in this case.
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Abstract

We prove that the maximum number Nc of non-relativistic electrons that
a nucleus of charge Z can bind is less than 1.22Z + 3Z1/3. This improves
Lieb’s upper bound Nc < 2Z + 1 [Phys. Rev. A 29, 3018-3028 (1984)]
when Z ≥ 6. Our method also applies to non-relativistic atoms in magnetic
field and to pseudo-relativistic atoms. We show that in these cases, under
appropriate conditions, lim supZ→∞Nc/Z ≤ 1.22.
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1 Introduction

Let us consider an atom with a classical nucleus of charge Z and N non-relativistic
quantum electrons. The nucleus is fixed at the origin and the N -electron system
is described by the Hamiltonian

HN,Z =

N∑

i=1

(
−1

2
∆i −

Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj |

acting on the antisymmetric space
N∧
i=1

(L2(R3) ⊗ C2). The nuclear charge Z is

allowed to be any positive number, although it is an integer in the physical case.
The ground state energy of N electrons is the bottom of the spectrum of HN,Z ,

E(N,Z) = inf spec HN,Z = inf
||ψ||L2=1

(ψ,HN,Zψ).

We say that N electrons can be bound if E(N,Z) < E(N − 1, Z), namely one
cannot remove any electron without paying some positive energy. Due to the
HVZ theorem (see e.g. [29], Theorem 11.2) which states that

ess spec HN,Z = [E(N − 1),∞),
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one always has E(N) ≤ E(N − 1). Moreover the binding inequality E(N,Z) <
E(N −1, Z) means that E(N,Z) is an isolated eigenvalue of HN,Z . Zhislin (1960)
[30] show that binding occurs provided that N < Z + 1.

Of our interest is the maximum number Nc = Nc(Z) of electrons that can be
bound. It is a long standing open problem, sometimes referred to as the ionization
conjecture (see e.g. [11, 26, 27, 13]), that Nc ≤ Z + 1, or maybe Nc ≤ Z + 2.
Note that Nc ≥ Z due to Zhislin’s result. We now briefly present the status of
the conjecture, and we refer to [13] (Chap. 12) for a pedagogical introduction to
this problem.

It was first proved by Ruskai (1982) [20] and Sigal (1982, 1984) [23, 24] that
Nc is not too large. In fact, Ruskai [20] showed that Nc = O(Z6/5) and Sigal [24]
showed that Nc ≤ 18Z and lim infZ→∞Nc/Z ≤ 2. Then Lieb (1984) [11] gave a
very simple and elegant proof that Nc < 2Z+1 for all Z > 0. Lieb’s upper bound
settles the conjecture for hydrogen but it is around twice of the conjectured bound
for large Z.

For large atoms, the asymptotic neutrality limZ→∞Nc/Z = 1 was first proved
by Lieb, Sigal, Simon and Thirring (1988) [12]. Later, it was improved to Nc ≤
Z + O(Z5/7) by Seco, Sigal and Solovej (1990) [21] and by Fefferman and Seco
(1990) [8]. The bound Nc ≤ Z + const, for some Z-independent constant, is still
unknown, although it holds true for some important approximation models such
as Thomas-Fermi and related theories [9, 3] and Hartree-Fock theory [26, 27].

In spite of the asymptotic neutrality, Lieb’s upper bound Nc < 2Z + 1 [11]
is still the best one for realistic atoms (corresponding to the range 1 ≤ Z ≤ 118
in the current periodic table). The purpose in this work is to find an improved
bound for all Z > 0. As in [11], we do not need the binding inequality; more
precisely, that E(N,Z) is an eigenvalue of HN,Z is sufficient for our analysis. One
of our main result is the following.

Theorem 1 (Bound on maximum ionization of non-relativistic atoms). Let Z > 0
(not necessarily an integer). If E(N,Z) is an eigenvalue of HN,Z then either
N = 1 or

N < 1.22Z + 3Z1/3.

The factor 1.22 can be replaced by β−1 with β being defined by (2).

Remark 1. The bound 1.22Z + 3Z1/3 is less than Lieb’s bound 2Z + 1 when
Z ≥ 6.

Remark 2. While Lieb’s result holds true for both of fermions and bosons, our
result only holds for fermions (in fact, our method works also for bosonic case but it
yields an estimate worse than Lieb’s one). Note that the ionization conjecture only
concerns fermions since for bosonic atoms it was shown that limZ→∞Nc/Z ≈ 1.21
by Benguria and Lieb [2] and Solovej [25] (the numerical value 1.21 is taken from
[1]). In our proof below, we use Pauli’s exclusion principle in Lemma 2. More
precisely, we use the fact that in a fermionic atom the average distance from the
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electrons to the nucleus of charge Z is (at least) of order Z−1/3. In contrast, the
corresponding distance in the bosonic atoms is of order Z−1.

Remark 3. Although Lieb’s method [11] can be generalized to molecules, we have
not yet been able to adapt our method to this case.

Our method also applies to other models such as non-relativistic atoms in
magnetic fields and relativistic atoms, and we shall discuss these extensions later.
In the rest of the introduction let us outline the proof of Theorem 1. As a first
step we get the following bound.

Lemma 1. If E(N,Z) is an eigenvalue of HN,Z then we have

αN (N − 1) < Z(1 + 0.83 N−2/3),

where

αN := inf
x1,...,xN∈R3

∑
1≤i<j≤N

|xi|2+|xj |2
|xi−xj |

(N − 1)
N∑
i=1
|xi|

. (1)

This result is shown by modifying Lieb’s proof: in [11] Lieb multiplied the
eigenvalue equation (HN,Z−E(N,Z))ΨN,Z = 0 by |xN |ΨN,Z . We instead multiply
by x2

NΨN,Z and employ the Lieb-Thirring inequality to control error terms.
Roughly speaking, the number α−1

N yields an upper bound on N/Z. This
bound improves previous results since αN is bigger than 1/2 (one can see that
α2 = 1/2 and αN ≥

√
5/4 ≈ 0.559 when N ≥ 3). Although we do not know the

exact value of αN , it is possible to derive some effective estimates. We may think
of αN as the lowest energy of N classical particles acting on R3 via the potential

V (x, y) = x2+y2

|x−y| , under some normalizing condition. It is natural to believe that
if N becomes large, then αN converges to the statistical limit

β := inf





∫∫
R3×R3

x2+y2

2|x−y| dρ(x) dρ(y)

∫
R3

|x| dρ(x)
∫
R3

dρ(x)
: ρ a positive measure in R3




. (2)

Results of this form in bounded domain have already appeared in [19]. Indeed,
we can show that αN actually converges to β and provide an explicit estimate on
the convergence rate. Theorem 1 essentially follows by inserting the lower bound
on αN in Proposition 1 below into the inequality in Lemma 1.

Proposition 1. The sequence {αN}∞N=2 is increasing and for any N ≥ 2 we have

β ≥ αN ≥
N

N − 1
[β − 3(β/6)1/3N−2/3],

with β being defined by (2). Moreover, β ∈ [0.8218, 0.8705).
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Remark 4. We do not know the exact numerical value of β, but our bound that
β ∈ [0.82188, 0.8705) is already rather precise. There is of course still room for
improvement.

The article is organized as follows. We shall prove Theorem 1 in Section 2.
Then we discuss some possible extensions of our method in Section 3. Proposition
1 is of independent interest and we defer its proof to Section 4.

Acknowledgments. I am grateful to Mathieu Lewin and Jan Philip Solovej
for very helpful discussions, and to Rupert L. Frank and Elliott H. Lieb for point-
ing out the lower bound (10) which improves the constants in Lemma 2 and
Theorem 1. This work was done when I was a visiting student at Département de
Mathématiques, Université de Cergy-Pontoise (France), and I wish to thank the
Department for the warm hospitality.

2 Proof of Theorem 1: the new bound

2.1 Lieb’s method

In order to make our argument transparent we start by quickly recalling the proof
of Lieb [11]. Assume that E(N,Z) is an eigenvalue of HN,Z corresponding to
some normalized eigenfunction ΨN . Multiplying the Schrödinger equation

(HN,Z − E(N,Z))ΨN,Z = 0 (3)

by |xN |ΨN,Z and then integrating, one gets

0 = 〈|xN |ΨN,Z , (HN,Z − E(N,Z))ΨN,Z〉

= 〈|xN |ΨN,Z , (HN−1,Z − E(N,Z))ΨN,Z〉+
1

2
〈|xN |ΨN,Z ,−∆NΨN,Z〉

+

〈
ΨN,Z ,

[
−Z +

N−1∑

i=1

|xN |
|xi − xN |

]
ΨN,Z

〉
. (4)

The first term in the right hand side of (4) is non-negative since HN−1,Z ≥
E(N − 1, Z) ≥ E(N,Z) (in the space of N − 1 particles x1,...,xN−1). The second
term is also non-negative due to the inequality

Re 〈|x|f,−∆f〉 ≥ 0 for all f ∈ H1(R3). (5)

Thus the third term in (4) must be non-positive. Using the antisymmetry we
can rewrite it as

〈
ΨN,Z ,


−Z +

1

N

∑

1≤i<j≤N

|xi|+ |xj |
|xi − xj |


ΨN,Z

〉
≤ 0.
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It follows from the triangle inequality that

1

N(N − 1)

∑

1≤i<j≤N

|xi|+ |xj |
|xi − xj |

≥ 1

2
. (6)

Hence we obtain −ZN+ N(N−1)
2 < 0, namely N < 2Z+1. The inequality is strict

since the triangle inequality is strict almost everywhere in (R3)N . Note that the
lower bound 1/2 in (6) is sharp (when |xi| � |xj | if i < j).

2.2 Proof of Lemma 1

Instead of multiplying the equation (3) by |xN |ΨN,Z , we now multiply by x2
NΨN,Z

and integrate. We obtain

0 =
〈
x2
NΨN,Z , (HN−1,Z − EN,Z)ΨN,Z

〉
+

1

2

〈
x2
NΨN,Z ,−∆ΨN,Z

〉

+

〈
ΨN,Z ,


−Z|xN |+

∑

1≤i<j≤N

x2
i + x2

j

|xi − xj |


ΨN,Z

〉

≥ 1

2

〈
x2
NΨN,Z ,−∆ΨN,Z

〉
+ 〈ΨN,Z , (−Z + αN (N − 1)) |xN |ΨN,Z〉 .

Recall that αN is defined in (1). This implies that

αN (N − 1) ≤ Z − 1

2

〈
x2
NΨN,Z ,−∆ΨN,Z

〉
〈ΨN,Z , |xN |ΨN,Z〉−1 . (7)

As we will see, the main advantage of our method is that the number αN is
bigger than 1/2 when N ≥ 3. However, we do not have an inequality similar to
(5) with |x| replaced by x2. In fact, for all f ∈ H1(R3) applying the identity

Re 〈ϕf,−∆f〉 =

〈
ϕ1/2f,

(
−∆−

∣∣∣∣
∇ϕ
2ϕ

∣∣∣∣
2
)
ϕ1/2f

〉
(8)

to ϕ(x) = |x|2 we find that

Re
〈
x2f,−∆f

〉
= 〈f, (|x|(−∆)|x| − 1)f〉 ≥ −3

4
〈f, f〉 (9)

by Hardy’s inequality, −3/4 being the sharp constant.
Our observation is that we may still control the second term in the right hand

side of (7) since 〈ΨN,Z , |xN |ΨN,Z〉−1 is small (in comparison with Z) . In fact,
〈ΨN,Z , |xN |ΨN,Z〉 can be understood as the average distance from N electrons to
the nucleus, which is well-known to be (at least) of order Z−1/3. We have the
following explicit bound.

Lemma 2. If ΨN,Z is a ground state of HN,Z then

〈ΨN,Z , |xN |ΨN,Z〉 > 0.553 Z−1N2/3.
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It follows from (9) and Lemma 2 that

1

2

〈
x2
NΨN,Z ,−∆ΨN,Z

〉
〈ΨN,Z , |xN |ΨN,Z〉−1 ≥ −0.68 ZN−2/3.

Substituting the latter estimate into (7) we obtain the inequality in Lemma 1.
We now provide the

Proof of Lemma 2. The following proof essentially follows from [13] ( p. 132).
Note that

〈ΨN,Z , |xN |ΨN,Z〉 =
1

N

∫

R3

|x|ρΨN,Z
(x)dx

where the density functional ρΨN,Z
of ΨN,Z is defined by

ρΨN,Z
(x) := N

∑

σ1=1,2

...
∑

σN=1,2

∫

R3(N−1)

|ΨN,Z(x, σ1;x2, σ2; ...;xN , σN )|2dx2...dxN .

By solving for the Bohr atom as in [10] (after eq. (40) p. 560) one has the
lower bound on the ground state energy

E(N,Z) ≥
〈

ΨN,Z ,
N∑

i=1

(
−1

2
∆i −

Z

|xi|

)
ΨN,Z

〉
≥ −AZ2N1/3 (10)

where A = (31/3/2)22/3. Moreover, one has the Lieb-Thirring kinetic energy
inequality [16]

KΨN,Z
:=

1

2

N∑

i=1

(Ψ,−∆iΨ) ≥ K
∫

R3

ρΨN,Z
(x)5/3dx (11)

where K = 2−2/3(3/10) (2/(5L))2/3 with L = (π33/25)−1 ≈ 0.0123 (this constant
L is taken from [7]). Since E(N,Z) = −KΨN,Z

by the Virial theorem, we get from
(10) and (11) that

∫

R3

ρΨN,Z
(x)5/3dx ≤ K−1AZ2N1/3. (12)

On the other hand, we have the following inequality introduced by Lieb ([10],
p.563)



∫

R3

ϕ(x)5/3dx



p/2

∫

R3

|x|pϕ(x)dx


 ≥ Cp



∫

R3

ϕ(x)dx




1+5p/6
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for any nonnegative measurable function ϕ(x), the sharp constant Cp being at-
tained with ϕ(x) = (1 − |x|p)3/2. In particular, applying this inequality to
ϕ(x) = ρΨN,Z

(x) and p = 1, we get



∫

R3

ρΨN,Z
(x)5/3dx




1/2 ∫

R3

|x|ρΨN,Z
(x)dx ≥ C1N

11/6 (13)

where C1 = π−1/32−135/355/671/311−3/2 ≈ 0.4271. Combining (12) and (13) we
obtain the desired inequality.

2.3 Proof of Theorem 1

Let us admit Proposition 1 for the moment and derive Theorem 1. Lemma 1 and
Proposition 1 together yield a lower bound of Z in terms of N ,

N(β − 3(β/6)1/3N−2/3)

1 + 0.68 N−2/3
< Z. (14)

It is just an elementary calculation to translate (14) into an upper bound of N
in terms of Z. If Z ≤ 5 then max{2, β−1Z + 3Z1/3} > 2Z + 1 (since β < 0.8705),
and hence our bound follows from Lieb’s bound. If Z > 5, then Lieb’s bound
implies that N/Z < 2 +Z−1 < 2.2. Thus the desired result follows from (14) and
the following technical lemma whose proof is provided in Appendix.

Lemma 3. For Z > 0, N > 0, N/Z ≤ 2.2 and β ≥ 0.8218 one has

β−1Z + 3Z1/3 ≥ min

{
N,Z

1 + 0.68 N−2/3

β − 3(β/6)1/3N−2/3

}
.

3 Some possible extensions

3.1 Atoms in magnetic fields

In this section, we consider the ionization problem with the presence of a magnetic
field. The system is now described by the Hamiltonian

HN,Z,A =

N∑

i=1

(
T

(i)
A −

Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj |

acting on the fermionic space
N∧

(L2(R3)⊗ C2). The kinetic operator is the Pauli
operator

TA = |σ · (−i∇+A(x))|2 = (−i∇+A(x))2 + σ · B,
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where A is the magnetic potential, B = curl(A) is the magnetic field and σ =
(σ1, σ2, σ3) are the Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.

For simplicity we shall always assume that A ∈ L4
loc(R3,R3), ∇ ·A ∈ L2

loc(R3)
and |B| ∈ L3/2(R3) + L∞(R3). Under these assumptions, it is well known that
(−i∇ + A(x))2 is essentially selfadjoint on L2(R3) with core C∞c (R3) [17], and
|B| + Z/|x| is infinitesimally bounded with respect to (−i∇ + A(x))2 (see e.g.
[22, 18]). In particular, the ground state energy

E(N,Z,B) = inf spec HN,Z,A

is finite. We shall also assume that N 7→ E(N,Z,B) is non-increasing (for exam-
ple, this is the case if B = (0, 0, B) is a constant magnetic field [14]). Note that
the ground state energy depends on A only through B by gauge invariance (see
e.g. [13] p. 21).

Of our interest is the maximum number Nc such that E(Nc, Z,B) is an eigen-
value of HN,Z,A. Seiringer [22] showed in 2001 that

Nc < 2Z + 1 +
1

2

E(Nc, Z,B)− E(Nc, kZ,B)

NcZ(k − 1)
(15)

for all k > 1. In the homogeneous case, B = (0, 0, B), his bound yields

Nc < 2Z + 1 + C1Z
1/3 + C2Z min

{
(B/Z3)2/5, 1 + | ln(B/Z3)|2

}
. (16)

In particular, in the semiclassical regime limZ→∞(B/Z3) = 0, Seiringer’s bound
implies that

lim sup
Z→∞

Nc

Z
≤ 2.

In contrast, it was shown by Lieb, Solovej and Yngvason (1994) [14] that if
limZ→∞(B/Z3) =∞, then

lim inf
Z→∞

Nc

Z
≥ 2.

We shall improve these bounds using the method in the previous section. Our
result in this section is as follows.

Theorem 2 (Bounds on maximum ionization of atoms in magnetic fields). Let
Z > 0 and let B satisfy the assumption stated above. Then we have, for every
k > 1,

Nc < (1.22Z + 3Z1/3)

(
1 +

E(Nc, Z,B)− E(Nc, kZ,B)

NcZ2(k − 1)

)
. (17)
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If B = (0, 0, B) is a constant magnetic field then

Nc < (1.22 Z + 3Z1/3) ×
(

1 + 11.8 Z−2/3+

+ min
{

0.42
(
B/Z3

)2/5
, C(1 + | ln(B/Z3)|2)

})

for some universal constant C (independent of Z and B).
In particular, if limZ→∞(B/Z3) = 0, then

lim inf
Z→∞

Nc

Z
≤ 1.22.

The number 1.22 in all bounds can be replaced by β−1 with β being defined by (2).

Proof. Assume that ΨN,Z,A is a ground state of HN,Z,A. Following the proof of
Lemma 1, we have

αN (N − 1) ≤ Z −
〈
x2
NΨN,Z,A, TAΨN,Z,A

〉
〈ΨN,Z,A, |xN |ΨN,Z,A〉−1 , (18)

which is the analogue of (7).
We may assume that N ≥ β−1Z + 3Z−2/3 (otherwise we are done). In this

case the left hand side of (18) can be bound by

αN (N − 1) >
N

β−1 + 3Z−2/3
. (19)

This estimate follows from the lower bound on αN in Proposition 1 and the
following technical lemma whose proof is provided in Appendix.

Lemma 4. For Z > 0, N ∈ N, N ≥ β−1Z + 3Z−2/3 and β ≥ 0.8218, one has

(β − 3(β/6)1/3N−2/3)(β−1 + 3Z−2/3) > 1.

The second term in the right hand side of (18) can be bound in the same way
as in [22]. More precisely, using (8) with −∆ replaced by TA ([18] Proposition
3.3, see also [4]) and TA ≥ 0, one has

〈
x2
NΨN,Z,A, TAΨN,Z,A

〉
= 〈ΨN,Z,A, (|xN |TA|xN | − 1) ΨN,Z,A〉 ≥ −1. (20)

On the other hand, for every k > 1,

〈ΨN,Z,A, |xN |ΨN,Z,A〉−1 ≤
〈
ΨN,Z,A, |xN |−1ΨN,Z,A

〉

=
〈ΨN,Z,A, HN,Z,AΨN,Z,A〉 − 〈ΨN,Z,A, HN,kZ,AΨN,Z,A〉

NZ(k − 1)

≤ E(N,Z,B)− E(N, kZ,B)

NZ(k − 1)
(21)

since ΨN,Z,A is a ground state of HN,Z,A. Then (17) follows by substituting (19),
(20) and (21) into (18).
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Now assume that B = (0, 0, B) is a constant magnetic field. It follows from [15]
(Theorems 2.4, 2.5) that if N ≥ Z/2, then the ground state energy E(N,Z,B) :=
E(N,Z,B) can be bounbed from below by

E(N,Z,B) ≥ −NZ2
(

18.7Z−2/3+

+ min
{

0.95
(
B/Z3

)2/5
, C
(
1 + | ln(B/Z3)|2

)})
(22)

for some universal constant C (independent of N , Z and B). (It is obtained
when applying (2.27), (2.26), (2.29) in [15] to the cases: B < Z4/3, B ≥ Z4/3,
B � Z3, respectively.)

We can choose k = 2 in (17). Then the desired bound follows by using the
upper bound E(N,Z,B) ≤ 0 and the lower bound on E(N, 2Z,B) derived from
(22).

Remark 5. We may also consider the Hamiltonian HN,Z,A on the bosonic space
N
⊗
sym

(L2(R3)⊗ Cq), where q is a spin number. In this case the inequality (17) still

holds true. Moreover, if B = (0, 0, B) is a constant magnetic field, then using the
estimate [22] (p. 1948)

E(N,Z,B) = NZ2E(1, 1, B/Z2) ≥ −1

4
NZ2 min

{
1 + 4B/Z2, C| ln(B/Z2)|2

}

we get from (17) that

Nc < (β−1Z + 3Z1/3)
(
1 + min

{
1 + 4B/Z2, C2| ln(B/Z2)|2

})
.

In particular, if limZ→∞B/Z2 = 0, then our bound yields

lim sup
Z→∞

Nc/Z ≤ 2β−1 ≤ 2.44.

It slightly improves the bosonic bound in [22] which gives lim supZ→∞Nc/Z ≤ 2.5.

Remark 6. As shown in [18], one can make a slight improvement on our bounds
by using the Hardy-type inequality TA ≥ (dB/4)|x|−2 instead of TA ≥ 0 in (20),
for some 0 < dB ≤ 1. It allows us to include a factor (1−dB) in front of the term
involved to E(N,Z,B)− E(N, kZ,B) in (17).

3.2 Pseudo-relativistic atoms

In this section we consider the pseudo-relativistic Hamiltonian

Hrel
N,Z =

N∑

i=1

(
α−1(

√
−∆i + α−1 − α−1)− Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj |

46



acting on the fermionic space
N∧

(L2(R3)⊗C2). Here α > 0 is the fine-structure con-
stant. It is well known that the ground state energy Erel(N,Z) := inf spec Hrel

N,Z is

finite if and only if Zα ≤ 2/π (see e.g. [13]). The physical value is α = e2/(~c) ≈
1/137 and hence Z < 87.22. However, we allow α to be any positive number.

As in the previous dicussions, we are also interested in the maximum number
Nc such that the ground state energy Erel(Nc, Z) is an eigenvalue of Hrel

Nc,Z
. Note

that Lieb’s bound Nc < 2Z + 1 still holds in this case. In fact, due to a technical
gap the original proof of Lieb in [11] works properly only when Zα < 1/2. How-
ever, it is posible to fill this gap to obtain the bound up to Zα < 2/π [6]. On the
other hand, up to our knowledge, no result about asymptotic behavior of Nc/Z
is available for the pseudo-relativistic model, although within pseudo-relativistic
Hartree-Fock theory it was recently shown by Dall’Acqua and Solovej (2010) [5]
that Nc ≤ Z + const.

Our result in this section is the following.

Theorem 3 (Bound on maximum ionization of pseudo-relativistic atoms). For
every Z > 0 such that Zα ≤ κ < 2/π we have either Nc = 1 or

Nc < 1.22Z + CκZ
1/3

for some constant Cκ depending only on κ. The number 1.22 can be replaced by
β−1 with β being defined by (2).

Proof. Assume that Ψrel
N,Z is a ground state of Hrel

N,Z . As an analogue of (7) we
get

αN (N − 1) ≤ Z −
〈
x2
NΨrel

N,Z , α
−1(
√
−∆N + α−1 − α−1)Ψrel

N,Z

〉
×

×
〈

Ψrel
N,Z , |xN |Ψrel

N,Z

〉−1
. (23)

The left hand side of (23) can be bound by (19). Turning to the right hand
side of (23), we first show that for any function f : R3 → C smooth enough

Re
〈
|x|2, α−1

(√
−∆ + α−1 − α−1

)
f
〉
L2(R3,dx)

≥ −3

8
〈f, f〉 . (24)

It suffices to show (24) for α = 1 (the general case follows by scaling). Using the
Fourier transform f̂(p) :=

∫
R3

e−i2πp·xf(x)dx and applying (8) to

ϕ(p) :=
√

(2πp)2 + 1− 1 =
(2πp)2

√
(2πp)2 + 1 + 1
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we find that

Re
〈
|x|2f,

[√
−∆x + 1− 1

]
f
〉
L2(R3,dx)

= (2π)−2 Re
〈
−∆pf̂ , ϕf̂

〉
L2(R3,dp)

= (2π)−2

〈
ϕ1/2f̂ ,

(
−∆p −

∣∣∣∣
∇ϕ
2ϕ

∣∣∣∣
2
)
ϕ1/2f̂

〉

= (2π)−2

〈
ϕ1/2f̂ ,

(
−∆p −

(
√

(2πp)2 + 1 + 1)2

4p2((2πp)2 + 1)

)
ϕ1/2f̂

〉
.

Then it follows from Hardy’s inequality −∆p ≥ 1/(4p2) that

Re
〈
|x|2f,

[√
−∆x + 1− 1

]
f
〉
L2(R3,dx)

≥ −
〈
f̂ ,

2
√

(2πp)2 + 1 + 1

4((2πp)2 + 1)(
√

(2πp)2 + 1 + 1)
f̂

〉

L2(R3,dp)

≥ −3

8

〈
f̂ , f̂

〉
= −3

8
〈f, f〉 .

The term 〈Ψ, |xN |Ψ〉−1 can be estimated similarly to (21), namely

〈Ψ, |xN |Ψ〉−1 ≤
〈
Ψ, |xN |−1Ψ

〉
≤ E(N,Z)− E(N, kZ)

NZ(k − 1)

for every k > 1 such that kZα < 2/π. It is well known that 0 ≥ E(N,Z) ≥
−CκZ7/3 provided that Zα ≤ κ. In fact, it was shown by Sørensen [28] that, at
the limit Z →∞ (and Zα = κ fixed), the leading order of the ground-state energy
E(N,Z) is given by the Thomas-Fermi theory which is of order Z7/3. Thus we
can conclude that

〈Ψ, |xN |Ψ〉−1 ≤ CκZ−2/3. (25)

The desired result follows from (24), (25), (23) and (19).

4 Proof of Proposition 1: Analysis of αN

This section is devoted to the proof of Proposition 1. For the reader convenience,
we split the proof into several steps. Recall that αN and β are defined in (1) and
(2), respectively.

Step 1. The sequence αN is increasing in N and it converges to β.
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Proof. The fact that αN is increasing is shown as follows: for every x1, ..., xN ∈ R3

we have

∑

1≤i<j≤N

|xi|2 + |xj |2
|xi − xj |

=
N∑

k=1


 1

(N − 2)

∑

i<j;i 6=k,j 6=k

|xi|2 + |xj |2
|xi − xj |




≥
N∑

k=1


αN−1

∑

i 6=k
|xi|


 = αN−1(N − 1)

N∑

k=1

|xi|,

where we have used the definition of αN−1. This implies that αN−1 ≤ αN .
We shall show that αN converges to β. We start with the upper bound αN ≤ β.

Let ρ be an arbitrary positive measure in R3. Multiplying ρ by some positive
constant, we may assume that ρ(R3) = 1. Then

∫∫

R3×R3

x2 + y2

2|x− y| dρ(x) dρ(y) =

∫

R3N

1

N(N − 1)

∑

1≤i<j≤N

x2
i + x2

j

|xi − xj |
dρ(x1)...dρ(xN )

≥
∫

R3N

αN
N

(
N∑

i=1

|xi|
)

dρ(x1)...dρ(xN ) = αN

∫

R3

|x|dρ(x).

Thus αN ≤ β for all N ≥ 2.
Let us prove a lower bound. For the reader’s convenience, we give now a simple

bound which is enough to get that αN converges to β. We will provide a better
lower bound in the next step.

Let {xi}Ni=1 be N arbitrarily distinct points in R3. For our purpose we may
assume that

∑N
i=1 |xi| = N . For every i, let µi be the uniform measure on the

sphere |x − xi| = ri with the radius ri := r|xi| such that
∫
µi = 1. Denote

dρ(x) :=
∑N

i=1 dµi(x).
Since

∫
dρ(x) = N and

∫
|x|dρ(x) ≥ N (due to the convexity

∫
|x|dµi(x) ≥

|xi|) we have

N−2

∫∫

R3×R3

x2 dρ(x) dρ(y)

|x− y| ≥ β.

On the other hand,

∫∫

R3×R3

x2 dρ(x) dρ(y)

|x− y| =
∑

i,j

∫∫
x2 dµi(x) dµj(y)

|x− y|

≤ (1 + r)2
∑

i,j

∫∫
x2
i dµi(x) dµj(y)

|x− y|

≤ (1 + r)2


∑

i 6=j

x2
i

|xi − xj |
+
N

r


 .
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The first inequality follows from |x| ≤ (1+r)|xi| for every x on the sphere |x−xi| =
ri, and the second inequality is due to Newton’s theorem (see, e.g. [13], p. 91).
Thus ∑

i 6=j

x2
i

|xi − xj |
≥ (1 + r)−2N2β − r−1N.

This implies that

αN ≥
N

N − 1

[
(1 + r)−2β − (rN)−1

]
for all r > 0. (26)

We can choose, for example, r = N−1/3 to conclude that αN → β. This ends the
proof of Step 1.

We now improve the lower bound (26).

Step 2. We have the lower bound

αN ≥
N

N − 1
[β − 3(β/6)1/3N−2/3]

Proof. In fact, we shall prove that

αN ≥ N

N − 1

[
1 + r2/3

1 + r2
β − 1

rN

]
≥ N

N − 1

[
β − 2r2

3
β − 1

rN

]
(27)

for all r ∈ (0, 1]. The desired result follows by choosing r = (4βN/3)−1/3 which
maximizes the right hand side of (27).

The bound (27) is shown by following the same method as for (26), but with
more careful computations. We shall prove that (with the notation of the proof
of Step 1)

∫

R3

|x|dρ(x) = N

(
1 +

r2

3

)
(28)

and

∫∫

R3×R3

x2 dρ(x) dρ(y)

|x− y| ≤ (1 + r2)


∑

i 6=j

x2
i

|xi − xj |
+
N

r


 . (29)

The identity (28) follows from a direct computation using the formula

∫

R3

f(x)dµi(x) =
1

|S2|

∫

S2

f(xi + riω)dω

=
1

|S2|

2π∫

0

π∫

0

f(xi + ri(cos θ, sin θ cosϕ, sin θ sinϕ)) sin(θ)dθ dϕ
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for any integrable function f . Here the second identity comes from the spherical
coordinates ω = (cos θ, sin θ cosϕ, sin θ sinϕ), where θ ∈ [0, π) and ϕ ∈ [0, 2π].
(Note that if r > 1, then the right hand side of (28) becomes Nr(1 + 1/(3r2)).)

Now we prove (29). Using Newton’s theorem we have

∫∫

R3×R3

x2 dρ(x) dρ(y)

|x− y| =
∑

i,j

∫∫

R3×R3

x2 dµi(x) dµj(y)

|x− y|

≤
∑

i,j

∫∫

R3×R3

x2dµi(x)

|x− xj |
=
∑

i,j



∫∫

R3×R3

(1 + r2)x2
i dµi(x)

|x− xj |
+ Vij




≤ (1 + r2)


∑

i 6=j

x2
i

|xi − xj |
+
N

r


+

∑

i,j

Vij

where Vii = 0 and

Vij =

∫

R3

2xi.(x− xi) dµi(x)

|x− xj |
=

1

|S2|

∫

S2

2xi.riω

|xi − xj + riω|
dω

= −2

3

rixi(xi − xj) min{|xi − xj |, ri}
|xi − xj |(max{|xi − xj |, ri})2

if i 6= j.

Here we have used the formula

1

|S2|

∫

S2

ω

|a+ sω|dω = −1

3

a

|a|
min{|a|, s}

(max{|a|, s})2
, a ∈ R3, s > 0. (30)

Thus (29) would be valid if we can show that Vij + Vji ≥ 0. We distinguish
three cases.

Case 1: |xi − xj | ≥ max{ri, rj}. We have

Vij + Vji = −2

3

r2
i xi(xi − xj)
|xi − xj |3

− 2

3

r2
jxj(xj − xi)
|xi − xj |3

= −r
2

3

(x2
i − x2

j )
2 + (x2

i + x2
j )(xi − xj)2

|xi − xj |3
≤ 0.

Case 2: |xi − xj | ≤ min{ri, rj}. In this case

Vij + Vji = −2

3

xi(xi − xj)
ri

− 2

3

xj(xj − xi)
rj

= −2

3

|xi|+ |xj |
r

(
1− xixj
|xi|.|xj |

)
≤ 0.

Case 3: ri ≤ |xi − xj | ≤ rj (the case rj ≤ |xi − xj | ≤ ri is similar). We have

Vij + Vji = −2

3

r2
i xi(xi − xj)
|xi − xj |3

− 2

3

xj(xj − xi)
rj

.
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It is obvious that Vji ≤ 0 since |xj | ≥ |xi|. If Vij ≤ 0 then we are done; if Vij ≥ 0,
then using ri ≤ |xi − xj | we get

Vij ≤ −
2

3

xi(xi − xj)
ri

.

It turns out that Vij + Vji ≥ 0 as in Case 2.

We now turn to direct bounds on β.

Step 3. We have the bound 0.8218 ≤ β ≤ 0.8705.

Proof. The lower bound follows from the following estimate whose proof is pro-
vided in Appendix.

Lemma 5. For any positive measure ρ in R3 we have
∫∫

R3×R3

x2 + y2

|x− y| dρ(x) dρ(y)

≥ max





∫∫

R3×R3

(
max{|x|, |y|}+

(min{|x|, |y|})2

|x− y|

)
dρ(x) dρ(y),

∫∫

R3×R3

(
|x− y|+ 2

3

(min{|x|, |y|})2

max{|x|, |y|}

)
dρ(x) dρ(y)




.

Remark 7. If ρ is radially symmetric then in the inequality in Lemma 5 becomes
an equality.

It follows from Lemma 5 that for any positive measure ρ on R3 and for any
λ ∈ [0, 1] we have

∫∫

R3×R3

x2 + y2

|x− y| dρ(x) dρ(y) ≥
∫∫

R3×R3

Wλ(x, y) dρ(x) dρ(y)

where

Wλ(x, y) := λ

(
max{|x|, |y|}+

(min{|x|, |y|})2

|x− y|

)

+ (1− λ)

(
|x− y|+ 2

3

(min{|x|, |y|})2

max{|x|, |y|}

)
. (31)

It turns out that

β ≥ sup
λ∈[0,1]

inf
x,y∈R3

Wλ(x, y)

|x|+ |y| .

Thus the lower bound on β follows from the following lemma whose proof is
provided in Appendix.
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Lemma 6. With Wλ defined in (31) one has

sup
λ∈[0,1]

inf
x,y∈R3

Wλ(x, y)

|x|+ |y| ≥ 0.8218.

(A numerical computation shows that the sharp lower bound in Lemma 6 is
approximately 0.8218066, attained with λ ≈ 0.843476.)

The upper bound on β is attained by choosing some explicit trial measure ρ.
By restricting ρ to radially symmetric measures we have

β ≤ βrad := inf





∞∫
0

∞∫
0

r2dm(r)dm(s)
max{r,s}

∞∫
0

rdm(r)
∞∫
0

dm(r)

: m is a positive measure on [0,∞)




.

Choosing m(r) = r−3/21[1,9](r)dr, dr being the Lebesgue measure, we get

βrad ≤
115

81
− 1

2
ln(3) ≈ 0.87045.

(A numerical computation shows that βrad ≈ 0.8702.)

For completeness, we show Lemma 5.

Proof of Lemma 5. We start by proving
∫∫

x2 + y2

|x− y| dρ(x) dρ(y) ≥
∫∫ (

max{|x|, |y|}+
(min{|x|, |y|})2

|x− y|

)
dρ(x) dρ(y).(32)

We first show that (32) follows from the following inequality: for any ε > 0, if
N large enough, then

∑

1≤i<j≤N

x2
i + x2

j

|xi − xj |
≥ (1− ε)

∑

1≤i<j≤N

(
max{|xi|, |xj |}+

min{|xi|, |xj |}
|xi − xj |

)
(33)

for every {xi}Ni=1 ⊂ R3. In fact, we may assume that ρ(R3) = 1. For every ε > 0,
taking N large enough and using (33) one has

∫∫

R3×R3

x2 + y2

|x− y| d ρ(x) d ρ(y)

=

∫

R3N

2

N(N − 1)


 ∑

1≤i<j≤N

x2
i + x2

j

|xi − xj |


dρ(x1)...dρ(xN )

≥
∫

R3N

2(1− ε)
N(N − 1)

∑

1≤i<j≤N

(
max{|xi|, |xj |}+

min{|xi|, |xj |}
|xi − xj |

)
dρ(x1)...dρ(xN )

= (1− ε)
∫∫

R3×R3

(
max{|x|, |y|}+

min{|x|, |y|}
|x− y|

)
dρ(x) dρ(y).
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Since the latter inequality holds for every ε > 0, the inequality (32) follows.
Now we show (33). This inequality follows from a key result of [12]. It was

shown in [12] (Theorem 3.1) that, for any ε > 0, if N large enough, then

max
1≤j≤N





∑

1≤i≤N,i6=j

1

|xi − xj |
− N(1− ε)

|xj |



 ≥ 0 (34)

for any {xi}Ni=1 ⊂ R3. Since

max{|xi|, |xj |}+
(min{|xi|, |xj |})2

|xi − xj |
≤ min{|xi|, |xj |}+

(max{|xi|, |xj |})2

|xi − xj |
,

we can deduce from (34) that

max
1≤j≤N




∑

i 6=j

[
x2
i + x2

j

|xi − xj |
− (1− ε)

(
max{|xi|, |xj |}+

(min{|xi|, |xj |})2

|xi − xj |

)]
 ≥ 0.(35)

Now take 1 > ε > 0. For N large enough, employing (35) repeatedly, we can
assume that

∑

1≤i<j

[
x2
i + x2

j

|xi − xj |
− (1− ε)

(
max{|xi|, |xj |}+

(min{|xi|, |xj |})2

|xi − xj |

)]
≥ 0

for every εN ≤ j ≤ N . It turns out that

∑

1≤i<j≤N

[
x2
i + x2

j

|xi − xj |
− (1− ε)

(
max{|xi|, |xj |}+

(min{|xi|, |xj |})2

|xi − xj |

)]

≥
∑

1≤i<j<εN

[
x2
i + x2

j

|xi − xj |
− (1− ε)

(
max{|xi|, |xj |}+

(min{|xi|, |xj |})2

|xi − xj |

)]

≥ −
∑

1≤i<j<εN
max{|xi|, |xj |} ≥ −εN

∑

1≤i<εN
|xi| ≥ −

ε

1− ε
∑

1≤i<εN≤j≤N
|xi|

≥ − ε

1− ε
∑

1≤i<j≤N

(
max{|xi|, |xj |}+

(min{|xi|, |xj |})2

|xi − xj |

)
.

Thus (33), and hence (32), follows.
Next, we show that

∫∫

R3×R3

x2 + y2

|x− y| d ρ(x) dρ(y) ≥
∫∫

R3×R3

(
|x− y|+ 2

3

(min{|x|, |y|})2

max{|x|, |y|}

)
dρ(x) dρ(y). (36)

This is equivalent to
∫∫

R3×R3

x · y
|x− y| dρ(x) dρ(y) ≥ 1

3

∫∫

R3×R3

(min{|x|, |y|})2

max{|x|, |y|} dρ(x) dρ(y). (37)
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In fact, if ρ is radially symmetric, then (36) becomes an equality due to (30). In
general case, let us introduce the positive, radially symmetric measure

ρ̃(x) =

∫

SO(3)

ρ(Rx)dR,

dR being the normalized Haar measure on the rotation group SO(3). Because of
the positive-definiteness of the operator with the kernel x·y

|x−y| , we can employ the
convexity to get

∫∫

R3×R3

x · y
|x− y| dρ(x) dρ(y) ≥

∫∫

R3×R3

x · y
|x− y| dρ̃(x) dρ̃(y)

=
1

3

∫∫

R3×R3

(min{|x|, |y|})2

max{|x|, |y|} dρ̃(x) dρ̃(y) =
1

3

∫∫

R3×R3

(min{|x|, |y|})2

max{|x|, |y|} dρ(x) dρ(y).

Thus (37) (and hence (36)) holds for all positive measure ρ.

Appendix: Technical lemmas
In this appendix we provide the proofs of some technical lemmas.

Proof of Lemma 3. Let us denote β1 := 3(β/6)1/3 for short. If the desired in-
equality fails then

0 ≤ 1 + 0.68 N−2/3 − (β−1 + 3Z−2/3)(β − β1N
−2/3)

+ β1N
−2/3(N/Z − β−1 + 3Z−2/3)

= N−2/3
[
0.68− 3β(N/Z)2/3 + β1(N/Z)

]
.

Thus the polynomial

h(x) := 0.68− 3βx2 + β1x
3

satisfies that h(−∞) = −∞, h(0) = 0.68 > 0, h(β−1/3) < 0, h((N/Z)1/3) ≥
0, h((2.2)1/3) < 0 and h(+∞) = +∞ (we can verify that h(β−1/3) < 0 and
h((2.2)1/3) < 0 when β ≥ 0.8218). However, it is impossible since h(x) has at
most three distinct roots.

Proof of Lemma 4. Denote β1 := 3(β/6)1/3. Assume that the desired inequality
fails, namely

3βZ−2/3 ≤ β1N
−2/3(β−1 + 3Z−2/3). (38)

Replacing the term β−1 + 3Z−2/3 in the right hand side of (38) we get

N

Z
≥
(

3β

β1

)3

> 4
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since β ≥ 0.8218. Thus N ≥ max{4Z, β−1 + 3Z−2/3} > 4.
On the other hand, (38) is equivalent to

N−2/3 ≥ β

β1
− 1

3β(N/Z)2/3
.

Using β ≥ 0.8218 and N/Z > 4 we have N < 4.5. It contradicts the fact that N
must be an integer.

Proof of Lemma 6. For any x, y ∈ R3, denote a = max{|x|, |y|}, b = min{|x|, |y|}
and c = |x− y|. Using the inequality u2 + v2 ≥ 2uv for u, v ≥ 0, we find that

Wλ(x, y) = λ

(
a+

b2

c

)
+ (1− λ)

(
c+

2b2

3a

)

= (λ− λ′)a+

(
λ′a+ (1− λ)

2b2

3a

)
+

(
λ
b2

c
+ (1− λ)c

)

≥ (λ− λ′)a+

(
2

√
2

3
λ′(1− λ) + 2

√
λ(1− λ)

)
b

for every 0 ≤ λ′ ≤ λ. We may choose λ′ such that

λ− λ′ = 2

√
2

3
λ′(1− λ) + 2

√
λ(1− λ). (39)

If λ ≥ 0.8 the solution to (39) is

λ′ =

(√
λ+ 2

3
− 2
√
λ(1− λ)−

√
2

3
(1− λ)

)2

.

Thus, for every x, y ∈ R3,

Wλ(x, y)

|x|+ |y| ≥ g(λ) := λ− λ′ = λ−
(√

λ+ 2

3
− 2
√
λ(1− λ)−

√
2

3
(1− λ)

)2

.

The desired lower bound comes from g(0.843) ≈ 0.821804. (A numerical com-
putation shows that g(λ) has a unique maximum at λ0 ≈ 0.843476 and gmax ≈
0.821807).
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Asymptotics for Two-dimensional Atoms

Phan Thanh Nam, Fabian Portmann and Jan Philip Solovej

Abstract

We prove that the ground state energy of an atom confined to two di-
mensions with an infinitely heavy nucleus of charge Z > 0 and N quantum
electrons of charge −1 is E(N,Z) = − 1

2Z
2 lnZ + (ETF(λ) + 1

2c
H)Z2 + o(Z2)

when Z → ∞ and N/Z → λ, where ETF(λ) is given by a Thomas-Fermi
type variational problem and cH ≈ −2.2339 is an explicit constant. We also
show that the radius of a two-dimensional neutral atom is unbounded when
Z → ∞, which is contrary to the expected behavior of three-dimensional
atoms.
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1 Introduction

We consider an atom confined to two dimensions. It has a fixed nucleus of charge
Z > 0 and N non-relativistic quantum electrons of charge −1. For simplicity
we shall assume that electrons are spinless because the spin only complicates the
notation and our coefficients in an obvious way. The system is described by the
Hamiltonian

HN,Z =

N∑

i=1

(
−1

2
∆i −

Z

|xi|

)
+

∑

1≤i<j≤N

1

|xi − xj |

acting on the antisymmetric space
∧N
i=1 L

2(R2). Note that we are using the three-
dimensional Coulomb potential to describe the confined atom. The ground state
energy of the system is the bottom of the spectrum of HN,Z , denoted by

E(N,Z) = inf spec HN,Z = inf
‖ψ‖L2=1

(ψ,HN,Zψ).

One possible approach to obtain the above Hamiltonian is to consider a three-
dimensional atom confined to a thin layer R2 × (−a, a) in the limit a → 0+ (see
[3], Section 3, for a detailed discussion on the hydrogen case).

To the best of our knowledge, there is no existing result on the ground state
energy and the ground states of the system, except for the case of hydrogen
[29, 19]. The purpose of this article is to give a rigorous analysis for large Z-atom
asymptotics and our main results are the following theorems.

Theorem 1 (Ground state energy). Fix λ > 0. When Z → ∞ and N/Z → λ
one has

E(N,Z) = −1

2
Z2 lnZ +

(
ETF(λ) +

1

2
cH

)
Z2 + o(Z2)

where ETF(λ) is the Thomas-Fermi energy (defined in Section 3) and cH =
−3 ln(2) − 2γE + 1 ≈ −2.2339 with γE ≈ 0.5772 being Euler’s constant [4]. In
particular, λ 7→ ETF(λ) is strictly convex and decreasing on (0, 1] and ETF(λ) =
ETF(1) if λ ≥ 1.

Remark. By considering the hydrogen semiclassics we conjecture that the next
term of E(λZ,Z) is of order Z3/2. In contrast, the ground state energy in three
dimensions behaves as

E(Z,Z) = cTFZ7/3 + cSZ2 + cDSZ5/3 + o(Z5/3),

where the leading (Thomas-Fermi [28, 6]) term was established in [15], the second
(Scott [21]) term was proved in [7, 23], and the third (Dirac-Schwinger [2, 20])
term was shown in [5].
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For three-dimensional atoms the leading term in the energy asymptotics of
order Z7/3 may be understood entirely from semiclassics. The contribution to
this term comes from the bulk of the electrons located mainly at a distance of
order Z−1/3 from the nucleus. The term of order Z2, the Scott term, is a pure
quantum correction coming from the essentially finitely many inner most electrons
at a distance of order Z−1 from the nucleus.

In the two-dimensional case the situation is more complicated. The leading
term of order Z2 ln(Z) is semiclassical and comes from the fact that the semiclas-
sical integral is logarithmically divergent, but has a natural cut-off at a distance
of order Z−1 from the nucleus. The term of order Z2 has two contributions. One
part is semiclassical and comes essentially from electrons at distances of order 1
from the nucleus and another part, which corresponds to the three-dimensional
Scott correction, coming from the essentially finitely many inner most electrons
at a distance of order Z−1 from the nucleus.

Thus the two-dimensional atom has two regions. The innermost region of size
Z−1 contains a finite number of electrons and contributes with Z2 to the total
energy. The outer region from Z−1 to order 1 has a high density of electrons and
can be understood semiclassically. It contributes to the energy with both Z2 ln(Z)
from the short distance divergence and with Z2 from the bulk at distance 1.

Theorem 2 (Extensivity of neutral atoms). Assume that N/Z → 1 and ΨN,Z is
a ground state of HN,Z . Then, for any R > 0 there exists CR > 0 such that

∫

|x|≥R
ρΨN,Z (x)dx ≥ CRZ + o(Z).

Remark. If we define the radius RZ of a neutral atom (N = Z) by

∫

|x|≥RZ
ρΨZ,Z (x)dx = 1

then Theorem 2 implies that limZ→∞RZ =∞. In three dimensions, however, the
radius is expected to be bounded independently of Z (see [22, 24]).

Our main tool to understand the ground state energy and the ground states
is the Thomas-Fermi (TF) theory introduced in Section 3. In this theory, the Z-
ground state scales as ZρTF

N/Z(x) and the absolute ground state ρTF
1 (when N = Z)

has unbounded support. Roughly speaking, the extensivity of the TF ground state
implies the extensivity of neutral atoms (in contrast, the three-dimensional TF
Z-ground state scales as Z2ρTF(Z1/3x), i.e. its core shrinks as Z−1/3).

The challenging point of the two-dimensional TF theory is that the TF poten-
tial V TF(x) is not in L2

loc(R2) (it behaves like |x|−1 near the origin). Consequently,
one cannot write the semiclassics of Tr

[
−h2∆− V TF

]
− in the usual way because

(2π)−2

∫∫
[h2p2 − V TF(x)]−dpdx = −(8πh2)−1

∫
[V TF(x)]2+dx = −∞.
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This property complicates matters in the semiclassical approximation. In con-
trast, the three-dimensional semiclassical approximation leads to the behavior

−(15π2h3)−1
∫
R3 [V TF(x)]

5/2
+ dx which is finite for the Coulomb singularity V TF(x) ∼

|x|−1 ∈ L5/2
loc (R3).

We shall follow the strategy of proving the Scott’s correction given by Solovej
and Spitzer [26] (see also [25]), that is to compare the semiclassics of TF-type
potentials with hydrogen. More precisely, in the region close to the origin we shall
compare directly with hydrogen, whereas in the exterior region we can employ
the coherent state approach. We do not use the new coherent state approach
introduced in [26], since the usual one [9, 27] is sufficient for our calculations. In
fact, we prove the following semiclassical estimate for potentials with Coulomb
singularities.

Theorem 3 (Semiclassics for Coulomb singular potentials). Let V ∈ L2
loc(R2\{0})

be a real-valued potential such that 1{|x|≥1}V+ ∈ L2(R2) and

|V (x)− κ|x|−1| ≤ C|x|−θ for all |x| ≤ δ,

where κ > 0, δ > 0, 1 > θ > 0 and C > 0 are universal constants. Then, as
h→ 0+,

Tr
[
−h2∆− V

]
− = −(8πh2)−1

∫

R2

(
[V (x)]2+ − κ2[|x|−1 − 1]2+

)
dx

+κ2(4h2)−1
[
ln(2κ−1h2) + cH

]
+ o(h−2),

where cH = −3 ln(2)−2γE +1 ≈ −2.2339 with γE ≈ 0.5772 being Euler’s constant
[4].

The article is organized as follows. In Section 2 we give a brief summary
of the existing results concerning atoms confined to two dimensions. Section 3
contains basic information on the TF theory. The most technical part of the
article is in Section 4, where we show the semiclassics for the TF potential. The
main theorems are proved in Section 5. Some technical proofs are deferred to the
Appendix.

2 Preliminaries

2.1 Spectral Properties

For completeness, we start by collecting some basic properties of the spectrum of
HN,Z , whose proofs can essentially be adapted from the usual three-dimensional
case (see the Appendix).

Theorem 4 (Spectrum of HN,Z). Let HN,Z be the operator defined above.
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(i) (HVZ Theorem) The essential spectrum of HN,Z is

ess specHN,Z = [E(N − 1, Z),∞).

Consequently, for non-vanishing binding energy E(N − 1)−E(N) =: ε > 0,
the operator HN,Z has (at least) one ground state. Moreover, in this case
any ground state ΨN,Z of HN,Z has exponential decay as

ρΨN,Z (x) ≤ C|x|
4Z√
2ε
−2
e−2
√

2ε|x| for |x| large

where the density ρΨN,Z is defined as in Section 2.2.

(ii) (Zhislin’s Theorem) If N < Z+1 then the binding condition E(N) < E(N−
1) is satisfied, and hence HN,Z has a ground state.

(iii) (Asymptotic neutrality) The largest number N = Nc(Z) of electrons such
that HN,Z has a ground state is finite and satisfies limZ→∞Nc(Z)/Z = 1.

In particular, the spectrum of hydrogen (N = 1) is explicitly known [29] (see
also [19] for a review).

Theorem 5 (Hydrogen spectrum). All negative eigenvalues of the operator −1
2∆−

|x|−1 in L2(R2) are

En = − 1

2(n+ 1/2)2
,

with multiplicity 2n+ 1, where n = 0, 1, 2, ...

The following consequence will be useful in our estimates. The proof can be
found in the Appendix.

Lemma 6 (Hydrogen semiclassics). When µ→ 0+ we have

Tr

[
−1

2
∆− |x|−1 + µ

]

−
=

1

2
[ln(µ)− 3 ln(2)− 2γE + 1] + o(1). (1)

By scaling, for µ > 0 fixed and h→ 0+,

Tr
[
−h2∆− |x|−1 + µ

]
− = (4h2)−1

[
ln(2h2) + ln(µ) + cH

]
+ o(h−2), (2)

where cH = −3 ln(2)−2γE +1 ≈ −2.2339 with γE ≈ 0.5772 being Euler’s constant
[4].

2.2 Useful Inequalities

For the readers’ convenience, we recall some usual notations. We shall denote
by L2(R2) the Hilbert space with the inner product (f, g) =

∫
R2 f(x)g(x)dx. An

operator γ on L2(R2) is called a (one-body) density matrix if 0 ≤ γ ≤ 1 and
Tr(γ) <∞. Its density is ργ(x) := γ(x, x), where γ(x, y) is the kernel of γ. More
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precisely, if γ is written in the spectral decomposition γ =
∑

i ti |ui〉 〈ui| then

γ(x, y) :=
∑

i tiui(x)ui(y) and ργ(x) :=
∑

i ti|ui(x)|2. For example, the density

matrix γΨ of a (normalized) wave function Ψ ∈ ∧N
i=1 L

2(R2) is

γΨ(x, y) := N

∫

R2(N−1)

Ψ(x, x2, ..., xN )Ψ(y, x2, ..., xN )dx2...dxN ,

which satisfies 0 ≤ γΨ ≤ 1 and Tr(γΨ) = N . Moreover, its density is

ρΨ(x) := ργΨ(x) = N

∫

R2(N−1)

|Ψ(x, x2, ..., xN )|2dx2...dxN .

The following theorem regarding the spectrum of Schrödinger operators is
important for our analysis (see e.g. [12] for a proof). The analogue in three
dimensions was first proved by Lieb and Thirring [17].

Theorem 7 (Lieb-Thirring inequalities). There exists a finite constant L1,2 > 0
such that for any real-valued potential V with V+ ∈ L2(R2) one has

Tr[−∆− V ]− ≥ −L1,2

∫

R2

V 2
+(x)dx, (3)

where a+ := max{a, 0} and a− := min{a, 0}. Hence Tr[−∆ − V ]− is the sum of
all negative eigenvalues of −∆− V in L2(R2).

Equivalently, there exists a finite constant K2 > 0 such that for any density
matrix γ one has

Tr[−∆γ] ≥ K2

∫

R2

ρ2
γ(x)dx. (4)

Note that in general there is no upper bound on Tr 1(−∞,0](−∆ − V ), the
number of negative eigenvalues of −∆ − V , in term of

∫
V α

+ for any α > 0.
However, we shall only need some localized versions of this bound. The proof
of the following lemma can be found in the Appendix. The estimate in (ii) is
useful to treat the Coulomb singularity in the region close to the origin (recall
that |x|−1 /∈ L2

loc(R2)).

Lemma 8. Let V : R2 → R and let 0 ≤ φ(x) ≤ 1 supported in a subset Ω ⊂ R2

with finite measure |Ω|. Let 0 ≤ γ ≤ 1 be an operator on L2(R2) such that

Tr[(−h2∆− V )φγφ] ≤ 0 for some 1/2 > h > 0.

(i) If V+ ∈ L2
loc(R2) then φγφ is trace class and there exists a universal constant

C > 0 (independent of V , γ and h) such that for any α ∈ [0, 1],

∫

R2

ρ2α
φγφ(x)dx ≤ Ch−4α||V+||2αL2(Ω)|Ω|1−α.
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(ii) If V (x) ≤ C0(|x|−1 + 1) then φγφ is trace class and there exists a constant
C > 0 dependent only on C0 (but independent of V , φ, Ω, γ and h) such
that for any α ∈ [0, 1],

∫

R2

ρ2α
φγφ(x)dx ≤ Ch−4α (| lnh|+ |Ω|)α |Ω|1−α.

We shall approximate the ground state energy E(N,Z) by one-body densities.
For the lower bound, we need the following inequality to control the electron-
electron repulsion energy. The three-dimensional analogue of this bound was first
proved by Lieb [10] and was then improved by Lieb and Oxford [13]. The two-
dimensional version below was taken from [16].

Theorem 9 (Lieb-Oxford inequality). For any (normalized) wave function Ψ ∈∧N
i=1 L

2(R2) it holds that

Ψ,

∑

1≤i<j≤N

1

|xi − xj |
Ψ


 ≥ D(ρΨ)− CLO

∫
ρ

3/2
Ψ ,

with CLO = 192(2π)1/2, where the direct term D(ρΨ) is defined as in Section 2.3.

For the upper bound, we shall need the next result [11].

Theorem 10 (Lieb’s variational principle). For Z > 0, N ∈ N and any density
matrix γ with Tr(γ) ≤ N , one has

E(N,Z) ≤ Tr

[(
−1

2
∆− Z|x|−1

)
γ

]
+D(ργ)− 1

2

∫∫ |γ(x, y)|2
|x− y| dxdy,

where the direct term D(ργ) is defined as in Section 2.3.

2.3 Coulomb Potential

Here we study the Coulomb potential f ∗ | . |−1 of some function f . Associated to
this potential is the Coulomb energy of two functions,

D(f, g) :=
1

2

∫∫

R2×R2

f(x)g(y)

|x− y| dxdy.

That D(f, g) is well-defined at least in L4/3(R2) is due to the Hardy-Littlewood-
Sobolev inequality (see [12], Theorem 4.3)

D(|f |, |g|) ≤ CHLS ‖f‖L4/3 ‖g‖L4/3 for all f, g ∈ L4/3(R2).

Moreover, |x−y|−1 is a strictly positive kernel since the 2D Fourier transform of
| . |−1 is itself up to a constant (see [12] Theorem 5.9). Therefore, D(f) := D(f, f)
is always nonnegative and (f, g) 7→ D(f, g) is a positive inner product in L4/3(R2).
These observations allow us to formulate the following theorem.
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Theorem 11 (Coulomb norm). There exists CHLS such that

0 < D(f) ≤ CHLS ‖f‖2L4/3 for all f ∈ L4/3(R2)\{0}.

Consequently, f 7→
√
D(f) is a norm in L4/3(R2).

In three dimensions, the Coulomb potential ρ ∗ | . |−1 of a radially symmetric
function ρ is represented beautifully by Newton’s Theorem (see [12], Theorem
9.7). In two dimensions, however, we do not have such a representation since
| . |−1 is not the fundamental solution to the two-dimensional Laplace operator.
Therefore, the following bounds will be useful in our context and their proofs can
be found in the Appendix. The lower bound is similar to Newton’s Theorem in
three dimensions, but the upper bounds are more involved. We do not claim that
they are optimal but they are sufficient for our purposes.

Lemma 12 (Coulomb potential bound). Assume that ρ is radially symmetric,
0 ≤ ρ(x) ≤ (2π|x|)−1 and

∫
ρ = λ. We have the following bounds on the potential

ρ ∗ | . |−1.

(i) (Lower bound) For all x ∈ R2\{0},

(ρ ∗ | . |−1)(x) ≥
∫

R2

ρ(y)

max{|x|, |y|}dy.

(ii) (Upper bound) For all x ∈ R2\{0},

(ρ ∗ | . |−1)(x) ≤ 2
√

2λ|x|−1/2 + 3.

Moreover, for any δ > 0 there exists R = R(ρ, δ) > 0 and a universal
constant C1 > 0 such that for any |x| ≥ R,

(ρ ∗ | . |−1)(x) ≤ λ+ δ

|x| + C1
ln(|x|)
|x|

∫

3|x|/2≥|y|≥|x|/2
ρ(y)dy.

3 Thomas-Fermi Theory

In this section, we introduce the two-dimensional Thomas-Fermi (TF) theory
which will turn out to be the main tool to understand the ground state energy
and ground states. The three-dimensional TF theory was studied in great math-
ematical detail by Lieb-Simon [15, 9]. In fact, the simplest version of TF theory
(see [12], Chap. 11) is sufficient for our discussion here.

Definition 13 (Thomas-Fermi functional). For any nonnegative function ρ ∈
L1(R2) we define the TF functional as

ETF(ρ) :=

∫

R2

(
πρ2(x)− ρ(x)

|x| + (4π)−1[|x|−1 − 1]2+

)
dx+D(ρ).
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For any λ > 0 we define the TF energy as

ETF(λ) := inf
{
ETF(ρ)|ρ ≥ 0, ‖ρ‖L1(R2) ≤ λ

}
. (5)

Remark. (i) The term πρ2 comes from the semiclassics of the kinetic energy
while −

∫
ρ(x)|x|−1 and the direct term D(ρ) = 1

2

∫∫
ρ(x)ρ(y)|x− y|−1dxdy

stand for the Coulomb interactions.

(ii) The appearance of (4π)−1[|x|−1 − 1]2+ ensures that the TF functional is
bounded from below. In fact,

ETF(ρ) =

∫

|x|≤1

π

(
ρ(x)− 1

2π|x|

)2

dx+

∫

|x|>1

(
πρ2(x)− ρ(x)

|x|

)
dx

+D(ρ)− 3

4

≥ −
∫
ρ− 3

4
.

(iii) If ρTF
λ is the ground state of the above TF theory then ZρTF

λ is expected to
approximate the density ρΨN,Z of a ground state ΨN,Z of HN,Z with N ≈ λZ
(in some appropriate sense). In other words, the Z-dependent TF theory
can be defined from the above TF theory by the scaling ρ 7→ Zρ.

Basic information about the TF theory is collected in the following theorem.

Theorem 14 (Thomas-Fermi theory). Let λ > 0.

(i) (Existence) The variational problem (5) has a unique minimizer ρTF
λ . More-

over, the functional λ 7→ ETF(λ) is strictly convex, decreasing on (0, 1] and
ETF(λ) = ETF(1) if λ ≥ 1.

(ii) (TF equation) ρTF
λ satisfies the TF equation

2πρTF
λ (x) =

[
|x|−1 − (ρTF

λ ∗ | . |−1)(x)− µTF
λ

]
+

with some constant µTF
λ > 0 if λ < 1 and µTF

λ = 0 if λ ≥ 1.

(iii) (TF minimizer) ρTF
λ is radially symmetric;

∫
ρTF
λ = min{λ, 1} and

0 ≤ |x|−1 − 2πρTF
λ ≤ C|x|−1/2 for all x 6= 0.

Moreover, supp ρTF
λ is compact if and only if λ < 1.

Remark. Henceforth we shall always denote by C some finite positive constant
depending only on λ > 0 (the total mass in the TF theory). Two C’s in the same
line may refer to two different constants.

67



Proof. (i-ii) Formula (6) implies that ρ 7→ ETF(ρ) is strictly convex. Therefore,
the existence and uniqueness of the TF minimizer, and the TF equation follow
from standard variational methods similarly to the three-dimensional TF theory
(see [12], Theorems 11.12 and 11.13). The property of µTF

λ is a consequence of
the TF equation and is shown in Lemma 15 below.

That ETF(λ) is decreasing follows from the definition. When λ ≥ 1, ETF(λ) =
ETF(1) since ρTF

λ = ρTF
1 (by (iii)). When λ ∈ (0, 1], the TF energy is also strict

convex because the unique minimizer satisfies
∫
ρTF
λ = λ (by (iii)) and the TF

functional is strict convex.

(iii) Since the TF functional is rotation invariant and the minimizer is unique,
it must be radially symmetric. The inequality 0 ≤ |x|−1 − 2πρTF

λ ≤ C|x|−1/2

follows from the TF equation and the following estimate in Lemma 12,

(ρTF ∗ | . |−1)(x) ≤ 2
√

2λ|x|−1/2 + 3.

We defer the proof that
∫
ρTF
λ = min{λ, 1} and property of supp ρTF

λ to Lemma 15.

3.1 Thomas-Fermi Equation

Lemma 15 (TF equation). Assume that ρ is a nonnegative, radially symmetric,
integrable solution to the TF equation

2πρ(x) =
[
|x|−1 − (ρ ∗ | . |−1)(x)− µ

]
+

(6)

for some constant µ ≥ 0.

(i) If µ > 0 then
∫
ρ < 1 and supp ρ is compact.

(ii) If µ = 0 then
∫
ρ = 1 and

∫

|x|≥r
ρ(x)dx ≥ e−2

√
r for all r ≥ 0.

Proof. Denote
∫
ρ =: λ > 0. For r > 0 we shall write ρ(r) instead of ρ(x)||x|=r.

1. We start by proving λ ≤ 1. Since ρ is nonnegative and radially symmetric,
we have by Lemma 12

(ρ ∗ | . |−1)(x) ≥
∫

R2

ρ(y)

max{|x|, |y|}dy.

Hence, the TF equation (6) yields

2πρ(x)|x| ≤
[
1−

∫

R2

|x|ρ(y)

max{|x|, |y|}dy − µ|x|
]

+

for all x 6= 0. (7)
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For any ε ∈ (0, λ), we can find Rε > 0 such that
∫
|x|≥Rε ρ = ε. When |x| ≥ Rε,

using ∫

R2

|x|ρ(y)

max{|x|, |y|}dy ≥
∫

|y|≤Rε
ρ(y) = λ− ε

we can deduce from (7) that

2πρ(x)|x| ≤ [1− λ+ ε− µ|x|]+ ≤ [1− λ+ ε− µRε]+ for all |x| ≥ Rε.

Since
∫
|x|≥Rε ρ = ε > 0, there exists |x| ≥ Rε such that ρ(x) > 0. Therefore, it

follows from the latter estimate that

1− λ+ ε− µRε ≥ 0 for all ε ∈ (0, λ). (8)

For any µ ≥ 0, (8) implies that λ ≤ 1.
2. If µ > 0 then (8) yields

lim sup
ε→0

Rε ≤ R0 := µ−1(1− λ).

Since
∫
|x|≥Rε ρ = ε and lim supε→0Rε ≤ R0, we get

∫
|x|≥R0

ρ = 0. Thus supp ρ ⊂
{|x| ≤ R0} and λ < 1 (because R0 > 0).

3. From now on we assume that µ = 0. We shall prove that λ = 1. Suppose
that λ < 1− 3ε for some ε > 0. Because ρ is nonnegative, radially symmetric and
ρ(x) ≤ (2π|x|)−1 (due to the TF equation (6)), by Lemma 12 we can find R > 0
and C1 > 0 such that

(ρ ∗ | . |−1)(x) ≤ 1− 2ε

|x| + C1
ln(|x|)
|x|

∫

3|x|/2≥|y|≥|x|/2
ρ(y)dy for all |x| ≥ R. (9)

Define ε1 := ε/C1 and

A :=

{
r ≥ R :

∫

3r/2≥|y|≥r/2
ρ(y)dy ≤ ε1

ln(r−1)

}
.

If |x| ∈ A, then (9) gives (ρ ∗ | . |−1)(x) ≤ (1 − ε)|x|−1, and the TF equation (6)
with µ = 0 gives

2πρ(x) =

[
1

|x| − (ρ ∗ |x|−1)(x)

]

+

≥ ε

|x| .

Taking the integral of the previous inequality over {x ∈ R2 : |x| ∈ A} one has

∞ > 2π

∫

R2

ρ ≥ 2π

∫

|x|∈A

ρ(x)dx ≥
∫

|x|∈A

ε

|x|dx = 2πεL1(A)

where L1 is the one-dimensional Lebesgue measure. Thus A has finite measure,
and consequently we can choose a sequence {Rn}∞n=1 ⊂ R\A such that 3R <
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3Rn < Rn+1 < 4Rn for all n ≥ 1. Because Rn > R and Rn /∈ A we have, by the
definition of A,

∫

3Rn/2≥|y|≥Rn/2

ρ(y)dy >
ε1

ln(Rn)
for all n ≥ 1.

Taking the sum over all n ∈ N and using Rn+1 > 3Rn, we find that

∞ >

∫

R2

ρ ≥
∞∑

n=1

∫

3Rn/2≥|y|≥Rn/2

ρ(y)dy ≥
∞∑

n=1

ε1

ln(Rn)
.

On the other hand, since Rn+1 < 4Rn we get Rn ≤ 4nR1 ≤ [4(1 + R1)]n for all
n ≥ 1. Therefore,

∞∑

n=1

ε1

ln(Rn)
≥
∞∑

n=1

ε1

n ln(4(1 +R1))
= +∞

The last two inequalities yield a contradiction.
4. Finally, we show the lower bound on

∫
|x|≥r ρ. With µ = 0 and λ = 1,

inequality (7) becomes

2πρ(x)|x| ≤
∫

|y|≥|x|

(
1− |x||y|

)
ρ(y)dy for all x 6= 0. (10)

Denote

g(r) :=

∫

|y|≥r

(
1− r

|y|

)
ρ(y)dy = 2π

∞∫

r

(s− r) ρ(s)ds.

Then g(0) = 1, g(+∞) = 0 and

g′(r) = −2π

∞∫

r

ρ(s)ds < 0, g′′(r) = 2πρ(r) for all r > 0.

Thus (10) can be rewritten as

rg′′(r) ≤ g(r) for all r > 0.

Note that g0(r) := e−2
√
r satisfies g0(0) = 1, g0(+∞) = 0 and

rg′′0(r)− g0(r) =
1

2
√
r
e−2
√
r > 0.

Therefore, h(x) := g(x) − g0(x) satisfies that h(0) = h(+∞) = 0 and rh′′(r) ≤
h(r). If the set U := {r > 0 : h(r) < 0} is not empty, then h is a strict concave
function on this open set. By the maximum principle and h(0) = h(+∞) = 0,
we can argue to get a contradiction. Thus h(r) ≥ 0 for all r ≥ 0. This yields∫
|x|≥r ρ(x)dx ≥ g(r) ≥ g0(r) = e−2

√
r.
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4 Semiclassics for the TF Potential

In this section, we consider the semiclassics for the TF potential

V TF
λ (x) := |x|−1 − (ρTF

λ ∗ | . |−1)(x)− µTF
λ .

From the TF equation and the properties of the TF minimizer (see Theorem 14)
we have [V TF

λ ]+ ∈ L1(R2) and

|V TF
λ (x)− |x|−1| ≤ C(|x|−1/2 + 1) for all x 6= 0.

The following theorem will turn out to be the main ingredient to prove The-
orems 1 and 2. The parameter h will eventually be replaced by (2Z)−1/2 in our
application.

Theorem 16 (Semiclassics for TF potential). When h→ 0+ one has

Tr
[
−h2∆− V TF

λ

]
− = −(8πh2)−1

∫

R2

(
[V TF
λ (x)]2+ − [|x|−1 − 1]2+

)
dx

+(4h2)−1
[
ln(2h2) + cH

]
+ o(h−2). (11)

where cH = −3 ln(2)− 2γE + 1 ≈ −2.2339.
Moreover, there is a density matrix γh such that

Tr
[
(−h2∆− V TF

λ )γh
]

= Tr
[
−h2∆− V TF

λ

]
− + o(h−2) (12)

and

2h2 Tr(γh) ≤
∫
ρTF
λ , D((2h2)ργh − ρTF

λ ) = o(1). (13)

Note that (11) is a special case of Theorem 3. In this section, we shall prove
(11) in detail. The proof of Theorem 3 is provided in the next section.

As in [26] we shall prove the semiclassical approximation (11) by comparing
with the hydrogen. In fact, because of the hydrogen semiclassics (2), the approx-
imation (11) is equivalent to

Tr
[
−h2∆− V TF

λ

]
− − Tr

[
−h2∆− |x|−1 + 1

]
−

= −(8πh2)−1

∫

R2

(
[V TF
λ ]2+ − [|x|−1 − 1]2+

)
dx+ o(h−2). (14)

4.1 Localization

To treat the singularity of the TF potential we shall distinguish between three
regions. In the interior region (close to the origin), we shall compare directly with
hydrogen; while in the exterior region (not too close and not too far from the
origin) we can employ the usual semiclassical techniques; and finally, the region
very far from the origin has negligible contribution.
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Definition 17 (Partition of unity). Let ϕ be a nonnegative, smooth function
(with bounded derivatives) such that ϕ(x) = 1 if |x| ≤ 1 and ϕ(x) = 0 if |x| ≥ 2.
Choose r := h1/2, Λ := | lnh| and denote

Φ1(x) = ϕ(x/r),

Φ2(x) = (1− ϕ2(x/r))1/2ϕ(x/Λ),

Φ3(x) = (1− ϕ2(x/Λ))1/2.

Then
∑3

i=1 Φ2
i = 1, supp Φ1 ⊂ {|x| ≤ 2r}, supp Φ2 ⊂ {r ≤ |x| ≤ 2Λ}, supp Φ3 ⊂

{|x| ≥ Λ}.

The localization cost is controlled by the following lemma.

Lemma 18 (Localization). Let V be either V TF
λ or (|x|−1− 1). When Λ = | lnh|

and r = h1/2 → 0+ one has

Tr[−h2∆− V ]− =
∑

i=1,2

Tr[Φi(−h2∆− V )Φi]− + o(h−2)

Note that in the sum on the right-hand side the contribution of region supp Φ3

does not appear.

Proof. 1. To prove the lower bound, using the IMS formula

−∆ =
3∑

i=1

Φi(−∆− u)Φi with u :=
3∑

i=1

|∇Φi|2 ≤ Cr−21{|x|≤2Λ}

one has

Tr[−h2∆− V ]− ≥
3∑

i=1

Tr[Φi(−h2∆− V − Ch2r−21{|x|≤2Λ})Φi]−.

The term involving Φ3 has negligible contribution. Indeed, since supp Φ3 ⊂ {|x| ≥
Λ}, it follows from the Lieb-Thirring inequality (3) that

Tr[Φ3(−h2∆− V − Ch2r−21{|x|≤2Λ})Φ3]−

≥ Tr[−h2∆− 1{|x|≥Λ}(V+ + Ch2r−21{|x|≤2Λ})]−

≥ −L1,2h
−2

∫

|x|≥Λ
[V+(x) + Ch2r−21{|x|≤2Λ}]

2dx = o(h−2).

Here note that limΛ→∞
∫
|x|≥Λ V

2
+ = 0 since 1{|x|≥1}V+ ∈ L2(R2) and h4r−4

∫
|x|≤2Λ →

0 because Λ = | lnh|.
Moreover, for i = 1, 2, if we denote

γi := 1(−∞,0]

(
Φi(−h2∆− V − Ch2r−2)Φi

)
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then Tr(ΦiγiΦi) ≤ Ch−2(| lnh|+ Λ2) by Lemma 8 (ii). Therefore,

Tr[Φi(−h2∆− V − Ch2r−2)Φi]−
= Tr[Φi(−h2∆− V − Ch2r−2)Φiγi]

= Tr[Φi(−h2∆− V )Φiγi]− Ch2r−2 Tr(ΦiγiΦi)

≥ Tr[Φi(−h2∆− V )Φi]− + o(h−2).

2. To show the upper bound, we choose

γ(i) := 1(−∞,0]

(
Φi(−h2∆− V )Φi

)
, γ(0) :=

∑

i=1,2

ΦiγiΦi.

Since 0 ≤ γ(i) ≤ 1 (i = 1, 2) and
∑

i=1,2 Φ2
i ≤ 1 we have 0 ≤ γ(0) ≤ 1. Thus,

Tr[−h2∆− V ]− ≤ Tr[(−h2∆− V )γ(0)] =
∑

i=1,2

Tr[Φi(−h2∆− V )Φi]−.

4.2 Hydrogen Comparison in Interior Region

In the interior region, we shall compare the semiclassics of the TF potential di-
rectly with hydrogen. Note that

∣∣∣∣(8πh2)−1

∫
[V TF
λ ]2+(x)− [|x|−1 − 1]2+Φ2

1(x)2dx

∣∣∣∣ ≤ Crh−2 = o(h−2)

because |V TF
λ −|x|−1| ≤ C(|x|−1/2 +1) and supp Φ1 ⊂ {|x| ≤ 2r}. This inequality

is the semiclassial version of the following bound.

Lemma 19 (Hydrogen comparison in interior region). When r = h1/2 → 0 we
have

Tr
[
Φ1

(
−h2∆− V TF

λ

)
Φ1

]
− − Tr

[
Φ1

(
−h2∆− |x|−1 + 1

)
Φ1

]
− = o(h−2).

Proof. The lower and upper bounds can be proved in the same way. We prove for
example the upper bound. If we denote

γ(1) := 1(−∞,0]

[
Φ1

(
−h2∆− |x|−1 + 1

)
Φ1

]

then by Lemma 8 (ii),

Tr[Φ1γ
(1)Φ1] ≤ Crh−2| lnh|1/2. (15)

By using |V TF
λ (x)− |x|−1 + 1| ≤ C(|x|−1/2 + 1) ≤ Cr−1/2 for x ∈ supp Φ1 we get

Tr
[
Φ1

(
−h2∆− |x|−1 + 1

)
Φ1

]
−

= Tr
[
Φ1

(
−h2∆− |x|−1 + 1

)
Φ1γ

(1)
]

≥ Tr
[
Φ1

(
−h2∆− V TF

λ

)
Φ1γ1

]
− Cr−1/2 Tr[Φ1γ

(1)Φ1]

≥ Tr
[
Φ1

(
−h2∆− V TF

λ

)
Φ1

]
− + o(h−2).
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4.3 Semiclassics in Exterior Region

In the exterior region, the standard semiclassiccal technique of using coherent
states [9, 27] (see also [12, 24]) is available.

Definition 20 (Coherent states). Let g be a radially symmetric, smooth function
such that 0 ≤ g(x) ≤ 1, g(x) = 0 if |x| ≥ 1 and

∫
R2 g

2(x)dx = 1. For s > 0 (small),
denote gs(x) = s−1g(x/s) and

Πs,u,p = |fs,u,p〉 〈fs,u,p| where fs,u,p(x) = eip·xgs(x− u) for all u, p ∈ R2.

From the coherent identity,

(2π)−2

∫∫

R2×R2

Πs,u,p dpdu = I on L2(R2), (16)

it is straightforward to see that for any density matrix γ and for any potential V
satisfying V+ ∈ L1(R2),

Tr
[
−h2∆γ

]
= (2π)−2

∫∫
Tr
[
−h2∆Πs,u,pγ

]
dpdu

= (2π)−2

∫∫
h2p2 Tr [Πs,u,pγ]dpdu− ||∇g||2L2h

2s−2 Tr(γ),

(17)

Tr[(−V ∗ g2
s)γ] = (2π)−2

∫∫
Tr[(−V ∗ g2)Πs,u,pγ]dpdu

= (2π)−2

∫∫
−V (u) Tr[Πs,u,pγ]dpdu. (18)

Motivated by (18), it is useful to have some estimate for (V − V ∗ g2
s). The proof

of the following lemma can be found in the Appendix.

Lemma 21. If V is either V TF
λ or (|x|−1 − 1) and Λ = | lnh|, r = h1/2, s = h2/3

then ∫

r≤|x|≤2Λ
|V − V ∗ g2

s |2(x)dx ≤ Ch1/4.

Lemma 22 (Semiclassics in exterior region). Let V be either V TF
λ or (|x|−1− 1).

When Λ = | lnh| and r = h1/2 → 0 one has

Tr
[
Φ2

(
−h2∆− V

)
Φ2

]
− = −(8πh2)−1

∫
V 2

+(x)Φ2
2(x)dx+ o(h−2).

Proof. 1. To prove the lower bound, we choose the density matrix

γ2 := 1(−∞,0]

[
Φ2

(
−h2∆− V

)
Φ2

]
.
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Taking s = h2/3 and using identities (17) and (18) we can write

Tr
[
Φ2

(
−h2∆− V

)
Φ2

]
− = Tr

[(
−h2∆− V

)
Φ2γ2Φ2

]

= (2π)−2

∫∫ [
h2p2 − V (u)

]
Tr [Πs,u,pΦ2γ2Φ2] dpdu

+ Tr
[(
V ∗ g2

s − V − Ch2s−2
)

Φ2γ2Φ2

]
. (19)

2. To bound the second term of the right-hand side of (19), we can apply
Hölder’s inequality, Lemma 8 (i) with Ω := supp Φ2 ⊂ {r ≤ |x| ≤ 2Λ} and
Lemma 21 to get

Tr
[(
V ∗ g2

s − V − Ch2s−2
)

Φ2γ2Φ2

]

≥ −
∥∥V ∗ g2

s − V
∥∥
L2(Ω)

‖ρΦ2γ2Φ2‖L2(R2) − Ch2s−2 Tr[Φ2γ2Φ2]

≥ −Ch−2
∥∥V ∗ g2

s − V
∥∥
L2(Ω)

‖V+‖L2(Ω) − Cs−2 ‖V+‖L2(Ω) |Ω|1/2

≥ −Ch−2h1/8| lnh|1/2 − Cs−2| lnh|1/2Λ = o(h−2). (20)

For the first term of the right-hand side of (19), because

0 ≤ Tr [Πs,u,pΦ2γ2Φ2] ≤ Tr
[
Πs,u,pΦ

2
2

]
= (Φ2

2 ∗ g2
s)(u)

we obtain

(2π)−2

∫∫ [
h2p2 − V (u)

]
Tr [Πs,u,pΦ2γ2Φ2] dpdu

≥ −(2π)−2

∫∫ [
h2p2 − V (u)

]
− (Φ2

2 ∗ g2
s)(u)dpdu

= −(8πh2)−1

∫
V 2

+(u)(Φ2
2 ∗ g2

s)(u)du

= −(8πh2)−1

∫
V 2

+(u)Φ2
2(u)du+ o(h−2). (21)

Here the last estimate follows from
∫
V 2

+(u)|Φ2
2 − Φ2

2 ∗ g2
s |(u)du

≤ Csr−1

∫

|x|≥r/2
V+(u)2du ≤ Csr−1| ln r| = o(h−2), (22)

where we have used |Φ2
2 − Φ2

2 ∗ g2
s |(x) ≤ Csr−11{|u|≥r/2} when |x| ≥ r � s.

Replacing (20) and (21) into (19) we get the lower bound in the lemma.

3. To show the upper bound, we choose

γ(2) := (2π)−2

∫∫

M

Πs,u,p dpdu, M :=
{

(u, p) : h2p2 − V (u) ≤ 0
}
.
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Using the coherent identity (16) and the IMS formula, it is straightforward to
compute that

Tr
[
Φ2

(
−h2∆− V

)
Φ2

]
− ≤ Tr

[
Φ2

(
−h2∆− V

)
Φ2γ

(2)
]

= (2π)−2

∫∫

M

〈fs,u,p(x)|Φ2(x)
(
−h2∆x − V (x)

)
Φ2(x) |fs,u,p(x)〉L2(R2,dx) dpdu

= (2π)−2

∫∫

M

〈
eip·x

∣∣− (gsΦ2)2h
2

2
∆− h2

2
∆(gsΦ2)2 +

+h2|∇(gsΦ2)|2 − (gsΦ2)2V
∣∣eip·x

〉
dpdu

= (2π)−2

∫∫

M

[h2p2(Φ2
2 ∗ g2

s)(u) + h2

∫

R2

|∇(gsΦ2)(x)|2dx− ((Φ2
2V ) ∗ g2

s)(u)]dpdu

= −(8πh2)−1

∫
V 2

+(u)Φ2
2(u)du+ (8πh2)−1

∫ [
V 2

+(Φ2
2 ∗ g2

s)− V 2
+Φ2

2

]
du+

+(4π)−1

∫∫
V+(u)|∇(gsΦ2)(x)|2dxdu

+(4πh2)−1

∫
Φ2

2V
[
V+ − (V+ ∗ g2

s)
]
du. (23)

4. Finally we verify that the last three terms of the right-hand side of (23)
are of o(h−2). The second term was already treated by (22). Using

∫

R2

|∇(gsΦ2)(x)|2dx ≤ C(r−2 + s−2)1{r/2≤|u|≤3Λ}.

we can bound the third term as∫∫
V+(u)|∇(gsΦ2)(x)|2dxdu ≤ C(r−2 + s−2)

∫

r/2≤|x|≤3Λ
V+(u)du = o(h−2).

To estimate the last term, we introduce a universal constant Λ0 > 0 such that
V (x) ≥ 0 when |x| ≤ 2Λ0 (such Λ0 exists since |V (x) − |x|−1| ≤ C(|x|−1/2 + 1)).
Using V+(u) = V (u) and (V+ ∗g2

s)(u) = (V ∗g2
s)(u) when |u| ≤ Λ0, and Lemma 21

we get ∫

|u|≤Λ0

|Φ2
2V |.|V+ − V+ ∗ g2

s |du ≤ ‖V ‖L2(Ω)

∥∥V ∗ g2
s − V

∥∥
L2(Ω)

≤ C| lnh|1/2h1/8 = o(1)

where Ω = supp Φ2 ⊂ {r ≤ |u| ≤ Λ}. On the other hand, because |V (u)| ≤ C
when |u| ≥ Λ0 and V+ ∈ L1(R2),

∫

|u|≥Λ0

|Φ2
2V |.|V+ − V+ ∗ g2

s |du ≤ C
∥∥V+ ∗ g2

s − V+

∥∥
L1(R2)

= o(1).

Thus the last term of the right-hand side of (23) is also of o(h−2). This completes
the proof.

Lemmas 18, 19 and 22 together yield (14), which is equivalent to (11).
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4.4 Trial Density Matrix

The last step in proving Theorem 16 is to construct a trial density matrix.

Lemma 23. There exists a density matrix γh satisfying (12) and (13).

Proof. Recall that we always choose Λ = | lnh|, r = h1/2 and s = h2/3.

1. From the proof of Lemmas 18, 19 and 22, if we choose the density matrices

γ(1) := 1(−∞,0]

[
Φ1

(
−h2∆− |x|−1 + 1

)
Φ1

]
,

γ(2) := (2π)−2

∫∫

h2p2−V TF
λ (u)≤0

Πs,u,p dpdu,

γ(0) := Φ1γ
(1)Φ1 + Φ2γ

(2)Φ2

then

Tr[−h2∆− V TF
λ ]− = Tr[(−h2∆− V TF

λ )γ(0)] + o(h−2). (24)

2. Using the coherent identity (16) and the TF equation ρTF
λ = (2π)−1[V TF

λ ]+
we can compute explicitly that

ργ(2)(x) := γ(2)(x, x) = (2π)−2

∫∫

h2p2−V TF
λ (u)≤0

Πs,u,p(x, x) dpdu

= (4πh2)−1([V TF
λ ]+ ∗ g2

s)(x) = (2h2)−1(ρTF
λ ∗ g2

s)(x).

Therefore,

2h2ργ(0) = 2h2ρΦ1γ(1)Φ1
+ Φ2

2ρ
TF
λ ∗ g2

s . (25)

Since
∫
ρTF
λ ∗ g2

s =
∫
ρTF
λ and Tr[Φ1γ

(1)Φ1] ≤ Crh−2| lnh|1/2 (see (15)), we have

2h2

∫

R2

ρΦ1γ(1)Φ1
(x)dx ≤

∫

R2

ρTF
λ (x)dx+ Cr| lnh|1/2. (26)

On the other hand, we can write from (25) that

2h2ργ(0) − ρTF
λ = 2h2ρΦ1γ(1)Φ1

+ Φ2
2(ρTF

λ ∗ g2
s − ρTF

λ ) + (1− Φ2
2)ρTF

λ .

Since ρTF
λ ∈ L4/3(R2), we have ρTF

λ ∗ g2
s − ρTF

λ and (Φ2
2 − 1)ρTF

λ converge to 0 in
L4/3(R2). Moreover, using Lemma 8 we have 2h2ρΦ1γ(1)Φ1

→ 0 in L4/3(R2). Thus

2h2ργ(0) − ρTF
λ → 0 in L4/3(R2). Since the Coulomb norm is dominated by the

L4/3-norm (see Theorem 11), we then also have

D(2h2ργ(0) − ρTF
λ )→ 0. (27)
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3. Finally, we choose ` such that | lnh|−1 � ` � r| lnh|1/2 (e.g. ` = r1/2 =
h1/4) and define

γh := (1− `)γ(0).

Then using (26) and `� r| lnh|1/2 we have

2h2 Tr(γh) ≤ (1− `)(1 + Cr| lnh|1/2)

∫
ρTF
λ ≤

∫
ρTF
λ

for h small enough. Moreover, since | lnh|−1 � `, the inequalities (24) and (27)
still hold true with γ(0) replaced by γh.

5 Proofs of the Main Theorems

5.1 Ground State Energy

Having the semiclassics in Theorem 16, the proof of Theorem 1 is standard (see
[9]).

Proof of Theorem 1. 1. We first prove the lower bound. Taking any (normalized)
wave function Ψ ∈ ∧N

i=1 L
2(R2), we need to show that

(Ψ, HN,ZΨ) ≥ −1

2
Z2 lnZ + ETF(λ)Z2 + o(Z2).

Starting with the Lieb-Oxford inequality (Theorem 9)

Ψ,

∑

1≤i<j≤N

1

|xi − xj |
Ψ


 ≥ D(ρΨ)− CLO

∫
ρ

3/2
Ψ ,

we want to bound
∫
ρ

3/2
Ψ . It of course suffices to assume that (Ψ, HN,ZΨ) ≤ 0.

Using the Lieb-Thirring inequality (4), the hydrogen spectrum in Theorem 5 and
Tr(γΨ) = N ≤ CZ we arrive at

0 ≥ 4 (Ψ, HN,ZΨ) ≥ Tr[−∆γΨ] + Tr
[(
−∆− 4Z|x|−1

)
γΨ

]

≥ K2

∫

R2

ρ2
Ψ(x)dx− CZ2| lnZ|

By Hölder’s inequality and
∫
ρΨ = N ≤ CZ again we conclude

∫

R2

ρ
3/2
Ψ (x)dx ≤

(∫

R2

ρ2
Ψ(x)dx

)1/2(∫

R2

ρΨ(x)dx

)1/2

≤ CZ3/2| lnZ|1/2.

Thus the Lieb-Oxford inequality gives

(Ψ, HN,ZΨ) ≥ Tr

[(
−1

2
∆− Z|x|−1

)
γΨ

]
+D(ργΨ)− CZ3/2| lnZ|1/2

= Z Tr
[(
−(2Z)−1∆− V TF

λ

)
γΨ

]
− Z2

[
µTF
λ (N/Z) +D(ρTF

λ )
]

+Z2D(Z−1ργΨ − ρTF
λ )− CZ3/2| lnZ|1/2. (28)
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For the lower bound, we can ignore the nonnegative term D(Z−1ργΨ − ρTF
λ ) ≥ 0.

With the semiclassics of the TF potential in Theorem 16 and h2 = (2Z)−1, one
has

Tr
[(
−(2Z)−1∆− V TF

λ

)
γΨ

]
≥ Tr

[
−(2Z)−1∆− V TF

λ

]
−

≥ −1

2
Z lnZ + Z

[
−(4π)−1

∫ (
[V TF
λ (x)]2+ − [|x|−1 − 1]2+

)
dx+

1

2
cH

]
+ o(Z).

Together with N/Z → λ, we obtain from (28) that

(Ψ, HN,ZΨ) ≥ −1

2
Z2 lnZ + e(λ)Z2 + o(Z2)

where

e(λ) := −(4π)−1

∫ (
[V TF
λ (x)]2+ − [|x|−1 − 1]2+

)
dx− µTF

λ λ−D(ρTF
λ ) +

1

2
cH.

By the TF equation 2πρTF
λ = [V TF

λ ]+ we have

−[V TF
λ ]2+ = [V TF

λ ]2+−2[V TF
λ ]+V

TF
λ = 4π2[ρTF

λ ]2−4πρTF
λ [|x|−1−ρTF

λ ∗| . |−1−µTF
λ ].

Replacing this identity and µTF
λ λ = µTF

λ

∫
ρTF
λ into the definition of e(λ), we see

that e(λ) = ETF(λ) + cH/2. Thus we get the lower bound on the ground state
energy.

2. To show the upper bound, because λ 7→ ETF(λ) is continuous, it suffices to
show that for any 0 < λ′ < λ fixed, one has

E(N,Z) ≤ −1

2
Z2 lnZ + ETF(λ′)Z2 + o(Z2).

Using Lieb’s variational principle (see Theorem 10) we want to find a density
matrix γ such that Tr(γ) ≤ N and

Tr

[(
−1

2
∆− Z|x|−1

)
γ

]
+D(ργ) ≤ −1

2
Z2 lnZ + ETF(λ′)Z2 + o(Z2).

This condition can be rewritten, using the same calculation of proving the lower
bound (see (28)), as

Tr
[(
−(2Z)−1∆− V TF

λ′
)
γ
]

+ ZD(Z−1ργ − ρTF
λ′ )

≤ Tr
[
−(2Z)−1∆− V TF

λ′
]
− + o(Z). (29)

According to Theorem 16 with h2 = (2Z)−1, we can find a trial density matrix γ
satisfying (29) such that Tr(γ) ≤ Z

∫
ρTF
λ′ ≤ λ′Z. Since N/Z → λ > λ′, one has

Tr(γ) ≤ λ′Z ≤ N for Z large enough and it ends the proof.
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5.2 Extensivity of Neutral Atoms

Proof of Theorem 2. Let θR be a smooth function such that θR(x) = 0 if |x| ≤ R
and θR(x) = 1 if |x| ≥ 2R. From the proof of Theorem 16 and Theorem 1, we
have, with γ := γΨN,Z and h2 = (2Z)−1,

Tr[(−h2∆− V TF
1 )γ] = Tr[−h2∆− V TF

1 ]− + o(h−2).

Using the localization as in Lemma 18 and the semiclassics of Lemma 22 we get

Tr[θR(−h2∆− V TF
1 )θRγ] ≤ Tr[θR(−h2∆− V TF

1 )θR]− + o(h−2)

= −(8πh2)−1

∫
[V TF

1 ]2+(x)θ2
R(x)dx+ o(h−2). (30)

On the other hand, since V TF
1 ≤ |x|−1 ≤ R−1 in supp θR,

Tr[θR(−h2∆− V TF
1 )θRγ] ≥ −R−1 Tr[θRγθR] = −R−1

∫
θ2
R(x)ργ(x)dx. (31)

Putting (30) and (31) together we arrive at

∫
θ2
R(x)ργ(x)dx ≥ R(8πh2)−1

∫
[V TF

1 ]2+(x)θ2
R(x)dx+ o(h−2).

Replacing h2 = (2Z)−1, we can conclude that

∫

|x|≥R
ργ(x)dx ≥

∫
θ2
R(x)ργ(x)dx ≥ CRZ + o(Z)

where

CR := R(4π)−1

∫
[V TF

1 ]2+(x)θ2
R(x)dx ≥ πR

∫

|x|≥2R
(ρTF

1 (x))2dx.

Note that CR > 0 because supp ρTF
1 is unbounded (see Theorem 14).

5.3 Semiclassics for Coulomb Singular Potentials

Proof of Theorem 3. We shall show how to adapt the proof of (11) in the previous
section to the general case. We however leave some details to the readers. By
scaling we can assume κ = 1.

1. The main difficulty of the general case is that we do not have the estimate
in Lemma 21 in the exterior region. Therefore, we need a more complicated
localization. Let r = h1/2, s = h2/3 and let gs be as in Definition 20. For any
ε > 0 small, denote

W (ε, h) :=

∫

ε≤|x|≤ε−1

|V |2dx
∫

ε≤|x|≤ε−1

|V+ − V+ ∗ g2
s |2dx
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Because V ∈ L2
loc(R2\{0}), for any ε > 0 fixed we have W (ε, h) → 0 as h → 0+.

Therefore, we can choose ε = ε(h) such that ε(h) ≥ | lnh|−1, ε(h) → 0 and
W (ε(h), h)→ 0 as h→ 0+. Let ϕ as in Definition 17 and define

Φ̃1(x) = ϕ(x/r),

Φ̃2(x) = (1− ϕ2(x/r))1/2ϕ(x/ε),

Φ̃3(x) = (1− ϕ2(x/ε)1/2ϕ(xε/2),

Φ̃4(x) = (1− ϕ2(xε/2))1/2.

Then
∑4

i=1 Φ̃2
i = 1, supp Φ̃1 ⊂ {|x| ≤ 2r}, supp Φ̃2 ⊂ {r ≤ |x| ≤ 2ε}, supp Φ̃3 ⊂

{ε ≤ |x| ≤ ε−1}, and supp Φ̃4 ⊂ {|x| ≥ (2ε)−1}.
2. Following the proof of Lemma 18 we can show that

Tr[−h2∆− V ]− =

3∑

i=1

Tr[Φ̃i(−h2∆− V )Φ̃i]− + o(h−2). (32)

Note that the assumptions 1{|x|≥1}V+ ∈ L2(R2) and | lnh| ≥ ε−1 →∞ is sufficient

to bound the contribution of the region supp Φ̃4 by the Lieb-Thirring inequality
(3). To control the localization cost in the region supp Φ̃3, we may use Lemma 8
(i) instead of Lemma 8 (ii).

3. Because |V (x)− |x|−1 + 1| ≤ C(|x|−θ + 1) ≤ Cr−θ for x ∈ supp Φ̃1, we can
follow the proof of Lemma 19 to get

Tr
[
Φ̃1

(
−h2∆− V

)
Φ̃1

]
−

= Tr
[
Φ̃1

(
−h2∆− |x|−1 + 1

)
Φ̃1

]
−

+ o(h−2). (33)

4. Adapting the coherent state approach in the proof of Lemma 22, we can
show that

Tr
[
Φ̃3

(
−h2∆− V

)
Φ̃3

]
−

= −(8πh2)−1

∫
V 2

+(x)Φ̃2
3(x)dx+ o(h−2). (34)

To obtain the lower bound it suffices to consider Tr[Φ̃3

(
−h2∆− V+

)
Φ̃3]− and

then use the assumption W (ε(h), h) → 0 instead of Lemma 21 in (20). When
proving the upper bound, the assumption W (ε(h), h) → 0 is again enough to
estimate the last term of (23).

5. In the intermediate region supp Φ̃2 ⊂ {r ≤ |x| ≤ 2ε}, we have

V1(x) := |x|−1 + C|x|−θ ≥ V (x) ≥ |x|−1 − C|x|−θ =: V2(x) ≥ 0.

We start with the lower bound

Tr
[
Φ̃2

(
−h2∆− V

)
Φ̃2

]
−
≥ Tr

[
Φ̃2

(
−h2∆− V1

)
Φ̃2

]
−
.

Using the coherent state approach as in the proof of Lemma 22, we can show that

Tr
[
Φ̃2

(
−h2∆− V1

)
Φ̃2

]
−

=

∫
V1

2(x)Φ̃2(x)2dx+ o(h−2).
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To do that, we just need to replace Lemma 21 by the following estimate
∫

r≤|x|≤2ε
|V1 − V1 ∗ g2

s |2dx ≤ Cs2| ln r|.

Moreover, since supp Φ̃2 ⊂ {r ≤ |x| ≤ 2ε} with ε = ε(h) → 0 and |V − V1| ≤
C|x|−θ, we have

∫
V 2

1 (x)Φ̃2(x)2dx =

∫
V 2(x)Φ̃2(x)2dx+ o(h−2).

Therefore, we arrive at

Tr
[
Φ̃2

(
−h2∆− V

)
Φ̃2

]
−
≥
∫
V 2

+(x)Φ̃2(x)2dx+ o(h−2).

Similarly, again using the coherent state approach we get the reverse inequality

Tr
[
Φ̃2

(
−h2∆− V

)
Φ̃2

]
−
≤ Tr

[
Φ̃2

(
−h2∆− V2

)
Φ̃2

]
−

=

∫
V2

2(x)Φ̃2(x)2dx+ o(h−2) =

∫
V 2(x)Φ̃2(x)2dx+ o(h−2).

Thus we obtain the semiclassics

Tr
[
Φ̃2

(
−h2∆− V

)
Φ̃2

]
−

=

∫
V 2

+(x)Φ̃2(x)2dx+ o(h−2). (35)

6. The desired semiclassics follows from (32), (33), (34) and (35).

A Appendix

In this appendix we provide several technical proofs.

Proof of Theorem 4. (i) The HVZ Theorem indeed holds for all dimension d ≥ 2
(see e.g. [8] Theorem 2.1 for a short proof). The decay property is essentially
taken from [18] where the only change is of solving equation (3.8) in [18]. In
fact, the two-dimensional solution w2(r) (with r = |x|) is obtained by scaling the
three-dimensional solution w3(r) in [18] as w2 = w3|ε 7→4ε,Z 7→4Z,r 7→r/2.

(ii) The proof of Zhislin’s Theorem is standard and there is no difference
between two and three dimensions. The idea is that by induction we can use
the ground state HN,Z to construct a (N + 1)-particle wave function with strictly
lower energy whereas N < Z. It should be mentioned that some certain decay of
the ground state is necessary to control the localization error when we consider
the cut-off wave function in a compact set.

(iii) The asymptotic neutrality follows from the original proof in three dimen-
sions of Lieb, Sigal, Simon and Thirring [14]. The key point of their proof is the
construction of a partition of unity. But a partition of unity in three dimensions
obviously yields a partition of unity in two dimensions, hence this part of the
proof can be adopted. Note that the Pauli exclusion principle enters when solving
the hydrogen atom.
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Proof of Lemma 6. For any m ∈ N, one has

Tr

[
−1

2
∆− |x|−1 +

1

2(m+ 1/2)2

]

−

=

m∑

n=0

(2n+ 1)

[
− 1

2(n+ 1/2)2
+

1

2(m+ 1/2)2

]

= −
m∑

n=0

1

n+ 1/2
+

(m+ 1)2

2(m+ 1/2)2
.

Using Euler’s approximation

m∑

n=0

1

n+ 1/2
= ln(m) + 2 ln(2) + γE + o(1)m→∞

we get

Tr

[
−1

2
∆− |x|−1 +

1

2(m+ 1/2)2

]

−
= − ln(m)− 2 ln(2)− γE +

1

2
+ o(1)m→∞

which implies (1). Moreover, (2) follows from (1) by scaling x 7→ (2h2)−1x, namely

Tr
[
−h2∆− |x|−1 + µ

]
− = (2h2)−1 Tr

[
−1

2
∆− |x|−1 + 2h2µ

]

−
.

Proof of Lemma 8. (i) For any constant a ≥ 0, using the Lieb-Thirring inequality
(3) we have

0 ≥ Tr[(−h2∆− V )φγφ]

≥ Tr[(−(h2/2)∆ + a)φγφ] + Tr[(−(h2/2)∆− (a+ V+).1Ω)φγφ]

≥ Tr[(−(h2/2)∆ + a)φγφ]− 4L1,2h
−4||a+ V+||2L2(Ω).

Choosing a = 1 and using Tr[−∆φγφ] ≥ 0 and (1+V+) ∈ L2(Ω) we get Tr[φγφ] <
∞, namely φγφ is trace class. On the other hand, choosing a = 0 and using the
Lieb-Thirring inequality (4) to estimate Tr[−∆φγφ], we arrive at

∫

R2

ρ2
φγφ(x)dx ≤ Ch−4||V+||2L2(Ω).

Because supp ρφγφ ⊂ Ω, the above estimate and Hölder’s inequality yield the
desired bound on

∫
ρ2α
φγφ for any α ∈ [0, 1].

(ii) We can use the same idea of the above proof. The only adaption we need
in this case is to use both of the Lieb-Thirring inequality (3) and the hydrogen
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semiclassics (2) to bound Tr[(−(h2/2)∆− (a+V+).1Ω)φγφ]. More precisely, since
V ≤ C0(|x|−1 + 1), we have

Tr[(−(h2/2)∆− (a+ V+).1Ω)φγφ] ≥ Tr[(−(h2/4)∆− C0|x|−1 + 1)φγφ]

+ Tr[(−(h2/4)∆− (C0 + a+ 1).1Ω)φγφ]

≥ −Ch−2| lnh| − C(a+ 1)2h−2|Ω|.

Proof of Lemma 12. 1. The lower bound follows from the radial symmetry of ρ
and the fact that ∆(|x|−1) = |x|−3 > 0 pointwise for all x 6= 0.

In fact, since ρ is radially symmetric we can write

(ρ ∗ | . |−1)(x) =

∫

|y|<|x|



∫

Sy

1

|x− z2|
dz2


 ρ(y)dy +

∫

|y|>|x|



∫

Sx

1

|z1 − y|
dz1


 ρ(y)dy

where dz1 and dz2 are normalized Lebesgue measure on the circles Sx := {z ∈
R2 : |z| = |x|} and Sy := {z ∈ R2 : |z| = |y|}.

If |x| > |y| then using the subharmonic property of the mapping z 7→ |x−z|−1

in the open set {z ∈ R2 : |z| < |x|} we get

∫

Sy

1

|x− z2|
dz2 ≥

1

|x| .

Together with the similar inequality for |y| > |x|, we obtain the desired lower
bound on ρ ∗ | . |−1.

2. Because ρ(x) ≤ (2π|x|)−1 and
∫
ρ = λ, for any κ > 1,

(ρ ∗ | . |−1)(x) =

∫

R2

ρ(y)

|x− y|dy ≤
∫

|x−y|≤|x|/2

+

∫

|x−y|≥|x|/2,|y|≤κ|x|

+

∫

|y|≥κ|x|

≤
∫

|x−y|≤|x|/2

(2π)−1

(|x|/2)|x− y|dy +

∫

|y|≤κ|x|

(2π)−1dy

|y|(|x|/2)
+

∫

R2

ρ(y)dy

(κ− 1)|x|

≤ 1 + 2κ+
λ

(κ− 1)|x| .

Optimizing the latter estimate over κ > 1 yields the first upper bound on ρ∗| . |−1.
3. We now prove the second upper bound on (ρ ∗ | . |−1)(x) for |x| large. We

start by decomposing R2 into three subsets

Ω1 :=
{
y ∈ R2 : |x− y| ≥ |x|/2

}
,

Ω2 :=
{
y ∈ R2 : ||x| − |y|| ≤ |x|−2

}
,

Ω3 :=
{
y ∈ R2 : |x− y| < |x|/2, ||x| − |y|| > |x|−2

}
.
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Fix ε > 0 small. For |x| large enough,
∫

Ω1

ρ(y)

|x− y|dy =

∫

|y|<|x|1/2

ρ(y)

|x− y|dy +

∫

|x−y|≥|x|/2,|y|≥|x|1/2

ρ(y)

|x− y|dy

≤
∫
ρ

|x| − |x|1/2 +

∫

|y|≥|x|1/2

ρ(y)

(|x|/2)
dy ≤ λ+ 2ε

|x| . (36)

Moreover, since ρ(y) ≤ (2π|y|)−1,
∫

Ω2

ρ(y)

|x− y|dy ≤
∫

|x−y|≤ε

1

2π|y||x− y|dy +

∫

|x−y|≥ε,||x|−|y||≤|x|−2

1

2π|y||x− y|dy

≤
∫

|x−y|≤ε

1

2π(|x| − ε).|x− y|dy +

∫

||x|−|y||≤|x|−2

1

(2π|y|)εdy

=
ε

|x| − ε +
2

ε|x|2 ≤
2ε

|x| . (37)

Next, using the polar integral in

Ω3 ⊂ {y ∈ R2 : 3|x|/2 ≥ |y| ≥ |x|/2, ||x| − |y|| > |x|−2}

we have, with notation s := min{|x|, r}/max{|x|, r},

∫

Ω3

ρ(y)

|x− y|dy ≤
∫

3
2
|x|≥r≥ 1

2
|x|,|r−|x||≥|x|−2

2π∫

0

ρ(r)r

max{|x|, r}
√

1 + s2 − 2s cos(θ)
dθdr.(38)

The singularity of the integral w.r.t. θ (at s→ 1−) is controlled by the following
technical lemma (we shall prove later).

Lemma 24 (Upper bound on elliptic integral). There exists a finite constant
C > 0 such that

2π∫

0

dθ√
1 + s2 − 2s cos(θ)

≤ C(1 + | ln(1− s)|) for all 0 < s < 1.

Note that if |r − |x|| ≥ |x|−2 and |x| ≥ 1 then

1− s ≥ 1− |x| − |x|
−2

|x|+ |x|−2
=

2|x|−3

1 + |x|−3
≥ |x|−3.

Using (38) and Lemma 24 we get, for |x| large enough,
∫

Ω3

ρ(y)

|x− y|dy ≤ C1
ln(|x|)
|x|

∫

3|x|/2≥|y|≥|x|/2

ρ(y)dy (39)
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for some universal constant C1.
Putting (36), (37) and (39) together, we conclude that for any ε > 0 there

exists R = R(ε, ρ) such that for any |x| ≥ R,

(ρ ∗ |x|−1)(x) ≤ λ+ 4ε

|x| + C1
ln(|x|)
|x|

∫

3|x|/2≥|y|≥|x|/2

ρ(y)dy.

For completeness we provide the proof of the upper bound on the elliptic
integral.

Proof of Lemma 24. We just need to consider the singularity when s→ 1−. Write

1 + s2 − 2s cos(2θ) = (1 + s)2 − 2s(1 + cos(θ)) = (1 + s)2 − 4s cos2(θ/2).

Denoting k2 = 4s/(1+s)2 and making a change of variable (θ 7→ π−2θ), we need
to show that

K(k) :=

π/2∫

0

dθ√
1− k2 sin2(θ)

=

1∫

0

dt√
(1− t2)(1− k2t2)

≤ C| ln(1− k)|

when k → 1−. This upper bound follows from the identity

1∫

0

dt√
(1− t)(1− kt)

=
1√
k

ln

(
1 +
√
k

1−
√
k

)
.

Remark. The function K(k) is the complete elliptic integral of the first kind. Its
asymptotic behavior at k → 1− is well known. It is (see [1], eq. (17.3.26), p. 591)

K(k) =
1

2
| ln(1− k)|+ 3

2
ln(2) + o(1)k→1− .

Proof of Lemma 21. Recall that we are working on the region 2Λ ≥ |x| ≥ r � s.
We start with the triangle inequality

|V − V ∗ g2
s | ≤

∣∣| . |−1 − | . |−1 ∗ g2
s

∣∣+
∣∣ρTF
λ ∗ | . |−1 − ρTF

λ ∗ | . |−1 ∗ g2
s

∣∣ . (40)

(If V (x) = |x|−1 − 1 then the term invloved ρTF
λ disappears.)

When |x| ≥ r � s ≥ |y| using
∣∣|x|−1 − |x− y|−1

∣∣ ≤ Cs|x|−2

one has

∣∣| . |−1 − | . |−1 ∗ g2
s

∣∣ (x) ≤
∫ ∣∣|x|−1 − |x− y|−1

∣∣ g2
s(y)dy ≤ Cs|x|−2. (41)
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Moreover,

∣∣ρTF
λ ∗ | . |−1 − ρTF

λ ∗ | . |−1 ∗ g2
s

∣∣ (x)

≤
∫∫

ρTF
λ (x− y)

∣∣|y|−1 − |y − z|−1
∣∣ g2
s(z)dydz. (42)

We divide the integral into two domains. If |y| ≥ r/2 then using

∣∣|y|−1 − |y − z|−1
∣∣ ≤ Cs|y|−2 ≤ Csr−1|y|−1

and (ρTF
λ ∗ | . |−1)(x) ≤ C(|x|−1/2 + 1) (see Lemma 12) we obtain

∫∫

|y|≥r/2

ρTF
λ (x− y)

∣∣|y|−1 − |y − z|−1
∣∣ g2
s(z)dydz

≤ Csr−1(ρTF
λ ∗ | . |−1)(x) ≤ Csr−1|x|−1/2. (43)

If |y| ≤ r/2 then using

ρTF
λ (x− y) ≤ C(|x− y|−1 + 1) ≤ C(|x|−1 + 1)

and
∫
|y|≤2r |y|−1dy ≤ Cr we obtain

∫∫

|y|≤δ/2

ρTF
λ (x− y)

∣∣|y|−1 − |y − z|−1
∣∣ g2
s(z)dydz

≤ C(|x|−1 + 1)

∫∫

|y|≤r/2,|y−z|≤2r

(
|y|−1 + |y − z|−1

)
g2
s(z)dydz

≤ Cr(|x|−1 + 1) (44)

Replacing (43) and (44) into (42) we arrive at

∣∣ρTF
λ ∗ | . |−1 − ρTF

λ ∗ | . |−1 ∗ g2
s

∣∣ (x) ≤ C(sr−1|x|−1/2 + r|x|−1 + r) when |x| ≥ r.

From the latter inequality and (41) we can deduce from (40) that

|V ∗ g2
s − V |(x) ≤ C(s|x|−2 + sr−1|x|−1/2 + r|x|−1 + r) when |x| ≥ r.

Taking the square integral of the previous inequality over {r ≤ |x| ≤ 2Λ} we get
(with Λ = | lnh|, r = h1/2, s = h2/3)

∫

r≤|x|≤2Λ
|V − V ∗ g2

s |2(x)dx ≤ C(s2r−2Λ + r| ln(Λ/r)|+ r2Λ2) ≤ Ch1/4.
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Bogoliubov theory and bosonic atoms
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Abstract

We formulate the Bogoliubov variational principle in a mathematical
framework similar to the generalized Hartree-Fock theory. Then we analyze
the Bogoliubov theory for bosonic atoms in details. We discuss heuristically
why the Bogoliubov energy should give the first correction to the leading
energy of large bosonic atoms.
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1 Bogoliubov theory

In this section we formulate the Bogoliubov variational principle in the same spirit
of the generalized Hartree-Fock theory [4]. Our formulation bases on the earlier
discussions in [18, 19].
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1.1 One-body density matrices

We start by introducing some conventional notations. Let h be a complex separa-
ble Hilbert space with the inner product (., .) which is linear in the second variable
and anti-linear in the first. Let hN :=

⊗N
sym h be the symmetric tensor product

space of N particles and let F = F(h) :=
⊕∞

N=0 hN be the bosonic Fock space.
Let B(F) be the space of linear bounded operators on F . Any quantum me-

chanical state (state for short) ρ : B(F) → C is identified with a positive semi-
definite trace class operator P on F with Tr(P ) = 1 in such a way that

ρ(B) = Tr(BP ) for all B ∈ B(F).

For example, a pure state is a state corresponding to the one-dimensional projec-
tion |Ψ〉 〈Ψ| of a unit vector Ψ ∈ F , and a Gibbs state is a state corresponding to
Tr(exp(−H))−1 exp(−H) for some Hamiltonian H : F → F such that exp(−H)
is trace class.

The dual space h∗ can be identified to h by the anti-unitary J : h→ h∗,

J(x)(y) = (x, y)h, for all x, y ∈ h.

It is convenient to introduce the generalized annihilation and creation operators
on h⊕ h∗ by

A(f ⊕ Jg) = a(f) + a∗(g),

A∗(f ⊕ Jg) = a∗(f) + a(g), for all f, g ∈ h

where a(f) and a∗(f) are the usual annihilation and creation operators. Note
that if we denote

S =

(
1 0

0 − 1

)
,J =

(
0 J∗

J 0

)
,

then we have the conjugate relation and the canonical commutation relation (CCR)

A∗(F1) = A(JF1) , [A(F1), A∗(F2)] = (F1,SF2) for all F1, F2 ∈ h⊕ h∗

where [X,Y ] = XY − Y X.
Now we can define the one-particle density matrix (1-pdm for short) Γ : h ⊕

h∗ → h⊕ h∗ of a state ρ by

(F1,ΓF2) = ρ(A∗(F2)A(F1)) for all F1, F2 ∈ h⊕ h∗.

Such a 1-pdm may be also written as

Γ =

(
γ α

JαJ 1 + JγJ∗

)
(1)

where γ : h→ h and α : h∗ → h are linear bounded operators defined by

(f, γg) = ρ(a∗(g)a(f)), (f, αJg) = ρ(a(g)a(f)) for all f, g ∈ h.

92



It is obvious that any 1-pdm is positive semi-definite. The following lemma ex-
presses the condition Γ ≥ 0 in terms of γ and α. Its proof is provided in the
Appendix.

Lemma 1.1. Let Γ be of the form (1). Then Γ ≥ 0 if and only if γ ≥ 0, α∗ = JαJ
and

γ ≥ αJ(1 + γ)−1J∗α∗. (2)

Remark. The fermionic analogue of the inequality (2) is αα∗ ≤ γ(1 − γ) [4]. We
do not know if (2) can be reduced to αα∗ ≤ γ(1 + γ) or not.

Of primary physical interest are the states with finite particle number expec-
tation. Recall the particle number operator

N :=
∞∑

N=0

N1hN =
∑

n

a∗(un)a(un)

for any orthonormal basis {un}∞n=1 for h. It is straightforward to see that if a
state ρ has the 1-pdm of the form (1) then

ρ(N ) = Tr(γ).

Hence ρ has finite particle number expectation if and only if γ is trace class.

1.2 Bogoliubov transformations

Definition (Bogoliubov transformations). A bosonic Bogoliubov transformation
is a linear bounded isomorphism V : h⊕ h∗ → h⊕ h∗ satisfying

JVJ = V and V∗SV = S.

These conditions ensure that the Bogoliubov transformations preserve the con-
jugate relation and the canonical commutation relation, namely

A∗(VF1) = A(VJF1) and [A(VF1), A∗(VF2)] = (F1,SF2), ∀F1, F2 ∈ h⊕ h∗.

The Bogoliubov transformations form a subgroup of the isomorphisms in h⊕
h∗; in particular, if V is a Bogoliubov transformation then V−1 and V∗ are also
Bogoliubov transformations. Note that any mapping V satisfying JVJ = V must
have the form

V =

(
U V

JV J JUJ∗

)
(3)

for some linear operators U : h→ h, V : h∗ → h.
We say that a Bogoliubov transformation V is unitarily implementable if it is

implemented by a unitary mapping UV : F → F , namely

A(VF ) = UVA(F )U∗V for all F ∈ h⊕ h∗. (4)
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The following result determines whenever a Bogoliubov transformation is unitarily
implementable. This result is well-known and we provide its proof in the Appendix
for the reader’s convenience. For the fermionic analogue, see [4] (Theorem 2.2) .

Theorem 1.2 (Unitarily implementable Bogoliubov transformations). A Bogoli-
ubov transformation V : h⊕h∗ → h⊕h∗ of the form (3) is unitarily implementable
if and only if the Shale-Stinespring condition Trh(V V

∗) <∞ holds.

Unlike to the fermionic case [4], the bosonic Bogoliubov transformations are
not unitary mappings on h⊕ h∗. However, we can still use the Bogoliubov trans-
formations to diagonalize some certain operators on h ⊕ h∗. Of our particular
interest is the diagonalization of the 1-pdm’s.

Theorem 1.3 (Diagonalization 1-dpm’s by Bogoliubov transformations). If Γ
has the form (1) with Γ ≥ 0 and Tr(γ) < ∞ then for an arbitrary orthonormal
basis {un} for h, there is a unitarily implementable Bogolubov transformation
V : h ⊕ h∗ → h ⊕ h∗ diagonalizing Γ in in the basis u1 ⊕ 0, u2 ⊕ 0, ..., 0 ⊕ Ju1,
0⊕ Ju2, ..., namely

V∗ΓV =




λ1

λ2 0
. . .

1 + λ1

0 1 + λ2

. . .




, (5)

Remark. The finite-dimensional case is Theorem 9.8 in [19]. See [4] (the proof of
Theorem 2.3) for the fermionic analogue.

To prove Theorem 1.3, we start with a simple diagonalization lemma. This is
a generalization to infinity dimensions of Lemma 9.6 in [19].

Lemma 1.4. Let A be a positive definite operator on h⊕ h∗ such that JAJ = A
and SA admits an eigenbasis on h⊕h∗. Then for any orthonormal basis u1, u2, ...
for h, there exists a Bogoliubov transformation V such that the operator V∗AV has
eigenvectors of the form {un ⊕ 0} ∪ {0⊕ Jun}.

Remark. In this result the Bogoliubov transformation V needs not be unitarily
implementable.

Proof. 1. Let {ui} be an orthonormal basis for h. We shall define the Bogoliubov
transformation V by

V(ui ⊕ 0) = vi, V(0⊕ Jui) = ṽi,

where {vi} ∪ {ṽi} is an eigenbasis of SA such that

(i) (vi,Svj) = δij , (ṽi,S ṽj) = −δij and (vi,S ṽj) = 0 for all i, j = 1, 2, . . .
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(ii) J vj = ṽj for all j = 1, 2, . . .

2. Let v1 be a normalized eigenvector of SA with eigenvalue λ1. Using Av1 =
λ1Sv1 we find that

(v1,Av1) = λ1(v1,Sv1).

Since A is positive definite and S is Hermitian, both of λ1 and (v1, Sv1) must be
real and non-zero. Therefore, we can normalized v1 in such a way that (v1,Sv1) ∈
{±1}.

Defining ṽ1 = J v1 and using JAJ = A we have that

SAṽ1 = SJAv1 = −JSAv1 = −J λ1v1 = −λ1vM+1,

where we have used that λ1 is real and that JS = −SJ . Thus ṽ1 is an eigenvector
of SA with the eigenvalue λ̃1 = −λ1.

Since λ1 6= 0, λ̃1 and λ1 must be different. On the other hand,

λ̃1(v1,S ṽ1) = (v1,Aλ̃1) = (Av1, ṽ1) = λ1(v1,S ṽ1).

Thus (v1,S ṽ1) = 0. Moreover, since

(ṽ1,S ṽ1) = (J v1,SJ v1) = (J v1,−JSv1) = −(Sv1, v1) = −(v1,Sv1),

by interchanging v1 and ṽ1 if necessary we can assume that (v1,Sv1) = 1 and
(ṽ1,S ṽ1) = −1.

3. Let V = Span{v1, ṽ1} and W = (SV )⊥ = S(V ⊥). We shall show that

h⊕ h∗ = V ⊕W.

Indeed, if a ∈ V ∩W then a ∈ V = Span{v1, ṽ1} and (a, Sv) = 0 for all v ∈ V .
Because (v1,Sv1) = 1, (ṽ1,S ṽ1) = −1 and (v1,S ṽ1) = 0, we must have a = 0.
Thus V ∩W = {0}.

On the other hand, if a ∈ (V ⊕W )⊥ ⊂ V ⊥∩W⊥ then Sa ∈ S(V ⊥)∩S(W⊥) =
W ∩ V = {0}, and hence a = 0. Therefore, (V ⊕W )⊥ = {0}.

Moreover, since V is finite dimensional and W is closed, the direct sum space
V ⊕W is a closed subspace of h⊕ h∗. Thus h⊕ h∗ = V ⊕W.

4. We prove that SA maps W into itself. Indeed, using V = SAV we have
W⊥SV = S(SAV ) = AV . Since A is symmetric, we get AW⊥V , and hence
SAW⊥SV . Thus SAW ⊂ (SV )⊥ = W .

Because SA admits an eigenbasis on h ⊕ h∗ = V ⊕W and SA leaves V and
W invariant, SA also admits an eigenbasis on W . We then can restrict SA on W
and conclude the desired result by an induction argument.

Next, we show that Γ + 1
2S satisfies all assumptions on A in Lemma 1.4.

Lemma 1.5. Let Γ be of the form (1) with Γ ≥ 0 and Tr(γ) < ∞ and let
Γ1 := Γ + 1

2S. Then Γ1 is positive definite on h⊕ h∗; moreover, JΓ1J = Γ1 and
SΓ1 admits an eigenbasis on h⊕ h∗.
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Proof. 1. It is straightforward to check that JΓ1J = Γ1. We now prove that Γ1

is positive definite.
First at all, it follows from Γ ≥ 0 that

〈f ⊕ Jg, (Γ + S)f ⊕ Jg〉 = 〈g ⊕ Jf,Γ(g ⊕ Jf)〉 ≥ 0,

namely Γ + S ≥ 0. Thus

Γ1 = Γ +
1

2
S =

1

2
[Γ + (Γ + S)] ≥ 0.

Next, we check that Γ1 is injective. Assume that there exists ϕ ∈ Ker(Γ1)\{0}.
Then since J and Γ1 commute, we have Jϕ ∈ Ker(Γ1)\{0}. Because J leaves
the subspace Span{ϕ,Jϕ} ⊂ Ker(Γ1) invariant, J must have a non-trivial fixed
point in this subspace. Thus there exists f ∈ h\{0} such that Γ1(f ⊕ Jf) = 0.
Using this equation we find that

〈f ⊕ J(tf),Γ(f ⊕ J(tf))〉 = (f, γf) + t2(f, (1 + γ)f)− t (f, (2γ + 1)f)

= (t− 1)2(f, γf) + (t2 − t) ‖f‖2 < 0

for some t < 1 and near 1 sufficiently. However, it is contrary to Γ ≥ 0. Thus Γ1

must be injective.

To see that Γ1 is positive definite we can introduce Γ
1/2
1 , the unique positive

semi-definite square root Γ
1/2
1 on h⊕h∗. Since Γ1 is injective, Γ

1/2
1 is also injective,

and hence
(ϕ,Γ1ϕ) = ||Γ1/2

1 v||2 > 0 for all ϕ 6= 0.

2. We show that SΓ1 has an eigenbasis on h ⊕ h∗. Although SΓ1 is not a

Hermitian, we may associate it with the Hermitian C = Γ
1/2
1 SΓ

1/2
1 .

We can see that C has an orthonormal eigenbasis for h ⊕ h∗. Indeed, it is
straightforward to see that

C2 = Γ
1/2
1 (SΓS)Γ

1/2
1 = Γ

1/2
1

[(
γ −α
−α∗ JγJ∗

)
+

1

2
I

]
Γ

1/2
1

= Γ
1/2
1

(
γ −α
−α∗ JγJ∗

)
Γ

1/2
1 +

1

2
Γ1

= Γ
1/2
1

(
γ −α
−α∗ JγJ∗

)
Γ

1/2
1 +

1

2

(
γ α
α∗ JγJ∗

)
+

1

4
I .

Because γ is trace class, αα∗ is also trace class due to inequality (2). Thus (C2−
1
4 I) is a self-adjoint Hilbert-Schmidt operator, and hence it has an orthonormal
eigenbasis on h⊕h∗. Therefore, C2 has an orthonormal eigenbasis. Note that if ϕ is
an eigenvector of C2 then Cϕ is also an eigenvector of C2 with the same eigenvalue.
Because C maps the subspace Span{ϕ,Cϕ} into itself, we can diagonalize to
obtain an orthonormal eigenbasis of C on this subspace. By induction, we get an
orthonormal eigenbasis of C on h⊕ h∗.
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Now note that if ϕ is an eigenvector of C then SΓ
1/2
1 ϕ is an eigenvector of

SΓ1 with the same eigenvalue since

SΓ1(SΓ
1/2
1 ϕ) = SΓ

1/2
1 (Γ

1/2
1 SΓ

1/2
1 )ϕ = SΓ

1/2
1 (Cϕ).

Moreover, because both of S and Γ
1/2
1 are injective, SΓ

1/2
1 maps a basis on h⊕ h∗

to another basis. In particular, SΓ
1/2
1 maps an eigenbasis of C to an eigenbasis of

SΓ1.

Now we can prove Theorem 1.3 similarly to Theorem 2.3 in [4]).

Proof of Theorem 1.3. 1. Apply Lemma 1.4 with A = Γ1 := Γ+ 1
2S, we can find a

Bogoliubov transformation V on h⊕h∗ such that, with respect to the orthonormal
basis {un ⊕ 0} ∪ {0⊕ Jun},

V∗Γ1V =




λ1 + 1
2

λ2 + 1
2 0

. . .

λ1 + 1
2

0 λ2 + 1
2

. . .




,

which is equivalent to (5).

We claim that in (5) we must have λn ≥ 0 and
∑

n λn < ∞. It follows from
(5) and V∗ΓV ≥ 0 that λn ≥ 0. In order to prove the boundedness

∑
n λn < ∞

we note that

ΓS(Γ + S) =

(
γ(γ + 1)− αα∗ γα− αJγJ∗
α∗γ − JγJ∗α∗ α∗α− Jγ(γ + 1)J∗

)

is a self-adjoint trace class operator. Using the diagonal form

V∗ΓS(Γ + S)V = [V∗ΓV]S [V∗(Γ + S)V]

=




λ1(λ1 + 1)
λ2(λ1 + 1) 0

. . .

−λ1(λ1 + 1)
0 −λ2(λ1 + 1)

. . .




we conclude that
∑

n λn(λn + 1) <∞, which is equivalent to
∑

n λn <∞.

2. Finally we show that the Bogoliubov transformation V constructed above
is unitarily implementable. Assume V has the form (3). Then by Theorem 1.2, it
suffices to prove that V V ∗ is a trace class operator on h.
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It follows from the representation (5) that the upper left block of V∗ΓV is a
positive semi-definite trace class operator on h. By direct computation, we can
see that the upper left block of

V∗ΓV =

(
U∗ J∗V ∗J∗

V ∗ JU∗J∗

)(
γ α
α∗ 1 + JγJ∗

)(
U V

JV J JUJ∗

)
,

is

U∗γU + J∗V ∗J∗U + U∗αJV J + J∗V ∗V J + J∗V ∗γV J.

Because γ is trace class, we have U∗γU and J∗V ∗γV J are trace class. Thus
J∗V ∗J∗U + U∗αJV J + J∗V ∗V J is trace class.

Moreover, using the Cauchy-Schwarz inequality

|Tr(XY + Y ∗X∗)| ≤ 2(Tr(XX∗))1/2(Tr(Y Y ∗))1/2

we find that

∞ > Tr [U∗αJV J + J∗V ∗J∗α∗U + J∗V ∗V J ]

= Tr [(U∗αJ)(V J) + (V J)∗(U∗αJ)∗] + Tr(V V ∗)

≥ −2(Tr(U∗αα∗U∗))1/2(Tr(V V ∗))1/2 + Tr(V V ∗).

Note that Tr(U∗αα∗U∗) <∞ because αα∗ is trace class. Thus Tr(V V ∗) <∞.

1.3 Quasi-free states and quadratic Hamiltonians

Definition (Quasi-free states). A quasi-free state ρ is a state satisfying Wick’s
Theorem, namely

ρ[A(F1)...A(F2m−1)] = 0 for all m ≥ 1 (6)

and

ρ[A(F1)...A(F2m)] =
∑

σ∈P2m

ρ[A(Fσ(1))A(Fσ(2))]...ρ[A(Fσ(2m−1))A(Fσ(2m))](7)

where P2m is the set of pairings

P2m = {σ ∈ S2m | σ(2j − 1) < σ(2j + 1), j = 1, . . . ,m− 1,

σ(2j − 1) < σ(2j), j = 1, . . . ,m}.

A crucial point is that we have one-to-one correspondence between the set of
quasi-free states with finite particle numbers and the set of 1-pdm’s. If a quasi-
free state is a pure state, namely a one-dimensional projection on the Fock space,
we call it a quasi-free pure state.

Theorem 1.6 (Quasi-free states and quasi-free pure states).

98



(i) Any operator Γ : h ⊕ h∗ → h ⊕ h∗ of the form (1) satisfying Γ ≥ 0 and
Tr(γ) < ∞ is the 1-pdm of a quasi-free state with finite particle number
expectation.

(ii) A pure state |Ψ〉 〈Ψ| with finite particle number expectation is a quasi-free
state if and only if Ψ = UV |0〉 for some Bogoliubov unitary mapping UV as
in (4).

Moreover, any operator Γ : h ⊕ h∗ → h ⊕ h∗ of the form (1) satisfying
Γ ≥ 0 and Tr(γ) < ∞ is the 1-pdm of a quasi-free pure state if and only if
ΓSΓ = −Γ.

Remark. The characterization of quasi-free pure states were already proved in [19]
(with a different proof). For the fermionic analogues see [4] (Theorem 2.3 and
Theorem 2.6).

Proof. (i) Note that the set of quasi-free states is invariant under Bogoliubov
unitary mappings. Indeed, if the Bogoliubov transformation V is implemented by
the unitary mapping UV : F → F as in (4) and Γ is the 1-pdm of a quasi-free
state ρ then V∗ΓV is the 1-pdm of the quasi-free state ρV∗ΓV defined by

ρV∗ΓV(B) := ρ(UVBU∗V) for all B ∈ B(F).

Therefore, due to the diagonalization result in Theorem 1.3, it remains to show
that any operator of the form

Γ =

(
ξ 0
0 1 + JξJ∗

)
,

where ξ is a positive semi-definite trace class operator on h, is indeed the 1-pdm
of some quasi-free state.

Because ξ is trace class, it admits an orthogonal eigenbasis {ui}∞i=1 for h cor-
responding to eigenvalues {λi}∞i=1. Let I = {i ∈ N|λi > 0}. Then we may choose
ei ∈ (0,∞) such that

(1− exp(−ei))−1 = 1 + λi, i ∈ I. (8)

Denote ai = a(ui) for short. Let

G = Π0 exp

[
−
∑

i∈I
eia
∗
i ai

]
(9)

where Π0 is the orthogonal projection onto the subspace Ker[
∑

i/∈I a
∗
i ai]. Similarly

to the fermionic case (see Theorem 2.3 in [4]), it is straightforward to check that
Γ is the 1-pdm of the state ρ = Tr[G]−1G and that ρ is a quasi-free state. For the
reader’s convenience we provide this part of the proof in the Appendix.
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(ii) If Ψ = UV |0〉 for some Bogoliubov unitary mapping UV then using U∗V =
UV−1 and (4) we have A(V−1F ) = U∗VA(F )UV . Therefore,

〈Ψ|A(F1)A(F2)...A(Fn) |Ψ〉 = 〈0|U∗VA(F1)UVUVA(F2)UV ...U∗VA(Fn)UV |0〉
= 〈0|A(V−1F1)A(V−1F2)...A(V−1Fn) |0〉 .

It is then obvious that the state |Ψ〉 〈Ψ| satisfies equations (6)-(7) in Wick’s The-
orem, and hence it is a quasi-free state.

Reversely, suppose that the pure state |Ψ〉 〈Ψ| is a quasi-free state with finite
particle number expectation. Then by the first statement in Theorem 1.6,

|Ψ〉 〈Ψ| = Tr[G]−1UVGU∗V

for some Bogoliubov unitary mapping UV and for some G given by (9). On the
other hand, the only rank-one operator G of the form (9) is the vacuum projection
|0〉 〈0| (namely ξ = 0). Thus, up to a complex phase, Ψ is equal to UV |0〉.

Now we consider the 1-dpm’s of quasi-free pure states. Suppose that Ψ is a
quasi-free pure state with finite particle number expectation and its 1-dpm is Γ.
Due to Theorem 1.6, there is a unitarily implementable Bogoliubov transformation
V such that

V∗ΓV =

(
0 0
0 1

)
.

The identity ΓSΓ = −Γ follows from

V∗ΓSΓV = (V∗ΓV)(V∗SV)−1(V∗ΓV)

=

(
0 0
0 1

)
S−1

(
0 0
0 1

)

= −
(

0 0
0 1

)
= −V∗ΓV.

Reversely, let Γ : h⊕h∗ → h⊕h∗ be of the form (1) such that Γ ≥ 0, Tr(γ) <∞
and ΓSΓ = −Γ. Then by Theorem 1.6, Γ is the 1-dpm of a quasi-free state and
there is a unitarily implementable Bogoliubov transformation V such that

V∗ΓV =

(
ξ 0
0 1 + JξJ∗

)

for some positive semi-definite trace class operator ξ on h. The identity ΓSΓ = −Γ
implies that

(
ξ 0
0 1 + JξJ∗

)
S
(
ξ 0
0 1 + JξJ∗

)
= −

(
ξ 0
0 1 + JξJ∗

)
.

The only solution to this equation is ξ = 0. Therefore, Γ is the 1-dpm of a
quasi-free pure state with finite particle number expectation.
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One of the main motivation of considering the quasi-free pure states is that
they minimize the quadratic Hamiltonians.

Definition (Quadratic Hamiltonian). Let A be a positive semi-definite operator
on h⊕ h∗ and JAJ = A. The operator

HA =
∑

i,j=1

(Fi,AFj)A∗(Fi)A(Fj),

acting on F is called a quadratic Hamiltonian corresponding to A. Here {Fi}i≥1 is
an orthonormal basis for h⊕h∗ (the sum is independent of the choice of {Fi}i≥1).

Remark. (i) Alternatively, we can describe HA by

(Ψ, HAΨ) = Tr[AΓΨ] for all normalized vector Ψ ∈ F ,

where ΓΨ is the 1-pdm of the pure state |Ψ〉 〈Ψ|.

(ii) The condition JAJ = A is just a conventional assumption since if this
condition does not holds then we can consider A′ = 1

2(A + JAJ ) which
satisfies that JA′J = A′ and, formally,

HA′ = HA +
1

2
Tr[AS].

This formal formula makes sense when, for example, A is trace class.

(ii) As we shall see below, that A ≥ 0 is the necessary and sufficient condition
such that HA is bounded from below. Moreover, in this case HA ≥ 0.

We are interested in the ground state energy of HA,

E(HA) := inf{ρ(HA)|ρ is a state with ρ(N ) <∞} (10)

Theorem 1.7 (Minimizing quadratic Hamiltonians). Let A, HA and E(HA) as
above.

(i) We have E(HA) = inf{ρ(HA)|ρ is a quasi-free pure state}.

(ii) If there is a unitarily implementable Bogoliubov transformation VA such
that V∗AAVA is diagonal then there is a quasi-free pure state ρ0 such that
ρ0(HA) = E(HA). Moreover, if A is positive definite then ρ0 is unique.

(iii) If the variational problem (10) has a minimizer then A is diagonalized by
a unitarily implementable Bogoliubov transformation VA. Moreover, if Γ is
the 1-pdm of the minimizer then we have

AΓ = −AS1(−∞,0)[AS].

In particular, AΓS = SΓA ≤ 0.
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Remark. (i) The above statements (i) and (ii) already appeared in [19] in the
finite-dimensional case (in this case A is always diagonalizable by Lemma
1.4).

(ii) If the operator W is not self-adjoint but U−1WU is self-adjoint for some
invertible operator U then we can still define the projection 1(−∞,0)[W ] by

1(−∞,0)[W ] := U1(−∞,0)[U
−1WU ]U−1.

It is easy to check that the definition is independent of the choice of U . In
particular, we can define

1(−∞,0)[AS] := (V∗A)−11(−∞,0)[V∗AAS(V∗A)−1]V∗A
where V∗AAS(V∗A)−1 is self-adjoint.

Proof. (i) We show that for any state ρ with finite number particle expectation,
there is a quasi-free pure state ρ̃ such that ρ̃(HA) ≤ ρ(HA).

By Theorem 1.3, there is a unitarily implementable Bogoliubov transformation
V such that

Γ = V
(
ξ 0
0 1 + JξJ∗

)
V∗

where ξ : h→ h is a positive semi-definite trace class operator. Thus

ρ(HA) = Tr[AΓ] = Tr

[
V∗AV

(
ξ 0
0 1 + JξJ∗

)]
.

Because V∗AV commutes with J , it has the block form

V∗AV =

(
a b
JbJ JaJ∗

)

where 0 ≤ a : h→ h and b : h∗ → h. Thus

ρ(HA) = Tr

[(
a b
JbJ JaJ∗

)(
ξ 0
0 1 + JξJ∗

)]
= 2 Tr[aξ] + Tr[a] ≥ Tr[a].

By Theorem 1.6, there is a quasi-free pure state ρ̃ whose 1-pdm is

V
(

0 0
0 1

)
V∗.

It follows from the above discussion that ρ̃(HA) ≤ ρ(HA).

(ii) Assume that A is diagonalized by the unitarily implementable Bogoliubov
transformation VA, namely

A = V∗A
(
d 0
0 JdJ∗

)
VA
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where d : h→ h is positive semi-definite. For any state ρ we have

ρ(HA) = Tr[AΓ] = Tr

[(
d 0
0 JdJ∗

)
VAΓV∗A

]

where Γ is the 1-pdm of ρ. We may write VAΓΨV∗A in the block form

VAΓV∗A =

(
γ α
α∗ 1 + JγJ∗

)

where 0 ≤ γ : h→ h and α : h∗ → h. Thus

ρ(HA) = Tr

[(
d 0
0 JdJ∗

)(
γ α
α∗ 1 + JγJ∗

)]
= 2 Tr[dγ] + Tr[d] ≥ Tr[d]

Denote by ρ0 the quasi-free pure state having the 1-dpm

V−1
A

(
0 0
0 1

)
V ∗−1
A = SV∗A

(
0 0
0 1

)
VAS.

Then ρ0(HA) = Tr[d] and hence ρ0 is a ground state of HA.

Moreover, if A is positive definite then Tr[dγ] > 0 unless γ = 0. Therefore, ρ0

is the unique ground state of HA among the quasi-free states.

(iii) Assume that problem (10) has a minimizer and Γ is the 1-dpm of the
minimizer.

1. We first prove that AS and SΓ commute. Let a be an arbitrary trace class
operator on h ⊕ h∗ such that a = a∗ = J aJ . It is straightforward to check that
exp(iεHS) is a Bogoliubov unitarily implementable transformation for any ε ∈ R.
Similarly to the variational argument for Hartree-Fock-Bogoliubov theory in [12]
(p. 284), we consider the trial states

Γε := exp(−iεSa)Γ exp(iεaS) = Γ + ε[iΓaS − iSaΓ] +O(ε2), ε ∈ R.

Since ε = 0 minimizes the functional ε 7→ Tr[A(Γε − Γ)] we find that

0 =
d

dε
Tr[A(Γε − Γ)] = Tr[aB] with B := iSAΓ− iΓAS.

Note that B = B∗ = JBJ .

Now let b be any trace class operator on h⊕h∗. Since a := b+b∗+J bJ +J b∗J
satisfies that a = a∗ = J aJ , we have

0 = Tr[aB] = 4<Tr[bB].

By changing b a complex phase, we conclude that Tr[bB] = 0 for any trace class
operator b. This implies that B = 0. Thus ASΓ = ΓAS, namely [AS,SΓ] = 0.
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2. Now let VΓ be the unitarily implementable Bogoliubov transformation such
that

V∗ΓΓVΓ =

(
ξ 0
0 1 + JξJ∗

)

for some trace class operator ξ ≥ 0 on h. Thus the operator V−1
Γ SΓVΓ = SV∗ΓΓVΓ

leaves the spaces h ⊕ 0 and 0 ⊕ h∗ invariant . Since V−1
Γ ASVΓ commutes with

V−1
Γ SΓVΓ, it also leaves the spaces h ⊕ 0 and 0 ⊕ h∗ invariant. Moreover, since
V−1

Γ ASVΓ commutes with J , it must have the form

V−1
Γ ASVΓ =

(
d 0
0 −JdJ∗

)
.

Using V−1
Γ = SV∗ΓS we then conclude that

SV∗ΓSASVΓS =

(
d 0
0 JdJ∗

)

where d ≥ 0 since A ≥ 0. Thus the unitarily implementable Bogoliubov transfor-
mation VA := SVΓS diagonalizes A.

3. Finally we prove that AΓ = −AS1(−∞,0)[AS]. Denote

V−1
A Γ(V−1

A )∗ =

(
γ̃ α̃

(α̃)∗ Jγ̃J∗

)
and V−1

A Γ′(V−1
A )∗ =

(
γ̃′ α̃′

(α̃′)∗ Jγ̃′J∗

)

for any 1-dpm Γ′. We find that

0 ≤ Tr
[
A(Γ′ − Γ)

]
= Tr

[
(V∗AAVA)V−1

A (Γ′ − Γ)(V∗A)−1
]

= Tr

[(
d 0
0 JdJ∗

)(
γ̃′ − γ̃ α̃′ − α̃

(α̃′ − α̃)∗ J(γ̃′ − γ̃)J∗

)]

= 2 Tr[dγ̃′]− 2 Tr[dγ̃].

Because this inequality holds true for any positive semi-definite trace class oper-
ator γ̃′ on h, we conclude that Tr(dγ̃) = 0. By writing

Tr[dγ̃] = Tr[(d1/2γ̃1/2)∗d1/2γ̃1/2]

we obtain d1/2γ̃1/2 = 0, and hence dγ̃ = 0. This also implies that dα̃ = 0 since

(α̃d)∗(α̃d) = d(α̃)∗α̃d ≤ d(1 + ||γ̃||L(h))γ̃d = 0.

Thus
(

0 0
0 JdJ∗

)
=

(
d 0
0 JdJ∗

)(
γ̃ α̃

(α̃)∗ 1 + Jγ̃J

)

= (V∗AAVA)(V−1
A Γ(V∗A)−1) = V∗AAΓ(V∗A)−1.
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It can be rewritten as

AΓ = (V∗A)−1

(
0 0
0 JdJ∗

)
V∗A. (11)

Moreover, since d ≥ 0 we find that
(

0 0
0 JdJ∗

)
= −

(
d 0
0 JdJ∗

)
1(−∞,0)

[(
d 0
0 −JdJ∗

)]
S

= −(V∗AAVA)1(−∞,0) [SV∗AAVA]S
= −V∗AAVA1(−∞,0)

[
(SVA)−1(AS)SVA

]
S

= −V∗AAVA(SVA)−11(−∞,0)(AS)SVAS
= −V∗AAS1(−∞,0)(AS)(V∗A)−1.

Thus (11) can be rewritten as

AΓ = −SA1(−∞,0)[AS].

Moreover, it follows from (11) that

AΓS = (V∗A)−1

(
0 0
0 JdJ∗

)
V∗AS = SVA

(
0 0
0 −JdJ∗

)
V∗AS ≤ 0.

1.4 Bogoliubov variational theory

The Bogoliubov variational states should include not only the quasi-free states
(like the Hartree-Fock theory) but also the coherent states, which correspond to
the condensation. To describe the formulation precisely we need the following
result (see [19], Theorem 13.1).

Theorem 1.8. For every φ ∈ h there exists (uniquely up to a complex phase) a
coherent unitary Uφ : F → F such that

U∗φa(f)Uφ = a(f) + (f, φ) for all f ∈ h.

Proof. We can proceed similarly the proof of Theorem 1.2 (see the Appendix) by
translating the orthonormal basis

|ni1 , ..., niM 〉 = (ni1 !...niM !)−1/2 a∗(uiM )niM ...a∗(ui1)ni1 |0〉
to

Uφ |ni1 , ..., niM 〉
= (ni1 !...niM !)−1/2 [a∗(uiM ) + (φ, uiM )]niM ...[a∗(ui1) + (φ, ui1)]ni1Uφ |0〉

with the new vacuum

Uφ |0〉 = exp

[
−1

2
‖φ‖2

]
exp [−a∗(φ)] |0〉 .
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Remark. (i) The condensate vector φ ∈ h needs not be normalized. Any pure
state |Ψ〉 〈Ψ| with Ψ = Uφ |0〉 ∈ F for some φ ∈ h is called a coherent state.

(ii) For generalized annihilation operators we get

U∗φA(F )Uφ = A(F ) + (F, φ⊕ Jφ)h⊕h∗ for all F ∈ h⊕ h∗.

Now we can describe the Bogoliubov variational states. Denote

GB :=

{
(γ, α)|Γγ,α =

(
γ α

JαJ 1 + JγJ∗

)
≥ 0,Tr(γ) <∞

}
.

The Bogoliubov variational state ργ,α,φ associated with (γ, α, φ) ∈ GBo × h is
defined by

ργ,α,φ(B) := ργ,α(U∗φBUφ) for all B ∈ B(F),

where ργ,α is the quasi-free state with the 1-pdm Γγ,α. In particular, the particle
number expectation of the Bogoliubov variational state ργ,α,φ is

ργ,α,φ(N ) = Tr(γ) + ||φ||2.

For a given Hamiltonian H : F → F and λ ≥ 0 we can define the Bogoliubov
ground state energy

EB(λ) = inf
{
ργ,α,ρ(H)|(γ, α, φ) ∈ GB × h,Tr(γ) + ||φ||2 = λ

}

where ργ,α,ρ(H) is the Bogoliubov energy functional and λ stands for the total
particle number of the system.

Remark. (i) Due to the variational principle, the Bogoliubov ground state en-
ergy EB

H(λ) is always an upper bound to the quantum grand canonical energy

Eg(λ) = inf{(Ψ,HΨ) : Ψ ∈ F , ||Ψ|| = 1, (Ψ,NΨ) = λ}.

(ii) If N ∈ N then the grand canonical energy Eg(N) is always a lower bound
to the canonical energy

E(N) = inf{(Ψ,HΨ) : Ψ ∈
N⊗

sym

, ||Ψ|| = 1}.

Moreover, if E(N) is convex w.r.t. N then Eg(N) = E(N) for all N .

Example 1.9 (A toy model). Let h = R and the Hamiltonian

H = a∗(1)a∗(1)a(1)a(1).

A straightforward computation shows that for N ∈ N then the quantum energy
is

Eg(N) = E(N) = N2 −N
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and the Bogoliubov energy is

EB(N) = inf
λ≥0,x≥0,λ+x=N

[
x2 + x(4λ− 2

√
λ(1 + λ)) + 2λ2 + λ(1 + λ)

]

= inf
0≤λ≤N

[
N2 + 2N(λ−

√
λ(1 + λ)) + λ+ 2λ

√
λ(1 + λ)

]

= N2 −N +O(N2/3) as N →∞.

Of our particular interest is the Bogoliubov variational theory for interacting
Bose gases which we shall describe briefly below.

Let h = L2(Ω) for some measure space Ω with the inner product

(u, v) =

∫

Ω
u(x)v(x)dx.

In this case the mapping J : h→ h∗ is simply the complex conjugate, i.e. Ju(x) =
u(x). Therefore, for simplicity we shall use notation γ = JγJ∗ and α = JαJ .

The Hamiltonian consists of a one-body kinetic operator T , which is a self-
adjoint operator on h, and a two-body potential operator W which is the multi-
plication operator corresponding to the funtion W (x, y) : Ω × Ω → R satisfying
W (x, y) = W (y, x). The grand canonical Hamiltonian H : F → F can be repre-
sented in the second quantization as

H =

∞⊕

N=0




N∑

i=1

Ti +
∑

1≤i<j≤N
Wij




=
∑

m,n

(um, Tun)ha
∗
man +

1

2

∑

m,n,p,q

(um ⊗ un,Wup ⊗ uq)h×ha∗ma∗napaq

where an := a(un) and {un}∞n=1 is an orthonormal basis for h (the sum is inde-
pendent of the choice of {un}).

To represent the Bogoliubov energy functional explicitly in terms of (γ, α, φ),
it is convenient to introduce the integral kernel α(x, y) of the Hilbert-Schmidt
operator which satisfies

(αf)(x) =

∫

Ω
α(x, y)f(y)dy for all f ∈ L2(Ω).

Similarly, we have the kernel γ(x, y) of γ and the density functional is formally
defined by ργ(x) := γ(x, x). More precisely, because γ is a positive semi-definite
trace class operator, we have the spectral decomposition γ =

∑
i ti |ui〉 〈ui| and

then we can define γ(x, y) :=
∑

i tiui(x)ui(y) and ργ(x) :=
∑

i ti|ui(x)|2. Note
that

∫
ρ(x)dx = Tr(γ).

Using the coherent transformations

U∗φanUφ = an + (un, φ)
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and Wick’s Theorem we find that

ργ,α,φ(H) = Tr(T γ̃) +D(ργ̃ , ργ̃) +X(γ, γ) +X(α, α)

+ Re

∫∫

Ω×Ω

[
γ(x, y)φ(x)φ(y) + α(x, y)φ(x)φ(y)

]
W (x, y)dxdy

where γ̃ := γ + |φ〉 〈φ|, ργ̃(x) = γ̃(x, x) and

D(f, g) =
1

2

∫∫

Ω×Ω

f(x)g(y)W (x, y)dxdy,

X(γ, γ′) =
1

2

∫∫

Ω×Ω

γ(x, y)γ′(x, y)W (x, y)dxdy.

Here are some specific examples with respect to three cases: W > 0, W
changes sign, and W < 0.

Example 1.10 (Bosonic atoms). In this case we have

h = L2(R3), T = −∆− Z

|x| , W (x, y) =
1

|x− y| .

We shall investigate the Bogoliubov theory for bosonic atoms in details in the next
sections. In particular, we can show that the Bogoliubov ground state energy
and the full quantum mechanics energy agree up to the leading order, and we
conjecture that they even agree up to the second order.

Example 1.11 (Two-component Bose gases). This is the case when

h = L2(R3 × {±1}), T = −∆x, W (x, e, y, e′) =
ee′

|x− y| .

It is already known that the Bogoliubov theory is also correct to the full quantum
theory up to the leading order. More precisely, for large N , the correct leading
term −AN7/5 was predicted by Dyson [7] using the Bogoliubov principle and then
it was mathematically established by Lieb-Solovej [14] (lower bound) and Solovej
[18] (upper bound).

Example 1.12 (Bosonic stars). The system now corresponds to

h = L2(R3), T =
√
−∆ +m2 −m, W (x, y) = − κ

|x− y|
where m > 0 is the neutron mass and κ = Gm2 > 0. Up to the leading order,
the ground state energy is approximated by the Hartree model [15]. Because the
Hartree ground state energy is strictly concave, replacing the canonical setting by
the grand canonical setting would make the energy much lower. Therefore, it is
easy to see that the Bogoliubov ground state energy is much lower than the one
of the full quantum model, although by adapting the ideas in [10] we can show
that the Bogoliubov variational model still has minimizers.
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2 Bosonic atoms

2.1 Introduction

For a bosonic atom we mean a system including a nucleus fixed at the origin in
R3 with nucleus charge Z > 0 and N “bosonic electrons” with charge −1. The
system is described by the Hamiltonian

HN,Z =

N∑

i=1

(
−∆i −

Z

|x|

)
+

∑

1≤i<j≤N

1

|xi − xj |

acting on the symmetric space HN =
⊗N

sym L
2(R3). The ground state energy of

the system is given by

E(N,Z) = inf{(Ψ, HN,ZΨ)|Ψ ∈ HN , ||Ψ||L2 = 1}.

In fact, the ground state energy E(N,Z) does not change if we replace the sym-
metric subspaceHN by the full N -particle space

⊗N L2(R3) = L2(R3N ) (see, e.g.,
[13] p. 59-60). For usual atoms (with fermionic electrons), the Hamiltonian HN,Z

acts on the anti-symmetric subspace
N∧
i=1

(L2(R3)⊗C2) instead. For simplicity, we

only consider the spinless electrons because the spin number play no role in the
mathematical analysis here.

We recall some well-known fact about the full quantum problem. Due to
the HVZ Theorem (see e.g. [13] Lemma 12.1), E(N,Z) ≤ E(N − 1, Z) and if
E(N,Z) < E(N − 1, Z) then E(N,Z) is an isolated eigenvalue of HN,Z . Unlike
the asymptotic neutrality of fermionic atoms, in the bosonic case, the binding
E(N,Z) < E(N − 1, Z) holds for all 0 ≤ N ≤ Nc(Z) with limZ→∞Nc(Z)/Z =
tc ≈ 1.21 (see [6, 17, 5, 1]).

The leading term of the ground state energy E(N,Z) is given by the Hartree
theory [6]. In the Hartree theory, the ground state energy is

EH(N,Z) = inf{EH(u, Z) : ||u||2L2 = N}

where

EH(u, Z) =

∫

R3

|∇u(x)|2 dx−
∫

R3

Z|u(x)|2
|x| +

∫∫

R3×R3

|u(x)|2|u(y)|2
|x− y| dxdy.

By the scaling u(x) = Z2u1(Zx) we have

EH(u, Z) = Z3EH(u1, 1).

Therefore,

EH(N,Z) = Z3e(N/Z, 1) where e(t) = EH(t, 1).
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It is well-known (see e.g. [5, 11]) that e(t) is convex, e(t)′ < 0 when t < tc ≈ 1.21
and e′(t) = 0 when t ≥ tc. Moreover, for any 0 < t < tc ≈ 1.21, e(t) has a unique
minimizer φt, which is positive, radially-symmetric and it is the unique solution
to the nonlinear equation htφt = 0 where

ht = −∆− 1

|x| + |φt|2 ∗
1

|x| − e
′(t).

As a consequence, ht ≥ 0. Moreover, since σess(ht) = [−e′(t), 0], there is a gap
∆t > 0 if t < tc such that (ht −∆t)P

⊥
t ≥ 0 where P⊥φt = 1− Pt with Pt being the

one-dimensional projection onto Span{φt}.
By scaling back, we conclude that EH(tZ, Z) has the unique minimizer and

the operator

ht,Z = −∆− Z

|x| + |φt,Z |2 ∗
1

|x| − Z
2e′(t)

satisfies ht,Zφt,Z = 0 and (ht,Z − Z2∆t)P
⊥
φt,Z
≥ 0 when t < tc.

Our aim is to investigate the first correction to the ground state energy
E(tZ, Z). We shall analyze the Bogoliubov variational model for bosonic atoms
and compare to the full quantum theory. From the general discussion on the
Bogoliubov theory, we have the Bogoliubov variational problem

EB(N,Z) = inf
{
EB(γ, α, φ, Z)|(γ, α, φ) ∈ GB × L2(R3),Tr(γ) + ||φ||2 = N

}

(12)

where

EB(γ, α, φ, Z) = Tr(−[∆− Z|x|−1]γ̃) +D(ργ̃ , ργ̃) +X(γ, γ) +X(α, α)

+

∫∫

R3×R3

γ(x, y)φ(x)φ(y)

|x− y| dxdy + Re

∫∫

R3×R3

α(x, y)φ(x)φ(y)

|x− y| dxdy.

Here we are using the notations γ̃ := γ + |φ〉 〈φ| and

D(f, g) =
1

2

∫∫

R3×R3

f(x)g(y)

|x− y| dxdy, X(γ, γ′) =
1

2

∫∫

R3×R3

γ(x, y)γ′(x, y)

|x− y| dxdy.

The properties of the Bogoliubov theory for bosonic atoms are the following,
which will be proved in the next subsections.

Theorem 2.1 (Existence of minimizers). Let the nucleus charge Z and the elec-
tron number N be any positive numbers (not necessarily integers).

(i) If the binding inequality

EB(N,Z) < EB(N ′, Z) for all 0 < N ′ < N

holds then EB(N,Z) has a minimizer.
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(ii) The energy EB(N,Z) is strictly decreasing on N ∈ [0, Nc(Z)] with Nc(Z) ≥
Z for all Z and

lim inf
Z→∞

Nc(Z)

Z
≥ tc ≈ 1.21.

Theorem 2.2 (Bogoliubov ground state energy). If Z →∞ and N/Z = t ∈ (0, tc)
then

EB(N,Z) = Z3e(t) + Z2µ(t) + o(Z2)

where

µ(t) := inf
(γ,α)∈GB


Tr[htγ] + Re

∫∫

R3×R3

[γ(x, y) + α(x, y)]φt(x)φt(y)

|x− y| dxdy


 .

The coefficient µ(t) is finite and satisfies the lower bound

µ(t) ≤ t−1e(t)− e′(t) + µ̃(t) < t−1e(t)− e′(t) < 0

where

µ̃(t) := min
(γ′,α′)∈GB ,γ′φt=0





Tr[htγ
′] + Re

∫∫

R3×R3

[γ′(x, y) + α′(x, y)]φt(x)φt(y)

|x− y|




.

Remark. (i) If we restrict the Hamiltonian HN,Z into the class of N -particle
product functions Ψu = u ⊗ u ⊗ ... ⊗ u then by scaling u(x) = (N −
1)−1/2Z2u0(Zx) we have

inf
||u||=1

〈Ψu, HN,ZΨu〉 =
NZ3

N − 1
inf

||u||0=(N−1)/Z
EH(u0, 1) =

NZ3

N − 1
e

(
N − 1

Z

)

= Z3e(t) + Z2[t−1e(t)− e′(t)] + o(Z2).

Because µ(t) < t−1e(t)−e′(t), the Bogoliubov ground state energy is strictly
lower than the lowest energy of the product wave functions at the second
oder.

(ii) We believe, but do not have a rigorous proof, that the identity µ(t) =
t−1e(t)− e′(t) + µ̃(t) holds and a minimizing sequence of µ(t) is given by

γ = λ

∣∣∣∣
φt
||φt||

〉〈
φt
||φt||

∣∣∣∣+ γ′, α = −
√
λ(1 + λ)

∣∣∣∣
φt
||φt||

〉〈
φt
||φt||

∣∣∣∣+ α′

with λ → ∞, where (γ′, α′) is a minimizer for µ̃(t). In fact, the upper
bound µ(t) ≥ t−1e(t)− e′(t) + µ̃(t) follows from the heuristic discussion on
comparison between Bogoliubov energy and quantum energy below.
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We conjecture that the Bogoliubov theory determines the first correction to
the quantum energy E(N,Z).

Conjecture 2.3 (First correction to the leading energy). If Z →∞ and N/Z =
t ∈ (0, tc) then

E(N,Z) = EB(N,Z) + o(Z2) = Z3e(t) + Z2µ(t) + o(Z2).

A heuristic discussion supporting the conjecture is made in the last subsection
of the article. While the picture is rather clear, some technical work is still needed
to make the argument rigorous.

2.2 Existence of Bogoliubov minimizers

To prove the first claim of Theorem 2.1, we shall follow the extending variational
argument (see e.g. [12], Theorem 11.12). Before studying the variational prob-
lem EB(N,Z) in (12), we start by considering the extended problem with the
constraint Tr(γ) ≤ N , namely

EB(≤N,Z) = inf
{
EB(γ, α, φ, Z)|(γ, α, φ) ∈ GB,Tr(γ) + ||φ||2 ≤ N

}
. (13)

Lemma 2.4 (Extended problem). The ground state energy EB(N,Z) is finite
and decreasing on N . Moreover, the extended variational problem EB(≤N,Z) in
(13) always has a minimizer.

Proof. 1. By simply ignoring the non-negative two-body interaction and using
the hydrogen bound, we have

EB(γ, α, φ, Z) ≥ Tr

[(
−∆− Z

|x|

)
γ̃

]
≥ 1

2
Tr(−∆γ)− Z2N

2
> −∞. (14)

2. Next, we prove that EB(N ′, Z) ≥ EB(N,Z) for N ′ < N . For any trial state
(γ, α, φ) with (γ, α) ∈ GB and Tr γ + ||φ||2 = N ′, choose g ∈ C∞c (R3) such that
Tr(γ) + ||φ||2 + ||g||2 = N and consider

γε = γ + |gε〉 〈gε|

where gε(x) = ε3/2g(εx). Then (γε, α) ∈ GB and Tr(γε) + ||φ||2 = N . Moreover,
since |∇gε| → 0 in L2(R3) and |gε|2 → 0 in Lp(R3) for any p > 1, a simple
calculation shows that

EB(γε, α, φ, Z)→ EB
Z (γ, α, φ, Z) as ε→ 0.

This ensures that EB(N ′, Z) ≥ EB(N ′, Z).
3. To show that EB(≤N,Z) has a minimizer, let us take a minimizing se-

quence (γn, αn, φn) for EB(≤N,Z). The lower bound (14) ensures that Tr(−∆γn)
is bounded. Consequently, all of ‖γn(x, y)‖H1(R3×R3), ‖αn(x, y)‖H1/2(R3×R3) and
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‖φn‖H1(R3) are bounded. By passing to a subsequence if necessary, we may assume
that γn ⇀ γ,αn ⇀ γ,φn ⇀ φ weakly in the corresponding Hilbert spaces, and
their kernels converge pointwisely. It is straightforward to check that (γ, α) ∈ GB

and by Fatou’s lemma, Tr(γ) + ||φ||2 ≤ N .

Fatou’lemma also implies that

lim inf
n→∞

Tr(−∆γ) ≥ Tr(−∆γ).

The two-body interaction part of EB(γn, αn, φn, Z) can be rewritten as

∫∫
W (γn, αn, φn)

|x− y|

where

W (γn, αn, φn) = ργn(x)ργn(y) + |γn(x, y)|2 + |αn(x, y) + φn(x)φn(y)|2

+
[
ργn(x)|φ(y)|2 + ργn(y)|φ(x)|2 + 2 Re(γn(x, y)φn(x)φn(y))

]
≥ 0.

Therefore, we may use Fatou’lemma again to obtain

lim inf
n→∞

∫∫
W (γn, αn, φn)

|x− y| ≥
∫∫

W (γ, α, φ)

|x− y| .

Finally, because
√
ργn ⇀

√
ργ in H1(R3) we have the convergence

∫

R3

ργn(x)

|x| dx→
∫

R3

ργ(x)

|x| dx as n→∞.

Therefore, we have

lim inf
n→∞

EB(γn, αn, φn, Z) ≥ EB(γ, α, φ, Z)

and hence (γ, α, φ) is a minimizer for EB(≤N,Z).

We now prove the existence of minimizers for the original problem EB(N,Z).

Proof of Theorem 2.1. 1. If EB(N,Z) < EB(N ′, Z) for all 0 < N ′ < N then
any minimizer (γ, α, φ) for the extended problem EB(≤N,Z) must satisfy Tr(γ)+
||φ||2 = N , and hence it is a minimizer for EB(N,Z).

2. That E(N,Z) is strictly decreasing on N ∈ [0, Z] follows by the same
argument as in [8]. Assume that EB(N,Z) = EB(N ′, Z) for some 0 ≤ N ′ < N ≤
Z. Let (γ, α, φ) be a minimizer for EB(≤N ′, Z). For any ϕ ∈ H1(R3), let us
consider the trial state (γε, α, φ) with

γε = γ + ε |ϕ〉 〈ϕ| , ε > 0.
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For ε > 0 small we have Tr γε + ||φ|| ≤ N and hence

EB(γε, α, φ, Z) ≥ EB(N,Z) = EB(N ′, Z) = EB(γ, α, φ, Z).

Therefore,

0 ≤ d

dε

∣∣∣∣
ε=0

EB(γε, α, φ, Z) = (ϕ,−∆ϕ)L2 −
∫

R3

Z|ϕ(x)|2
|x| dx+ 2D(ργ̃ , |ϕ|2)

+2 ReX(γ̃, |ϕ〉 〈ϕ|). (15)

On the other hand, let us replace ϕ by ϕL(x) := L−3/2ϕ1(x/L) where ϕ1 ∈
H1(R3) such that ϕ1 is radially-symmetric and ϕ1(x) = 0 if |x| < 1 and ϕ1(x) > 0
if |x| > 1. Then for large L one has

〈ϕL,−∆ϕL〉 = L−2 〈ϕ1,−∆ϕ1〉 = O(L−2),

−Z
∫

R3

|ϕL(x)|2
|x| dx = −ZL−1

∫

R3

|ϕ1(x)|2
|x| dx.

Moreover, by Newton’s theorem,

2D(ργ̃ , |ϕL|2) =

∫∫

R3×R3

ργ(x)|ϕL(y)|2
max{|x|, |y|} dy ≤ N

′L−1

∫

R3

|ϕ1(y)|2
|y| dy,

and by Hölder’s inequality,

2 ReX(γ̃, |ϕL〉 〈ϕL|) =

∫∫

R3×R3

γ̃(x, y)ϕL(x)ϕL(y)

|x− y| dxdy

≤




∫∫

|x|≥L,|y|≥L

|γ̃(x, y)|dxdy




1/2

∫∫

R3×R3

|ϕL(x)|2|ϕL(y)|2
|x− y|2 dxdy




1/2

= o(L−1).

Thus if we replace ϕ in (15) by ϕL then we obtain

0 ≤ O(L−2)− (Z −N ′)L−1

∫

R3

|ϕ1(x)|2
|x| dx+ o(L−1)

which is a contradiction to the assumption N ′ < Z. Thus N 7→ EB(N,Z) is
strictly decreasing when 0 < N ≤ Z.

3. Now we show that EB(Z,N) is strictly decreasing on N ∈ [Z,Nc(Z)] with

lim inf
Z→∞

Nc(Z)/Z ≥ tc ≈ 1.21

We shall need some properties of the Bogoliubov ground state in Lemma 2.7,
which is derived in the next section.
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Take a large number Z and assume that N 7→ EB(N,Z) is not strictly de-
creasing on Z ≤ t′Z for a fixed value t′ < tc. Then there exists N = tZ ∈ [Z, t′Z]
and δ > 0 such that EB(N,Z) = EB(N + δ, Z) and EB(N,Z) has a ground state
(γ, α, φ). Because

EB(γ, α, φ, Z) = EB(N,Z) = EB(N + δ, Z) ≤ EB(γ, α,
√

1 + εφ, Z)

for ε > 0 small, we have

0 ≤ d

dε

∣∣∣∣
ε=0

EB(γ, α,
√

1 + εφ, Z)

=

〈
φ,

(
−∆− Z

|x| + ργ̃ ∗ |.|−1

)
φ

〉
+

+

∫∫
γ(x, y)φ(x)φ(y)

|x− y| + Re

∫∫
α(x, y)φ(x)φ(y)

|x− y| .

Because

EB(γ, α, φ) = EB(N,Z) ≤ EH(N,Z) ≤ Tr

[(
−∆− Z

|x|

)
γ̃

]
+D(ργ̃ , ργ̃)

we get
∫∫

γ(x, y)φ(x)φ(y)

|x− y| + Re

∫∫
α(x, y)φ(x)φ(y)

|x− y| ≤ 0.

Thus

0 ≤
〈
φ,

(
−∆− Z

|x| + ργ̃ ∗ |.|−1

)
φ

〉

= 〈φ, ht,Zφ〉+ 2D(ργ̃ − |φt,Z |2, |φ|2) + e′(t)Z2||φ||2.

On the other hand, using the estimates in Lemma 2.7 we have

〈φ, ht,Zφ〉 = o(Z2),

e′(t)Z2||φ||2 ≤ e′(t)Z2(tZ + o(Z)) = te′(t)Z3 + o(Z3),

D(ργ̃ − |φt,Z |2, |φ|2) ≤
√
D(ργ̃ − |φt,Z |2, ργ̃ − |φt,Z |2).

√
D(|φt,Z |2, |φt,Z |2)

= o(Z5/2).

Therefore,

0 ≤ 〈φ, ht,Zφ〉+ 2D(ργ̃ − |φt,Z |2, |φ|2) + e′(t)Z2||φ||2 ≤ te′(t)Z3 + o(Z3).

However, it is a contradiction because te′(t) < 0 when 1 ≤ t ≤ t′ < tc.

115



2.3 Analysis of quadratic forms

We consider the minimization problem µ(t) of the quadratic form in Theorem 2.2.
Recall that

µ(t) := inf
(γ,α)∈GB

qt(γ, α) and µ̃(t) := inf
(γ′,α′)∈GB,γ′φt=0

qt(γ
′, α′)

where

qt(γ, α) :=


Tr[htγ] + Re

∫∫

R3×R3

[γ(x, y) + α(x, y)]φt(x)φt(y)

|x− y| dxdy


 .

Lemma 2.5 (Analysis of the quadratic form qt(γ, α)). For any 0 < t < tc we
have

−∞ < µ(t) ≤ t−1e(t)− e′(t) + µ̃(t).

Moreover, the minimization problem µ̃(t) has a minimizer (γ′, α′) and µ̃(t) < 0.

Proof. 1. Because qt(γ, α) is a quadratic form of (γ, α), for considering the ground
state energy we may restrict (γ, α) into the class of quasi-free pure state, i.e.
αα∗ = γ(1 + γ). Since γ ≥ 0 is trace class and αT = α, we can write

γ(x, y) =
∑

n

λnun(x)un(y), α(x, y) = −
∑

n

√
λn(1 + λn)un(x)un(y),

where λn ≥ 0 and {un}n is an orthonormal family on L2(R3). Then

qt(γ, α) =
∑

n

[λn(un, htun) +An]

with

An = λn

∫∫

R3×R3

un(x)un(y)φt(x)φt(y)

|x− y| −
√
λn(1 + λn) Re

∫∫

R3×R3

un(x)un(y)φt(x)φt(y)

|x− y| .

2. We may assume that λn(un, ht,Zun) + An ≤ 0 for all n; otherwise, if
λn(un, ht,Zun) +An < 0 then

qt(γ, α) > qt(γ
′, α′)

where
γ′ = γ − λn |un〉 〈un| , α′ = α+

√
λn(1 + λn) |un〉 〈un| .

We have the gap (un, htun) ≥ ∆t||P⊥un||2 for all n. Moreover, |Re(D(u, u))| ≤
D(u, u) for all functions u we have

An ≥ 2D(unφt, unφt)(λn −
√
λn(1 + λn))

≥ 2D(unφt, unφt) max

{
−1

2
,−
√
λn

}
. (16)
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Thus it follows from the assumption λn(un, ht,Zun) +An ≤ 0 that

∆2
tλn||P⊥un||4 ≤ 4|D(unφt, unφt)|2 for all n. (17)

On the other hand, observe that

||P⊥un||2 + ||P⊥um||2 = 2− ||Pun||2 − ||Pum||2 ≥ 1 for all m 6= n.

Therefore, there exists (at most) an element i0 such that ||P⊥un||2 ≥ 1/2 for all
n 6= i0. As a consequence, (17) implies that

∑

n6=i0
λn ≤ 16∆−2

t

∑

n6=i0
|D(unφt, unφt)|2 ≤ 4∆−2

t

∫∫

R3×R3

|φt(x)|2|φt(y)|2
|x− y|2 dxdy ≤ C.

3. Using ht ≥ 0 and (16) we have

qt(γ, α) ≥ Ai0 +
∑

n 6=i0
An ≥ −D(ui0φt, ui0φt)−

∑

n6=i0
2
√
λnD(unφt, unφt)

≥ −D(ui0φt, ui0φt)− 2


∑

n 6=i0
λn




1/2
∑

n 6=i0
|D(unφt, unφt)|2




1/2

≥ −1

2



∫∫

R3×R3

|φt(x)|2|φt(y)|2
|x− y|2




1/2

− 2∆−1
t



∫∫

R3×R3

|φt(x)|2|φt(y)|2
|x− y|2




≥ −C.

4. To see the upper bound on µ(t) let us consider the trial state

γ = λ

∣∣∣∣
φt
||φt||

〉〈
φt
||φt||

∣∣∣∣+ γ′, α = −
√
λ(1 + λ)

∣∣∣∣
φt
||φt||

〉〈
φt
||φt||

∣∣∣∣+ α′

where (γ′, α′) ∈ GB such that γ′φt = 0. One has

µ(t) ≤ qt(γ, α) = 2
(
λ−

√
λ(1 + λ)

)
D(u1φt, u1φt) + qt(γ

′, α′).

Taking the infimum over all (γ′, α′) and letting λ→∞ we obtain

µ(t) ≤ −t−1D(|φt|2, |φt|2) + µ̃(t) = t−1e(t)− e′(t) + µ̃(t).

5. Now we consider µ̃(t). The above argument shows that if {(γ′n, α′n)}∞n=1

is a minimizing sequence for µ̃(t) then Tr(γ′n) is bounded. Therefore, it follows
from the standard compactness argument that µ̃(t) has a minimizer. To see that
µ̃(t) < 0, let us consider

γ′ = λ′ |u〉 〈u| , α′ = −
√
λ′(1 + λ′) |u〉 〈u|
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where u is a normalized real-valued function in L2(R3) such that (u, φt) = 0.
Because D(uφt, uφt) > 0 we have

µ̃(t) ≤ qt(γ′, α′) = λ′(u, htu) + 2
(
λ′ −

√
λ′(1 + λ′)

)
t−1D(uφt, uφt) < 0

for some λ′ > 0 small enough.

Remark. The analysis here works out for a more general setting. For example, if
h is a positive semi-definite operator on L2(Ω) with inf σess(h) > 0 and W is a
positive semi-definite Hilbert-Schmidt operator on L2(Ω) with a real-valued kernel
W (x, y) then

inf
(γ,α)∈GB


Tr[hγ] + Re

∫∫

R3×R3

(γ(x, y) + α(x, y))W (x, y)dxdy


 > −∞.

By scaling φt,Z(x) = Z2φt(Zx), γ(x) = Z3γ′(Zx,Zy), α(x) = Z3α′(Zx,Zy)
we have

inf
(γ,α)∈GB

qt,Z(γ, α) = inf
(γ′,α′)∈GB

Z2qt(γ
′, α′) = Z2µ(t)

where

qt,Z(γ′, α′) = Tr[ht,Zγ
′] +

∫∫

R3×R3

(γ′(x, y) + α′(x, y))φt,Z(x)φt,Z(y)

|x− y| dxdy.

To prove Theorem 2.2, we need to consider some perturbation form of qt,Z .

Lemma 2.6 (Analysis of pertubative quadratic forms). Let φ ∈ L2(R3) such that
||φ|| ≤ ||φt,Z ||, ||∇φ|| ≤ CZ3/2 and ||P⊥φ|| ≤ C where P⊥ = 1− P with P being
the one-dimensional projection onto φt,Z . Then for Z large we have

inf
(γ,α)∈GB

qt,Z(γ, α, φ) ≥ ‖Pφ‖
2

||φt,Z ||2
Z2µ(t)− CZ2−1/10

where

qt,Z(γ, α, φ) = Tr[ht,Zγ] +

∫∫

R3×R3

γ(x, y)φ(x)φ(y)

|x− y| +

∫∫

R3×R3

α(x, y)φ(x)φ(y)

|x− y| .

Proof. 1. We first consider the case when Tr γ is small. Assume that Tr γ ≤
Z1/2−ε, where ε = 1/10. In the integral involved with γ, we use the decomposition

φ(x)φ(y) = Pφ(x)Pφ(y) + Pφ(x)P⊥φ(y) + P⊥φ(x)φ(y).
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Observe that all terms involved with P⊥φ have negligible contribution. For ex-
ample,

∣∣∣∣∣∣∣

∫∫

R3×R3

γ(x, y)P⊥φ(x)φ(y)

|x− y|

∣∣∣∣∣∣∣
≤ 2 Tr(γ2)1/2||P⊥φ||.||∇φ|| ≤ CZ2−ε.

Thus ∫∫

R3×R3

γε(x, y)φ(x)φ(y)

|x− y| ≥
∫∫

R3×R3

γε(x, y)Pφ(x)Pφ(y)

|x− y| − CZ2−ε.

Together with the similar bound on the integral involved with α, we arrive at

qt,Z(γ, α, φ) ≥
(

1− ||Pφ||
2

||φ||2
)

Tr[ht,Zγ] +
||Pφ||2
||φt,Z ||2

qt,Z(γ, α)− CZ2−ε

≥ ||Pφ||2
||φt,Z ||2

Z2µ(t)− CZ2−ε.

2. Now we consider the case when Tr γ is large. Assume Tr γ ≥ Z1/2−ε.
Following the proof of Lemma 2.5, we may assume that

γ = λ1 |u1〉 〈u1|+ γ′, α = −
√
λ1(1 + λ1) |u1〉 〈u1|+ α′

where ||u1|| = 1 and (γ′, α′) is the 1-pdm of a pure quasi-free state such that

Tr γ′ ≤ C, λ1||P⊥u1||2 ≤ C and γ′u1 = 0 = α′u1.

Because λ1 = Tr γ − Tr γ′ ≥ Z1/2−ε − C and λ1||P⊥u1||2 ≤ C, we have

||P⊥u1||2 ≤ CZ−1/2+ε.

As a consequence,

Tr(Pγ′) =
∑

n 6=1

λn||Pun||2 ≤ Tr γ′
∑

n 6=1

||Pun||2 ≤ Tr γ′||P⊥u1||2 ≤ Z−1/2+ε.

3. We shall compare qt,Z(γ, α, φ) with qt,Z(γ′′, α′′) where

γ′′ = λ1P |u1〉 〈u1|P + P⊥γ′P⊥,

α′′ = −
√
λ1(1 + λ1)P |u1〉 〈u1|P + P⊥α′P⊥.

It is easy to see that (γ′′, α′′) ∈ GB.
We first consider the terms involved with u1. We have

λ1

∫∫

R3×R3

u1(x)u1(y)φ(x)φ(y)

|x− y| −
√
λ1(1 + λ1) Re

∫∫

R3×R3

u1(x)u1(y)φ(x)φ(y)

|x− y|

≥ (λ1 −
√
λ1(1 + λ1))

∫∫

R3×R3

u1(x)u1(y)φ(x)φ(y)

|x− y| .
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Then we use the decomposition

u1(x)u1(y) = Pu1(x)Pu1(y) + Pu1(x)P⊥u1(y) + P⊥u1(x)u1(y),

φ(x)φ(y) = Pφ(x)Pφ(y) + Pφ(x)P⊥φ(y) + P⊥φ(x)φ(y).

Note that all terms involved with either P⊥u1 or P⊥φ have negligible contribution.
For example, we have

∣∣∣∣∣

∫∫
Pu1(x)Pu1(y)P⊥φ(x)φ(y)

|x− y|

∣∣∣∣∣ ≤ 2||Pu1||2||P⊥φ||.||∇Pφ|| ≤ CZ3/2,

∣∣∣∣∣

∫∫
P⊥u1(x)u1(y)Pφ(x)Pφ(y)

|x− y|

∣∣∣∣∣ ≤ 2||P⊥u1||.||u1||.||Pφ||.||∇Pφ|| ≤ CZ2−1/4+ε/2.

Thus

λ1

∫∫

R3×R3

u1(x)u1(y)φ(x)φ(y)

|x− y| −
√
λ1(1 + λ1) Re

∫∫

R3×R3

u1(x)u1(y)φ(x)φ(y)

|x− y|

≥ (λ1 −
√
λ1(1 + λ1))

∫∫

R3×R3

u1(x)u1(y)φ(x)φ(y)

|x− y|

≥ (λ1 −
√
λ1(1 + λ1))

∫∫

R3×R3

Pu1(x)Pu1(y)Pφ(x)Pφ(y)

|x− y| − CZ2−1/4+ε/2. (18)

Next, consider the terms involved with (γ′, α′). In the integral,

∫∫

R3×R3

γ′(x, y)φ(x)φ(y)

|x− y|

we use the decomposition

γ′ = P⊥γ′P⊥ + P⊥γ′P + Pγ′,

φ(x)φ(y) = Pφ(x)Pφ(y) + P⊥φ(x)Pφ(y) + P⊥φ(x)φ(y).

Observe that all terms involved with either Pγ′ or P⊥φ have negligible contribu-
tion. For example, we have

∣∣∣∣∣

∫∫
(Pγ′)(x, y)Pφ(x)Pφ(y)

|x− y|

∣∣∣∣∣ ≤ 2[Tr(P (γ′)2P )]1/2||Pφ||.||∇Pφ||

≤ 2[Tr(γ′)]1/2[Tr(Pγ′)]1/2||Pφ||.||∇Pφ||
≤ CZ2−1/8+ε/4
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and
∣∣∣∣∣

∫∫
(P⊥γ′P⊥)(x, y)P⊥φ(x)φ(y)

|x− y|

∣∣∣∣∣ ≤ 2[Tr(P⊥(γ′)2P⊥)]1/2||P⊥φ||.||∇Pφ||

≤ CZ3/2.

Thus

∫∫

R3×R3

γ′(x, y)φ(x)φ(y)

|x− y| ≥
∫∫

R3×R3

(P⊥γ′P⊥)(x, y)Pφ(x)Pφ(y)

|x− y| − CZ2−1/8+ε/4. (19)

Similarly we have

∫∫

R3×R3

α′(x, y)φ(x)φ(y)

|x− y| ≥
∫∫

R3×R3

(P⊥α′P⊥)(x, y)Pφ(x)Pφ(y)

|x− y| − CZ2−1/8+ε/4. (20)

Putting (18), (19), (20) together and using the fact ht,Z ≥ 0 and ht,ZP = 0,
we obtain

qt,Z(γ, α, φ) ≥ ‖Pφ‖
2

||φt,Z ||2
qt,Z(γ′′, α′′)−CZ2−1/8+ε/2 ≥ ‖Pφ‖

2

||φt,Z ||2
Z2µ(t)−CZ2−1/8+ε/4.

4. In summary, from Case 1 and Case 2 we have in any case

qt,Z(γ, α, φ) ≥ ‖Pφ‖
2

||φt,Z ||2
Z2µ(t)− C max{Z2−ε, Z2−1/8+ε/4}.

Choosing ε = 1/10 we obtain

inf
(γ,α)∈GB

qt,Z(γ, α, φ) ≥ ‖Pφ‖
2

||φt,Z ||2
Z2µ(t)− CZ2−1/10.

2.4 Bogoliubov ground state energy

We are now ready to give the proof of Theorem 2.2.

Proof. Upper bound. Fix ε > 0 small. Choose (γt,ε, αt,ε) ∈ GB such that

qt(γt,ε, αt,ε) ≤ µ(t) + ε.

Choosing

γ(x, y) = Z3γt,ε(Zx,Zy),

α(x, y) = Z3αt,ε(Zx,Zy),

φ(x) = Z2φt−Tr(γt,ε)/Z(Zx)
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we have Tr(γ) + ||φ||2 = tZ and

EB(γ, α, φ, Z) = Z3EHZ=1(φt−Tr(γt,ε)/Z) + Z2
[
qt(γt,ε, αt,ε) + e′(t) Tr(γt,ε)

]

+Z
[
D(ργt,ε , ργt,ε) +X(γt,ε, γt) +X(αt,ε, αt,ε)

]

≤ Z3e(t− Tr(γt,ε)/Z) + Z2[µ(t) + e′(t) Tr(γt,ε)] + ZCε

= Z3
[
e(t)− (Tr(γt,ε)/Z)e′(t) + o(Z−1) Tr γε

]

+Z2
[
µ(t) + ε+ Tr(γt,ε)e

′(t)
]

+ ZCε

= Z3e(t) + Z2(µ(t) + ε+ o(1)Cε).

Thus
EB(N,Z) ≤ Z3e(t) + Z2(µ(t) + ε+ o(1)Cε).

Because ε > 0 can be chosen as small as we want, we can conclude that

EB(N,Z) ≤ Z3e(t) + Z2µ(t) + o(Z2).

Lower bound. It suffices to consider (γ, α, φ) such that EB(γ, α, φ, Z) ≤
Z3e(t), and hence Tr[−∆γ̃] ≤ CZ3. We shall denote by P the one-dimensional
projection onto the Hartree ground state φt,Z and P⊥ = 1− P .

In the expression of EB(γ, α, φ, Z), if we ignore the non-negative terms X(γ, γ),
X(α, α) and estimate the direct term by

D(ργ̃ , ργ̃) = 2D(ργ̃ , |φt,Z |2)−D(|φt,Z |2, |φt,Z |2) +D(ργ̃ − |φt,Z |2, ργ̃ − |φt,Z |2)

≥ 2D(ργ̃ , |φt,Z |2)−D(|φt,Z |2, |φt,Z |2)

= 2D(ργ̃ , |φt,Z |2) + Z3e(t)− Z2e′(t) Tr(γ̃)

then we arrive at

EB(γ, α, φ, Z) ≥ Z3e(t) + Tr(ht,Z γ̃) +

+

∫∫

R3×R3

γ(x, y)φ(x)φ(y)

|x− y| + Re

∫∫

R3×R3

α(x, y)φ(x)φ(y)

|x− y| . (21)

By the same argument of the proof of Lemma 2.5 we have

1

2
Tr[ht,Zγ] +

∫∫

R3×R3

γ(x, y)φ(x)φ(y)

|x− y| + Re

∫∫

R3×R3

α(x, y)φ(x)φ(y)

|x− y| ≥ −CZ2.

Putting this bound together with the gap Tr[ht,Z γ̃] ≥ ∆tZ
2 Tr(P⊥γ̃) into (21), and

comparing with the upper bound EB(γ, α, φ, Z) ≤ Z3e(t) we obtain ||P⊥φ|| ≤ C.
We are now able to apply Lemma 2.6 to conclude from (21) that

EB(γ, α, φ, Z) ≥ Z3e(t) + (φ, ht,Zφ) +
‖Pφ‖2
||φt,Z ||2

Z2µ(t)− CZ2−1/10.

Because ‖Pφ‖2 ≤ ‖φt,Z‖2 = tZ, we obtain the desired lower bound.
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From the above proof of the lower bound, we also obtain the following esti-
mates on the ground state, which will be useful in the proof of the binding up to
the critical number tcZ.

Lemma 2.7 (Properties of Bogoliubov minimizers). If (γ, α, φ) is a minimizer
for EB(N,Z) (or more generally, if EB(γ, α, φ, Z) = Z3e(t) + Z2µ(t) + o(Z2))
then Tr(P⊥γ̃) ≤ C, 〈φ, ht,Zφ〉 = o(Z2) and

D(ργ̃ − |φt,Z |2, ργ̃ − |φt,Z |2) = o(Z2).

In particular, it follows from 〈φ, ht,Zφ〉 = o(Z2) that ‖Pφ‖2 = tZ + o(Z). Here P
is the one-dimensional projection onto the Hartree ground state φt,Z .

2.5 Comparison to quantum energy: a heuristic discussion

Let us discuss on the comparison between the Bogoliubov ground state energy
EB(N,Z) and the quantum energy E(N,Z) in Conjecture 2.3.

First at all, due to the variational principle, the Bogoliubov energy EB(N,Z)
is a rigorous upper bound to the quantum grand canonical energy

Eg(N,Z) = inf{(Ψ,
∞⊕

N=0

HN,ZΨ),Ψ ∈ F , ||Ψ|| = 1}.

It is believed that the ground state energy E(N,Z) is a convex function on N
(see [13], p. 229), which is equivalent to Eg(N,Z) = E(N,Z). If this conjecture
is correct then the Bogoliubov energy EB(N,Z) is also an upper bound to the
canonical energy E(N,Z).

In the following, we shall argue heuristically why the Bogoliubov energy EB(N,Z)
is a lower bound to E(N,Z) (up to an error o(Z2)). Some further work is required
to make the argument rigorous.

Choosing an orthonormal basis {un}∞n=0 for h with u0 = φt,Z/||φt,Z ||, we can
represent the Hamiltonian HZ =

⊕∞
N=0HN,Z in the second quantization

HZ =
∑

m,n≥0

hm,na
∗
man +

1

2

∑

m,n,p,q≥0

Wm,n,p,qa
∗
ma
∗
napaq

where an = a(un) and

hm,n = (um, (−∆− Z|x|−1)un),Wm,n,p,q =

∫∫

R3×R3

um(x)un(y)up(x)uq(y)

|x− y| .

Assume that Ψ is a ground state for E(N,Z). We shall denote by 〈HZ〉Ψ the
expectation 〈Ψ,HZΨ〉.

Step 1. As in [3] we have the condensation Tr(P⊥γΨ) ≤ C where P is the
one-dimensional projection onto u0. Let us denote γ = P⊥γΨP

⊥, α = P⊥αΨP
⊥,

N0 = a∗0a0 and N0 = 〈N0〉Ψ. Then (γ, α) ∈ GB and N −N0 = Tr(γ) ≤ C.
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Step 2. The leading term Z3e(t) of the ground state energy E(N,Z) comes
from the terms of full condensation, namely h00a

∗
0a0 and W0000a

∗
0a
∗
0a0a0. Similarly

to the computation to the energy of product functions, we have

h00 〈a∗0a0〉Ψ +W0000 〈a∗0a∗0a0a0〉Ψ
=

〈
u0,
(
−∆− Z|x|−1

)
u0

〉
N0 + (

〈
N 2

0

〉
Ψ
−N0)D(|u0|2, |u0|2)

≥
〈
u0,
(
−∆− Z|x|−1

)
u0

〉
N0 + (N2

0 −N0)D(|u0|2, |u0|2)

≥ N0Z
3

N0 − 1
e

(
N0 − 1

Z

)

= Z3e(t)− Z2e′(t) Tr(γ) + Z2[t−1e(t)− e′(t)] + o(Z2). (22)

As a consequence, the expectation of the rest of the Hamiltonian HZ should be
of order O(Z2).

Step 3. Because almost of particles live in the condensation u0, we may hope
to eliminate all terms Wm,n,p,qa

∗
ma
∗
napaq in the two-body interaction which have

only 0 or 1 operator a#
0 (where a#

0 is either a0 or a∗0).

Step 4. Now we apply the Bogoliubov principle in which we replace any a#
0

by
√
N0 ≈

√
N . We can see that the terms with 1 and 3 operators a#

0 should be
canceled together. In fact,

∑

m≥1

(h0m〈a∗0am〉Ψ +W000m〈a∗0a∗0a0am〉Ψ)

≈
∑

m≥1

(h0m〈a∗0am〉Ψ +W000m〈a∗0am〉Ψ)

=
∑

m≥1

〈
um,

(
−∆− Z|x|−1 +N |u0| ∗ |.|−1

)
u0

〉
〈a∗0am〉Ψ = 0

=
∑

m≥1

〈
um, Z

2e′(t)u0

〉
〈a∗0am〉Ψ = 0.

Here we use the fact that u0 is the ground state for the Hartree mean-field operator

ht,Z = −∆− Z|x|−1 + |φt,Z |2 ∗ |.|−1 − Z2e′(t)

It remains the terms with precisely 0 or 2 operators a#
0 ,

∑

m,n≥1

(hmn〈a∗man〉Ψ +Wm00n〈a∗ma∗0a0an〉Ψ)

≈
∑

m,n≥1

(hmn〈a∗man〉Ψ +NWm00n〈a∗man〉Ψ)

= Tr
[(
−∆− Z|x|−1 +N |u0|2 ∗ |.|−1

)
γ
]

(23)
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and
∑

m,n≥1

(Wm0n0〈a∗ma∗0a0an〉Ψ + Re[Wmn00〈a∗ma∗na0a0〉Ψ])

≈
∑

m,n≥1

(NWm0n0〈a∗man〉Ψ +N Re[Wmn00〈a∗ma∗n〉Ψ])

= Re

∫∫

R3×R3

(γ(x, y) + α(x, y))φt,Z(x)φt,Z(y)

|x− y| dxdy. (24)

Step 5. Putting the approximations (22), (23) and (24) together we obtain
the desired lower bound

〈HZ〉Ψ ≥ Z3e′(t) + Z2[t−1e(t)− e′(t)]

+ Tr[ht,Zγ] + Re

∫∫

R3×R3

[γ(x, y) + α(x, y)]φt(x)φt(y)

|x− y| + o(Z2).

Because (γ, α) ∈ GB and γφt,Z = 0 one has

Z2[t−1e(t)−e′(t)]+Tr[ht,Zγ]+Re

∫∫

R3×R3

[γ(x, y) + α(x, y)]φt,Z(x)φt,Z(y)

|x− y| ≥ Z2µ(t).

Thus we arrive at the desired lower bound

〈HZ〉Ψ ≥ Z3e′(t) + Z2µ(t) + o(Z2).

Appendix

Proof of Lemma 1.1. It is obvious that Γ ≥ 0 if and only if γ ≥ 0, α∗ = JαJ and

〈f ⊕ Jg,Γf ⊕ Jg〉 = (f, γf) + (g, (1 + γ)g) + 2 Re(αJf, g) ≥ 0, ∀f, g ∈ h.

Using a simple scaling g = tg, t ∈ C, we can see that the latter inequality is
equivalent to

(f, γf)(g, (1 + γ)g) ≥ |(αJf, g)|2, ∀f, g ∈ h.

Replacing g by (1 + γ)−1g, we can rewrite the latter inequality as

(f, γf)(g, (1 + γ)−1g) ≥ |(αJf, (1 + γ)−1g)|2, ∀f, g ∈ h. (25)

Note that (2) follows from (25) by choosing g = αJf . Reversely, we can
see that (2) implies (25) by using the Cauchy-Schwarz inequality for the positive
definite quadratic form Q(u, v) = (u, (1 + γ)−1v), i.e.

(f, γf)(g, (1+γ)−1g) ≥ (αJf, (1+λ)−1αJf)(g, (1+γ)−1g) ≥
∣∣(αJf, (1 + γ)−1g)

∣∣2 .
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Proof of Theorem 1.2. The proof below follows [19] Theorem 9.5 (sufficiency) and
[16] Theorem 6.1 (necessity).

Sufficiency. Assume that V V ∗ is trace class on h. We shall construct the
unitary UV .

1. Let {ui}i≥1 be an orthonormal basis for h. Recall that an orthonormal
basis for FB,F (h) is given by

|ni1 , ..., niM 〉 = (ni1 !...niM !)−1/2 a∗(uiM )niM ...a∗(ui1)ni1 |0〉 ,
where nj run over 0, 1, 2, ... such that there are only finite nj > 0.

We start by constructing the new vacuum |0〉V = UV |0〉 which is characterized
by

A(V(ui ⊕ 0)) |0〉V = 0.

for all i = 1, 2, ..., namely

A(V(ui ⊕ 0)) = A(Uui ⊕ JV Jui) = a(Uui) + a∗(V Jui)

are the new annihilation operators.
2. The first step is to choose an convenient basis {ui}. From V∗SV = S =

VSV∗ we have
UU∗ = 1 + V V ∗, U∗U = 1 + J∗V ∗V J

and C = C∗ where C = U∗V J . Since U∗U − 1 is trace class, U∗U has an
orthonormal eigenbasis on h. On the other hand, because U∗U commutes with
the conjugate linear map C = U∗J∗V and C∗C is trace class on h, we can find an
orthonormal basis {ui}i≥1 for h consisting of eigenvectors of U∗U such that they
are also eigenvectors of C.

Denote µi := ||Uui|| ≥ 1 and fi := µ−1
i Uui. Then {fi}i≥1 is an orthonormal

basis for h. Since

(fj , V Jui) = µ−1
j (Uuj , V Jui) = µ−1

j (uj , Cui) = 0

for all j 6= i, we must have V Jui ∈ Span{fi}. Note that if we change ui’s by
complex phases then it still holds that (uj , Cui) = 0 for all i 6= j (although ui’s
maybe no longer eigenvectors of C). Therefore, we can change ui’s by complex
phases to obtain V Jui = νifi for some νi ≥ 0. Thus there is an orthonormal basis
{fi}i≥1 for h such that the new annihilation operators are

A(V(ui ⊕ 0)) = µia(fi) + νia
∗(fi), i = 1, 2, ...

where µi ≥ 1, νi ≥ 0, µ2
i − ν2

i = 1 and
∑

i=1 ν
2
i = Tr(V V ∗) <∞.

3. This representation allows us to construct the new vacuum |0〉V explicitly

|0〉V = lim
M→∞

M∏

j=1

(1− (νj/µj)
2)1/4

[ ∞∑

n=0

(
− νj

2µj

)n a∗(fj)2n

n!

]
|0〉

=
∏

j=1

(1− (νj/µj)
2)1/4 exp

[
−
∑

i=1

νi
2µi

a∗(fi)2

]
|0〉 .
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It is straightforward to check that |0〉V is well defined and is annihilated by the
new annihilation operators A(V(ui ⊕ 0)). Having the new vacuum |0〉V , we can
define |ni1 , ..., niM 〉V = U |ni1 , ..., niM 〉 by

|ni1 , ..., niM 〉V = (ni1 !...niM !)−1/2A∗(V(uiM ⊕ 0))niM ...A∗(V(ui1 ⊕ 0))ni1 |0〉V .

4. Finally we need to prove that the new vectors |ni1 , ..., niM 〉V indeed form a
basis for F . The trick is to use the formula

|0〉 =
∏

j=1

(1− (νj/µj)
2)−1/4 exp

[∑

i=1

νj
2µj

a∗+(fi)
2

]
|0〉V ,

and express the old basis vectors |ni1 , ..., niM 〉 in terms of the new ones. Since the
new vectors |ni1 , ..., niM 〉V span all of the old basis vectors |ni1 , ..., niM 〉, the new
ones also span the whole Fock space F .

Necessity. Assume that there exists a normalized vector |0〉V ∈ F such that
A(V (u⊕ 0)) |0〉V = 0 for all u ∈ h. We shall prove that V V ∗ must be trace class
on h.

5. Let |0〉V =
⊕∞

N=0 ΨN where ΨN ∈
⊗N

sym h. Then the condition A(V (u ⊕
0)) |0〉V = 0 is equivalent to

a(Uu)Ψ1 = 0 and a(Uu)ΨN+2 + a∗(V Ju)ΨN = 0 for all u ∈ h, N = 0, 1, 2, ...(26)

Since UU∗ = 1 + V V ∗ ≥ 1 we have Ker(U∗) = {0}, and hence Ran(U) = h.
Therefore, it follows from a(Uu)Ψ1 = 0 for all u ∈ h that Ψ1 = 0. Then, by
induction using (26) we obtain Ψ1 = Ψ3 = Ψ5 = ... = 0.

If Ψ0 = 0 then the same argument deduces Ψ0 = Ψ2 = Ψ4 = ... = 0 which
contradicts with |0〉V 6= 0. Thus Ψ0 ∈ C\{0} and from (26) with N = 0 we have

a(Uu)Ψ2 + Ψ0V Ju = 0 for all u ∈ h. (27)

6. Introducing the conjugate linear map H : h→ h defined by

(Hϕ1, ϕ2) = (Ψ2, ϕ1 ⊗ ϕ2) for all ϕ1, ϕ2 ∈ h.

A straightforward computation shows that Tr(H∗H) = ‖Ψ2‖2. Moreover using
(27) and the symmetry of Ψ2 we have

(−Ψ0V Jϕ1, ϕ2) = (a(Uϕ1)Ψ2, ϕ2) = (Ψ2, a
∗(Uϕ1)ϕ2, )

=
√

2(Ψ2, Uϕ1 ⊗ ϕ2) =
√

2(HUϕ1, ϕ2)

for all ϕ1, ϕ2 ∈ h. This means −Ψ0V J = HU . Because U is bounded and H∗H
is trace class on h, we conclude that

V V ∗ = 2Ψ−2
0 HUU∗H∗

is trace class on h.
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The rest part of proof of Theorem 1.6. We now prove that Γ is the 1-pdm of the
state ρ = Tr[G]−1G. Recall that F has the orthonormal basis

|n1, n2, ...〉 = (n1!n2!...)−1/2(a∗1)n1(a∗2)n2 ... |0〉
where |0〉 is the vacuum and n1, n2... run over 0, 1, 2, ... such that there are only
finite nj > 0. A straightforward computation shows that

Tr(G) =
∑

nj=0,1,2,...

〈n1, n2, ...|G |n1, n2, ...〉

=
∑

nj=0,1,...;j∈I
(n1!n2!...)−1 〈0|

∏

i∈I
(ani
i exp[−λia∗i ai](a∗i )ni) |0〉

=
∑

nj=0,1,...;j∈I
(n1!n2!...)−1 〈0|

∏

i∈I

(
ani
i

∞∑

k=0

(−λi)k(a∗i ai)k
k!

(a∗i )
ni

)
|0〉

=
∑

nj=0,1,...;j∈I
(n1!n2!...)−1 〈0|

∏

i∈I

( ∞∑

k=0

(−ei)k(ni)k(ni!)
k!

)
|0〉

=
∑

nj=0,1,...;j∈I

∏

i

e−λini =
∏

i∈I

1

1− e−λi <∞

since
∑

i∈I e
−λi <∞. Thus ρ is well-defined.

We check that Γ is indeed the 1-pdm of ρ. Note that |n1, n2, ...〉 andG |n1, n2, ...〉
have the same number of particle ui for any i = 1, 2, .... By the same way of de-
termining Tr(G) we find that Tr(aiajG) = 0 and

Tr(a∗i ajG) = δij Tr(a∗i aiG)

= δij


 ∏

k∈I,k 6=i
(1 + λk)



( ∞∑

ni=0

(ni!)
−1 〈0| ani

i a
∗
i ai exp(−cia∗i ai)(a∗i )ni |0〉

)

= δij


 ∏

k∈I,k 6=i
(1 + λk)



( ∞∑

ni=0

(ni!)
−1 〈0| ani

i a
∗
i ai

∞∑

r=0

(−ci)r(a∗i ai)r
r!

(a∗i )
ni |0〉

)

= δij


 ∏

k∈I,k 6=i
(1 + λk)



( ∞∑

ni=0

(ni!)
−1 〈0|

∞∑

r=0

(−ci)r(ni)r+1(ni!)

r!
|0〉
)

= δij


 ∏

k∈I,k 6=i
(1 + λk)



( ∞∑

ni=0

exp(−cini)ni
)

= δijλi
∏

k∈I

(1 + λk)

in which we have used
∞∑

ni=0

exp(−cini)ni = − d

dci

∞∑

ni=0

exp(−cini) = − d

dci

1

1− exp(−ci)

=
exp(−ci)

(1− exp(−ci))2
= λi(1 + λi).
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From the above computations we find that

ρ(aiaj) = (Tr(G))−1 Tr(aiajG) = 0 = (ui, αJuj)

and

ρ(a∗i aj) = (Tr(G))−1 Tr(a∗i ajG) = δijλi = (ui, γuj)

for any i, j. Thus Γ is indeed the 1-pdm of ρ.

3. Finally, we check that ρ is a quasi-free state. One way to do it is to consider
ρ as a limit of appropriate Gibbs states, see [4] (eq. (2b.34)). In the following, we
shall give a more direct approach by mimicking the proof of Wick’s Theorem in
[9].

It suffices to prove (6)-(7) when A(Fi) is either a creation or annihilation
operator, which we denote by ci. Our aim is to show that

Tr[c1c2c3c4...ckG] =
Tr[c1c2G]

Tr[G]
Tr[c3c4...ckG] (28)

+
Tr[c1c3G]

Tr[G]
Tr[c2c4...ckG] + ...+

Tr[c1ckG]

Tr[G]
Tr[c2c3...ck−1G]

and the result follows immediately by a simple induction. By the same way of
computating Tr[G] we may check that

Tr[c1c2G]

Tr[G]
= f(c1)[c1, c2] (29)

where [c1, c2] = c1c2 − c2c1 ∈ {0,−1, 1} and

f(c1) =





(1− e−λj )−1 if c1 = aj , j ∈ I,
(1− eλj )−1 if c1 = a∗j , j ∈ I,
1 if c1 = aj , j /∈ I,
0 if c1 = a∗j , j /∈ I.

(30)

Thus (28) is equivalent to

Tr[c1c2c3c4...ckG] = f(c1)[c1, c2]Tr[c3c4...ckG] (31)

+f(c1)[c1, c3]Tr[c2c4...ckG] + ...+ f(c1)[c1, ck]Tr[c2c3...ck−1G].

We can prove (31) as follows. From the identity

c1c2c3c4...ck = [c1, c2]c3c4...ck + ...+ c2c4...ck−1[c1, ck] + c2c3c4...ckc1

we deduce that

Tr [c1c2c3c4...ckG] = Tr [[c1, c2]c3c4...ckG] (32)

+...+ Tr [c2c4...ck−1[c1, ck]G] + Tr [c2c3c4...ckc1G] .
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We first consider when c1 is either aj or a∗j with j ∈ I. In this case it is

straightforward to see that c1G = e±λjc1G where (+) if c1 = a∗j and (-) if c1 = aj .
This implies that

Tr [c2c3c4...ckc1G] = e±λjTr [c2c3c4...ckGc1] = e±λjTr [c1c2c3c4...ckG] . (33)

Substituting (33) into (33) we conclude that

Tr [c1c2c3c4...ckG] =
[c1, c2]

1− e±λj Tr [c3c4...ckG]

+
[c1, c3]

1− e±λj Tr [c2c4...ckG] + ...+
[c1, ck]

1− e±λj Tr [c2c4...ck−1G]

which is precisely the desired identity (31).
If c1 = aj for some j /∈ I then

Tr[c2c3c4...ckc1G] = 0

since ajG = 0 and (31) follows from (33).
Finally if c1 = a∗j for some j /∈ I then

Tr[c1c2c3c4...ckG] = Tr[c2c3c4...ckGc1] = 0

since Ga∗j = 0 and we obtain (31).
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méchanique statistique. Nucl. Phys. 15 (1960)

[10] E. Lenzmann and M. Lewin, Minimizers for the Hartree-Fock-Bogoliubov
theory of neutron stars and white dwarfs, Duke Math. Journal, 152, no. 2,
257–315 (2010).

[11] E.H. Lieb, Thomas-Fermi and related theories of atoms and molecules, Rev.
Mod. Phys. 53, 603-641 (1981).

[12] E.H. Lieb and M. Loss, Analysis, 2nd Ed., AMS., Providence, Rhode Island
(2001).

[13] E. H. Lieb and R. Seiringer, The stability of matter in quantum mechanics,
Cambridge University Press, 2009.

[14] E.H. Lieb and J.P. Solovej, Ground State Energy of the Two-Component
Charged Bose Gas. Commun. Math. Phys. 252, 485–534 (2004)

[15] E.H. Lieb and H.-T. Yau, The Chandrasekhar theory of stellar collapse as
the limit of quantum mechanics, Commun. Math. Phys. 112 (1987), 147-174.

[16] S.N.M. Ruijsenaars, On Bogoliubov transformations for systems of relativis-
tic charged particles, J. Math. Phys., vol. 18, No. 3 (1977).

[17] J.P. Solovej, Asymptotics for bosonic atoms, Lett. Math. Phys. 20, 165-172
(1990)

[18] J.P. Solovej, Upper Bounds to the Ground State Energies of the One- and
Two-Component Charged Bose Gases, Commun. Math. Phys. 266, 797–818
(2006)

[19] J.P. Solovej, Many body quantum mechanics, Lectures notes at
LMU Münich, 2007. Online available at http://www.mathematik.

uni-muenchen.de/~lerdos/WS08/QM/solovejnotes.pdf

131


	Contents
	Acknowledgments
	Summary
	Introduction
	Born-Oppenheimer approximation
	Existence of ground states
	Ground state energy
	Radius of atom

	Overview of the results
	Overview of Paper I. New bounds on the maximum ionization of atoms
	Overview of Paper II. Asymptotic for two-dimensional atoms
	Overview of Paper III. Bogoliubov theory and bosonic atoms

	Conclusions and perspectives
	Bibliography
	Annexes: Manuscripts
	Paper I.  New bounds on the maximum ionization of atoms, Preprint 2010.
	Paper II. Joint with F. Portmann and J.P. Solovej, Asymptotics for two dimensional atoms, Annales Henri Poincaré (2011).
	Paper III. Bogoliubov theory and bosonic atoms, Preprint 2011. 


