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Abstract

In this thesis semiprojectivity is investigated in three different settings; for
commutative C∗-algebras, for Real C∗-algebras, and for C∗-algebras with a
group action. In the setting of commutative C∗-algebras we give, in joint
work with Thiel, a complete characterization of which algebras are semipro-
jective. This is used to answer open questions about semiprojectivity in
the special case of commutative C∗-algebras. Semiprojectivity for Real C∗-
algebras is used to study a perturbation problem for real valued matrices,
concretely we prove, jointly with Loring, a real version of Lin’s theorem.
Finally, we study, in joint work with Phillips and Thiel, the properties of a
version of semiprojectivity that respects group actions.

We also study so-called geometric classification of graph C∗-algebras.
That is, classification of graph C∗-algebras in terms of their underlying
graphs. In joint work with Eilers and Ruiz, we classify amplified graph
C∗-algebras using geometric and K-theoretic methods. The techniques thus
developed to deal with infinite emitters, are expanded upon and used to give
a geometric classification of simple unital graph C∗-algebras.
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The following is a Danish translation of the abstract as required by the rules
of the University of Copenhagen.

Resumé

I denne afhandling undersøges semiprojektivitet inden for tre forskel-
lige omr̊ader; for kommutative C∗-algebraer, for Reelle C∗-algebraer og for
C∗-algebraer med en gruppevirkning. I sammenarbejde med Thiel giver
vi en fuldstændig karakteristik af semiprojektivitet for kommutative C∗-
algebraer. Det bruger vi til at besvare åbne spørgsmål om semiprojektivitet
for C∗-algebraer i det specielle tilfælde, hvor C∗-algebraerne er kommuta-
tive. Semiprojektivitet for Reelle C∗-algebraer bliver brugt til, at undersøge
et perturbations problem for matricer med reelle indgange. Mere præcist
viser vi, i fællesskab med Loring, en reel version af Lins sætning. Endelig
studerer vi, sammen med Phillips og Thiel, nogle egenskaber ved en form
for semiprojektivitet, der respekterer gruppevirkninger.

Vi studerer desuden s̊akaldt geometrisk klassifikation af graf algebraer.
Det vil sige klassifikation af graf C∗-algebraer ved hjælp af deres under-
liggende grafer. Fælles med Eilers og Ruiz klassificerer vi forstærkede graf
C∗-algebraer, b̊ade ved brug af geometriske og K-teoretiske metoder. De
metoder, der i den forbindelse blev udviklet til at h̊andterer uendelige ud-
sendere, bliver videreudviklet og brugt til at give en geometrisk klassifikation
af simple enhedsbærende graf C∗-algebraer.



Preface

This thesis is the result of research I have carried out as a PhD student at
the Department of Mathematical Sciences at the University of Copenhagen
from November 2009 to October 2012.

My PhD studies have primarily been focused on two areas: semiprojec-
tivity and graph C∗-algebras. It was the initial hope that I would be able
to combine the two topics. I have done this to some degree, as described in
Chapter 3.

The main content of this thesis consists of five papers, they are attached
as appendixes.

My work on semiprojectivity has lead to three papers. The first paper,
“Almost commuting self-adjoint matrices — the real and self-dual cases”
([LS10]), is joint with Terry Loring. It is concerned with semiprojectivity
for Real C∗-algebras, and is a direct outcome of my visit to Terry Loring at
the University of New Mexico in the fall of 2010. The article “A characteri-
zation of semiprojectivity for commutative C∗-algebras” ([ST]) is joint with
Hannes Thiel. It has been accepted for publication in the Proceedings of
the London Mathematical Society, and appears in this thesis in the form it
will be published in. In joint work with N. Christopher Phillips and Hannes
Thiel, we investigate semiprojectivity for C∗-algebras with a group action
in “Semiprojectivity with and without a group action” ([]). Finally there is
the article “On a counterexample to a conjecture by Blackadar” ([Sør12]).

My work on graph C∗-algebras has lead to two papers. The paper “Am-
plified graph C∗-algebras” ([ERS]) is joint work with Søren Eilers and Efren
Ruiz, it has been accepted for publication by the Münster Journal of Math-
ematics, but might still see small changes before it is published. Continu-
ing that work, I wrote “Geometric classification of simple graph algebras”
([Sør]), which has been accepted for publication by Ergodic Theory and Dy-
namical Systems. It appears in this thesis in the form it will be published
in.

In addition to these papers, which are all included as appendixes, the
thesis contains five chapters. Chapters 1 through 4 provide the main results
of the papers and put them in context. Additionally, in Chapter 2, I study
semiprojectivity for C∗-algebras of real rank zero, and in Chapter 3, I ex-
plain how to use the classification of amplified graph C∗ algebras to study
semiprojectivity for them. In Chapter 5, I provide a real version of Lorings
theory of generators and relations from [Lor10].
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CHAPTER 1

Introduction

1.1. On graph algebras

The definition of graph C∗-algebras is modeled on that of Cuntz-Krieger
algebras. Indeed, if you start with a finite graph G with no sinks and no
sources and denote by AG its adjacency matrix, then the Cuntz-Krieger
algebra of AG, denoted OAG

, is isomorphic to the graph C∗-algebra C∗(G)
of G. Given a square, non-permutation, {0, 1}-valued matrix A with no zero
row or column there is a strong connection between the properties of A and
the properties of OA. With that in mind, it is not surprising that we have
many connections between properties of graphs and the properties of their
associated C∗-algebras. We can, for instance, read off the ideal structure
of a graph C∗-algebra from the underlying graph. We also get information
about real rank, pure infiniteness, K-theory and semiprojectivity from the
underlying graph.

While graph C∗-algebras have much in common with Cuntz-Krieger al-
gebras, there are also many differences. For example, a simple Cuntz-Krieger
algebra is always purely infinite, but the class of graph C∗-algebras contains,
up to Morita equivalence, all AF algebras. The class of graph C∗-algebras
also contains, up to Morita equivalence, all Kirchberg algebras (i.e. sepa-
rable, simple, purely infinite, nuclear C∗-algebras that satisfy the universal
coefficient theorem) with finitely generated K-theory and without torsion in
K1. So O∞ is a graph algebra even though it is not a Cuntz-Krieger algebra.

In the case of a simple graph algebra, we have the dichotomy that it is
either AF or purely infinite. Since graph algebras always are nuclear and
satisfy the universal coefficient theorem, we get, from deep results, that
simple graph C∗-algebras are classified by their K-groups. Combining this
with the result that Cuntz-Krieger algebras with finitely many ideals are
classified by K-theoretic data, one might hope that all graph C∗-algebras
can be classified using (some form of) K-theory. There has been some
progress towards this goal. Notably graph C∗-algebras with exactly one
ideal are classified up to Morita equivalence by K-theoretic data. Other
special ideal lattices have also been handled.

In this thesis, I attack the problem of classifying graph C∗-algebras by
asking the following vague question:

Question 1.1.1. What does it say about two graphs E and G that C∗(E)
is Morita equivalent to C∗(E)?

Answering this question means classifying graph C∗-algebras in terms
of their underlying graphs, we call that geometric classification. In the case
where the graphs E and G both are so-called amplified graphs (meaning that

1



2 1. INTRODUCTION

if there is at least one edge between two vertices then there are infinitely
many), and they both have only finitely many vertices, we give an answer to
the question in [ERS]. Building on the ideas used to classify amplified graph
algebras, and the ideas used by Franks to classify irreducible shifts of finite
type, I answer question 1.1.1 in [Sør] under the assumption that C∗(G)
and C∗(E) both are unital and simple. Both are examples of geometric
classification.

1.2. On semiprojectivity

In [Bla85], Blackadar introduced semiprojectivity for C∗-algebras. It
is a non-commutative analogue of the notion of a space being an abso-
lute neighborhood retract. Blackadar showed that many C∗-algebras are
semiprojective, such as the Cuntz-Krieger algebras, the Toeplitz algebra
and the algebra of continuous functions on the circle. He also provided non-
examples, such as the algebra of compact operators on infinite-dimensional
Hilbert space and the algebra of continuous functions on the disc. Later
Blackadar also showed that O∞ is semiprojective ([Bla04]). Building on
this result, Szymański showed in [Szy02] that all Krichberg algebras with
finitely generated K-theory, no torsion in K1, and with the rank of K1 less
than the rank of K0, are semiprojective. Spielberg was able to remove the
rank condition in [Spi09]. Thus all Kirchberg algebras with finitely gener-
ated K-theory and no torsion in K1 are semiprojective.

Semiprojectivity has been used successfully in the classification of C∗-
algebras and has also found applications in problems concerning the struc-
ture of C∗-algebras. But there are still many open question about semipro-
jectivity. It is, for instance, not known if semiprojectivity of M2(A) implies
that A is semiprojective. A recent example of Eilers and Katsura ([EK12])
shows that semiprojectivity does not pass from ideals to split extensions
by C. In [Sør12], the example of Eilers and Katsura is modified to prove
the existence of a non-semiprojective non-split extension of a semiprojec-
tive ideal by C. An important result by Enders shows that semiprojectivity
passes to ideals of finite co-dimension ([End11]).

Even though semiprojectivity began as the non-commutative analog of
a topological concept, there has not been a lot of study into the semiprojec-
tivity of commutative C∗-algebras. In [Lor96], Loring shows that all finite
one-dimensional CW complexes are semiprojective. This avenue of research
was then left almost unexplored until Chigogidze and Dranishnikov gave
a complete characterization of projectivity of commutative C∗-algebras in
[CD10]. By extending their ideas, we were able to give a complete descrip-
tion of which commutative C∗-algebras are semiprojective in [ST]. Using
this description we proved some permanence properties for commutative
semiprojective C∗-algebras. For example, we show that for a commutative
C∗-algebra A, the algebra Mn(A) is semiprojective if and only if A is.

In [Phi11], Phillips takes a novel approach to the study of semiprojec-
tivity by introducing a group equivariant form of semiprojectivity. Loosely
speaking, he considers a topological group G and then ask that in the defi-
nition of semiprojectivity all algebras have a G-action and all maps are G-
equivariant. The focus of [Phi11] is on providing examples of semiprojective
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G-algebras, with an aim towards the classification of group actions on Kirch-
berg algebras. In [PST12], we study the connections between equivariant
semiprojectivity and regular semiprojectivity. We also consider questions
about semiprojectivity of crossed products and fixed point algebras.

An alternative formulation of semiprojectivity is through so-called stable
relations. In this view, the fact that C is semiprojective takes the form that
close to any element in a C∗-algebra that almost is a projection, there is
an actual projection. Furthermore, if x ∈ A is an almost-projection and
we are given a surjection π : A → B, we can pick the actual projection, p
say, close to x and with π(x) = π(p). If we drop the requirement about the
surjective ∗-homomorphism, we get the notion of a weakly semiprojective
C∗-algebra. Semiprojectivity is usually phrased as a lifting problem and
we can also phrase weak semiprojectivity in that way. A C∗-algebra A is
weakly semiprojective if given any sequence of C∗-algebras (Bn) we can solve
all lifting problems of the form:

∏
Bn

����
A

99s
s

s
s

s
s

φ
//
∏
Bn/

⊕
Bn.

That these seemingly different notions coincide, is proved in [EL99].
In the lifting picture of weak semiprojectivity, it is natural to consider

only sequences (Bn) in which all the Bn have some nice property. For
instance we could ask that all the Bn be matrix algebras. In that case
we say that A is weakly semiprojective with respect to matrices. Solving
the lifting problem then becomes equivalent to solving the perturbation
problem for matrices. A deep theorem of Lin ([Lin97]) shows that the
algebra C(D) of continuous functions on the disc is weakly semiprojective
with respect to matrices. In the perturbation picture, this says that an
almost normal matrix is close to a normal matrix. A standard trick shows
that this is equivalent to the fact that two almost commuting, hermitian,
and contractive matrices are close to two exactly commuting, hermitian, and
contractive matrices. Voiculescu has shown in [Voi81], that three almost
commuting, hermitian, and contractive matrices are not always close to
three exactly commuting, hermitian, and contractive matrices. For a more
concrete example, see [Dav85, Theorem 2.3].

In [LS10] we prove a real version of Lin’s theorem. That is, we prove
that given two real, almost commuting, hermitian, and contractive matrices
there are two real, exactly commuting, hermitian, and contractive matrices
close by. Our proof follows the lines of the elegant proof of a generalization
of Lin’s theorem given by Friis and Rørdam in [FR96], which in turns builds
on many results concerning semiprojectivity. To follow Friis and Rørdam,
we move many of the standard techniques used in semiprojectivity into the
realm of Real C∗-algebras. In the lifting picture of weak semiprojectivity,
our result states that the Real C∗-algebra C(D, id) is weakly semiprojective
with respect to matrices.
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The question of whether Lin’s theorem holds in the real case, is not only
natural as a basic question about matrices, but it is also relevant in the
physics of topological insulators. For details on this connection see [HL10].

1.3. Unanswered questions

The work done in connection with this thesis raises various questions.
The main theorem of [Sør] gives a geometric classification of simple uni-
tal graph algebras. Therefore it is natural to ask if we can extend it to
non-simple unital graph algebras. One could also ask if we can remove the
unitality condition. This is probably more problematic, as none of the moves
described in [Sør] deals with infinitely many vertices. Thus it is more rea-
sonable to ask how to modify the moves in [Sør], or perhaps find entirely
new moves, so that we can obtain a geometric classification for non-unital
(simple) graph algebras.

Currently, the notion of nuclear dimension of a C∗-algebra, introduced
in [WZ10], is receiving a lot of attention. We can recast the main theorem
of [ST] as: A commutative C∗-algebra A is semiprojective if and only if the
spectrum of A is an absolute neighborhood retract and the nuclear dimension
of A is less than or equal to one. In this form, the result might raise the
question whether all nuclear semiprojective C∗-algebras must have nuclear
dimension at most one. That this should be the case, is, however, far from
obvious. For example, it is still unknown if the nuclear dimension of the
Toeplitz algebra is one or two.

In [LS10], a real version of Lin’s theorem is proved. It is well know,
that the complex version of Lin’s theorem fails if we consider triples of
almost commuting matrices. Boersema, Loring and Ruiz have shown in
[BLR12, Corollary 7.11], that five almost commuting, real, self-adjoint,
and contractive matrices cannot always be perturbed to a commuting five
tuple. This leaves the question open for three and four real matrices.



CHAPTER 2

Semiprojectivity

In this chapter, I describe the main results of [ST] and [Sør12]. In
Section 2.4, I discuss projectivity for real rank zero C∗-algebras.

2.1. Semiprojective C∗-algebras

Semiprojectivity was introduced by Blackadar in [Bla85]. It is a lifting
property for C∗-algebras modeled on the notion of absolute neighborhood re-
tract for spaces. It can also be seen as a weakening of the notion of projectiv-
ity for C∗-algebra. Before Blackadar gave his definition of semiprojectivity
Effros and Kaminker defined a similar concept, also called semiprojectivity,
in [EK86]. We will only use Blackadar’s definition in the thesis.

Definition 2.1.1 ([Bla85, Definition 2.10]). A C∗-algebra A is semipro-
jective if for every C∗-algebra B, every increasing sequence of ideals J1 ⊆
J2 ⊆ · · · in B, and every ∗-homomorphism φ : A→ B/∪kJk, there exists an
n ∈ N and a ∗-homomorphism ψ : A→ B/Jn such that

πn,∞ ◦ ψ = φ,

where πn,∞ : B/Jn → B/∪kJk is the natural quotient map.

The lifting problem is illustrated in the following figure, where the ∗-
homomorphism associated with the solid arrows are given. Our task is then
to find n ∈ N and a ∗-homomorphism that fits on the dashed arrow and
makes the diagram commute.

B

����
B/Jn

πn,∞
����

A
φ

//

ψ
;;x

x
x

x
x

B/∪kJk.

Many C∗-algebras are known to be semiprojective, for instance finite-
dimensional C∗-algebras ([Bla85]), C(X) for finite one-dimensional CW
complexes ([Lor96]), and Kirchberg algebras with finitely generated K-
theory and no torsion in K1 ([Spi09]). Examples of non-semiprojective C∗-
algebras are the algebra K of compact operators, C(D), and the irrational
rotation algebras. The standard reference for material about semiprojec-
tivity is the book [Lor97]. Also, the paper [Bla04] contains a very nice
exposition of parts of the theory.

5



6 2. SEMIPROJECTIVITY

In [Sør12], I prove a result related to the following question. Consider
an extension of C∗-algebras

0 → I → A→ F → 0,

and assume that F is finite-dimensional, is A semiprojective if and only
if I is? This question was raised in [Lor97, Chapter 16], a special case
of the question appeared in [Bla04, Conjecture 4.5]. If A is unital and

F = C, then A ∼= Ĩ, and so the question has a positive answer. A more
interesting partial result was obtained by Enders ([End11]), who proved
that if A is semiprojective then I is. Recently, Eilers and Katsura gave a
counterexample in [EK12] to the other direction. Concretely, they prove
the following theorem.

Theorem 2.1.2 (Eilers-Katsura). There exists a split extension of C∗-
algebras

0 → I → A→ C → 0,

such that I is semiprojective, but A is not.

In [Sør12], I show how to modify the example given by Eilers and Kat-
sura to get a non-split extension

0 → J → B → C → 0,

where J is semiprojective but B is not. The algebra B is constructed as a
pull-back over A and another C∗-algebra.

In [ST], we consider semiprojectivity for commutative C∗-algebras. We
follow in the footsteps of Chigogidze and Dranishnikov, who gave a complete
characterization of projectivity for commutative C∗-algebras in [CD10]. As
mentioned above, it is known that C(D) is not semiprojective. Therefore one
expects that if C(X) is semiprojective, then X must have low dimension.
By [Bla85, Proposition 2.11], we have that if C(X) is semiprojective, then
X must be an absolute neighborhood retract. The main theorem of [ST]
confirms that these are the only restrictions:

Theorem 2.1.3 ([ST, Theorem 1.2]). Let X be a compact, metric space.
The following are equivalent:

(1) C(X) is semiprojective.
(2) X is an absolute neighborhood retract and dim(X) ≤ 1.

We use the result to answer questions about semiprojectivity in the
commutative case. The two main applications are the following two results:

Theorem 2.1.4 ([ST, Corollary 6.3]). Let A be a separable, commuta-
tive C∗-algebra, and I an ideal in A. Assume A/I is finite-dimensional,
i.e. A/I ∼= C

k for some k. Then A is semiprojective if and only if I is
semiprojective.

Theorem 2.1.5 ([ST, Corollary 6.9]). Let A be a separable, commu-
tative C∗-algebra, and let k ∈ N. If Mk(A) is semiprojective, then A is
semiprojective.
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2.2. Group actions

Recently, Phillips has introduced a version of semiprojectivity that re-
spects group actions in [Phi11]. Given a topological group G we call a triple
(G,A,α) a G-algebra if A is a C∗-algebra and α is a strongly continuous
action of G on A.

Definition 2.2.1 (see [Phi11, Definition 1.1]). Let G be a topological
group. A G-algebra (G,A,α) is equivariantly semiprojective if for every G-
algebra (G,B, β), every increasing sequence of invariant ideals J1 ⊆ J2 ⊆ · · ·
in B, and every G-equivariant ∗-homomorphism φ : A → B/∪kJk, there
exists an n ∈ N and a G-equivariant ∗-homomorphism ψ : A → B/Jn such
that

πn,∞ ◦ ψ = φ,

where πn,∞ : B/Jn → B/∪kJk is the natural quotient map.

Phillips goes on to prove that a number of actions are semiprojective,
including all actions of compact groups on finite dimensional C∗-algebras
and certain actions on the Cuntz algebras On. In [PST12], we study various
properties of equivariantly semiprojective C∗-algebras. One of our main
results is, that if (G,A,α) is semiprojective and G is compact, then A must
be semiprojective ([PST12, Corollary 3.11]). More generally we prove the
following.

Theorem 2.2.2 ([PST12, Theorem 3.10]). Let G be a locally compact
group, and let H 6 G be a closed subgroup such that G/H is compact.
Let α : G → Aut(A) be a strongly continuous action of G on a C∗-algebra
A. If (G,A,α) is equivariantly semiprojective, then α|H is equivariantly
semiprojective.

We also give an example ([PST12, Example 3.12]) of an equivariantly
semiprojective Z algebra (Z, A, α) such that A is not semiprojective.

2.3. Semiprojectivity in a subcategory

LetC∗ denote the category of all C∗-algebras. We say that a subcategory
C of C∗ is closed under quotients, if for every A ∈ Cobj and every surjective
∗-homomorphism π : A→ B, we have B ∈ Cobj and π ∈ Cmor.

Definition 2.3.1. Let C be a subcategory of C∗ that is closed under
quotients.

A C∗-algebra A ∈ Cobj is projective in C, if for every C∗-algebras B ∈
Cobj, every ideal J in B, and every ∗-homomorphism φ : A → B/J in Cmor,
there exists a ∗-homomorphism ψ : A→ B in Cmor such that

π ◦ ψ = φ,

where π : B → B/J is the quotient map.

Let X be a locally compact metric space. By [Bla85, Proposition 2.7]
C0(X) is projective in the category of all commutative C∗-algebras if and
only if X is an absolute retract.

Loring has observed, that if D embeds into a compact Hausdorff space
X, then C(X) is not semiprojective. In [ST, Remark 3.3] we give a two
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step proof of this observation. The first step is to observe that C(D) is not
semiprojective (in C∗) but that it is projective in the full subcategory of
commutative C∗-algebras. The second step is to apply the following lemma.

Lemma 2.3.2. Let A,D be C∗-algebras, and suppose we are given two
∗-homomorphisms λ : A → D, χ : D → A such that χ ◦ λ = idA. If D is
semiprojective, then so is A.

The proof of [Thi11, Lemma 5.1] can be modified slightly to give a proof
of Lemma 2.3.2. The following diagram illustrates the proof. We are given ∗-
homomorphisms corresponding to the solid arrows, and use semiprojectivity
of D to find one that will fit on the dashed arrow.

B

����
B/Jn

����
A

λ //

idA

66D
χ //

//

�

{
t

m
h c

A // B/∪kJk.

The main point of the proof of Loring’s observation is that C(D) is pro-
jective in the category of commutative C∗-algebras but not semiprojective
in the category of all C∗-algebras. However, there is nothing special about
the category of commutative C∗-algebras, so we can use the same techniques
in any category.

Proposition 2.3.3. Let C be a category of C∗-algebras that is closed
under quotients. Let A ∈ Cobj be projective in C but not semiprojective (in
C∗). If B ∈ Cobj surjects onto A, then B is not semiprojective (in C∗).

Proof. Let π : B → A be a surjection. Since B ∈ Cobj and A is projec-
tive in C, we can find a ∗-homomorphism λ : A→ B (in Cmor) such that the
diagram

A
λ //

idA

66B
π // A,

commutes. Since A is not semiprojective (in C∗), Lemma 2.3.2 tells us that
B is not semiprojective (in C∗). �

2.4. Semiprojectivity and real rank zero

To apply Proposition 2.3.3 in a different setting than commutative C∗-
algebras, we need a category of C∗-algebras that is rich on objects that are
internally projective, but not semiprojective. Since projections do not lift
in general, but do lift between real rank zero C∗-algebras, we will consider
the category of real rank zero C∗-algebras.

Definition 2.4.1. Let RR0 denote the full subcategory of C∗ were the
objects are all the real rank zero C∗-algebras.
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It follows from [BP91, Theorem 3.14] thatRR0 is closed under quotients
and that C is projective in RR0.

In this section, we will study projectivity in RR0. To get something
that is projective in RR0, but not semiprojective in C∗, we will use infinite
direct sums.

Lemma 2.4.2. If (An) is a sequence of algebras in RR0, then
⊕

nAn is
in RR0.

Proof. If A and B are in RR0 then A ⊕ B is in RR0 by [BP91,
Theorem 3.14]. It now follows from [BP91, Proposition 3.1] that

⊕
nAn is

in RR0. �

Proposition 2.4.3. If (An) is a sequence of σ-unital algebras in RR0

then
⊕

nAn is projective in RR0 if and only if each An is projective in
RR0.

Proof. Suppose first that
⊕

nAn is projective inRR0. For every k ∈ N

we have a commutative diagram

Ak //

idAk

44
⊕

nAn
πk // Ak ,

where πk is the projection onto the k’th summand. Reasoning as in the
proof of Lemma 2.3.2, we see that Ak is projective in RR0.

Now suppose that each An is projective in RR0, and that we are given
a ∗-homomorphism φ :

⊕
nAn → B/J for some B in RR0 and some ideal

J in B. Let h̄l be a strictly positive element in Al, and let hl be its image
in
⊕

nAn under the natural inclusion. Denote by π the quotient map from
B to B/J . By [Lor97, Lemma 10.1.12], we can find pairwise orthogonal
positive elements kl ∈ B such that π(kl) = φ(hl) for all l ∈ N.

For l ∈ N, define

Bl = klBkl and Dl = φ(hl)B/Jφ(hl).

By [BP91, Corollary 2.8], all the Bl are in RR0. Since π maps Bl onto
Dl by [Lor97, Corollary 8.2.4], we can use the projectivity of the Al one
at a time, to define a ∗-homomorphism ψ :

⊕
nAn →

⊕
nBn such that

π ◦ ψ = φ. Composing ψ with the inclusion of
⊕

nBn into B shows that⊕
An is projective in RR0. �

Notice that the proof is just the proof of [Lor97, Theorem 10.1.13]
combined with the fact that real rank zero passes to hereditary sub-C∗-
algebras.

Proposition 2.4.4. Let (An) be a sequence of C∗-algebras that all con-
tain a non-zero projection. Then

⊕
nAn is not semiprojective.

Proof. Let Bk =
⊕k

n=1An. We have inclusion maps ιk,k+1 : Bk →
Bk+1 and the direct limit of the associated inductive system is

⊕
nAn. Let

ιn,∞ be the natural map from Bk to
⊕

nAn. Suppose, to reach a contra-
diction, that

⊕
nAn is semiprojective. Then, by [Bla04, Proposition 3.9],

we can can find some k ∈ N and a ∗-homomorphism ψ :
⊕
An → Bk such

that ιk,∞ ◦ψ is homotopic to the identity map on
⊕
An. Let p ∈ Ak+1 be a
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non-zero projection, and let ρk+1 :
⊕

nAn → Ak+1 be the natural projection
onto the k + 1’th summand. Then

p = ρk+1(0, . . . , 0, p, 0, 0, . . .) ∼h ρk+1((ιk,∞ ◦ ψ)(0, . . . , 0, p, 0, 0, . . .)) = 0,

which implies that p = 0. This contradicts the choice of p, so we must
conclude that

⊕
nAn is not semiprojective. �

Combining Lemma 2.3.2 with Propositions 2.4.3 and 2.4.4, we get the
following.

Corollary 2.4.5. Let A be in RR0 and let (An) be a sequence of unital
algebras that are projective in RR0. If A has a quotient that is isomorphic
to
⊕

nAn then A is not semiprojective.

Of course the utility of the corollary depends heavily on whether there
are (many) examples of C∗-algebras that are projective in RR0. As we
have already mentioned C is projective in RR0. We can also prove that all
finite-dimensional C∗-algebras are projective in RR0.

Proposition 2.4.6. If A is projective in RR0 then Mn(A) is projective
in RR0 for all n ∈ N.

Proof. First note that by [BP91, Theorem 2.10], we have that Mn(A)
is in RR0. Suppose we are given a surjective ∗-homomorphism π : B →
C between C∗-algebras in RR0, and a ∗-homomorphism φ : Mn(A) → C.
Following the proof of [Lor93, Theorem 3.3], we see that we can find positive
elements h1 ∈ B, h2 ∈ C and ∗-homomorphisms α1, α2, π0 and ψ such that
the following diagram commutes.

Mn(h1Bh1)

π0⊗idn
����

α1 // B

π
����

Mn(A)
ψ⊗idn //

φ

33Mn(h2Ch2)
α2 // C.

Here, idn denotes the identity map on Mn. Since real rank zero passes
to hereditary sub-C∗-algebras h1Bh1 is in RR0. Hence we can use the
projectivity of A to find a ∗-homomorphism λ that lifts ψ. Then α1◦(λ⊗idn)
is a lift of φ, and hence Mn(A) is projective in RR0. �

Theorem 2.4.7. Every finite-dimensional C∗-algebra is projective in the
category RR0. Every C∗-algebra of the form

⊕
kMnk

, where (nk) ⊆ N, is
projective in RR0.

Proof. Since C is projective inRR0, this follows from Proposition 2.4.6
and Proposition 2.4.3. �

We state a special case of Corollary 2.4.5.

Corollary 2.4.8. Let A be in RR0. If there is a sequence (nk) ⊆ N

such that A has a quotient that is isomorphic to
⊕

kMnk
then A is not

semiprojective.
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If a separable C∗-algebra P is projective (in C∗), then P must be con-
tractible ([Lor97, Lemma 10.1.6]) and residually finite-dimensional ([Lor97,
Theorem 11.2.1]). Theorem 2.4.7 states that certain AF algebras are pro-
jective in RR0, they are certainly not contractible. But they are all resid-
ually finite-dimensional. We will now show that this is no coincidence, as
projectivity in RR0 implies residually finite-dimensionality for separable
C∗-algebras.

First we find a real rank zero C∗-algebra that surjects onto B(H).

Lemma 2.4.9. We will view Mn as sitting in the top left corner of K.
Let

D =

{
f ∈ C

({
1

n

∣∣∣∣ n ∈ N

}
∪ {0},K

) ∣∣∣∣ f
(
1

n

)
∈Mn

}
.

Then the multiplier algebra M(D) of D is in RR0, it is residually finite-
dimensional, and it has a surjective ∗-homomorphism onto B(H).

Proof. We have the following extension

0 →
⊕

Mn → D → K → 0.

Since both the ideal and the quotient are AF algebras, it follows from
[Dav96, Theorem III.6.3] that D is an AF algebra. Hence, by [Lin93,
Corollary 12], the multiplier algebra M(D) has real rank zero.

For every non-zero element in D at least one of the maps ev1/n will
map it to a non-zero element in some finite-dimensional algebra. That is,
D is residually finite-dimensional. It now follows from [BO08, Proposition
10.3.1] that M(D) is residually finite dimensional.

The map ev0 is a surjection from D onto K. By the non-commutative
version of the Tietze extension theorem (see, e.g. [Lor97, Theorem 9.2.1])
there is a surjection from M(D) onto B(H). �

Theorem 2.4.10. If A is separable and projective in RR0 then A is
residually finite-dimensional.

Proof. We can find an injective ∗-homomorphism φ : A → B(H). By
lemma 2.4.9, we can find a residually finite-dimensional, real rank zero C∗-
algebra D and a surjective ∗-homomorphism π : D → B(H). Since D is
in RR0 and A is projective in RR0, we can lift φ to a ∗-homomorphism
ψ : A → D. Since φ is injective ψ is injective. Thus, A is isomorphic to
a sub-C∗-algebra of a residually finite-dimensional algebra, and therefore
residually-finite dimensional. �

Using Theorem 2.4.10, we can show that many real rank zero C∗-algebras
are not projective in RR0.

Corollary 2.4.11. The Cuntz algebras On are not projective in RR0.

Proof. They are not residually finite-dimensional. �

Corollary 2.4.12. The algebra of compact operators is not projective
in RR0.

Proof. It is not residually finite-dimensional. �





CHAPTER 3

Geometric classification

In this chapter, I describe the main results of [ERS] and [Sør]. I also use
the results of [ERS] to study semiprojectivity for certain graph C∗-algebras.

3.1. Graphs and their algebras

There are, unfortunately, two definitions of graph C∗-algebras. In this
thesis and in both [ERS] and [Sør], we use the convention used in, for
instance, [DT05]. We define a graph G as a four-tuple (G0, G1, r, s), where
G0 is a set of vertices, G1 a set of edges, r is a function from G1 to G0

that gives the range of the edges, and s : G1 → G0 is a function giving the
sources. We only consider graphs where G0 and G1 are countable. Graphs
are usually denoted by G or E.

Definition 3.1.1. Let G = (G0, G1, r, s) be a graph. The graph C∗-
algebra of G (sometimes simply called the graph algebra of G), denoted by
C∗(G), is the universal C∗-algebra generated by a set of mutually orthogonal
projections {pv | v ∈ G0} and a set {se | e ∈ G1} of partial isometries
satisfying the following conditions:

• s∗esf = 0 if e, f ∈ G1 and e 6= f ,
• s∗ese = prG(e) for all e ∈ G

1,

• ses
∗
e ≤ psG(e) for all e ∈ G1, and,

• pv =
∑

e∈s−1

G
(v) ses

∗
e for all v ∈ G0 with 0 < |s−1

G (v)| <∞.

A good source for the theory of graph C∗-algebras is Raeburn’s book
[Rae05], which concisely covers a large part of the theory. It uses the other
convention for graph C∗-algebras. Another source is the paper [BPRS00],
which restricts its attention to row-finite graphs but gives a very well-written
account of the ideal theory of graph algebras.

A path in a graph is a finite sequence of edges e1e2 · · · en such that
r(ei) = s(ei+1) for 1 ≤ i ≤ n − 1. The length of the path α = e1e2 · · · en
is n, the source is s(α) = s(e1) and the range is r(α) = r(en). Given two
vertices u, v, we write u ≥ v if there is a path with source u and range v or
u = v.

A path α with s(α) = r(α) is called a loop. Thus a loop of length one is
simply an edge e with s(e) = r(e). We say that a vertex u supports a loop
if there is a loop α with s(α) = u = r(α).

3.2. Amplified graphs

In [ERS], we study a specialized class of graphs, namely the so-called
amplified graphs. To define an amplified graph, it is convenient to speak of
the amplification of a graph.

13
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Definition 3.2.1 ([ERS, Definition 2.4]). Let G be a graph. The am-

plification of G, denoted by G, is defined by G
0
= G0,

G
1
= {e(v,w)n | n ∈ N, v, w ∈ G0, and there exists an edge from v to w},

and sG(e(v,w)
n) = v, and rG(e(v,w)

n) = w

If E = G for some graph G we say that E is an amplified graph.

The notion of an amplification is best understood through a picture.
Below we have a graph E on the left, and its amplification E on the right.
We write “ =⇒ ” to indicate infinitely many edges.

•

�� ��''• // •

•

�� �#
@@

@@
@@

@

@@
@@

@@
@

• +3 •

We note that there is very little connection between the C∗-algebras of
E and E. Consider:

E = • // • // • , G = •
))
55 • .

We have C∗(E) ∼= M3
∼= C∗(G). The following table illustrates the lack of

connection between the C∗-algebra of a graph and that of its amplification.

non-trivial ideals K0 group

C∗(G), C∗(E) 0 Z

C∗(G) 1 Z
2

C∗(E) 2 Z
3

The K-theory of an amplified graph algebra is easily computed using

[DT02, Theorem 3.1 or Corollary 3.2]; one gets K0(C
∗(E)) = Z

E0

and
K1(C

∗(E)) = 0. Hence, the K-theory remembers nothing about the edges
in E. Since amplified graphs satisfy the technical condition (K), their ideal

structure is determined by the hereditary and saturated subsets of E
0
, see

[BHRS02]. Since every vertex in E
0
is either a sink or an infinite emitter,

all subsets of E
0
are saturated. Therefore the ideal structure of an amplified

graph algebra is determined the hereditary subsets of E
0
, which in turn are

completely determined by the path structure of E
0
. In other words, the K-

theory and the ideal structure cannot see whether two vertices are connected
by an edge or by a path. It has been conjectured that all graph C∗-algebras
are classified by ideal related K-theory ([ERR10, Conjecture 1.1]). If we
believe that conjecture, we must also believe that if we let the notions of
path and edge coincide in an amplified graph the associated C∗-algebra will
not change. That this is the case is expressed in the following theorem.

Theorem 3.2.2 ([ERS, Theorem 3.8], Move (T)). Let α = α1α2 · · ·αn
be a path in a graph G. Let E be the graph with vertex set G0, edge set

E1 = G1 ∪ {αm | m ∈ N},
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and range and source maps that extend those of G and have rE(α
m) = rG(α)

and sE(α
m) = sG(α). If

|s−1
G (sG(α1)) ∩ r

−1
G (rG(α1))| = ∞,

then C∗(G) ∼= C∗(E).

The condition on α states that there are infinitely many edges e1, e2, . . .
such that s(en) = s(α1) and r(en) = r(α1) for all n ∈ N.

We refer to adding the edges αn in the theorem, as preforming move
(T) on the graph. In an amplified graph, we can use move (T) to add edges
between any two vertices that are connected by a path.

We note that there is nothing in Theorem 3.2.2 that requires the graphs
to be amplified. Therefore, it can also be useful when studying other classes
of graphs. It is for instance crucial in the way infinite emitters are handled
in [Sør].

In order to state a version of the main theorem of [ERS], we introduce
the notion of the transitive closure of a graph.

Definition 3.2.3 ([ERS, Definition 2.5]). Let G = (G0, G1, rG, sG) be
a graph. Define tG as follows:

tG0 = G0,

tG1 = G1 ∪ {e(v,w) | there is a path but no edge from v to w},

with range and source maps that extend those of G and satisfy

stG(e(v,w)) = v, and rtG(e(v,w)) = w.

We call tG the transitive closure of G.

The idea of this definition is that in tG the relations “there is an edge
from u to v” and “there is a path from u to v” coincide. The following figure
shows a graph G on the left, and its transitive closure, tG, on the right.

•

��

))
•ii
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•
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•ii
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~~
~

• •

Ignoring, for a moment, the K-theory, we can state the main classifica-
tion result for amplified graphs from [ERS] as follows.

Theorem 3.2.4 ([ERS, Theorem 5.7]). Let E,G be finite graphs. The
following are equivalent:

(1) tG ∼= tE.
(2) C∗(tG) ∼= C∗(tG).
(3) C∗(G) ∼= C∗(E).
(4) C∗(G)⊗K ∼= C∗(E)⊗K.

Looking at (1) and (3), we get a clear classification in terms of graphs,
i.e. a geometric classification. Our proof of Theorem 3.2.4 uses K-theory
and the very explicit description of the ideal structure of a graph algebra in
terms of the underlying graph.
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In the paper, we introduce a K-theoretic invariant called the tempered
ideal space, denoted Primτ (−). This turns out to be a complete invariant
for unital amplified graph algebras. We also define a class of C∗-algebras,
which we call Cfree, without any reference to graph C∗-algebras. We show
that all amplified graph algebras are in Cfree and that Primτ (−) is a complete
invariant for C∗-algebras in Cfree. Using that, we can obtain a nice closure
property for the class of amplified graph algebras.

Theorem 3.2.5 ([ERS, Corollary 7.5]). Let G1 and G2 be finite graphs.
If A is a unital C∗-algebra and A fits into the following exact sequence

0 → C∗(G1)⊗K → A→ C∗(G2) → 0,

then there exists a finite graph G such that A ∼= C∗(G).

3.3. Semiprojectivity for amplified graph algebras

In this section, we will discuss how to use move (T) to study semipro-
jectivity for amplified graph algebras. The work in this section is joint with
Jack Spielberg; it was carried out while I visited him at Arizona State Uni-
versity in December 2010. Afterwards, we learned that Eilers and Katsura
had given a complete characterization of semiprojectivity for unital graph
algebras, so we decided not to try to publish our results.

Our approach to proving semiprojectivity is very similar to the approach
used by Eilers and Katsura. Namely, provide a (far reaching) generalization
of the techniques used by Blackadar in [Bla04], Szymański in [Szy02], and
Spielberg in [Spi09]. Here we will not prove how to do this generalization.
Instead we will import Eilers and Katsura’s result and apply it to our setting.
When proving non-semiprojectivity, we make strong use of the fact that we
are dealing with a very special class of graphs.

As already remarked, the K0-group of an amplified graph algebra counts
the number of vertices in the graph. This means that an amplified graph
algebra C∗(E) has finitely generated K-theory if and only if E has finitely
many vertices. Using subgraphs it is not hard to see that every amplified
graph algebra is an inductive limit of amplified graph algebras with finitely
many vertices. Therefore, we can apply [Bla04, Corollary 2.10] to deduce
that if C∗(E) is semiprojective then E has finitely many vertices. It is easy

to see that this is not a sufficient condition, as C∗( • +3 • ) ∼= K̃ is not

semiprojective. We will show that if E contains a subgraph that, in a certain
sense, looks like • +3 • then C∗(E) cannot be semiprojective. First we
need a small lemma about maps out of the stabilization of the unitized
compacts.

Lemma 3.3.1. Let λ : K̃ ⊗ K → F ⊗ K be a ∗-homomorphism. If F is
finite-dimensional then λ has non-zero kernel.

Proof. For any finite-dimensional C∗-algebra F we have that F ⊗K ∼=⊕n
i=1K for some n ∈ N. We will suppress this isomorphism. Denote by

ρk :
⊕n

i=1 K → K the projection map onto the k’th summand. Since ker λ =⋂n
i=1 ker(ρi ◦ λ) and the only possibilities for the kernel of λ are 0, K ⊗ K,

and K̃⊗K, it suffices to consider the case n = 1.



3.3. SEMIPROJECTIVITY FOR AMPLIFIED GRAPH ALGEBRAS 17

So suppose λ : K̃⊗K → K is given. Let eij denote the standard matrix
units of K and let 1K be the added unit. If q = λ(1K ⊗ e11) is zero, then

ker λ = K̃⊗K. Otherwise, (λ(enn⊗e11)) is a sequence of mutually orthogonal
projections that are all dominated by q. Since q ∈ K, this can only happen
if at most finitely many of them are non-zero. Since they are all Murray-von
Neumann equivalent, this implies that they are all zero, so ker λ = K⊗K. �

We will use the notion of a relative graph algebra in the proof of the
next proposition. Relative graph algebras are defined and then discussed in
some detail in section 3.1 of [MT04]. The definition is almost the same as
that of a graph algebra (see Definition 3.2.3), the only difference being that
we do not necessarily enforce the summation relation on all regular vertices.
We will also need to know about the ideal structure of a graph C∗-algebra.
For that and the notions of condition (K), and hereditary and saturated sets
we refer to [BHRS02].

Proposition 3.3.2. Let E be an amplified graph with finitely many ver-
tices. Suppose that there are two vertices u, v ∈ E0 such that v is a sink and
u is an infinite emitter that only emits to v. Then C∗(E) is not semiprojec-
tive.

Proof. The set {u, v} is hereditary. Let I be the ideal associated to
{u, v}, and notice that by [BHRS02, Proposition 3.4], I is stably isomorphic

to K̃.
Put {f1, f2, . . .} = s−1(u). For each n ∈ N we define a graph En by

letting E0
n = E

0
, E1

n = E
1
\ {fn+1, fn+2, . . .}, and restricting the range and

source maps of E. That is, En is just like E, except there are only n edges
from u to v. Let An be the relative graph algebra C∗(En, ∅). Note that
while u is regular in all the En we do not enforce the summation relation at
u in any An

Let {se, pv} be the universal generators of C∗(E), and denote the univer-

sal generators of An by {s
(n)
e , p

(n)
v }. Define for each n ∈ N a ∗-homomorphism

ιn,n+1 : An → An+1 by sending s
(n)
e to s

(n+1)
e and pnv to p

(n+1)
v . Then C∗(E)

is the direct limit of the An with the ιn,n+1 as bounding maps. Denote

by ιn,∞ the map from An to C∗(E), and note that it sends generators to
generators.

By [MT04, Theorem 3.7], we have An ∼= C∗(Gn), where Gn is the graph
with G0

n = E0
n ∪ {u′},

G1
n = E1

n ∪ {e′ | e ∈ E1
n, rEn(e) = u},

the range and source maps extend those of En, and have rGn(e
′) = u′ and

sGn(e
′) = sEn(e). We observe that since E is amplified it satisfies the so-

called condition (K), and that by construction, all the graphs En and thus
all the graphs Gn satisfy condition (K). This means that they also satisfy
the weaker condition that every loop in has an exit. Therefore, we see, by
combining the concrete isomorphism from An ∼= C∗(Gn) with the Cuntz-
Krieger uniqueness theorem (see [FLR00, Theorem 2]), that for all n ∈ N

the map ιn,∞ is injective.
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Using the isomorphism An ∼= C∗(Gn) together with [BHRS02, Propo-

sition 3.4], we see that p
(n)
u and p

(n)
v generate an ideal In in An that contains

no other vertex projections in An. Furthermore In ∼= Mn ⊕ C and it is the

unique ideal in An that contains p
(n)
u , p

(n)
v , and no other vertex projections.

We claim that ιn,∞(An) ∩ I = ιn,∞(In). To see this, we use that ιn,∞
is injective, so we can think of ιn,∞(An) ∩ I as an ideal in An. It contains

the vertex projections p
(n)
u and p

(n)
v , and, by construction of I, no others.

Therefore, ιn,∞(An) ∩ I = ιn,∞(In).

Suppose, for the sake of reaching a contradiction, that C∗(E) is semipro-
jective. By [Bla04, Proposition 2.9], we can find some n ∈ N and a ∗-
homomorphism ψ : C∗(E) → An such that ιn,∞ ◦ψ is homotopic to idC∗(E).

For any projection p ∈ I, we then have that p is homotopic to (ιn,∞ ◦ψ)(p).
Since I is an ideal, this implies that (ιn,∞ ◦ ψ)(p) ∈ I. Thus ψ(p) ∈ In.
Because I is generated as an ideal by its projections, we can view ψ|I is a
∗-homomorphism from I to In. Call that ∗-homomorphism φ.

We recall that I⊗K ∼= K̃⊗K and that In⊗K isomorphic to a stabilized
finite-dimensional C∗-algebra, so Lemma 3.3.1 tells us that φ ⊗ idK is not
injective. The only ideals in I ⊗ K are stabilizations of ideals in I, so φ
is not injective. In fact, the only non-trivial ideal of I contains the vertex
projection pv, so φ(pv) = 0. But then pv is homotopic to ι(φ(pv)) = 0, which
contradicts that it is non-zero. Hence, we are forced to conclude that C∗(E)
is not semiprojective. �

Loosely speaking the above proposition shows, that if K̃ ⊗ K sits as
an ideal in an amplified graph C∗-algebra C∗(E), then C∗(E) cannot be

semiprojective. On one hand this is not so surprising, since K̃ ⊗ K is not
semiprojective, but on the other hand, it is surprising, since we know that
semiprojective C∗-algebras can contain non-semiprojective ideals. For ex-
ample, the Toeplitz algebra is semiprojective but has K as an ideal.

We now give a more general criterion for non-semiprojectivity of ampli-
fied graph algebras.

Proposition 3.3.3. Let E be an amplified graph with finitely many ver-

tices. If E
0
contains two distinct vertices u, v such that

(1) u ≥ v, and,
(2) there is no vertex x ∈ E0 such that u ≥ x ≥ v and x supports a

loop,

then C∗(E) is not semiprojective.

Proof. Since move (T) (Theorem 3.2.2) preserves isomorphism, and
the conditions are preserved under transitive closure, we may assume that

E is transitively closed. Since E
0
is finite, (2) implies that there is a path

β from u to v of maximal length. Let v′ = r(β1). Since u is not on a loop
v′ 6= u, and by (2) there is no loop based at v′.

Define H = {w ∈ E
0
| u ≥ w} \ {v′}. Let w ∈ H. If w ≥ v′, then,

by maximality of β, we must have that w = r(βi) for some i, thus v′ ≥ w.
In particular, v′ is on a loop, which is a contradiction. Therefore no vertex
in H has a path to v′, so H is hereditary. Since E is amplified H is also
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saturated. Let IH be the ideal associated to H, and note that, since H is
finite, it is generated by finitely many projections. We have the following
short exact sequence, see [BHRS02, Proposition 3.4],

0 → IH → C∗(E) → C∗(E/H) → 0.

Because IH is generated by finitely many projections, semiprojectivity of
C∗(E) would imply semiprojectivity of C∗(E/H) (see for instance [Sør12,
Proposition 2]). Thus it suffices to show that C∗(E/H) is not semiprojective.
Observe that the graph E/H satisfies the hypotheses of Proposition 3.3.2,
so by that proposition C∗(E/H) is not semiprojective. �

We now have our main tool for proving non-semiprojectivity. To prove
semiprojectivity we rely on a theorem due to Eilers and Katsura. Denote
by ∼ Murray-von Neumann equivalence of projections, and recall that a
projection p is called properly infinite if it has orthogonal sub-projections
p1, p2 ≤ p, such that p1 ∼ p ∼ p2. By definition, the zero projection is
properly infinite. If Λ ⊆ E0 is a finite set we write pΛ for the projection∑

v∈Λ pv.

Theorem 3.3.4 ([EK12]). Let E be a graph with finitely many vertices.
Define for each v ∈ E0 the set

Ωv = {w ∈ E0 | v emits infinitely many edges to w}.

If pΩv is properly infinite for all v ∈ E0, then C∗(E) is semiprojective.

To ease the use of the theorem we prove a lemma.

Lemma 3.3.5. Let E be an amplified graph, and let x ∈ E
0
be a vertex

that supports a loop of length one. If Λ ⊆ r(s−1(x)) is finite and contains x
then pΛ is properly infinite.

Proof. Denote by e1, e2, . . ., the edges with both range and source x,
and pick for each w ∈ Λ an edge fw from x to w. Choose numbers mw, kw ∈
N for each w ∈ Λ that are all distinct. Define

p1 =
∑

w∈Λ

semw
sfws

∗
fws

∗
emw

,

and

p2 =
∑

w∈Λ

sekw sfws
∗
fws

∗
ekw

.

Note that since all the kw and mw are distinct, the projections that ap-
pear in the sums are pairwise mutually orthogonal. Therefore, p1 and
p2 are orthogonal projections. Furthermore, for each w ∈ Λ, we have
semw

sfws
∗
fw
s∗emw

≤ px and

semw
sfws

∗
fws

∗
emw

∼ s∗fws
∗
emw

semw
sfw = s∗fwpxsfw = s∗fwsfw = pw,

so p1 ≤ px ≤ pΛ and p1 ∼ pΛ. Likewise, p2 ≤ px ≤ pΛ and p2 ∼ pΛ. Thus,
pΛ is properly infinite. �

We can now give a complete characterization of semiprojectivity for
amplified graph algebras.
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Theorem 3.3.6. Let E be an amplified graph. Then C∗(E) is semipro-
jective if and only if the following holds:

(1) E
0
is finite, and

(2) for any u, v ∈ E
0
with u ≥ v there exists some x ∈ E

0
such that

u ≥ x ≥ v and x is on a loop.

Proof. Suppose first that E satisfies (1) and (2). As in the proof of
Proposition 3.3.3, move (T) shows that there is no loss of generality in

assuming that E is transitively closed. Let v ∈ E
0
be given. We will show

that pΩv is properly infinite. There are two cases: v ∈ Ωv and v /∈ Ωv.
If v ∈ Ωv, then, since E is transitively closed, there is a loop of length

one based at v. Thus it follows from Lemma 3.3.5 that pΩv is properly
infinite.

Assume now that v /∈ Ωv. If Ωv is empty then pΩv is the zero projection,
so it is properly infinite. Suppose that Ωv 6= ∅. Since E is transitively closed
and satisfies (2), there is at least one vertex in Ωv that supports a loop of
length one. Let x1, x2, . . . xn be the vertices in Ωv that support a loop of
length one, n <∞ by (1). Using again that E is transitively closed, we see
that Ωxi ⊆ Ωv for 1 ≤ i ≤ n. Since E satisfies (2), we can pick pairwise
disjoint subsets Λi ⊆ Ωxi such that xi ∈ Λi, for 1 ≤ i ≤ n, and ∪iΛi = Ωv.
By Lemma 3.3.5, all the pΛi

are properly infinite. A sum of orthogonal
properly infinite projections is again properly infinite, so

pΩv =

n∑

i=1

pΛi

is properly infinite. We have now shown that for all v ∈ E
0
the projection

pΩv is properly infinite. Since E has finitely many vertices by (1), it follows
from Theorem 3.3.4 that C∗(E) is semiprojective.

Suppose now that E fails (1) or (2). If E fails (1) then K0(C
∗(E)) is not

finitely generated, in which case C∗(E) is not semiprojective as remarked
in the beginning of this section. If it fails (2) (but not (1)), then it follows
from Proposition 3.3.3 that C∗(E) is not semiprojective. �

3.4. Simple graph algebras

In [Sør] we consider moves one can use to change graphs without chang-
ing the Morita equivalence class of the associated C∗-algebras. The moves
are described in detail in Section 3 of [Sør], stated shortly they are

(S) Remove a source, if it is a regular vertex,
(I) In-split the graph (as in [BP04]),
(O) Out-split the graph (as in [BP04]), and,
(R) Reduction (remove a regular vertex u with s−1

G (u) and sG(r
−1
G (u))

one point sets).

All the moves were previously known to preserve Morita equivalence of graph
algebras. We say that two graphs G and E are move equivalent if we can
transform one into the other using the moves and their inverses. We write
G ∼M E. If C∗(E) is Morita equivalent to C∗(G) we say that G and E are
C∗-equivalent and write G ∼C∗ E. The main result of [Sør] is:
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Theorem 3.4.1 ([Sør, Theorem 4.4]). Let G,E be graphs with simple
unital C∗-algebras. If G has at least one infinite emitter or sink then

G ∼M E ⇐⇒ G ∼C∗ E.

In the absence of infinite emitters, we add the so-called Cuntz splice to
the list of moves, and get a similar result. The Cuntz splice is known, by
the deep classification result of Kirchberg and Phillips, to preserve Morita
equivalence for simple purely infinite graph algebras.

As a first step in [Sør], it is proved that two other moves, one is move
(T) the other collapses a regular vertex that does not support a simple loop
(see [Sør, Theorem 5.2]), are in ∼M . This means that they can be achieved
by preforming a sequence of the other moves. The result is then proved
by adapting the techniques Franks used to classify irreducible shifts of finite
type in [Fra84]. Therefore, the main technical results of [Sør] are concerned
with under what conditions we can add rows and columns in the adjacency
matrix of a graph without changing the associated algebra.

As an example of how to get by without the Cuntz splice in the presence
of an infinite emitter, consider the following graphs:

G = •
��
, E = ⋆

��

��

))
◦
��

ii

• U]

II .

Here E arises from G by preforming a Cuntz splice. Both C∗(E) and
C∗(G) are Kirchberg algebras. A K-theory computation shows that they
are stably isomorphic, in fact they are both stably isomorphic to O∞, but
they are not isomorphic.

We will now describe how to go from G to E using only the allowed
moves. First we do two out-splits leading to the following sequence of graphs.

•
��

∼M

⋆
%%

ee

�� ��
• U]

EM

∼M

⋆
��

��

))
◦
��

ii

��
• U]

EM CK

In the first, we divided the loops at • into two groups, one containing
two of them and one containing the rest. In the next step, we partitioned
the edges leaving ⋆ into two groups, each with one loop and one edge to
•. Using move (T ), we see that the last graph is move equivalent to the
following graph, that we will call E′.

⋆
��

��

))
◦
��

ii

��
• U]

II GG
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Looking at E′ and E, we see that the only difference is that there are
edges between ◦ and • in E′, but not in E.

We will now work with E, and add those missing edges. First we show
how to get the edge from ◦ to •. The needed series of moves is described in
the picture below.

⋆
��

��

))
◦
��

ii

• U]

II

∼M

⋆
��

��?
??

??
??

))
◦
��

ii

��
• U]

II

((
⋄ii

∼M

⋆
��

��

))
◦
��

ii

��
• U]

II

We started by out-spliting at ⋆, dividing the outgoing edges into two
groups, one containing the edge from ⋆ to •, and one containing the remain-
ing two edges ⋆ emits. Then we collapsed ⋄ using one of the moves derived
from the original list ([Sør, Theorem 5.2]), this adds an edge for each path
of length two that goes to ⋄ and to something else. This is similar to what
is described in [Sør, Lemma 7.2].

Now one application of move (T) adds infinitely many edges from • to ◦,
a second removes all but one of them. Therefore we have G ∼M E′ ∼M E.
The figure below shows this using pictures of graphs.
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⋆
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��
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◦
��

ii

��
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⋆
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CHAPTER 4

Almost commuting matrices

In this chapter we describe the main results of [LS10]. The purpose
of [LS10] is to provide a real version of Lin’s theorem, but along the way
we prove many things about semiprojectivity for Real C∗-algebras. Our
proof follows the path laid out by Friis and Rørdam, when they proved a
generalization of Lin’s theorem. This, perhaps, leads to a longer proof of
the real version of Lin’s theorem than strictly necessary, but this way we get
many auxiliary results that can be useful in other contexts.

4.1. Real C∗-algebras

The literature on Real C∗-algebras contains both real C∗-algebras and
Real C∗-algebras. One is like a C∗-algebra, only with the scalar field being
the real numbers, the other is a genuine C∗-algebra together with a conju-
gation operation, that lets you recognize the real elements. In [LS10] we
abandon these names, as we find that it is a mistake to make a distinc-
tion between upper and lower case letters so important. Instead, we use
R∗-algebra for the algebras with real scalars; for the others, we consider
reflections on C∗-algebras. A map τ : A→ A is called a reflection if it is lin-
ear, anti-multiplicative, ∗-preserving, and satisfies τ(τ(a)) = a for all a ∈ A.
We then define a C∗,τ -algebra as a pair (A, τ), where A is a C∗-algebra and
τ is a reflection on A. The real elements of (A, τ) are those a ∈ A with
a∗ = τ(a). We use Real C∗-algebras as a common term for the theory of
both R∗-algebras and C∗,τ -algebras.

The definition of a C∗,τ -algebra is supposed to be reminiscent of Mn

with the transpose map. Clearly the transpose map T is a reflection, and
the real-valued matrices are exactly those X ∈Mn with X∗ = XT . For this
reason we usually write τ(a) as aτ . It turns out that when n is an even
number, there is an additional reflection on Mn, namely the dual-operation
♯. It is defined by

(
A11 A12

A21 A22

)♯
=

(
AT22 −AT12
−AT21 AT11

)
.

Section 2 in [LS10] is devoted to explaining some of the basics of C∗,τ -
algebras, R∗-algebras and their relation to each other.

4.2. Semiprojectivity for C∗,τ -algebras

A large amount of the work done in [LS10] concerns semiprojectivity
for C∗,τ -algebras. We give the obvious definition of semiprojectivity, and
prove many of the basic results. To get to the more advanced topics in
semiprojectivity, we also develop some of the theory of multiplier algebras

23



24 4. ALMOST COMMUTING MATRICES

and corona algebras for C∗,τ -algebras. The most prominent theorem about
semiprojectivity for C∗,τ -algebras in [LS10] is:

Theorem 4.2.1 ([LS10, Theorem 5.1]). If X is a one-dimensional finite
CW complex then (C(X), id) is semiprojective.

The complex version of this result is crucial in Friis and Rørdams proof
of their generalization of Lin’s theorem.

4.3. Almost commuting (real) matrices

A slightly simplified version of the main Theorem in [LS10] is:

Theorem 4.3.1 ([LS10, Theorem 1]). For all ε > 0 there exists a δ > 0
such that for all n ∈ N the following holds: whenever A,B are two n-by-
n, contractive, self-adjoint, and real matrices such that ‖AB − BA‖ < δ,
there exist n-by-n, contractive, self-adjoint, and real matrices A′, B′ such
that A′B′ = B′A′ and

‖A−A′‖, ‖B −B′‖ < ε.

The proof begins by observing that if A and B almost commute then
X = A+ iB is almost normal. Note that X is not a real matrix. However,
in addition to being almost normal, it is symmetric, i.e. XT = X. So while
the complex version of Lin’s theorem states that almost normal matrices are
close to normal matrices, our version of Lin’s theorem says that symmetric,
almost normal matrices are close to symmetric, normal matrices. We do
not prove whether real, almost normal matrices are close to real, normal
matrices. Therefore it is more accurate to say that we prove a real version
of Lin’s theorem rather than the real version of Lin’s theorem.

Friis and Rørdam have generalized Lin’s theorem ([FR96, Theorem
4.4]), showing that two almost commuting self-adjoint contractions in any
stable rank one C∗-algebra are close to two exactly commuting self-adjoint
contractions. We provide a similar generalization in [LS10, Theorem 7.10].
However, where Friis and Rørdam use C∗-algebras where the invertibles are
dense, i.e. stable rank one, we use C∗-algebras where the self-τ invertible
elements are dense in all the self-τ elements.



CHAPTER 5

Generators and relations for Real C∗-algebras

5.1. C∗,τ -relations

The work done in [LS10] has shown the need for a theory of generators
and relations in the category of C∗,τ -algebras. A nice and general theory for
C∗-algebra relations is presented in [Lor10]. We will follow it almost verba-
tim. Hence, we give the following definitions of (compact) C∗,τ -relations (see
[Lor10, Definition 2.1, Definition 2.2, and Definition 2.3]). For definitions
and notions concerning C∗,τ -algebras and R∗-algebras we refer to [LS10].

Definition 5.1.1. Let X be a set. Define a category NX , where the
objects are pairs (j, (A, τ)), where (A, τ) is a C∗,τ -algebra and j : X →
(A, τ) is a map. The morphisms from (j, (A, τ)) to (k, (B, τ)) are all ∗-
τ -homomorphisms φ : (A, τ) → (B, τ) such that φ ◦ j = k.

We call NX the null C∗,τ -relation on X . Sometimes we will, with slight
abuse of notation, refer to j : X → (A, τ) as an object in the category.

Definition 5.1.2. Given a set X , a C∗,τ -relation on X is a full subcat-
egory R of the null C∗,τ -relation NX such that:

CT1: The unique map X → {0} is an object in R.
CT2: For any injective ∗-τ -homomorphism φ : (A, τ) →֒ (B, τ) and any

function f : X → (A, τ), we have

f is an object ⇐= φ ◦ f is an object.

CT3: For any ∗-τ -homomorphism φ : (A, τ) → (B, τ) and any function
f : X → (A, τ), we have

f is an object =⇒ φ ◦ f is an object.

CT4f: If fj : X → (Aj , τ) is an object for 1 ≤ j ≤ n then

n∏

j=1

fj : X →
n∏

j=1

(Aj , τ)

is an object.

Definition 5.1.3. A C∗,τ -relationR on X is called compact if it satisfies:

CT4: For any non-empty set Λ and any family fλ : X → (Aλ, τ) of objects
indexed by Λ, the function

∏

λ∈Λ

fλ : X →
∏

λ∈Λ

(Aλ, τ),

is an object in R.

25
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The definition of a universal object in [Lor10] is set up to allow an
easy transition into a situation where we consider not only universal C∗-
algebras but also universal pro-C∗-algebras (compare [Lor10, Definition 2.9
and Definition 3.12]). Since we at present have no desire to study pro-C∗,τ -
algebras (which have yet to be defined), we give a slightly different definition
of a universal object than Loring does.

Definition 5.1.4. If R is a C∗,τ -relation on X then an object ((U, τ), ι)
inR will be called universal for R if U is generated by ι(X ) and whenever we
are given any object (f, (A, τ)) then there exists a unique ∗-τ -homomorphism
φ : (U, τ) → (A, τ) such that f = φ ◦ ι.

From the definition one easily sees that there is at most one universal
object.

The importance of the compact relations is their relationship with uni-
versal objects. The following is [Lor10, Theorem 2.10] modified to fit our
category.

Theorem 5.1.5. Let R be a C∗,τ -relation on X . There exists a universal
object for R if and only if R is compact.

Proof. Suppose that ((U, τ), ι) is a universal object forR. We will show
that R satisfies CT4. Let a set Λ and a family of objects fλ : X → (Aλ, τ)
be given, and define f : X →

∏
Aλ by f(x) = (fλ(x)). We aim to show that

(
∏
(Aλ, τ), f) is an object.
Since ((U, τ), ι) is a universal object, we can, for each λ ∈ Λ, find a

∗-τ -homomorphism φλ : (U, τ) → (Aλ, τ) such that fλ = φλ ◦ ι. Define a
∗-τ -homomorphism φ : (U, τ) →

∏
(Aλ, τ) by φ(a) = (φλ(a)). Observe that

for all x ∈ X , we have

f(x) = (fλ(x)) = ((φλ ◦ ι)(x)) = (φλ(ι(x))) = (φ ◦ ι)(x).

Thus, by CT3, CT4 holds, and therefore R is compact.

Suppose now that R is compact. We will define four sets.

(i) Let S1 be a set such that every C∗,τ -algebra generated by a set no
larger than X has cardinality at most that of S1.

(ii) Let S2 be the set of all C∗,τ -algebras whose underlying set is a subset
of S2.

(iii) Let S3 be the set of all functions from X to an element in S2.
(iv) Let S4 be the set of all functions f : X → (A, τ) in S3 such that f(X )

generates (A, τ) and (f, (A, τ)) ∈ R.

Index the elements in S4 as fλ : X → (Aλ, τ) for λ in some set Λ. By CT1,
the set Λ is not empty.

We will now define (U, τ). By CT4, the function

h =
∏

λ

fλ : X →
∏

λ

(Aλ, τ),

is an object in R. Let (U, τ) be the C∗,τ -algebra generated by h(X ), let
ι : X → (U, τ) be the co-restriction of h, and let η be the C∗,τ -inclusion of
(U, τ) in the product

∏
(Aλ, τ). Since h = η ◦ ι, CT2 tells us that (ι, (U, τ))

is an object in R.
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To see that (ι, (U, τ)) has the desired universal property, let (f, (A, τ))
be an object in R. Let A0 be the sub-C∗,τ -algebra of A generated by f(X ),
let f0 be the co-restriction of f to A0, and let α0 be the inclusion of A0 in
A. By CT2, (f0, (A0, τ)) is an object in R. There is a ∗-τ -isomorphism
ψ : (A0, τ) → (A1, τ) for some (A1, τ) ∈ S2. By CT3, the map g : X →
(A1, τ) given by g = ψ ◦ f0 is an object in R. Hence, by construction of
S4, there is some µ ∈ Λ such that (g, (A1, τ)) = (fµ, (Aµ, τ)). If we let
πµ be the quotient map from

∏
λ(Aλ, τ) onto (Aµ, τ), we can define a ∗-τ -

homomorphism φ : (U, τ) → (A, τ) by

φ = α0 ◦ ψ
−1 ◦ πµ ◦ η.

Finally, we observe that

φ ◦ ι = α0 ◦ ψ
−1 ◦ πµ ◦ η ◦ ι

= α0 ◦ ψ
−1 ◦ πµ ◦ h

= α0 ◦ ψ
−1 ◦ fµ

= α0 ◦ f0 = f.

Since h(X ) generates U , the map φ is unique, and, therefore, (ι, (U, τ)) is a
universal object for R. �

Just as it is the case for C∗-algebras, the proof that universal C∗,τ -
algebras exist, gives no insight into what the universal algebras are. How-
ever, inspired by the complex case, we can often find universal algebras.

Example 5.1.6. Let n ∈ N be given and let X = [0, 1]n. Then C(X, id)
is the universal C∗,τ -algebra generated by n self-adjoint commuting con-
tractions h1, h2, . . . , hn such that hτi = hi for i = 1, 2, . . . , n. The universal
generators are the coordinate functions.

To see this, suppose we are given such a set of contractions hi in some
C∗,τ -algebra (B, τ). Denote by fi the coordinate projections in C(X).
By the universal property of C(X), there exist a unique ∗-homomorphism
ψ : C(X) → B such that ψ(fi) = hi. It remains to see that ψ respects the τ -
operation. This follows, since the fi and hi are self-τ , and by the uniqueness
of ψ.

5.2. R∗-relations

We can also give versions of Loring’s definitions that fit with R∗-algebras.

Definition 5.2.1. Let X be a set. Define a category MX , where the
objects are pairs (j,A), where A is an R∗-algebra and j : X → A is a map.
The morphisms from (j,A) to (k,B) are all ∗-homomorphisms φ : A → B
such that φ ◦ j = k.

We call MX the null R∗-relation on X . Sometimes we will, with slight
abuse of notation, refer to j : X → A as an object in the category.

Definition 5.2.2. Given a set X , an R∗-relation on X is a full subcat-
egory R of the null R∗-relation MX such that:

R1: The unique map X → {0} is an object in R.
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R2: For any injective ∗-homomorphism φ : A →֒ B and any function
f : X → A, we have

f is an object ⇐= φ ◦ f is an object.

R3: For any ∗-homomorphism φ : A → B and any function f : X → A,
we have

f is an object =⇒ φ ◦ f is an object.

R4f: If fj : X → Aj is an object for 1 ≤ j ≤ n then

n∏

j=1

fj : X →
n∏

j=1

Aj

is an object.

Definition 5.2.3. An R∗-relationR on X is called compact if it satisfies:

R4: For any non-empty set Λ and any family fλ : X → Aλ of objects
indexed by Λ, the function

∏

λ∈Λ

fλ : X →
∏

λ∈Λ

Aλ,

is an object in R.

Definition 5.2.4. If R is an R∗-relation on X then an object (U, ι) in
R will be called universal for R if U is generated by ι(X ) and whenever
we are given any object (f,A) then there exists a unique ∗-homomorphism
φ : U → A such that f = φ ◦ ι.

Recall from [LS10, Section 2.2] that we have a functor ℜ from the
category of C∗,τ -algebras to the category of R∗-algebras, and that

ℜ(A, τ) = {a ∈ A | a∗ = aτ}.

We also have a functor⋆ from the category of R∗-algebras to the category of
C∗,τ -algebras. The functors are almost inverses in the sense that ℜ(⋆(A)) ∼=
A and ⋆(ℜ(B, τ)) ∼= (B, τ).

We will deduce the R∗-algebra version of Theorem 5.1.5 from the C∗,τ -
algebra version.

Proposition 5.2.5. Let R be an R∗-relation on X . Define a full sub-
category Rτ of NX by letting its objects be pairs (f, (A, τ)), where f(X ) ⊆
ℜ(A, τ) and, if we let f̃ be the co-restriction of f to ℜ(A, τ), the pair

(f̃ ,ℜ(A, τ)) is an object in R. The category Rτ is a C∗,τ -relation.
Moreover, Rτ is compact if R is compact.

Proof. The real part of the zero C∗,τ -algebra is the zero C∗,τ -algebra,
so because R satisfies R1, Rτ satisfies CT1. Any ∗-τ -homomorphism
φ : (A, τ) → (B, τ) maps ℜ(A, τ) into ℜ(B, τ). If φ is injective, then for
any a ∈ A, the fact that φ(a) ∈ ℜ(B, τ) implies a ∈ ℜ(A, τ). Combined
with the fact that R satisfies R2 and R3, this shows that Rτ satisfies CT2
and CT3.
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To see that Rτ satisfies CT4f (and CT4 when R satisfies R4), simply
notice that for any non-empty set Λ and any family (Aλ, τ) of C

∗,τ -algebras
indexed by Λ, we have

ℜ

(
∏

λ

(Aλ, τ)

)
=
∏

λ

ℜ(Aλ, τ). �

We can now prove that universal R∗-algebras exist.

Theorem 5.2.6. Let R be an R∗-relation on X . There exists a universal
object for R if and only if R is compact.

Moreover, if ((U, τ), ι) is the universal object for Rτ then (ℜ(A, τ), κ),
where κ is the co-restrict of ι to ℜ(A, τ), is the universal object for R.

Proof. The proof that R must be compact if a universal object exists,
is exactly as in the proof of Theorem 5.1.5, so we omit it.

Suppose that R is compact, and define Rτ as in Proposition 5.2.5. Since
Rτ is compact, there exists a universal object ((U, τ), ι) for it. Let κ be the
co-restriction of ι to ℜ(U, τ) and put V = ℜ(U, τ). We claim that (V, κ) is
universal for R. First note that since ((U, τ), ι) is an object of Rτ , the pair
(V, κ) is an object in R. To see that V is universal, let (f,A) be an object
in R. Let (B, τ) = ⋆(A), and let f̄ : X → B be defined by f̄(x) = f(x).
Then (f̄ , (B, τ)) is an object in Rτ . Thus there is a ∗-τ -homomorphism
φ : (U, τ) → (B, τ) such that f̄ = φ ◦ ι. Since the image of ι is in ℜ(U, τ)
and the image of f̄ is in ℜ(B, τ), we also have that f = ℜ(φ) ◦ κ. Since
κ(X ) generates V , we see that ℜ(φ) is the unique ∗-homomorphism with
that property, so (V, κ) is universal for R. �

Example 5.2.7. Let n ∈ N be given and let X = [0, 1]n. Then C(X,R) is
the universal R∗-algebra generated by n self-adjoint commuting contractions
h1, h2, . . . , hn. The universal generators are the coordinate functions. To see
this let R be the category associated with the relation. Then the category
associated with the relation in Example 5.1.6 is exactly Rτ .

5.3. An application of C∗,τ -relations

We will use the existence of universal C∗,τ -algebras to prove the follow-
ing:

Theorem 5.3.1. If (P, τ) is a separable projective C∗,τ -algebra then P
is a projective C∗-algebra.

To prove the Theorem 5.3.1 we need two lemmas. Firstly, we have a
simple application of Theorem 5.1.5.

Lemma 5.3.2. There exists a universal C∗,τ -algebra generated by a se-
quence of self-τ contractions and a sequence of skew-τ contractions.

We also need the following special case of Theorem 5.3.1.

Lemma 5.3.3. Let (Q, τ) be the universal C∗,τ -algebra generated by a
sequence of self-τ contractions and a sequence of skew-τ contractions. Then
(Q, τ) is a projective C∗,τ -algebra and Q is a projective C∗-algebra.
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Proof. Contractions always lift between C∗-algebras. If x is a contrac-
tive lift of a self-τ contraction then (x+xτ )/2 is a contractive self-τ lift. We
can lift the skew-τ elements in a similar fashion. With that in mind we see
that (Q, τ) is projective by virtue of its universal property.

Let (xn) be the universal self-τ generators of (Q, τ) and let (yn) be the
universal skew-τ generators. To see that Q is projective as a C∗-algebra,
suppose we are given a surjective ∗-homomorphism π : B ։ Q. Since con-
tractions lift, we can find contractions (x̄n), (ȳn) ⊆ B such that π(x̄n) = xn
and π(ȳn) = yn for all n ∈ N. Let D = B ⊕ Bop, and define a reflection
τ : D → D by τ(a, b) = (b, a). Put an = (x̄n, x̄n) and bn = (ȳn,−ȳn). Note
that (an) is a sequence of self-τ contractions in (D, τ) and (bn) is a sequence
of skew-τ contractions. By the universal property of (Q, τ), there is a ∗-τ -
homomorphism φ : (Q, τ) → (D, τ) such that φ(xn) = an and φ(yn) = bn for
all n ∈ N. Let ρ : D ։ B be the ∗-homomorphism that projects onto the
first summand of D, and put ψ = ρ ◦ φ. Then ψ is a ∗-homomorphism from
Q to B such that

(π ◦ ψ)(xn) = π(ρ((x̄n, x̄n))) = π(x̄n) = xn,

for all n ∈ N. Likewise, (π ◦ψ)(yn) = yn for all n ∈ N. Since Q is generated
by the xn and yn not only as a C∗,τ -algebra, but also as a C∗-algebra (since
xτn = xn and yτn = −yn), we have π ◦ ψ = idQ. That is, Q is a projective
C∗-algebra. �

Finally, we recall that to prove projectivity of a C∗-algebra A, it suffices
to find a projective C∗-algebra P that has a split surjection onto A (see for
instance [Thi11, Lemma 5.1]).

Proof of Theorem 5.3.1. Let (Q, τ) be the universal C∗,τ -algebra
generated by a sequence of self-τ contractions and a sequence of skew-τ
contractions. Since (P, τ) is separable, there is a sequence of contractions
zn that generate P as a C∗,τ -algebra. Put

xn =
zn + zτn

2
and yn =

zn − zτn
2

,

for all n ∈ N. Then the xn and yn generate P , and by the universal property
of (Q, τ) we have a surjective ∗-τ -homomorphism ρ : (Q, τ) ։ (P, τ). Using
the projectivity of (P, τ), we get a ∗-τ -homomorphism λ : (P, τ) → (Q, τ)
such that ρ ◦ λ = idP .

Changing category, we have a surjective ∗-homomorphism ρ : Q ։ P
and a ∗-homomorphism λ : P → Q such that ρ ◦ λ = idA. By Lemma 5.3.3,
Q is projective and therefore P is projective. �
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