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Summary

One-dimensional diffusion models have been widely used to describe membrane potential
dynamics of single neurons. Moreover, first passage times of stochastic processes have been
chosen for modeling neural action potentials, called spikes. A spike is observed whenever
the membrane potential exceeds a certain threshold. Nowadays, data from simultaneous
recordings of groups of neurons detect the existence of temporal patterns, which are pre-
cise temporal relations in sequences of spike intervals. Several experimental observations
support the hypothesis of the existence of dynamical cell assemblies as an organizational
principle of higher brain activity. The cell assembly is formed by a population of neurons
that spontaneously organizes on the basis of a sequence of input patterns of spikes. The
same temporal activity is reproduced whenever the same input pattern is presented. For
this reason, it is of paramount interest to understand the dynamics of neural networks and
detect dependencies between simultaneously recorded spike trains. This has been investi-
gated in Paper I, II and III.

In Paper I, a multidimensional stochastic model for describing the spontaneous firing
activity of a neural network is proposed. To reflect the biology correctly, each firing is
followed by a refractory period, where a second spike cannot occur. The dynamics of each
single neuron are modeled as unidimensional Stein models, while the dependencies between
neurons are assumed to be determined by the existence of common inputs acting on clusters
of neurons. In particular, a generalized Stein model is proposed. Being a multivariate jump
process, its first passage time problem yields several mathematical difficulties. For this
reason, a diffusion approximation of the Stein process is performed and the limit process
is shown to be a multivariate Ornstein-Uhlenbeck. The covariance matrix is non-diagonal
and it encodes the cluster dependence of the network.
Consider a point process with events given by all the passage times of a process. Then
weak and strong convergence results for the point process of a generic jump process to that
of its diffusion approximation are proved. This allows the switching from the Stein to the
Ornstein-Uhlenbeck model. Such process can be used to model experimentally observed
phenomena, e.g. inhibition, excitation, synchronism and silencing of neurons. The bivariate
version of this model has been used in Paper II and III.

In Paper II, a non-parametric method to investigate dependence structures of neural net-
works analyzing simultaneously recorded spike trains, is proposed. The method is based
on copulas and allows to discern dependencies determined by the surrounding network
from those due to direct interactions between neurons. Moreover, it also recognizes delays
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in the spike propagation. The proposed method and two of the other existing techniques,
i.e. cross-correlograms and the Cox-method, are compared on simulated data. The depen-
dence structures between neurons are modeled as determined by either direct interactions
or cluster dependencies. The first scenario is reproduced by describing the membrane po-
tential as a jump diffusion process, with jumps of the non-firing component whenever the
other fires. For the second scenario, the bivariate Ornstein-Uhlenbeck described in Paper
I is considered.

In Paper III, the joint distribution of the exit times of a bivariate Gauss-Markov process
from a bidimensional strip in presence of absorbing boundaries is determined. Explicit
expressions are provided for a bivariate Wiener process with drift and non-diagonal co-
variance matrix. For more general processes, a numerical algorithm is given and the con-
vergence of its error is proved. Theoretical and numerical results for the Wiener cases
are compared. Numerical investigations of the joint distribution of the bivariate Ornstein-
Uhlenbeck proposed in Paper I are provided. This work represents a first step toward the
theoretical analysis of dependencies between point processes, e.g. spike trains.

The other main topic of this dissertation is the investigation of the response latency. In
many biological systems there is a time delay before a stimulation has an impact on the
response. The quantification of this delay is particularly relevant in neuroscience, as hereby
presented. Neurons are commonly characterized by spontaneous firing, which is not due
to any apparent or controlled stimulation. In presence of a stimulus, the spontaneous
firing may prevail and hamper identification of the effect of the stimulus. Therefore, for
analyzing the evoked neuronal activity, the presence of spontaneous firing has to be taken
into account. If the background signal is ignored, then estimation of the response latency
will be wrong, and the error will persist even when sample size is increasing. The interesting
question is: what is the response latency to the stimulus? Answering this question becomes
even more difficult if the latency is of a complex nature, for example composed of a
biologically implied deterministic part and a stochastic part. This scenario is considered
in Paper IV and V, where the response time is a sum of two components; the delay and
the relative latency.

In Paper IV, a unified concept of response latency identification in presence of a background
noise is proposed. The (parametric and non-parametric) estimators of the time delay are
compared on simulated data and the most suitable for specific situations are recommended.

In Paper V, parametric estimators for the time delay and the response latency are derived
and compared on simulated data. Their properties are also discussed, e.g. the mean of the
response latency is always satisfactorily estimated, even assuming a wrong distribution for
the response latency.
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Short abstract

Stochastic processes and their first passage times have been widely used to describe the
membrane potential dynamics of single neurons and to reproduce neuronal spikes, respec-
tively. However, cerebral cortex in human brains is estimated to contain 10-20 billions of
neurons and each of them is connected to thousands of other neurons. The first question
is: how to model neural networks through stochastic processes? A multivariate Ornstein-
Uhlenbeck process, obtained as a diffusion approximation of a jump process, is the pro-
posed answer. Obviously, dependencies between neurons imply dependencies between their
spike times. Therefore, the second question is: how to detect neural network connectivity
from simultaneously recorded spike trains? Answering this question corresponds to inves-
tigate the joint distribution of sequences of first passage times. A non-parametric method
based on copulas is proposed. As a first step toward a theoretical analysis, a simplified
framework with two neurons and their first spikes is considered. For computing the joint
distribution of the passage times, theoretical and numerical results are provided.
Now imagine to observe neurons characterized by spontaneous generation of spikes. When
a stimulus is applied to the network, the spontaneous firings may prevail and hamper de-
tection of the effects of the stimulus. Therefore, the spontaneous firings cannot be ignored
and the response latency has to be detected on top of a background signal. Everything
becomes more difficult if the latencies are expressed as a sum of deterministic (absolute
response latency) and stochastic (relative response latency) parts. The third question is:
what is the response latency to the stimulus? Non-parametric and parametric estimators
of the two components are proposed in a single neuron framework.
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Dansk resumé

Stokastiske processer og deres førstepassagetider er ofte blevet brugt til henholdsvis at
beskrive dynamikken af membranpotentialet og til at reproducere fyringsdynamikken i
neuroner. Hjernebarken i den menneskelig hjerne indeholder omkring 10-20 milliarder neu-
roner og hver af disse er forbundet til tusindvis af andre neuroner. Et vigtigt spørgsm̊al
er: Hvordan kan man p̊a fornuftig vis modellere neuronnetværk ved stokastiske processer?
En mulighed er en flerdimensional Ornstein-Uhlenbeck proces, fremkommet som en diffu-
sionsapproksimation til en springproces. Det er klart at afhængigheder mellem neuroner
medfører afhængighed mellem deres fyringstider. Et andet spørgsm̊al er derfor: Hvordan
kan man detektere sammenhænge i neuronnetværk fra simultant m̊alte fyringssekvenser?
Dette svarer til at undersøge den simultane fordeling af følger af førstepassagetider. Her
foresl̊aes en ikke-parametrisk metode baseret p̊a copulaer. Som et første skridt i en teo-
retisk analyse betragtes et simplificeret setup med to neuroner og ventetiden til deres
første fyring undersøges. B̊ade teoretiske og numeriske resultater gives for den simultane
fordeling af passagetiderne.

Neuroner er ofte karakteriseret ved spontan fyringsaktivitet. N̊ar et netværk stimuleres vil
den spontante aktivitet potentielt forstærke eller dæmpe effekten af stimulationen. Derfor
kan den spontane aktivitet ikke ignoreres og detekteringen af responslatensen vanskelig-
gøres af baggrundssignalet. Dette kompliceres yderligere hvis latensen er en sum af en
deterministisk del (absolut responslatens) og af en stokastisk del (relativ responslatens).
Et tredie spørgsm̊al er: Hvad er responslatensen for stimulationen? Ikke-parametriske og
parametriske estimatorer for de to komponenter præsenteres i et enkelt neuron setup.
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1
Introduction

Neuronal dynamics represent a fascinating and complicated topic which is far from be-
ing understood. Interestingly, mathematics and statistics can help neuroscientists to get a
better understanding of neuronal processes. Indeed, the firing mechanism, which is respon-
sible for the temporal coding, can be satisfactorily defined with mathematical models, e.g.
renewal diffusion processes. Then, theoretical models can be used to extract neuronal in-
formation from experimental data. Moreover, simulations from models may be performed
to obtain features which are difficult or expensive to reproduce through experiments. Ob-
viously, this is only possible if these models reflect the biology correctly and this can
be checked through experiments. Besides that, a close collaboration with neuroscientists
would be useful for both mathematician and statistician. Indeed, there are several neuronal
problems leading to scenarios which are extremely challenging from a theoretical point of
view. Some of these unknown questions have been investigated in this dissertation.
The objective of this dissertation is dual. First, I want to understand how neural networks
can be modeled and how dependencies between neurons can be detected. Second, how a
neuron with spontaneous firing activity reacts to an incoming stimulus. This thesis can,
hopefully, answer some of these questions and give an indication of what can be done in
the future.

1.1 Thesis objective and structure

The thesis is structured as follows. Chapter 2 provides the mathematical background
of Paper I-III. In particular, diffusion processes, convergence results of jump processes,
first passage times and copulas are shortly introduced. Some key references for a detailed
reading are also given. Paper IV and V are self-explanatory from a mathematical and
statistical point of view, such that further descriptions are not needed.
Chapter 3 gives an overview of the neuronal background of the papers. In particular, a
brief review of stochastic neural models for the description of single neuronal dynamics
is presented, together with the motivations for considering neural networks. Moreover,
response latency and the character of experimental data used in Paper IV and V are
shortly presented.
Chapter 4 presents a detailed overview of the papers, while some interesting perspectives
are discussed in Chapter 5, which precedes the bibliography, where the list of references
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2 Chapter 1. Introduction

of these introductory chapters is collected.
The papers contain my contributions and are attached in the format of the journal where
they have been either submitted for publication (Paper I and III) or published (Paper II,
IV and V).
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Stochastic processes

2.1 Stochastic differential equations

Modeling of neuronal phenomena through deterministic ordinary differential equations is
an oversimplification. Indeed, neuronal dynamics evolve in presence of forces that we can
neither predict nor understand. To take them into account, stochastic differential equations
(SDEs) can be used. A typical SDE driven by Gaussian noise is of the form

dX(t) = A (X(t); t) dt+B (X(t); t) dW(t), (2.1)

where X is a k-dimensional stochastic process assuming values in Ik ⊂ Rk and W is a
k-dimensional standard Wiener process, also called Brownian motion. Here A(·) and B(·)
are functions representing the deterministic and the stochastic component of the SDE,
respectively. If they are measurable, Lipschitz in t and square integrable in x, then there
exists a unique solution to (2.1), which has almost surely continuous paths and satisfies the
strong Markov property. These processes are called diffusions, while A and B are known
as drift and diffusion coefficients, respectively.

The simplest diffusion model is the Wiener process, which is solution of (2.1) with
A (X(t); t) = µ and B (X(t); t) = σ, with drift µ ∈ Rk and positive-definite diffusion
coefficient σ ∈ Rk × Rk.
Pearson diffusions are a flexible class of one-dimensional diffusions defined by having linear
drift and quadratic square diffusion coefficient [25]. A Pearson diffusion is a stationary
solution to a SDE of the form

dX(t) = −θ(X(t)− µ)dt+
√

2θ (aX2(t) + bX(t) + c)dW (t),

where θ > 0, a, b, c are such that the square root is well defined when X(t) is in the state
space. A widely used Pearson diffusion is the unidimensional Ornstein-Uhlenbeck (OU)
process, which is solution of the following SDE

dX(t) = −θ (X(t)− µ) dt+ σdW (t), (2.2)

for µ ∈ R, θ, σ > 0. Another example, which is mentioned in Paper I, is the Feller process,
which solves

dX(t) = −θ (X(t)− µ) dt+ σ
√
X(t)dW (t). (2.3)

3



4 Chapter 2. Stochastic processes

It has been proposed as a model of population growth [23], but is also commonly used in
finance, where is referred to as the Cox-Ingersoll-Ross model [13].

Besides diffusion processes, jump processes represent another well known and used class
of stochastic processes. A typical example of SDEs driven by Poisson noise is of the form

dX(t) = A (X(t); t) dt+

m∑

l=1

Bl (X(t); t) dN (l)(t), (2.4)

where Bl(·) is a function, N (l) is a k-dimensional Poisson process with independent com-

ponents, intensity λ
(l)
i > 0 and is independent of N (r), for r 6= l, i = 1, . . . , k, l = 1, . . . ,m.

The Stein model [73] is one of the first jump processes which has been used in neuroscience
for modeling the membrane potential dynamics of a neuron. It is a one-dimensional process,
which is solution of (2.4) with A(X(t), t) = −X(t)/θ, m = 2 and B1 = a > 0, B2 = b < 0,
i.e.

dX(t) = −X(t)dt

θ
+ adN (1)(t) + bdN (2)(t). (2.5)

In Paper I, a generalization of the Stein model to the k-dimensional case is proposed, and
its weak convergence to a suitable multivariate OU process is proved.

Some key references on stochastic processes and their applications are [1, 3, 12, 24, 37, 76,
44, 45, 46, 53, 59, 61, 75].

Kolmogorov forward equation

A quantity of interest is the so-called transition probability density of X, denoted by fX ,
which can be obtained as a solution of

∂f(x, t)

∂t
= −

k∑

i=1

∂

∂xi
[A(x; t)fX(x, t)] +

1

2

k∑

i=1

k∑

j=1

∂2

∂xi∂xj
[Cij(x; t)fX(x, t)]. (2.6)

This equation is called k-dimensional Kolmogorov forward equation, also known as Fokker-
Planck equation. Here Cij(x; t) =

∑k
l=1Bil(x; t)Blj(x; t). In Paper II, a bidimensional

Kolmogorov diffusion equation is considered for describing the behavior of a bivariate
Wiener process under absorbing boundary conditions.

A key reference for methods of solution of a Kolmogorov forward equation is [64]. For the
purposes of Paper II, refer to [21], which contains a step-by-step method for solving (2.6)
for a bidimensional Wiener process.

2.2 Convergence of stochastic processes

Limit theorems for probability measures and stochastic processes have been widely inves-
tigated in the literature [4, 5, 40, 43, 80]. The reasons are several. First, convergences are



2.2. Convergence of stochastic processes 5

challenging and exciting from a theoretical point of view. Second, they allow to switch from
more complicated processes to their diffusion approximations, which are mathematically
more tractable. The most famous example is the Wiener process, which can be shown to
be the limit of a random walk [19]. Other known examples are the OU, which is obtained
from the Stein [7, 43, 47, 61], or the Feller, which is obtained from a branching process
[23]. In the following, meaning and conditions for diffusion approximations are explained.

The weak convergence (also referred to as convergence in law or in distribution) is denoted

byXn
L→ X orXn

d→ X, meaning that there is a sequence of processes, denoted by (Xn)n≥1

and defined on the probability spaces (Ωn,Fn, Pn), assuming values in E, which converges
in law to the process X. Citing Jacod and Shiryaev [40], “since the famous paper [58] of
Prokhorov, the traditional mode of convergence is the weak convergence of the laws of
the processes, considered as random elements of some functional space”. Therefore, the
convergence of processes deals with the convergence of some suitable random elements.
Using the method proposed by Prokhorov [58], Xn converges weakly to X if the following
three conditions hold:

i. tightness of the sequence (Xn)n≥1: for every ε > 0 there is a compact subset K of
E such that Pn(Xn /∈ K) ≤ ε for all n;

ii. convergence of the finite-dimensional distributions:

(Xn(t1), . . . , Xn(tk))
L→ (X(t1), . . . , X(tk)) , ∀ti ∈ D, k ≥ 1,

where D is a subset of [0,∞[.

iii. characterization of X by finite-dimensional distributions (which is basically trivial):
X can be rewritten in terms of (X(t1), . . . , X(tk)) ,∀ti ∈ D, k ≥ 1

For proving tightness, different criteria were proposed, e.g. [5, 31]. Since condition ii.
is often difficult to show, an alternative approach for semimartingales was proposed by
Jacod and Shiryaev [40]. Semimartingales are processes that can be decomposed into a
sum of a local martingale and a Cadlag adapted process of locally bounded variation
[22, 32, 40]. Therefore, they belong to the Cadlag space, denoted by D1 = D([0,∞[,R),
which includes all functions that are right-continuous with left-hand limit. Obviously, the
functional space of continuous functions, denoted by C1 = C([0,∞[,R), is included in D1.
The choice of only considering semimartingales is not a shortcoming. Indeed, examples of
semimartingales are discrete-time processes, diffusion processes, point processes, solutions
of SDEs, Lévy processes and many Markov processes. For the weak convergence, Jacod
and Shiryaev [40] replaced condition ii. with the convergence of triplets of characteristics,
and condition iii. with the characterization of X by the triplet of characteristics. The
notion of characteristic has been introduced by them to generalize the drift, the variance
of the Gaussian part, and the Lévy measure characterizing the distribution of a process
with independent increments.

The notationXn → X a.s. is used for the almost sure convergence of a sequence of processes
(Xn)n≥1 to X. It is also known as strong convergence and it represents the analogous of



6 Chapter 2. Stochastic processes

the pointwise convergence in analysis theory [14]. It can be thought of as the convergence
of the trajectories of the processes, i.e. the path of Xn is getting closer and closer to that
of X, as n increases. Also in this case, the strong convergence can be proved by showing
the convergence of some suitable random elements. Moreover, as happens for convergence
of random variables, strong convergence implies weak convergence. The other implication
is generally not true. However, if Xn is a semimartingale, then it belongs to the Cadlag
space, which is shown to be a Polish space with the Skorohod’s topology [48, 72]. Therefore,
for the Skorohod’s representation theorem, there exists a probability space and random

elements X̃n and X̃ defined on a new probability space such that X̃n
d
= Xn, X̃

d
= X and

X̃n → X̃ a.s. [72]. Here
d
= denotes identically distributed random variables.

Convergence of triplets of characteristics, Skorohod’s theorem and strong convergence of
random functions have been used in Paper II.

2.3 Integral equations

The expression integral equation is used for those equations where an unknown function
appears under an integral sign. Then, integral and differential equations are two formu-
lations of the same problem. Linear integral equations are called of Fredholm or Volterra
type, depending on whether the limits of integration are both fixed or variable, respec-
tively. The domain where the function is defined does not necessarily have to be bounded.
If the unknown function only appears in the integral, then the equation is called of the first
kind. If it appears both inside and outside the integral, then is called of the second kind. If
the unknown function is bivariate, we may have a combination of Volterra and Fredholm
types. A Volterra-Fredholm integral equation of the first kind defined on an unbounded
spatial domain is of the form

f(t, x) =

∫ t

t0

∫ a

−∞
k(t− s, x, ξ)u(s, ξ)dξds. (2.7)

Here u is the unknown function defined on (t, x) ∈ [0, T ]× (−∞, a], f is a given function
and k is a function called a kernel. If f is identically null, then the equation is called
homogeneous, otherwise it is called inhomogeneous.

Different methods for the analytical solutions of integral equations have been proposed,
see e.g. [51, 74], while a collection of solutions to some specific integral equations can be
found in [57]. Numerical methods can be applied if the equation cannot be explicitly solved
[2, 17, 33, 49]. For the purpose of Paper III, it is sufficient to refer to [8], which contains a
quadratic method based on a time and spatial discretization procedure of (2.7). Indeed, a
system of two homogeneous Volterra-Fredholm integral equations of the first kind on an
unbounded spatial domain is investigated in Paper III.
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2.4 The first passage time problem

When does a stochastic process reach a boundary level for the first time? Answering
this question would solve the so-called first passage time (FPT) problem, which has been
widely investigated in the literature [39, 60, 62, 63]. For any given random function X ∈ D1

starting in x0, the FPT of X through a boundary B > x0 is defined by

TB(X) = inf{t > 0 : X(t) > B}.

The distribution of TB(X) is explicitly known only for a few processes, e.g. Wiener and a
special case of the OU process [18, 65]. As an alternative approach, numerical algorithms
can be applied [65].

Besides the mathematical interest, the derivation of the FPT distribution is useful in sev-
eral applications. In neuroscience, FPTs are used to model the epochs when the neuron
releases an electrical impulse, called spike, which is believed to encode neuronal informa-
tion (see Chapter 3). In finance, FPTs model the epochs when a stock reaches a certain
value and it is convenient to sell or buy. In reliability theory, FPTs describe the times
when a crash of an object happens.
Connections between neurons, dependencies between stocks in the same portfolio or com-
mon crash epochs suggest the presence of dependencies between FPTs. Thus it is relevant
to extend the FPT problem to more general scenarios.

2.4.1 The multivariate first passage time problem

Let X ∈ D1 be reset to its starting value whenever a FPT is observed, and the evolution
of X does not depend on the previous time intervals, i.e. X is a renewal process. In Paper
II and III, two different scenarios for the multivariate FPT problem has been analyzed.
First, consider the sequence of passage times. Formally, the ith passage time of X ∈ D1 is
defined by

T
(i)
B (X) = inf{t > T

(i−1)
B : X(t) > B}.

The sequence of FPTs can be interpreted as a point process where the events are the cross-
ings of the boundary. For renewal processes, intertimes between two consecutive FPTs are
independent and identically distributed. In particular, if they are exponentially distributed,
then X is a Poisson process [10]. In Papers IV and V, a Poisson process is chosen for mod-
eling the spontaneous neural activity. Note that if the underlying process is not renewal,
then the intertimes might be autocorrelated. Therefore, in the non-renewal case, the au-

tocorrelation has to be taken into account for computing the FPT density of T
(i)
B (X) (see

Section 2.5.1).

A different scenario can be the following. Imagine a multivariate process X ∈ Dk and
define the ith passage time of the component j through a boundary Bj by

T
(i)
Bj

(Xj) = inf{t > T
(i−1)
Bj

(Xj) : Xj(t) > Bj}.
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If X has independent components, then the passage times of the lth and jth components
are independent too, for j 6= l, and then this scenario is analogous to the previous one. The
interesting case is when the coordinates of X are dependent, implying dependent FPTs.
A challenging task is to solve the two proposed multivariate FPT problems. This is the
purpose of Paper II and III.

2.5 Measures for the dependence between point

processes

Different techniques have been proposed to detect dependencies between point processes.
A review can be found in [34], where the analysis is carried out in a neuronal framework.
Then spike trains, which are collections of spikes, can be modeled by point processes
with events given by FPTs. In Paper II, the proposed copula method is compared with
crosscorrelograms and with the Cox method [11] revised by Masud and Borisyuk [50]. A
description of this method is presented in Section 5.1.1 of Paper II, and therefore is not
reported here. Auto and crosscorrelations are shortly described in the following.

2.5.1 Auto and crosscorrelation

Since the pioneering work of [56], crosscorrelation histograms, known as crosscorrelograms,
represent the most used tool for detecting dependencies between pairs of spike trains (i.e.
point processes with events given by releases of action potentials) in neuroscience. Re-
ferring to [9], a detailed analysis is pursued as follows. First, check whether each point
process is renewal, e.g. perform a test based on sample serial correlation coefficients. If
the processes are renewal, then the distribution of the intervals between two events com-
pletely characterizes the point process. Therefore, the investigation of this distribution is
of paramount interest. Second take an arbitrary event in the renewal point process and
consider the sequence of successive kth order intervals, defined as the sum of k consecutive
intervals between events after the arbitrary event. That is, if Xi denotes the ith intertime
interval following the arbitrary event, then the kth-order interval is given by X1 + · · ·+Xk.
Denote fk the density of the kth-order interval and consider the so-called intensity function
h(τ), given by

h(τ) =

∞∑

k=1

fk(τ),

for any τ > 0. Then h(τ)∆τ can be interpreted as the probability of an event in a small
time interval (τ, τ + ∆τ ] given an event happened at time 0, i.e.

h(τ) = lim
∆τ→0

P( an event in(τ, τ + ∆τ ]| an event at 0)

∆τ
.

A study of the renewal density gives information about the behavior of the single point
process, e.g. it is constant for a Poisson process.
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Third, consider two point processes A and B. Take an arbitrary event in A. Define the
forward (resp. backward) waiting times of order i as the interval between the event in A
to the ith subsequent (resp. previous) in B. Denote ηi(τ) the corresponding densities of
order i. Then consider the so-called cross-intensity function ξAB(τ) given by

ξAB(τ) =

i=∞∑

i=−∞;i 6=0

ηi(τ),

for any τ > 0. Then ξAB(τ)∆τ can be interpreted as the probability of any event in
B before or after an event in A. The study of ξAB allows to understand dependencies
between point processes [11]. For a complete analysis, the role of A and B has to be
switched, leading to also compute ξBA.

In spike train analysis, the renewal and cross-intensity densities are called auto and cross-
correlations, respectively. Neuroscientists estimate these functions for different τ from pairs
of simultaneously recorded spike trains [55, 56]. Histograms of the estimated auto and
crosscorrelations are called auto and crosscorrelograms, respectively. Each process, i.e.
spike train, has independent and identically distributed intertime intervals if the estimated
autocorrelation lies inside a suitable confidence region. Similarly, the two point processes
are independent if the estimated crosscorrelation is inside a suitable confidence region [6].
Peaks or troughs outside the confidence interval evidence dependent point processes. Deal-
ing with neuronal spike trains, peaks far from 0 indicate excitatory effects between pairs
of neurons, while peaks around 0 indicate a tendency to simultaneous firings. Moreover,
troughs far from zero indicate inhibition between the two neurons.
Cross-correlograms are easy to compute and for this reason, they are widely used by neu-
roscientists. However, there are several drawbacks on their use, as argued in [66, 67]. First,
they merge marginal and joint behaviors, making it difficult to distinguish between cou-
pling or marginal phenomena. Moreover, they strongly depend on the choice of the bin-size
of the histogram and may fail to recognize weak dependencies. Finally, they exclusively
catch pairwise dependencies, and cannot be used for detecting dependencies between more
than two neurons.

2.6 Copulas

A k-dimensional copula is defined as a function C : [0, 1]k → R such that

i. C(u1, . . . , ui−1, 0, ui+1, . . . , uk) = 0;

ii. C(1, . . . , 1, u, 1, . . . , 1) = u;

iii. C is k-increasing, i.e. for each hyperrectangle B =
∏k
i=1[ai, bi] ∈ [0, 1]k, the C-

volume of B, defined as
∫
B dC(u), is not negative.
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Besides this formal definition, a key theorem for the understanding of copulas is Sklar’s
theorem [71], which establishes a correspondence between joint distributions and copu-
las. Denote X1, . . . , Xk random variables with marginal distributions F1, . . . , Fk and joint
distribution H. Then, there exists a k-copula, denoted by CX1,...,Xk

or simply C, such that

H(x1, . . . , xk) = CX1,...,Xk
(F1(x1), . . . , Fk(xk)) ,

which is unique if the marginals are continuous. The other implication is also true. There-
fore, copulas are joint distributions with uniform marginals.

There are several advantages for using copulas instead of joint distributions. First, copulas
are scale free. Therefore they catch the dependence due to the joint behavior, ignoring the
effect of the marginals. Definitions and properties of distribution functions can be easily
rewritten in terms of copulas. Archimedean copulas are the most known and used class of
copulas, since they have several nice properties and are easy to construct. Archimedean
copulas are of the form

C(u1, . . . , uk) = φ[−1]

(
k∑

i=1

φ(ui)

)
,

where φ is called a generator of the copula. It is a continuous, strictly decreasing function
from [0, 1] to [0,∞], such that φ(1) = 0. Here φ[−1] is the pseudo-inverse of φ, defined such
that φ[−1](t) is equal to φ(−1)(t) if t ∈ [0, φ(0)] or 0 otherwise.
Dependencies between random variables can be investigated using the Spearman’s rho, the
Kendall’s tau or the Pearson’s rho, which all belong to [−1, 1]. However, only the Kendall’s
tau, denoted by τC , detects non-linear dependencies. It is defined by

τC = 2k
∫

[0,1]k
C(u1, . . . , uk)dC(u1, . . . , uk)− 1 = 2kE[C(u1, . . . , uk)]− 1. (2.8)

For Archimedean copulas, it can be expressed as a function of the generating function φ
by τC = 1+4

∫ 1
0 φ(t)/φ′(t)dt, where φ′(t) denotes the derivate of φ with respect to t. If the

random variables are independent, then C(u1, . . . , uk) =
∏k
i=1 ui and C is called product

copula. Since Fi(Xi) are uniform in [0, 1], then E[
∏k
i=1 ui] = 1/(2k) and thus τC = 0. That

is, the Kendall’s tau is null for independent random variables.
Copulas can also be used to express the mutual information of two random variables as
follows. Denote c the density function of the copula, i.e.

c(u1, . . . , uk) =
∂kC(u1, . . . , uk)

∂u1 · · · ∂uk
,

and define the copula entropy, denoted by HC , by

HC(u1, . . . , uk) = −
∫

[0,1]k
c(u1, . . . , uk) log c(u1, . . . , uk)du,

for u = (u1, . . . , uk). Then, the mutual information is equal to the negative of the copula
entropy [41].
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Copulas also play an interesting role in the characterization of stochastic processes. Indeed,
the transition density of a stochastic process can be rewritten as a product of copulas [15].
In particular, copulas for the Brownian motion, the Ornstein-Uhlenbeck and other known
processes have been calculated [68]. Note that since the geometric Brownian motion can be
expressed as an increasing transformation of the Brownian motion, the two processes have
the same copula. Indeed, copulas are invariant under increasing transformations: if α and
β are increasing functions on the range of X and Y respectively, then Cα(X),β(Y ) = CX,Y .
Refer to [16, 20, 26, 27, 28, 42, 52, 71, 81] for a detailed overview on copulas and their
applications.
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3
Neuronal Background

The brain is a highly interconnected network of nerve cells, called neurons. Each neuron
is composed of three parts: soma, dendrites and axon. A schematic illustration is in Fig.
3.1. The dendrites (which branch several times determining the dendritic tree) represent
input devices and they collect electro-stimulations from other neurons to the soma. The
soma is a processing unit which collects incoming inputs and generates an output whenever
the total inputs exceed a specific threshold. Such output is then carried out by the axon,
working as an output device. Interconnections between neurons are ensured by synapses.

The difference of potential across the cell membrane is called membrane potential. When
the membrane potential attains a certain threshold value, an active mechanism produces
a sudden hyperpolarization. Then the neuron releases a short-duration electrical signal,
which is called action potential, spike or firing. After a spike, there is a time interval, called
absolute refractory period, during which a second action potential cannot be generated,
even in presence of a strong input. After that, there is a time interval, called relative
refractory period, during which spikes are unusually difficult to evoke. The sum of these
two periods represent the time needed for a neuron to rest after a spike.

The collection of spike epochs of a neuron is called a spike train, and raster displays are a
common way to visualize sets of spike trains of groups of neurons. Data from simultaneous
recordings of groups of neurons make possible to detect the existence of precise temporal
relations in sequences of spike intervals, referred to as temporal patterns. Several experi-
mental observations support the hypothesis of the existence of dynamical cell assemblies
as an organizational principle of higher brain activity [78, 79]. A cell assembly is formed
by a population of neurons that spontaneously organizes on the basis of a sequence of
input patterns of spikes. Moreover, it reproduces the same temporal activity whenever the
same input pattern is presented [77]. It is believed that such patterns encode the neural
information [55]. It is also known that dependencies between neurons are due either to
direct interactions, e.g. a neuron excites or inhibits the others, or to common sources, i.e.
a cluster of neurons receives the same stimulus. Refer to [69] for an overview of features
and problems involved in neural coding.

13
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3.1 Mathematical modeling of neural phenomena

There is a strong connection between mathematics and neuroscience. Indeed, from a math-
ematical point of view, a spike train is a sequence of events, i.e. neuronal spikes, and can
be modeled as a point process. Moreover, mathematical models of single neuronal units are
used to reproduce the neural coding mechanisms. In 1952, Hodgkin and Huxley proposed
to model the membrane potential evolution through a set of nonlinear ordinary differen-
tial equations [36]. An alternative approach makes use of stochastic models. It has been
proposed by Gerstein and Mandelbrot [29] in 1964, and Stein [73] in 1965. Gerstein and
Mandelbrot considered a Wiener process, also known as perfect integrator neuronal model,
due to its simplicity among other diffusions. The model proposed by Stein, called Stein
model, belongs to the class of jump processes. It takes into account neuronal features,
e.g. the exponential decay of the membrane potential to a resting value after a spike. A
shortcoming of one-dimensional diffusion processes is that they ignore the structure of the
neuron, describing it as a single point. However, this oversimplification is necessary to be
able to analyze such models. A good compromise between mathematical tractability and
neuronal features has been reached by the so called leaky-integrate-and-fire models, which
represent a large and widely used class of processes [65]. Conversely, there have been few
attempts to develop mathematical models to describe small or large neuronal networks
and the existing results are mainly of simulation type.
Neuronal spikes have been modeled as FPTs of a process through a suitable boundary. It
is commonly assumed that the membrane potential is instantaneously reset to its resting
value whenever it fires and then it evolves independently from before. Thus, for simplify-
ing the mathematics, the refractory period is often not taken into account. The resulting
process is renewal and the intertimes between two consecutive spikes, called interspike
intervals (ISIs), are independent and identically distributed random variables.

3.2 Background of Paper IV and V: response la-

tency

Neurons release spikes even without any controlled or apparent stimulation, usually with
a low firing rate. That is the so-called spontaneous firing activity, which can be described
by a Poisson process, as often supported by experimental data [30, 75]. If a stimulus is
applied to the neuron, then a change in the firing activity is expected. In particular, if
the stimulus is excitatory, then the firing rate increases, otherwise it decreases. A spike
due to the stimulus onset is called evoked spike. The response latency is defined as the
time to the first evoked spike after the stimulus onset. In presence of spontaneous activity,
the response is observed on top of an indistinguishable background signal. That is, an
observer cannot distinguish whether a spike is spontaneous or evoked. It is also believed
that the response to the stimulus is not instantaneous, but appears with a time delay
called absolute response latency. Then, the response latency can be described as a sum
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of two components, namely the absolute and the relative response latency, defined as the
time to the first evoked spike following the absolute response latency.
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Figure 3.1: Schematic representation of a neuron. Source of picture: Wikipedia.



4
Overview of the results

An overview of the papers in this thesis in relation to existing results is shortly presented
here. In particular, inspiring papers, key ideas, neuronal and mathematical motivations
and main results are emphasized.

4.1 Overview of Paper I

Membrane potential dynamics of single neurons are commonly described by unidimen-
sional OU processes. Besides a reasonable mathematical tractability, the parameters of
the OU can be biologically interpreted. Indeed, this process can be obtained as a diffusion
approximation of a Stein model, which has parameters with a biological interpretation, as
discussed in Section 2.2. Therefore, a multivariate OU represents a natural choice for de-
scribing neural network activity. How should dependencies between neurons be taken into
account? And is it still possible to obtain the multivariate OU as a limit of a multivariate
Stein model? Answering these questions is the first aim of Paper I.

A generalized Stein model with cluster dependencies is proposed for modeling neural net-
work dynamics. Cluster dependencies mean that the neurons within group (cluster) of
neurons are dependent if there are common inputs impinging on them. In the univariate
Stein (2.5), incoming inputs are modeled by Poisson processes. If neurons share the same
input, then the same Poisson process appears in their SDEs.
Weak convergence criteria (given in [40] and shortly presented in Section 2.2) are used to
prove a diffusion approximation of sequences of generalized Stein processes. As expected,
the resulting limit process is a multivariate OU process satisfying the SDE

dY (t) =

∫ t

0

(−Y (s)

θ
+ Γ

)
ds+W (t), (4.1)

where Γ denotes the drift vector and W is a multivariate Wiener process with positive-
definite covariance matrix denoted by Ψ. All parameters in Γ and Ψ are obtained as limits
of frequency rates of the Poisson processes underlying the Stein model. In particular, ψij ,
an element of Ψ, is a function of parameters coming from the Poisson processes common to
the ith and jth component, for 1 ≤ i, j ≤ k. Thus, the covariance matrix is not diagonal.

The obtained OU inherits the biological meaning and dependence structure of the Stein.
Since the information is encoded by spike trains, it is relevant to check whether there exists

17
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a correspondence between the passage times of the jump process and those of the diffusion.
If this happens, then the information is carried over from the Stein to the OU model.
Therefore, the jump process can be replaced by its diffusion approximation. This is the
second aim of the paper. To achieve it, the firing mechanism of a network has to be defined,
as well as the meaning of “convergence of spike trains”. When a neuron j, 1 ≤ j ≤ k fires
at time τ , its membrane potential is reset to its resting potential and then it is restarted.
Thanks to the reset and since dependencies between processes are described through either
stationary Poisson processes (for the Stein model) or correlated Gaussian noise (for the
OU model), the ISIs of each neuron are independent and identically distributed. Thus,
marginally each process is renewal. Meanwhile, the non firing components Yi, for i 6=
j, continue their evolution, starting at time τ in a random position Yi(τ). Hence, the
multivariate process is not renewal. A formal construction of a new process Y ∗ describing
the firing neural network mechanism is given. In particular, Y ∗ is iteratively defined in each
ISI of the process. On [τi, τi+1[, the process Y ∗ is obtained by conditional independence
from Y ∗ on [τi−1, τi[, with initial value Y ∗(τi). Hence, each ISI depends on a triplet
of random variables: starting position, firing component and passage time. It is shown
that the convergence of the spike trains corresponds to the convergence of the triplets
of all the ISIs. Since the FPT is not a continuous function, the convergence does not
follow applying the continuous mapping theorem on the processes. The result is proved
iteratively, following the construction of Y ∗, and using two key ideas. The first is to apply
the Skorohod’s representation theorem for switching from weak to strong convergences
on a suitable probability space. The second is to apply the convergence properties on a
product topology on Dk: Xn → X a.s. if Xin → Xi a.s. for each component i = 1, . . . , n.
Interestingly, these convergence results hold for any multivariate jump process X ∈ Dk
converging weakly to its diffusion approximation Y. Indeed, the proof only depends on the
equality between FPTs and hitting times (defined as the first times when a process reaches
a threshold, for the process Y ) and it is well known that diffusion processes satisfy this
condition.

Among the convergence results shown in Paper I, the following lemma deserves to be
mentioned.

Lemma 2. Let x◦n belong to D1 for n ≥ 1, and y◦ ∈ H with y◦(0) < B. If x◦n → y◦ in D1,
then TB(x◦n)→ TB(y◦),

where TB(·) denotes the FPT through B and H is the space of continuous functional
having equal crossing and hitting times. Thus, the convergence of the FPTs follows from
the convergence of the processes. The result itself is not surprising. Indeed, it seems obvious
that two processes having the same asymptotic trajectories, will also have the same FPTs.
However, it is particularly useful because then the weak convergence of a unidimensional
FPT follows straightforwardly from the Skorohod’s representation theorem and Lemma 2.
Moreover, using also the product topology on Dk, the weak convergence of the minimum
of the FPTs of a multivariate process is proved. Thanks to these convergence results, the
generalized Stein can be replaced by the multivariate OU model, which is less complicated
from a mathematical point of view.
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Figure 4.1: Different pairs of random variables extracted from two spike trains. Select
A as target neuron. Panel I: Pairs (T iA, θi), obtained considering the FPT in A and

the time up to the first spike following it in B. Panel II: Pairs (T iA, θi +
∑m

l=1 T
(il)
B ),

with m = 2, obtained considering a FPT in A and the FPTs up to the (m + 1)th
spike following it in B.

To propose a model reflecting the neuronal features, absolute refractory periods ∆ are also
considered. The new firing mechanism is more complicated than before. Indeed, the reset
of the firing component is now shifted a time ∆, during which the other components can
fire. However, the previous convergence results on the spike trains are still valid.

To conclude, the multivariate OU model can be a good candidate for describing neural
networks with refractory periods. In particular, it reproduces inhibition, excitation, syn-
chronism and silencing of neurons, as shown through simulations. Several generalizations
can be done, according to the neural features of the network that is of interest.

4.2 Overview of Paper II

Since temporal patterns are believed to encode information, their study is of paramount
interest to understand connectivity between simultaneously recorded spike trains. Cross-
correlograms, i.e. histograms of the crosscorrelation functions, are the most used tool to
detect pairwise connections [56]. However, they may fail to detect non-linearities, as shortly
mentioned in Section 2.5 and shown in [66]. As an alternative approach, the parametric
Cox method [50] or any of the techniques proposed in [34] can be applied. The aim of Paper
II is to propose a new non-parametric method. To simplify the description, the technique
is illustrated for two neurons A and B, but can be easily extended to larger networks. The
key idea is to express the two spike trains through two suitable random variables, and
then investigate their joint distribution. Throughout the paper, three different scenarios
have been studied:

i. Consider pairs of FPTs (T iA, T
i
B) such that T iA are iid, T jB are iid and (T iA, T

j
B) are
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independent for i 6= j, 1 ≤ i, j ≤ n. This case is mainly introduced for helping the
understanding of the method, but biological interpretations can also be given. First,
these pairs can be obtained as the first ISIs in A and B following synchronous spikes
(see left panel in Fig. 1 of Paper II). Second, imagine to apply the same stimulus to
two dependent neurons and being interested in determining their response latencies
from the analysis of the first spikes following the stimulus onset. This gives the first
pair (T 1

A, T
1
B). The sample is then obtained repeating this procedure n times, waiting

for a time interval large enough to ensure that the neurons are at rest.

ii. Select A as target neuron, denote SiA the ith spike epoch, and T iA the ISI between the
ith and the (i+ 1)th spike in A. Define θi as the intertime between SiA and the first
spike following it in B. Then, dependencies between (T iA, θi) can be investigated. A
sample is constructed such that two consecutive random variables θi and θi+1 are
not overlapped. This is done to avoid autocorrelation between the θ variables. A
schematic illustration is reported in Panel I in Fig. 4.1.

iii. Select A as target neuron and consider dependencies between (T iA, θi +
∑m

l=1 T
(il)
B ),

for 1 ≤ i ≤ n. Here T ilB denotes the lth spike following θi in neuron B. This allows
to study the duration (that we also call memory) of the dependence between two
spike trains, i.e. the number of spikes m necessary for neuron B to forget the firing
activity of neuron A. The (i+ 1)th pair is chosen such that it does not overlap with
the ith, allowing to avoid autocorrelated random variables. A schematic illustration
for m = 2 is reported in Panel II in Fig. 4.1.

Fig. 4.1 improves the right panel in Fig. 1 of Paper II. In cases ii and iii, the pairs are not
symmetric and therefore the procedure has to be repeated selecting B as target neuron.
This allows to detect uni-directional dependencies, since it may happen that neuron A
influences neuron B but not the reverse.

The joint distributions of the described pairs of random variables are studied through
copulas, which are joint distributions with uniform marginals. Besides the practical ad-
vantages (e.g. several implemented goodness-of-fit tests, flexibility of the parameter choice,
R package available for simulations), the main reason for using copulas is that they capture
the joint properties, ignoring the marginal features. It is well known that, if FX denotes
the distribution of a random variable X, then FX(X) is uniformly distributed. Empirical
cumulative distribution functions, denoted by F̂X , have been used to estimate the unknown
FX . An illustration of the relation between (X,Y ) can be obtained looking at the so-called
copula scatterplots, i.e. scatterplot of (F̂X(X), F̂Y (Y )). A particular effort is put on what
we call curve of monotony. It consists of the set of points such that FX(X) = FY (Y ). If
the marginal distributions are the same, then the curve of monotony is the main diagonal
of the square [0, 1]2. To test the presence of dependencies between X and Y (and hence be-
tween neurons A and B), a statistical test for the null hypothesis H0 : τ = 0 is considered.
Here τ denotes the Kendall’s tau given by (2.8).

The proposed method is illustrated on simulated data. Two alternative firing mechanisms
are considered:
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a) The sub-threshold membrane potential dynamics is modeled by a bivariate OU pro-
cess with independent components. Whenever a neuron fires, its membrane potential
is reset to its resting value, while the other membrane potential has a jump of am-
plitude h > 0. This reproduces a direct connection between neurons, that we call
local, to pinpoint that the dependence is localized to the jumps.

b) The sub-threshold membrane potential evolutions are modeled by the bivariate OU
process with correlated components proposed in Paper I. The firing component is in-
stantaneously reset, while the other component does not jump. Such model considers
global connections between neurons, since the neuronal dynamics are characterized
by a continuous coupling effect.

Here the refractory period is not taken into account. The features of the copula scatterplots
change according to the considered pairs of random variables and firing mechanism. The
proposed method has also been applied on simulated data from the special LIF model
proposed in [50]. The neural connectivity, even in presence of delays in the coupling, is
correctly detected by the copula method, which may however fail for small dependencies.
A comparison with other techniques, i.e. crosscorrelograms and the Cox method, is also
performed, highlighting advantages and drawbacks of the different tools.

4.3 Overview of Paper III

The FPT problem for univariate processes has been widely investigated in the literature.
Conversely, few results are available for joint distributions of FPTs of multivariate pro-
cesses. This is due to several reasons. First of all, explicit expressions of the FPT density
are available only for few unidimensional processes, e.g. Wiener. This discouraged an ex-
tension to the multivariate case. Moreover, the multivariate FPT problem can often be
traced back to the univariate scenario. The simplest example is a multivariate process with
independent components. Then the joint distribution of the FPT is equal to the product of
the marginal distributions. A more interesting scenario is a bivariate process with a jump
of the non-firing component whenever the other fires. Then, conditioning on the passage
times of the first firing components, the problem can be described as the FPT problem of
a univariate process which has one (or multiple) jumps at a given time.

As previously discussed, a challenging task is the detection of dependencies between point
processes. A (very) preliminary step toward this direction is given in [38], where the joint
distribution of the exit times from a bidimensional strip of a bivariate Wiener process
without drift has been calculated. Denote X = (X1, X2) the bivariate process, Ti the FPT
of Xi through the boundary Bi, i = 1, 2 and (−∞, B1) × (−∞, B2) the bivariate strip.
What they compute is the density of min(T1, T2). Some mistakes have been found and
corrected by Domine and Pieper [21]. Moreover, they solve a two dimensional Kolmogorov
forward equation for the unknown bivariate density fX of X under absorbing boundary
conditions. Such density has then been used to explicitly compute the joint density of
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min(T1, T2), when X is a Wiener process with drift µ = (µ1, 0), µ1 6= 0 under absorbing
boundary conditions.
These works have inspired Paper III. The aim is to compute the joint distribution of the exit
times T = (T1, T2) from a bidimensional strip of a bivariate Gauss-Markov process under
absorbing boundary conditions. That is, the process is bivariate in [0,min(T1, T2)] and then
only the non-firing component evolves as a univariate process in [min(T1, T2),max(T1, T2)].
Thanks to the Markov property, the dynamics after the first spike are independent of what
happens before, conditioned on the random initial position at time min(T1, T2). Then, the
distribution of T can be expressed as a function of the marginal FPT densities of each
component and of the transition density of the slower component under the boundary. In
particular, the following density needs to be calculated:

f(Xa
j ,Ti)

(xj , t|yj , s) =
partial2

∂xj∂t
P
(
Xa
j (Ti) < xj , Ti < t|Xa

j (s) = yj
)

= fXa
j |Ti(xj |si)gTi(si),

for i, j = 1, 2, i 6= j. Here Xa
j denotes the jth component of the process inside the strip,

i.e.

Xa = {X(t); t ∈ [0,min(T1, T2)]} .
In Theorem 3.3, it is shown that f(Xa

j ,Ti)
can be obtained as solution of a system of

Volterra-Fredholm first kind integral equations for boundaries which are not necessarily
absorbing. In general, the system cannot be explicitly solved. For this reason, a numerical
method is proposed. The algorithm is based on a discretization of both the time and the
state spaces and the convergence of its error is proved in Theorem 5.2, mimicking and
extending the proof in [8]. Then, the approximated density can be used to compute the
desired joint distribution of T .
IfX is a bivariate Wiener process with constant drifts and non-diagonal covariance matrix,
the unknown density f(Xa

j ,Ti)
can be explicitly calculated, extending and correcting the

results in [21].
Finally, theoretical and numerical results for the bivariate Wiener process are compared;
numerical approximations of the joint FPT density for the bivariate OU processes proposed
in Paper I, are shown.

4.4 Overview of Paper IV and V

Imagine to measure the spontaneous firing activity of a neuron. When a stimulus is ap-
plied at time ts, the spikes due to the stimulus onset, called evoked, are recorded on top of
an undistinguished background signal, representing the pre-existing spontaneous activity.
This scenario becomes even more complex when the response to the stimulus is not instan-
taneous, but happens with a delay θ > 0. For neuroscientists, it is of paramount interest
both the detection of θ [35] and the investigation of the response latency (denoted by R),
i.e. the intertime between the delivery of the stimulus and the first evoked spike. Most
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of the standard techniques ignore the spontaneous activity after stimulation, assuming it
negligible with respect to the evoked. Then, they consider evoked the first spike following
ts, denoted by T . The minimum of the observations of T is used as a naive estimator
of the delay θ. However, when θ = 0, the estimation of the response latency is biased if
the spontaneous activity is not taken into account [54]. Motivated by this paper, a uni-
fied concept of response latency identification in event data corrupted by a background
signal is proposed. As previously described, the response latency is defined as a sum of
two components, namely the absolute and relative response latencies, denoted by θ and Z
respectively. During θ, only spontaneous spikes can be observed. Here Z is defined as the
intertime between ts + θ and the first evoked spike. The key assumption of Paper IV and
V is that the spontaneous activity is not affected by the stimulus up to the first evoked
spike. Whatever happens after ts is outside the scope of the work. Then, since neither
the spontaneous (denoted by W ) nor the evoked spikes can be distinguished after ts, the
estimation of the response latency is entirely based on T , which is the minimum between
W and R.

4.4.1 Paper IV

The primary aim is the investigation of the absolute response latency θ, the second is the
understanding of the role of the spontaneous activity. The distribution of the ISIs before
the stimulus onset is estimated under different assumptions:

A1. the spontaneous firing activity follows a renewal process model, i.e. the ISIs before
the stimulus onset are independent and identically distributed;

A2. stationarity of the data, i.e. the time from the last spike prior the stimulation to ts
is identically distributed with the time up to the first spontaneous spike following
ts;

A3. the spontaneous firing activity follows a renewal Poisson process.

In particular, in presence of Poissonian activity, it is shown that

• the nth moment of T is

E[Tn] = E[Wn]



1− e−λθ

n−1∑

j=0

λj

j!

j∑

h=0

(
j − h
h

)
θhL(j−h)

Z (λ)



 ,

where LZ(s) denotes the Laplace transform of fZ , which is defined by LZ(s) =

E[e−sZ ] =
∫∞

0 e−stfZ(t)dt, and L(k)
Z (·) denotes its kth derivative;

• the probability p that the first observed spike after ts is spontaneous is

p := P(T = W ) =
E[T ]

E[W ]
.
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The probability p can be used to calculate the risk of failure when the first observed spike
is assumed to be evoked, i.e. T = R, when in fact is spontaneous, i.e. T = W . Thus,
its estimation is of primary interest to understand experimental data. Indeed, it gives an
overview of the strength of the background activity in the measurements. Such probability
can be easily estimated from data, with a good performance even in a non-parametric
approach.
Six estimators of θ have been proposed under different assumptions for the spontaneous,
i.e. A1–A3, and evoked activity, i.e. model free or distribution of the response latency
known. These estimators are based on the following ideas:

• θ̂1 ignores the presence of the spontaneous activity, being defined as the minimum
of the observations of T ;

• θ̂2 is based on the average number of first observed spikes which are spontaneous
(hence is related to p);

• θ̂3 uses the assumption that no evoked spikes can be observed in [ts, ts + θ];

• θ̂4 is the maximum likelihood estimator (parametric estimator);

• θ̂5 is based on the moment estimator (parametric estimator);

• θ̂6 is the maximum likelihood estimator when assuming a wrong distribution family
for the response latency.

It is interesting to remark that the estimator θ̂1 is shown to go to zero as the number of
observations increases, suggesting the importance of taking the spontaneous activity into
account.

4.4.2 Paper V

The absolute response latency θ is deeply investigated in Paper IV. The aim of Paper
V is the investigation of the relative response latency Z. This can only be done under a
parametric approach, i.e. both the distribution families of the spontaneous and the evoked
activity are known. Paper IV shows that the MLE provides the best estimate of θ. There-
fore, the MLE represents the natural approach for inference about the parameters of Z.
Throughout the paper, the spontaneous activity is Poissonian, while the relative response
latency is assumed to be exponential, gamma or inverse Gaussian distributed. The error
in the estimation of the distribution of R is measured by the relative integrate absolute
error. It is defined as the integral of the absolute difference between the distribution of
R and its estimation, divided by the mean of R. If the spontaneous activity is ignored,
i.e. R is estimated as T , then the error is given by 1 − E[T ]/E[R]. Since E[T ] ≤ E[R] by
definition of T , this error is null only if the spontaneous activity is not present.
The authors are aware that no experimental evidence is available about the distribution
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of the response latency. To supply this lack of information, model control or model selec-
tion can be applied. Interestingly, mean and variance of R are always well estimated, even
when a wrong distribution family for R is assumed. This happens because there exists an
infinite number of suitable sets of parameter values of the distribution of R yielding the
same mean and variance. This is particularly important, since those quantities, together
with the value of p, can give useful information to neuroscientists about the response of
neurons to the stimulus.
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5
Perspective

Throughout this dissertation, neural network connectivity and response latency are dis-
cussed, and different models and statistical analyses are proposed. Some of the open prob-
lems arising from my work are here shortly discussed.

5.1 Future work suggested by Paper I-III

5.1.1 From Paper I

In Paper I, a multivariate jump process is proposed as a model for describing the neural
network connectivity and an opportune firing scheme is introduced. The shown conver-
gence results have allowed to switch to its limiting process, which is a multivariate OU
process. A preliminary description of the model and an illustration of its features have
been given. A relevant future work would be a detailed characterization of the process,
e.g. investigating the relation between the dependence structure of spike trains and the
choice of the parameter values of the OU. This could be done applying the copula method
proposed in Paper II.
Another interesting work would be to propose a model with also direct connections between
neurons, e.g. jumps of the membrane potentials in presence of spikes.

5.1.2 From Paper II

In Paper II, a non-parametric method for catching dependencies between pairs of neurons
in a neural network with k neurons is proposed. A preliminary illustration on different
sets of simulated data is discussed. At the moment, a statistical analysis of the method is
missing. In particular, it would be relevant to improve the analysis of its reliability. That
is, to understand how often the method does not recognize dependencies or independence
on simulated data. This could be done simulating pairs of spike trains with a given de-
pendence structure, performing the statistical test H0 : τ = 0, checking whether the test
result agrees with the structure and repeating this procedure several times. Once that the
method has been validated, it would be useful to apply on experimental data.

27
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It would also be interesting to perform a statistical comparison with other existing tech-
niques, i.e. crosscorrelograms, Cox method and those described in [34], to highlight their
advantages and drawbacks. To help neuroscientists in the analysis of real data, it would
be of paramount importance to implement a software with all the techniques.

Finally, since neurons belong to cell assemblies with thousands of other neurons, a natural
extension of the proposed method would be to consider d-dimensional copulas, for 2 <
d ≤ k, for the detection of dependencies between groups of d neurons in a neural network
with k neurons.

5.1.3 From Paper III

In Paper III, the bivariate FPT problem for a bivariate Wiener process with constant
drifts and non-diagonal covariance matrix in presence of absorbing boundaries is solved.
For other Gauss-Markov processes, the joint FPT distribution is not explicitly available
and a numerical method is then proposed. An illustration of the approximated joint FPT
distribution for a bivariate OU process is given. First, it would be interesting to characterize
this scenario, investigating the relation between the approximated joint FPT distribution
and the parameter values of the OU. Second, it would be relevant to extend the bivariate
FPT problem to the case of non-absorbing boundary conditions, considering e.g. diffusion
processes or models where each component is a renewal process.

5.2 Future work suggested by Paper IV-V

5.2.1 Use of the entire spike train

In Paper IV and V, a shortcoming of the analysis is the use of only the first spike after
the stimulus onset, ignoring the further information carried out by the following spikes. It
would be relevant to extend the developed methods for considering the entire spike train.
It can be discussed if it is biologically correct to assume that the spontaneous and the
evoked activities are independent and can be distinguished once the stimulus is applied.
Consider two independent neurons A and B, with A spontaneously firing and B silent,
and apply a stimulus on B. Then, B reacts to the stimulus and an evoked firing activity
is observed. If the spike trains are simultaneously recorded from two neurons which are
located very close in the cortex, it may be difficult to distinguish whether a recorded spike
comes from A or B. What is observed is a pooled spike train, obtained overlapping the two
single spike trains, as illustrated in Fig. 5.1. In this experimental set up, the spontaneous
activity can be estimated through the spikes before the stimulus onset. Then, the response
latency may be investigated considering all spikes following the stimulation, filtering out
the spontaneous firing from the pooled train. The next step would be to apply the resulting
method on real data.
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0 ts time

spontaneous

not observable

evoked

not observable

observed

Figure 5.1: Schematic description of the experimental trial with two neurons A and
B. Spikes are indicated with vertical dashes. At time 0 the measurement starts and
the spontaneous spikes from neuron A are recorded. Neuron B is silent up to time
ts, when a stimulus is applied to it. For an observer, the two spike trains cannot be
distinguished. What is observed is their pooled version, obtained by the overlapping
of the two trains.

5.2.2 Statistical test H0 : θ = 0

Besides the estimation of the absolute response latency θ, it is biologically relevant to
perform a statistical test to decide whether the response to the stimulus is or not instan-
taneous. This represents a challenging task, since θ = 0 belongs to the boundary of the
parameter space where the delay θ is defined. Therefore, suitable asymptotic properties
for the test statistics must be investigated, following [70]. A natural choice may be to
consider a parametric likelihood ratio-test. As a further step, since there are no exper-
imental evidence about the distribution of the response latency, it would be extremely
useful for neuroscientists to provide a non-parametric test. The method must be validated
on simulated data and thereafter applied on experimental data.

5.2.3 Response latency for IF models

Model the spontaneous firing activity of a neuron through a renewal Wiener process X
with constant drift µ1 > 0 and coefficient diffusion σ2

1, with σ1 > 0. After a spike, the
reset of the membrane potential can be either instantaneous or shifted. At a given time
ts, a stimulus is applied. Then, the membrane potential is described as a Wiener process
Y with drift µ2 > 0 and coefficient diffusion σ2

2, with σ2 > 0. What is the distribution
of the first spike following ts? Is it possible to estimate µ2 and σ2

2, assuming µ1 and σ2
1

previously estimated from the spontaneous activity up to the stimulus onset? A schematic
representation is reported in Fig. 5.2.
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ts TXYTX
(1)

TX
(2)

B

0

X X

X Y

Figure 5.2: Schematic illustration of the single experimental trial. At time 0, the
measurement starts. The membrane potential is described as a renewal Wiener pro-
cess X with drift µ1 > 0 and diffusion coefficient σ2

1, with σ1 > 0. The ith FPT

of X through a boundary B is denoted by T
(i)
X . At time ts, a stimulus is applied.

The membrane potential is now described as a Wiener process Y with drift µ2 > 0
and diffusion coefficient σ2

2, with σ2 > 0. Here TXY denotes the FPT of the mixture
process of X and Y following the stimulus onset.
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1 Introduction

Membrane potential (MP) dynamics of neurons are determined by the arrival
of excitatory and inhibitory inputs that increase or decrease the membrane
polarization. An action potential, or spike, is a short-lasting event in which
the electrical MP of a cell rapidly rises and falls. This is commonly modeled
assuming that a spike is generated whenever the MP exceeds a threshold level.
After a spike, there is a time interval, called absolute refractory period, during
which the neuron cannot fire, even in presence of strong stimulation (Tuckwell,
1988). The neuronal code is related to the times when each neuron fires. The
collection of spike epochs of a neuron defines a spike train, and the set of spike
trains of groups of neurons is commonly visualized through raster displays.
Mathematical models of single neuron dynamics have played an important
role for the understanding of neural coding. Different models account for dif-
ferent levels of complexity in the description of the neuronal MP dynamics. A
reasonable compromise between mathematical tractability and biological real-
ism characterizes leaky-integrate-and-fire models. They extend the integrate-
and-fire model, proposed by Gerstein and Mandelbrot (1964). They modeled
the MP of a neuron through a random walk converging to a Wiener process
through a diffusion limit. The intertimes between two consecutive spikes, called
Interspike Intervals (ISIs), were modeled as first passage times (FPTs) of the
Wiener process through a suitable threshold. Whenever a neuron fired, its MP
was reset to its resting potential and the process restarted. This allowed to
obtain a renewal process with independent and identically distributed ISIs.
For modeling of the MP dynamics, Stein (1965) proposed to use a a birth
and death process. The novelty of his model was to account for the sponta-
neous decay of the MP toward its resting value in absence of incoming inputs.
Due to the presence of a leakage constant, this was the first LIF model. How-
ever, the study of the FPT properties for birth and death processes presents
mathematical difficulties. For this reason, diffusion approximations of the jump
processes were proved (Capocelli and Ricciardi, 1971; Kallianpur and Wolpert,
1987; Lansky, 1984; Ricciardi, 1977). Then the resulting models were used for
different studies, e.g. the analysis of the role of the noise in neural transmis-
sion, the investigation of stochastic resonance phenomena or problems related
with the estimation of the response of a neuron (Burkitt, 2006a,b; Lansky and
Ditlevsen, 2008; Sacerdote and Giraudo, 2013; Segundo, 2000).

Nowadays simultaneous recordings from many neurons are possible. How-
ever, there have been few attempts for developing mathematical models for the
description of neural networks. Moreover, the existing ones either are of sim-
ulation type, e.g. Izhikevich and Edelman (2007), or oversimplify the features
of the single units, to focus on the interactions in the networks, e.g. Alberverio
and Cebulla (2008); Watts and Strogatz (1998).
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In absence of external inputs, neurons are characterized by spontaneous
generation of spikes. The aim of this paper is to propose a multivariate stochas-
tic LIF model to describe the spontaneous activity of neural networks. The
model avoids oversimplifications of the single neuron dynamics, considers re-
fractory periods of each component and is able to reproduce different features
of neural networks. Analytical methods can be developed for its study, opening
interesting mathematical problems, as already happened for one-dimensional
models.

Mimicking LIF models for the description of single neurons dynamics, in
Section 2 we propose a multivariate generalization of the Stein model for the
sub-threshold dynamics of the neurons. The presence of common inputs be-
tween clusters of neurons determines dependencies between their dynamics. To
reduce the mathematical complexity of the proposed jump processes, in Sec-
tion 3 we prove its convergence to a multivariate Ornstein-Uhlenbeck (OU)
diffusion process. This limit procedure is biologically meaningful when the
neuron receives frequent inputs of very small amplitude.

In Section 4, we describe the firing mechanism for the neural network,
both ignoring and considering the refractory periods. In Section 5, the weak
convergence of the marked point process determined by the crossing times of
the multivariate firing Stein model to that determined by the crossing times of
its diffusion approximation is shown. More generally, we prove that this result
holds for any underlying jump process which converges weakly to a diffusion
process.

Due to the presence of common inputs between neurons, both the jump
and the diffusion limit processes have dependent components, which deter-
mine dependent spike trains, i.e. point processes. Here we limit our study to
the multivariate OU model, describing its features and the role of the refrac-
tory period, in Section 6. Using simulated data, we show that the proposed
model reproduces inhibition, excitation, synchronism or silencing of neurons.
Future studies may allow the introduction of analytical tools to complete the
analysis of the model.
The mathematical (Sections 3 and 5) and the biological modeling parts (Sec-
tion 2 and 4) can be read independently from each other, depending on the
interest and the scientific background of the reader.

2 Non-firing neural network model

We propose a model for the spontaneous activity of a neural network with
k neurons, for k ∈ N. Their MP dynamics are determined by the arrival
of excitatory or inhibitory postsynaptic potentials (PSPs). We model these
inputs of constant amplitude a > 0, b < 0 through Poisson processes N+

j ,N−j ,

for 1 ≤ j ≤ k and M+
A , M−A , for A ∈ A. The inputs N+

j (intensity αj) and

N−j (intensity βj) are specific for neuron j, while M+
A (intensity λA) and M−A

(intensity ωA) are common to clusters of neurons belonging to a set A. Here A
denotes the set of all subsets of {1, . . . , k} consisting of at least two elements.
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In absence of incoming inputs, the MP of each neuron decays spontaneously
with time constant θ > 0. For simplifying the notation, throughout the paper
we assume θ to be the same in all neurons. This is a common hypothesis since
the resistance properties of the neuronal membrane are similar for different
neurons (Tuckwell, 1988).

To model the dynamics of the MPs of the neurons of the network, we
introduce the process X = {(X1, . . . , Xk)(t); t ≥ 0}, originated in the starting
position x0j ∈ R, 1 ≤ j ≤ k. Each component Xj , and hence each MP, verifies

Xj(t) = x0j −
∫ t

0

Xj(s)

θ
ds+ δj

[
aN+

j (t) + bN−j (t)
]

+
∑

A∈A
1{j∈A}δj,A\j

[
aM+

A (t) + bM−A (t)
]
, (1)

for 1 ≤ j ≤ k, δj , δj,A\j ∈ {−1, 0, 1}. When k = 1, X is a Stein model. For this
reason, we call X multivariate Stein model and eq. (1) Stein equation of the
jth component.
The different sign of a and b allows to distinguish between excitatory and
inhibitory PSPs. The apexes + and − denote excitatory and inhibitory inputs,
respectively. However, an input may also have opposite or no effects on specific
neurons. This is modeled as follows.We choose δj,A\j = 0 if the input has no
effect on neurons in A or δj,A\j = −1 if the same input has opposite effect on
neuron j ∈ A. We similarly proceed for δj , which only acts on neuron j. The
presence of M+ (or M−) allows simultaneous jumps for the corresponding
set of neurons A, and determines a dependence between their MP evolutions.
We call cluster dynamics this kind of structure and we limit our paper to
this type of dependence between neurons. An example of a neural network
with four neurons and dependence due to cluster dynamics is reported in
Fig. 1. Note that (1) might be rewritten in a more compact way, summing
the Poisson processes with the same jump amplitudes. However, we prefer to
distinguish between N and M , to highlight their different role in determining
the dependence structure.

3 Weak convergence of the multivariate Stein to the OU process

In the literature (Kallianpur and Wolpert, 1987; Lansky, 1984; Ricciardi, 1977),
continuous limits of the univariate Stein process have been proposed to model
single neurons receiving frequent and small inputs, e.g. the Purkinje cells.
This allowed to replace the Stein with its unidimensional diffusion approxi-
mation. Lansky (1984) proved that a sequence of Stein processes converges
weakly to an OU process when the input amplitudes decrease to zero and
their frequencies diverge in a suitable way. Mimicking the one-dimensional
case, we introduce a sequence of multivariate Stein processes (Xn)n≥1, with
Xn = {(X1;n, . . . , Xk;n)(t); t ≥ 0} originated in the starting position x0;n =
(x01;n, . . . , x0k;n). To do that, we consider a sequence of independent Poisson
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1 2 3 4

− −

−−

Fig. 1 Schematic representation of a neural network with four neurons. Excitatory inputs
act on each neuron, i.e. δj = 1, for 1 ≤ j ≤ 4. Moreover, common inputs act on two clusters
of neurons: {1, 2, 3, 4} and {3, 4} On cluster A = {1, 2, 3, 4}, inputs are excitatory on neurons
1 and 2, i.e. δ1,234 = δ2,134 = 1, and inhibitory on neurons 3 and 4 (represented by a −),
i.e δ3,124 = δ4,123 = −1. On cluster A = {3, 4}, inputs are inhibitory on both neurons, i.e.
δ3,4 = δ4,3 = −1.

processes N+
j;n (intensity αj;n), N−j;n (intensity βj;n) for 1 ≤ j ≤ k, M+

A;n (in-

tensity λA;n), M−A;n (intensity ωA;n) for A ∈ A. Then, for each 1 ≤ j ≤ k, we
define Xj;n(t) as

Xj;n(t) = x0j;n −
∫ t

0

Xj;n(s)

θ
ds+ δj

[
anN

+
j;n(t) + bnN

−
j;n(t)

]

+
∑

A∈A
1{j∈A}δj,A\j

[
anM

+
A;n(t) + bnM

−
A;n(t)

]
. (2)

For each A ∈ A and

αj;n →∞, βj;n →∞, λA;n →∞, ωA;n →∞, (3)

an → 0, bn → 0, (4)

we assume that the rates of the Poisson processes fulfill

µj;n = αj;nan + βj;nbn → µj , µA;n = λA;nan + ωA;nbn → µA, (5)

σ2
j;n = αj;na

2
n + βj;nb

2
n → σ2

j , σ2
A;n = λA;na

2
n + ωA;nb

2
n → σ2

A, (6)

as n→∞. A possible parameter choice satisfying these conditions is

an = −bn =
1

n
(7)

αj;n = (µj +
σ2
j

2
n)n, βj;n =

σ2
j

2
n2, 1 ≤ j ≤ k (8)

λA;n = (µA +
σ2
A

2
n)n, ωA;n =

σ2
A

2
n2, A ∈ A. (9)
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To prove the weak convergence of Xn, we first define a new process Zn =
{(Z1;n, . . . , Zk;n)(t); t ≥ 0}, simpler than Xn, which converges to a Wiener
process W = {(W1, . . . ,Wn)(t); t ≥ 0}, such that Xn is a continuous functional
of Zn. Each component Zj;n, for 1 ≤ j ≤ k, is defined by

Zj;n(t) = −Γj;nt+ δj
[
anN

+
j;n(t) + bnN

−
j;n(t)

]

+
∑

A∈A
1{j∈A}δj,A\j

[
anM

+
A;n(t) + bnM

−
A;n(t)

]
,

where Γj;n is given by

Γj;n = δjµj;n +
∑

A∈A
1{j∈A}δj,A\jµA;n, 1 ≤ j ≤ k.

The characteristic function of Zn(t), is:

φZn(t)(u) = E


i exp





k∑

j=1

ujZj;n(t)






 , (10)

where u = (u1, . . . , uk) ∈ Rk. We can write:

k∑

j=1

ujZj;n(t) =
k∑

j=1

uj
[
−Γj;nt+ δj

(
anN

+
j;n(t) + bnN

−
j;n(t)

)]

+
∑

A∈A
GA

(
anM

+
A;n(t) + bnM

−
A;n(t)

)
, (11)

where
GA =

∑

j∈A
ujδj,A\j .

Plugging (11) in (10) and since the processes in (11) are independent and
Poisson distributed for each n, we get the characteristic function

φZn(t)(u) = exp{tρn(u)},

where

ρn (u) = −i
k∑

j=1

ujΓj;n +

k∑

j=1

αj;n
(
eiujδjan − 1

)
+

k∑

j=1

βj;n
(
eiujδjbn − 1

)

+
∑

A∈A
λA;n

(
eiGAan − 1

)
+
∑

A∈A
ωA;n

(
eiGAbn − 1

)
.

In Jacod and Shiryaev (2002), convergence results are proved for ρn(u) given
by

ρn (u) = iu · bn −
1

2
u · cn·u+

∫

Rk\0

(
eiu·x − 1− iu · h (x)

)
νn (dx) ,
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(see Corollary II.4.19 in Jacod and Shiryaev (2002)), where u · v =
∑k
j=1 ujvj

and u · d · v =
∑k
j,l=1 ujdjlvl. The vector bn, the matrix cn and the Lévy

measure νn are known as characteristic triplet of the process. Here h : Rk → Rk
is an arbitrary truncation function that is the same for all n, is bounded with
compact support and satisfies h (x) = x in a neighborhood of 0. In our case,
the triplet is

1. νn: finite measure concentrated on finitely many points,

νn ({x : xj = δjan}) = αj;n, (1 ≤ j ≤ k, δj 6= 0) ;

νn ({x : xj = δjbn}) = βj;n, (1 ≤ j ≤ k, δj 6= 0) ;

νn
({

x : xj = δj,A\jan
}

for j ∈ A
)

= λA;n,
(
A ∈ A, δj,A\j 6= 0

)
;

νn
({

x : xj = δj,A\jbn
}

for j ∈ A
)

= ωA;n,
(
A ∈ A, δj,A\j 6= 0

)
.

All the non-specified xj are set to 0, i.e. {x : xj = δjan} = {x : xj = δjan,
xl = 0 for l 6= j}. Since an → 0 and bn → 0 when n is sufficiently large, νn
is concentrated on a finite subset of the neighborhood of 0, where h (x) =
x. Without loss of generality, we may therefore, and shall, assume that
h (x) = x.

2. cn = 0.
3. bn = −Γn +

∫
h (x) νn (dx)=0. Indeed, using h (x) = x, we have

bj;n = −Γj;n + (αj;nδjan + βj;nδjbn)

+
∑

A∈A
1{j∈A}

(
λA;nδj,A\jan + ωA;nδj,A\jbn

)

= 0.

Having provided the triplet (bn, cn, νn), we are able to prove the following

Lemma 1 Under conditions (3), (4), (5), (6), Zn converges weakly to a mul-
tivariate Wiener process W with mean 0 and covariance matrix Ψ , with ele-
ments

ψjl = 1{j=l}δ
2
jσ

2
j +

∑

A∈A
1{j,l∈A}δj,A\jδl,A\lσ

2
A, 1 ≤ j, l ≤ k (12)

Proof Use Theorem VII.3.4 in Jacod and Shiryaev (2002). In our case, the
weak convergence of Zn to W follows if

i. bn → 0;

ii. c̃jl;n :=
∫
xjxl νn (dx)→ ψjl for 1 ≤ j, l ≤ k;

iii.
∫
g dνn → 0 for all g ∈ C1

(
Rk
)
;

iv. Bn
t = tbn and C̃n

t = tc̃n converge uniformly to Bt and C̃t respectively, on
any compact interval [0, t].
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Here C1

(
Rk
)

is defined in VII.2.7 in Jacod and Shiryaev (2002). Since Bn
t =

tbn, the uniform convergence is evident. Furthermore, C̃n
t = tc̃n converges

uniformly provided that condition [ii] holds.
To prove [ii], we note that

c̃jl;n =

k∑

i=1

(
1{i=l=j}αj;nδ

2
ja

2
n + 1{i=l=j}βj;nδ

2
j b

2
n

)

+
∑

A∈A
1{j,l∈A}

(
λA;nδj,A\jδl,A\la

2
n + ωA;nδj,A\jδl,A\lb

2
n

)

= 1{j=l}δ
2
jσ

2
j;n +

∑

A∈A
1{j,l∈A}δj,A\jδl,A\lσ

2
A;n. (13)

Then, c̃jl;n → ψjl follows from the convergence assumptions (3), (4), (5), (6).
Using Theorem VII.2.8 in Jacod and Shiryaev (2002), we may show [iv] con-
sidering g ∈ C3

(
Rk
)
, i.e. the space of bounded and continuous function

g : Rk → R such that g(x) = o
(
|x|2

)
as x → 0. Here, |x| is the Euclidean

norm. For g ∈ C3

(
Rk
)

and ε > 0, we have |g(x)| ≤ ε |x|2 for |x| sufficiently
small. Then ∣∣∣∣

∫
g dνn

∣∣∣∣ ≤ ε
∫
|x|2 dνn → ε

k∑

i=1

ψii

by (13), and
∫
g dνn → 0 follows. Indeed, since W is continuous, the Lévy

measure ν for W is the null measure.

We are now able to prove the following

Theorem 1 Let x0;n be a sequence in Rk converging to y0 = (y01, . . . , y0k).
Then, the sequence of processes Xn defined by (2) with rates fulfilling (5), (6),
under conditions (3), (4), converges weakly to the multivariate OU diffusion
process Y given by

Yj(t) = y0j +

∫ t

0

[
−Yj(s)

θ
+ Γj

]
ds+Wj(t), 1 ≤ j ≤ k, (14)

where Γj is defined by

Γj = δjµj +
∑

A∈A
δj,A\jµA, 1 ≤ j ≤ k, (15)

and W is the k-dimensional Wiener process with mean 0 and covariance ma-
trix Ψ defined in (12).

Proof The jth component of Xn can be rewritten in terms of the j-th compo-
nent of Zn as

Xj;n(t) = x0j;n +

∫ t

0

[
−Xj;n(s)

θ
+ Γj;n

]
ds+ Zj;n(t), 1 ≤ j ≤ k. (16)
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Solving it, we get

Xj;n(t) = x0j;ne
− t
θ + Zj;n(t)− 1

θ

∫ t

0

e−(t−s)/θZj;n(s)ds, 1 ≤ j ≤ k.

Hence, Xn is a continuous functional of both x0;n and Zn. Therefore, due
to the continuous mapping theorem (Lindvall, 2002), the weak convergence of
x0;n (for hypothesis) and Zn ( from Lemma 1) implies the weak convergence of
Xn. Moreover, (16) guarantees that the limiting process of Xn is that defined
by (14).

Remark 1 Theorem 1 also holds when (x0;n)n≥1 is a random sequence con-
verging to a random vector y0.

Denote E
d
= F two random variables that are identically distributed and

consider the space Dk = D
(
[0,∞[,Rk

)
, i.e. the space of functions f : [0,∞)→

Rk that are right continuous and have a left limit at each t ≥ 0. The following
corollary can be introduced:

Corollary 1 If Xn converges weakly to Y , there exists a probability space

(Ω,F ,P) and random elements
(
X̃n

)∞
n=1

, Ỹ in the Polish space Dk, defined

on (Ω,F ,P) such that Xn
d
= X̃n,X

d
= Ỹ and X̃n → Ỹ a.s. as n→∞.

Proof From its definition, Xn belongs to Dk. This space is a Polish space with
the Skorohod topology (Lindvall, 2002). Then, the corollary follows from the
previous theorem, applying the Skorohod’s representation theorem.

4 Firing neural network model

The spiking mechanism of a single neuron is modeled with the introduction of a
firing threshold B: a neuron releases a spike when its MP attains the threshold
value. In absence of refractory period, the MP is instantaneously reset to its
resting value r0 ∈ (−∞, B) and the dynamics restarts. The ISIs are modeled as
FPTs of the process through the boundary. Since the ISIs of the single neuron
are independent and identically distributed, the underlying process is renewal.
The firing mechanism for single neurons has also been defined in presence of
absolute refractory periods ∆ > 0. The MP is reset to its resting value r0
after a time delay ∆ and then the MP evolution restarts. During the absolute
refractory period, spikes cannot occur. The underlying process describing the
MP evolution is still renewal and then the intertimes between two consecutive
resets are independent and identically distributed.

Here we extend the single neuron firing mechanism, defining a firing mech-
anism of networks of k neurons, both ignoring the absolute refractory period,
i.e. ∆ = 0, or taking it into account, i.e. ∆ > 0. In both cases, we denote
r0j < Bj the resting potential of the jth neuron of the network and we use
the multivariate Stein model to describe the MP dynamics. A schematic illus-
tration is reported in Fig. 2.
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Firing mechanism of neural networks for ∆ = 0. Consider a neural network
described through a multivariate Stein model. A neuron j, 1 ≤ j ≤ k re-
leases a spike when the MP attains its boundary level Bj . Whenever it fires,
its MP is instantaneously reset to its resting potential r0j and then its dy-
namics restart. Meanwhile, the other components are not reset but continue
their evolutions. Since the inputs are modeled by stationary Poisson processes,
the ISIs within each neuron are independent and identically distributed. Thus
the firing single neuron mechanism holds for each component, which is de-
scribed as a one-dimensional renewal Stein model. The firing neural network
model is described by a multivariate process of MPs behaving as a multivari-
ate Stein process between two consecutive FPTs. For this reason, we call this
model, firing multivariate Stein model. Note that the ISIs of the multivariate
processes are neither independent nor identically distributed. We identify the
spike epochs of the jth component of the Stein process, as the FPT of Xj,n

through the boundary Bj , with Bj > r0j . The set of spike trains of all neurons
corresponds to a multivariate point process with events given by the spikes
and we call it multivariate Stein point process. An alternative way of consider-
ing the simultaneously recorded spike trains is to overlap them, marking each
spike with the component which generates it. Thus, we obtain a univariate
point process with marked events, that we call marked Stein point process.
Note that the multivariate Stein model allow the presence of simultaneous
firings. They may happen when common inputs determine the simultaneous
crossings of the respective boundaries of two or more components of the mul-
tivariate firing Stein model.

Firing mechanism of neural networks for ∆ > 0. The only difference with
respect to the previous case is that whenever a neuron j, 1 ≤ j ≤ k fires, its
MP returns to a given resting potential r0j after a time ∆. That is, the reset
is not instantaneous but shifted a delay ∆, during which neuron j cannot fire.
During the absolute refractory period of neuron j, the other neurons can fire.
Also in this case, simultaneous spikes of two or more neurons can be observed.

5 Weak convergence of the marked point processes

In Section 3 we performed a diffusion limit on a sequence of multivariate Stein
models to obtain a multivariate OU model describing the dynamics of a neural
network in absence of spiking mechanism. This procedure was motivated by
the difficulty in developing mathematical tools for the study of multivariate
jump processes. The same problem arises for the study of the firing multi-
variate Stein model, which is denoted by X∗n and is a k-dimensional Markov
process, when ∆ = 0, and the related marked Stein point process. For this
reason, we introduce the firing multivariate OU model, denoted by Y ∗, which
is determined by the multivariate OU process as done in Section 4 for the
Stein process. Similarly, we call multivariate OU point process and marked
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Fig. 2 Illustration of the firing bivariate Stein model. Whenever a component reaches its
threshold, it is reset to its resting value, either istantaneously (Top figure) or with a time
delay ∆ (Bottom figure), called refractory period, during which that component cannot have
a second spike. Here τi,n denotes the ith FPT of the process, obtained in the component
ηi,n. Note that simultaneous spikes are observed in τ4,n.

OU point process the processes whose events are the crossings of Y ∗ through
the boundary B. Note that also Y ∗ is a k-dimensional Markov process. The
aims of this section are to show the convergence of a sequence of multivariate
firing Stein models to a multivariate firing OU model and the convergence of
the corresponding univariate marked point processes. Four main difficulties
arise:

– due to the reset of the firing component, the multivariate firing OU is not
a diffusion because it is not continuous;

– the ISIs of each component are independent and identically distributed,
but they depend on the ISIs of other components;

– after a spike, the firing component j is reset to r0j and restarts its evolution,
while the other components start from random positions;

– assume ∆ > 0. During the absolute refractory period of neuron j, the other
neurons may release spikes.

These problems suggest to prove the convergence results in suitable time win-
dows, which change depending on whether ∆ = 0 or ∆ > 0. For mathematical
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convenience, the convergence of the point processes is proved for the marked
point process instead of those multivariate.

5.1 Definition of the involved processes

We define X∗n introducing a sequence
(
X

(m)
n

)
m≥1

of multivariate Stein pro-

cesses, withX
(m)
n defined on the mth time window. Set X

(1)
n ≡ Xn. Condition-

ally on
(
X

(1)
n , . . . ,X

(m)
n

)
, X

(m+1)
n is given by (2) with x0j;n random value de-

termined by
(
X

(1)
n , . . . ,X

(m)
n

)
and with the Poisson processes N±j;n and M±

A;n

stochastically independent of
(
X

(1)
n , . . . ,X

(m)
n

)
, for m ≥ 1. Similarly, we define

Y∗ by introducing a sequence
(
Y(m)

)
m≥1 of multivariate OU processes. Set

Y(1) ≡ Y. Conditionally on
(
Y(1), . . . ,Y(m)

)
, Y(m+1) is given by (13) with

y0j random value determined by
(
Y(1), . . . ,Y(m)

)
and with the k-dimensional

Brownian motion (W1, . . . ,Wk) independent of
(
Y(1), . . . ,Y(m)

)
, for m ≥ 1.

Below we shall briefly say that X
(m+1)
n (or Y(m+1)) is obtained by conditional

independence and then specify the initial value x0j;n (or y0j).

We denote Tj,n the spike epoch of the jth component of the Stein process,
and we identify it with the FPT of Xj;n through the boundary Bj , with
Bj > x0j;n. That is

Tj,n = TBj (Xj;n) = inf{t > 0 : Xj;n(t) > Bj}.

Furthermore, we denote τ1,n the minimum of the FPTs of the multivariate
Stein process Xn, i.e.

τ1,n = min (T1,n, . . . , Tk,n) .

Finally we denote η1,n ∈ {1, . . . , k} the discrete random variable specifying
which component of the Stein process reaches the boundary at time τ1,n.
Similarly, we define Tj , τ1, η1 for the process Y .
Now we are able to define recursively X∗n and Y ∗ on the successive time
windows m ≥ 1, and to formally define the multivariate firing mechanism. A
schematic illustration of the involved random variables is given in Fig. 2.

Firing mechanism of neural networks for ∆ = 0

Step m = 1. Define X∗n(t) = Xn(t) on the interval [0, τ1,n[ and Y ∗(t) = Y (t) on [0, τ1[,
with resting potential X∗n(0) = r0 = Y ∗(0). It is assumed that only one
neuron fires at time τ1,n which is sufficient for the asymptotic n → ∞.
Then, if η1,n = j, define X∗i,n(τ1,n) = Xi,n(τi,n) if i 6= j or r0j if i = j. If
η1 = j, define Y ∗i (τ1) = Yi(τ1) if i 6= j or r0j if i = j.
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Step m = 2. If η1,n = j, obtain X
(2)
n by conditional independence from X

(1)
n , with initial

value x0;n = X∗n (τ1,n). Similarly, if η1 = j, obtain Y(2) by conditional
independence from Y(1), with initial value y0 = Y∗ (τ1). Then, define

T
(2)
j,n , τ2,n, η2,n from X

(2)
n and T

(2)
j , τ2, η2 from Y (2), for m = 1. Define

X∗n(t) = X
(2)
n (t− τ1,n) on the interval [τ1,n, τ1,n+ τ2,n[ and Y ∗(t) = Y (t−

τ1) on [τ1, τ1 + τ2[. Then, if η2,n = j, define X∗i,n (τ1,n + τ2,n) = X
(2)
i,n (τ2,n)

if i 6= j or r0j if i = j. Similarly, if η2 = j, define Y ∗i (τ1 + τ2) = Y
(2)
i (τ2) if

i 6= j or r0j if i = j.

Step m > 2. If ηm,n = j, obtain X
(m)
n by conditional independence from X(m−1),

with initial value x0;n = X∗n(
∑m−1
l=1 τl,n). Similarly, if ηm = j, obtain

Y (m) by conditional independence from Y (m−1), with initial value y0 =

Y ∗(
∑m−1
l=1 τl). Define, T

(m)
j,n , τm,n, ηm,n from X

(m)
n and T

(m)
j , τm, ηm from

Y (m) as above. Define X∗n(t) = X
(m)
n (t −∑m−1

l=1 τl,n) for t ∈ [
∑m−1
l=1 τl,n,∑m

l=1 τl,n[ and Y ∗(t) = Y(m)(t − ∑m−1
l=1 τl) for t ∈ [

∑m−1
l=1 τl,

∑m
l=1 τl[.

Then, if ηm,n = j, define X∗i,n (
∑m
l=1 τl,n) = X

(r)
i,n (τm,n) if i 6= j or r0j if

i = j. Similarly, if ηm = j, define Y ∗i (
∑m
l=1 τl) = Y

(m)
i (τm) if i 6= j or r0j

if i = j.

Firing mechanism of neural networks for ∆ > 0. Also in this scenario, the
construction of X∗n and Y ∗ is recursive, even if more complicated for the
shifted reset of the firing component j, 1 ≤ j ≤ k. During the absolute refrac-
tory period, neuron j cannot fire, while several spikes from the other neurons
can be observed. The process X∗n needs to be specified on three different time
windows, namely [τi,n, τi+1i,n[, [τj,n, τi,n + ∆[, [τi,n + ∆, τj,n[, with i ≤ j and
likewise for Y ∗. Then X∗n (Y ∗) is constructed considering which component
is firing, i.e. ηi,n (ηi), when is firing, i.e. τi,n (τi), what is the type of time
interval where the process is observed and what is the corresponding starting
position.
As previously observed, for simplifying the notation, the refractory period ∆
is considered fixed and equal for all neurons. But this choice is not a shortcom-
ing, since the proofs can be extended to the case refractory periods to depend
on the neurons, e.g. considering ∆ηi,n and ∆ηi .

5.2 Main results

To show the weak convergence of the multivariate firing processes and their
related marked point processes, proceed as follows. Consider the spaces D1

and C1 = C ([0,∞[ ,R) and for y◦ ∈ C1, define the hitting time

T̃B (y◦) = inf {t > 0 : y◦(t) = B} ,

and introduce the sets

H =
{
y◦ ∈ C1 : TB (y◦) = T̃B (y◦)

}
,
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and
Hk =

{
y◦ ∈ Ck : TBj

(
y◦j
)

= T̃Bj
(
y◦j
)

for all 1 ≤ j ≤ k
}
.

The weak convergence of the multivariate models and their point processes
corresponds to the weak convergence of the finite dimensional distributions
of (τn; X∗n(τn),ηn) to (τ ; Y∗(τ ),η), where τn = (τ1,n, . . . , τl,n),X∗n(τn) =
(X∗n(τ1,n), . . . ,X∗n(τl,n)),ηn = (η1,n, . . . , ηl,n), τ = (τ1, . . . , τl),
Y∗(τ ) = (Y∗(τ1), . . . ,Y∗(τl)) and η = (η1, . . . , ηl), for any l ∈ N. The conver-
gence does not follow directly from the convergence of the processes. Indeed,
the FPT is not a continuous function of the process. Remember that, due to
the reset of the firing components, the process Y ∗ is neither continuous nor a
diffusion.
To prove the main theorem, we need some lemmas.

Lemma 2 Let x◦n belong to D1 for n ≥ 1, and y◦ ∈ H with y◦(0) < B. If
x◦n → y◦ in D1, then TB (x◦n)→ TB (y◦).

Proof For each s < TB (y◦), supt≤s y
◦(t) < B and since x◦n → y◦ uniformly on

[0, s], also supt≤s x
◦
n(t) < B for n sufficiently large. This implies

lim inf
n→∞

TB (x◦n) ≥ s for all s < TB (y◦)

⇒ lim inf
n→∞

TB (x◦n) ≥ TB (y◦) .

Because y◦ ∈ H we can find a sequence tk such that tk ↓ TB (y◦) = T̃B (y◦)

(with y◦
(
T̃B (y◦)

)
= B) and y◦ (tk) > B for all k. Since x◦n (tk)→ y◦ (tk) for

all k, it follows that TB (x◦n) ≤ tk for n sufficiently large and therefore

∀k, lim sup
n→∞

TB (x◦n) ≤ tk

⇒ lim sup
n→∞

TB (x◦n) ≤ TB (y◦) .

Lemma 3 Let x◦n belong to Dk for n ≥ 1, y◦ ∈ Hk with y◦(0) < B. If
x◦n → y◦ in Dk, then

(τ◦1,n;x◦n(τ◦1,n); η◦1,n)→ (τ◦1 ;y◦(τ◦1 ); η◦1). (17)

Proof If η◦1 = j, then η◦1,n = j for n large enough, since marginally x◦i;n →
y◦i;n for each component 1 ≤ i ≤ k. By Lemma 2 and since y◦j (0) < Bj by
assumption, it follows

τ◦1,n = TBj (x
◦
j,n)→ TBj (y

◦
j ) = τ◦1 . (18)

Moreover, it holds

|x◦i,n(τ◦1,n)− y◦i (τ◦1 )| ≤ |x◦i,n(τ◦1,n)− y◦i (τ◦1,n)|+ |y◦i (τ◦1,n)− y◦i (τ◦1 )|, (19)

which goes to zero when n → ∞, for any 1 ≤ i ≤ k. Indeed, for each s < τ◦1 ,
the strong convergence of x◦i,n to y◦i on a compact time interval [0, s] implies
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the uniform convergence of x◦i,n to y◦i on [0, s]. Thus x◦i,n(τ◦1,n)− y◦i (τ◦i,n)→ 0.
From (18) and since y◦i is continuous, the second addend on the right hand
side of (19) goes to zero when n → ∞ for the continuous mapping theorem.
Using the product topology on Dk, we have that x◦n → y◦ in Dk if x◦j;n → y◦j;n
in D1, for each 1 ≤ j ≤ k (Whitt, 2002), implying the thesis.

Note that the firing component has not been reset. Now, we are able to prove
the main result on the weak convergence of the marked point process of X∗n
to that of Y ∗ in absence of refractory period:

Theorem 2 The finite dimensional distributions of (τn; X∗n(τn),ηn) converge
weakly to those of (τ ; Y∗(τ ),η).

Proof By definition of the multivariate firing Stein and OU models, we can
apply Theorem 1 and Corollary 1 in any of the time intervals between two
consecutive FPTs. Therefore, between two consecutive passage times, there

exist X̃∗n and Ỹ ∗ such that X̃∗n
d
= X∗n and Ỹ ∗

d
= Y ∗ and X̃∗n converges

strongly to Ỹ ∗. Define η̃j;n, τ̃j;n from X̃∗n and η̃j , τ̃j from Ỹ ∗ as done in Section
4. The theorem is proved if

(τ̃n; X̃∗n(τ̃n), η̃n)→ (τ̃ ; Ỹ∗(τ̃ ), η̃) a.s. (20)

holds. Assume that η̃m = j and thus η̃m,n = j for n sufficiently large, due to
the strong convergence of the processes. If (20) is true, we would have

τ̃m,n = TBj

(
X̃∗j,n

)
d
= TBj

(
X∗j,n

)
= τm,n, τ̃m = TBj

(
Ỹ ∗j
)
d
= TBj

(
Y ∗j
)

= τm,

since X̃∗n
d
= X∗n and Ỹ∗

d
= Y∗ between two successive FPTs, which would also

imply X̃∗n(τ̃m,n)
d
= X∗n(τm,n) and Ỹ∗(τ̃m)

d
= Y∗(τm), for any 1 ≤ m ≤ l and

l ∈ N, and thus the thesis.
To prove (20), we proceed recursively in each time window between two con-
secutive passage times:

Step m = 1. Since Ỹ ∗(0) < B by assumption, Lemma 3 holds if we show that Ỹ ∗ ∈ Hk.

By definition, Ỹ ∗ behaves like the multivariate OU diffusion Y in [0, τ̃1[.

It is well known that each one-dimensional diffusion component Ỹj will

cross the level Bj infinitely often immediately after T̃B(Ỹj), so that indeed

TBj (Ỹj) = T̃Bj (Ỹj), for all 1 ≤ j ≤ k. Hence Ỹ ∗ ∈ Hk. Then it holds
the convergence of the triplets (17) with not-reset firing components. This
convergence also holds if we reset the firing components. Indeed, assume
η̃1 = j and then η̃1,n = j for n large enough. Then

X̃∗j;n(τ̃1,n) = r0,η̃1,n = Ỹ ∗j (τ̃1), (21)

and thus X̃∗n(τ̃1,n)→ Ỹ ∗(τ̃1), implying (20).
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Step m = 2. On [τ̃1,n, τ̃1,n + τ̃2,n[, X̃∗n is obtained by conditionally independence from

X̃∗n on [0, τ̃1,n[, with initial value x̃0;n = X̃∗(τ1,n). Similarly, on [τ̃1, τ̃1+τ̃2[,

Ỹ ∗ in obtained by conditionally independence from Ỹ ∗ on [τ̃1, τ̃1+τ̃2[, with

initial value ỹ0 = Ỹ ∗(τ̃1). From Step m = 1, X̃∗(τ̃1,n) → Ỹ ∗(τ̃1); since

Ỹ ∗(τ̃1) < B and Ỹ ∗ ∈ Hk, Lemma 3 can be applied. Then, (20) follows
noting that (17) also holds if we reset the firing components η̃2,n and η̃2,
as done in (21).

Step m > 2 It follows mimicking Step 2.

Corollary 2 The weak convergence of the marked point processes hold in pres-
ence of refractory periods ∆ > 0.

Proof (Sketch) It can be proved mimicking the proof of Theorem 2. However,
two new mathematical difficulties arise. First, during the refractory period of
a component, there may happen several crossings of the other components.
Second, one has to show that X∗n(τn+∆) converges weakly to Y ∗(τ +∆), i.e.
there is a convergence of the processes with shifted reset. The first problem
is solved applying Lemma 3 in all the time windows, resetting the firing com-
ponent with a delay ∆ from its spike epoch. The second is solved replacing τ·
with τ· +∆ in (19) and using the continuous mapping theorem on τ· +∆.

Remark 2 The results in this Section are not built ad-hoc for the multivariate
Stein and the OU models, but hold for any k-dimensional jump process Xn
which converges weakly to a diffusion process Y.

Denote X∗ (Y∗) the process constructed recursively from Xn (Y), as done in
Section 4. Then, it holds

Corollary 3 The finite dimensional distributions of (τn,X∗
n,ηn) converge weakly

to those of (τ ,Y∗,η), both when ∆ = 0 and ∆ > 0.

Proof The thesis follows noting that the proof of Theorem 2 holds for any
limiting process belonging to Hk, between two consecutive spikes. But this is
true for Y∗, since it behaves as a multivariate diffusion process in each of the
considered time windows.

6 Discussion

In absence of spiking activity and when the neurons are characterized by a
large number of synapses, e.g. for the Purkinjie cells, Theorem 1 allows to
replace the multivariate Stein model with its diffusion approximation. Using
Theorem 2, the ISIs can be modeled as FPTs of the diffusion process instead of
the jump process. Thus, neural networks can be studied through the proposed
multivariate firing OU model. Here we first describe some general features of
the model and then we illustrate them on simulated data, considering a small
network with four neurons.
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6.1 Description of the spiking neural network model

Being the diffusion limit of the multivariate Stein model, the OU given by (14)
inherits both its dependence structure and biological meaning. In particular,
both processes have the same membrane time constant θ, which is responsible
for the exponential decay of the MP. If some neurons belong to the same clus-
ter A, their dynamics are related. This dependence is caught in the drift vector
by δj,AµA and in the covariance matrix by δj,A\jδl,A\lσ2

A, with l ∈ A, l 6= j.
Also for the OU, δ· specifies whether two or more neurons are affected by the
same excitatory ( δ· > 0) and inhibitory ( δ· < 0) inputs or are independent (
δ· = 0). Since µ· and σ· are given by (5) and (6) respectively, they incorporate
both frequencies and amplitudes of the jumps of the Poisson processes under-
lying the multivariate Stein model. Common inputs impinging on neurons of a
specific cluster cause simultaneous jumps of the MPs of the multivariate Stein.
This feature is not inherited by the OU model, since the FPTs of continuous
processes can never be simultaneous. However, in neuroscience the definition
of simultaneous spikes is less restrictive. Indeed, two firings are considered
simultaneous if their distance cannot be detected by standard measurement
tools. Under this definition, the OU process is able to reproduce simultaneous
spikes.
Finally, using the covariance matrix (12), the correlation of the Gaussian noise
of the jth and lth components is

ρjl=

∑
A∈A

1{j,l∈A}δj,A\jδl,A\lσ2
A

√(
δ2jσ

2
j +

∑
A∈A

1{j,l∈A}δj,A\jδl,A\lσ2
A

)(
δ2l σ

2
l +

∑
A∈A

1{j,l∈A}δj,A\jδl,A\lσ2
A

) .

(22)

6.1.1 Features of the multivariate firing OU model

The proposed OU model (14) can be studied in two different regimes:

– sub-threshold regime: the asymptotic mean of the MP, i.e. Γjθ is smaller
than the threshold value; the regime is characterized by long ISIs. In this
case, choose Γj , θ and Bj such that Γjθ < Bj ;

– supra-threshold regime: the asymptotic mean of the MP is larger than the
threshold value; the regime is characterized by short ISIs. In this case,
choose Γj , θ and Bj such that Γjθ > Bj .

This model can reproduce a set of experimentally observed behaviors of a
neural network with a suitable tuning of its parameter values.

1. Excitation of neurons: choose ψjl > 0. The strength of excitation increases
with ρjl.

2. Inhibition of neurons: choose ψjl < 0.
3. “Simultaneous”spikes: choose ρjl ≈ 1 in the supra-threshold regime.
4. Silencing of neuron j: choose ψjl < 0 and Γj such that Γjθ � Bj .
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Since ψjl is a sum of components, the condition δjl = δlj 6= 0 does not ensure
ψjl > 0. Note that ψjl measures the concordance between j and l. Indeed,
inhibitory inputs acting on both j and l, e.g. δj,l = δl,j = −1 give a positive
term in the covariance ψjl. From (22), it follows that highly correlated neurons,
which exhibit simultaneous spikes, can be obtained by choosing σ2

j , σ
2
l � σ2

A.
In particular, ρjl = 1 can be obtained choosing δj = δl = 0, and δj,A\j = 0
for any A such that l /∈ A. In the fourth feature, the neuron is inhibited
and evolves in a strong sub-threshold regime. Therefore, the probability of
observing a spike during a recorded experiment is very low. Except for the
last scenario, the processes should be either in supra-threshold or slightly sub-
threshold (possibly with a large variance) regimes to exhibit firing activity. A
network can be studied for different choices of the value of the refractory pe-
riod, depending on the purposes of the analysis or the features of the neurons:

– For slow neurons, the refractory period is negligible with respect to the
average ISI. Therefore, the choice ∆ = 0 can be performed.

– When the spikes are frequent or in the presence of clusters of spikes, the
refractory period cannot be ignored. Thus ∆ > 0.

– In some networks, the refractory period may change from neuron to neuron.
Therefore, choose ∆j ≥ 0, for i ≤ j ≤ k.

This last scenario could be studied with both the proposed multivariate firing
OU model and its corresponding marked point process, since Theorem 2 can
be easily extended to the case of neurons with different refractory periods, as
observed in Section 4.

6.2 Examples

Here we consider a small network with four neurons in a time interval [0, 2000]
ms. The firing activity of the network is modeled through the multivariate
firing OU model and we show that it reproduces the experimental features 2-4.
Moreover, we discuss the role of the absolute refractory period ∆, comparing
two multivariate OU point processes, generated as follows. Until time t =
1000ms, the MP dynamics are modeled assuming that each neuron receives
only its own inputs, i.e. we ignore the presence of shared inputs. Therefore,
the covariance matrix Ψ given by (12) is diagonal. At time t = 1000ms, those
common inputs are taken into account and therefore non-null dependencies
between neurons are modeled. For k = 4, the drift vector (15) of the proposed
OU model becomes

Γ=




δ1µ1+δ1,2µ12+δ1,3µ13+δ1,4µ14+δ1,23µ123+δ1,24µ124+δ1,34µ134+δ1,234µ1234

δ2µ2+δ2,1µ12+δ2,3µ23+δ2,4µ24+δ2,13µ123+δ2,14µ124+δ2,34µ234+δ2,134µ1234

δ3µ3+δ3,1µ13+δ3,2µ23+δ3,4µ34+δ3,12µ123+δ3,14µ134+δ3,24µ234+δ3,124µ1234

δ4µ4+δ4,1µ14+δ4,2µ24+δ4,3µ34+δ4,12µ124+δ4,13µ134+δ4,23µ234+δ4,123µ1234


,

(23)
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while the covariance matrix is (12). For example, the terms ψ11 and ψ12 are

ψ11=δ21σ
2
1+δ

2
1,2σ

2
12+δ

2
1,3σ

2
13+δ

2
1,4σ

2
14+δ

2
1,23σ

2
123+δ

2
1,24σ

2
124+δ

2
1,34σ

2
134+δ

2
1,234σ

2
1234,

ψ12=δ1,2δ2,1σ
2
12+δ1,23δ2,13σ

2
123+δ1,24δ2,14σ

2
124+δ1,234δ2,134σ

2
1234.

Parameters of the model. We set θ = 10ms and Bj = 10mV for 1 ≤ j ≤ k,
according to the standard choices for the one-dimensional case. The parame-
ter values specific of each component are µ1 = 0.9, µ2 = 1, µ3 = 1.5, µ4 =
1.1mV ms−1, σ2

1 = σ2
2 = 0.01, σ2

3 = σ2
4 = 0.6mV2ms−1 and δj = 1, for

j = 1, . . . , 4. Therefore in [0, 1000]ms, the multivariate OU has drift Γj = µj
and a diagonal covariance matrix ψjj = σ2

jj , 1 ≤ j ≤ 4.

The parameter values due to common inputs are µ1234 = 0.4, µ34 = 0.2mVms−1

and σ2
1234 = 0.5, σ2

34 = 0.1mV2ms−1, δ1234 = δ2134 = 1 and δ3124 = δ4123 =
δ34 = δ43 = −1. Thus, we are considering a network with inputs acting on
two clusters, namely {1, 2, 3, 4} and {3, 4}. On cluster {1, 2, 3, 4}, inputs are
excitatory on neurons 1 and 2 and inhibitory on 3 and 4. On cluster {3, 4},
they are inhibitory on both neurons, implying a positive resulting effect in
the covariance ψ34. A schematic representation of the described dependence
structure when common inputs are taken into account is reported in Fig. 1.
Then, in [1000, 2000]ms, the drift vector and covariance matrix of the OU with
dependent component are

Γ =




1.3
1.4
0.9
0.5


 , Ψ =




0.51 0.5 −0.5 −0.5
0.5 0.51 −0.5 −0.5
−0.5 −0.5 1.2 0.6
−0.5 −0.5 0.6 1.2


 , (24)

with correlation matrix

ρ =




1 0.980 −0.639 −0.639
0.980 1 −0.639 0.639
−0.639 −0.639 1 0.5
−0.639 −0.639 0.5 1


 ,

as follows from (23), (24) and (22), respectively. Simulations are performed
both with ∆ = 0 and ∆ = 5ms.

Results In Fig. 3 we report the raster displays of four simulated spike trains,
both ignoring and considering the refractory period. If the common inputs
are taken into account, which happens in [1000, 2000]ms, the firing activity
of neurons 1 and 2 increases, that of neuron 3 decreases, while neuron 4 is
silenced. In particular, there are several simultaneous firings in the first two
spike trains, suggesting a high positive dependence between those neurons.
Hence neurons 1 and 2 are excited, 3 is inhibited and 4 silenced. Finally, the
presence of ∆ > 0 does not change the main features of the spike trains in the
raster display but highlights the simultaneous spikes between neurons 1 and
2. As expected, the difference between the mean of the ISIs when ∆ > 0 and
that of the ISIs with ∆ = 0 is about ∆ (values not shown).
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Fig. 3 Raster displays of the firing activity of a neural network with four neurons mod-
eled by the multivariate firing OU model described in Section 4. Different cluster dynam-
ics and values of the refractory periods are considered. In [0,1000]ms, common inputs be-
tween neurons are not taken into account, i.e. the MPs of the neurons are independent. In
[1000, 2000]ms, common inputs are taken into account, with a dependent structure given in
Fig. 1. Top figure: ∆ = 0ms. Bottom figure: ∆ = 5ms.

6.3 Conclusion

To model the spontaneous firing activity of neural networks, we introduce a
multivariate firing Stein process, identifying the spikes as FPTs of the compo-
nents of the process through a boundary. The model also accounts for the pres-
ence of absolute refractory periods. Dependences between neurons are modeled
through cluster dynamics, i.e. there are inputs impinging on groups of neurons.
To avoid the mathematical difficulties related with the study of jump processes
and their FPTs, a diffusion approximation of the multivariate Stein to the OU
is proved, as well the convergence of their marked point processes. This allows
us to focus on the limit process, which inherits the biological features of the
Stein model. We are aware that for reporting the biology correctly, a model
should also take into account direct interactions between neurons or other
types of indirect interactions (e.g. dependence structure in the drift term).
The first case can be for example modeled introducing jumps in the MP of a
neuron every time that the MP of a connected neuron crosses its boundary.
However, new mathematical difficulties arise with the analysis of these models.
Therefore, we suggest to start focusing on the proposed diffusion process and
its FPT problem, developing suitable mathematical tools.
Note that a LIF paradigm for each component is considered. Therefore, we
can use the existing literature to get ideas on how to develop analytical, nu-
merical and statistical methods for the multivariate OU and its FPT problem,
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as done by Sacerdote et al (2012b). It would be also interesting to provide a
statistical study of the proposed model. Mimicking the techniques for unidi-
mensional LIF model, we may estimate the total drift Γj and variance ψjj of
each component j, 1 ≤ j ≤ k. However, the singular terms yielding them are
not identifiable. Thus, we cannot distinguish between terms due to common
and specific inputs. The estimation of the covariance matrix Ψ , and thus of
the dependencies between processes, is a more difficult task.

We have explained how to choose the parameters of the firing OU model
for reproducing excitation, inhibition, silencing of neurons, as well as simul-
taneous spikes. These features are observed on simulated data from a small
network with four neurons. To understand the reason leading to such phenom-
ena, one may detect the dependence structure of the network from the analysis
of the simultaneously recorded spike trains. Different statistical techniques are
available (Borisyuk et al, 1985; Eldawlatly et al, 2009; Grün and Rotter, 2010;
Perkel et al, 1967; Roudi and Hertz, 2011; Sacerdote et al, 2012a; Shimazaki
et al, 2012). It would be interesting to compare them on simulated data from
our proposed OU model.

Our analytical results show that the multivariate firing model and marked
point process with underlying jumps processes converge weakly to analogous
processes with underlying diffusions, obtained as limit of the jump processes.
Therefore, the procedure presented here can be extended to other instances.
For example, as underlying process for the single dynamics, we may consider
a one-dimensional branching process which is proved to converge to a Feller
diffusion process (Feller, 1951), also known as the Cox-Ingersoll–Ross process
in finance (Cox et al, 1985).

Finally, note that our mathematical results are presented in the neuro-
science framework, but can be used in other fields, such as reliability theory,
finance or epidemiology. In reliability theory, FPTs represent crashing epochs
and the refractory period corresponds to the time needed to repair or replace
the broken component. In finance, FPTs identify the epochs when stocks reach
an assigned value and the refractory period is typically null. In epidemiology,
FPTs model the epochs when an epidemic is below a certain threshold level
representing its quiescence state, while the refractory period describes the time
needed to recover from that state.
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The dynamics of a neuron are influenced by the connections with the network where it lies.
Recorded spike trains exhibit patterns due to the interactions between neurons. However,
the structure of the network is not known. A challenging task is to investigate it from the
analysis of simultaneously recorded spike trains. We develop a non-parametric method
based on copulas, that we apply to simulated data according to different bivariate Leaky In-
tegrate and Fire models. The method discerns dependencies determined by the surround-
ing network, from those determined by direct interactions between the two neurons.
Furthermore, the method recognizes the presence of delays in the spike propagation.
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1. Introduction

The knowledge of the structure of a network is helpful to un-
derstand principles of its organization. Unfortunately, the
connections between neurons belonging to a specific or differ-
ent areas of the brain are generally unknown. Experimental
techniques will not allow to get such information in an imme-
diate future. However, the analysis of recorded spike trains
may suggest possible connections and help neuroscientists
to reconstruct the structure of networks.

Raster displays might reveal the presence of dependencies
between the interspike intervals (ISIs) of the observed neu-
rons, reflecting the existence of connections in the network.
To study its structure, one should first establish the depen-

dencies between the recorded neurons, and then investigate
the nature and the strength of these dependencies.

Since the pioneering work of Perkel et al. (1967), large ef-
forts have been devoted to analyze simultaneously recorded
data coming from several neurons. In the last thirty years, dif-
ferent techniques have been proposed; limits and difficulties
are known, allowing their use in laboratories. There exists a
lot of fundamental work on this subject. An exhaustive list
of references can be found in a recent book (Grün and Rotter,
2010), where the available methods are collected, explained
and discussed.

The most used methods to detect connections between
neurons are based on the study of the crosscorrelation func-
tion (Perkel et al., 1967). Unfortunately, crosscorrelation de-
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scribes linear dependencies and it might fail to detect non-
linearities (Sacerdote and Tamborrino, 2010).

Other techniques include Generalized Linear Models
(GLMs) (Brillinger, 1988) with their variants (Stevenson et al.,
2009). However, these methods present difficulties too. A typ-
ical problem is the dependence of the results upon the size of
the testing window (Eldawlatly et al., 2009).

Updating an older paper (Borisyuk et al., 1985), Masud and
Borisyuk (2011) propose to use the Cox method as a statistical
method to analyze functional connectivity of simultaneously
recorded multiple spike trains. It is based on the theory of
modulated renewal processes (Cox, 1972). This method de-
tects bivariate dependencies between multiple spike trains
in a neural network, providing statistical estimates of the
strengths of influence and their confidence intervals. More-
over, it presents a set of advantages with respect to the others,
e.g. it does not depend on the window amplitude, it detects
weak dependencies and it succeeds in the presence of spuri-
ous connection due to common source or indirect connec-
tions. However, it requests a preliminary estimation of a set
of parameters that is a very difficult task if the underlying
model is unknown. Therefore, the results may become
unreliable.

We propose the use of the copula notion to detect possible
dependencies between ISIs. Copulas are joint probability dis-
tributions with uniform marginal distributions (Nelsen,
2006). Therefore, they catch dependencies between random
variables (rvs), and they can be easily used for modeling pur-
poses, being scale-free.

In neuroscience, the use of copulas is not a novelty. Jenison
and Reale (2004) show how to couple probability densities to
get flexibility in the construction of a multivariate neural popu-
lation. Furthermore, they express the mutual information be-
tween two ISIs in terms of the copula distribution. More
recently, Onken et al. (2009) inferred the connectivity between
neurons by fitting the spike counts through the copulas of a
given family. In particular, they provide a method to estimate
the parameters of the prescribed copula. Sacerdote and Sirovich
(2010) propose to use copulas to model the coupling of two or
more neurons, while Sacerdote and Tamborrino (2010) investi-
gate the reliability of crosscorrelograms analysis to detect de-
pendencies in spike trains with known connections, being
simulated through copula models.

A spike train is a collection of spike times and it can be con-
sidered as a vector of rvs. Therefore, a copula between two
spike trains can be determined. Different types of dependency
correspond to different shapes of the copula.

The aim of this work is to illustrate the ability of copulas to
recognize dependencies between spike trains coming from
different underlying models. To do this, we propose a non-
parametric method.

A detailed study on simulated data could allow to classify
shapes of copulas corresponding to different kinds of connec-
tions. However, in this paper, our main goal is to detect de-
pendencies, instead of classifying their nature. Indeed, it
represents a long task, since it corresponds to determine the
joint distribution, i.e. the copula, that fits the data.

Furthermore, we limit ourselves to the study of two spike
trains. The extension to multiple dependencies arising in the
case of a larger number of spike trains requests further

mathematical effort. Indeed, in a network of n neurons, it
would correspond to investigate dependencies in groups of k
neurons, k=2,…,n, i.e. to investigate k dimensional copulas
for groups of k spike trains. However, our method can be ap-
plied immediately to the case of n spike trains, if the interest
is focused on pairwise dependencies, as it happens in Masud
and Borisyuk (2011). To do this, it is enough to select a target
and a reference neuron, and then consider all the possible
combinations.

In Section 2, we describe our method to catch dependen-
cies between spike trains through copulas. In Section 3, we in-
troduce the different Leaky Integrate and Fire (LIF) models
used to generate coupled spike trains. In Section 4, we test
the proposed method on those data. In Section 5, we discuss
the results of our approach, providing a comparison with
other methods, in particular with the Cox method. Finally, in
Section 6, we describe conclusions, open problems and possi-
ble developments.

2. The copula method

2.1. A mathematical tool: copulas

A copula is a mathematical object that catches dependencies
between rvs. In (Nelsen, 2006), it is defined as

Definition 1. A two-dimensional copula is a function C:
[0,1]2→ [0,1] with the following properties:

C u; 0ð Þ ¼ C 0;vð Þ ¼ 0 and C u; 1ð Þ ¼ u;C 1; vð Þ
¼ v for every u;v∈ 0; 1½ �; ð1Þ

C is 2�increasing; i:e:for every u1;u2;v1;v2∈ 0; 1½ �such that
u1≤u2;v1≤v2;

ð2Þ

C u1;v1ð Þ þ C u2;v2ð Þ−C u1;v2ð Þ−C u2;v1ð Þ ≥ 0:

Let X and Y be two rvs with marginal cumulative distribu-
tion functions (cdfs) F and G, respectively. Let H (x, y) be the
joint cdf of (X,Y). Due to the Sklar's theorem, a two dimension-
al copula C satisfies:

H x; yð Þ ¼ C F xð Þ;G yð Þð Þ x; y∈R: ð1Þ

This theorem holds also in the multivariate case (Nelsen,
2006).

From Eq. (1), it follows that a copula is a joint cdf with two
standard uniformmarginals. Therefore, copulas are scale-free
and capture all the information related to the joint behavior,
and do not involve the marginal distributions. Hence, the
study of a bivariate distribution can be split in two parts: the
marginal behaviors caught by the marginal cdfs and the de-
pendencies contained in the copula structure.

Copulas have other properties, as for instance the invari-
ance under strictly increasing transformations, or the possi-
bility to model several joint distribution functions.

In the literature, there exists a list of families of copulas,
e.g. the Archimedean and the Euclidean families. Given a
sample, we may perform a goodness-of-fit test to test if the
data could belong to a certain family (Genest et al., 2009).
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After that, we may estimate the involved parameters as done
by Genest and Favre (2007) or Onken et al. (2009).

To measure the strength of dependencies, we consider the
Kendall's tau τ. It is a rank correlation index assuming values
in [−1,1] and it measures the concordance for bivariate ran-
dom vectors.

Given a data sample of size n, an estimatorτ̂ of the Kendall's
tau is given by:

τ̂ ¼ nc−nd
1
2n n−1ð Þ ;

Here, nc and nd denote the number of concordant and dis-
cordant pairs in the sample. A pair of observations (xi,yi) and
(xj,yi) is said to be concordant if (xi−xj) (yi−yj)>0, otherwise it
is called discordant (Nelsen, 2006).

A rank correlation test verifies if τ̂ is statistically different
from zero, i.e. if data are dependent. This index detects non
linear dependencies, while the common Pearson's and Spear-
man's rho detect linear dependencies (Nelsen, 2006).

In the next Subsection, we explain how to obtain empirical
copulas starting from data belonging to samples of first pas-
sage times (FPTs) or spike trains.

2.2. Detect dependencies between ISIs through copulas

Copulas are multivariate joint distributions. For this reason,
they can be used to investigate dependencies in a neural net-
work with n neurons. However, their use is more intuitive for
n=2. The extension to the pairwise analysis for tn neurons is
immediate, while the study of k dimensional dependencies,
for k=3,…,n, is computationally not trivial, although it is theo-
retically analogous.

Given a sample {(X1,Y1),…,(Xn,Yn)}, we calculate the empiri-
cal cdfs F̂ and Ĝ as

F̂ xð Þ ¼ 1
n
∑
n

i¼1
1 Xi≤xf g; Ĝ yð Þ ¼ 1

n
∑
n

i¼1
1 Yi≤yf g; x; y∈R: ð2Þ

Then, we define the pseudo-observations from the copula
as Ûi ¼ F̂ Xið Þ;Ĝ Yið Þ

� �
, i=1,…,n. A scatterplot of Û, called “copula

scatterplot”, helps to understand dependencies between the
involved rvs.

From the theory of copulas, we know that the points lying
on the main diagonal (i.e. the diagonal which runs from the
bottom left corner to the top right corner) correspond to
times related by a strictly increasing function f such that
F(X) = fleft(G(Y)). If X~Y, then f becomes the identity function,
otherwise a new curve appears. Indeed, if the marginal distri-
butions are different, then a straight line on the time scatter-
plot is transformed into a curve on the copula scatterplot.
We call it curve of monotony. If X and Y are times, then the syn-
chrony is caught by a straight line along the diagonal on the
time scatterplot. These points are mapped into points lying
on the main diagonal or on a curve on the copula scatterplot,
depending on whether X and Y are identically distributed.

For independent rvs, characterized by the independent
copula C(u,v)=uv, the scatterplot presents a uniform distribu-
tion of points on the square [0,1]2. On the contrary, the pres-
ence of clusters of points reveals a specific dependency.
Furthermore, we have considered the empirical cdf Cn and

the empirical probability density function (pdf) Cn of the copu-
la (Nelsen, 2006). Their study, together with the estimation of
the Kendall's tau, gives further information about the depen-
dencies between X and Y.

To illustrate how to apply copulas to neuronal data, we first
assume to have a sample of FPTs T={(TA1 ,TB1),…, (TAn ,TB

n)}, where
(TAi ,TBi ) and (TAj ,TBj ) are independent for i≠ j and (TAi ,TBi )∼ (TAj ,TBj ),
where ~ denotes rvs with the same distributions. In this case,
we can calculate the pseudo-observations as described before.

Then, to deal with pairs of spike trains, we need to define
how to extract a sample of two-dimensional rvs, representa-
tive of the dependencies between the spike trains.Denote SAi

and SBj the epochs of the i-th and the j-th events in the spike
trains A and B, and TA

i and TB
j the i-th and j-th ISIs, for i=1,…,

n; j=1,…,l. On a fixed time, the number of spikes of two neu-
rons is different, i.e. n≠ l. We assume that the ISIs TA

i (resp.
TB
j ) in A (B) are independent and identically distributed and

we denote them TA (TB).
To pursue the analysis, we select A as target neuron. To

each spike time SAi , we associate the time θi, defined as the
intertime between SAi and the first spike in B following it
(Fig. 1, Panel I). The pairs (TA

1 ,θ1),…, (TA
N,θN) determine a sam-

ple (TA,θ) for the study of the relationships between the
spike trains. If the corresponding copula is not the indepen-
dent copula, then there is a connection between the two neu-
rons. We investigate it comparing the two scatterplots and
testing if τ is statistically different from zero. Moreover, the
copula scatterplot allows to make hypotheses on the dynam-
ics driving the membrane potential (MP) evolutions of the
two neurons, as explained in Section 4.

Another interesting task is the investigation of the dura-
tion (or “memory”) of the dependency between spike trains.
After a certain time M, neuron B may forget the activity of
neuron A, if no new phenomena coupling their dynamics are
present. The time M may be short, corresponding to instanta-
neous effect, or long, implying a durable effect in the coupling.

To investigate it, we consider the sample TA; θþ ∑m
k¼1T

kð Þ
B

� �
¼ T1

A; θ1 þ ∑m
k¼1T

1kð Þ
B

� �
;…; TÑ

A ; θÑ þ ∑m
k¼1T

Ñkð Þ
B

� ��
, as shown in

Fig. 1, Panel I. Here, TB
(ik) corresponds to the k-th ISI following

θi, while Ñ denotes the sample size that might change with
m. In particular, we are interested in the value m such that
the corresponding copula approaches the independent one,
i.e. τ=0. If the dependence disappears for small (large) m,

Fig. 1 – Samples of FPTs and of spike trains. Let A be the
target neuron. Panel I: sample of FPTs, obtained considering
only the first ISIs in A and B following synchronous spikes.
Panel II: rvs involved in a sample of spike trains. For each
TA
i in A, we show the corresponding θi and the following TB

(ik)

in B for i=1, 2 and m=3.
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then the coupling has an instantaneous (long) effect. Further-
more, we study the optimal valuemmaximizing the coupling.
It can be detected as the value ofm thatmaximizesτ̂. Note that
m=0 leads to the previous sample (TA,θ).

To study the presence of delayed dependencies, we analyze
the sample (TA,TB(k))={(TA1 ,TB(1k)),…, (TAn ,TB(nk))}. Indeed, it might
happen that a spike in A influences the k-th spike in B. There-
fore, the delay can be estimated as θ+∑ j=1

k TB(ij)−TAi , where k is
the first index such that the Kendall's tau for (TA,TB(k)) is statisti-
cally different from zero.

These properties of memory and delayed dependencies
hold when E[θ+∑ i=1

k TB
(i)]− E[TA]> E[TB

(k)], i.e. the projection of
TB
(k) on A does not overlap with TA on average, otherwise

such phenomena are due to the slower nature of A.
To conclude the analysis, we select B as target neuron and

we repeat the procedure. Note that this is not necessary if TA

and TB are identically distributed, since this leads to the
same results, the study being symmetric.

3. Models for data generation

The samples were generated from two bivariate LIF models.
Both of them describe the spike times of each neuron as the
FPT of their MP evolution through a boundary, where the
MPs are coupled through different rules.

3.1. Model of the MP evolution through jump diffusion
processes

Musila and Lansky (1991) proposed to use jump diffusion pro-
cesses to describe the MP evolution of a single neuron to ac-
count for the effects of the postsynaptic potentials (PSPs)
impinging on the membrane near the trigger zone. Deco and
Schürmann (1998) studied resonance phenomena for central
neurons described by Ornstein Uhlenbeck (OU) processes
with jumps modeling a discrete input spike train. In Sirovich
(2003), jump processes are associated to the arrival of a
spike, but the model is not a diffusion. Recently, Sirovich

(2006) and Sirovich et al. (2007) proposed to use these process-
es to describe interactions in a small network.

Here, we describe the MP evolutions through a two dimen-
sional jump diffusion processX(t)={(X1,X2)(t);t≥t0}. Each compo-
nent evolves independently from the other, until the timewhen
one of them attains a threshold value C for the first time. Then,
that neuron releases a spike, its MP is reset to its resting value
and the evolution restarts anew. Meanwhile, the MP of the
other neuron has a jump of amplitude h (Fig. 2, Panel I) and
then it pursues its evolution. In the absence of jumps, the MP
of each neuron is modeled as an OU process given by

dXi tð Þ ¼ −
1
θ
Xi tð Þ þ μi

� �
dtþ σidWi tð Þ; ð3Þ

with t0=0 and Xi(0)=x0i, for i=1,2. Here, τ, μi, σi denote the
membrane constant (or decay time), the input and the noise
intensity respectively. Moreover, W1(t) and W2(t) are two stan-
dard Wiener processes. Hence, the Brownian increments are
independent.

We say that this corresponds to a local connection be-
tween neurons, since the dependency between spikes is di-
rect, being determined only by the jumps.

To simulate a sample of FPTs T, we proceed as follows.
When both neurons release a spike, the MPs are reset to
their resting values and a new simulation starts. This type of
sample reproduces the interspike times following synchro-
nous spikes of the two neurons (Fig. 1, Panel I).

To generate two coupled spike trains, we collect the crossing
times of the two MPs up to a maximum observed time tmax.

3.2. Model of the MP evolution through correlated diffusion
processes

The Stein process for the spiking activity of a single neuron
was introduced by Stein (1965). However, the study of the
FPT problem for jump processes is mathematically intracta-
ble. Assuming the high frequency and the small amplitude
of the jumps, diffusion limits have been proposed for instance
by Capocelli and Ricciardi (1971) and Lansky (1984). From a

Fig. 2 – MP evolution through jump diffusion processes. Description of the MP evolution of two coupled neurons through a two
dimensional jump process. The MP evolution of A (B) is reset to its resting value after that it spikes, meanwhile the MP
evolution of B (A) has a jump of amplitude h. These dynamics are stopped when both neurons have released a spike (Panel I) or
after a maximum time tmax (Panel II).
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biological view point, when the neuron receives a huge num-
ber of inputs from the surrounding network, the continuous
limit is a good approximation of the original process. A multi-
variate extension of these models has been recently proposed
(Tamborrino et al., submitted for publication). There, the PSPs
impinging on each neuron correspond to two kinds of input:
those influencing a specific neuron and those simultaneously
acting on a collection of at least two neurons.

Here, the MP evolutions of the two neurons are described
by a bivariate diffusion process X(t) with correlated compo-
nents. The sub-threshold MP evolutions are still described by
Eq. (3), but now the Brownian increments are not independent
anymore. Indeed, we assume Cov(W1(t),W2(t))=σ12t, with σ12ϵ
(0,1). Therefore, the evolutions proceed jointly in all the ob-
served time intervals, due to the presence of a common
noise. We say that this situation corresponds to a global
kind of dependence, since the dependencies are determined
by the surrounding network.

To obtain a sample of FPTs T, we stop the MP evolution of
the fastest neuron after it fires. Meanwhile, the slowest one
continues its evolution until its MP reaches the boundary
(Fig. 3, Panel I). After that, the dynamics restarts anew.
These neural dynamics are characterized by a continuous
coupling effect up to the first spike.

To generate two coupled spike trains, we reset the MP of
the firing neuron to its resting potential and then restart it.
Meanwhile, the other neuron continues its evolution until it
spikes (Fig. 3, Panel II). This procedure continues up to tmax,
coupling the dynamics of the two neurons.

4. Results

In this Section, we apply our method on samples of FPTs and
pairs of spike trains simulated from the jump and the covari-
ance models. In Subsection 4.3, we enlighten the differences
observed in the corresponding copula scatterplots. Performing
the data analysis, we ignore the knowledge of the models and
we infer coupling properties directly from copula scatterplots

and Kendall's tau (values reported in the captions of the fig-
ures). The goodness of fit of the results is finally checked.

The parameter values of the models agree with those used
for one dimensional LIF models in the literature. In particular,
we choose membrane constant τ=10ms, threshold value for
the MP C=10mV, jump amplitude h=3 mV, covariances 0.5;
0.8; 0.91mV2ms−1, drifts and noise intensities are reported in
Table 1. Examples of negative covariances, implying negative
dependencies between spike trains, have been also analyzed,
obtaining correct results. Also in this case, our method detects
them. Unfortunately, the simulation of data from the jump
model requests long computational times when we have neg-
ative jump amplitudes. For this reason, we do not illustrate
these examples.

4.1. Data from the jump model

4.1.1. Samples of FPTs
The biological interpretation of samples of FPTs is not intui-
tive, since they do not correspond to time series. However,
they can be interpreted as the intertimes after synchronous
spikes (Fig. 1, Panel I) and their analysis helps to understand
the use of copula scatterplots.

In Fig. 4, we report the copula scatterplots for different
samples of T, obtained from the jump model, using the pa-
rameters reported in Table 1, with h=3mV. We first test the
null hypothesis H0:TA~TB through a Kolmogorov–Smirnov
(KS) test. Since the p-values P̂ are 1, 0.998, 0.901 and 0 respec-
tively, we reject H0:TA~TB only for the fourth sample, in agree-
ment with how they were sampled.

We start considering the first three samples. The distribu-
tion of TA (and hence of TB) changes in each sample. Indeed,
their means and variances are different (values not reported).

From the scatterplots and the values ofτ̂ in Fig. 4, Panels I–III,
we observe the following features:

1. Panels are characterized by decreasing values of τ̂, all sta-
tistically different from 0.

2. many points lie on the main diagonal, drawing its shape;

Fig. 3 – MP evolution through correlated diffusion processes. Example of MP evolution of two neurons coupled through a two
dimensional correlated diffusion process. The MP evolution of A (B) is reset to its resting value after it spikes, while the MP
evolution of B (A) is not influenced by the spike. These dynamics are stopped after both neurons have released a spike (Panel I)
or after a maximum time tmax (Panel II).
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3. scatterplots exhibit similar features, although with different
densities of the points. Moving from the left to the right side,
the density of the points not on the diagonal increases;

4. there is a lack of points around the main diagonal.

Due to feature 1, a dependency is caught by the method in
each sample. The analogies between the plots suggest the pres-
ence of a similar coupling phenomenon acting with different
strengths, as suggested also by the first feature. The coupling
phenomenon acts only to determine the synchrony, while the
other intertimes are scarcely dependent. Indeed, feature 4 and
the lack of clusters do not reveal further dependencies. That
means that specific phenomenon might determine synchro-
nous spikes or have no effect if the instantaneous coupling is
not strong enough. A local connection is compatible with this
kind of behavior. These remarks agree with the underlying
model used to generate the samples.

Now, consider Panel IV. Also in this case, a positive τ̂ is ob-
served, but the copula scatterplot is not symmetric anymore.
In the time scatterplots (figures not reported), we observe
many points lying on the main diagonal. Therefore, the curve
in Panel IV corresponds to the curve of synchrony. Moreover, a
high density of points is observed on the curve that is sur-
rounded by a lack of points. Hence, we can hypothesize a simi-
lar dynamics to that observed in Panels I–III, but with different
marginals.

4.1.2. Samples of spike trains
We consider two spike trains generated according to the jump
model with parameters given by case III in Table 1. We cannot
reject H0: TA~TB, since p̂ ¼ 0:998. Therefore, the analysis does
not change inverting the roles of target and reference neu-
rons. Thus, we choose A as target neuron.

The pairs (TA,TB
(k)) are characterized by Kendall's tau statis-

tically equal to zero (e.g. p̂ ¼ 0:71; 0:70;0:79 for k=1,2,3). Hence,
the samples do not present delayed coupling phenomena.

In Fig. 5, we report the copula scatterplots of (TA,θ+∑k=1
m TB(k))

for m=0,1,2,3,5,10. From these plots and the values of τ̂, we ob-
serve that increasing the value ofm, the copula scatterplots ap-
proach the independent copula.

In Panel I, the curve with the highest density of points is
well approximated by a straight line. Moreover, TA and θ
have a similar distribution (histograms not shown). Since
TA~TB, θ, and TB have a similar distribution too. Therefore,
the spiking dynamics are characterized by the presence of
synchronous spikes. Moreover, we observe a lack of points
around the diagonal, as in Fig. 4. Therefore, we can hypothe-
size a local coupling.

In the remaining panels, new curves catch the dependency
between TA and θ+∑k=1

m TB
(k). Since these rvs have different dis-

tributions (p-values not reported), these curves correspond to
curves of monotony.

Now, we consider two spike trains obtained with parame-
ters of case IV in Table 1. We reject H0:TA~TB and H0:TA~θ,
since both p-values are null. The Kendall's tau for (TA,TB

(k)) is
statistically different from zero only when k=1, since p̂≈0 for
H0: τ=0. However, it does not represent a delayed dependency,
since E[TA]=17.92, E[θ+TB

(1)]=20.40 and E[TB
(1)]=10.32.

In Fig. 6, we plot the copulas for (TA,θ+∑k=1
m TB

(k)). Here,m=1
maximizes τ̂. This figure presents some similarities to Fig. 5.
Indeed, for m greater than the optimal one, the dependency
decreases and the copula scatterplots look like the indepen-
dent copula. Moreover, in both figures, we observe a lack of
points around the curve of monotony for m=0 and 1 as well
as the presence of clusters. Finally, in Fig. 6, these curves can
be detected up to m=5.

The analogies between samples of Figs. 5 and 6 allow to hy-
pothesize dynamics for the spike trains driven by similar
kinds of dependencies, even if with different marginal
behaviors.

Since TA and TB are not identically distributed, we repeat
the analysis considering B as target neuron. In Fig. 7, we report
the copula scatterplots form=0, 1, 2. The shapes of these scat-
terplots and the strength of the dependencies caught by τ̂ are
different from those in Fig. 6. Also in this case, τ̂ is statistically
different from 0. Furthermore, a curve of monotony is

Table 1 – Drifts μ and noise intensities σ2 used to simulate
spike data. Units are:mVms−1 andmV2ms−1, respectively.

Case μA μB σA
2 σB

2

I 1.2 1.2 0.3 0.3
II 1.2 1.2 0.5 0.5
III 1.2 1.2 1.1 1.1
IV 1.0 1.5 0.5 0.5

Fig. 4 – Samples of FPTs from the jump model. Copula scatterplots corresponding to four samples of ISIs (TA,TB), where TA~TB

for the first three pairs. The estimated Kendall's tau are τ̂I−0:84,τ̂II = 0:69,τ̂III = 0:41 and τ̂IV = 0:18, respectively. They are
statistically different from zero, since all the corresponding p-values are smaller than 0.05.
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recognized only for m=0. This is related to the slower nature
of neuron A.Note that we have detected dependencies alter-
nating A and B as target neurons. Therefore, there exists a
bi-directional influence connection between the two neurons.

The results obtained applying our method are coherent
with the features of the models used to simulate data. In par-
ticular, we were able to detect bi-directional connections,
such as those determined by the jump dynamics of the

Fig. 5 – Sample of spike trains from the jumpmodel, where TA~TB. Copula scatterplots of (TA,θ+∑k=1
m TB

(k)), for m=0, 1, 2, 3, 5, 10,
where TA and TB have the same distribution. The estimated Kendall's tau are statistically different from zero, with values
τ̂I = 0:42,τ̂II ¼ 0:20,τ̂III = 0:15,τ̂IV = 0:12,τ̂V = 0:10 and τ̂VI = 0:07, respectively. Note that m=0 represents the optimal value
maximizing the dependency between the involved times.

Fig. 6 – Sampleof spike trains fromthe jumpmodelwithdifferent distributionsofTAandTB. Copula scatterplots of (TA,θ+∑k=1
m TB

(m)), for
m=0, 1, 2, 3, 5, 10, where TA and TB have different distributions. The estimated Kendall's tau are statistically different from zero and
equal toτ̂I =0:04,τ̂II =0:12,τ̂III =0:06,τ̂IV =0:04,τ̂V =0:02,τ̂VI =0:01, wherem=1 represents the optimal value maximizing τ̂.
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considered model, as well as to hypothesize a correct local
coupling. As previously remarked, we have ignored the
knowledge of the underlying models during the analysis
phase.

4.2. Data from the covariance model

Here, we consider data generated from the covariance model
with parameters reported in Table 1 and covariances equal
to 0.5, 0.8, 0.91, 0.8mV2ms−1, respectively.

4.2.1. Samples of FPTs
In Fig. 8, we report the copula scatterplots coming for the four
samples of FPTs. Testing H0: TA~TB, we obtain p̂ ¼ 0:69;
0:95; 0:89 and 0, respectively. We start considering the first
three pairs, characterized by identically distributed ISIs.

Looking at Fig. 8, Panels I–III and the corresponding τ̂, we
observe the following features:

1. Panels are characterized by increasing values of τ̂, all sta-
tistically different from 0.

2. many points lie on the main diagonal and around it;
3. scatterplots exhibit similar features, although with different

densities of the points. Moving from the left to the right side,
the density of the points far from the diagonal decreases.

Positive dependencies are caught in all samples. Further-
more, the numerous points lying on the diagonal (indicator

of synchrony) are surrounded by a cloud of other points.
This suggests the presence of a noise that continuously per-
turbs the coupling phenomenon, destroying the synchrony.
A global connection is compatible with this kind of behavior.

Now, consider Panel IV. In the time scatter plot, not
reported, (resp. copula scatterplot) no points lie on or above
the main diagonal (the curve of synchrony), due to the fact
that E[TA]=24.98, E[TB]=10.65. Therefore, no synchrony is ob-
served. For the similarity with Panel I, we hypothesize a simi-
lar dynamics characterized by different marginals.

4.2.2. Samples of spike trains
Weconsider two spike trains generatedwithdrifts andvariances
given by case III in Table 1, and covariance 0.91mV2ms−1. We
cannot reject TA~TB, since p̂ ¼ 0:94. Therefore, it is sufficient to
consider A as target neuron.

In Fig. 9, we report the copula scatterplots of (TA,θ+∑k=1
m TB(k))

for m=0, 1, 2, 3, 5, 10. From these plots and the values of τ̂, we
note that the copula scatterplots approach the independent
copula asm increases.

In Panel I, TA and θ have different distributions since p̂ ¼ 0
for the hypothesis H0: TA~θ. Therefore, the monotone depen-
dency is caught by a curve and the largest part of the points
lays on and under it. This behavior may be explained admit-
ting the existence of a noise that perturbs the system and de-
stroys the deterministic relationship. Furthermore, the
dependencies seem to be determined by a continuous phe-
nomenon that tunes the activity of the two neurons, despite

Fig. 8 – Samples of FPTs from the covariance model. Copula scatterplots corresponding to four pairs of ISIs (TA,TB), with TA~TB for
the first three pairs. The estimated Kendall's tau areτ̂I = 0:41,τ̂II = 0:53,τ̂III = 0:67, respectively. They are statistically different from
zero, since the corresponding p-values are smaller than 0.05.

Fig. 7 – Choice of B as target neuron. Copula scatterplots of (TB,θ+∑k=1
m TA

(k)), for m=0, 1, 2, obtained considering B as target
neuron in the spike trains analyzed in Fig. 6. The estimated Kendall's tau are τ̂I = 0:23,τ̂II = 0:08,τ̂III = 0:06, respectively. The
maximum dependence is observed for m=0.

250 B R A I N R E S E A R C H 1 4 3 4 ( 2 0 1 2 ) 2 4 3 – 2 5 6



the noise. Therefore, a global couplingmight be hypothesized.
This is supported by the fact that (TA,∑ k=1

m TB
(k)) becomes statis-

tically independent for m≥409. That means that we are ob-
serving a long memory phenomenon.

In the remaining panels, new curves of monotony catch the
synchrony between TA and θ+∑k=1

m TB(k). In particular, in Panel II,
the number of points lying on this curve is greater than those in
Panel I.

Finally, we consider two spike trains generated using the
parameters given by case IV in Table 1, and covariance
0.8mV2ms−1. We reject H0: TA~TB, since p̂≈0. In Fig. 10, we
plot the copulas for (TA,θ+∑k=1

m TB
(k)). Here, m=2 maximizes τ̂

for the considered samples and curve of monotony can be
detected up to m=5. This figure presents some similarities to
Fig. 9. Indeed, form greater than the optimal value, the depen-
dence decreases and the copula scatterplots look like the in-
dependent copula. These analogies allow to hypothesize
dynamics for the spike trains driven by similar kinds of de-
pendencies, even with different marginal behaviors.

Due to the different roles of neurons A and B, we repeat the
analysis considering B as target neuron. The copula scatter-
plots for m=0, 1, 2 are plotted in Fig. 11. The shapes are obvi-
ously different from those in Fig. 10, but also in this case, τ̂ is
statistically different from 0. Therefore, we have detected a
bi-directional connection between the two neurons.

In both samples, no delayed phenomena are detected. In-
deed, no p-values statistically different from zero are ob-
served for (TA,TB

(k)) such that E[θ+∑ i=1
k TB

(i)]− E[TA]> E[TB
(k)].

The results agree with those expected, determined by the
structure of the used model.

4.3. Comparison between data from the two models

Data used in Figs. 4–8, 5–9, 6–10, 7–11 came from two OU pro-
cesses with the same parameters, but coupled according to
different rules, i.e. jumps or positive covariances. The differ-
ent coupling leads to different shapes in the copula scatter-
plots, as well as to different properties. For instance,
copula scatterplots related to the jump model are character-
ized by a lack of points around the main diagonals, while a
cluster of points is observed in those coming from the co-
variance model. This allows us to hypothesize different cou-
pling phenomena for those scatterplots presenting different
features.

Furthermore, we may observe different shapes of scatter-
plots even with a similar τ̂. Look for instance at Fig. 4, Panel II
and Fig. 8, Panel III, with τ̂ ¼ 0:69 and τ̂ ¼ 0:67, respectively.
Therefore, the study of correlation or rank correlation indexes,
such as the Pearson's rho or the Kendall's tau, is useful to recog-
nize the presence of dependencies, but it cannot be used to in-
vestigate their nature.

5. Discussion

The use of copulas allows a new approach to analyze depen-
dencies between spike trains. The discussed examples illus-
trate some features highlighted by means of this technique.
Suitable statistical tests and further developments of the
mathematical tools will allow to determine families of cop-
ulas able to fit data. Furthermore, a classification of the

Fig. 9 – Sample of spike trains from the covariance model, where TA~TB. Copula scatterplots of (TA,θ+∑k=1
m TB

(k)), for m=0, 1, 2, 3,
5, 10, where TA and TB have the same distribution. The estimated Kendall's tau are statistically different from zero, with values
τ̂I = 0:16,τ̂II = 0:30,τ̂III = 0:25,τ̂IV = 0:22,τ̂V = 0:18, and τ̂VI = 0:14, respectively. Note that m=0 represents the optimal value
maximizing the dependency between the involved times.
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different copulas corresponding to different kinds of coupling
may help to interpret the structure of the network.

In this Section, we compare some of our results with those
obtained through classical tools. At first, we consider cross-
correlograms and time scatterplots. Then, we briefly discuss
some features of the GLMs and finally we perform a detailed
comparison with the Cox method.

Crosscorrelograms are one of the most used techniques to
analyze spike trains. They detect synchronous and delayed ac-
tivities but they are often unable to recognize other kinds of de-
pendencies. Reversely, in copula scatterplots, the layout of the
points out of the curve of synchrony discloses the presence of
other kinds of dependencies. Moreover, it helps to hypothesize

the underlying coupling effects. A common feature between
crosscorrelograms and the proposed approach is the necessity
to fix a target neuron. Usually, the analysis is repeated, ex-
changing the roles of the two neurons.

The analysis of crosscorrelograms requests the simulta-
neous study of the autocorrelograms. Indeed, oscillations in
the crosscorrelogram might be due to marginal behaviors, as
described by Sacerdote and Tamborrino (2010) and Tetzlaff
et al. (2008). Thus, it is not always possible to distinguish be-
tween the two cases. Furthermore, the duration of the depen-
dencies is hidden in crosscorrelograms. Indeed, this
information depends on the presence of several peaks or
troughs and by their width. Unfortunately, these features

Fig. 10 – Sample of spike trains from the covariance model, with different distributions of TA and TB. Copula scatterplots of
(TA,θ+∑k=1

m TB
(m)), form=0, 1, 2, 3, 5, 10, where TA and TB have different distributions. The estimated Kendall's tau are statistically

different from zero and equal to τ̂I = 0:07,τ̂II ¼ 0:27,τ̂III = 0:33,τ̂IV = 0:31,τ̂V = 0:26,τ̂VI = 0:20, where m=2 represents
the optimal value maximizing τ.

Fig. 11 – Choice of B as target neuron. Copula scatterplots of (TB,θ+∑k=1
m TA

(k)), for m=0, 1, 2, obtained considering B as target
neuron, in the spike trains analyzed in Fig. 10. The estimated Kendall's tau are τ̂I = 0:27,τ̂II = 0:22,τ̂III = 0:18 and m=0
maximizes the dependency.
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change according to the used bin. On the contrary, copulas
allow to determine the value of m such that the two consid-
ered random times become independent, disclosing memory
properties. In Fig. 12, we show autocorrelograms and crosscor-
relograms corresponding to samples analyzed in Figs. 5 and 9.
For each sample, we only plot one autocorrelogram, since
TA~TB. In the crosscorrelograms, peaks and troughs far from
zero are due to the marginal behaviors, as explained by the
autocorrelograms. Hence, these oscillations do not represent
two neurons firing with a delay, i.e. the only statistically
meaningful peaks are those in 0.

One might wonder why to use copula scatterplots instead of
time scatterplots. In a time scatterplot, one can easily recognize
synchronous spikes from the presence of a straight line. Further-
more, such plot gives information on the marginal behavior,
allowing to recognize the range of the involved times. However,
the merge of marginal and joint behaviors represents the main
limit of this tool. Indeed, it is hard to distinguish meaningful
clusters, observing clouds of points (Fig. 13, Panels I and IV).
Hence, any classification of the observed kinds of dependencies
becomes difficult. Reversely, copula scatterplots (Fig. 13, Insets
I′ and IV′) solve this problem, catching only the joint behavior,
since the marginal distributions are uniform. The same consid-
erations hold when one plots the 3-D histograms for the times
(Fig. 13, Panels II and V) and for the copulas (Fig. 13, Panels III
and VI).

GLMs, as well as correlation indices, privilege linear depen-
dencies, while copulas and the Kendall's τ deal with any kind of
dependency. For instance, correlation indices assume value 1
when the rvs are related by a linear relationship. On the contrary,
the Kendall's tau is equal to 1 if there exists a strictly increasing
transformation between the rvs. Furthermore, GLMs are sensible
to the amplitude of the test window. In our approach, this prob-
lembecomes relevant only plotting a 3-D histogram for the copu-
la, to perform a fit of data to a specific family of copulas.

The recent upgrading of the Cox method makes it a useful
approach for the detection of dependencies in a neural net-
work (Masud and Borisyuk, 2011). They study the dependency
of a target neuron A on the other (n−1) reference neurons,
considering pairwise dependencies. For this reason, we focus
on the comparison of the two methods for the case n−2,
reporting the main advantages of each method.

5.1. Copula method versus Cox method

5.1.1. The Cox method
The Cox method makes use of the hazard function, that is de-
fined as the occurrence rate at time t conditional on survival
time until time t or later:

φ tð Þ ¼ lim
Δt→0

P t≤T≤tþ ΔtjT > tð Þ
Δt

¼ f tð Þ
1−F tð Þ :

Here, F(t) is the cdf of the ISIs and f(t) is their density.
In (Masud and Borisyuk, 2011), modulated renewal pro-

cesses (refer to Cox (1972) and Borisyuk et al. (1985)) have
been considered to introduce the dependency between spike
trains. They suppose that the hazard function ϕ of the target
neuron A is a product of two multipliers. The first term is
the hazard function φ of the renewal process A without influ-
ence from the reference neuron B, and the second term de-
scribes the influence of neuron B on A. In particular, they
introduce an influence function ZB(t) that determines how
the reference neuron influences the target. They propose to
use a hazard function given by

φ tð Þ ¼ φA UA tð Þð Þexp βZB tð Þð Þ: ð4Þ

Here, UA(t) is the backward recurrence time of the process
A at time t and β is the parameter that has to be estimated
(Perkel et al., 1967). It gives the strength of influence from
train B to A: if β−0, no influence is observed. Their method
provides an estimation of β and a confidence interval for the
test hypothesis H0:β−0.

As influence functionZB, they choose the alpha functionpro-
posed by Gerstner and Kistler (2002) to describe the synaptic
connectivity between neurons. This choice implies the necessi-
ty to estimate a set of parameters: the delay time Δ due to spike
propagation from neuron B to A and the characteristic decay
and rise times of the postsynaptic potential (PSP), denoted by
τs and τr, respectively.

The estimation of Δ can be properly done using using a pair-
wise Cox method or considering the time shift to the right side
of zero corresponding to the highest value of the crosscorrela-
tion function exceeding the upper boundary. If theMPevolution
is described by a Stein'smodel, the decay time can be estimated

Fig. 12 – Autocorrelograms and crosscorrelograms. Panels I and III: autocorrelograms of TA for the samples analyzed in Figs. 5
and 9, respectively. The line with circles represents the estimated autocorrelation. The two straight lines limit the confidence
interval at 0.05 for 1

E TA �½ . Panels II and IV: crosscorrelograms for the considered samples. The line with stars (dotted line) denotes
the empirical (theoretical) crosscorrelation, while the two straight lines delimit a confidence interval for the hypothesis of
independence between TA and TB.
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from the ISI data using the algorithm in Tuckwell and Richter
(1978), while the rise time is assumed to satisfy τs ¼ 1

100τr:
In general, the estimation of τs and τr from the ISI data is an

unsolved task. Indeed, it requires the knowledge of the under-
lying model and the measurement of the PSP. Therefore, the
results from the method may become unreliable. A solution
might be to change the influence function ZB, choosing a
more general expression.

In the sequel, we consider a set of examples analyzed with
the two methods.

5.1.2. Examples
Weapply the Coxmethod to the data sample used in Section 4.
For an OU process, τs=θ, while τs=θ. However, to perform the
analysis, we assume τr=0.1, as in Masud and Borisyuk (2011).
The delay Δ is estimated using crosscorrelograms. To estimate
β from Eq. (4) and its confidence interval, we use the software
provided kindly to us by Borisyuk and Masud.

Using data from the covariance model, we obtain Δ=0 or
Δ=1. With these estimates, the Cox method correctly catches
the bi-directional dependencies, providing statistically posi-
tive estimates of β (analysis not reported).

However, the method does not succeed using data from the
jump model. Choosing A as target neuron, we investigate βBA,
i.e. the influence from B to A. Here, we report the study of the
Coxmethodon the spike trains analyzed in Fig. 5,with crosscor-
relogram in Fig. 12, Panel II. Looking to the right side of Fig. 12,
two peaks are observed at times 0 and 10. However, the second
one is due to the autocorrelation and therefore, we choose Δ=0.
This leads to βBA=−5.89 with confidence interval (−6.22;−5.59).

Therefore, a wrong negative dependency is caught. Vice versa,
choosing thewrongdelay Δ=10,wegot a correct positive depen-
dency βBA=0.71, with confidence interval (0.46;0.97). Choosing B
as target neuron, similar features follow (data not reported).

Hence, the goodness of the results dependshighly on theun-
derlying model and on the ability of the experimenter to esti-
mate the parameters correctly, when this can be done, i.e.
when we can measure the PSP or we know τr and τs in advance.

As a second check, we have generated two spike trains
according to the enhanced LIF model described in (Borisyuk,
2004), using the software from the website www.tech.
plymouth.ac.uk/infovis. This model considers different bio-
logical parameters, e.g. the already mentioned Δ and τs, but
also the absolute refractory period r, defined as the interval
following a spike where the neuron is unable to spike again.
Furthermore, the software allows to specify the connection
scheme between the two neurons.

Here, we test the Copula method on two spike trains gener-
ated choosing Δ=7,τs=2.78,τr=0.1,r=5 and uni-directional con-
nection βBA=12.18, i.e. B influences A. Choosing A as target
neuron, no delayed phenomena are observed. Indeed, the Ken-
dall's tau for the pairs (TA,TB(k)) are statistically equal to zero
(refer to Table 2, for k=1, 2). Reversely, we obtain a positive Ken-
dall's tau for m=0, i.e. for the pair (TA,θ). Furthermore, the pairs
(TA,θ+∑k=1

m TB
(k)) are independent form>1, having a p-value larg-

er than 0.05 (values not reported). Therefore, these data are
characterized by an instantaneous effect. Choosing B as target
neuron, no dependencies are catched, as shown in Table 2.
Hence, as the Cox method, our method catches the connection
scheme correctly.

Fig. 13 – Analyses through ISIs and copulas. Scatterplots and 3-D histograms for times and copulas. The upper (lower) panels
correspond to the samples analyzed in Fig. 5 (Fig. 9). Panels I, IV: ISI scatterplots of (TA,TB). Inset I′: copula scatterplot
corresponding to (TA,θ) (previously shown in Fig. 5, Panel I). Panel IV′: copula scatterplot corresponding to (TA,θ+TB

(1)) (already
shown in Fig. 9, Panel II). Panels II and V: 3-D time histograms. Panels III and VI: 3-D copula histograms.
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5.1.3. Advantages of the two methods
Summarizing, each method presents some advantages and
disadvantages, according to different situations.

The main advantages of the copula method are that:

• it is a non parametric method, only requesting the renewal
assumptions, i.e. iid ISIs;

• it recognizes the duration of the effect of a coupling phe-
nomenon through the investigation of m;

• it allows to recognize the presence of similar underlying dy-
namics for theMP, when the copula scatterplots or densities
have similar shapes;

• it gives the possibility to fit the joint distribution for the ex-
amined ISIs, after a fit of the copula density. This allows a
classification of different kinds of dependencies (not pre-
sent in this paper);

• it might be extended to capture dependencies in triplets,
quartets, etc.

A remark on the last feature. Ourmethod can be already used
to investigate dependencies of a neural network as done in
Masud and Borisyuk (2011), i.e. considering pairs of spike trains
and performing the aforementioned analysis on each pair. How-
ever, it would be interesting to investigate also the existence of
triplets, quartets, etc. of dependencies. Using the copulamethod,
thiswould request the investigationof kdimensional copulas, for
k>2, and the resultsmaypresent difficulties of illustration, due to
the impossibility to use scatterplots. Using the Cox method, this
study would become even more difficult, since one should rede-
fine thehazard functionφ in a properway, e.g. switching fromφA

to a function for the k involved neurons.
Two drawbacks of the Copula method are that sometimes

this method does not catch small dependencies and it requests
a large sample size to estimate the Kendall's tau properly.

The main advantages of the Cox method are that:

• it is reliable also for small sample size (i.e. 50 data for each
train);

• it allows to ignore the “spurious”connection, distinguishing
between direct and indirect connections anddealing correctly
with connectivity due to common source

• it has been already tested in a network of 20 neurons, with
satisfactory results.

The main drawback is its dependence on the goodness of
the influence function ZB for the considered data. Furthermore,

even choosing a good influence function, the estimation of its
parameter, such as τs,τr for the alpha function, may represent
a hard task.

Finally, both methods allow to detect the presence of a
delay in the coupling.

Cox and Lewis (1972) underline the complementary role of
the study of the occurrence rate of events (as done in the
Cox method), and of the ISIs (as done in the copula method)
for the theoretical study of point processes. This fact agrees
with our results for the statistical study of dependencies be-
tween point processes. Hence, a reliable analysis should con-
sider both methods.

6. Conclusions

We have proposed the use of the copula notion to analyze de-
pendencies between two spike trains. This has allowed the de-
velopment of a new non-parametric method based on the
study of their scatterplots and densities, as well as association
indexes, such as the Kendall's tau. This method allows to en-
lighten the effect of an interspike on the subsequent ones of
the other neuron. This can be studied checking copula scatter-
plots and performing a test H0 :τ=0. Furthermore, the use of
copulas helps to recognize thedirection schemeof twoneurons,
exchanging the role of target and reference neurons. Finally,
considering all this information, one might conjecture the na-
ture of the phenomenon at the origin of the dependencies.

The proposed method can be also applied to experimental
data, allowing to catch dependencies. However, it may happen
to obtain copula scatterplots with shapes different from those
discussed here. To interpret them, it is advisable to enlarge
the set of examples, to include cases involving inhibition phe-
nomena or spurious connections. The development of a specific
software enclosing copulas and the previously mentioned
methods, particularly Cox with a proper influence function ZB,
represents an important step toward a better comprehension
of the structure of a network. Our future work will consider
the possibility to fit data with suitable copula families.

Finally, a further step will be to consider k-dimensional
copulas to investigate the dependencies in groups of k neu-
rons, non pairwise.
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FIRST PASSAGE TIMES FOR BIVARIATE GAUSS-MARKOV
PROCESSES
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Abstract. We determine the joint distribution of the exit times of a bivariate Gauss-Markov
process from a two-dimensional strip under absorbing boundary conditions. This distribution de-
pends on the transition density of the process constrained to evolve under the boundary. Solving
a two-dimensional Kolmogorov forward equation, we explicitly derive these two quantities for a bi-
variate Wiener process with drift and non-diagonal covariance matrix. Explicit expressions for other
Gauss-Markov processes are not available. For this reason, we propose a numerical algorithm, which
is shown to be convergent. A comparison between theoretical and numerical results for Wiener and
an illustration of the numerical approximation for a bivariate Ornstein-Uhlenbeck process are carried
out. Extensions to renewal and diffusion processes in presence of non-absorbing boundaries are also
suggested.

Key words. Exit times, System of Volterra-Fredholm integral equations, Bivariate Kolmogorov
forward equation, Bivariate Wiener process

AMS subject classifications. 60G40, 65R20, 60J65, 60J70

1. Introduction and motivation. The first passage time (FPT) problem for
one-dimensional stochastic processes has been widely investigated through simulation,
analytical and numerical methods [3, 6, 13, 17]. Besides its mathematical interest,
the derivation of the FPT distribution is relevant in different fields, e.g. neuroscience,
reliability theory, finance, epidemiology. In neuroscience, FPTs describe the times
when the neuron releases an electrical impulse, called spike. In reliability theory, FPTs
model the epochs when a crash of an object happens. In finance, FPTs describe the
time when a bond or a stock reaches a certain value and it is profitable to sell or buy.
In epidemiology, FPTs describe the times when an epidemic reaches a threshold level,
exiting from its quiescence state. Connections between neurons, common shocks and
direct interaction between objects, dependencies between stocks in the same portfolio
or belonging to the same market and interactions between populations suggest the
presence of dependencies between FPTs. Therefore, it is of interest to extend the
FPT problem to more general scenarios.

This paper is inspired by [12], where the FPT of a two-dimensional Brownian
motion without drift, in presence of absorbing boundary, was derived. The bivariate
Wiener was proposed as an oversimplified model of a neural network. As a more
realistic model to describe the dynamics of k neurons, we propose a multivariate
Ornstein-Uhlenbeck (OU) process [23], which is shown to be the diffusion approxi-
mation of a multivariate Stein process [22]. The model is characterized by constant
drifts and non-diagonal covariance matrix, implying dependent component. A bivari-
ate version of this model is investigated through simulations in [21]. Motivated by
these papers, we study multivariate FPT distributions in the framework of neural net-
works. In neuroscience, experimentalists measure the difference of potential between
the internal and external parts of the membrane of a neuron. The arrival of inputs

∗Department of Mathematics “G. Peano”, University of Turin, Via Carlo Alberto 10, Turin, Italy,
(laura.sacerdote@unito.it).
†Department of Mathematical Sciences, Copenhagen University, Universitetsparken 5, Copen-

hagen, Denmark, (mt@math.ku.dk).
‡Department of Mathematics “G. Peano”, University of Turin, Via Carlo Alberto 10, Turin, Italy,

(cristina.zucca@unito.it).

1



2 L. Sacerdote, M. Tamborrino and C. Zucca

on the membrane causes changes of its membrane potential dynamics. When the
membrane potential attains a certain threshold level, an active mechanism produces
a sudden hyperpolarization and the neuron generates a spike. It is believed that inter-
spike intervals encode the neural information [24, 25, 26] and therefore their investiga-
tion is of primary interest. Merging biological and mathematical tractability reasons,
leaky-integrate-and-fire models represent a commonly used class of one-dimensional
diffusion processes in neuroscience [20]. The interspike times are described as FPTs
of the process through a boundary. Connections and interactions between neurons
imply dependencies between their dynamics and thus also their epochs.

For one-dimensional processes, transition densities are known for Wiener [8], OU,
Feller (also note as Cox-Ingersol-Ross or square root processes), and all those cases
where an explicit solution of the Kolmogorov forward equation is available [18, 19].
The transition density of a process in presence of absorbing boundaries and the FPT
density are generally unknown, except for Wiener [20] and a special case of the OU
process [10]. As an alternative approach, numerical methods can be applied [20].

For multivariate processes, the transition density is known for Gauss-Markov pro-
cesses [4]. However, neither the transition density in presence of absorbing boundaries,
nor the joint FPT density are available. Our aim is to solve the two-dimensional FPT
problem of a bivariate Gauss-Markov process in presence of absorbing boundaries.
We assume that a component is absorbed on its boundary whenever it reaches it,
while the other independently pursues its evolution till the epoch when it attains its
boundary.
In §2 we introduce notations and mathematical background used throughout the pa-
per. In §3 we express the joint distribution of the FPTs as a function of the marginal
distributions of the FPTs, and of the conditional probability densities of a component
given that the other has attained its boundary at a fixed time. We show that these
unknown conditional densities solve a system of Volterra-Fredholm integral equations.
In §4 we present a numerical algorithm to solve the system. The obtained numerical
solution is then used to evaluate the joint distribution of the FPTs. In §5 we study
the order the convergence of the error of the proposed algorithm. In §6 we determine
explicit expressions of the joint distribution of the FPTs of a bivariate Wiener process
with constant drifts and non-diagonal covariance matrix. In particular, the transition
density of the bivariate Wiener process in presence of absorbing boundary conditions
is explicitly derived as solution of a bivariate Kolmogorov forward equation. The re-
sults in §6 extend and correct those in [5, 11, 12]. Finally, in §7 we apply the numerical
algorithm to evaluate the joint FPT density of bivariate Wiener and OU processes,
comparing numerical and theoretical results for Wiener.

2. Mathematical background. Consider a two-dimensional time homogeneous
Gauss-Markov process X = {(X1, X2)(t); t > t0}, originated at time t0 in X(t0) =
x0 = (x01,x02), solution of the stochastic differential equation

dX(t) = µ(X(t))dt+ Σ(t)dW(t). (2.1)

Here µ(X(t)) = A(t)X(t) + a(t), A(t) and Σ(t) are Rk × Rk-matrix valued, Σ(t) is
positive-definite, and W(t) is a k-dimensional standard Wiener process [4].

Let B = (B1, B2) ∈ R2 be a two-dimensional boundary, with Bi > x0i, i = 1, 2
and denote Ti the random variable FPT of Xi through the boundary Bi, defined by

Ti = inf{t > t0 : Xi (t) > Bi} i = 1, 2.
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Before the first exit time from the strip (−∞, B1)× (−∞, B2), the process X evolves
under the boundary B, and we denote it as Xa, i.e.

Xa = {X(t); t ∈ [t0,min(T1, T2)]} .

Similarly, we denote Xa
i the unidimensional process Xi evolving under the boundary

Bi, before time Ti, i.e.

Xa
i = {Xi(t); t ∈ (t0, Ti)} , i = 1, 2.

Whenever a component reaches its boundary, it is absorbed there, while the other
component independently pursues its evolution. Throughout the paper, absorbing
boundary conditions are assumed, whenever it is not differently specified.
If Z is a k-dimensional process, we denote its transition probability by FZ(x, t|y, s) =
P(Z(t) < x|Z(s) = y), its survival function by F̄Z(x, t|y, s) and the transition prob-
ability density function (pdf) by fZ(x, t|y, s) for s < t,x,y ∈ Rk. Throughout the
paper, Z = X or Z = Xa, for k = 1 or 2.
For s < t, we denote fXai |Xaj (xi, t|xj , t; y, s) the conditional pdf of Xa

i given Xa
j , for

i, j = 1, 2, i 6= j, defined by

fXai |Xaj (xi, t|xj , t; y, s)dxi = P(Xa
i (t) ∈ dxi|Xa

j (t) = xj ,X
a(s) = y),

and fXai |Tj (xi|t; yi, s) the transition pdf of Xa
i conditioned on Tj when Xa

i starts in
yi at time s, defined by

fXai |Tj (xi|t; yi, s) dxi = P (Xa
i (Tj) ∈ dxi|Tj = t,Xa

i (s) = yi) . (2.2)

The joint pdf of Tj and Xa
i (Tj), when Xa

i starts in yi at time s > Tj , denoted by
f(Xai ,Tj)

(xi, t|yi, s), is defined by

f(Xai ,Tj)
(xi, t|yi, s) dxidt = P (Xa

i (Tj) ∈ dxi, Tj ∈ dt|Xa
i (s) = yi) . (2.3)

The pdf of Ti is defined by gTi(t|yi, s) = P(Ti ∈ dt|Xi(s) = yi). Our aim is to
determine the joint cumulative distribution function P(T1 < t1, T2 < t2|X(s) = y) or
its pdf P(T1 ∈ dt1, T2 ∈ dt2|X(s) = y), for a process X starting in y < B at time
s = (s1, s2) in presence of absorbing boundary B.
To simplify the notation, throughout we omit the starting position when y = x0 and
the starting time s, when s = t0.

3. Joint distribution of (T1, T2). The joint distribution of (T1, T2) can be
expressed in terms of the marginal FPTs densities and of the transitions pdfs (2.2).

Theorem 3.1. Let X be a two-dimensional Gauss-Markov process with X(t0) =
x0 and let B be a two-dimensional absorbing boundary with B1 > x01 and B2 > x02.
The joint distribution of (T1, T2) is

P(T1 < t1, T2 < t2)
(3.1)

=

2∑

i,j=1;i 6=j

∫ ti

t0

∫ Bj

−∞

(∫ tj

si

gTj (sj |xj , si)dsj
)
f(Xaj ,Ti)

(xj , si)dxjdsi.

Proof.

P(T1 < t1, T2 < t2)=
2∑

i,j=1;i6=j

∫ ti

t0

P(T1<t1, T2<t2|Ti<Tj , Ti=si)P(Ti∈dsi, Ti<Tj).
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Conditioning on the value of the component which has not yet reached its boundary,
at the time when the other component crosses its boundary, we get

P(T1 < t1, T2 < t2)

=
2∑

i,j=1;i 6=j

∫ ti

t0

∫ Bj

−∞
P(Tj<tj |Ti=si, Xa

j (si)=xj)P(Xa
j (si)∈dxj |Ti=si)P(Ti∈dsi, Ti<Tj)

=
2∑

i,j=1;i6=j

∫ ti

t0

∫ Bj

−∞
P(Tj < tj |Xa

j (si) = xj)P(Xa
j (si) ∈ dxj , Ti ∈ dsi),

where the last equality holds because X and thus Xa are Markov processes.
Remark 1. The expression

f(Xaj ,Ti)
(xj , si)dxjdsi = fXaj |Ti(xj |si)gTi(si)dxjdsi (3.2)

can be plugged in into (3.1), obtaining

P(T1 < t1, T2 < t2)
(3.3)

=

2∑

i,j=1;i 6=j

∫ ti

t0

∫ Bj

−∞

(∫ tj

si

gTj (sj |xj , si)dsj
)
fXaj |Ti(xj |si)gTi(si)dxjdsi.

This expression is useful when gTi is known, because it allows to rewrite (3.1) in terms
of the unknown function fXaj |Ti .
From Theorem 3.1, it follows

Corollary 3.2. The joint density of (T1, T2) for a two-dimensional Gauss-
Markov process in presence of an absorbing boundary B is given by

P(T1 ∈ dt1, T2 ∈ dt2) =

2∑

i,j=1;i 6=j

∫ Bj

−∞
gTj (tj |xj , ti)f(Xaj ,Ti)

(xj , ti)dxjdtidtj (3.4)

The distribution of (T1, T2) can be explicitly determined when the densities gTj
and f(Xaj ,Ti)

are known, e.g. for the Wiener case, as shown in §6. For other processes,

the FPT density gTj can be approximated through numerical methods [16, 20, 27].
Here we focus on the unknown density f(Xaj ,Ti)

and we show that it solves a system

of Volterra-Fredholm integral equations [1]:
Theorem 3.3. Let X be a bivariate Gauss-Markov process with X(t0) = x0

and let B be a two-dimensional boundary with B1 > x01 and B2 > x02. The joint
transition pdfs f(Xai ,Tj)

, for i, j = 1, 2; i 6= j, are solutions of the following system of
Volterra-Fredholm first kind integral equations

F̄X((x1, B2), t) =

∫ t

t0

∫ B2

−∞
F̄X((x1, B2), t|(B1, y), τ)f(Xa2 ,T1) (y, τ) dydτ

+

∫ t

t0

∫ B1

−∞
F̄X((x1, B2), t|(y,B2), τ)]f(Xa1 ,T2) (y, τ) dydτ ; (3.5a)

F̄X((B1, x2), t) =

∫ t

t0

∫ B2

−∞
F̄X((B1, x2), t|(B1, y), τ)f(Xa2 ,T1) (y, τ) dydτ

+

∫ t

t0

∫ B1

−∞
F̄X((B1, x2), t|(y,B2), τ)f(Xa1 ,T2) (y, τ) dydτ, (3.5b)
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where x1 > B1 and x2 > B2.
Proof. Let us consider the exit times of the process X. The survival distribution

of X, for x1 > B1 and x2 > B2, is given by

F̄X(x, t) = P (X(t) ≥ x, T1 < T2) + P (X(t) ≥ x, T1 > T2)

=

∫ t

t0

∫ B2

−∞
P (X(t) ≥ x, T1 < T2|T1 = τ,X2(T1) = y)

· P (X2(T1) ∈ dy, T1 ∈ dτ, T1 < T2)

+

∫ t

t0

∫ B1

−∞
P (X(t) ≥ x, T1 > T2|T2 = τ,X1(T2) = y)

· P (X1(T2) ∈ dy, T2 ∈ dτ, T1 > T2)

=

∫ t

t0

∫ B2

−∞
P (X(t) ≥ x|X(τ) = (B1, y)) f(Xa2 ,T1) (y, τ) dydτ

+

∫ t

t0

∫ B1

−∞
P (X(t) ≥ x|X(τ) = (y,B2)) f(Xa1 ,T2) (y, τ) dydτ, (3.6)

where the last equality follows from the strong Markov property. Then, the thesis
(3.5) follows by choosing x = (x1, B2) and x = (B1, x2) respectively.

Corollary 3.4. Differentiating (3.6) with respect to x and since∫ ti
t0

∫ B2

−∞ f(Xa1 ,T2)(y, τ)dydτ = 1, it follows

fX(x, t) =

∫ t

t0

∫ B2

−∞
fX (x, t|(B1, y), τ) f(Xa2 ,T1) (y, τ) dydτ

+

∫ t

t0

∫ B1

−∞
fX (x, t|(y,B2), τ) f(Xa1 ,T2) (y, τ) dydτ.

Remark 2. When B1 and B2 are regular boundaries, the distribution of (T1, T2)
can be similarly computed for other processes:

• For a diffusion process, the faster component pursues its evolution after the
crossing time. Mimicking Theorem 3.1, the joint FPT distribution can be
rewritten as a product of f(Xai ,Tj)

and f(Xj ,Ti), with X(Tj) = (Xa
i (Tj), Bj),

for Tj < Ti, i, j = 1, 2, i 6= j. The first factor describes the dynamics of the
process up to time min(T1, T2) = Tj: the component j reaches its threshold,
and Xi is constrained to be under the boundary Bi. The second factor de-
scribes the evolution of the process in (min(T1, T2),max(T1, T2)), i.e. (Tj , Ti):
the component j pursues its evolution starting from the boundary Bj at time
Tj, while the component i starts in Xi(Tj) and has its FPT at time Ti.

• Imagine that, whenever a component reaches its value, it is reset to a starting
value and then pursues its evolution. The intertimes between two consecutive
FPTs of the same component are independent and identically distributed and
thus each component is marginally modeled by a renewal process. Then the
joint FPT distribution can be rewritten as a product of f(Xai ,Tj)

and f(Xj ,Ti),
when Tj < Ti, i, j = 1, 2, i 6= j. The second factor describes the evolu-
tion of the process in (min(T1, T2),max(T1, T2)), i.e. (Tj , Ti): X starts in
X(Tj) = (Xa

i (Tj), x0j), where the firing component Xj is reset to its initial
value x0j. Then the slower component i has its FPT at time Ti, while Xj

evolves, possibly with further crossings of Bj (with corresponding reset) before
Ti.
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In both cases, the joint FPT density depends on f(Xai ,Tj)
, which can be obtained

through Theorem 3.3.

4. Numerical method and its convergence property. For a Gauss-Markov
process, the density f(Xaj ,Ti)

is generally unknown. Therefore the system (3.5) cannot

be analytically solved and the joint FPT distribution (3.1) cannot be explicitly de-
rived. Here we propose a numerical method to solve (3.5) and therefore approximate
f(Xaj ,Ti)

.

Consider an assigned two-dimensional time interval [0,Θ1]×[0,Θ2], with Θ1,Θ2 ∈ R+.
For each component i = 1, 2, let hi and ri be the time and space discretization steps,
respectively. On {[−∞, B1]× [−∞, B2]× [0,Θ1]× [0,Θ2]} we introduce the partition
{(yu1

, yu2
); tk1 , tk2} where tki = kihi is the time discretization and yui = Bi − uiri is

the space discretization for ki = 0, . . . , Ni, Nihi = Θi, ui ∈ N, and i = 1, 2.
To simplify the notations, we consider h1 = h2 = h and Θ1 = Θ2 = Θ, implying
N1 = N2 = N , k1 = k2 = k and thus tk1 = tk2 = tk, for k = 0, . . . , N .

Let f̂(Xa1 ,T2)(y, tj) denote the approximation of f(Xa1 ,T2)(y, tj) due to the time
discretization procedure. We approximate the time integrals of (3.5) through the

Euler method [14], obtaining a system of integral equations for f̂(Xai ,Tj)
(y, t), i = 1, 2.

For x1 < B1 and x2 < B2, we get

F̄X((x1, B2), tk) = h
k∑

ρ=0

∫ B2

−∞
F̄X((x1, B2), tk|(B1, y), tρ)f̂(Xa2 ,T1) (y, tρ) dy

+ h
k∑

ρ=0

∫ B1

−∞
F̄X((x1, B2), tk|(y,B2), tρ)f̂(Xa1 ,T2) (y, tρ) dy; (4.1a)

F̄X ((B1, x2), tk) = h
k∑

ρ=0

∫ B2

−∞
F̄X ((B1, x2) , tk|(B1, y), tρ)f̂(Xa2 ,T1) (y, tρ) dy

+ h
k∑

ρ=0

∫ B1

−∞
F̄X((B1, x2), tk|(y,B2), tρ)f̂(Xa1 ,T2)(y, tρ)dy. (4.1b)

Let 1A denote the indicator function of the set A. Then

F̄X((B1, x2), tk|(B1, y), tk) = 1{y>x2}; (4.2)

F̄X((B1, x2), tk|(y,B2), tk) = 0;

F̄X((x1, B2), tk|(B1, y), tk) = 0;

F̄X((x1, B2), tk|(y,B2), tk) = 1{y>x1}.

Plugging (4.2) into (4.1) and differentiating with respect to xj , j = 1, 2, we get the
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system

∂F̄X((x1, B2), tk)

∂x1
= hf̂(Xa1 ,T2) (x1, tk)

+ h
k−1∑

ρ=0

∫ B2

−∞

∂F̄X((x1, B2), tk|(B1, y), tρ)

∂x1
f̂(Xa2 ,T1) (y, tρ) dy

+ h
k−1∑

ρ=0

∫ B1

−∞

∂F̄X((x1, B2), tk|(y,B2), tρ)

∂x1
f̂(Xa1 ,T2) (y, tρ) dy;

(4.3a)

∂F̄X ((B1, x2), tk)

∂x2
= hf̂(Xa2 ,T1) (x2, tk)

+ h
k−1∑

ρ=0

∫ B2

−∞

∂F̄X ((B1, x2) , tk|(B1, y), tρ)

∂x2
f̂(Xa2 ,T1) (y, tρ) dy

+ h
k−2∑

ρ=0

∫ B1

−∞

∂F̄X((B1, x2), tk|(y,B2), tρ)

∂x2
f̂(Xa1 ,T2)(y, tρ)dy. (4.3b)

Discretizing the spatial integral and truncating the corresponding series with a finite
sum, we obtain

∂F̄X((x1, B2), tk)

∂x1
= hf̃(Xa1 ,T2) (x1, tk)

+ hr2

k−1∑

ρ=0

m2∑

u2=0

∂F̄X((x1, B2), tk|(B1, yu2), tρ)

∂x1
f̃(Xa2 ,T1) (yu2

, tρ)

+ hr1

k−1∑

ρ=0

m1∑

u1=0

∂F̄X((x1, B2), tk|(yu1 , B2), tρ)

∂x1
f̃(Xa1 ,T2) (yu1

, tρ) ;

(4.4a)

∂F̄X((B1, x2), tk)

∂x2
= hf̃(Xa2 ,T1) (x2, tk)

+ hr2

k−1∑

ρ=0

m2∑

u2=0

∂F̄X((B1, x2), tk|(B1, yu2
), tρ)

∂x2
f̃(Xa2 ,T1) (yu2

, tρ)

+ hr1

k−1∑

ρ=0

m1∑

u1=0

∂F̄X((B1, x2), tk|(yu1
, B2), tρ)

∂x2
f̃(Xa1 ,T2)(yu1

, tρ).

(4.4b)

Here f̃(Xai ,Tj)
(y, t) denotes the approximation of f(Xai ,Tj)

(y, t) due to the time and
space discretization procedures and to the truncation of the infinite sums of the space
discretization.

Sincef(Xai ,Tj)
(yui , t0) = 0, we set f̃(Xi,Tj)(yui , t0) = 0. The following algorithm

can be used to approximate f(Xai ,Tj)
in the knots {(yu1

, yu2
); tk}:
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Step 1

f̃(Xa1 ,T2) (yu1
, t1) =

1

h

∂

∂x1
F̄X((x1, B2), t1)

∣∣∣∣
x1=yu1

;

f̃(Xa2 ,T1) (yu2
, t1) =

1

h

∂

∂x2
F̄X((B1, x2), t1)

∣∣∣∣
x2=yu2

.

Step k ≥ 2

f̃(Xa1 ,T2) (yu1 , tk) =

[
1

h

∂

∂x1
F̄X((x1, B2), tk)

∣∣∣∣
x1=yu1

− r2

k−1∑

ρ=0

m2∑

v2=0

f̃(Xa2 ,T1) (yv2 , tρ)
∂

∂x1

[
F̄X((x1, B2), tk|(B1, yv2), tρ)

]∣∣∣∣
x1=yu2

− r1

k−1∑

ρ=0

m1∑

v1=0

f̃(Xa1 ,T2) (yv1 , tρ)
∂

∂x1

[
F̄X((x1, B2), tk|(yv1 , B2), tρ))

]∣∣∣∣
x1=yu1

]
;

f̃(Xa2 ,T1) (yu2
, tk) =

[
1

h

∂

∂x2
F̄X((B1, x2), tk)

∣∣∣∣
x2=yu2

− r2

k−1∑

ρ=0

m2∑

v2=0

f̃(Xa2 ,T1) (yv2 , tρ)
∂

∂x2
F̄X((B1, x2), tk|(B1, yv2), tρ)

∣∣∣∣
x2=yu2

− r1

k−1∑

ρ=0

m1∑

v1=0

f̃(Xa1 ,T2) (yv1 , tρ)
∂

∂x2
F̄X((B1, x2), tk|(yv1 , B2), tρ))

∣∣∣∣
x2=yu1

]
.

Note that at time t1, f̂(Xai ,Tj)
(y, t1) = f̃(Xai ,Tj)

(yui , t1) in each knot yui .

Remark 3. We choose the Euler method because it simplifies the notation and is
easy to implement. More efficient schemas, e.g. trapezoidal formula, can be similarly
applied, improving the rate of convergence error of the proposed algorithm.

5. Convergence of the algorithm. Let E(i)(yui , tk) denote the error of the
proposed algorithm evaluated in the mesh points (yui , tk), for k = 0, . . . , N, ui =
0, 1, . . . ,mi, i = 1, 2. It is defined by

E(i)(yui , tk) = f(Xai ,Tj)
(yui , tk)− f̃(Xai ,Tj)

(yui , tk) , i, j = 1, 2, i 6= j. (5.1)

Mimiking the analysis of the error in [7], we rewrite the error (5.1) as a sum of two

errors. The first is given by e
(i)
k (yui) = f(Xai ,Tj)

(yui , tk) − f̂(Xai ,Tj)
(yui , tk) and is

due to the time discretization. The second is given by E
(i)
k,ui

= f̂(Xai ,Tj)
(yui , tk) −

f̃(Xai ,Tj)
(yui , tk) and is determined by the spatial discretization and by the truncation

introduced at steps k ≥ 2. We start computing E
(i)
k,ui

through the following
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Lemma 5.1. It holds

E
(1)
k,u1

=
k−1∑

ρ=0

[
−
∫ B1

−∞
K1,k,ρ((yu1

, B2), (y,B2))f̂(Xa1 ,T2)(y, tρ)dy

−
∫ B2

−∞
K1,k,ρ((yu1

, B2), (B1, y))f̂(Xa2 ,T1) (y, tρ) dy

+ r1

m1∑

v1=0

K1,k,ρ((yu1 , B2), (yv1 , B2))f̃(Xa1 ,T2)(yv1 , tρ)

+r2

m2∑

v2=0

K1,k,ρ((yu1
, B2), (B1, yv2))f̃(Xa2 ,T1) (yv2 , tρ)

]
; (5.2a)

E
(2)
k,u2

=

k−1∑

ρ=0

[
−
∫ B1

−∞
K2,k,ρ((B1, yu2), (y,B2))f̂(Xa1 ,T2)(y, tρ)dy

−
∫ B2

−∞
K2,k,ρ((B1, yu2

), (B1, y))f̂(Xa2 ,T1) (y, tρ) dy

+ r1

m1∑

v1=0

K2,k,ρ((B1, yu2
), (yv1 , B2))f̃(Xa1 ,T2)(yv1 , tρ)

+r2

m2∑

v2=0

K2,k,ρ((B1, yu2), (B1, yv2))f̃(Xa2 ,T1) (yv2 , tρ)

]
, (5.2b)

where the kernels are

K1,k,t((yu1 , b), (c, d)) =
∂

∂x1

[
F̄X((x1, b), tk|(c, d), t)− F̄X((x1, b), tk−1|(c, d), t)

]∣∣∣∣
x1=yu1

(5.3)

K2,k,t((a, yu2
), (c, d)) =

∂

∂x2

[
F̄X((a, x2), tk|(c, d), t)− F̄X((a, x2), tk−1|(c, d), t)

]∣∣∣∣
x2=yu2

.

When t = tρ, we write Ki,k,ρ instead of Ki,k,tρ to simplify the notation. Here a, c ∈
(−∞, B1) and b, d ∈ (−∞, B2).
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Proof. Subtracting (4.4) from (4.3), we obtain

f̂(Xa1 ,T2) (x1, tk)− f̃(Xa1 ,T2) (x1, tk) =
k−1∑

ρ=0

[
−
∫ B1

−∞

∂F̄X((x1, B2), tk|(y,B2), tρ)

∂x1
f̂(Xa1 ,T2) (y, tρ) dy

−
∫ B2

−∞

∂F̄X((x1, B2), tk|(B1, y), tρ)

∂x1
f̂(Xa2 ,T1) (y, tρ) dy

+ r1

m1∑

u1=0

∂F̄X((x1, B2), tk|(yu1
, B2), tρ)

∂x1
f̃(Xa1 ,T2) (yu1

, tρ)

+r2

m2∑

u2=0

∂F̄X((x1, B2), tk|(B1, yu2), tρ)

∂x1
f̃(Xa2 ,T1) (yu2

, tρ)

]
; (5.4a)

f̂(Xa2 ,T1) (x2, tk)− f̃(Xa2 ,T1) (x2, tk) =
k−1∑

ρ=0

[
−
∫ B1

−∞

∂F̄X((B1, x2), tk|(y,B2), tρ)

∂x2
f̂(Xa1 ,T2)(y, tρ)dy

−
∫ B2

−∞

∂F̄X ((B1, x2) , tk|(B1, y), tρ)

∂x2
f̂(Xa2 ,T1) (y, tρ) dy

+ r1

k∑

ρ=0

m1∑

u1=0

∂F̄X((B1, x2), tk|(yu1
, B2), tρ)

∂x2
f̃(Xa1 ,T2)(yu1

, tρ)

+r2

m2∑

u2=0

∂F̄X((B1, x2), tk|(B1, yu2), tρ)

∂x2
f̃(Xa2 ,T1) (yu2 , tρ)

]
. (5.4b)

If we rewrite (5.4) for k − 1, without making the (k − 1)th term explicit, we obtain

k−1∑

ρ=0

[
−
∫ B1

−∞

∂F̄X((x1, B2), tk|(y,B2), tρ)

∂x1
f̂(Xa1 ,T2) (y, tρ) dy

−
∫ B2

−∞

∂F̄X((x1, B2), tk|(B1, y), tρ)

∂x1
f̂(Xa2 ,T1) (y, tρ) dy

+ r1

m1∑

u1=0

∂F̄X((x1, B2), tk|(yu1
, B2), tρ)

∂x1
f̃(Xa1 ,T2) (yu1

, tρ)

+r2

m2∑

u2=0

∂F̄X((x1, B2), tk|(B1, yu2), tρ)

∂x1
f̃(Xa2 ,T1) (yu2 , tρ)

]
= 0; (5.5a)

k−1∑

ρ=0

[
−
∫ B1

−∞

∂F̄X((B1, x2), tk|(y,B2), tρ)

∂x2
f̂(Xa1 ,T2)(y, tρ)dy

−
∫ B2

−∞

∂F̄X ((B1, x2) , tk|(B1, y), tρ)

∂x2
f̂(Xa2 ,T1) (y, tρ) dy

+ r1

k∑

ρ=0

m1∑

u1=0

∂F̄X((B1, x2), tk|(yu1 , B2), tρ)

∂x2
f̃(Xa1 ,T2)(yu1

, tρ)

+r2

m2∑

u2=0

∂F̄X((B1, x2), tk|(B1, yu2
), tρ)

∂x2
f̃(Xa2 ,T1) (yu2 , tρ)

]
= 0, (5.5b)
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due to conditions (4.2). Then, the thesis follows subtracting (5.5) from (5.4) and
setting xi = yui , for i = 1, 2.
The following theorem gives the convergence of the proposed algorithm.

Theorem 5.2. For i, j = 1, 2, i 6= j, k = 1, . . . , N, ρ = 0, . . . , k−1, ui = 0, . . . ,mi,
if conditions

(i) Ki,k,ρ((a, b), (c, y))f̂(Xaj ,Ti)
(y, tρ) and Ki,k,ρ((a, b), (y, d))f̂(Xai ,Tj)

(y, tρ) are ul-

timately monotonic in y;
(ii) f(Xai ,Tj)

(y, tρ) is bounded, belongs to L1 and there exist positive functions

Ci,1(y) ∈ L1, Ci,2(y) ∈ L1, with x ∈ (−∞, B1) and y ∈ (−∞, B2), such that

|Ki,k,ρ((a, b), (y, d))| ≤ hCi,1(y);

|Ki,k,ρ((a, b), (c, y))| ≤ hCi,2(y),

and Ci,1(0) and Ci,2(0) are bounded;
(iii) for l = 1, 2

∫ Bi−mi(ri)ri

−∞
Cl,i(y)

∣∣∣f̂(Xai ,Tj)
(y, tρ)

∣∣∣ dy ≤ ψl,iri, (5.6)

as ri → 0 and mi(ri)ri →∞, where ψl,i are positive constant;
(iv) for l = 1, 2, there exist constants Ql,i such that

∣∣∣∣∣

∫ Bi

−∞

∂

∂t

[
Cl,i(y)f(Xai ,Tj)

(y, tρ)
]
dy

∣∣∣∣∣ ≤ Ql,i; (5.7)

(v) for l = 1, 2, z1 = (yu1
, B2) and z2 = (B1, yu2

),

∂

∂t

[
F̄X(zl, tρ|(B1, y), t)f(Xa2 ,T

1)(y, t)
]
|t=τ ∈ L1 in y ∈ (−∞, B2);

∂

∂t

[
F̄X(zl, tρ|(y,B2), t)f(Xa1 ,T

2)(y, t)
]
|t=τ ∈ L1 in y ∈ (−∞, B1);

∂

∂yul

∂

∂t

[
F̄X(zl, tρ|(B1, y), t)f(Xa2 ,T

1)(y, t)
]
|t=τ ∈ L1 in y ∈ (−∞, B2);

∂

∂yul

∂

∂t

[
F̄X(zl, tρ|(y,B2), t)f(Xa1 ,T

2)(y, t)
]
|t=τ ∈ L1 in y ∈ (−∞, B1).

are satisfied, then

E(i)(yui , tk) = O(h) +O(r), (5.8)

where r = max(r1, r2).

Proof. At first, we study the error E
(i)
k,ui

due to the spatial discretization. It can
be decomposed as

E
(i)
k,ui

= A
(i)
k,ui
−B(i)

k,ui
, k = 1, . . . , N. (5.9)
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Here, A
(i)
k,ui

has the same expression of E
(i)
k,ui

in (5.2), replacing f̃(Xai ,Tj)
(y, tj) with

f̂(Xai ,Tj)
(y, tj). Moreover, B

(i)
k,ui

is defined by

B
(1)
k,u1

=
k−1∑

ρ=0

[
r1

m1∑

v1=0

K1,k,ρ((yu1
, B2), (yv1 , B2))E(1)

ρ,v1

+r2

m2∑

v2=0

K1,k,ρ((yu1 , B2), (B1, yv2))E(2)
ρ,v2

]
, (5.10a)

B
(2)
k,u2

=
k−1∑

ρ=0

[
r1

m1∑

v1=0

K2,k,ρ((B1, yu2
), (yv1 , B2))E(1)

ρ,v1

+r2

m2∑

v2=0

K2,k,ρ((B1, yu2
), (B1, yv2))E(2)

ρ,v2

]
. (5.10b)

The term A
(i)
k,ui

accounts for the approximation of the spatial integrals with finite

sums. Hence we can split it into a first term A
(i,a)
k,ui

accounting for the discretization

procedure and a second A
(i,b)
k,ui

for the truncation of the series.

By definition of A
(i,a)
k,ui

, we have

|A(1,a)
k,u1
| =

∣∣∣∣∣
k−1∑

ρ=0

{[∫ B1

−∞
K1,k,ρ((yu1

, B2), (y,B2))f̂(Xa1 ,T2)(y, tρ)dy

−r1

∞∑

v1=0

K1,k,ρ((yu1 , B2), (yv1 , B2))f̂(Xa1 ,T2)(yv1 , tρ)

]

+

[∫ B2

−∞
K1,k,ρ((yu1

, B2), (B1, y))f̂(Xa2 ,T1) (y, tρ) dy

−r2

∞∑

v2=0

K1,k,ρ((yu1
, B2), (B1, yv2))f̂(Xa2 ,T1) (yv2 , tρ)

]}∣∣∣∣∣ ; (5.11a)

|A(2,a)
k,u2
| =

∣∣∣∣∣
k−1∑

ρ=0

{[∫ B1

−∞
K2,k,ρ((B1, yu2), (y,B2))f̂(Xa1 ,T2)(y, tρ)dy

−r1

∞∑

v1=0

K2,k,ρ((B1, yu2
), (yv1 , B2))f̂(Xa1 ,T2)(yv1 , tρ)

]

+

[∫ B2

−∞
K2,k,ρ((B1, yu2), (B1, y))f̂(Xa2 ,T1) (y, tρ) dy

−r2

∞∑

v2=0

K2,k,ρ((B1, yu2
), (B1, yv2))f̂(Xa2 ,T1) (yv2 , tρ)

]}∣∣∣∣∣ . (5.11b)
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Let us focus on the terms in the first square brackets in (5.11a). It holds
∣∣∣∣∣

∫ B1

−∞
K1,k,ρ((yu1

, B2), (y,B2))f̂(Xa1 ,T2)(y, tρ)dy

−r1

∞∑

v1=0

K1,k,ρ((yu1
, B2), (yv1 , B2))f̂(Xa1 ,T2)(yv1 , tρ)

∣∣∣∣∣

≤
∣∣∣∣∣

∫ B1

B1−r1
K1,k,ρ((yu1

, B2), (y,B2))f̂(Xa1 ,T2)(y, tρ)dy

∣∣∣∣∣

≤ h
∫ B1

B1−r1
C1,1(y)

∣∣∣f̂(Xa1 ,T2)(y, tρ)
∣∣∣ dy

≤ hr1η1,1, (5.12)

where we used condtion (i) and eq. (3.4.5) in [9] in the first inequality and condition

(ii) in the second. Note that the numerical approximations f̂(Xaj ,Ti)
(y, tρ) can be

rewritten as a function of f(Xaj ,Ti)
(y, tρ) and Ki,k,ρ(a, b, c, d), as shown in Remark

2 in [7]. Then, thanks to condition (ii), it follows that f̂(Xaj ,Ti)
(y, tρ) is bounded.

Moreover, the integrable function C1,1(y) on the compact interval [B1 − r1, B1] is

bounded. Thus C1,1(y)||f̂(Xa1 ,T2)(y, tρ)| ≤ η1,1 for a positive constant η1, which yields
(5.12). A similar procedure can be done for the terms in the second square brackets
in (5.11a) and for those in (5.11b), obtaining

|A(1,a)
k,u1
| ≤ (r1η1,1 + r2η1,2)

k−1∑

ρ=0

h = (r1η1,1 + r2η1,2)tk−1; (5.13a)

|A(2,a)
k,u2
| ≤ (r1η2,1 + r2η2,2)

k−1∑

ρ=0

h = (r1η2,1 + r2η2,2)tk−1. (5.13b)

Here ηi,l are positive constant given by

Cl,i(y)f(Xai ,Tj)
(y, tρ) ≤ ηl,i,

for i, j, l = 1, 2, i 6= j. Let us now consider the error A
(i,b)
k,ui

. Using condition (i), eq.
(3.4.5) in [9] and then conditions (ii), (iii) in sequence, we get

|A(1,b)
k,u1
| =

∣∣∣∣∣
k−1∑

ρ=0

[
r1

∞∑

v1=m1+1

K1,k,ρ((yu1 , B2), (yv1 , B2))f̂(Xa1 ,T2)(yv1 , tρ)

+r2

∞∑

v2=m2+1

K1,k,ρ((yu1
, B2), (B1, yv2))f̂(Xa2 ,T1) (yv2 , tρ)

]∣∣∣∣∣

≤
∣∣∣∣∣
k−1∑

ρ=0

h

[∫ B1−m1r1

−∞
C1,1(y)f̂(Xa1 ,T2)(y, tρ)dy

+

∫ B2−m2r2

−∞
C1,2(y)f̂(Xa2 ,T1) (y, tρ) dy

]∣∣∣∣∣
≤ (ψ1,1r1 + ψ1,2r2)tk; (5.14a)

|A(2,b)
k,u2
| ≤ (ψ2,1r1 + ψ2,2r2)tk, (5.14b)



14 L. Sacerdote, M. Tamborrino and C. Zucca

where (5.14b) is obtained as (5.14a).

From (5.13), (5.14) and r = max(r1, r2), we get |A(i)
k,ui
| ≤ rGitk, where Gi, i = 1, 2

are positive suitable constants. Using these bounds in (5.9) and observing that B
(i)
k,ui

in (5.10) involves the errors E
(i)
ρ,vi for 0 ≤ ρ ≤ k − 1, we get a system of inequalities

|E(1)
k,u1
| ≤ G1rtk + r

k−1∑

ρ=0

[
m1∑

v1=0

|K1,k,ρ((yu1 , B2), (yv1 , B2))||E(1)
ρ,v1 |

+

m2∑

v2=0

|K1,k,ρ((yu1
, B2), (B1, yv2))||E(2)

ρ,v2 |
]

(5.15a)

|E(2)
k,u2
| ≤ G2rtk + r

k−1∑

ρ=0

[
m1∑

v1=0

|K2,k,ρ((B1, yu2
), (yv1 , B2))||E(1)

ρ,v1 |

+

m2∑

v2=0

|K2,k,ρ((B1, yu2), (B1, yv2))||E(2)
ρ,v2 |

]
. (5.15b)

We extend the method proposed in [7] to the system (5.15), that we solve iteratively
as follows:

|E(i)
0,ui
| = 0 := rp

(i)
0 ;

|E(i)
1,ui
| ≤ Girt1 =: rp

(i)
1 ;

|E(1)
2,u1
| ≤ G1rt2 + r

[
rp

(1)
1

m1∑

v1=0

|K1,k,ρ((yu1 , B2), (yv1 , B2))|

+rp
(2)
1

m2∑

v2=0

|K1,k,ρ((yu1
, B2), (B1, yv2))|

]

≤ r
[
G1t2 + rβ1

1p
(1)
1 + rβ1

2p
(2)
1

]
=: rp

(1)
2 ; (5.16)

|E(2)
2,u2
| ≤ r

[
G2t2 + rβ2

1p
(1)
1 + rβ2

2p
(2)
1

]
:= rp

(2)
2 ,

where (5.16) holds due to condition (ii), eq. (3.4.5) in [9]. Here βil , i, l = 1, 2 are
suitable constants, which do not depend on r and h. Iterating this procedure, (5.15)
becomes

|E(1)
k,u1
| ≤ r

[
G1tk + r

k−1∑

ρ=0

(
β1

1p
(1)
ρ + β1

2p
(2)
ρ

)]
:= rp

(1)
k ; (5.17a)

|E(2)
k,u2
| ≤ r

[
G2tk + r

k−1∑

ρ=0

(
β2

1p
(1)
ρ + β2

2p
(2)
ρ

)]
:= rp

(2)
k . (5.17b)

Since tk ≤ Θ, from (5.17) it follows

p
(i)
k ≤ GiΘ + r

k−1∑

ρ=0

(
βi1p

(1)
ρ + βi2p

(2)
ρ

)
, i = 1, 2.
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Then, by eq. (7.18) in [14], we get p
(i)
k ≤ GiΘexp[(β1

1 + β2
2)rtk]. Therefore

|E(1)
k,u1
| ≤ rG1Θ exp

[
(β1

1 + β1
2)rtk

]
; (5.18a)

|E(2)
k,u2
| ≤ rG2Θ exp

[
(β2

1 + β2
2)rtk

]
, (5.18b)

implying |E(i)
k,ui
| = O(r).

Now, we focus on the time discretization error e
(i)
k (yui). The error formulas for

the Euler method are

δ1,1,k(h) =
htk
2

∫ B1

−∞

∂

∂t
F̄X((yu1

, B2), tk|(y,B2), t)f(Xa1 ,T2) (y, t) dy

∣∣∣∣
t=τ

; (5.19)

δ1,2,k(h) =
htk
2

∫ B2

−∞

∂

∂t
F̄X((yu1 , B2), tk|(B1, y), t)f(Xa2 ,T1) (y, t) dy

∣∣∣∣
t=τ

;

δ2,1,k(h) =
htk
2

∫ B1

−∞

∂

∂t
F̄X((B1, yu2

), tk|(y,B2), t)f(Xa1 ,T2) (y, t) dy

∣∣∣∣
t=τ

;

δ2,2,k(h) =
htk
2

∫ B2

−∞

∂

∂t
F̄X((B1, yu2

), tk|(B1, y), t)f(Xa2 ,T1) (y, t) dy

∣∣∣∣
t=τ

,

where τ ∈ (0,Θ) and we used tk = hk. Rewriting (4.1) with the corresponding
residuals and evaluating it in xi = yui , i = 1, 2 respectively, we get

F̄X((yu1
, B2), tk) = h

k∑

ρ=0

∫ B1

−∞
F̄X((yu1

, B2), tk|(y,B2), tρ)f(Xa1 ,T2) (y, tρ) dy

+ h
k∑

ρ=0

∫ B2

−∞
F̄X((yu1

, B2), tk|(B1, y), tρ)f(Xa2 ,T1) (y, tρ) dy

+ δ1,1,k(h) + δ1,2,k(h); (5.20a)

F̄X ((B1, yu2
), tk) = +h

k∑

ρ=0

∫ B1

−∞
F̄X((B1, yu2

), tk|(y,B2), tρ)f(Xa1 ,T2)(y, tρ)dy

+ h
k∑

ρ=0

∫ B2

−∞
F̄X ((B1, yu2

) , tk|(B1, y), tρ)f(Xa2 ,T1) (y, tρ) dy

+ δ2,1,k(h) + δ2,2,k(h). (5.20b)

Subtracting (4.1) from (5.20) and differentiating with respect to yui , we get a system

of integral equations for e
(i)
ρ (y) given by

− ∂

∂yu1

[δ1,1,k(h) + δ1,2,k(h)] =

{
h

k∑

ρ=0

[
∂

∂yu1

∫ B1

−∞
F̄X((yu1

, B2), tk|(y,B2), tρ)e
(1)
ρ (y)dy

+
∂

∂yu1

∫ B2

−∞
F̄X((yu1

, B2), tk|(B1, y), tρ)e
(2)
ρ (y)dy

]}
; (5.21a)

− ∂

∂yu2

[δ2,1,k(h) + δ2,2,k(h)] =

{
h

k∑

ρ=0

[
∂

∂yu2

∫ B1

−∞
F̄X((B1, yu2

), tk|(y,B2), tρ)e
(1)
ρ (y)dy

+
∂

∂yu2

∫ B2

−∞
F̄X((B1, yu2), tk|(B1, y), tρ)e

(2)
ρ (y)dy

]}
. (5.21b)
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Rewriting (5.21) with respect to k− 1, subtracting it from (5.21) and using (4.2), we
obtain

e
(1)
k (yu1)−

k−1∑

ρ=0

[∫ B1

−∞
K1,k,ρ((yu1

, B2), (y,B2))e(1)
ρ (y)dy

+

∫ B2

−∞
K1,k,ρ((yu1

, B2), (B1, y))e(2)
ρ (y)dy

]

=
∂

∂yu1

[
(δ1,1,k(h)− δ1,1,k−1(h)) + (δ1,2,k(h)− δ1,2,k−1(h))

h

]
; (5.22a)

e
(2)
k (yu2)−

k−1∑

ρ=0

[∫ B1

−∞
K2,k,ρ((B1, yu2), (y,B2))e(1)

ρ (y)dy

+

∫ B2

−∞
K2,k,ρ((B1, yu2

), (B1, y))e(2)
ρ (y)dy

]

=
∂

∂yu2

[
(δ2,1,k(h)− δ2,1,k−1(h)) + (δ2,2,k(h)− δ2,2,k−1(h))

h

]
. (5.22b)

Using (5.3), (5.19) and condition (v), and since tk−1 = tk − h, we have

∂

∂yu1

|δ1,1,k(h)− δ1,1,k−1(h)|

≤ htk
2

∫ B1

−∞

∂

∂t

[
|K1,k,t((yu1 , B2), (y,B2))||f(Xa1 ,T2) (y, t) |dy

]
∣∣∣∣∣
t=τ

+
h2

2

∣∣∣∣∣
∂

∂yu1

∫ B1

−∞

∂

∂t

[
F̄X((yu1

, B2), tk−1|(y,B2), t)f(Xa1 ,T2) (y, t) dy
]
∣∣∣∣∣
t=τ

∣∣∣∣∣

≤ h2

2
[tkQ1,1 + S1,1] :=

h2

2
α1,1.

The last inequality holds applying conditions (ii) and (iv) on the first term, and
condition (v) on the second term, for a suitable positive constant S1,1. Similarly

∂

∂yul
|δl,i,k(h)− δl,i,k−1(h)| ≤ h2

2
[tkQl,i + Sl,i] :=

h2

2
αl,i,

for i, l = 1, 2 and suitable positive constants Sl,i obtained from condition (v). Then
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(5.22) becomes

|e(1)
k (yu1

)| ≤ (α1,1 + α1,2)htk
2

+
k−1∑

ρ=0

[∫ B1

−∞

∣∣∣K1,k,ρ((yu1
, B2), (y,B2))e(1)

ρ (y)
∣∣∣ dy

(5.23a)

+

∫ B2

−∞

∣∣∣K1,k,ρ((yu1 , B2), (B1, y))e(2)
ρ (y)

∣∣∣ dy
]

;

|e(2)
k (yu2)| ≤ (α2,1 + α2,2)htk

2
+

k−1∑

ρ=0

[∫ B1

−∞

∣∣∣K2,k,ρ((B1, yu2), (y,B2))e(1)
ρ (y)

∣∣∣ dy

(5.23b)

+

∫ B2

−∞

∣∣∣K2,k,ρ((B1, yu2
), (B1, y))e(2)

ρ (y)
∣∣∣ dy
]
.

Setting γl = max{αl,1, αl,2}, for l = 1, 2, we can write the system (5.23) iteratively
for k ≥ 0, obtaining

|e(i)
0 | = 0 := hq

(i)
0 ;

|e(i)
1 | ≤ γiht1 := hq

(i)
1 ;

|e(1)
2 | ≤ γ1ht2 + hq

(1)
1

∫ B1

−∞
|K1,k,ρ((yu1 , B2), (y,B2))|dy + hq

(2)
1

∫ B2

−∞
|K1,k,ρ((yu1 , B2), (B1, y))|dy

≤ h
(
γ1t2 + hξ1

1q
(1)
1 + hξ1

2q
(2)
1

)
:= hq

(1)
2 ;

|e(2)
2 | ≤ h

(
γ2t2 + hξ2

1q
(1)
1 + hξ2

2q
(2)
1

)
:= hq

(2)
2 ,

where we used condition (ii) to bound e
(i)
2 . Here ξji are suitable constants independent

on h and r. In general

|e(1)
k (yu1

)| ≤ h
[
γ1tk + h

(
ξ1
1

k−1∑

ρ=0

q(1)
ρ + ξ1

2

k−1∑

ρ=0

q(2)
ρ

)]
:= hq

(1)
k ; (5.24a)

|e(2)
k (yu2

)| ≤ h
[
γ2tk + h

(
ξ2
1

k−1∑

ρ=0

q(1)
ρ + ξ2

2

k−1∑

ρ=0

q(2)
ρ

)]
:= hq

(2)
k . (5.24b)

Since tk ≤ Θ, from (5.24) it follows

q
(i)
k ≤ γiΘ + h

(
ξi1

k−1∑

ρ=0

q(1)
ρ + ξi2

k−1∑

ρ=0

q2
ρ

)
, i = 1, 2,

and applying eq. (7.18) in [14], we get q
(i)
k ≤ γiΘexp[(ξi1 + ξi2)tk] and thus

|e(1)
k (yu1

)| ≤ hγ1Θ exp
[
(ξ1

1 + ξ1
2)tk

]
; (5.25a)

|e(2)
k (yu2

)| ≤ hγ2Θ exp
[
(ξ2

1 + ξ2
1)tk

]
. (5.25b)

The thesis follows noting that |e(i)
k (yui)| = O(h).

Remark 4. The numerical approximations f̂(Xaj ,Ti)
(y, tρ) can be rewritten such

that they depend only on f(Xaj ,Ti)
(y, tρ) and Ki,k,ρ(a, b, c, d), as shown in Remark 2 in

[7]. Therefore, conditions (i) and (iii) are in fact assumptions on f and K.
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6. Joint distribution of (T1, T2) for a bivariate Wiener process. Consider
a bivariate Wiener process X solving (2.1) with constant drift µ(X(t)) = (µ1, µ2) ∈ R2

and positive-definite covariance matrix

Σ(t) =

(
σ1 0

ρσ2 σ2

√
1− ρ2

)
,

for ρ ∈ (−1, 1). Then X is a bivariate Wiener process with null drift and covariance
matrix

Σ̃ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

That is, each component is marginally a Wiener process with drift µi, diffusion co-
efficient σi > 0, i = 1, 2 and ρ is the correlation of the bivariate Wiener process, e.g.
ρ = 0 corresponds to have independent components. For the Wiener process, the
densities fX, fXai and gTi , i, j = 1, 2, i 6= j are known [8]. Then, to determine the
joint FPT distribution using Theorem 3.1, the unknown conditional density fXai |Tj
has to be derived. The first step is to calculate the unknown transition density fXa ,
which solves the two-dimensional Kolmogorov forward equation

∂fXa(x, t)

∂t
=
σ2

1

2

∂2fXa(x, t)

∂x2
1

+
σ2

2

2

∂2fXa(x, t)

∂x2
2

+ σ1σ2ρ
∂2fXa(x, t)

∂x1∂x2
(6.1)

− µ1
∂fXa(x, t)

∂x1
− µ2

∂fXa(x, t)

∂x2
,

with initial, boundary and absorbing conditions given by

lim
t→0

fXa (x, t) = δ (x1 − x01) δ (x2 − x02) ; (6.2)

lim
x1→−∞

fXa (x, t) = lim
x2→−∞

fXa (x, t) = 0; (6.3)

fXa (x, t)|x1=B1
= fXa (x, t)|x2=B2

= 0, (6.4)

respectively, where we set t0 = 0. The solution provided in [11] does not fulfill (6.2)
when (µ1, µ2) 6= (0, 0). Following their proof, we noted that the normalizing factor

exp

(
−
(
µ2ρσ1σ2 − µ1σ

2
2

)
B1 +

(
µ1ρσ1σ2 − µ2σ

2
1

)
B2

(1− ρ2)σ2
1σ

2
2

)
(6.5)

was missing. Since (6.5) is equal to 1 when (µ1, µ2) = (0, 0), the results in [11] are
correct for the driftless case. In presence of drift, it holds

Lemma 6.1. The density fXa that the process never reaches the boundary B in
(0, t) is given by

fXa(x, t) =
2

αK3t
exp {K1(B1 − x01) +K2(B2 − x02)}

(6.6)

× exp

(
−σ

2
1µ

2
2 − 2µ1µ2σ1σ2ρ+ σ2

2µ
2
1

2K2
3

t− r̄2 + r̄2
0

2K2
3 t

)
H(r̄, r̄0, φ, φ0, t),
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where r̄ := r̄(x1, x2) ∈ (0,∞), φ := φ(x1, x2) ∈ (0, α) and

r̄ =
√
σ2

1(B2 − x2)2 + σ2
2(B1 − x1)2 − 2σ1σ2ρ(B1 − x1)(B2 − x2);

r̄ cos(φ) = σ2(B1 − x1)− σ1ρ(B2 − x2), r̄ sin(φ) = σ1

√
1− ρ2(B2 − x2);

r̄0 = r̄|x1=x01;x2=x02
;

φ0 = φ0|x1=x01;x2=x02
;

K1 =
σ2µ1 − σ1µ2ρ

σ2
1σ2(1− ρ2)

, K2 =
σ1µ2 − σ2µ1ρ

σ1σ2
2(1− ρ2)

, K3 = σ1σ2

√
1− ρ2;

α = arctan

(
−
√

1− ρ2

ρ

)
∈ (0, π);

H(r̄, r̄0, φ, φ0, t) =

∞∑

n=1

sin(
nπφ0

α
) sin(

nπφ

α
)Inπ/α

(
r̄r̄0

K2
3 t

)
.

Here (r̄, φ) are functions of (x1, x2) and are obtained through a suitable change of
variables in [11]. In (6.6) we use them instead of (x1, x2) to simplify the notation.
To compare our results with those in [11], one should introduce the transformation
r = r̄/σ1 and r0 = r̄0/σ1, since they use different constant terms.

Remark 5. The distribution of the first exit time of the process from the strip
(−∞, B1)× (−∞, B2) is given by

P (min (T1, T2) < t) = 1−
∫ B1

−∞

∫ B2

−∞
fXa(x, t)dx1dx2,

and it can be computed multiplying eq. (32) in [11] with the missing factor (6.5).
Corollary 6.2. The conditional density fXai |Xaj (xi, t|xj , t), for i, j = 1, 2; i 6= j

is given by

fXai |Xaj (xi, t|xj , t) =
2σj
√

2πt

αK3t
exp

(
−Ki

[
σi
σj

(xj − x0j)ρ− (xi − x0i)

])

× exp

(
−KitNj −

r̄2 + r̄2
0 − (xj − x0j)

2σ2
i (1− ρ2)

2K2
3 t

)

×
[

1− exp

(
2(Bj − x0j)(xj −Bj)

σ2
j t

)]−1

H(r̄, r̄0, φ, φ0, t), (6.7)

with

N1 =
σ1µ2 − σ2µ1ρ

2σ1
, N2 =

σ2µ1 − σ1µ2ρ

2σ2
.

Proof. The conditional density is given by

fXai |Xaj (xi, t, |xj , t; y, s) =
fXa(x, t|y, s)
fXaj (xj , t|yj , s)

, (6.8)

and the thesis follows plugging fXaj given in [20] and (6.6) into (6.8).
Then, we can introduce the following
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Lemma 6.3. The conditional density fXai |Tj (xi|t) for i, j = 1, 2 i 6= j is given by

fXai |Tj (xi|t) =
σjπ
√

2πt

α2(Bi − xi)(Bj − x0j)
exp

(
−Ki

[
σi
σj

(Bj − x0j)ρ− (xi − x0i)

])

× exp

(
−KitNj −

[ρσi(Bj − x0j)− σj(Bi − x0i)]
2 + σ2

j (Bi − xi)2

2K2
3 t

)
Gij(r̄0, φ0, xi, t),

(6.9)

where

Gij(r̄0, φ0, xi, t) =

∞∑

n=1

δin sin

(
nπφ0

α

)
Inπ
α

(
σj(Bi − xi)r̄0

K2
3 t

)
,

with δ1 = 1 and δ2 = (−1)n+1.
Proof. When xj → Bj , both fXaj and fXa go to zero, due to the boundary

condition (6.4). Therefore fXai |Xaj is indefinite, as noticed from (6.8). From the

definition of φ, we have that φ → α when x1 → B1 and φ → 0 when x2 → B2. In
both cases, sin(nπφ/α)→ 0 and thus H(r̄, r̄0, φ, φ0, t)→ 0. Moreover,

[
1− exp

(
2(Bj − x0j)(xj −Bj)

σ2
j t

)]
→ 0,

when xj → Bj . Hence, the last two terms in (6.7) produce an indefinite form. Ap-
plying l’Hópital’s rule, we obtain

lim
xj→Bj

sin
(
nπφ
α

)

1− exp
(

2(Bj−x0j)(xj−Bj)
σ2
j t

) =
σiσjπ

√
1− ρ2t

2α(Bi − xi)(Bj − x0j)
nδi,

with δ1 = 1, δ2 = (−1)n+1, depending on whether φ→ α or φ→ 0, respectively. The
thesis follows plugging in this ratio into (6.7).

Finally, the joint distribution of the FPTs can be explicitly calculated:
Theorem 6.4. The joint distribution of (T1, T2) is given by

P(T1 < t1, T2 < t2) =
2∑

i,j=1;i 6=j

√
2π

2α2σj
exp

(
Ki(Bi − x0i)−Kjx0j +

µjBj
σ2
j

)

×
∫ ti

0

∫ Bj

−∞

∫ tj

si

1

si
√

(sj − si)3
exp

(
−Kiρ

σi
σj
xj −KiNjsi

)
(6.10)

× exp

(
− r̄

2
0 + σ2

i (Bj − xj)2

2siK2
3

− (Bj − xj)2

2σ2
j (sj − si)

−
µ2
jsj

2σ2
j

)
Gji(r̄0, φ0, xj , si)dsjdxjdsi.

Proof. It follows plugging gTi given in [20] and (6.9) into (3.1), and then simpli-
fying the resulting expression.

6.1. Driftless Wiener process. For the driftless case, it holds
Theorem 6.5. The joint density of (T1, T2) is given by

P(T1 ∈ dt1, T2 ∈ dt2) =
2∑

i,j=1;i6=j

π
√

1− ρ2

2α2
√
ti(tj − tiρ2)(tj − ti)

exp

(
− r̄

2
0[tj + ti(1− 2ρ2)]

4K2
3 ti(tj − tiρ2)

)

(6.11)

×
∞∑

n=1

δjn sin

(
nπφ0

α

)
Inπ

2α

(
r̄2
0(tj − ti)

4K2
3 ti(tj − tiρ2)

)
dtidtj .
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Proof. Since µ1 = µ2 = 0, it follows that K1 = K2 = 0. Deriving (6.10) with
respect to t1 and t2, we have

P(T1 ∈ dt1, T2 ∈ dt2)

=
2∑

i,j=1;i 6=j

∫ Bj

−∞

[ √
2π

2α2σjti
√

(tj − ti)3
exp

(
− r̄

2
0 + σ2

i (Bj − xj)2

2tiK2
3

− (Bj − xj)2

2σ2
j (tj − ti)

)

×Gji(r̄0, φ0, xj , ti)] dxjdtidtj

=
2∑

i,j=1;i 6=j

√
2π exp

{
− r̄20

2tiK2
3

}

2α2σjti
√

(tj − ti)3

∞∑

n=1

δjn sin

(
nπφ0

α

)

×
∫ Bj

−∞
exp

(
−σ

2
i (Bj − xj)2(tj − tiρ2)

2K2
3 ti(tj − ti)

)
Inπ
α

(
σi(Bj − xj)r̄0

K2
3 ti

)
dxjdtidtj

=
2∑

i,j=1;i 6=j

√
2π exp

(
− r̄20

2tiK2
3

)

2α2σiσjti
√

(tj − ti)3

∞∑

n=1

δjn sin

(
nπφ0

α

)

×
∫ ∞

0

exp

(
− h2(tj − tiρ2)

2K2
3 ti(tj − ti)

)
Inπ
α

(
hr̄0

K2
3 ti

)
dhdtidtj , (6.12)

where the last equality is obtained through a change of coordinate, namely h =
σi(Bj − xj). The integral in (6.12) can be solved using the identity [15]

∫ ∞

0

e−β
2h2

Iν(γh)dh =

√
π

2β
exp

(
γ2

8β2

)
Iν/2

(
γ2

8β2

)
, (6.13)

setting β2 = (tj − tiρ2)/
(
2K2

3 ti(tj − ti)
)
, γ = r̄0/(K

2
3 ti) and ν = nπ/α. The thesis

follows after some computations.
When t1 = t2, we have the following

Corollary 6.6. The joint FPT density when t1 = t2 = t is

P(T1 ∈ dt, T2 ∈ dt) =





0dt2 if ρ ∈ (−1, 0)

∞dt2 if ρ ∈ (0, 1)

(B1−x01)(B2−x02)
2πσiσjt3

e
−σ

2
2(B1−x01)2+σ21(B2−x02)2

2σ21σ
2
2t dt2 if ρ = 0

Proof. If ti < tj , set z = tj − ti, i, j = 1, 2, i 6= j. When z → 0, the limit of
(6.11) is indefinite, being of the form Iν(z)/z, with ν = nπ/(2α). Using the fact that
Iν(z) ∼ (z/2)ν/Γ(ν + 1) [2], we get

lim
z→0

Iν(z)

z
=

1

2νΓ(ν + 1)
zν−1 =





0 if ν > 1

∞ if ν < 1
1
2 if ν = 0

(6.14)

Since α ∈ (0, π), then ν > 1 for n > 2, and thus all addends in the series in (6.11)
vanish for n > 2. For n = 2, δ1 = 1, δ2 = −1 and thus the term in (6.11) is null, being
the two densities symmetric. Finally, when n = 1, from (6.14), definitions of ν and
ρ, it follows that ν < 1 ⇔ α ∈ (0, π/2) ⇔ ρ ∈ (−1, 0); ν = 1 ⇔ α = π/2 ⇔ ρ = 0
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and ν > 1 ⇔ α ∈ (π/2, π) ⇔ ρ ∈ (0, 1), where ⇔ denotes if and only if. The thesis
follows plugging the resulting expression for (6.14) in (6.11).

Remark 6. To compare (6.11) with the corresponding expression in [12] for
s = t1 < t2 = t, we set

r̃0 =
r̄0

K3
,

since different transformations are used. Since
√

1− ρ2 = sinα, ρ2 = cos2 α, 2(t− sρ2) = (t− s) + (t− s cos 2α),

we obtain

P(T1 ∈ ds, T2 ∈ dt, s < t)

=
π sinα

2α2
√
s(t− s cos2 α)(t− s)

exp

(
− r̃2

0(t− s cos 2α)

2s[(t− s) + (t− s cos 2α)]

)

×
∞∑

n=1

(−1)n+1n sin(
nπφ0

α
)Inπ

2α

(
r̃2
0(t− s)

2s[(t− s) + (t− s cos 2α)]

)
dsdt.

The result differs from that in [12], that uses an incorrect identity for (6.13), as
already discussed in [11].

7. Examples. Denote fT the theoretical joint density of (T1, T2) and f̂T its nu-
merical approximation obtained applying the proposed algorithm. Here we report a
brief illustration for two-dimensional Wiener and OU processes in presence of absorb-
ing boundaries. For a bivariate Wiener, the theoretical joint density fT is given by
(6.11) for the driftless case, and is derived from (6.10) when the drift is not null. To

compare fT and f̂T , throughout we consider the mean square error (MSE), which is
defined by

MSE(fT ) =
1

nm

n∑

i=1

m∑

j=1

(
fT (ti, tj)− f̂T (ti, tj)

)2

.

7.1. Bivariate Wiener process. First, consider a symmetric bivariate Wiener
process with null drifts, parameters σ1 = σ2 = 1, ρ = 0.5 and boundaries B1 = B2 =
1. The theoretical joint density and its contour plot are reported in the top panels of
Fig.7.1. The numerical approximations are not shown, since they are indistinguishable
from those theoretical. Indeed, choosing a space discretization step r = 0.05 and time
discretization step h = 0.01 (resp. h = 0.05), we obtain MSE(fT ) = 3.5859 · 10−5

(resp. MSE(fT ) = 4.8607 · 10−4). This confirms the reliability of the algorithm,
as expected from the convergence results of the error, proved in Theorem 5.2. Not
surprisingly, also the joint FPT density the contour plots are symmetric, and the
probability mass is concentrated in the area close to the diagonal t1 = t2, represent-
ing simultaneous FPTs, i.e. T1 = T2.
Second, consider a non-symmetric bivariate Wiener process with parameters µ1 =
1, µ2 = 2, σ1 = σ2 = 1, ρ = 0.5 and boundaries B1 = B2 = 10. The joint den-
sity fT and the contour plot are reported in the low panels of Fig.7.1. They are
indistinguishable from those obtained applying the numerical algorithm (figures not
shown). As expected, the joint FPT density is not symmetric and the probabil-
ity mass is concentrated around the means of the FPTs and it is spread out ac-
cording to the variance of the FPTs. Indeed, for this parameter choice, we have
E[T1] = 10,E[T2] = 5, V (T1) = 10 and V (T2) = 1.25, see [20].
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Fig. 7.1. Theoretical joint densities and contour plots of (T1, T2) for two-dimensional Wiener
processes. Parameter values common to all figures: σ1 = σ2 = 1, ρ = 0.5. Chosen drifts for the top
figures: µ1 = µ2 = 0, B1 = B2 = 1 and time discretization step h = 0.005. Chosen drifts for the
bottom figures: µ1 = 1, µ2 = 1.5, B1 = B2 = 10 and time discretization step h = 0.05. Panel (a):
joint density of (T1, T2). Panel (b): contour plots of (T1, T2).

7.2. Bivariate Ornstein-Uhlenbeck process. A bivariate OU process satis-
fies the stochastic differential equation (2.1) with

µ(X(t)) =

(
µ1 − X1(t)

θ

µ2 − X2(t)
θ

)
, Σ(t) = Σ =

(
σ11 σ12

σ12 σ22

)
, (7.1)

for µi ∈ R, σij > 0, 1 ≤ i, j ≤ 2, σ12 ∈ R and Σ positive-definite matrix.
Throughout we fix θ = 10, σ12 = 1, σi = 2, Bi = 10, for i = 1, 2. First, we consider
a symmetric OU with µ1 = µ2 = 1.5. The approximated joint density f̂T and the
contour plot of (T1, T2) are given in the top panels of Fig. 7.2. With this parameter
choice, the asymptotic mean µiθ of each component of the OU is above the boundary
Bi. Also in this case, the probability mass is concentrated along the diagonal t1 = t2.
Hence, the times when the components cross their boundary are similar.
Second, we consider a non-symmetric OU with drifts µ1 = 0.95 and µ2 = 1.5. The
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Fig. 7.2. Approximated joint densities and contour plots of (T1, T2) for bivariate OU processes.
Parameter values common to all figures: σ11 = σ22 = 2, σ12 = 1, B1 = B2 = 10. Chosen drifts for
the top figures: µ1 = µ2 = 1.5. Chosen drifts for the bottom figures: µ1 = 0.95 and µ2 = 1.5. Panel
(a): joint density of (T1, T2). Panel (b): contour plots of (T1, T2).

approximated joint density f̂T and the contour plot are reported in the bottom panels
of Fig. 7.2. Note that the first component has asymptotic mean µ1θ below B1, and
thus the noise determines the crossings of the boundary. As a consequence, the
probabilistic mass is concentrate in the region t1 > t2.

8. Conclusion. We solve the FPT problem for a two-dimensional Wiener pro-
cess with constant drifts and non-diagonal covariance matrix in presence of absorbing
boundaries. In particular, we explicitly calculate the joint density of the FPTs and
other relevant quantities, e.g. the first and second exit times from the strip, the
transition density of the process under the boundary. For bivariate Gauss-Markov
processes, explicit expressions of those densities are not available. Therefore, we sug-
gest to use the proposed numerical method, which error is shown to converge. These
results are also confirmed by our numerical examples for the Wiener case.

It can be discussed if is relevant for applications to assume absorbing bound-
aries and independent components after the first exit time from the strip. First, the
proposed algorithm for the evaluation of f(Xa1 ,T2) and f(Xa2 ,T1) does not depend on
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whether the boundaries are or not absorbed and thus it can be always used. Sec-
ond, the assumption of absorbing boundaries simplifies the computations, but is not
a shortcoming. Indeed, the proposed approach can be extended to non-absorbing
boundaries, assuming either multivariate renewal or diffusion processes, as argued in
Remark 2.
A generalization to the joint FPT distribution of a k-dimensional process would also
be of interest. However, that study requests the knowledge of the solution of a k-
dimensional Kolmogorov forward equation, when the process is a multivariate Wiener
in presence of absorbing boundaries, or of a system of k Volterra-Fredholm first kind
integral equations, when the process is Gauss-Markov.
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In many physical systems there is a time delay before an applied input (stimulation) has an impact on the output
(response), and the quantification of this delay is of paramount interest. If the response can only be observed on
top of an indistinguishable background signal, the estimation can be highly unreliable, unless the background
signal is accounted for in the analysis. In fact, if the background signal is ignored, however small it is compared
to the response and however large the delay is, the estimate of the time delay will go to zero for any reasonable
estimator when increasing the number of observations. Here we propose a unified concept of response latency
identification in event data corrupted by a background signal. It is done in the context of information transfer
within a neural system, more specifically on spike trains from single neurons. The estimators are compared on
simulated data and the most suitable for specific situations are recommended.
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I. INTRODUCTION

The formal representation of series of uniform events
appearing randomly in time as a stochastic point process
is common in several branches of physics [1]. Here we
investigate one specific problem related to this representation
and discuss it in a common application of the theory, namely,
studies on information transfer in neural systems. However,
the methodology is applicable in any other field in which the
following scenario can be found. Assume a series of primary
events observable for a period of time. At a known time instant,
either controlled by an experimenter or induced by an external
event, an additional stream of indistinguishable events is added
to the original one. The question is what the waiting time is
to the first event coming from the new source. Obviously,
taking the time to the first event after the defined time instant
may give a very biased answer. The problem is common in
computational neuroscience and we use its terminology and
reasoning.

The only way a neuron can transmit information about
rapidly varying signals is by a series of all or none events:
the action potentials (spikes or firings). An action potential is
taken in the limit as a Dirac delta function and thus a spike train
may be considered as a realization of a stochastic point process
[2,3]. A characteristic of neuronal units of different types is the
existence of so-called spontaneous activity, i.e., the generation
of spikes without any (controlled) stimulation, usually with a
low firing rate. It can, as a first approximation, be described by a
Poisson process with constant intensity [3]. It is not possible to
analyze the transfer of information within the nervous system
without investigating the effect of changing conditions [4].
A common experimental approach, especially for studying the
sensory systems, is the presentation of a stimulus and checking
if and how the neuron responds to it. The general reason is that

*mt@math.ku.dk
†susanne@math.ku.dk
‡lansky@biomed.cas.cz

the information about the stimulus is encoded in the reaction. It
has been shown experimentally and theoretically that the spike
latency (vaguely described as the time between stimulation and
neuronal response) contains important information in auditory,
visual, olfactory, and somatosensory modalities [5–16]. In
Ref. [17] the latency is studied experimentally and described
by a mathematical function. Therefore, the precise definition
and determination of the response latency appear as important
problems.

An often applied technique for the stimulated neuronal
activity involves estimates of the firing rate profile. The
estimated latency to a response is the first instant following the
stimulus onset in which the firing rate changes significantly.
In statistical terminology, this is a change-point estimation in
the intensity (firing rate) function. Three alternative latency
estimation methods were provided in Ref. [18], all based on
detecting the time at which the firing rate increases from the
baseline. In Ref. [19] formal statistical tests for latency effects
were proposed and a detailed study of statistical properties of
estimation and testing methods was conducted. Also Ref. [20]
discussed whether the first-spike latency could be a candidate
neural code and an algorithm for detecting the first-spike
latency for a single neuron was presented. It was based on
detecting a change in the spontaneous discharge Poisson
process model caused by evoked spikes. All of these methods
are based on finding the point where the firing rate of the
underlying point process has changed [21–25]. However, many
behavioral responses are completed so fast that the underlying
sensory processes cannot rely on estimation of the neural firing
rate over an extended time window. Then the approach has
to be based on finding the first spike that appeared due to
the stimulation. Of course, this implicitly assumes that the
response is excitatory.

Another often applied approach is based on assuming that
the first spike after the stimulus onset is caused by the stimulus.
In Ref. [26] the first-spike latency is defined as the time
from the onset of a stimulus to the time of occurrence of the
first-response spike. In neurons without spontaneous activity,
the response latency can be easily determined. However, in

021128-11539-3755/2012/86(2)/021128(11) ©2012 American Physical Society
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neurons possessing spontaneous spiking, the assessment of
the response latency is more complicated. The first spike
after the stimulus may be caused by the spontaneous activity
rather than the stimulus itself. In Ref. [27] shifts in the
first-spike latencies in inferior colliculus neurons produced
by iontophoretically applied serotonin were demonstrated.
Neurons that showed spontaneous activity higher than a fixed
firing rate were excluded from that study. In this way, the
bias caused by the possibility that the first spike after the
stimulation is spontaneous rather than evoked was avoided. An
alternative to an estimator of the latency could be a constant
deduced from the physical properties of the system under
consideration [28].

As shown, the terminology of response latency is rather
broad. In the literature, with a few exceptions, the response
latency is identified with the first-spike latency or it is defined
as the delay between the stimulus onset and the evoked
modulation in neural activity. Our aim is to present a unified
concept of the response latency, which includes two types of
response latencies, absolute and relative. Furthermore, statisti-
cal procedures to deduce the properties of these quantities are
proposed and compared in simulated experiments, extending
the methods in Refs. [29,30].

II. CHARACTER OF EXPERIMENTAL DATA

In a typical neuronal recording session, a stimulus is pre-
sented and the spike generation times from the stimulus onset
are recorded. Unfortunately, also the spontaneous activity
(firing prior to the stimulation) is inevitably included in the
record. The trials are repeated after a period of time ensuring
that the effect of stimulation has disappeared. The situation is
illustrated in Fig. 1 together with definitions of quantities that

ts ts + θ0

spontaneous
not observable

evoked
not observable

observed

time

W

TW−W0 X

θ Z
R

FIG. 1. Schematic description of the single experimental trial.
Spikes are indicated with dots. At time 0 the measurements start
and at time ts a stimulus is applied. W (R) denotes the time to the
first spontaneous (evoked) spike after ts . For an observer, they cannot
be distinguished. Here T represents the time to the first spike after
the stimulus onset and is measured. In the presence of an absolute
response latency θ , the response latency R is given by θ + Z and no
evoked spikes can occur in [ts ,ts + θ ]. In contrast, spontaneous spikes
might occur in that time interval. The relative response latency Z

denotes the time to the first evoked spike after ts + θ , the spontaneous
ISIs are denoted by X, and the first spike after 0 is denoted by W0.
Finally, W− corresponds to the backward recurrence time, defined as
the time to the last spontaneous spike before ts .

can be measured during the experiment and the ones we wish
to deduce. The recorded spike train starts at time zero and is
composed of spontaneously fired action potentials up to time
ts when the stimulation is presented. After that, the recorded
spike train contains spontaneous spikes up to the moment
of the first evoked spike. We assume that the spontaneous
activity is not affected by the stimulus up to the first evoked
spike. What happens after the first evoked spike is outside the
scope of our study. The experiment is repeated n times and the
recorded spike trains create n statistically indistinguishable
trials.

In each trial we assume that there is at least a single spike
prior to the stimulation, so there is an observable time interval
W0, defined as the time from 0 to the first spontaneous spike
before ts . Commonly, there is a set of complete interspike
intervals (ISIs) between time 0 and ts , denoted by X (see
Fig. 1). In the theory of stochastic point processes, the quantity
W0 is called the forward recurrence time. The stimulation
at time ts divides the current interspike interval into two
subintervals: the time from the last spontaneous spike to
the instant of stimulation W− (in the theory of stochastic
point processes denoted as the backward recurrence time)
and the time between the stimulation and the first spike after
it, denoted by T . In most of the literature on stimulated
neuronal activity, this time is called latency or response time
or first-spike latency. However, imagine that the first spike
after the stimulation onset is still not influenced or generated
by the stimulation itself and would be there even in the
absence of stimulation. Thus the spikes after the stimulation
are either spontaneous or evoked, and for an observer these
are indistinguishable. The situation is illustrated in Fig. 1. We
denote the time to the evoked spike by R and call it response
latency. We assume that the response latency is the sum of
two components: absolute and relative response latency. The
absolute response latency is denoted by θ and is defined as the
time from the stimulation where no evoked spike can occur.
The primary aim of the paper is to determine this delay. If
the first spike after the stimulation is part of the prevailing
spontaneous activity (which ends by the first evoked spike),
this interval is denoted by W . Note that neither W nor R is
observed, only their minimum T ,

T = min(R,W ). (1)

We assume that W and R are independent, i.e., the spontaneous
and the stimulated activities are not related before the first
evoked spike.

It follows from Eq. (1) and the independence of R and W

that

P (T > t) = P [min(R,W ) > t] = P (R > t)P (W > t). (2)

We are interested in understanding the role of the spontaneous
activity in the response latency. In particular, we want to
calculate the risk of failure when assuming T = R. This is
the second aim of the paper. Consider therefore

p = P (W < R) = P (T = W ), (3)

i.e., the probability that the first observed spike after the stim-
ulus onset is spontaneous. Obviously, P (T = R) = 1 − p.

Throughout the paper, capital letters are used to stress
that the quantities are random variables and lowercase
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letters indicate their realizations. The cumulative distribution
function (CDF) of a generic random variable Y is denoted by
FY (t) = P (Y � t), its survival function 1 − FY (t) by F̄Y (t), its
probability density function (PDF) by fY (t), and the empirical
CDF (ECDF) by FY ;n(t) = 1

n

∑n
i=1 1{Yi�t}, where 1A is the

indicator function of the set A. The average is denoted by
ȳ = 1

n

∑n
i=1 yi . Finally, we use subindex i (i = 1, . . . ,n) for

the serial number of the trial and subindex j (j = 1, . . . ,mi)
for the spontaneous ISIs in the time interval [0,ts] in the ith
repetition.

III. MODEL

A. Spontaneous activity

If the spontaneous firing follows a renewal process model,
the Xij (i = 1, . . . ,n; j = 1, . . . ,mi) are independent and iden-
tically distributed random variables. Then the CDF of W is
given by [31]

FW (t) =
∫ t

0 [1 − FX(x)]dx

E[X]
(4)

and it follows that the mean of W is

E[W ] = E[X2]

2E[X]
. (5)

In fact, Eq. (4) is also true under a less restrictive assumption.
It is sufficient that the data are stationary, but when they are
not independent, it can be difficult to estimate FX. If the data
are stationary, then the forward and the backward recurrence
times W− and W follow the same distribution [32]. Under this
assumption, it is enough to know ts and the involved pair of
spikes in each trial. Even if the process is not stationary, it will
be approximately true as long as the process is only slowly
drifting.

Therefore, we consider two sampling strategies in the paper.
Either all ISIs, i.e., the Xij ’s, prior to the stimulation enter in
the statistical evaluation of the latency or only the time from
the last spike prior to the stimulation, namely, W−, can be
used.

The simplest model to describe the spontaneous firing
activity, often supported by experimental data [2,3], is a
Poisson process and we will not consider other parametric
models. Then X follows an exponential distribution with mean
ISI equal to 1/λ > 0 and PDF

fX(t) = λe−λt , t > 0. (6)

In this case, as directly follows from Eq. (4), fW0 (·) =
fW−(·) = fW (·) = fX(·).

To summarize, throughout the paper we consider separately
the following three assumptions about the distribution of the
ISIs before stimulation: (a) the renewal assumption, using all
data prior to the stimulation in the analysis; (b) the stationarity
assumption (or only slowly drifting), using only the backward
recurrence time W− in the analysis; and (c) the parametric
assumption, i.e., independent and exponentially distributed
ISIs, using all data prior to the stimulation in the analysis.

B. Neural response to a stimulus

Let the absolute response latency θ � 0 be a constant
and assume that no evoked spike can occur before time
ts + θ . Under the approach employed here, the total time from
stimulation to the first evoked spike can be rewritten as

R = θ + Z,

where the relative response latency Z is a random variable
accounting for the time between the end of the delay and
the first evoked spike. The primary aim of this article is to
determine the absolute response latency θ .

By definition, FR is a shifted distribution with delay (or
shift) θ , i.e.,

FR(t) = 0 if t ∈ [0,θ ], FR(t) > 0 if t > θ.

The presence of the absolute response latency implies P (T >

t) = P (Z > t − θ )P (W > t) and the CDF of R becomes

FR(t) = FZ(t − θ ) =
{

0 if t ∈ [0,θ ]

1 − 1−FT (t)
1−FW (t) if t > θ.

Therefore, R follows a shifted distribution with shift θ and
distribution family FZ . Likewise, the CDF of T is

FT (t) = 1 − [1 − FZ(t − θ )][1 − FW (t)]

=
{
FW (t) if t ∈ [0,θ ]

FW (t) + FZ(t − θ )[1 − FW (t)] if t > θ.
(7)

Thus θ satisfies

θ = inf{t > 0 : FT (t) �= FW (t)}, (8)

which we will use to define a nonparametric estimator of θ . If
it is reasonable to assume specific distributions, the following
result will be useful to define parametric estimators of θ . For
any (shifted or nonshifted) distribution family of R with θ � 0,
the nth moment of T is given by (see Appendix A)

E[T n]=E[Wn]

⎧⎨⎩1−e−λθ

n−1∑
j=0

λj

j !

j∑
h=0

(
j − h

h

)
θhL(j−h)

Z (λ)

⎫⎬⎭ .

(9)

Here LZ(s) denotes the Laplace transform of fZ , i.e., LZ(s) =
E[e−sZ] = ∫ ∞

0 e−stfZ(t)dt . The kth derivative is denoted by

L(k)
Z (·). In particular, the first two moments are

E[T ] = E[W ][1 − e−λθLZ(λ)], (10)

E[T 2] = E[W 2]
{
1 − e−λθ

[
(1 + λθ )LZ(λ) + λL(1)

Z (λ)
]}

.

(11)

The second aim of this paper is to estimate the probability p,
given by Eq. (3). In Appendix B it is shown that

p = 1 − e−λθLZ(λ) = E[T ]

E[W ]
, (12)

where the last equality follows from Eq. (10). Note that trivially
p � P (W � θ ) = 1 − e−λθ and we therefore always have

θ � − ln(1 − p)

λ
(13)
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with equality if and only if P (R = θ ) = 1. This can also be
seen from Eq. (12) since the Laplace transform of a degenerate
variable in 0 equals 1 and otherwise is strictly smaller than 1.

In contrast to the spontaneous activity, we have no exper-
imental evidence about the distribution of R. A commonly
applied model to describe spike data is the gamma distribution
[33,34] and we apply it to describe the relative response
latency. Thus Z ∼ �(α,β) and therefore R follows a shifted
gamma distribution R ∼ �sh(θ,α,β). The gamma distribution
has the PDF

fZ;�(t) = 1

αβ�(β)
tβ−1e−t/α, t > 0 (14)

and mean E[Z] = αβ, implying E[R] = θ + αβ. Here β > 0
and α > 0 denote the shape and the scale parameters, respec-
tively, and �(β) denotes the gamma function. In particular, the
exponential distribution R ∼ expsh(θ,ω) can be obtained as a
special case if in Eq. (14) β = 1 and ω = 1/α. Then ω reflects
the firing frequency. Other distributions, such as the inverse
Gaussian, Weibull, or log-normal, can also be employed. For
many distributions, L(1)

Z (·) = gZ(·)LZ(·) for a function gZ . In
particular, for the gamma distribution

LZ(λ) = (1 + λα)−β, gZ(λ) = αβ

1 + λα
. (15)

IV. PARAMETER IDENTIFICATION

The aim of this paper is the estimation of θ and p. Note
that whereas θ is a parameter of the model, p is not. Indeed,
p is a probability characterizing the properties of the model,
in particular, giving information about the risk of failure when
assuming T = R.

A. Estimation of the probability that the first spike after
stimulus onset is spontaneous

To estimate p expressed by Eq. (12) we need estimators of
E[T ] andE[W ]. Since T is observed, we simply estimateE[T ]
by t̄ . Under the stationarity assumption when the spontaneous
ISIs cannot be used for the statistical evaluation, E[W ] can
be estimated by the empirical mean of W−, w−. Under the
renewal assumption the Xij ’s can be used, but first we make no
assumptions about the parametric form of FX. Using Eq. (5),
the mean of W might be estimated from the empirical moments
of X, namely, x̄ and x2. However, due to the predefined finite
sampling interval [0,ts], x̄ underestimates E[X], since only
ISIs shorter than ts can be observed, and the density function

is proportional to the observation length ts . The bias can be
very large if ts is not large compared to the mean of X, as can
be confirmed by simulations (results not shown; see Ref. [33]).
The density of the distribution of the sampled ISIs is η−1(ts −
t)fX(t) for t ∈ [0,ts] and 0 otherwise, where η = ∫ ts

0 (ts −
t)fX(t)dt = ∫ ts

0 FX(t)dt is the normalizing constant [33].
Therefore, the following sample averages have approximate
means E[X̄] ≈ η−1(tsE[X] − E[X2]) and E[X2/(ts − X)] ≈
η−1E[X2], where we have assumed ts large enough to use the
approximation

∫ ts
0 tfX(t)dt ≈ ∫ ∞

0 tfX(t)dt = E[X]. Isolating
E[X2] and E[X] we obtain the estimators

x̃2 = η
1∑n

i=1 mi

n∑
i=1

mi∑
j=1

x2
ij

ts − xij

, x̃ = η
x̄ + x̃2

ts

and E[W ] can be estimated by x̃2/2x̃. Note that the normal-
izing constant η cancels out. When ts → ∞, the estimator
converges to the usual empirical estimator. If the parametric
approach is applied, i.e., X follows Eq. (6), then the likelihood
estimator of λ is [35]

λ̂ =
∑n

i=1(mi + 1)

nts
. (16)

To summarize, we have the following estimators of p:

p̂a = 2x̃ t̄

x̃2
, p̂b = t̄

w− , p̂c = t̄ λ̂, (17)

under the renewal, the stationarity, and the parametric assump-
tions, respectively.

B. Estimation of the absolute response latency

We propose several estimators for the absolute response
latency θ . The first group makes no assumptions about the
distribution of the time to the first evoked spike. One estimator
is based on the identification of θ with one of the measured
times to the first spike after stimulation. Taking the shortest
of them indirectly assumes that there is no spontaneous spike
after stimulation. Those that are larger takes into account that
there are also some spontaneous spikes mixed with the evoked
activity and should depend on n, as will be shown. Another
employs Eq. (8) for a nonparametric identification of θ . The
other group of estimators assumes that the parametric forms
of the distributions of W and R are known, i.e., the method of
moments and maximum likelihood inference. The proposed
estimators and their assumptions are summarized in Table I.

TABLE I. Proposed estimators of the absolute response latency θ under different assumptions for the spontaneous and
evoked activities.

Estimator Method Assumption on W Assumption on R

θ̂1 θ̂1 = min{t1, . . . ,tn} model free model free
θ̂2 θ̂2 = t (k), k = �np̂	 + 1 θ̂2a , renewal; θ̂2b, stationary; θ̂2c, FW known model free
θ̂3 based on CDFs θ̂3a , renewal; θ̂3b, stationary; θ̂3c, FW known model free
θ̂4 maximum likelihood FW known FR known
θ̂5 moment estimation FW known FR known
θ̂6 maximum likelihood FW known R ∼ expsh(θ,ω)
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1. Naive estimator of θ

The first estimator θ̂1 is defined as

θ̂1 = min{t1, . . . ,tn}.
It represents a simple estimator that can be used in a
preliminary analysis, ignoring the presence of spontaneous
activity, i.e., assuming T = R. Any other estimator should
improve the performance by including the spontaneous activity
in the analysis.

Note that any estimator that is defined as the kth-order
statistic of (t1, . . . ,tn), denoted by t (k) (e.g., θ̂1 = t (1)), will
necessarily go to zero for any fixed k when the sample size
increases since the number of spontaneous spikes before time
ts + θ in the sample will increase with n. In particular, if
Z ∼ exp(ω) the mean of θ̂1 is given by

E[θ̂1] = −θe−nλθ + 1

n
(1 − e−nλθ ) + n

n + 1
θe−(n+1)λθ−ωθ

+ n

(n + 1)(n + 2)(λ + ω)
e−(n+2)λθ−2ωθ (18)

(see Appendix C). Note that it goes to zero as n → ∞
independently of the value of θ and therefore it is not
consistent. Thus any estimator based on an order statistic
should depend on n.

2. Estimator of θ based on the proportion of spontaneous
spikes in the sample

To improve θ̂1, we propose an order statistic estimator
depending on n and taking into account the presence of
spontaneous activity. The probability that the first spike after
the stimulus onset is spontaneous, P (T = W ) = p, is the
expected proportion of spontaneous spikes. We therefore
expect np spontaneous spikes and n(1 − p) evoked spikes
in a sample of size n. Thus we propose to estimate θ as the
kth-order statistic given by

θ̂2 = t (k), k = �np̂	 + 1, (19)

where �x	 denotes the integer part of x and p̂ is any of
the estimators of p. This corresponds to assuming that all
the observations ti < t (k) are spontaneous and all ti � t (k) are
evoked, while in fact the two distributions overlap, especially
if θ is small. Consequently, we expect θ to be overestimated
with decreasing bias as θ increases and also not consistent.

3. Estimator of θ based on cumulative distribution functions

A different approach to the estimation of the absolute
response latency is to use Eq. (8). Obviously, the estimated
distributions are different and we need to define a criterion
to distinguish between statistical fluctuation and systematic
difference. We propose to use the standard deviation of the
difference between F̂T (t) and F̂W (t) when t � θ , denoted by
σ (t), as a measure of the statistical fluctuation. On [0,θ ], no
evoked activity is present and therefore σ (t) does not depend
on R. Then we estimate θ as the maximum time such that
the difference between the two distributions is smaller than
the statistical fluctuation σ (t), i.e., F̂T (t) and F̂W (t) cannot be
statistically distinguished. Thus θ̂3 is defined as

θ̂3 = max{t ∈ [0,t̃] : [F̂T (t) − F̂W (t)] � σ̂ (t)}, (20)

where t̃ is chosen as the time that maximizes the distance
between F̂T (t) and F̂W (t), i.e.,

t̃ = arg max
t∈[0,t (n)]

[F̂T (t) − F̂W (t)],

and t (n) = max(t1, . . . ,tn). We estimate FT by the ECDF
FT ;n(t). The choice of F̂W (t) depends on the underlying
assumptions and determines σ (t). To obtain closed and
manageable expressions for the level σ (t), we will assume
that W is exponential and then under this assumption find
the distribution of σ (t) for the different estimators of λ. In
Appendix D it is shown that σ (t) is estimated by

σb(t) =
√

2

n
e−t/w− (1 − e−t/w− ), (21)

σc(t) =
√

1

n
e−λ̂t (1 − e−λ̂t ) + eλ̂nts (e−2t/nts −1) − e2λ̂nts (e−t/nts −1)

(22)

under the stationarity and parametric assumptions, respec-
tively. Under the renewal assumption, the calculation of σ (t)
becomes more complicated. We therefore approximate σ (t) by
σc(t), estimating λ by 2x̃/x̃2. We expect θ̂3 to be consistent,
as observed from simulations, since F̂T ;n and F̂W converge to
the true distributions FT and FW and σb and σc go to zero as
n → ∞.

4. Parametric approach: Maximum likelihood estimation of θ

The density of the distribution of T derived from Eq. (7)
assuming FW (t) = 1 − e−λt is

fT (t) = e−λtfZ(t − θ )1{t>θ} + λe−λt [1 − FZ(t − θ )1{t>θ}],
(23)

where we have introduced the indicator function in the
expression to emphasize the allowed values of t , which
will be useful when evaluating the log-likelihood function∑n

i=1 lnfT (ti) at the sampled values. The presence of θ

complicates the inference because the likelihood function is
not differentiable with respect to θ . Therefore, we should
maximize directly the log-likelihood function to obtain an
estimator of θ . We denote by θ̂4 the maximum likelihood
estimator (MLE) of θ .

Assume R ∼ expsh(θ,ω) and thus Z ∼ exp(ω). The likeli-
hood equation for ω is

0 =
n∑

i=1

1 − (λ + ω)(ti − θ )

λ + ω
1{ti>θ}. (24)

Note that from Eq. (24), only the sum λ + ω can be estimated.
Estimate λ by Eq. (16) and obtain ω̂ as the solution of Eq. (24)
for fixed θ as

ω̂ + λ =
∑n

i=1 1{ti>θ}∑n
i=1(ti − θ )1{ti>θ}

, ω̂ = ω̂ + λ − λ̂.
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The profile likelihood becomes

l̃t (θ ) = −λ̂

n∑
i=1

ti +
n∑

i=1

[λ̂(ti − θ ) − 1]1{ti>θ}

+
n∑

i=1

ln(ω̂1{ti>θ} + λ̂).

Since l̃t (θ ) is strictly increasing for θ ∈ (ti ,ti+1), with i =
1, . . . ,n − 1, it follows that θ can be estimated as the time
ti − ε maximizing lt (θ ), with ε > 0 small enough, which can
be maximized numerically to obtain θ̂ .

Now assume R ∼ �sh(θ,α,β) and thus Z ∼ �(α,β). The
log-likelihood function becomes

lt (θ,α,β) = −λ̂

n∑
i=1

ti +
n∑

i=1

ln{fZ;�(ti − θ )1{ti>θ}

+ λ̂[1 − FZ;�(ti − θ )1{ti>θ}]},
which can be maximized numerically to obtain the unknown
parameters θ,α, and β. Here FZ;�(t) = γ (β,t/α)/�(β), where
γ (β,t/α) is the lower incomplete gamma function. Even if
the likelihood function is not differentiable with respect to
θ , we expect that the MLE is consistent, as observed from
simulations.

5. Parametric approach: Moment estimator of θ

A different approach when X ∼ exp(λ) and the distribution
family of R is given consists in equating the theoretical
moments of T given by Eq. (9) with the empirical moments.
In particular, we solve a system of equations given by the
first two or three moments in the two or three unknown
parameters, namely, (θ,ω) when Z ∼ exp(ω) or (θ,α,β) when
Z ∼ �(α,β). We denote by θ̂5 the moment estimator (ME)
of θ .

Assume R ∼ expsh(θ,ω) and estimate λ by Eq. (16). From
Eqs. (10), (11), (15), and (E3) for β = 1 and α = 1/ω we
obtain

θ =
p − E[T 2]

E[W 2]

λ(1 − p)
− 1

λ + ω
, 1 − p − e−λθ ω

ω + λ
= 0.

Replacing p,E[T 2],λ, and E[W 2] by p̂,t2,λ̂, and 2/λ̂2 we can
solve the system with respect to ω and θ .

Now assume R ∼ �sh(θ,α,β). From Eqs. (10) and (15) we
get

β = − ln(1 − p) + λθ

ln(1 + λα)
.

Plugging β into Eq. (11) we get

θ =
(
p − E[T 2]

E[W 2]

)
(1 + λα)ln(1 + λα) + λα(1 − p)ln(1 − p)

λ(1 − p)[(1 + λα)ln(1 + λα) − λα]
.

Substituting β and θ into Eq. (9) for n = 3, we obtain an
equation in α that can be solved numerically.

Unfortunately, the moment equations do not always have a
solution with positive parameters for a given sample. This is

due to the following inequality, which is shown in Appendix E:

E[T 2]

E[W 2]
> p + (1 − p)ln(1 − p). (25)

It is always fulfilled from a theoretical point of view, but, as we
will see later, the empirical counterpart might not be satisfied
in a particular sample, especially if n is small or θ is large, in
which case the moment estimator is not well defined. From the
law of large numbers, the ME is consistent since it is expressed
as a differentiable function of averages.

V. SIMULATION STUDY

A. Setup

We simulated a spontaneous spike train following a Poisson
process with firing rate λ = 1s−1 for a time period up to the
first spike after 10s and thus E[W ] = 1s. At time ts = 10s,
the evoked activity was simulated by shifted exponentially
(ω = 10s−1) or gamma distributed (α = 0.05s and β = 2)
random variables R such that E[Z] = 0.1s. Then we obtained
a realization of T using Eq. (1). The empirical data end with
the first spike after stimulus and therefore the recording of
spikes ended at T . This was repeated to obtain samples of
size n, where n varied between 10 and 150 in steps of 10, and
each sample was repeated for different values of θ between
0.05 and 0.4 in steps of 0.025. For these values of θ , p was
varying from 0.14 to 0.39. Finally, for each value of n and
θ , we repeated this procedure 10 000 times, obtaining 10 000
statistically indistinguishable and independent trials.

We denote by θ̂a,θ̂b, and θ̂c the estimators of θ under
the renewal, the stationarity, and the parametric assumptions
and likewise for p. It is also of interest to evaluate how
a misspecification of the model influences the statistical
inference. We denote by θ̂6 the misspecified estimator of θ ,
computed as θ̂4 under the wrong assumption Z ∼ exp(ω),
when in fact it is gamma distributed, Z ∼ �(α,β).

To compare different estimators, we use the relative mean
error RME to evaluate the bias and the relative mean square
error RMSE, which incorporates both the variance and the bias.
They are defined as the average over the 10 000 repetitions of
the quantities

Erel(θ̂ ) = θ̂ − θ

θ
, Erel sq(θ̂ ) = (θ̂ − θ )2

θ2

and likewise for p.

B. Results for p

In Fig. 2 we report the RME(p̂) and RMSE(p̂) when R is
shifted exponential or gamma distributed with E[Z] = 0.1s
for different values of n and θ . As expected, all RME(p̂)
and RMSE(p̂) decrease as n increases. For fixed n, RME(p̂)
is approximately constant, i.e., the performance of p̂ does not
depend on θ . This is expected because the bias is primarily
due to the estimator of λ, which does not depend on θ . Also
the RMSE(p̂) is approximately constant for fixed n, which
is explained by the mean of T that is changing with θ ,
and estimated by a simple average and thus unbiased. The
variance is primarily determined by the sample size and is only
slowly varying with θ . The parametric estimator p̂c largely
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pâ

pb̂

pĉ
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FIG. 2. Dependence of RME(p̂) and RMSE(p̂) (average over 10 000 simulations) on the number of observations and the absolute response
latency when W is exponential with rate λ = 1s−1. Top panels: Z is exponential with rate ω = 10s−1. Bottom panels: Z is gamma with
α = 0.05s and β = 2. In both cases E[Z] = 0.1s. Left panels: Different values of n for fixed θ = 0.2s, with p ≈ 0.26. Right panels: Different
values of θ for fixed n = 50. Here p varies between 0.14 and 0.39. Also shown are the estimators of p under the renewal assumption p̂a (solid
line), the stationarity assumption p̂b (dashed line), and the parametric assumption p̂c (dot-dashed line), given by Eq. (17).

outperforms the other two, it has no bias, and RMSE is less
than 1%, even for a sample size as small as n = 30. The other
two overestimate p, which is also expected, since they are
ratios of positive estimators, which tend to have heavy right
tails. Furthermore, p̂a performs better than p̂b with respect to
both RME and RMSE. This happens because p̂a and p̂c use all
ISIs sampled before the stimulation, whereas p̂b uses only the
time from the last spike before stimulation, W−. Thus p̂a and
p̂c are based on a larger sample size, reducing the estimation
error, compared to p̂b. To conclude, with only a sample size
of n = 50 the error is less than 3% and p appears to be well
estimated by any of the proposed estimators, even for small
sample sizes.

C. Results for θ

It follows from Eq. (18) that θ̂1 has an RME between
−70% and −100% when R belongs to a shifted exponential
distribution family with θ ∈ (0,0.4] and n between 10 and
150. This is confirmed in simulations (results not shown) and
emphasizes the importance of not ignoring the spontaneous
activity in the analysis. Since the other estimators take the
spontaneous activity into account, we expect that |RME(θ̂)| �
|RME(θ̂1)| and we do not consider θ̂1 further.

Figure 3 shows RME(θ̂ ) and Fig. 4 shows RMSE(θ̂), focusing
only on those estimators, which have errors less than 10%. For
this reason, the ME of the gamma distribution is not shown.
Indeed, it performs better than θ̂1, but is still unacceptable,
probably due to the large number of samples where the estima-
tor is not well defined (see below). Considerable improvement
is observed with θ̂2, which is the best nonparametric estimator
when n is small or θ is large and always has a smaller variance
than θ̂3. When n increases, RME(θ̂2) reaches an asymptotic
level away from 0 that depends on how much the distributions
FW and FR overlap. This is due to the assumption that all
the spontaneous spikes come before the evoked spikes. A
good feature of θ̂2 is that it does not seem to depend on the
underlying assumption for FW since the RME and RMSE of

θ̂2;a , θ̂2;b, and θ̂2;c are almost identical. When n is large or θ is
small θ̂3 is the best nonparametric estimator. Simulations show
that it depends only slightly on the underlying assumptions for

ME

FIG. 3. Dependence of RME(θ̂ ) (average over 10 000 simulations)
on the number of observations and the absolute response latency when
W is exponential with rate λ = 1s−1 for estimators with errors less
than 10%. Top panels: Z is exponential with rate ω = 10s−1. Bottom
panels: Z is gamma with α = 0.05s and β = 2. In both cases E[Z] =
0.1s. Left panels: Different values of n and θ = 0.2s. Right panels:
Different values of θ and n = 50. The following estimators are shown:
the p estimator θ̂2;c under the parametric assumption (solid line); the
CDF estimators θ̂3 under the renewal assumption (dot-dashed line),
the stationarity assumption (dotted line), or the parametric assumption
(long-dashed line); the MLE θ̂4 (circles); the ME θ̂5 (crosses) (only
in the top panels); and the misspecified estimator θ̂6 (gray circles)
(only in the bottom panels). The estimators θ̂2 under the renewal and
stationarity assumptions θ̂2;a and θ̂2;b are not reported since they are
almost identical to θ̂2;c.
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MSE

FIG. 4. Dependence of RMSE(θ̂ ) (average over 10 000 simula-
tions) on the number of observations and the absolute response latency
when W is exponential with rate λ = 1s−1 for estimators with errors
less than 10%. Top panels: Z is exponential with rate ω = 10s−1.
Bottom panels: Z is gamma with α = 0.05s and β = 2. Left panels:
Different values of n and θ = 0.2s. Right panels: Different values of
θ and n = 50. The following estimators are shown: the p estimator
θ̂2;c under the parametric assumption (solid line); the CDF estimators
θ̂3 under the renewal assumption (dot-dashed line), the stationarity
assumption (dotted line), or the parametric assumption (long-dashed
line); the MLE θ̂4 (circles); the ME θ̂5 (crosses) (only in the top
panels); and the misspecified estimator θ̂6 (gray circles) (only in the
bottom panels). The estimators θ̂2 under the renewal and stationarity
assumptions θ̂2;a and θ̂2;b are not reported since they are almost
identical to θ̂2;c.

FW . The error is in all cases small even for moderate sample
sizes.

As expected, the MLE provides the best estimates of θ .
The ME is acceptable only when Z follows an exponential
distribution. The MLE is more reliable than the ME approach,
as is usually observed comparing MEs and MLEs. In particular,
for n = 50 fixed the RME(θ̂5) gets worse for large θ . This is
probably due to the fact that the estimator is defined only if
the parameter condition (25) is satisfied, which is often not
the case, especially for large θ or small n. The percentages
of the simulated samples where the estimator is undefined are
reported in Fig. 5. Note that the right-hand side of Eq. (25)
is increasing in p. Therefore an estimate p̂ much larger than
the true p tends to violate condition (25) and the ME is not
defined.

Interestingly, the misspecified θ̂6 that wrongly assumes
Z exponentially distributed when R ∼ �sh(θ,α,β) gives ac-
ceptable estimates of θ , even if more biased, but with
approximately the same RMSE as the correct MLE. This would
of course not be the case for the other parameters α and β.

The results might depend on the particular choice of the
distribution for Z and its parameter values. Simulations were
also conducted for the inverse Gaussian distribution and for
β = 0.8 and 10 in the gamma distribution (results not shown).
The results for the estimation of θ are similar, though a larger
sample size is needed when β = 10.

n

0
10

20
30

20 60 100 140

Exponential
Gamma

θ
0.1 0.2 0.3 0.4

%

FIG. 5. Percentage of repetitions out of 10 000 that do not fulfill
condition (25). For these data sets, the ME θ̂5 cannot be evaluated.
Here W is exponential with rate λ = 1s−1; Z is exponential with rate
ω = 10s−1 (solid line) or Z is gamma with α = 0.05s and β = 2
(dashed line). Left panels: Different values of n for fixed θ = 0.2s.
Right panels: Different values of θ for fixed n = 50.

VI. CONCLUSION

It can be discussed if the model in this paper reflects the
biology correctly, more specifically, whether the spontaneous
and the evoked activity can be distinguished once the stimulus
is applied, since both are being produced by the same neuron.
First, during the absolute latency no spike is influenced by
the stimulus and the activity is thus well described by the
spontaneous spikes. Second, during the response latency, our
aim is simply to estimate how the time dynamics of spikes is
changed by the stimulus. Further, the model can be considered
a more general model. Assume that the observed output comes
from a cluster of processing units, e.g., neurons, and some of
these are changed by the stimulus and others are not, but
they cannot be distinguished. This scenario would originate an
observed response as described by our model.

A shortcoming of the analysis is the limitation of using only
the first spike after the stimulus onset, ignoring the possible
information carried by the entire spike train. The approach
pursued here of first-spike coding is an alternative to the
frequency coding principle. It would be interesting to extend
the methods developed in this paper over the entire spike train
after stimulus onset.

To conclude, numerical simulations emphasize the impor-
tance of taking into account the spontaneous activity W when
estimating θ in order to avoid a serious bias. We suggest
choosing the MLE if it is reasonable to assume that the evoked
activity follows an exponential or gamma distribution, leading
to a parametric estimation of θ . If no information about the
distribution of R is available, we suggest applying the p

estimator θ̂2, which always estimates θ reasonably well, is
easy to compute, and gives the same performance for any
of the underlying assumptions for FW . For simplicity, or from
lack of knowledge of R, we also suggest using the misspecified
estimator θ̂6, assuming an evoked activity exponential, which
does not appear to introduce a large error in the estimation of θ .
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APPENDIX A: MOMENTS OF T

Assume that X ∼ exp(λ) and R belongs to a shifted distribution family. Then the nth moment of T can be calculated using
Eq. (23) as follows:

E[T n] =
∫ ∞

0
tnfT (t)dt =

∫ θ

0
tnfW (t)dt +

∫ ∞

θ

tn{fZ(t − θ )[1 − FW (t)] + fW (t)[1 − FZ(t − θ )]}dt dt

=
∫ ∞

0
tnfW (t)dt −

∫ ∞

0
(y + θ )nfW (y + θ )FZ(y)dy +

∫ ∞

0
(y + θ )nfZ(y)[1 − FW (y + θ )]dt

= E[Wn] −
∫ ∞

0
(y + θ )nλe−λ(y+θ)FZ(y)dy +

∫ ∞

0
(y + θ )nfZ(y)e−λ(y+θ). (A1)

The second term can be solved by integration by parts:∫ ∞

0
(y + θ )nλe−λ(y+θ)FZ(y)dy

=
n∑

k=0

n!

(n − k)!

1

λk

∫ ∞

0
(y + θ )n−kfZ(y)e−λ(y+θ)dy. (A2)

Using the binomial theorem, the (n − k)th power of (y + θ )
can be expanded as

(y + θ )n−k =
n−k∑
h=0

(
n − k

h

)
yn−k−hθh.

Therefore, the integral in Eq. (A2) becomes∫ ∞

0
(y + θ )n−kfZ(y)e−λ(y+θ)

= e−λθ

n−k∑
h=0

(
n − k

h

)
θh

∫ ∞

0
yn−k−he−λyfZ(y)dy

= e−λθ

n−k∑
h=0

(
n − k

h

)
θhL(n−k−h)

Z (λ), (A3)

where L(j )
Z (λ) is the j th derivative of the Laplace transform of

Z evaluated in λ. By plugging Eq. (A3) into Eq. (A2) and then
into Eq. (A1), noting that the term for k = 0 cancels out with
the last integral in Eq. (A1), we finally obtain

E[T n] = E[Wn]

⎧⎨⎩1 − e−λθ

n∑
k=1

λn−k

(n − k)!

n−k∑
h=0

(
n − k

h

)

× θhL(n−k−h)
Z (λ)

⎫⎬⎭,

where we have used that E[Wn] = n!/λn. The final expression
(9) is obtained by the change of index j = n − k.

APPENDIX B: CALCULATION OF p

Assume that X follows Eq. (6) and R belongs to a shifted
distribution family. To compute the probability p that the first
spike after the stimulus onset is spontaneous, we proceed as
follows. Define U = R + (−W ). Then

p = P (W < R) = P (U > 0) =
∫ ∞

0
fU (t)dt,

where fU is the convolution of fR and f(−W ). Here f(−W ) is
defined by

f(−W )(s) = fW (−s)1{s�0} = λeλs1{s�0}

and fR(t) = fZ(t − θ )1{t�0}. Then the density fU is given by

fU (t) =
∫ ∞

−∞
fR(u)f(−W )(t − u)du

=
∫ ∞

t

fZ(u − θ )1{u>θ}λeλ(t−u)du

= λeλt−λθ

[
LZ(λ)1{0�t�θ} + 1{t>θ}

∫ ∞

t−θ

fZ(x)e−λxdx

]
and therefore p becomes

p = λe−λθLZ(λ)
∫ θ

0
eλtdt + λe−λθ

∫ ∞

θ

∫ ∞

t−θ

eλ(t−u)fZ(u)du dt

= (1 − e−λθ )LZ(λ)+e−λθ

∫ ∞

0

(∫ u+θ

θ

λeλtdt

)
e−λufZ(u)du

= (1 − e−λθ )LZ(λ) +
∫ ∞

0
(1 − e−λu)fZ(u)du,

which implies Eq. (12).

APPENDIX C: MEAN OF θ̂1

Assume that X follows Eq. (6) and R belongs to a shifted
exponential family. We have

P (θ̂1 > t) = P (t1 > t, . . . ,tn > t)

=
n∏

i=1

[1 − FT (t)] = [1 − FT (t)]n

and therefore P (θ̂1 � t) = 1 − [1 − FT (t)]n with density
n [1 − FT (t)]n−1 fT (t). From Eq. (7) we obtain

E[θ̂1] =
∫ θ

0
nt[1 − FW (t)]n−1(t)fW (t)dt

+
∫ ∞

θ

nt[1 − FW (t)]n[1 − FZ(t − θ )]n− 1fZ(t − θ )dt

+
∫ ∞

θ

nt[1 − FW (t)]n−1[1 − FZ(t − θ )]nfW (t)dt,

which implies Eq. (18).
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APPENDIX D: STATISTICAL FLUCTUATION OF
F̂T (t) − F̂W (t)

Assume t ∈ [0,θ ]. The variance of the difference between
F̂T (t) and F̂W (t), denoted by σ 2(t), is defined as

σ 2(t) = Var[F̂T (t) − F̂W (t)]

= Var[F̂T (t)] + Var[F̂W (t)] − 2 Cov[F̂T (t),F̂W (t)].

(D1)

Define An;t = ∑n
i=1 1{ti�t}; then F̂T ;n = An;t /n. Here An;t

counts the number of observations ti � t . Under the station-
arity assumption F̂W (t) = F̂W−;n(t) = Bn;t /n, where Bn;t =
1{w−

i �t}. Since FT (t) = FW−(t) for all t ∈ [0,θ ], it follows that
An;t and Bn;t are identically distributed random variables with
covariance given by

Cov(An;t ,Bn;t ) =
n∑

i=1

n∑
j=1

Cov
(
1{ti�t},1{w−

j �t}
)

= n Cov
(
1{tj �t},1{w−

j �t}
)

= n[P (W � t,W− � t) − FW (t)2]. (D2)

In the second equality we have used that ti and w−
j are

independent for i �= j . If X follows Eq. (6), then the joint
PDF of W and W− at time (r,s), denoted by fW−;W (r,s), is
given by λ2e−λ(r+s) [36]. Therefore,

P (W− � t,W � t) =
∫ t

0

∫ t

0
fW−;W (r,s)dr ds

=
∫ t

0
λe−λrdr

∫ t

0
λe−λsds = FW (t)2.

Thus, by Eq. (D2), Cov(An;t ,Bn;t ) = 0. Note that this is not
generally true; it is due to the memoryless property of the
exponential distribution. In general, the backward and the
forward recurrence times are negatively correlated. Plugging
FT ;n(t) and FW−;n(t) into Eq. (D1), we obtain

σ 2
b (t) = Var[FT ;n(t) − FW−;n(t)] = 2

n2
Var(An;t )

= 2

n
FW (t)[1 − FW (t)].

Then the standard deviation σb(t) equals Eq. (21).

Under the parametric assumption F̂W = 1 − e−λ̂t . Then
Eq. (D1) becomes

σ 2
c (t) = 1

n
FW (t)[1 − FW (t)] + Var(e−λ̂t ) + 2

n
Cov(An;t ,e

−λ̂t )

= 1

n
(1 − e−λt )e−λt + Var(e−λ̂t ), (D3)

where the covariance is null because of the same reasons as
above. Rewrite Eq. (16) as

λ̂ =
∑n

i=1 Ni(ts)

nts
= N (ts)

nts
,

where Ni(ts) is the random variable counting the number of
spontaneous spikes in [0,ts] in the ith trial. By assumption
N (ts) follows a Poisson distribution with rate λnts . Therefore,

Var(e−λ̂t ) = E[e−N(ts )(2t/nts )] − E[e−N(ts )(t/nts )]2

= LN(ts )

(
2t

nts

)
− L2

N(ts )

(
t

nts

)
= eλnts (e−2t/nts −1) − e2λnts (e−t/nts −1), (D4)

where LN(ts ) denotes the Laplace transform of fN(ts ). Plugging
Eq. (D4) into Eq. (D3) and taking the square root, we finally
obtain Eq. (22).

APPENDIX E: CONDITIONS ON THE PARAMETERS OF R

From Eq. (12) we have that

e−λθLZ(λ) = 1 − p (E1)

and it follows

θ = − ln(1 − p)

λ
+ lnLZ(λ)

λ
. (E2)

Assume Z ∼ �(α,β) and write L(1)
Z (λ) = gZ(λ)LZ(λ) given

by Eq. (15). Using Eq. (E1), rewrite Eq. (11) as

E[T 2]

E[W 2]
= p − (1 − p)λ[θ + gZ(λ)]. (E3)

Plugging Eq. (E2) into Eq. (E3), we get

E[T 2]

E[W 2]
= p + (1 − p)ln(1 − p)

+ β(1 − p)

1 + λα
[ln(1 + λα)(1 + λα) − λα].

Condition (25) follows by noting that the expression in square
brackets on the right-hand side is larger than 0.
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Abstract

Neurons are commonly characterized by spontaneous generation of action po-
tentials (spikes), which appear without any apparent or controlled stimulation.
When a stimulus is applied, the spontaneous firing may prevail and hamper
identification of the effect of the stimulus. Therefore, for any rigorous analysis
of evoked neuronal activity, the presence of spontaneous firing has to be taken
into account. If the background signal is ignored, however small it is compared
to the response activity, and however large is the delay, estimation of the re-
sponse latency will be wrong, and the error will persist even when sample size
is increasing. The first question is: what is the response latency to the stim-
ulus? Answering this question becomes even more difficult if the latency is of
a complex nature, for example composed of a physically implied deterministic
part and a stochastic part. This scenario is considered here, where the response
time is a sum of two components; the delay and the relative latency. Paramet-
ric estimators for the time delay and the response latency are derived. These
estimators are evaluated on simulated data and their properties are discussed.
Finally, we show that the mean of the response latency is always satisfactorily
estimated, even assuming a wrong distribution for the response latency.

Keywords: Maximum likelihood estimation, extracellular recordings in
neurons, spontaneous activity, evoked activity, interspike intervals, spike trains

1. Introduction

Neurons are information processing units and there is an everlasting effort to
determine the code they use. During the years it has become obvious that there
is no unique coding scheme valid for all systems and many alternatives have
been proposed. The temporal codes constitute one category and the latency

∗Corresponding author. Phone: +45 35320732. Fax: +45 35320704.
Email addresses: mt@math.ku.dk (M. Tamborrino ), susanne@math.ku.dk (S. Ditlevsen),
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Figure 1: Schematic representation of an experiment with n trials. The spontaneous firing
activity is measured between the beginning of the experiment, at time 0, up to the stimulus
onset, at time ts. After ts, spontaneous and evoked activity are observed and they cannot be
distinguished. The first spike after ts is denoted T . If T is due to the spontaneous activity,
then we say T = W . If T is due to the stimulus, then we say T = R. Neither R nor W
are observed, but only T , representing the time to the first spike after ts. In presence of a
delay θ, no evoked activity can occur in [ts, ts + θ]. Then the response latency is given by
the sum of two components, namely θ and Z, where Z denotes the time to the first evoked
spike after ts + θ. The measurement is stopped after time T and the neuron is permitted to
relax for a period of time ensuring that the stimulus effect disappeared before the experiment
is repeated. This leads to n independent and statistically indistinguishable trials.

code is one of the most prominent within this class. Despite the enormous
interest in latency coding, formal treatment of experimental data of this type
has only recently appeared in the literature (Gremiaux et al., 2012; Lin and
Liu, 2010; Neubauer and Heil, 2008; Oran et al., 2011; Uzuntarla et al., 2012;
Wainrib et al., 2010). In our previous work (Pawlas et al., 2010; Tamborrino
et al., 2012), we suggested a formal statistical model of the latency experiments
and proposed inference methods in presence of spontaneous spiking activity.
Here we extend the previous efforts towards parametric analysis of data.

1.1. Model

An illustration of the character of experimental data and the description of
the involved quantities is provided in Fig. 1. At time zero, the measurements
start and spikes due to the spontaneous activity are recorded. At time ts, a
stimulus is applied and the measurements are stopped after the first spike fol-
lowing ts, denoted by T . The experiment is then repeated n times, after a period
of time long enough to ensure that the effect of stimulation has disappeared.
This allows to obtain n independent and statistically indistinguishable trials of
spike trains.

2



The spontaneous activity does not disappear after the stimulus onset and
therefore the first spike T after ts is not necessarily evoked. Moreover, an
observer cannot distinguish whether T is due to spontaneous or evoked activity.
Here we assume that the spontaneous activity is not influenced by the stimulus
onset up to the first evoked spike.

The simplest model of the spontaneous firing activity, often supported by
experimental data, is a Poisson process with intensity λ > 0 (Gerstner and
Kistler, 2002; Tuckwell, 1988), and this will be assumed throughout the paper.
Then the interspike intervals (ISIs) before ts are exponentially distributed with
mean ISI equal to 1/λ > 0 and probability density function

f(t) = λe−λt t > 0. (1)

We denote W the time to the first spike which is part of the prevailing sponta-
neous activity, called spontaneous spike, after ts. Due to the properties of the
Poisson process, it holds that W ∼ exp(λ).

We denote R the time to the first spike which is due to the stimulation,
called evoked spike, after the stimulus onset. Many experiments show that the
response to a stimulus is not instantaneous. Let θ ≥ 0 be a constant and assume
that no evoked spike can occur before time ts+θ. If θ > 0, we call this quantity
delay or absolute response latency. Under the approach employed here, the total
time from stimulation to the first evoked spike can be rewritten as

R = θ + Z,

where Z is a random variable accounting for the time between the end of the
delay and the first evoked spike. We call Z the relative response latency. Thus,
the response latency is a sum of two components: absolute and relative re-
sponse latency. By definition, the distribution of R, denoted by FR, is a shifted
distribution with delay (or shift) θ, i.e.

FR(t) = FZ(t− θ)1{t>θ},

where 1A denotes the indicator function of a set A, and FZ is the distribution
function of Z.

Note that neither W nor R is observable, only their minimum T ,

T = min(W,R). (2)

We assume that W and R are independent, and it follows that P(T > t) =
P(R > t)P(W > t) and the cumulative distribution function of T becomes

FT (t) = 1−(1−FR(t))(1−FW (t))

= FW (t)+FZ(t−θ)1{t>θ} (1−FW (t)) , (3)

where FW denotes the distribution function of W . The nth moment of T can
be calculated for any θ and FZ (Tamborrino et al., 2012).
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We have no experimental evidence about the distribution of R. A com-
monly applied model to describe spike data is the gamma distribution (Nawrot
et al., 2008; Shimokawa et al., 2010), and we apply it to describe the relative
response latency. Thus, Z ∼ Γ(α, β), and therefore R follows a shifted gamma
distribution, R ∼ Γsh(θ, α, β). The gamma distribution has probability density
function

fΓ(t) =
1

αβΓ(β)
tβ−1e−t/α, t > 0, (4)

mean E[Z] = αβ and variance Var(Z) = α2β, implying E[R] = θ + αβ and
Var(R) = βα2. Here, α, β > 0 denote the scale and shape parameters, respec-
tively, and Γ(β) denotes the gamma function. In particular, the exponential
distribution exp(ω), can be obtained as a special case if β = 1 and α = 1/ω in
(4). Then ω reflects the firing frequency.

Another common model of ISIs is the output from the Perfect Integrate-
and-Fire model, leading to an inverse Gaussian distribution (IG) for Z. The
probability density function is given by (Chhikara and Folks, 1989; Ditlevsen
and Lansky, 2005)

fIG(t) =

√
β

2πt3
exp

{
−β(t− α)2

2α2t

}
, t > 0, (5)

with α, β > 0, mean E[Z] = α and variance Var(Z) = α3/β, implying E[R] =
θ + α and Var(R) = α3/β. Other distributions, like Weibull or log-normal, can
also be employed.

1.2. Identifiability of φ

In general, the distribution of R is determined uniquely by φ. However, we
can find φ0 = (0, α0, β0) and φ = (θ, α, β) such that the mean and variance are
the same. In particular, if Z belongs to the gamma distribution family and we
set

α0 =
α2β

θ + αβ
< α, β0 =

(θ + αβ)2

α2β
> β, (6)

then Eφ0 [R] = α0β0 = θ+αβ = Eφ[R] and Varφ0(R) = α2
0β0 = α2β = Varφ(R).

The skewnesses are different though: skewness (φ0) = 2/
√
β0 = 2α

√
β/(θ +

αβ) < 2/
√
β = skewness (φ) if β > 1.

Likewise, if Z belongs to the IG distribution family and

α0 = α+ θ > α, β0 =

(
1 +

θ

α

)3

β > β, (7)

then the mean and variance are equal, while the skewness are different. Indeed,
skewness (φ0) = 3

√
α0/β0 = 3[α/(θ + α)]

√
α/β < 3

√
α/β = skewness (φ).

Plugging φ0 and φ into the expression for E[Tn] provided in Tamborrino et al.
(2012), we obtain Eφ0

[T ] ≈ Eφ[T ] and Varφ0
(T ) ≈ Varφ(T ).
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In general, for fixed E[R] and Var(R), we can express α and β as a function
of θ by setting

α =
Var(R)

E[R]− θ , β =
(E[R]− θ)2

Var(R)
, (8)

if Z ∼ Γ(α, β) and

α = E[R]− θ, β =
(E[R]− θ)3

Var(R)
, (9)

if Z ∼ IG(α, β). Therefore, there exists an infinite number of possible sets of
parameter values φ yielding the same mean and variance. Thus, if θ > 0, it
might be difficult to statistically distinguish between sets of parameter values,
unless the sample size is large.

2. Parameter estimation

The aim of this paper is parameter estimation of the response latency from
a sample {ti}ni=1 of n independent observations of T given in (2), and {Ni}ni=1,
the random variables counting the number of spontaneous spikes in the n trials
in the time interval [0, ts], assuming that the distribution family of W and R
are known. That is, we want to estimate φ = (θ, ω) if R follows an exponential
distribution (possibly shifted), or φ = (θ, α, β) if R follows a gamma or IG
distribution (possibly shifted), assuming to know whether θ = 0 or θ > 0. We
will use the maximum likelihood estimator (MLE).

2.1. Maximum likelihood estimation of λ

The MLE of λ is (Tamborrino et al., 2012)

λ̂ =

∑n
i=1Ni
nts

. (10)

By assumption, Ni follows a Poisson distribution with rate λts. It follows that
ntsλ̂ =

∑n
i=1Ni ∼ Poisson(nλts). Therefore,

E[λ̂] = λ, Var(λ̂) =
λ

nts
.

2.2. Maximum likelihood estimation of φ

Since FW (t) = 1− e−λt, it follows from (3) that the density of T is

fT (t) = e−λtfZ(t− θ)1{t>θ} + λe−λt
(
1− FZ(t− θ)1{t>θ}

)
. (11)

The observations are independent and identically distributed, and therefore the
log-likelihood function is given by

lt(φ) = −λ
n∑

i=1

ti+

n∑

i=1

log
[
fZ(ti − θ)1{ti>θ} + λ(1− FZ(ti − θ)1{ti>θ})

]
. (12)
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The first term in (12) does not depend on φ and can be ignored. The likelihood
function is not differentiable with respect to θ, which complicates the inference.
Therefore, we maximize (12) directly to obtain an estimator of φ. If the evoked
activity is exponentially distributed, this can be slightly improved, see below.
Explicit solutions to the likelihood equations are only available if Z is exponen-
tially distributed and θ = 0. It is not possible to obtain explicit estimators if
R is gamma or IG distributed, because of the corruption from the spontaneous
activity, and therefore (12) is maximized numerically.

2.2.1. Exponentially distributed evoked activity and instantaneous response: θ =
0

Assume R ∼ exp(ω). From (1) and (3) follows FT (t) = 1 − e−(ω+λ)t so
T ∼ exp(λ+ ω). Therefore, the MLE is given by

̂(ω + λ) =
1

t̄
(13)

where t̄ is the average of {ti}ni=1. From (13), only the sum λ+ω can be estimated.
Therefore, we estimate λ by (10) and

ω̂ =
1

t̄
− λ̂. (14)

In particular, the mean and variance of ω̂ are

E[ω̂] =
n

n− 1
ω +

λ

n− 1
, Var(ω̂) =

n2

(n− 1)2(n− 2)
(λ+ ω)2 +

λ

nts
, (15)

as shown in Appendix A.

2.2.2. Exponentially distributed evoked activity and delayed response: θ > 0

Assume R ∼ expsh(θ, ω). The likelihood equation for ω is

0 =
n∑

i=1

1− (λ+ ω)(ti − θ)
λ+ ω

1{ti>θ}. (16)

Also here only λ + ω is identifiable, and therefore we estimate λ by (10), and
obtain ω̂ as the solution of (16) for fixed θ as

ω̂ + λ =

∑n
i=1 1{ti>θ}∑n

i=1(ti − θ)1{ti>θ}
, ω̂ = ω̂ + λ− λ̂.

The profile likelihood of θ, i.e. the likelihood function where ω has been
profiled out by maximizing the likelihood over ω as a function of θ, becomes

lt(θ) ∝
n∑

i=1

(
λ̂(ti − θ)− 1

)
1{ti>θ} +

n∑

i=1

log(ω̂1{ti>θ} + λ̂).

Since lt(θ) is strictly increasing for θ ∈ (ti, ti+1), for i = 1, . . . , n− 1, it follows
that θ can be estimated as the time ti − ε maximizing lt(θ), for ε > 0 small
enough.
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Figure 2: Theoretical distribution of T for underlying distributions R with different parameter
values. Here, the three different sets of φ1 and φ2 values equal the sets of parameter values used
in simulations if R is gamma or IG distributed, respectively, while φ̃1 is obtained from (17) such
that mean, variance and skewness of the Γsh(φ1) and the IGsh(φ̃1) distributions are equal.
In particular: R ∼ Γsh(φ1) (dashed lines), with φ1 = (0.2, 0.05, 2) (Var(R) = 0.005), φ1 =
(0.2, 0.2, 5) (Var(R) = 0.002) or φ1 = (0.2, 0.01, 10) (Var(R) = 0.001);R ∼ IGsh(φ̃1) (dashed
gray lines) and R ∼ IGsh(φ2) (full lines), with φ2 = (0.2, 0.1, 0.2) (Var(R) = 0.005), φ2 =
(0.2, 0.1, 0.5) (Var(R) = 0.002) or φ2 = (0.2, 0.1, 1) (Var(R) = 0.001). Note that φ1 and φ2
satisfy (18), i.e. the delay θ, mean and variance of the Γsh(φ1) and the IGsh(φ2) distributions
are equal.
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Figure 3: RIAE(FT ) (in percentage) given by (20) if W ∼ exp(λ) for different values of λ,
assuming instantaneous (left panel) or delayed (right panel) response. Distribution family
of R: exponential (continuous line), gamma (dashed line) or IG (dotted line). Parameter
values: R ∼ exp(1), R ∼ Γ(1/2, 2), R ∼ IG(1, 1) (left panel) and θ = 0.2, Z ∼ exp(5/4), Z ∼
Γ(2/5, 2), Z ∼ IG(4/5, 1) (right panel). In all cases, E[R] = 1s.
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3. Model diagnostics

3.1. Model control

Denote F̂T the parametric estimated cumulative distribution function of T
obtained by plugging λ̂ and φ̂ into (3). To check whether the data fits the sta-
tistical model, one could check whether F̂T is close to the empirical cumulative
distribution function

∑n
i=1 1{ti≤t}/n, e.g. by quantile-quantile plots.

3.2. Model selection

In general, the Γsh(φ) and the IGsh(φ′) distributions are different for any φ
and φ′, but it might still be difficult to statistically distinguish which of the two
distributions have generated a given sample. Indeed, we can find φ = (θ, α, β)
and φ′ = (θ′, α′, β′) such that the mean, variance and skewness of the Γsh(φ)
and the IGsh(φ′) distributions are equal. If we choose

θ′ = θ − 1

2
αβ, α′ =

3

2
αβ, β′ =

(
3

2

)3

αβ2, (17)

the first three moments are equal. Finally, we can find two sets of parameters
φ and φ′ such that θ = θ′ and the mean and variance of the two distributions
are the same, though the skewness are different, choosing

α′ = αβ, β′ = αβ2. (18)

With this parameter choice, the Γsh(φ) and the IGsh(φ′) distributions are close,
as well as the corresponding distributions of T . This can be observed in Fig. 2,
where we show the theoretical distribution of T , if R is gamma or IG distributed,
with parameter values satisfying (17) or (18). Thus, to statistically distinguish
between two distribution families of R from the observations of T , the sample
size has to be very large.

4. Error if spontaneous activity is ignored

To measure the error in the estimation of FR, we consider the relative inte-
grated absolute error (RIAE) defined as

RIAE(F̂R) =

∫∞
0
|F̂R(t)− FR(t)|dt

E[R]
. (19)

Let R belong to any shifted distribution family. If we ignore the presence of
spontaneous activity and estimate FR(t) by FT (t), then

RIAE(FT ) = 1− E[T ]

E[R]
, (20)

see Appendix B. Since E[T ] ≤ E[R] with equality if and only if there is
no spontaneous activity present, this error is zero only in this ideal case. In
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particular, the error increases with λ, as shown in Fig. 3. Therefore, ignoring
the presence of spontaneous activity introduces a considerable error.

In Table 1 we report the RIAE(FT ) when the parameters go to zero while
keeping the other parameters fixed under the assumption that R belongs to
any of the considered shifted distributions. When λ → ∞ or α → ∞ for
any distribution family, then RIAE(FT ) → 1. This also holds when β → ∞
and R ∼ Γsh(θ, α, β). If R ∼ IGsh(θ, α, β) and β → ∞, then RIAE(FT ) →
1− [1− e−λ(α+θ)]/[λ(α+ θ)]. Note that some of these errors do not go to zero
even when E[R] → 0, implying that the spontaneous activity always plays an
important role and should not be ignored.

5. Simulation study

5.1. Set up

We simulated a spontaneous spike train following a Poisson process with
firing rate λ = 1s−1 for a time period up to the first spike after 10s, and
thus E[W ] = 1s. At time ts = 10s, the evoked activity was simulated in
seven different settings, either by shifted exponentially (ω = 10s−1), gamma
((α, β) = (0.05, 2), (0.02, 5), (0.01, 10)) or IG ((α, β) = (0.1, 0.2), (0.1, 0.5) ,
(0.1, 1)) distributed random variables R with θ between 0 and 0.3 in steps
of 0.05. Thus, E[Z] = 0.1s and Var(Z) = 0.001, 0.002, 0.005s2 in the three
settings for either gamma or IG distributions and Var(Z) = 0.01s2 for the
exponential case. Then, we obtained a realization of T using (2). This was
repeated to obtain samples of size n, where n varied between 20 and 100, and
each sample was repeated for different values of θ. Finally, for each set of
values of n, θ, α and β, we repeated this procedure 1000 times, obtaining 1000

θ = 0 α→ 0 β → 0

R ∼ Γ(α, β) 0 1− ln(1 + αλ)

αλ

R ∼ IG(α, β) 0 1

θ > 0 α→ 0 β → 0

R ∼ Γsh(θ, α, β) 1−
(
1− e−λθ

)

λθ
1−

(
1− e−λθ

)

λθ

R ∼ IGsh(θ, α, β) 1−
(
1− e−λθ

)

λθ
1−

(
1− e−λθ

)

λ(θ + α)

Table 1: RIAE(FT ) when α or β go to zero keeping the other parameters fixed, assuming
R ∼ Γsh(θ, α, β) or R ∼ IGsh(θ, α, β). When λ → 0, i.e. E[W ] → ∞, the RIAE(FT ) → 0,
since the spontaneous activity becomes negligible. The exponential case can be obtained from
R ∼ Γsh(θ, α, β) by setting ω = 1/α and β = 1.
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statistically indistinguishable and independent trials. For the considered sets
of parameters and fixed θ, the mean and variance of the distribution of R for
gamma and IG are equal, as follows from (18).

We use boxplots to compare the performance of the MLEs of φ and E[R] for
different FR, n and φ. The boxes contain the estimates between the 1st and the
3rd quartiles, while the 2nd quartile, i.e. the median of the estimates, is marked
with the black horizontal line. The bars show the range of the estimates, except
the outliers, defined to be the points outside the bars that are more than 1.5
times the interquartile range from the box. Only results for the exponential and
the gamma cases are shown in the boxplots, since results from the IG case are
similar to the gamma case. To evaluate the percentage of θ̂ underestimating θ
more than 20%, we consider the relative error defined by

Erel(θ̂) =
θ̂ − θ
θ

.

5.2. Instantaneous response: θ = 0

In Fig. 4 are reported the boxplots of φ̂ if R is exponentially or gamma
distributed for different values of n and φ. As expected, the MLE performs
better when n increases.

If R ∼ exp(ω), ω is well estimated, as anticipated from the theoretical mean
and variance of ω̂ given by (15). In the other cases, the scale parameter α
is estimated better than the shape parameter β. As expected, for fixed α,
the performance of the estimator α̂ improves when β increases, i.e. when the
variance decreases.

Single parameters might be difficult to estimate, whereas means are often

easier to estimate. In Fig. 5 we report the boxplots of Ê[R] and the RIAE(F̂R).
As expected, the performance of the estimators of E[R] and FR improves when
the variance of R decreases. For fixed mean and variance, the estimation of E[R]
and FR is similar for different distribution families, as also observed in Fig. 2

and argued in Section 3.2. Note that Ê[R] has no bias and performs much better
than the estimators of the single parameters, even for a sample size as small as
n = 20. To conclude, different distribution families for R provides similar RIAE

and good estimates of the mean of the response latency, even for small sample
sizes. For the estimation of φ, a larger sample size is needed.

5.3. Delayed response: θ > 0

The boxplots of φ if R is shifted exponentially or gamma distributed for
n = 100 and different values of φ are reported in Fig. 6. As expected, all
estimators improve as n increases (results not shown).

In all cases, the absolute response latency θ is estimated better than the
parameters of the relative response latency Z. Inference about the delay θ,
and consequently of φ, becomes more difficult when β increases. It might be
counterintuitive that the estimator deteriorates for decreasing variance of R, but
can be explained as follows. If the probability of small values of Z is small, the
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Figure 4: Boxplots of estimated φ (1000 estimates) for different number of observations and
parameter values φ if W is exponential with rate λ = 1s−1 and the absolute response latency
is null. Top panel: estimates of ω, R is exponential with rate ω = 10s−1. Central panel:
estimates of α. Bottom panel: estimates of β. R is gamma with (α, β) = (0.05, 2), (0.02, 5),
or (0.01, 10) and thus Var(R) = 0.005, 0.002, or 0.001s2. In all cases, E[R] = 0.1s. Gray lines
are true values used in the simulations. For graphical reasons we do not report some large
estimates of ω (1.6%), of α (less than 1%) and of β (less than 4.6%), all for n = 20.
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parameter φ if W is exponential with rate λ = 1s−1 and the absolute response latency is null.
Top figure: boxplots of estimated E[R] (1000 estimates) with E[R] = 0.1s; Var(R) = 0.01s2

if R ∼ exp(10),Var(R) = 0.005s2 if R ∼ Γ(0.05, 2); Var(R) = 0.002s2 if R ∼ Γ(0.02, 5)
and Var(R) = 0.001s2 if R ∼ Γ(0.01, 10). Gray line is true value used in the simulations.

Bottom figure: RIAE(F̂R) (average over 10,000 simulations) if R is exponentially (full gray
line), Gamma (full lines) or IG (dashed lines) distributed, with variance of R decreasing from
the top to the bottom lines.
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Figure 6: Boxplots of estimated φ (1000 estimates) for n = 100 and different values θ if W
is exponential with rate λ = 1s−1 and the absolute response latency is not null: θ > 0. Top
figure: Z is exponential with rate ω = 10s−1. Bottom figure: Z is gamma with (α, β) =
(0.05, 2), (0.02, 5), or (0.01, 10) and thus Var(Z) = 0.005, 0.002, or 0.001s2. Gray lines are true
values used in the simulations. For graphical reasons we do not report some large estimates
of α (less than 0.7%) and of β (less than 11.3%).
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Figure 7: Percentage of samples where the estimated θ are underestimated with a relative error
larger than 20% if W is exponential with rate λ = 1s−1 and n = 100. The following cases are
considered: Z is exponential with Var(R) = 0.01s2 (grey full line), Γ with Var(R) = 0.005s2

(bottom full line), 0.002s2 (central full line), 0.001s2 (top full line) and IG with Var(R) =
0.005s2 (bottom dashed line), 0.002s2 (central dashed line) and 0.001s2 (top dashed line).

distribution of R is more peaked away from θ, and it is difficult to statistically
distinguish between absolute and relative latency.

To understand the presence of outliers in the estimation of φ, the percentage
of estimated θ that are underestimated with a relative error larger than 20%
is plotted in Fig. 7. The percentage increases when β increases and decreases
when θ increases. Most of these outliers underestimate θ (see Fig. 6). This
can also be seen from the dependence of α and β on θ, assuming that E[R]
and Var(R) are correctly estimated, as shown in (8) and (9). Figure 8 shows

scatterplots of (θ̂, α̂) and (θ̂, β̂) if θ = 0.3s, illustrating that the estimators are
not independent. It is clear that mean and variance of R are well estimated,
even if the single parameters are not. Results are similar for other values of θ
(figures not shown). If θ̂ ≈ 0, then α̂ � α and β̂ � β for the gamma case and

α̂� α and β̂ � β for the IG case. This happens because α̂ and β̂ are estimated
as α0 and β0, respectively, as follows from (6) and (7).

Figure 9 shows boxplots of Ê[R] and the RIAE(F̂R) for different θ. As ex-

pected from Section 1.2, the mean of R is always well estimated, being Ê[R] unbi-
ased and with a small variance. Furthermore, for fixed mean, it performs better
when β increases and thus Var(R) decreases. For the same reason, RIAE(F̂R)
decreases when β increases. Moreover, the performance of F̂R improves when
θ increases and no significant differences are observed between the gamma and
IG cases.

To conclude, the MLE can be used to estimate well the mean of the response
latency, its distribution and reasonably well the absolute response latency θ.
The estimation of the single parameters of Z is reliable only if n is large, as
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Figure 8: Plots of (θ̂, α̂) and (θ̂, β̂) if W is exponential with rate λ = 1s−1, n = 100 and delay
θ = 0.3s. Top panels: Z is gamma with α = 0.02s, β = 5. Bottom panels: Z is IG with
α = 0.1s and β = 0.5. In both cases, E[R] = 0.1s and Var(R) = 0.002s2. The gray lines are

given in (8) and (9) and are obtained such that, for each estimate θ̂, the estimated mean and
variance of R are equal to the true values.

observed in Fig. 10, where the boxplots of φ̂ are reported for n = 100, 500 and
1000. Thus, numerical simulations suggest that the MLE of φ is asymptotically
unbiased.

6. Conclusion

If there is no spontaneous activity corrupting the response to the stimulus,
i.e. R is directly observable, parameter estimation in models (4) or (5) is rea-
sonably solved, also in presence of absolute latency (Hampel and Lansky, 2008).
In the model we consider, statistical inference is complicated by the presence of
spontaneous activity. If the absolute response latency θ is null, non-parametric
and semi-parametric estimators for FR(t) were developed in Pawlas et al. (2010).
Here we consider parametric estimators. The mean of the response latency can
be well estimated even for small sample sizes. For the estimation of the single
parameters, larger sample sizes are needed.

Even in absence of spontaneous activity, there is no experimental evidence
about the distribution of the response latency. Therefore it can be discussed if it
is realistic to assume FR known. First, model diagnostics could be performed to
evaluate the data fit. Second, mean and variance of the response latency, as well
as its cumulative distribution function, can be well estimated even assuming a
wrong distribution family for R. However, a right choice of FR can guarantee a
reasonable estimation of θ for a sample size if n = 100.

15



●●●●●●●

●
●●

●

●

●●●●
●●

●

●

●

●●

●●
●

●●

●●●●

●

●

●

●●●● ●

●

●●●●

●

●

●

●●

●

●●●

●

●●●

●

●●
●
●
●

●●●
●

●

●●●●
●

●●

●

●●●●●●●●

●

●
●●●

●

●
●
●●

●●●
●●

●
●

●
●●●●●

●

●●●●●

●

●

●

●
●●

●●

●●●

●
●●●

●

●●

●●

●

●

●
●

●
●

●●

●

●

●

●●●
●●

●

●●

●

●● ●

●

●●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●

●

●

●●
●

●●●●●

●

●

●

●●

●●

●

●

●

●

●

●

●●

●

●●

●

●●●

●
●●
●
●

●
●●
●
●
●
●

●
●
●●

●

● ●

●●

●●

●●

●●

●

●

●

●●●

0.
15

0.
20

0.
25

0.
30

0.
35

0.
40

0.
45

θ = 0.05 θ = 0.1 θ = 0.15 θ = 0.2 θ = 0.25 θ = 0.3

Boxplots of  E[R]

F_Z (from left to right)

Exp(10)
Γ(0.05,2)
Γ(0.2,5)
Γ(0.1,10)

0.05 0.10 0.15 0.20 0.25 0.30

0
1

2
3

4
5

6
7

ths

n

RIAE(F̂R) in % 

θ

Underlying distribution for R: 

Exp
Gamma
IG

Var(R) = 0.01

Var(R) = 0.005

Var(R) = 0.001
Var(R) = 0.002

Figure 9: Dependence of Ê[R] and RIAE(F̂R) on the absolute response latency θ if W is

exponential with rate λ = 1s−1 and n = 100. Top figure: boxplots of Ê[R] (1000 estimates)
with E[Z] = 0.1s. For each θ, the underlying distributions are: Z ∼ exp(10) (1st boxplots from
the left) and Z ∼ Γ(0.05, 2),Γ(0.02, 5), and Γ(0.1, 10) (2nd, 3rd and 4th boxplots from the left

respectively). Gray lines are true values used in the simulations. Bottom figure: RIAE(F̂R)
(average over 1000 simulations) if R is exponentially (full gray line), Gamma (full lines) and
IG (dashed lines) distributed, with variance of R decreasing from the top to the bottom lines.
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Figure 10: Dependence of φ̂ on the number of observations if W is exponential with rate
λ = 1s−1 and Z is gamma with θ = 0.3s, α = 0.01s and β = 10 and thus E[R] = 0.4s. Gray
lines are true values used in the simulations. For graphical reasons we do not report some
large estimates of β (less than 11.4%), all for n = 100.

Theoretical results and numerical simulations emphasize the difficulty in the
estimation of the single parameters, especially α and β, unless θ = 0 or the
sample size is very large. An improvement in the estimation of φ might be
obtained considering not only the first spike following the stimulus onset, but
the entire spike train. A method to distinguish the evoked from the spontaneous
spikes should then be provided.
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2010. First-spike latency in the presence of spontaneous activity. Neural
Computation 22, 1675–1697.

Shimokawa, T., Koyama, S., Shinomoto, S., 2010. A characterization of the
time-rescaled gamma process as a model for spike trains. J. Comput. Neurosci.
29, 183–191.

Tamborrino, M., Ditlevsen, S., Lansky, P., 2012. Investigation of noisy response
latency. Physical Review E 86, 021128.

Tuckwell, H.C., 1988. Introduction to Theoretical Neurobiology, Vol.2: Nonlin-
ear and Stochastic Theories. Cambridge Univ. Press, Cambridge.

Uzuntarla, M., Ozer, M., Guo, D., 2012. Controlling the first-spike latency
response of a single neuron via unreliable synaptic transmission. Eur. Phys.
J. B 85, 282.

Wainrib, G., Thieullen, M., Pakdaman, K., 2010. Intrinsic variability of latency
to first-spike. Biol. Cybern. 103, 43–56.

Appendix A. Mean and variance of ω̂ if θ = 0

Let T̄ be the random variable defined by T̄ =
∑n
i=1 Ti/n. If W ∼ exp(λ)

and R ∼ exp(ω) then Ti ∼ exp(λ + ω) and Ti/n ∼ exp(n(ω + λ)), while T̄ is
gamma distributed with parameters α = 1/n(λ+ ω) and β = n. Therefore, the
probability density function of T is given by

fT̄ (t) =
[n(λ+ ω)]ne−n(λ+ω)yyn−1

(n− 1)!
dy,

18



with mean and variance given by

E[T̄ ] =
1

λ+ ω
V ar(T̄ ) =

1

n(λ+ ω)2
.

Then,

E[
1

T̄
] =

∫ ∞

0

1

y
fT̄ (y)dy

=

∫ ∞

0

[n(λ+ ω)]ne−n(λ+ω)yyn−2

(n− 1)!
dy

=
n(λ+ ω)

n− 1

and the mean of ω̂ follows by (13), noting that E[λ̂] = λ.
Similarly,

E[
1

T̄ 2
] =

∫ ∞

0

[n(λ+ ω)]ne−n(λ+ω)yyn−3

(n− 1)!
dy

=
n2(λ+ ω)2

(n− 1)(n− 2)
.

Since the spontaneous activity follows a renewal Poisson process, 1/T̄ and λ̂ are
independent, due to the memoryless property of the exponential distribution.
Therefore,

Var(ω̂) = Var(
1

T̄
) + Var(λ̂)

=
n2(λ+ ω)2

(n− 1)(n− 2)
− n2(λ+ ω)2

(n− 1)2
+

λ

nts
,

and (15) follows.

Appendix B. RIAE

Let R belong to a shifted distribution family with the restriction that t(1−
FR(t)) → 0 when t → ∞. A sufficient condition is that the variance of R is
finite, and is thus fulfilled for the gamma and IG distributions. To calculate
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RIAE(FT ), we estimate FR by FT given by (3) and obtain

RIAE(FT ) =

∫ ∞

0

|FW (1− FR(t))|
E[R]

dt

=
1

E[R]

∫ ∞

0

(1− e−λt)(1− FZ(t− θ)1{t>θ})dt

=
1

E[R]

[∫ θ

0

(1− e−λt)dt+

∫ ∞

θ

(1− e−λt)(1− FZ(t− θ))dt
]

=
1

E[R]

[
θ +

1

λ
e−λθ − 1

λ
+

∫ ∞

0

(1− e−λ(u+θ))(1− FZ(u))du

]

=
1

E[R]

{
θ +

1

λ
e−λθ − 1

λ
+

[
(u+

1

λ
e−λ(u+θ))(1− FZ(u))

]∞

0

+

∫ ∞

0

ufZ(u)du+
1

λ
e−λθ

∫ ∞

0

e−λufZ(u)du

}

= 1− E[W ]

E[R]

(
1− e−λθMZ(−λ)

)
,

where integration by parts has been used and MZ(s) denotes the moment gen-
erating function of Z, i.e. MZ(s) = E[esZ ] =

∫∞
0
estfZ(t)dt. Finally, (20)

follows from the theoretical mean of T , E[T ] = E[W ]
(
1− e−λθMZ(−λ)

)
, see

Tamborrino et al. (2012).
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