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Abstract - Resumé

Abstract

In [Rus14b] and [Rus14a], we study graded rings of modular forms over

congruence subgroups, with coefficients in subrings A of C, and determine

bounds of the weights of modular forms constituting a minimal set of gen-

erators, as well as on the degree of the generators of the ideal of relations

between them. We give an algorithm that computes the structures of these

rings, and formulate conjectures on the minimal generating weight for mod-

ular forms with coefficients in Z.

We discuss questions of finiteness of systems of Hecke eigenvalues modulo

pm, for a prime p and an integer m ≥ 2, in analogy to the classical theory

that already exists for m = 1. In joint work with Ian Kiming and Gabor

Wiese ([KRW14]), we show that these questions are intimately related to a

question of Buzzard regarding the boundedness of the field of definition of

Hecke eigenforms (over Qp), and we formulate precise conjectures. We prove

the existence of bounds on the weight filtrations of eigenforms modulo pm,

which gives evidence as to the truth of these conjectures. These bounds are

made explicit in the case N = 1, p = 2.

Resumé

I [Rus14b] og [Rus14a], studerer vi graduerede ringe af modulformer p̊a

kongruensundergrupper med koefficienter i underringe A af C, bestemmer

grænser for vægtene af formerne i et minimalt frembringersæt, samt grænser

for graderne af frembringerne i relationsidealet. Vi angiver en algoritme, der

beregner strukturen af disse ringe, og formulerer formodninger om de mini-

male vægte for frembringere for modulformer med koefficienter i Z.

Vi diskuterer spørgsm̊al om endlighed af systemer af Hecke egenværdier

modulo pm, hvor p er et primtal og m ≥ 2 et heltal, i analogi til den klas-

siske teori, der findes for m = 1. I et samarbejde med Ian Kiming og

Gabor Wiese ([KRW14]) beviser vi, at disse spørgsm̊al er nært forbundne
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med et spørgsm̊al af Buzzard om definitionslegmerne frembragt af Hecke

egenværdier (over Qp). Vi beviser, at egenformer mod pm har begrænsede

vægtfiltrationer.



Chapter 0

Introduction

0.1 Overview

The contents of this thesis describe the two main projects I worked on during the

three years of my PhD studies at the University of Copenhagen.

0.1.1 Generators and relations for algebras of modular forms

The idea for the first project came after reading the paper “On the algebra of

modular forms on a congruence subgroup” by A. J. Scholl ([Sch79]). In that

paper, Scholl proves that for a congruence subgroup Γ ⊂ SL2(Z), and a sub-

ring A ⊂ C, the graded A-algebra M(Γ, A) generated by modular forms (of all

weights) for Γ whose q-expansion coefficients at ∞ lie in A is finitely generated.

This result had already been known, and a proof appears earlier in [DR73] (The-

orem VII.3.4). However, Scholl’s proof is both more elementary and constructive,

and gives an explicit set of generators.

I wrote an algorithm (Algorithm 5.3.1) based on Scholl’s proof that allowed

me to compute minimal sets of generators for the algebras M(Γ,C) where Γ =

Γ0(N) or Γ1(N). Scholl’s proof depends on the construction of a special modular

form, which he calls a T -form, and which has special integrality and vanishing

properties. The algorithm’s speed depends on the weight of the T -form: the

smaller the weight, the faster the algorithm runs. I observed that Scholl’s con-

struction of a T -form is not always optimal regarding the weight. In [Rus14b], I

gave a T -form T for Γ0(p), where p ≥ 5 is prime, of lower weight (equal to p− 1)

than what Scholl’s recipe gives (which is equal to 12(p−1)
gcd(24p,p−1)), and in [Rus14a], I

proved that this T -form is optimal. Having computed generators for the algebras

5



6 CHAPTER 0. INTRODUCTION

M(Γ,C) for various congruence subgroups Γ, I noticed that the highest weight

of a form appearing in a minimal set of generators for these algebras was always

quite small, and seemed to be bounded independently of N .

When A = C, this question had been previously studied by various authors.

Borisov and Gunnels ([BG03]) proved, using the theory of toric modular forms,

that for any prime N , the C-algebra M(Γ1(N),C) is generated in weight (at

most) 3. For congruence subgroups Γ0(N) with N square-free, one can use the

work of Böcherer and Nebe ([BN10]) to show that the algebra M(Γ0(N),C) is

generated in weight 10, as I have shown in [Rus14b], Section 4.1. The structure

of M(Γ0(N),C) was determined explicitly when X0(N) has genus 0 in [SS11] by

producing enough generators and relations explicitly and then using dimension

formulae to conclude that they describe the whole structure.

For Γ(N), with N ≥ 3, Khuri-Makdisi shows, using the theory of line bundles on

projective curves, that M(Γ(N),C) is generated in weight 1, by explicitly exhibit-

ing a subalgebra RN , generated by weight 1 Eisenstein series, and containing all

modular forms of weight at least 2. Khuri-Makdisi’s proof uses the description of

modular forms of weight k for Γ = Γ(N) as global sections of a line bundle L⊗k

on the modular curve X = X(Γ), and relies on a criterion that guarantees the

surjectivity of the canonical multiplication map:

H0(X,L⊗i)⊗H0(X,L⊗j)→ H0(X,L⊗(i+j)).

The kernel and cokernel of the multiplication map for invertible sheaves on

smooth projective curves had been studied earlier by Mumford ([Mum70b]),

where he provides slightly sharper criteria for surjectivity. In [Rus14b], I used

Mumford’s criteria to determine bounds on the weights of generators for the al-

gebras M(Γ1(N),C) for N ≥ 5 and M(Γ0(N),C) where Γ0(N) does not contain

any elliptic elements.

After the publication of [Rus14b], it came to my attention that Wagreich had

in [Wag80] and [Wag81] studied the generators of the algebra (over C) of auto-

morphic forms for a finitely generated Fuchsian group of the first kind. In these

articles, Wagreich gave a precise description of the number of generators needed

in each weight. The description depends only on the signature of the Fuchsian

group involved, that is, a knowledge of the genus, the number of cusps, and the

number and orders of elliptic points. Wagreich’s results give an affirmative answer

to Conjecture 1 in [Rus14b], mainly that M(Γ0(N),C) is generated in weight at

most 6. In addition, when the algebra can be generated by at most 4 generators,

Wagreich gives bounds on the degrees of the generators of the ideal of relations.
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Since I was interested in studying reductions of modular forms moduli prime pow-

ers, I sought generalisations of these results to graded algebras of modular forms

with coefficients in subrings of C which are as small as possible. In [Rus14b] and

[Rus14a], I studied the Z[ 1
N ] algebras M(Γ1(N),Z[ 1

N ]), and was able to prove the

following Theorem:

Theorem 3.4.4.Let N ≥ 5. The Z[ 1
N ]-algebra:

M = M(Γ1(N),Z[
1

N
]) = Z[

1

N
]⊕
⊕
k≥2

Mk(Γ1(N),Z[
1

N
])

is generated in weight 3. Choosing a minimal set of generators, M is related in

degree 6.

The idea of the proof is to first to prove the theorem for the reduction of M

modulo p for all primes p not dividing N , and then deduce the theorem in char-

acteristic 0. For that, we use the existence of a fine moduli scheme X1(N) over

Z[ 1
N ] classifying isomorphism classes of elliptic curves over Z[ 1

N ] with Γ1(N)-

structure, and an invertible sheaf ω on X1(N), such that the global sections

H0(X1(N), ω⊗k) can be identified with the modular forms of weight k for Γ1(N)

with coefficients in Z[ 1
N ]. Moreover, the formation of the invertible sheaf ω com-

mutes with base change. The bounds we want then follow from an application of

Mumford’s results on the cohomology of invertible sheaves on projective curves

over a perfect field ([Mum70b]).

For algebras of modular forms for congruence subgroups Γ0(N), the situation

is complicated by the non-existence of a fine moduli scheme classifying isomor-

phism classes of elliptic curves with Γ0(N), due to the existence of non-trivial

automorphisms for these objects. Instead, one should consider the moduli stacks

X0(N), on which there exists an invertible sheaf ω, such that the global sections

H0(X0(N), ω⊗k) can be identified with the modular forms of weight k for Γ0(N).

In order to apply Mumford’s theorems, we take the pushfowards Lk of the sheaves

ω⊗k to the coarse moduli schemes X0(N) over Z[ 1
6Nϕ(N) ]. The formation of these

coarse moduli schemes and the corresponding sheaves Lk then commutes with

base change, but it is no longer true that the sheaves Lk are each the kth tensor

power of a fixed invertible sheaf. However, we are still able to derive bounds on

the weights of generators and the degree of relations that are independent of N .

In particular:

Theorem 4.3.7. Let N ≥ 5. Let ε∞ be the number of cusps for Γ0(N), and

let ε2 and ε3 be respectively the number of elliptic points of order 2 and of order
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3. The algebra

M = M(Γ0(N),Z[
1

6Nϕ(N)
]) = Z[

1

6Nϕ(N)
]⊕
⊕
k≥2

Mk(Γ0(N),Z[
1

6Nϕ(N)
])

is:

• generated in weight 2 and related in degree 6, if ε3 = ε2 = 0 and N is

composite,

• generated in weight 6 and related in degree 14 if ε3 > 0 and ε2 = 0,

• generated in weight 12 and related in degree 130 if ε3 > 0 and ε2 > 0, and

• generated in weight 4 and related in degree 10 otherwise.

While Wagreich’s results on the weights necessary to generate these algebras of

modular forms C are more precise, Theorems 3.4.4 and 4.3.7 are valid for alge-

bras of modular forms with coefficients in rings which are arithmetically more

significant. For example, Theorems 3.4.4 and 4.3.7 can be used to determine gen-

erators for the algebras of modular forms modulo prime powers pm. Moreover,

Wagreich determines the generators of the ideal of relations only in cases where

the algebra is generated by at most 4 elements, while the results of Theorems

3.4.4 and 4.3.7 are valid regardless of the number of generators involved. Finally,

it should be noted that, while the results of Theorem 4.3.7 are stated for modular

forms with coefficients in Z[ 1
6Nϕ(N) ], they remain valid for modular forms with

coefficients in Z[ 1
6N ]. The choice of inverting ϕ(N) over the base was made to

ease the exposition.

Using Theorems 3.4.4 and 4.3.7, one can write down an algorithm that takes as

input a congruence subgroup of the form Γ0(N) or Γ1(N) and output a minimal

set of generators as well as generators for the ideal of relations, thus giving a

presentation of the corresponding algebra of modular forms. In this thesis, this

algorithm is presented as Algorithms 5.3.1 and 5.3.5. Computations of the struc-

ture of these algebras using the algorithms provided (see Sections A.1 and A.2)

show that the bounds given in Theorem 4.3.7 are not optimal, although they are

not too far off the optimal values (except perhaps in the case where there are

elliptic points of both orders). This suggests that it is perhaps possible to develop

Riemann-Roch theory for stacky curves, and to obtain a version of Mumford’s

theorems for stacks, which would in turn prove the following:

Conjecture A.1.1. Let N ≥ 1. The Z[ 1
6N ] algebra:

M = M(Γ1(N),Z[
1

6N
]) = Z[

1

6N
]⊕
⊕
k≥2

Mk(Γ0(N),Z[
1

6N
])
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is generated in weight 6 and related in weight 12.

This approach is currently being pursued by John Voight and David Zureick-

Brown in an upcoming work and promises to provide an optimal and conceptually

more satisfactory answer to the question of calculating minimal sets of generators

and relations for graded algebras of modular forms.

There remains the question of determining bounds for generators of the algebras

M(Γ0(N),Z). Scholl’s proof of finite generation gives an upper bound on the gen-

erating weight of M(Γ0(N),Z). For example, for the algebra M(Γ0(p),Z) where

p ≥ 5 is prime, the existence of a T -form in weight p − 1 as shown in [Rus14b]

implies that the algebra M(Γ0(p),Z) is generated in weight p2 + 11. This bound

grows quadratically with the level, and one might hope to do better, perhaps find

a bound which is independent of the level, in analogy to the results described so

far. Unfortunately, a bound which is independent of the level turns out to be too

much to ask for. In [Rus14a], I showed that:

Theorem 4.4.4. Let N ≥ 5 and let p ≥ 5 be a prime which divides N exactly

once. Then any set of generators for M(Γ0(N),Z) contains a form of weight

p− 1. In particular, the generating weight of M(Γ0(N),Z) is at least p− 1.

However, computations of generating weights (see Section A.3) for the algebras

M(Γ0(p),Z) using Algorithm 5.3.1 does reveal a structure: the generating weight

seems to be p− 1. More precisely:

Conjecture 4.4.11. The weights of the modular forms appearing in a mini-

mal set of generators for M(Γ0(p),Z) are in the set {2, 4, 6, p − 1}, and there is

only one generator of weight p− 1 (which can be chosen to be the T -form T ).

In [Rus14a], I described a possible first step towards a resolution of Conjec-

ture 4.4.11. Consider the Atkin-Lehner operator acting on modular forms f ∈
Mk(Γ0(p),C) by:

f 7→ f |kWp

where:

Wp =

(
p 0

0 1

)
.

Define an operator:

f 7→ f̃ = p
k
2 f |kWp.

Let S denote the subset ofM(Γ0(p),Z) consisting of modular forms f =
∑

n≥0 anq
n

satisfying vp(f̃) ≥ 0, where:

vp(f) = inf{vp(an) : n ≥ 0}
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is the p-adic valuation of f , and let T be the T -form in weight p−1. Then we have:

Theorem 4.4.9. The algebra M(Γ0(p),Z) is generated by T and S.

The proof of Theorem 4.4.9 requires a generalisation of a result of Serre on con-

gruences between modular forms for Γ0(p) and modular forms for SL2(Z), which

is the following:

Theorem 4.4.6. Let p ≥ 5, f ∈Mk(Γ0(p),Z) with vp(f) = 0 and vp(f̃) = k+ a.

Then there exists g ∈Mk−a(p−1)(SL2(Z),Z) such that f ≡ g (mod p).

Serre proves the theorem in [Ser73b] in the case where a ≤ 0. To prove the theo-

rem in the case where a > 0, I used intersection theory on the moduli stack X0(p)

as developed by Deligne and Rapoport in [DR73]. By Theorem 4.4.9, Conjecture

4.4.11 is now reduced to the following conjecture:

Conjecture 4.4.10. The Z-subalgebra of M(Γ0(p),Z) generated by S = {f ∈
M(Γ0(p),Z) : vp(f̃) ≥ 0} is generated in weight 6.

0.1.2 Modular forms modulo pm

Fix a congruence subgroup Γ (e.g. Γ ∈ {Γ0(N),Γ1(N)}), and a prime p - N . Let

S be the set of normalised Hecke eigenforms for Γ. It is clear by classical theory

that the set S is infinite. It is also well known that normalised Hecke eigenforms

have q-expansions whose coefficients are algebraic integers. It is therefore possible

to consider their reductions S modulo p. As it turns out, the elements of S

often have congruent q-expansions modulo p. In fact, due to work of Serre, Tate,

Jochnowitz ([Joc82a]), and Ash-Stevens ([AS86]), it is known that for any element

f ∈ S, there exists a modular form g of weight at most p2 + p such that:

f ≡ g (mod p).

Moreover, by the Deligne-Serre lifting lemma (Lemma 6.2.3), the modular form

g can be chosen to be an element of S as well. Therefore, the set S is finite.

This fact has numerous applications. For instance, one finds such an application

in [Edi92] to Serre’s modularity conjecture, which we will shortly describe. Given

a normalised Hecke eigenform f , Deligne constructed Galois representations:

ρf : Gal(Q/Q)→ GL2(Fp)

with controlled ramification and behaviour at the Frobenius element Frob` for

each prime ` 6= p. Serre then conjectured that for every semisimple, 2-dimensional
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odd representation:

ρ : Gal(Q/Q)→ GL2(Fp)

there exists a Hecke eigenform f such that:

ρ ∼= ρf .

This is known as the weak form of Serre’s conjecture. Additionally, Serre gave a

precise recipe for the level N , weight k and character ε of f ; this recipe is known

as the strong Serre conjecture. In [Edi92], Edixhoven uses the theory of mod p

modular forms to prove that the weak Serre conjecture (for the weight) implies

the strong Serre conjecture.

The question of Galois representations modulo pm when m ≥ 2 is a natural one.

In [CKW13], Chen, Kiming, and Wiese define three successively weaker notions

of eigenforms modulo pm: strong, weak, and dc-weak. In this thesis, I only con-

sider strong and weak eigenforms modulo pm.

In a nutshell, a modular form f modulo pm is simply the reduction modulo pm

of the q-expansion of a modular form for Γ with coefficients in Zp, and f is said

to be a weak eigenform if a1(f) = 1 and there exist constants λ` ∈ Z/pmZ for all

primes ` such that:

T`f = λ`f

where T` are the reductions of the Hecke operators. If f is a weak eigenform of

weight k, then one can always find a modular form f̃ of weight k such that f̃

reduces to f modulo pm. If it is possible to choose f̃ to be a normalised Hecke

eigenform in Mk(Γ,Zp), then we call f a strong eigenform.

One fundamental difference between the situation mod p and the situation mod

pm for m ≥ 2 is pointed out in [CKW13]. When working mod p, one has the

Deligne-Serre lifting lemma (Lemma 6.2.3), which ensures that every weak eigen-

form mod p is also strong. However, the Deligne-Serre lifting lemma is no longer

valid modulo pm. In [CKW13], an example is presented of a weak eigenform

which is not strong at the same weight, i.e. it is not the reduction of an eigen-

form of the same weight in characteristic 0. In the same article, the question is

raised about whether the notions of weak and strong coincide if one is allowed to

vary the weight. In Corollary 6.2.7, we show that the answer to the question is

negative. In particular, we present an eigenform modulo 4 of level 1 which is not

the reduction of any Hecke eigenform in level 1 of any weight. However, it might

still be possible that if one is allowed to vary the level as well as the weight, then

one can still lift weak eigenforms.

In analogy with the situation mod p, we are lead to the following question:
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Question 0.1.1 (Finiteness of Hecke eigenforms mod pm). Are there only finitely

many congruence classes of strong Hecke eigenforms modulo pm? In other words,

is the set S (mod pm) finite?

Question 0.1.2 (Finiteness of Galois representations mod pm). Are there only

finitely many isomorphism classes of Galois representations mod pm attached to

strong Hecke eigenforms?

One should note that the restriction of the above questions to strong eigenforms

is a necessary one. Indeed, if one puts no restrictions on the coefficient rings of

weak eigenforms mod pm, then one can find infinitely many weak eigenforms at

the same weight, as an argument of Calegari and Emerton shows in [CE04].

In a joint work ([KRW14]) together with Ian Kiming and Gabor Wiese, we elab-

orate these questions into precise conjectures, as described in Section 7.3. We

found that these conjectures are intimately linked with a question posed by Kevin

Buzzard in [Buz05] (Question 4.4):

Question 7.3.1. For f =
∑

n≥0 anq
n ∈ S, let:

Kf,p := Qp(an : n ≥ 0).

Is the quantity:

sup
f∈S

[Kf,p : Qp]

finite?

As it turns out, a positive answer to Buzzard’s question implies a positive answer

to the finiteness question. In fact, a positive answer to Buzzard’s question is

equivalent to finiteness together with some boundedness conditions on indices.

In Sections 7.1 and 7.2, we give some evidence towards these conjectures. First,

as a warm up, we show the following:

Theorem 7.1.2. There exists a constant C(m) depending only on m such that

whenever f ∈ Sk(SL2(Z),Z/2mZ) is a weak eigenform, then f is the reduction

modulo 2m of a form of weight bounded by a constant κ(m) depending only on

m, and which can be made explicit.

The proof is based on Nicolas-Serre theory, as presented in [NS12]. One should

note that a similar result can be obtained using analogous arguments for prime

p = 3 (and still at level 1), since a Nicolas-Serre theory can also be developped

in that setting, as shown in the appendix of [BK]. In Section 7.2, we generalize
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this proof, and we show the following:

Theorem 7.2.1. There exists a constant κ(N, p,m) depending only on N , p,

and m such that every eigenform f ∈M(Γ1(N),Z/pmZ) is the reduction mod pm

of a modular form of weight at most κ(N, p,m).

Unlike Theorem 7.1.2, we have not made the constants κ(N, p,m) explicit. A

key step in the proof is the following result. Here, for a modular form f , wp(f)

denotes the mod p weight filtration of f , which is the smallest weight in which

one can find a modular form g such that f ≡ g (mod p).

Proposition 7.2.2. Let f ∈ Sk(Γ1(N),Fp). Suppose that for some integer d,

there exists a system {λ`}` prime of (cuspidal) Hecke eigenvalues such that:

wp(T`f − λ`f) ≤ d

for all primes `. Then:

wp(f) ≤ η(N, p, d)

where η(N, p, d) is a constant depending only on N , p, and d.

If we adopt the convention that wp(0) = −∞, then we see that Proposition 7.2.2

is a generalisation of the bounds obtained by Jochnowitz ([Joc82a], [Joc82b]) on

the mod p weight filtrations of Hecke eigenforms.

An important tool in the study of modular forms mod p is Ramanujan’s θ oper-

ator. On q-expansions, it acts by:

θ(
∑
n≥0

anq
n) =

∑
n≥1

nanq
n.

In characteristic 0, the θ operator does not send modular forms to modular forms.

It is classically known, however, that the θ operator induces a derivation:

θp : Mk(Γ,Fp)→Mk+p+1(Γ,Fp).

The existence and properties of the operator θp are crucial to the proof of finite-

ness of mod p eigenforms in [Joc82a], and in Edixhoven’s study of Serre’s conjec-

ture in [Edi92].

In [CK14], Chen and Kiming show that the θ operator induces an operator:

θpm : Mk(Γ1(N),Z/pmZ)→Mk+k(p)(Γ1(N),Z/pmZ)

where k(p) = 2 + 2pm−1(p− 1). One might hope that, in analogy to the case of

modular forms mod p, the operator θpm might be useful in attacking the questions
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of finiteness and weight bounds. We discuss this operator in Section 6.3, and show

through a computational investigation that the behaviour of the operator θpm is

much more complicated than that of θp.

0.2 Structure of the thesis

A basic overview of the theory of congruence subgroups and modular forms is

given in Chapter 1.

In Chapter 2, the terminology and notation concerning graded algebras of modu-

lar forms is set up, and a basic lemma in linear algebra is proven. The structure

of the graded algebra of modular forms of level 1 with coefficients in Z is deter-

mined. Although this is classical, I chose to include a proof as a warm up.

The algebras M(Γ1(N),Z[ 1
N ]) are studied in Chapter 3, and bounds on the gen-

erating weight as well as on the degrees of generators of the ideal of relations are

determined. The contents of this chapter are taking from the articles [Rus14b]

and [Rus14a].

In Chapter 4, the algebras M(Γ0(N),Z[ 1
6Nϕ(N) ]) are studied, and bounds for gen-

erators and relations are determined. The algebra M(Γ0(p),Z) is then examined,

and a lower bound on the generating weight for these algebras is given, as well

as a set of generators. The contents of this chapter are based on the articles

[Rus14b] and [Rus14a], however, new and stronger results are presented.

Chapter 5 describes Scholl’s proof of finite generation, and gives algorithms that

are based on his proof for computing the structure of the algebra of modular

forms for a given congruence subgroup and with coefficients in a subring A of

C. We examine Scholl’s construction of a T -form for the congruence subgroups

Γ0(N), and show that it is not always optimal (i.e. it is not of the smallest pos-

sible weight). For the groups Γ0(p), where p ≥ 5, we explicitly construct the

optimal T -form. This is taken mainly from the article [Rus14b]; the optimality

of the T -form is discussed also in [Rus14a].

The basic theory of modular forms mod pm is described in Chapter 6, and it is

based on [CKW13] and [CK14]. The discussion of the θpm cycles has not ap-

peared elsewhere.

In Chapter 7, we prove the existence of bounds for the weight filtrations of weak

eigenforms modulo pm. In the case N = 1, p = 2, we make these bounds ex-

plicit. The discussion of Buzzard’s questions and related conjectures, as well as
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the weight bounds for the case N = 1, p = 2, have appeared in [KRW14].

Finally, numerical results obtained through application of the theory presented

in Chapters 1-7 are presented in Append A. These include bounds for generators

and relations for the various algebras of modular forms studied in this thesis,

as well as computational evidence supporting Conjecture 4.4.11. We also give

some computations of θp2-cycles, and explicit weight bounds for weak eigenforms

modulo pm.





Chapter 1

Modular forms

In this chapter, we give an exposition of the basic definitions and facts in the

theory of modular form. This exposition closely follows that in Chapters 1-3 of

[DS05], and additional references are given where needed.

1.1 Congruence subgroups

The modular group is the group SL2(Z) of 2×2 integral matrices with determinant

1. The principal congruence subgroup of level N is the group:

Γ(N) := {γ =

(
a b

c d

)
∈ SL2(Z) : γ ≡

(
1 0

0 1

)
(mod N)}.

That is, Γ(N) is the group of matrices in SL2(Z) which are congruent to the iden-

tity modulo N . In general, a congruence subgroup is a subgroup Γ of SL2(Z),

such that Γ(N) ⊂ Γ for some N ≥ 1. Note that Γ(N) ⊂ Γ(M) if and only if

M |N . If for some N ≥ 1 we have Γ(N) ⊂ Γ, then we say that Γ is of level N .

The index [SL2(Z) : Γ(N)] is finite, thus every congruence subgroup has finite

index. We single out two special families of congruence subgroups:

Γ0(N) := {γ =

(
a b

c d

)
∈ SL2(Z) : γ ≡

(
∗ ∗
0 ∗

)
(mod N)},

Γ1(N) := {γ =

(
a b

c d

)
∈ SL2(Z) : γ ≡

(
1 ∗
0 1

)
(mod N)}.

We note that Γ1(N) ⊂ Γ0(N), and that for i ∈ {0, 1}, Γi(N) ⊂ Γi(M) if and only

if M |N . Furthermore, the group homomorphism Γ0(N) → (Z/NZ)× sending

17



18 CHAPTER 1. MODULAR FORMS

(
a b

c d

)
to d (mod N) is surjective with kernel Γ1(N). Therefore Γ1(N) /Γ0(N)

and Γ0(N)/Γ1(N) ∼= (Z/NZ)×.

Lemma 1.1.1. For any N , Γ(N) is normal in Γ1(N), and Γ1(N) is normal in

Γ0(N). Furthermore, the indices for the inclusions:

Γ(N) ⊂ Γ1(N) ⊂ Γ0(N) ⊂ SL2(Z)

are given by:

• [Γ1(N) : Γ(N)] = N ,

• [Γ0(N) : Γ1(N)] = ϕ(N) where ϕ is Euler’s totient function, and

• [SL2(Z) : Γ0(N)] = N
∏
p|N (1 + 1

p), where the product is taken over primes

p dividing N .

Throughout the rest of this section, we let Γ be a congruence subgroup. In

general, we define a left action of GL+
2 (Q) (rational matrices with positive deter-

minant) on the extended upper half plane:

H ∪Q ∪ {∞} = {z ∈ C : =(z) > 0} ∪Q ∪ {∞}

by: (
a b

c d

)
· z :=

az + b

cz + d
.

This action then induces an action of Γ on H ∪ Q ∪ {∞}. If γ ∈ SL2(Z) and

z ∈ Q ∪ {∞}, then γ · z ∈ Q ∪ {∞}. A cusp of Γ is a Γ-equivalence class of

elements in Q ∪ {∞} under the action of Γ. The group SL2(Z) acts transitively

on Q∪{∞}, hence there is only one cusp of SL2(Z). Since every congruence sub-

group has finite index, it follows that there are only finitely many cusps of Γ. We

will intentionally conflate a cusp of Γ with representatives of that cusp; for ex-

ample, we will refer to the SL2(Z)-equivalence class of∞ as the cusp∞ of SL2(Z).

For z ∈ H, the isotropy subgroup of z is the subgroup Γz of Γ fixing z, that

is:

Γz := {γ ∈ Γ : γ · z = z}.

The point z ∈ H is called an elliptic point if the containment:

{±

(
1 0

0 1

)
} ⊂ {±

(
1 0

0 1

)
}Γz

is proper. It turns out that any elliptic point must be SL2(Z)-equivalent to either

i, in which case we say it is of order 2, or to ρ = e2πi/3, in which case we say
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it is of order 3. Note that the converse is not true: not every point which is

SL2(Z)-equivalent to either i or ρ is necessarily an elliptic point for Γ.

The width of a cusp s of Γ is the smallest positive integer h such that:(
1 h

0 1

)
∈ γ−1Γγ

for all γ ∈ SL2(Z) satisfying γ ·∞ = s. Let c be a cusp of width h. The quotient

group PSL2(Z) = SL2(Z)/{1,−1} acts naturally on the upper half plane, and

the stabiliser of c in PSL2(Z) is conjugate to

〈(
1 h

0 1

)〉
. If the stabiliser of c

in SL2(Z) is of the form

〈
−

(
1 h

0 1

)〉
, then the cusp c is said to be irregular.

Otherwise, we say that c is regular.

Lemma 1.1.2. Let ε∞, ε2 and ε3 and be respectively the number of elliptic points

for Γ of order 2 and order 3, and the number of cusps. The values of these

numbers are given in the following table ([DS05], Figure 3.3):

Γ ε2 ε3 ε∞

SL2(Z) 1 1 1

Γ0(N), N > 2

∏
p|N

(
1 +

(
−1
p

))
if 4 - N

0 if 4|N

∏
p|N

(
1 +

(
−3
p

))
if 9 - N

0 if 9|N
∑

d|N ϕ(gcd(d, Nd ))

Γ1(2) = Γ0(2) 1 0 2

Γ1(3) 0 1 2

Γ1(4) 0 0 3

Γ1(N), N > 4 0 0 1
2

∑
d|N ϕ(d)ϕ(Nd )

Here,
( ·
·
)

is the Legendre symbol of quadratic reciprocity. Furthermore, out of all

these congurence subgroups, only Γ1(4) has an irregular cusp.

1.2 Modular forms

1.2.1 Definitions

For k ∈ Z and γ =

(
a b

c d

)
∈ GL+

2 (Q), we define an operator −|kγ acting on

functions f : H → C by:

(f |kγ)(z) = det(γ)
k
2 (cz + d)−kf(γ · z).

Lemma 1.2.1. Let γ, γ′ ∈ GL2(Q), f, g : H → C, and k, k′ ∈ Z. The operators

−|k− satisfy the following properties:

1. (f + g)|kγ = f |kγ + g|kγ.
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2. (fg)|k+k′γ = fk|γ · gk′ |γ.

3. −|kγ ◦ −|kγ′ = −|k(γγ′).

Let Γ be a congruence subgroup. A function f : H → C is said to be weakly

modular of weight k with respect to Γ if f is meromorphic and:

f |kγ = f

for all γ ∈ Γ.

Let f be a weakly modular function of weight k with respect to Γ, and let h

be the width of the cusp ∞ of Γ. Thus Γ contains a matrix of the form

(
1 h

0 1

)
,

hence f(z + h) = f(z), that is, f is hZ-periodic. Letting qh := e2iπz/h, the

function f has then a Fourier series expansion of the form:

f(z) =
∞∑

n=−m
an(f)qnh

which we call the q-expansion of f at ∞. Here, an(f) are complex numbers that

depend only on f and n, which we call the coefficients of f . When there is no

ambiguity, we simply write an for an(f). We say that f is holomorphic at ∞ if

an(f) = 0 for all n < 0, that is, the q-expansion of f has the following form:

f(z) =

∞∑
n=0

anq
n
h .

Let s be a cusp of Γ, and let hs be the width of s. Since SL2(Z) acts transitively

on Q ∪ {∞}, there exists a γ ∈ SL2(Z) such that s = γ · ∞. Define gs,γ := f |kγ
and Γ′ := γ−1Γγ. By Lemma 1.2.1, gs,γ is then weakly modular of weight k with

respect to Γ′. The cusp ∞ of Γ′ has width hs. Thus gs,γ has a q-expansion at ∞:

gs,γ =
∞∑

n=−m
an,s,γq

n
hs .

We say that f is holomorphic at the cusps of Γ if, for each cusp s and each

γ ∈ SL2(Z) such that s = γ · ∞, gs,γ is holomorphic at ∞.

We are ready to define modular forms.

Definition 1.2.2. A modular form of weight k with respect to Γ is a function

f : H → C such that:

1. f is weakly modular with respect to Γ,
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2. f is holomorphic on H, and

3. f is holomorphic at the cusps of Γ.

If Γ is of level N , we also say that f is of level N .

Definition 1.2.3. A cusp form of weight k with respect to Γ is a modular form

of weight k with respect to Γ that vanishes at the cusps, that is, a0(f |kγ) = 0 for

all γ ∈ SL2(Z).

Definition 1.2.4. Let A ⊂ C be a ring. We say that a modular form of weight k

with respect to Γ has coefficients in A if the coefficients q-expansion lies in A[[q]].

That is, if:

f =
∞∑
n=0

anq
n,

then an ∈ A for all n. The set of modular forms of weight k with respect to Γ

is denoted Mk(Γ, A). The subset of Mk(Γ, A) consisting of cusp forms is denoted

Sk(Γ, A). We write Mk(Γ) = Mk(Γ,C) and Sk(Γ) = Sk(Γ,C).

If Γ ⊂ Γ′ are congruence subgroups, then Mk(Γ
′) ⊂ Mk(Γ) and Sk(Γ

′) ⊂ Sk(Γ).

In particular, Mk(Γ) always contains Mk(SL2(Z)).

1.2.2 First examples and properties

Having defined modular forms, we now exhibit explicit examples, showing that

the definition is not vacuous. Every complex number is trivially a modular form

of weight 0. We now describe non-trivial examples. In the following, ζ denotes

the Riemann zeta function, and Bk the kth Bernoulli number.

Proposition 1.2.5. Let k ≥ 4 be an even integer. The Eisenstein series of

weight k is the function:

Ek(z) =
1

2ζ(k)

∑
(c,d)∈Z2

(c,d)6=(0,0)

1

(cz + d)k
, z ∈ H.

Then Ek ∈Mk(SL2(Z),Z), and Ek has q-expansion:

Ek = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn.

Now that we have some interesting modular forms, we can use them to construct

others.

Lemma 1.2.6. Let Γ be a congruence subgroup, and k, k′ ∈ Z. Let f ∈Mk′(Γ, A)

and g ∈Mk′(Γ, A). Then:
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1. fg ∈Mk+k′(Γ, A);

2. f+g is a modular form if and only if k = k′, in which case f+g ∈Mk(Γ, A).

Proof.

1. This is a direct consequence of the definitions and of Lemma 1.2.1.

2. If k = k′, then the definitions and Lemma 1.2.1 imply that f+g ∈Mk(Γ, A).

For the reverse implication, see [Miy06], Lemma 2.1.1.

We now construct a very interesting modular form, which is our first example of

a cusp form.

Proposition 1.2.7. The modular discriminant is the modular form ∆ ∈M12(SL2(Z))

given by:

∆ :=
E3

4 − E2
6

1728
.

The modular discriminant has coefficients in Z. Indeed, ∆ has q-expansion:

∆ = q
∞∏
n=1

(1− qn)24 = q − 24q2 + 252q3 − · · · .

Thus ∆ has a simple zero at the cusp ∞ of SL2(Z), and vanishes nowhere else,

that is, ∆(z) 6= 0 for each z ∈ H.

Lemma 1.2.8. The inverse ∆−1 of the modular discriminant has coefficients in

Z.

Proof. Considering the product formula in Proposition 1.2.7, the inverse ∆−1 is

recognised to be:

∆−1 =
1

q

( ∞∑
n=0

p(n)qn

)24

where p(n) is the partition function.

By Lemma 1.2.6, the spaces Mk(Γ, A) and Sk(Γ, A) are naturally A-modules; in

particular, if K = Q or C, then Mk(Γ,K) is a K-vector space. For some weights,

it is easy to describe the corresponding spaces of modular forms.

Lemma 1.2.9. Let Γ be a congruence subgroup. Then M0(Γ, A) = A. Further-

more, if k ∈ Z, then Mk(Γ, A) = 0 if either:

• k < 0, or

• −1 ∈ Γ and k is odd.
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Proof. A weight 0 modular form is a function from the compact curve X(Γ) to

the Riemann sphere C∪ {∞} with no poles. By the theory of compact Riemann

surfaces, such a function must be a constant.

Suppose now that f is a modular form of weight k < 0. Then the function

g := f12∆−k is a weight 0 modular form, hence a constant. Thus g is identically

equal to the constant term a0(g) of its q-expansion. But by Proposition 1.2.7,

a0(g) = 0.

Let f be a modular form of weight k with respect to Γ. If −1 ∈ Γ, then by

the definition of modular forms, we get:

f(z) = f(
−z
−1

) = (−1)kf(z)

and hence f = 0.

For other weights, we still have some control over the number of modular forms.

Proposition 1.2.10. Let Γ be a congruence subgroup, and k ∈ Z. Then:

1. The vector space Mk(Γ) is finite dimensional.

2. The space Mk(Γ) has an integral basis, that is, a basis whose elements are

elements of Mk(Γ,Z).

In fact, using the Riemann-Roch theorem, one can derive precise formulae for the

dimensions of the spaces Mk(Γ). As an example, we look at the case of modular

forms of level 1.

Proposition 1.2.11. For modular forms of weight k and of level 1, we have the

following dimension formula:

dimMk(SL2(Z)) =

{
b k12c k ≡ 2 (mod 12),

1 + b k12c otherwise.

1.3 Operators on modular forms

In this section, we introduce some important operators acting on spaces of mod-

ular forms, which we will use in this work. We will restrict our attention to a

congruence subgroup Γ1(N) for a fixed N ≥ 1, although these definitions make

sense for other congruence subgroups as well. To obtain the definitions of these

operators for congruence subgroups Γ0(N), simply replace the diamond operator

〈−〉 (see Definition 1.3.2) by the identity operator wherever it appears.

We begin by introducing Hecke operators through the following proposition.
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Proposition 1.3.1. For each prime p, there exist a linear operator Tp which acts

on the space Mk(Γ) of modular forms, whose effect on q-expansions is:

Tp(f) =

{∑
n≥0 anpq

n + pk−1
∑

n≥0 anq
np p - N∑

n≥0 anpq
n p|N.

Definition 1.3.2. The operator Tp of Proposition 1.3.1 is called the pth Hecke

operator on Mk(Γ). For each d ∈ (Z/NZ)×, define the diamond operator acting

on f ∈Mk(Γ1(N)) by:

〈d〉f = f |kγ

for any γ =

(
a b

c δ

)
∈ Γ0(N) with δ ≡ d (mod N). For d not invertible mod N ,

define 〈d〉f = 0.

For a prime power pr, we define the Hecke operator Tpr recursively by:

T1 = 1,

Tpr = TpTpr−1 − 〈p〉Tpr−2 =

{
TpTpr−1 − Tpr−2 p - N
(Tp)

r p|N.

For any positive integer n with prime factorisation n =
∏
peii , we define the nth

Hecke operator by:

Tn =
∏

T ei
pi
.

Proposition 1.3.3. The Hecke operators {Tn}n≥1 commute with each other, and

with the diamond operators 〈d〉.

Definition 1.3.4. A modular form which is a simultaneous eigenvector for all

Hecke operators is called a Hecke eigenform, or simply an eigenform. A modular

form f =
∑

n≥1 anq
n, is said to be normalised if it is cuspidal and a1 = 1.

Proposition 1.3.5. Let f be a normalised eigenform. Then an is an algebraic

integer for every n, and:

Tnf = an(f)f

for all n ≥ 1.

Additionally, we define three operators, Up, Vp, and trp, as follows:

Definition 1.3.6. Let p be a prime number. There exists an operator:

Vp : Mk(Γ1(N))→Mk(Γ1(pN))∑
n≥0

anq
n 7→

∑
n≥0

anq
pn.
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If p|N , then the operator Tp is denoted by Up, and we can define a trace operator:

trp : Mk(Γ1(N))→Mk(Γ1(
N

p
)),

f 7→
r∑
i=1

f |kγi

where γi are representatives of the cosets of Γ1(N) in Γ1(Np ).

We now switch to congruence subgroups Γ0(N). We define Atkin-Lehner involu-

tions, and relate them to the operators tr and U defined in Definition 1.3.6.

Definition 1.3.7. Let p be a prime number dividing N exactly once. The Atkin-

Lehner involution is the operator acting on modular forms f ∈Mk(Γ0(N)) by:

f 7→ f |kWN
p

where:

WN
p =

(
p a

N bp

)
,

a and b being any integers such that detWN
p = p2b − Na = p. Note that this

operator is really an involution, meaning that (f |kWN
p )|kWN

p = f .

Proposition 1.3.8 ([Ser73b], §2, Lemme 7). For modular forms on the congru-

ence subgroup Γ0(p), the operators tr = trp, U = Up , and the Atkin-Lehner

involution given by the matrix Wp = W p
p =

(
p 0

0 1

)
are related by:

tr(f) = f + p1− k
2 (f |kWp)|U.





Chapter 2

Graded algebras of modular forms

In this chapter, we set up the terminology and notation concerning graded al-

gebras of modular forms, and, as a warm up, we determine the structure of the

graded algebra of modular forms of level 1 with coefficients in Z.

2.1 Definitions

As we have seen in Lemma 1.2.6, modular forms with respect to a certain con-

gruence subgroup generate a graded ring. For technical reasons to be clarified

later, we will leave out modular forms of weight 1 (see Theorem 3.2.3).

Definition 2.1.1. Let Γ be a congruence subgroup, and A ⊂ C a subring. The

graded A-algebra of modular forms with respect to Γ is the direct sum:

M(Γ, A) := A⊕

⊕
k≥2

Mk(Γ, A)

 .

We write M(Γ) := M(Γ,C).

The q-expansion map sending a modular form f of weight k to its q-expansion

is injective, giving an embedding Mk(Γ) ↪→ C[[q]]. Therefore, we can identify

modular forms of a given weight k with their q-expansions. Let p be a prime. If

f is a modular form with coefficients in Z, we can define the modulo p reduction

of f as the formal (coefficient-wise) reduction of its q-expansion. We formalise

this definition.

Definition 2.1.2. Let p be a prime, A a ring in which p is nilpotent (for example,

an Fp-algebra), Γ a congruence subgroup, and k a positive integer. A modular

form of weight k with respect to Γ with coefficients in A is defined to be an element
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28 CHAPTER 2. GRADED ALGEBRAS OF MODULAR FORMS

of Mk(Γ, A) := Mk(Γ,Z)⊗A, where here Mk(Γ,Z) is considered as a subring of

Z[[q]]. When there is no ambiguity, we speak of modular forms mod pm when A

is a Z/pmZ-algebra.

By Lemma 1.2.6, the sum of modular forms (in characteristic 0) of distinct weights

cannot be 0. As we shall see, this does not hold for the modular forms mod p

defined in Definition 2.1.2. For example, for every prime p ≥ 5, we have the

congruence Ep−1 ≡ 1 (mod p). This means that modular forms mod p, defined

as formal power series as in Definition 2.1.2, do not form a graded ring. This

can be remedied later once we introduce the geometric interpretation of modular

forms. For now however, we can define the graded algebra of modular forms mod

p by taking the external direct sum across all weights.

Definition 2.1.3. Let p be a prime, A an Fp-algebra, and Γ a congruence sub-

group. The graded A-algebra of modular forms with respect to Γ is the direct

sum:

M(Γ, A) := A⊕

⊕
k≥2

Mk(Γ, A)

 ,

where the graded A-algebra structure is defined as follows: addition is defined

component-wise; multiplication of two elements f, g ∈M(Γ, A) is defined by first

lifting f and g (component-wise) to elements F and G in characteristic 0 and

then reducing the product F · G (component-wise) modulo p. When there is no

ambiguity, we speak of the graded algebra of modular forms mod p.

2.2 Structure of a graded, finitely generated Z[ 1
N ]-algebra

Throughout this section, let N ≥ 1 be an integer, A = Z[ 1
N ] or Fp where p - N

is a prime, and M a commutative N-graded A-algebra without zero divisors. We

denote by Mk the kth graded part of M =
⊕

k≥0Mk. If g is a homogeneous

element of M , that is, g ∈Mk for some k, then the weight of g is wt(g) := k. We

further assume that each Mk is a free A-module of finite rank.

Definition 2.2.1. We say that M is finitely generated if there exists a finite

subset {g1, · · · , gm} ⊂ M such that every element of M can be written as a

polynomial in g1, · · · , gm. In that case, we can choose the generators g1, · · · , gm
to be homogeneous ∗, and if n = max{wt(gi) : 1 ≤ i ≤ m}, we say that M is

generated in weight n. If n is the smallest non-negative integer such that M is

generated in weight n, we say that n is the generating weight of M . Equivalently,

the generating weight n of M is the smallest non-negative integer such that the

∗by choosing generators and then choosing their homogeneous parts.
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smallest graded A-subalgebra of M containing:

n⊕
k=0

Mk

is the whole algebra M .

Suppose that M is finitely generated. Let {g1, · · · , gm} be a set of homogeneous

generators. Let A[x1, · · · , xm] be the weighted polynomial ring in x1, · · · , xm
where each xi is assigned weight wt(gi). Thus there is a surjective homomorphism

of graded A-algebras:

Φ : A[x1, · · · , xm]→M,

xi 7→ gi,

and ker Φ is a homogeneous ideal. As A is Noetherian, being the localisation of

a Noetherian ring, so is A[x1, · · · , xm], hence ker Φ is finitely generated, and we

can choose homogeneous generators for it.

Definition 2.2.2. Let Φ as above. The ideal of relations between the generators

g1, · · · , gm is I := ker Φ. If {r1, · · · , rs} is a set of homogeneous generators of

I, and d := max{deg ri : 1 ≤ i ≤ s}, we say that I is generated in degree d, or

equivalently, that M is related in degree d (always with respect to the generators

chosen).

For what follows, let A = Z[ 1
N ]. We describe a way of checking whether a subset

S ⊂ M generates M , and whether a set of corresponding relations R generates

the ideal of relations, by checking generation for the corresponding reductions

modulo primes p.

Proposition 2.2.3. Let S = {g1, · · · , gm} be a set of homogeneous elements of

M , A[x1, · · · , xm] the weighted algebra of polynomials with coefficients in A where

deg xi = wt(gi):

Φ : A[x1, · · · , xm]→M

the map of graded A-algebras defined by xi 7→ gi, and I = ker Φ. For each

prime p - N , let Φp : Fp[x1, · · · , xm] → M ⊗ Fp the induced map of graded Fp
algebras sending xi to gi, the reduction modulo p of gi, and Ip = ker Φp. Let

R = {R1, · · · , Rs} ⊂ I be a set of relations between the elements of S.

1. If Φp is surjective for each prime p - N , then so is Φ.

2. If for each prime p - N , the reductions mod p of the elements of R generate

Ip, then R generates I.

To prove Proposition 2.2.3, we need the following lemma.
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Lemma 2.2.4. Let N and d be positive integers, V a Q vector space, and

v1, · · · , vd ∈ V . Let v ∈ spanQ{v1, · · · , vd}. For a prime p, let Vp = V ⊗Q
Qp. If for each prime p - N we have v ∈ spanZp{v1, · · · , vd} ⊆ Vp, then

v ∈ spanZ[1/N ]{v1, · · · , vd}.

Proof. Let L = spanZ{v1, · · · , vd}. The lattice L is a finitely generated Z-module

inside a Q-vector space, so it is free, and has a Z-basis {w1, · · · , we} for some

e ≤ d. The vectors w1, · · · , we are Q-linearly independent, thus can be extended

to a Q-basis {w1, · · · , we, · · · , wt} of V . Thus we can write v =
∑e

i=1 aiwi, for

some ai ∈ Q (as ai = 0 for i > e).

Note that for each prime p, we have spanZp{w1, · · · , we} = spanZp{v1, · · · , vd}.
Thus we have by the assumption that, for each prime p - N , v ∈ spanZp{w1, · · · , we}.
Since {w1, · · · , wt} are also linearly independent in Qp, this means that ai ∈
Q ∩

⋂
p-N Zp = Z[1/N ]. As each vi is a Z-linear combination of the vectors

{w1, · · · , we}, the statement is proven.

Proof of Proposition 2.2.3.

1. Assume that Φp is surjective for each prime p - N . Let f0 ∈Mk. Let p - N
be a prime. By our assumption, there exists a homogeneous polynomial

P0 ∈ A[x1, · · · , xm] of degree k such that f0 ≡ Φ(P0) (mod p), that is, there

exists some f1 ∈Mk such that f0−Φ(P0) = pf1. Similarly, there exists a ho-

mogeneous polynomial P1 ∈ A[x1, · · · , xm] of degree k such that f1 ≡ Φ(P1)

(mod p), that is, there exists some f2 ∈ Mk such that f1 − Φ(P1) = pf2.

Continuing in this manner, we find that there exists a homogeneous poly-

nomial P ∈ Zp[x1, · · · , xm] of degree k such that f0 = P (g1, · · · , gm). That

means that f0 ∈ spanZp{e1, · · · , et}, where e1, · · · , et are the monomials in

g1, · · · , gm that have weight k. Since this holds for each prime p - N , it

follows by Lemma 2.2.4 that f0 ∈ spanZ[1/N ]{e1, · · · , et}, as we wanted to

show.

2. Assume that S generates M , and that for each prime p - N , the reduc-

tions mod p of R1, · · · , Rs generate Ip, the ideal of relations between the

elements of Sp. Let B0 be a relation of degree k. By assumption, there

exist polynomials F
(0)
1 , · · · , F (0)

s ∈ A[x1, · · · , xm] such that:

B0 ≡
s∑
i=1

F
(0)
i Ri (mod p),

that is, there exists some B1 ∈ A[x1, · · · , xm] such that:

B0 −
s∑
i=1

F
(0)
i Ri = pB1.
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Apply the map Φ to this equality. As B0 is a relation and each Ri is a

relation, we find that pΦ(B1) = 0, hence B1 is again a relation of degree k.

Repeating the process, we find that:

B1 −
s∑
i=1

F
(1)
i Ri = pB2

for some B2, F
(1)
1 , · · · , F (1)

s ∈ A[x1, · · · , xm]. Iterating this, we find that:

B0 =
s∑
i=1

Fi,pRi

where Fi,p ∈ Zp[x1, · · · , xn]. As this holds for each prime p - N , we deduce

by Lemma 2.2.4 that there exists F1, · · · , Fs ∈ Z[ 1
N ][x1, · · · , xm] such that:

B0 =

s∑
i=1

FiRi,

finishing the proof.

2.3 The case of level 1

In this section, we study the structure of the graded Z-algebra M(SL2(Z),Z). The

results are classical and elementary, but we provide detailed proofs, as the strat-

egy employed to study graded algebras of modular forms in this thesis follow

more or less the same outline. The strategy will be as follows. For a congru-

ence subgroup Γ and an integer N ≥ 1, we study the structure of the algebra

M(Γ,Z[ 1
N ]) by first studying, for each prime p - N the structure of the reduction

M(Γ,Fp) of the algebra modulo p. We then deduce the structure of the algebra

in characteristic 0, by applying Proposition 2.2.3.

In the case of M(SL2(Z),Z), we can determine a set of generators by exploiting

the existence of a modular form, namely ∆, which has the following properties

(Proposition 1.2.7 and Lemma 1.2.8):

1. both ∆ and ∆−1 have q-expansions with integer coefficients, and

2. ∆ vanishes only at the cusp ∞.

Such an argument can be seen as motivating Scholl’s work, which will be discussed

later. Modular forms satisfying similar properties to ∆ will be integral to that

discussion.
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Proposition 2.3.1. Let k be an even positive integer. Then M(SL2(Z),Z) is

generated by E4, E6 and ∆, and Mk(SL2(Z),Z) has a basis of the form:

1. {Ea4 ∆b : 4a+ 12b = k} if k ≡ 0 (mod 4), and

2. {E6E
a
4 ∆b : 6 + 4a+ 12b = k} if k ≡ 2 (mod 4).

Proof. We proceed by induction. First, note that for k ∈ {4, 6, 8, 10}, we have by

Proposition 1.2.11:

dimMk(SL2(Z)) = 1.

Since a0(Ek) = 1, we deduce that:

Mk(SL2(Z),Z) = ZEk,

and this implies that E8 = E2
4 and E10 = E4E6, so the statement holds true

for these values of k. Now let k ≥ 12, and suppose that f ∈ Mk(SL2(Z),Z). If

k ≡ 0 (mod 4), then we can choose a such that 4a = k, in which case we define

g := f − a0(f)Ea4 . If k ≡ 2 (mod 4), then k − 6 ≡ 0 (mod 4), so we can choose

a such that 6 + 4a = k, in which chase we define g := f − a0(f)E6E
a
4 . Having

chosen g, we look at its q-expansion, noting that a0(g) = 0. By Proposition 1.2.7,

∆ vanishes simply at∞, hence the quotient g
∆ is a modular form of weight k−12,

and by Lemma 1.2.8, ∆−1 has coefficients in Z, hence g
∆ ∈Mk−12(SL2(Z),Z). By

applying the induction hypothesis, we can conclude that M(SL2(Z),Z) is gener-

ated by E4, E6, and ∆.

Consider the modular forms:

{Eε6Ea4 ∆b : 4a+ 12b = k}

where ε = 0 if k ≡ 0 (mod 4), and ε = 1 if k ≡ 2 (mod 4). Looking at q-

expansions, we see that Eε6E
a
4 ∆b = qb+O(qb+1). Thus it is easily seen that these

modular forms are linearly independent, hence form a basis of Mk(SL2(Z),Z).

We now proceed to determining the structure of the reductions of M(SL2(Z),Z)

modulo a prime p.

Proposition 2.3.2. Let p be a prime, and let E4, E6, and ∆ be the reductions

modulo p of E4, E6, and ∆. The Fp algebra of modular forms of level 1 modulo p

is given by:

M(SL2(Z),Fp) = Fp[E4, E6,∆]/(E
3
4 − E

2
6 − 1728∆).
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Proof. By Proposition 2.3.1, M(SL2(Z),Fp) is generated by E4, E6, and ∆. In

fact, it can be seen that the space Mk(SL2(Z),Z) has a basis {f0, · · · , fd−1}
where fi = qi + O(qi+1) and d = dimMk(SL2(Z)). The reduction modulo p of

the elements of this basis is still linearly independent and spanning, hence a basis,

so

dimFpMk(SL2(Z),Fp) = dimM(SL2(Z)).

We only need to determine the ideal of relations. Let k ≥ 12. Consider the

weighted polynomial algebra A = Fp[x, y, z] where x, y, and z are respectively

given weights 4, 6, and 12. Denote by Ak the set of polynomials in A of degree k.

We determine the dimension of Ak over Fp. A simple counting argument shows

that, if c is an integer, and 0 ≤ c ≤ b k12c, then:

|{(a, b) ∈ Z2 : a, b ≥ 0, 4a+ 6b+ 12c = k}| =

{
b k12c − c k ≡ 2 (mod 12)

1 + b k12c − c otherwise

= dimMk(SL2(Z))− c = dimFpMk(SL2(Z),Fp)− c.

Thus, letting d = dimFpMk(SL2(Z),Fp):

dimFp Ak =

d−1∑
c=0

(d− c) =
1

2
d(d+ 1).

Let:

Φ : A→M(SL2(Z),Fp)

be the map defined by:

x 7→ E4,

y 7→ E6,

z 7→ ∆.

Then we have a short exact sequence:

0→ I → A
Φ−→M(SL2(Z),Fp)→ 0.

Thus for every non-negative k, we have a short exact sequence:

0→ Ik → Ak
Φ−→Mk(SL2(Z),Fp)→ 0

where Ik = I ∩Ak. Hence:

dimFp Ik = dimFp Ak − dimFpMk(SL2(Z),Z) =
1

2
d(d− 1).

Now consider the map:

η : Ak−12 → Ik



34 CHAPTER 2. GRADED ALGEBRAS OF MODULAR FORMS

F 7→ (x3 − y2 − 1728z)F.

The map η is injective, and the dimension of its image is equal to dimFp Ak−12 =
1
2d(d−1) since dimMk−12(SL2(Z)) = dimMk−1 by Proposition 1.2.11. Therefore

η is also surjective, and the ideal I of relations is principal, generated by x3 −
y2 − 1728z.

Using our knowledge of the structures of the mod p algebras, we now determine

the ideal of relations.

Theorem 2.3.3. The Z-algebra of modular forms of level 1 is given by:

M(SL2(Z),Z) = Z[E4, E6,∆]/(E3
4 − E2

6 − 1728∆).

Proof. This follows from Proposition 2.3.2 by an application of Proposition 2.2.3.

Note that once we have determined the structure of the algebra of modular forms

with coefficients in Z[ 1
N ] for some N , we automatically get the structure of the

algebra of modular forms with coefficients in Q and in C, by virtue of Proposition

1.2.10. Thus, recalling that ∆ = 1
1728(E3

4 −E2
6), we have the following corollary:

Corollary 2.3.4. The C-algebra of modular forms of level 1 is given by:

M(SL2(Z)) = C[E4, E6].



Chapter 3

The algebras M(Γ1(N), R)

In this chapter, we study the algebras M(Γ1(N),Z[ 1
N ]), and bounds on the gen-

erating weight as well as on the degrees of generators of the ideal of relations are

determined. The contents of this chapter are taking from the articles [Rus14b]

and [Rus14a].

3.1 Modular curves and moduli spaces

3.1.1 Modular curves over C

Here we will take a look at modular curves defined as quotients of the upper-half

plane, and at their moduli interpretation. This will follow Chapter 1 of [DS05].

In Section 1.1, we defined the left action of a congruence subgroup Γ on the

upper half plane H. The modular curve Y (Γ) associated to Γ is the quotient

space of orbits of H under the action of Γ, that is:

Y (Γ) := Γ \ H = {Γ · z : z ∈ H}.

The modular curve Y (Γ) can naturally be given a topology and a structure of a

Riemann surface (with special care taken around elliptic points). We write:

Y0(N) := Y (Γ0(N)),

Y1(N) := Y (Γ1(N)).

The Riemann surface Y (Γ) is not compact, but it can be compactified by adding

to it a finite set of points consisting of the cusps of Γ (with special care taken

35
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around irregular cusps). The compactified modular curve is denoted by X(Γ).

We write:

X0(N) := X(Γ0(N)),

X1(N) := X(Γ1(N)).

Modular curves can be interpreted as moduli spaces classifying isomorphism

classes of elliptic curves with certain marked structures, in the following sense.

Let

SΓ0(N) = {(E,C)}

be the set of pairs (E,C) where E is an elliptic curve (over C) and C is a subgroup

of E of order N . Define an equivalence relation ∼ on SΓ0(N) by: (E,C) ∼ (E′, C ′)

if and only if there exists an isomorphism ϕ : E
∼=−→ E′ such that ϕ(C) = C ′. Then

there exists a bijection:

SΓ0(N)/ ∼←→ Y0(N).

Similarly, let SΓ1(N) = {(E,P )} be the set of pairs (E,P ) where E is an elliptic

curve (over C) and P is a point of E of exact order N . Define an equivalence rela-

tion ∼ on SΓ1(N) by: (E,P ) ∼ (E′, P ′) if and only if there exists an isomorphism

ϕ : E
∼=−→ E′ such that ϕ(P ) = P ′. Then there exists a bijection:

SΓ1(N)/ ∼←→ Y1(N).

We would like to extend this moduli interpretation of the curves Y0(N) and Y1(N)

in two ways. First, we would like a moduli interpretation for the compactifications

X0(N) and X1(N), that is to say, we would like moduli interpretations of the

cusps compatible with those of Y0(N) and Y1(N). Second, we would like a moduli

interpretation that also classifies elliptic curves over fields other than C, allowing

even fields of positive characteristics, or even arbitrary commutative rings. This

is achieved by the approach of moduli problems.

3.1.2 The moduli problem PΓ1(N)

The exposition in this section follows [Gro90]. In this thesis, a smooth curve

will always be a scheme whose structure morphism is smooth, separated, of finite

presentation, and of relative dimension 1.

Let S be an arbitrary scheme. By an elliptic curve E/S, we mean a proper

smooth curve π : E → S, whose geometric fibres are connected curves of genus

1, together with a section 0 : S → E.

E

S

π 0
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Given an elliptic curve π : E → S, there exists a sheaf on S given by:

ωE = π∗Ω
1
E/S

and whose formation commutes with base change. One can show that in fact:

ωE ∼= 0∗Ω1
E/S

and hence ωE is an invertible sheaf. By a generalised elliptic curve, we mean a

family of genus 1 curves whose fibres are either elliptic curves, or Néron poly-

gons, together with a morphism + : Ereg ×S E → E whose restriction to Ereg

makes Ereg into a commutative group scheme on E, and that on the fibres Es
with singular points, the translations by Eregs act by rotations on the graph of

irreducible components. For a generalised elliptic curve E/S, we can define the

invertible sheaf ωE on S as the dual of the sheaf of Lie algebras Lie(Ereg).

Let E/S be an elliptic curve. A Γ1(N)-structure on E/S, also called a “point of

exact order N” in E(S), is an isomorphism:

α : Z/NZ
∼=−→ E[N ](S).

The point P = α(1) is the corresponding point of exact order N .

Definition 3.1.1. The moduli problem PΓ1(N) is the contravariant functor:

PΓ1(N) : SCH/Z[
1

N
]→ SETS

from the category of Z[ 1
N ]-schemes to that of sets which assigns to each such

scheme S the set of isomorphism classes [E,α] consisting of a generalised elliptic

curve E/S and a Γ1(N)-structure α on E/S.

Recall that a functor P : SCH → SETS is said to be representable if there

exists a scheme X such that P is naturally isomorphic to the functor of points

Hom(−, X). A necessary condition for a moduli functor to be representable is

that the objects it is classifying do not possess any non-trivial automorphisms

(see [Har10], Exercise 23.2). The key theorem here is the following ([Gro90]):

Theorem 3.1.2. Let N ≥ 5. Then PΓ1(N) is representable by a smooth, proper,

and geometrically connected algebraic curve X1(N) over Spec(Z[ 1
N ]), called the

fine moduli scheme, or the modular curve.

Remark 3.1.3. One might consider instead the moduli functor P classifying only

(smooth) elliptic curves with Γ1(N)-structure. It turns out that for N ≥ 4, this

functor is representable by an affine scheme Y1(N), which can be thought of as a

subscheme of X1(N). Thus X1(N) can be seen as the compactification of Y1(N),

obtained by adding the cusps, which correspond to generalised elliptic curves. See

[DI95], Section 9.
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3.2 Geometric modular forms

Let N ≥ 5, and let X1(N) be the modular curve. Let π : E1(N) → X1(N) be

the elliptic curve corresponding to the identity in Hom(X,X). Then E1(N) is

the universal elliptic curve over X1(N), as every elliptic curve E/S/Z[ 1
N ] is the

pullback of π : E1(N)→ X1(N) in a unique way. Let ω = π∗ΩE1(N)/X1(N) be the

invertible sheaf on X1(N) as defined in Section 3.1.2. For a Z[ 1
N ]-algebra R, we

write X1(N)R for the moduli scheme obtained from X1(N) through base change,

and we write ωR for the corresponding sheaf.

Forgetting for a moment the definition of modular forms presented in Section

1.2, let us make the following definition, again following [Gro90].

Definition 3.2.1. Let N ≥ 5, and R a Z[ 1
N ]-algebra. A (holomorphic) modular

form for Γ1(N), defined over R and of weight k is a global section of the invertible

sheaf ω⊗kR . We write:

Mk(Γ1(N), R) = H0(X1(N)R, ω
⊗k
R )

for the R-algebra of modular forms over R, with level N and weight k. These

modular forms generate a graded ring:

M(Γ1(N), R) :=
∞⊕
k=0

Mk(Γ1(N), R).

We can check that for a Z[ 1
N ]-subalgebra R of C, we recover the classical definition

of modular forms with coefficients in R as defined in Section 1.2. For that, we

need first to define the q-expansion of a modular form algebraically. This can be

done using the Tate curve, which is a generalised elliptic curve ETate = Gm/q
Z

over Z[[q]]. This curve has a canonical differential dt/t and a natural embedding∗

IdN : µN → ETate[N ] over Z[ 1
N ][[q]]. The Fourier expansion of f is then defined

to be f(q) in the following identity:

f(Gm/q
Z, IdN ) = f(q)(dt/t)⊗k.

There is a unique morphism Spec(Z[ 1
N ][[q]])→ X1(N) by means of which the Tate

curve arises as the pull-back of the universal curve E1/X1(N). The image of the

prime ideal where q = 0 defines the section ∞ of X1(N) and q is a uniformising

parameter. Thus the Fourier expansion of f is the holomorphic section f of ω⊗k

near ∞.

When R = C, it is proven in [DR73], VII.4, that f(q) will be the q-expansion

of f at ∞ in the classical sense. We also have the following theorem (cf [DI95],

Theorem 12.3.4):
∗This makes it a generalised elliptic curve with a Γ1(N)-structure in the sense defined

above, over a base that contains µN , once one chooses (non-canonically) a generator of µN . The
inclusion of a Nth root of unity at this stage can be dealt away with Theorem 3.2.2.
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Theorem 3.2.2 (q-expansion principle). Let R be a Z[ 1
N ]-algebra.

1. The map H0(X1(N)R, ω
⊗k
R ) → R[[q]] taking f to f(q) is an injection of

R-modules.

2. if R0 is a Z[ 1
N ]-subalgebra of R, the modular form f is defined over R0 if

and only if f(q) ∈ R0[[q]].

Applying this theorem with R = C, we see that for subrings R0 of C (in which N

is invertible), we recover the classical notion of modular forms whose q-expansion

has coefficients in R0.

In order to deal with modular forms in positive characteristic, we need the fol-

lowing base change theorem ([DI95], Theorem 12.3.2):

Theorem 3.2.3 (Base change). If B is an A-algebra and either one of the fol-

lowing holds:

1. B is flat over A, or

2. k > 1 and N is invertible in B,

then the natural map:

Mk(Γ1(N), A)⊗A B →Mk(Γ1(N), B)

is an isomorphism.

In particular, we find that, when p - N and k ≥ 2, we have Mk(Γ1(N),Fp) =

Mk(Γ1(N),Z[ 1
N ])⊗Z[ 1

N
] Fp.

3.3 Mumford’s theorems

We will repeatedly make use of the following results due to Mumford ([Mum70b]).

Let X be a be a smooth, geometrically connected algebraic curve of genus g over

a perfect field k. Let L, M, and N be three invertible sheaves on X. We have

the following exact sequence:

0→ R(L,M)→ H0(X,L)⊗H0(X,M)
µ−→ H0(X,L ⊗M)→ S(L,M)→ 0

where µ is the natural multiplication map:
∑
fi ⊗ gi 7→

∑
figi, R(L,M) and

S(L,M) are respectively its kernel and cokernel.

Theorem 3.3.1. Let L, M, and N be as above.

1. If degL ≥ 2g + 1 and degM≥ 2g, then µ is surjective.
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2. The natural map:

R(L,M)⊗H0(X,N )→ R(L ⊗N ,M)

mapping (
∑
fi⊗ gi)⊗ h 7→

∑
(fih)⊗ gi is surjective if degL ≥ 3g+ 1, and

min{degM,degN} ≥ 2g + 2.

3.4 Generators and relations for M(Γ1(N),Z[ 1
N ])

In this section we fix N ≥ 5, and we determine the generating weight for

M = M(Γ1(N),Z[ 1
N ]), and the degree in which M is related. We will do this

first for the mod p reductions M ⊗ Fp of M , and then use Proposition 2.2.3 to

establish the bounds for M .

Let p - N , and let X1(N)Fp = X1(N)⊗ Fp denote the reduction modulo p of the

modular curve X1(N)/Z[ 1
N ]. By Igusa’s theorem ([DS05], Theorem 8.6.1), the

base change to Fp corresponds to good reduction. Hence the genus of X1(N)Fp
(which is equal to the genus of X1(N)Fp) is equal to g, the genus of the modular

curve X1(N)C (since the latter is equal to the genus of X1(N)Q by flatness of

base change). Let ω be the invertible sheaf defined at the beginning of Section

3.2, and let ωFp be its pullback to X1(N)Fp . First, we will calculate the degree of

ωFp . We remark that one can calculate this degree in characteristic 0, and then

use good base change theorems to show that the degree in characteristic p is the

same. However, we will present a counting argument, which uses the existence

of a special modular form in characteristic p, called the Hasse invariant.

Lemma 3.4.1. For the invertible sheaf ωFp on X1(N)Fp, we have:

degωFp =
1

24
[SL2(Z) : Γ1(N)].

Proof. Since base change along a field extension preserves the degree of an invert-

ible sheaf ([Liu02], Proposition 7.3.7), it is enough to calculate the degree degωFp

on X1(N)Fp . The invertible sheaf ω
⊗(p−1)

Fp
contains a special global section, which

is the Hasse invariant A. It has zeroes precisely at the points of X1(N)Fp cor-

responding to isomorphism classes [E,α] where E/Fp is a supersingular elliptic

curve, and these zeroes are simple. Thus we need to count the number of points

on E/Fp corresponding to supersingular elliptic curves.

For an elliptic curve E/Fp, let P1(E) be the set of points of exact order N on E.

Since E[n] has order n2, by inclusion-exclusion we get that:

|P1(E)| = N2
∏
p|N

(
1− 1

p2

)
= [SL2(Z) : Γ1(N)].
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Let r = |P1(E)| and P1, · · · , Pr be the points of exact order N on E. We want to

count the number of distinct isomorphism classes in the set P = {[E,P1], · · · , [E,Pr]}.
The group Aut(E) acts on P, and by representability of the moduli functor, this

action is free. Thus the number of orbits is |P1(E)|/|Aut(E)|. Summing over

supersingular curves, we get:

deg(ωFp) =
[SL2(Z) : Γ1(N)]

p− 1

∑
E supersingular

1

|Aut(E)|
=

1

24
[SL2(Z) : Γ1(N)]

where for the last inequality we used the Eichler-Deuring mass formula ([Sil09],

Exercise V.5.9): ∑
E/Fp supersingular

1

|Aut(E)|
=
p− 1

24
.

Proposition 3.4.2. Let N ≥ 5, and let p - N . Then the Fp-algebra M(Γ1(N),Fp)
is generated in weight 3.

Proof. We proceed as in the start of the proof of Theorem 5.1 in [KM12]. By

Lemma 3.4.1, we have:

deg(ωFp) =
1

24
[SL2(Z) : Γ1(N)].

On the other hand, as argued at the top of this section, the genus g of X1(N)Fp
is equal to the genus of X1(N)C. By Theorem 3.1.1 and Section 3.9 of [DS05],

we find that:

g = 1 +
1

24
[SL2(Z) : Γ1(N)]− ε∞

2
,

where ε∞ is the number of cusps for Γ1(N), and so:

deg(ωFp) = g − 1 +
ε∞
2
.

Additionally, By Lemma 1.1.2, we see that ε∞ ≥ 4. Hence:

deg(ω⊗2
Fp ) ≥ 2g + 2.

Now let k ≥ 4 be a positive integer. By Theorem 3.3.1, the canonical multiplica-

tion map:

H0(X1(N)Fp , ω
⊗2
Fp )⊗H0(X1(N)Fp , ω

⊗(k−2)
Fp )→ H0(X1(N)Fp , ω

⊗k
Fp )

is surjective. Therefore, the modular forms of weights 2 and 3 generateM(Γ1(N),Fp).

Proposition 3.4.3. Let N ≥ 5, and let p - N . Then the Fp-algebra M(Γ1(N),Fp)
is related in degree 6 with respect to a minimal set of generators.
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Proof. Consider the graded Fp-algebra M = M(Γ1(N),Fp) and pick a minimal

set of generators {g1, · · · , gn} for it. By Proposition 3.4.2, a minimal set of

generators for M(Γ1(N),Fp) consists of the union of a basis of M2(Γ1(N),Fp)
and a basis of M3(Γ1(N),Fp). This provides us with a map of graded algebras:

Φ : A→M

xi 7→ gi

where A = Fp[x1, · · · , xn] is the polynomial algebra where each xi is given the

weight of gi. We denote by Ak the Fp-vector space spanned by degree k polyno-

mials. We wish to examine generators of the homogeneous ideal ker Φ, which is

the ideal of relations.

Clearly, there are no relations in degrees 2 or 3. Let P ∈ A be a homogeneous

polynomial of degree k ≥ 7, representing a relation in M in weight k ≥ 7. Let

a = 5 if k = 7, and a = 6 otherwise. The polynomial P is the sum of homo-

geneous monomials, each of degree k. Since k ≥ 7, each of these monomials is

divisible by a monomial of degree a. Let {v1, · · · , vn} be a basis of Ak−a. Thus

we can write:

P =

n∑
i=1

Qivi

where for all i, Qi is a homogeneous polynomial of degree a.

For some m, and possibly after a reordering of the vi’s, the set {Φ(v1), · · · ,Φ(vm)}
is a basis of Mk−a. This means that for every j such that m + 1 ≤ j ≤ n there

are constants α1,j , · · · , αm,j such that:

Φ(vj) =

m∑
i=1

αi,jΦ(vi).

Hence letting

Gj := vj −
m∑
i=1

αi,jvi

for m+ 1 ≤ j ≤ n, we have Φ(Gj) = 0, i.e., the Gj ’s are relations in weight k−a.

Now if for 1 ≤ i ≤ m we set:

Q′i := Qi +
n∑

j=m+1

αi,jQj ,

we can rewrite P as:

P =

m∑
i=1

Q′ivi +

n∑
j=m+1

GjQj ,

where, since Φ(P ) = 0 and Φ(
∑n

j=m+1GjQj) = 0, we have Φ(
∑m

i=1Q
′
ivi) = 0.

We see then that
∑m

i=1Q
′
ivi must be represented in R(L⊗(k−a),L⊗a), that is:

m∑
i=1

Φ(Q′i)⊗ Φ(vi) ∈ R(L⊗(k−a),L⊗a).
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We have then the following diagram:

0 R(L⊗a,L⊗(k−a)) H0(X,L⊗a)⊗H0(X,L⊗(k−a)) H0(X,L⊗k)

R(L⊗3,L⊗(k−a))⊗H0(X,L⊗(a−3))

ε

By Theorem 3.3.1, the map ε is surjective. Thus for each i, we can find poly-

nomials Hs in degree 3 − a + k ≤ k − 2, and polynomials Fi,s in degree a − 3,

satisfying:

Φ(
m∑
i=1

Fi,svi) = 0

and such that:

m∑
i=1

Φ(
∑
s

HsFi,s)⊗ Φ(vi) =

m∑
i=1

Φ(Q′i)⊗ Φ(vi),

so that:

Φ(
∑
s

HsFi,s) = Φ(Q′i),

hence

Q′i =
∑
s

HsFi,s +Wi

where for all i, Φ(Wi) = 0, i.e. Wi is a relation in weight a. Putting all the above

together, we get:

P =
m∑
i=1

(
∑
s

HsFi,s)vi +
m∑
i=1

Wivi +
n∑

j=m+1

GjQj

so P can be written in terms of relations of degrees k − (a − 3), a, and k − a,

which are all ≤ k − 2.

We now have the following result:

Theorem 3.4.4. Let N ≥ 5. The Z[ 1
N ]-algebra M = M(Γ1(N),Z[ 1

N ]) is gener-

ated in weight 3. Choosing a minimal set of generators, M is related in degree

6.

Proof. This follows by combining Propositions 3.4.2 and 3.4.3 with Theorem 3.2.3

(base change), and then applying Proposition 2.2.3.





Chapter 4

The algebras M(Γ0(N), R)

In this chapter, we investigate the generating weight of the algebraM(Γ0(N), RN ),

where RN := Z[ 1
6Nϕ(N) ], N ≥ 5, and ϕ being the Euler totient function. Although

the results in this chapter can be extended to modular forms with coefficients in

Z[ 1
6N ] by similar methods, we have chosen to restrict our attention to Z[ 1

6Nϕ(N) ]

for ease of exposition. The algebra M(Γ0(p),Z) is then examined, and a lower

bound on the generating weight for these algebras is given, as well as a set of

generators. The contents of this chapter are based on the articles [Rus14b] and

[Rus14a], however, new and stronger results are presented.

4.1 Modular curves for Γ0(N)

4.1.1 The moduli problem PΓ0(N)

We refer to Section 3.1.2 for the definition of a generalised elliptic curve. Let E

be a generalised elliptic curve over a scheme S. A Γ0(N)-structure C on E is a

cyclic group subscheme of order N of Ereg whose fibres over any geometric point

s intersect all the irreducible components of the fibre of E over s.

Definition 4.1.1. The moduli problem PΓ0(N) is the contravariant functor:

PΓ0(N) : SCH/RN → SETS

from the category of RN -schemes to that of sets which assigns to each such scheme

S the set of isomorphism classes [E,C] consisting of a generalised elliptic curve

E/S and a Γ0(N)-structure C on E/S.

Unfortunately, the functor PΓ0(N) is never representable, since every pair (E,C)

where E is an elliptic curve over a field k and C is a cyclic subgroup of order N

45
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has a non-trivial automorphism:

ι : E → E

P 7→ [−1]P

corresponding to the element −1 ∈ Γ0(N).

When N = 1, we can give another argument to show that this functor is not

representable, taken from lecture notes by Bas Edixhoven. Suppose that it is

representable by a scheme X. Let d be a positive integer which is not a square.

Consider the elliptic curves∗:

E : y2 = x3 + ax+ b,

E′ : dy2 = x3 + ax+ b,

where a, b ∈ Q. Then E and E′ are not isomorphic over Q, so they correspond to

two distinct points in X(Q). But E and E′ are isomorphic over Q(
√
d), so they

correspond to a single point in X(Q(
√
d)). Thus, the map X(Q) → X(Q(

√
d))

is not injective. However, this map is injective for any scheme X.

Nonetheless, the functor PΓ0(N) is still well-behaved: it is representable by a

stack, which is a category that behaves almost as a scheme. For more on mod-

uli stacks of curves, see [Mum65], [DM69], and for stacks in general, [LMB00].

For the construction of the moduli stacks representing PΓ0(N), see [DR73] and

[KM85].

4.1.2 Coarse moduli schemes revisited

If a moduli problem is not representable, we might still find a very good approx-

imation for it. we call such an approximation a coarse moduli scheme ([DR73],

Definition I.8.1). In what follows, let X0(N) be the moduli stack representing the

moduli problem PΓ0(N).

Definition 4.1.2. Let SCH/S be the category of S-schemes, and

P : SCH/S → SETS

be a moduli problem. A coarse moduli scheme for P is an S-scheme X, together

with a natural transformation

Φ : P → hX

where hX = Hom(−, X), such that:

∗The curve E′ obtained in this manner is said to be a “quadratic twist” of the curve E.
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• for every S-scheme Spec(k) with k an algebraically closed field, the map

Φ(k) : P(k)→ X(k) is bijective, and

• (X,Φ) is universal, in the sense that for every S-scheme Y and every mor-

phism Ψ : P → hY , there is a unique morphism f : X → Y such that

Ψ = he ◦ Φ, where he : hX → hY is the induced natural transformation on

the functors of points.

The universality condition ensures that, if a coarse moduli scheme for a given

moduli problem exists, then it must be unique. While a coarse moduli scheme

classifies objects over algebraically closed fields, it does not do so in a continuous

way, so it does not tell us much about where they sit in families (that is why a

stack is needed). However, for our purposes, they are enough. Note that if P has

a coarse moduli scheme X, and is representable by a scheme Y , then X ∼= Y .

Let PΓ0(N) be the moduli problem from Definition 4.1.1. Then for any prime

p 6∈ R×N , one can naturally define the moduli problem PΓ0(N) ⊗ Fp (that is, by

precomposing it with the functor −⊗Fp : SCH/S → SCH/Fp). We ask whether

coarse moduli schemes exist for PΓ0(N) and PΓ0(N) ⊗ Fp, and if so, how they are

related.

Proposition 4.1.3. The moduli problem PΓ0(N) admits a coarse moduli scheme,

which we denote by X0(N). For any prime p 6∈ R×N , the moduli problem :

PΓ0(N) ⊗ Fp

admits a coarse moduli scheme, which we denote by X0(N)Fp. Moreover:

X0(N)Fp = X0(N)⊗ Fp.

The schemes X0(N) and X0(N)Fp are all smooth, irreducible, and of the same

genus.

Proof. For simplicity, we sketch a proof only for N ≥ 5. By Theorem 3.1.2,

the moduli problem PΓ1(N) ⊗ RN is representable by a scheme X1(N) over RN ,

on which the group G = Γ0(N)/Γ1(N) ∼= (Z/NZ)× acts naturally†. Define

X0(N) := X1(N)/G (for quotients of schemes by finite groups of automorphisms,

see [Mum70a], §7). Then X0(N) can be shown to be the coarse moduli scheme

of PΓ0(N) (see [DR73], I.8.2.2, and [KM85], §8.1). Since the order of G, which

is |G| = ϕ(N), is invertible in RN , the formation of the coarse moduli scheme

commutes with base change ([KM85], Proposition A7.1.3). For the last assertion,

see [DR73], Corollaire IV.5.6. See also [Shi94], §7.4, and [Shi58], §9.

†If d ∈ (Z/NZ)× and (E,α) is a pair consisting of an elliptic curve E and a point α of exact
order N , then the action of d sends (E,α) to (E, d · α).
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Remark 4.1.4. The formation of the coarse moduli scheme does not in general

commute with arbitrary base change, although it always commutes with flat base

change. However, it commutes with arbitrary base change if the map from the

moduli stack to the coarse moduli scheme is étale.

Remark 4.1.5. The construction can, of course, be carried out by taking appro-

priate quotients of any moduli problem “over” PΓ0(N) which is representable and

satisfies certain finiteness conditions. It turns out that the formation of X0(N)

is independent of the choice of the representable moduli problem.

4.2 Modular forms for Γ0(N)

Let X0(N) be the moduli stack described above. Let π : E → X0(N) be the

universal elliptic curve. Then ([DR73], II.1.6) the relative dualising sheaf on

E descends to an invertible sheaf ω on X0(N). For an RN -algebra R, write

X0(N)R = X0(N)⊗R and ωR = ω ⊗R.

Once again, we forget for a moment the definition of modular forms presented in

Section 1.2, and, following [DR73], VII.3.1, we make the following definition:

Definition 4.2.1. Let R be an RN -algebra. A (holomorphic) modular form for

Γ0(N), defined over R and of weight k is a global section of the invertible sheaf

ω⊗kR . We write:

Mk(Γ0(N), R) = H0(X0(N)⊗R,ω⊗kR )

for the R-algebra of modular forms over R, with level N and weight k. These

modular forms generate a graded ring:

M(Γ0(N), R) :=

∞⊕
k=0

Mk(Γ0(N), R).

The q-expansion of such a modular form is defined in the same way as in Section

3.2, again using the Tate curve, with its µN subgroup. We see then by [DR73],

VII.4 that for RN -subalgebras R0 of C, we recover the classical notion of modular

forms. Indeed ([DR73], Théorème VII.3.9):

Theorem 4.2.2 (q-expansion principle). Let R be an RN -algebra.

1. The map Mk(Γ0(N), R) → R[[q]] taking f to f(q) is an injection of R-

modules.

2. if R0 is an RN -subalgebra of R, the modular form f is defined over R0 if

and only if f(q) ∈ R0[[q]].

For positive characteristics, we have the following theorem ([Hid12], Corollary

3.1.3):
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Theorem 4.2.3 (Base change). If R is an RN -algebra, then the natural map:

Mk(Γ0(N), RN )⊗RN R→Mk(Γ0(N), R)

is an isomorphism.

4.3 Generators and relations for M(Γ0(N), RN)

In order to apply Theorem 3.3.1, we need to work over varieties.

Proposition 4.3.1. There exists an invertible sheaf Lk on X0(N) such that:

Mk(Γ0(N), RN ) = H0(X0(N),Lk).

For each prime p - 6Nϕ(N), we have:

Mk(Γ0(N),Fp) = H0(X0(N)Fp ,Lk,p)

where Lk,p = Lk ⊗ Fp. Let ε∞ be the number of cusps for Γ0(N), and let ε2 and

ε3 be respectively the number of elliptic points of order 2 and of order 3. Let g be

the genus of X0(N). Then:

degLk = degLk,p = k(g − 1) + bk
4
cε2 + bk

3
cε3 +

k

2
ε∞.

Proof. The scheme X0(N) is the coarse moduli scheme for X0(N), so we have

a map π : X0(N) → X0(N). We can define Lk = π∗(ω
⊗k). One can see that

this construction is equivalent to the following one. As we have seen in Section

3.2, on the fine moduli scheme X1(N)RN we have an invertible sheaf ω1, and the

modular forms of weight k for Γ1(N) with coefficients in RN are global sections

of ω⊗k1 . Moreover, ω1 is a G-sheaf for G = Γ0(N)/Γ1(N), which is the covering

group of ψ : X1(N)RN → X0(N), meaning that G acts naturally on ω1 in a

manner compatible with its action on X1(N)RN over X0(N). We see then that

Lk = ψ∗(ω
⊗k
1 )G, which is the G-invariant pushforward of ω⊗k1 (see [DI95], Section

12.1). Since the order of G is invertible on the base, it follows that Lk thus defined

is an invertible sheaf, and its formation commutes with base change. The global

sections of Lk are by definition those of ω⊗k, and the global sections of Lk,p are

those of ω⊗kFp . Finally, since the Euler characteristic of a coherent sheaf is locally

constant, and X0(N) is irreducible (Proposition 4.1.3), it suffices to compute the

degree at any closed point. The formula for the degree then follows from the

degree formula over C, given in [DI95], Section 12.1. See also [DS05], Section

3.5.

Remark 4.3.2. The coarse moduli schemes and the invertible sheaves of Propo-

sition 4.3.1 are constructed in [Hid12] with no recourse to stacks.
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Proposition 4.3.3 (Projection formula). Let p be a prime number, p 6∈ R×N . Let

ε∞ be the number of cusps for Γ0(N), and let ε2 and ε3 be respectively the number

of elliptic points of order 2 and of order 3. Let r be as follows:

r :=


2 if ε3 = ε2 = 0,

4 if ε3 = 0 and ε2 > 0,

6 if ε3 > 0 and ε2 = 0,

12 if ε3 > 0 and ε2 > 0.

Then:

Lr+k,p ∼= Lr,p ⊗ Lk,p.

Proof. Write X1 = X1(N)Fp , X0 = X0(N)Fp , and ψ : X1 → X0 the covering map.

Write ω1 for the invertible sheaf on X1. For each point x ∈ X1, the stabiliser

of x in the covering group G can be seen as a group of automorphisms of an

elliptic curve in characteristic p ≥ 5, and hence has order either 2, 4, or 6. The

number r is precisely the least common multiple of the possible orders of these

automorphism groups (see [Maz77], §II.2). It follows that G acts trivially on the

fibre ω⊗r1 ⊗k(x). As the order of G is invertible on the base, ω⊗r1 descends to X0,

which means that ω⊗r1 = ψ∗Lr,p. Now we apply the projection formula ([Liu02],

Proposition 5.2.32):

Lr+k,p = ψG∗ (ω⊗r1 ⊗ ω
⊗k
1 ) = ψG∗ (ψ∗Lr,p ⊗ ω⊗k1 ) = Lr,p ⊗ ψG∗ (ω⊗k1 )

= Lr,p ⊗ Lk,p

and the statement is proven.

Proposition 4.3.4. Let N ≥ 5, and p 6∈ R×N a prime number. Let ε∞ be the

number of cusps for Γ0(N), and let ε2 and ε3 be respectively the number of elliptic

points of order 2 and of order 3. The algebra M(Γ0(N),Fp) is generated:

• in weight 2, if ε3 = ε2 = 0 and N is composite,

• in weight 6, if ε3 > 0 and ε2 = 0,

• in weight 12, if ε3 > 0 and ε2 > 0, and

• in weight 4 otherwise.

Proof. From the table of Lemma 1.1.2, we find that:

• if ε2 = ε3 = 0 and N is composite, then ε∞ ≥ 4;

• if ε2 = ε3 = 0 and N is prime, then ε∞ = 2 and g ≥ 1;

• if ε3 = 0 and ε2 > 0, then ε2 ≥ 2 and ε∞ ≥ 2;
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• if ε3 > 0 and ε2 = 0, then ε∞ ≥ 2;

• if ε3 > 0 and ε2 > 0, then ε3 ≥ 2, ε2 ≥ 2, and ε∞ ≥ 2.

Hence, by using Lemma 4.3.1 to calculate the degrees of Lk,p for k ∈ {2, 4, 6, 8, 10, 12},
we find that:

• degL2,p ≥ 2g in all cases, and degL2,p ≥ 2g + 2 if ε2 = ε3 = 0 and N is

composite;

• degL4,p ≥ 2g + 1 if ε3 = 0, and degL4,p ≥ 2g + 2 if additionally ε2 > 0;

• degL6,p, degL8,p,degL10,p, degL12,p ≥ 2g + 1 if ε3 > 0.

Let:

r :=


2 if ε2 = ε3 = 0 and N is composite,

6 if ε3 > 0 and ε2 = 0,

12 if ε3 > 0 and ε2 > 0,

4 otherwise.

Let k ≥ r, and write k = ar + b where a = bkr c and b ∈ {2, 4, 6, 8, 10}. Then by

Proposition 4.3.3:

Lk,p ∼= Lar,p ⊗ Lb,p ∼= L⊗ar,p ⊗ Lb,p

By Theorem 3.3.1, the multiplication maps:

H0(X0(N),L⊗ar,p )⊗H0(X0(N),Lb,p)→ H0(X0(N),Lk,p)

and:

(H0(X0(N),Lr,p))⊗a → H0(X0(N), (Lk,p)⊗a)

are surjective.

Remark 4.3.5. Unlike Proposition 3.4.2, Proposition 4.3.4 does not guarantee

a minimal generating weight.

Proposition 4.3.6. Let N ≥ 5, and p 6∈ R×N a prime number. Let ε∞ be

the number of cusps for Γ0(N), and let ε2 and ε3 be respectively the number

of elliptic points of order 2 and of order 3. Choose a set of generators for

M = M(Γ0(N),Fp), lying in weight at most d, where d is as given in Propo-

sition 4.3.4. Then the ideal of relations between these generators is generated:

• in degree 6 if ε3 = ε2 = 0 and N is composite;

• in degree 14 if ε3 > 0 and ε2 = 0;

• in degree 130 if ε3 > 0 and ε2 > 0;
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• in degree 10 otherwise.

Proof. We take the case where ε3 > 0 and ε2 > 0, since the rest are proven

similarly. By Proposition 4.3.4, we can pick generators g1, · · · , gn in weights

2, 4, 6, 8, 10, and 12. Let k ≥ 132 be even. Then any homogeneous monomial in

g1, · · · , gn of weight k must be divisible by a homogeneous monomial in g1, · · · , gn
of degree k′ where k′ depends only on k, 12|k′ and k′ ≥ 24‡. Write k = k′ + b.

Then by the projection formula of Proposition 4.3.3, we have a commutative

diagram:

0 R(Lk′ ,Lb) H0(X,Lk′)⊗H0(X,Lb) H0(X,Lk)

R(Lk′−12,Lb)⊗H0(X,La)

ε

where the map ε is surjective by Theorem 3.3.1 and by the calculation of degrees

as in the proof of Proposition 4.3.4. Therefore we can argue in the same way as

in the proof of Theorem 3.4.3.

We combine these results and obtain:

Theorem 4.3.7. Let N ≥ 5. Let ε∞ be the number of cusps for Γ0(N), and let

ε2 and ε3 be respectively the number of elliptic points of order 2 and of order 3.

The algebra M(Γ0(N),Z[ 1
6Nϕ(N) ]) is:

• generated in weight 2 and related in degree 6, if ε3 = ε2 = 0 and N is

composite,

• generated in weight 6 and related in degree 14 if ε3 > 0 and ε2 = 0,

• generated in weight 12 and related in degree 130 if ε3 > 0 and ε2 > 0, and

• generated in weight 4 and related in degree 10 otherwise.

4.4 Modular forms with coefficients in Z

We now investigate the generating weight for the algebras M(Γ0(N),Z). We will

prove later (Corollary 5.2.5) that M(Γ0(p),Z) is generated in weight p2+11. This

bound, however, is not optimal, and one can wonder whether a better bound

can be found. While for the algebras considered so far we found a generating

weight that is independent of the level, we will see that when we restrict the base

coefficient ring to Z, the generating weight becomes unbounded.

‡This non-obvious fact can be checked on a computer.
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4.4.1 The lower bound

Let f ∈Mk(Γ0(N),Q), and write f =
∑

n≥0 anq
n for its q-expansion. The p-adic

valuation of f is:

vp(f) := inf{vp(an) : n ≥ 0}.

Consider a level N ≥ 1 and an odd prime p dividing N exactly once. Re-

call (Definition 1.3.7) the Atkin-Lehner involution acting on modular forms f ∈
Mk(Γ0(N)):

f 7→ f |kWN
p

where:

WN
p =

(
p a

N bp

)

where a and b are any integers such that detWN
p = p2b−Na = p. The following

lemma is due to Kilbourn (see [Kil07]), and it generalises a result obtained in

prime level in [DR73], Proposition VII.3.20.

Lemma 4.4.1. Let N ≥ 1 and let p be an odd prime dividing N exactly once.

Then for all k ≤ p− 3, :

|vp(f |WN
p )− vp(f)| ≤ k/2.

For convenience, we will make the following definition.

Definition 4.4.2. Let N and p be as in Lemma 4.4.1, k ≥ 0 and f ∈Mk(Γ0(N),Q).

Then we define the following operator:

f̃ := ω̃(f) := pk/2f |kWN
p .

Then we have a corollary of Lemma 4.4.1:

Corollary 4.4.3. Let N and p be as in Lemma 4.4.1, 0 ≤ k ≤ p − 3, and

f ∈Mk(Γ0(N),Q). Then:

vp(f̃) ≥ vp(f).

In particular, if vp(f) = 0, then vp(f̃) ≥ 0.

The main result of this section is the following:

Theorem 4.4.4. Let N ≥ 5 and let p ≥ 5 be a prime which divides N exactly

once. Then any set of generators for M(Γ0(N),Z) contains a form of weight

p− 1. In particular, the generating weight of M(Γ0(N),Z) is at least p− 1.



54 CHAPTER 4. THE ALGEBRAS M(Γ0(N), R)

Proof. The idea of the proof is to produce a modular form in weight p − 1 that

cannot be written as a polynomial with Z coefficients in modular forms with Z
coefficients in weights < p− 1. Define the following modular form:

T (z) :=

(
η(pz)p

η(z)

)2

∈Mp−1(Γ0(p)) ⊂Mp−1(Γ0(N)),

where η is the Dedekind eta function, defined by the product:

η(z) = e
2iπz
24

∞∏
n=1

(1− qn).

Note that η24 = ∆. To see that it is actually a modular form on Γ0(p), one can use

the transformation formula for the eta function, which can be found in [Köh11].

It is obvious that T has q-expansion coefficients in Z, and that vp(T ) = 0. The

truth of Theorem 4.4.4 then clearly follows from the following lemma:

Lemma 4.4.5. The form T is not a polynomial with Z coefficients in modular

forms with Z coefficients in weights < p− 1.

Proof. We will prove the lemma by showing that T violates the inequality in

Lemma 4.4.1, and that every modular form which is a polynomial in forms of

weight < p− 1 must satisfy the inequality.

We define the following matrices:

Mp =

(
1 a
N
p pb

)
,

M ′p =

(
p a
N
p b

)
,

γ =

(
p 0

0 1

)
.

We note that WN
p = Mpγ, and that γWN

p = pM ′p, so γWN
p acts on modular

forms via the −|k operator in the same way as M ′p does. We wish to compute

vp(T̃ ) where T̃ = p
p−1

2 T |WN
p . We have:

T̃ (z) = pp−1(Nz + pb)−(p−1)

(
η(M ′p · z)p

η(WN
p · z)

)2

.

By applying the appropriate transformation formula for the η function (see [Köh11]),

we have:

η(M ′p · z)2 = pνη(M
′
p)

2(Nz + pb)η(z)2,
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η(WN
p · z)2 = νη(Mp)

2(Nz + pb)η(p · z)2,

where νη(−) is the eta multiplier. After writing out the multipliers explicitly, we

find that:

T̃ (z) = εp−1

(
η(z)p

η(pz)

)2

where:

ε =

e
(

2Np−6p−2N/p+6
24

)
if N/p ∈ 2Z

e
(

2Np−6N+4N/p
24

)
otherwise

,

and e(z) = e2iπz. It is easy to show that ε = ±1, and hence that vp(T̃ ) = −1.

All we need to show is that

Np− 3p−N/p+ 3 ≡ 0 (mod 6) if
N

p
≡ 0 (mod 2)

and that

Np− 3N + 2N/p ≡ 0 (mod 6) if
N

p
≡ 1 (mod 2).

Indeed, we have p ≡ 1 (mod 2) and p ≡ ±1 (mod 3), so if N
p ≡ 0 (mod 2), then:{

Np− 3p−N/p+ 3 ≡ 0 (mod 2) , and

Np− 3p−N/p+ 3 ≡ 0 (mod 3).

Similarly, if N
p ≡ 1 (mod 2), then:{

Np− 3N + 2N/p ≡ 0 (mod 2) , and

Np− 3N + 2N/p ≡ 0 (mod 3).

To finish the proof, note that the operator ω̃ of Definition 4.4.2 defines an operator

on the graded algebra of modular forms:

f̃g = f̃ · g̃,

f̃ + g = f̃ + g̃.

Suppose now that

T =
∑

ci1,··· ,ing
i1
1 · · · g

in
n

where ci ∈ Z and gi ∈M(Γ0(N),Z) are modular forms in weights ≤ p− 3. Then:

T̃ =
∑

ci1,··· ,in(g̃1)i1 · · · (g̃n)in ,

which would force vp(T̃ ) ≥ 0 by Corollary 4.4.3, but that contradicts the above

computation of vp(T̃ ).

We have now established Lemma 4.4.5, and Theorem 4.4.4 follows immediately.
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4.4.2 Intersection theory on X0(p)

For the convenience of the reader, we summarise here the main definitions re-

garding the intersection theory on the stacks X0(p) studied in [DR73]. For our

purpose, we only need the theory developed in [DR73]. However, the appendix

by Brian Conrad in [BDP] contains a more explicit and more general treatment

of the intersection theory on such stacks.

The stack X0(p) is the moduli stack classifying elliptic curves (over Z) with a

choice of a subgroup of order p. These stacks are Deligne-Mumford (DM); the

main property of DM stacks that we need is that they admit finite étale covers

by schemes. Thus one can define sheaves on them as sheaves on the étale site, in

particular, these stacks are locally ringed, and one can use the intersection theory

of schemes to define intersection concepts on the stacks. For the definition and

basic properties of these stacks, see [DM69].

The stack X0(p) is not representable, i.e. it is not a scheme, since every pair

(E,C) consisting of an elliptic curve E and a subgroup C of order p admits at

least one non-trivial automorphism (the involution corresponding to −1 ∈ Γ0(p)).

It is regular ([DR73],Théorème V.1.16), of dimension 2 (of relative dimension 1)

over Spec(Z).

Let M be such a stack, and let L be an invertible sheaf on M. As in [DR73],

VI.4.3, the degree of L is defined as follows. Suppose that L has a rational section

f . Pick a geometric fibre (for example, say it isM⊗k where k is an algebraically

closed field), and at each closed geometric point x of this fibre, define:

degx(f) =

{
dimk Õx/(f) if f is regular at x

−dimk Õx/(f
−1) otherwise

where Õx is the henselian local ring of the fibre at x. Then the degree of L is

defined by:

degL =
∑
x

degx(f)

|Aut(x)|

where Aut(x) is the automorphism group of the elliptic curve represented by the

point x. This degree is independent of the choice of the fibre.

A reduced irreducible closed substack of codimension 1 is Cartier (Lemma B.2.2.8

in [BDP]). A Cartier divisor is effective if the ideal sheaf associated to the

corresponding closed substack is invertible. If D is an effective Cartier divisor,

there is an invertible sheaf O(D) associated to it that has a canonical regular

global section sD. By regularity of the stack, the henselian local ring at every

codimension 1 point is a DVR, thus to every effective Cartier divisor one can

associate an effective Weil divisor (i.e. a finite formal integral combination of

closed reduced irreducible substacks of co-dimension 1, where all the coefficients

are non-negative). For an invertible sheaf L on M, and a global section s of L
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that is non-zero on every connected component of M, we can associate a Weil

divisor div(f) such that there is an isomorphism of sheaves O(div(f)) ∼= L.

Thus we can identify the concepts of an effective Cartier divisor and an effective

Weil divisor. Given an invertible sheaf L with a global section s which is non-

zero on every connected component, its divisor D = div(f) can be written as

the sum of horizontal and vertical divisors. If N is an irreducible component of

a geometric fibre, seen as a vertical divisor (by giving it the reduced structure),

then one can define the intersection number:

(D,N) := degO(D)|N .

The degree of L can equally be defined as the intersection number of the divisor

of a global section with a geometric fibral divisor.

The stack classifying generalised elliptic curves (without a choice of a structure)

is denoted X0(1). It is shown in [DR73] (Théorème V.1.16) that the reduction

mod p, X0(p) ⊗ Fp consists of two copies of X0(1) ⊗ Fp glued together at the

supersingular points.

4.4.3 Congruences of level 1 and level p modular forms

For this section, fix a prime p ≥ 5. We look at congruence relations between

modular forms on SL2(Z) and on Γ0(p), that is, congruences between their formal

q-expansions at infinity. In [Ser73b], Serre proves that every modular form in

M(Γ0(p),Z) is p-adically of level 1, that is, if f ∈ Mk(Γ0(p),Z) for some k,

then for every integer i > 0, there exists an integer ki and a modular form fi ∈
Mki(SL2(Z),Z) such that f ≡ fi (mod pi). In particular one has the following

result. Let v = vp(f̃), and let:

E∗p−1 = Ep−1 − Ẽp−1.

The form E∗p−1 has the following properties: E∗p−1 ≡ 1 (mod p) and vp(Ẽ∗p−1) = p.

If v ≤ k, this implies that tr(f(E∗p−1)k−v) ∈Mkp−v(p−1)(SL2(Z)) is p-integral and

is congruent to f modulo p. Here, tr is the trace operator defined in Definition

1.3.6 and sending modular forms of level p to modular forms of level 1.

When v > k, if the above congruence still holds, then we expect to see f mod p in

weight kv− v(p− 1) < k. Since this weight is less than k, Serre’s trace argument

apparently no longer applies. The aim of this section is to show that a similar

congruence relation still holds even when the “expected weight” for f is less than

k. That is, we have:

Theorem 4.4.6. Let p ≥ 5, f ∈Mk(Γ0(p),Z) with vp(f) = 0 and vp(f̃) = k+a.

Then there exists g ∈Mk−a(p−1)(SL2(Z),Z) such that f ≡ g (mod p).

Proof. The case where a ≤ 0 is covered by Serre’s argument in [Ser73b]. We deal

here with the case where a > 0. The proof relies on Deligne and Rapoport’s
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study of the stack X0(p) in [DR73]. The intersection theory on such stacks is

summarised in Section 4.4.2.

The modular form f can be seen as a global section f ∈ H0(X0(p), ω⊗k). Let N1

and N2 be the two irreducible components of X0(p)⊗ Fp containing respectively

the (reductions of the) cusps ∞ and 0. Then f does not vanish at the generic

point of N1, and it vanishes to order a at the generic point of N2. Thus the

divisor of f can be written as:

div(f) = D + aN2

where, without loss of generality after multiplying f by a constant of p-adic

valuation 0, we can assume§that D is an effective horizontal Cartier divisor on

X0(p). As in [DR73], VII.3.19, we can calculate the intersection number (D,N1)

as follows: on N1
∼= X0(1)⊗ Fp, the degree of ω is 1

24 ([DR73], VI.4.4.1), hence:

(div(f), N1) =
k

24
.

The components N1 and N2 intersect transversely at the supersingular points. It

follows from [DR73] (Théorème V.1.16 and Théorème VI.4.9.1) that:

(N2, N1) =
p− 1

24

This gives then that:

(D,N1) =
k − a(p− 1)

24
.

Now D is an effective Cartier divisor, so it corresponds to an invertible sheaf

O(D) together with a regular global section sD. We then have:

(D,N1) = degFp(O(D)|N1) =
∑
x

degx(sD)

|Aut(x)|

where the sum is over the closed geometric points of the component N1. Since

sD is regular, degx(sD) ≥ 0 for each x, and (D,N1) ≥ 0. Since p ≥ 5, it follows

(see [Sil09], Theorem 10.1) that for each x, |Aut(x)| ≤ 6. In particular we have

that if (D,N1) > 0, then (D,N1) ≥ 1
6 .

First, if k − a(p − 1) = 2, then (D,N1) = 1
12 < 1

6 , which is impossible. So we

§While f might have some poles along certain vertical (i.e. fibral) divisors, it cannot have a
pole along a horizontal divisor. This is because any horizontal divisor would meet the generic
fibre, and so if f has a pole along a horizontal divisor, then f would have a pole when considered
as a modular form over C, which contradicts the holomorphy of f as a complex function of a
complex variable. The vertical components of the divisor of poles correspond to the primes
appearing in the denominators of the q-expansion of f . As these denominators are bounded,
one can find a constant K ∈ Z, K 6≡ 0 (mod p) such that Kf has no primes in the denominators
of its q-expansion except possibly p. Multiplying by such a constant obviously preserves the
p-adic valuation of f at both cusps.
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must have that either k − a(p − 1) = 0 or k − a(p − 1) > 2. Denote by Ma
k the

subset of Mk(Γ0(p),Z) consisting of modular forms h such that vp(h) = 0 and

vp(h̃) = k + a. Define the mapping:

φ : Mk−a(p−1)(SL2(Z),Z)→Mk(Γ0(p),Z)

g 7→ (E∗p−1)ag.

Recall here the convention that M0(SL2(Z),Z) = Z. It is easy to check that

the image under φ of V = Mk−a(p−1)(SL2(Z),Z) lies in Ma
k . Recall also that V

has a Victor Miller basis, which is the unique integral basis consisting of forms

f0, · · · , fd−1, where d = dimQMk−a(p−1)(SL2(Z),Q), such that fi = qi + O(qd)

for 0 ≤ i ≤ d− 1 (see for instance Proposition 6.2 in [Kil08]). We also adopt the

convention that the Victor Miller basis of M0(SL2(Z),Z) is the set {1}.
Assume f mod p is not in φ(V ) ⊗ Fp, then subtracting from f a suitable linear

combination of the images in φ(V )⊗ Fp of elements of the Victor Miller basis of

V , we may assume that f has a mod p vanishing order at infinity v∞,p(f) ≥ d,

where d = dimQMk−a(p−1)(SL2(Z),Q); then so does the section sD of O(D). As

the cusp infinity has only an automorphism of order 2, we have:

∑
x6=∞

degx(sD)

|Aut(x)|
+
v∞,p(sD)

2
= (D,N1).

If k − a(p− 1) = 0, then (D,N1) = 0, and d = dimQMk−a(p−1)(SL2(Z),Q) = 1.

As degx(sD) ≥ 0 for each x, this means that degx(sD) = 0 for all x, so in

particular, v∞,p(sD) = 0, but this contradicts the inequality v∞,p(f) ≥ d. So

assume that k − a(p− 1) > 2. We have:

∑
x 6=∞

degx(sD)

|Aut(x)|
+
v∞,p(sD)− d

2
= (D,N1)− d

2
.

Consider the form fd−1 ∈ V , which is the element of the Victor Miller basis

of V with highest vanishing order at infinity, this vanishing order at infinity

being v∞(fd−1) = d − 1. This form vanishes nowhere other than at infinity and

possibly at the elliptic points of orders 2 and 3. Let v2(fd−1) and v3(fd−1) denote

respectively the vanishing orders of fd−1 at the elliptic points of orders 2 and 3,

and recall that v2(fd−1) ≤ 1 and v3(fd−1) ≤ 2. The valence formula for level 1

modular forms (see for example Proposition 3.2 in [Kil08]) then gives:

v∞(fd−1) +
1

2
v2(fd−1) +

1

3
v3(fd−1) =

k − a(p− 1)

12
,

and therefore:
k − a(p− 1)

12
− (d− 1) ≤ 1

2
+

2

3
=

7

6
.



60 CHAPTER 4. THE ALGEBRAS M(Γ0(N), R)

Thus using the above calculation for (D,N1), we find that:∑
x 6=∞

degx(sD)

|Aut(x)|
+
v∞,p(sD)− d

2
≤ 1

12
,

which forces: ∑
x 6=∞

degx(sD)

|Aut(x)|
+
v∞,p(sD)− d

2
= 0

and hence:

(D,N1) =
d

2
which in turn gives:

d =
k − a(p− 1)

12
.

This however is contradicted by the dimension formula for modular forms in

level 1 (Proposition 1.2.11), which says that if k − a(p − 1) ≡ 0 (mod 12), then

d = 1 + k−a(p−1)
12 .

Remark 4.4.7. A weaker version of Theorem 4.4.6 can be proven by elementary

methods. This can be done by adapting the argument due to Kilbourn (see [Kil07])

by which he proves Lemma 4.4.1. This is a sketch of the argument: if f satisfies

the hypothesis of Theorem 4.4.6 with a ≥ 1, then h = tr(f) ≡ f (mod p2). Let

g = f−h
pvp(f−h) . let −|V : Mk(SL2(Z)) → Mk(Γ0(p),Z) denote the operator defined

by V (
∑
anq

n) =
∑
anq

pn. Then one can show that h|V ≡ pm−kg̃ (mod p). On

the other hand, vp(p
m−k ˜̃g) = vp(p

m−kpkg) ≥ a + 1 ≥ 2, so pm−kg̃ is congruent

to some modular form of level 1 in weight kp− (a+ 1)(p− 1). If wp denotes the

mod p filtration of level 1 modular forms (see Section 6.1), defined by:

wp(F ) = inf{k : F ≡ G (mod p) for some G ∈Mk(SL2(Z),Z)},

we know that wp(h|V ) = pwp(h) so this forces wp(h) ≤ k − (p − 1). It might

be possible to find a variation of this argument that would give an alternative

and elementary proof of Theorem 4.4.6. I was however unable to find such an

argument.

A simple corollary of this theorem concerns the form T defined in the proof of

Theorem 4.4.4.

Corollary 4.4.8. pT̃ ≡ 1 (mod p).

Proof. This can be proven directly from the computation of T̃ as in the previous

section, but this follows easily from Theorem 4.4.6, by noting that vp(pT̃ ) = 0,

vp(p̃T̃ ) = p and that pT̃ is of weight p − 1. The theorem then implies that pT̃

is congruent mod p to a modular form of weight 0, that is, a constant, and this

constant is found to be 1 by examining the first coefficient of the q-expansion.
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4.4.4 Generators of M(Γ0(p),Z)

In this section we identify a set of generators for M(Γ0(p),Z). Let T denote the

form T defined in the proof of Theorem 4.4.4:

T (z) :=

(
η(pz)p

η(z)

)2

∈Mp−1(Γ0(p),Z).

Let S denote the subset of M(Γ0(p),Z) consisting of modular forms f satisfying

vp(f̃) ≥ 0. We prove the following:

Theorem 4.4.9. The algebra M(Γ0(p),Z) is generated by T and S.

Proof. Let f ∈Mk(Γ0(p),Z), f 6∈ S. Put a = −vp(f̃) > 0. We argue by induction

on a. Let g = paf̃ . Then vp(g) = 0 and vp(g̃) = a+ vp(
˜̃
f) = a+ vp(p

kf) ≥ k+ a,

so by Theorem 4.4.6, there exists h ∈Mk−a(p−1)(SL2(Z),Z) such that:

h ≡ g (mod p),

and by Corollary 4.4.8, this can be rewritten as:

(pT̃ )ah ≡ g (mod p)

where now (pT̃ )ah and g have the same weight. Thus there exists u ∈Mk(Γ0(p),Z)

such that:

(pT̃ )ah+ pu = g.

Recall that p̃T̃ = ppT , and that h̃ = pk−a(p−1)h|V since h is of level 1 and of

weight k − a(p− 1). So applying the w̃ operator again, we get:

pk+aT ah|V + pũ = pk+af

and hence pũ = pk+av for some v ∈Mk(Γ0(p),Z). Now we have:

f = T ah|V + v.

An easy calculation now shows that vp(ṽ) ≥ 1− a = vp(f) (since vp(u) ≥ 0). By

induction it then follows that we have the following decomposition of f :

f = T afa|V + T a−1fa−1|V + · · ·+ Tf1|V + f0

where for each 1 ≤ i ≤ a, fi ∈ Mk−i(p−1)(SL2(Z),Z), and hence vp(f̃i|V ) =

vp(fi) ≥ 0, and vp(f̃0) ≥ 0, which proves the theorem.

Numerical evidence points to the following conjecture:

Conjecture 4.4.10. The Z-subalgebra of M(Γ0(p),Z) generated by:

S = {f ∈M(Γ0(p),Z) : vp(f̃) ≥ 0}

is generated in weight 6.
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Conjecture 4.4.10 and Theorem 4.4.9 together imply the following:

Conjecture 4.4.11. The weights of the modular forms appearing in a minimal

set of generators for M(Γ0(p),Z) are in the set {2, 4, 6, p− 1}, and there is only

one generator of weight p− 1 (which can be chosen to be the T -form T ).

Section A.3 provides numerical evidence supporting Conjecture 4.4.11.



Chapter 5

Calculating the structure of

M(Γ, R)

In this chapter, we describe Scholl’s proof of finite generation, and give algorithms

that are based on his proof for computing the structure of the algebra of modular

forms for a given congruence subgroup and with coefficients in a subring A of

C. We examine Scholl’s construction of a T -form for the congruence subgroups

Γ0(N), and show that it is not always optimal (i.e. it is not of the smallest possible

weight). For the groups Γ0(p), where p ≥ 5, we explicitly construct the optimal

T -form. This is taken mainly from the article [Rus14b]; the optimality of the

T -form is discussed also in [Rus14a].

5.1 Scholl’s proof of finite generation

For various subrings A of C, Scholl ([Sch79]) provides an easy proof that the

algebra M(Γ0(N), A) is finitely generated. We state the theorem:

Theorem 5.1.1. Let Γ be a subgroup of SL2(Z) of finite index, such that −1 ∈ Γ,

A a subring of C. Assume the cusp at infinity has width 1, and q = e2iπz is a

uniformising parameter. If the following conditions hold:

1. Mk(Γ,C) = Mk(Γ, A)⊗ C for all k ≥ 0;

2. for some t > 0, there exists T ∈ Mt(Γ, A) such that, T is non-zero away

from the cusp at infinity, and its q-expansion is a unit in A((q)).

Then M(Γ, A) is finitely generated as an A-algebra.
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Proof. Let r be the vanishing order of T at infinity. Write:

T = qr
∞∑
n=0

aiq
i, a0 ∈ A∗, an ∈ An ≥ 1

Let mk = dimCMk(SL2(Z),C). For F ∈ Mk(Γ, A), there exists a form G ∈
Mk(SL2(Z), A) such that F −G has vanishing order at least mk (to see this, we

can use Victor-Miller basis to construct G). Thus if mk ≥ r, the function F−G
T is

a modular form of weight k − t with coefficients in A (follows from the defining

properties of T ). We can then use induction on k. Fix k ≥ t for which mk ≥ r,

then write:

Mk(Γ, A) = Mk(SL2(Z), A) + T ·Mk−t(Γ, A).

Thus M(Γ, A) is generated by T and the forms in weights {k : mk < r or k <

t}.

Definition 5.1.2. A modular form satisfying the condition (2) above is called a

T -form over A. A T -form over Z is simply called a T -form. Obviously, a T -form

is a T -form over A for any A ⊂ C. For example, when Γ = SL2(Z), and A = Z,

then the discriminant ∆ is such a T -form.

This gives a recipe to prove that, for given Γ and A, the algebra M(Γ, A) is

finitely generated: we only have to produce a T -form over A.

5.2 Scholl’s construction of the T-form for Γ0(N)

Scholl’s construction of the T -form over Z for Γ0(N) rests on the following lemma

([New59]):

Lemma 5.2.1. Let N be a positive integer. Consider the eta product:

f =
∏

0<d|N

η(dz)r(d)

where:

1. r(d) ∈ Z and
∑
r(d) = 0,

2.
∏
dr(d) is a rational square,

3. f has integral order of vanishing (that is, in the local parameter) at every

cusp of Γ0(N).

Then f is a modular function on Γ0(N).
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Let Qi be the cusps of Γ0(N), and ri
si

be representatives of Qi, with Q1 being

the cusp at infinity. Let ti be the width of Qi. We can choose r1 = 1, s1 = N

and t1 = 1. The set GN of eta products satisfying the above conditions is a

multiplicative free, finitely generated abelian group, of rank at most σ(N) − 1,

where σ(N) is the number of divisors of N . Let ν be the number of cusps. By

(f) we denote the divisor of f . We will need the following lemma ([Sch79]):

Lemma 5.2.2. Let d be a positive divisor of N , and r/s representing a cusp of

width t of Γ0(N). Then the order of vanishing of ∆(dz) at r/s is t gcd(d, s)2/d.

Recalling that η24 = ∆, this allows us to calculate the divisor of an eta product,

such as the ones described above. We have then the following proposition:

Proposition 5.2.3. Let {n1, · · · , nν} be integers such that
∑ν

i=1 ni = 0. Then

there is a function f ∈ GN and an integer m such that

(f) = m

ν∑
i=1

niQi

if and only if for all i, j such that 1 ≤ i, j ≤ ν, we have:

si = sj ⇒
ni
ti

=
nj
tj

Proof. We briefly sketch Scholl’s proof, since it provides a way to construct the

T -form we are after. Write x(d) = r(d)/m. We need:

(f) =

ν∑
i=1

∑
0<d|N

(r(d)ti gcd(d, si)
2/24d)Qi = m

ν∑
i=1

niQi

which means that we need, for each 1 ≤ i ≤ ν:∑
0<d|N

gcd(d, si)
2x(d)/d = 24ni/ti

Scholl proves that this system is consistent and so f and m can be found.

Having constructed such f and m as in the lemma, chosen so that ni = ti for

i ≥ 2 and n1 = −
∑

i≥2 ti (following p.464 in [Sch79]), we can find a T -form for

Γ0(N):

T =
∆m

f

and it has divisor:

(T ) = m

(
ν∑
i=1

ni

)
Q1,

that is, it only vanishes at infinity.
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For N = p a prime, we know that Γ0(p) has only two cusps. It is then easy

to explicitly solve for the smallest m that works:

m =
p− 1

gcd(24p, p− 1)
.

We may need to multiply m by 2 in order to ensure that the second condition

holds, i.e. that pr(p) is a square. Supposing that this condition holds, we get:

r(1) = −r(p) =
24mp

p− 1
=

24p

gcd(24p, p− 1)

and therefore:

f(z) =

(
η(z)

η(pz)

) 24p
gcd(24p,p−1)

giving the T -form:

T (z) =

(
η(pz)p

η(z)

) 24
gcd(24p,p−1)

with vanishing order at infinity:

r =
p2 − 1

gcd(24p, p− 1)

and weight:

w =
12(p− 1)

gcd(24p, p− 1)
.

We remark that Scholl’s construction is not optimal, in the sense that it does not

give the T -form with the lowest vanishing order at infinity. Recall the modular

form defined in the proof of Theorem 4.4.4:

T (z) =

(
η(pz)p

η(z)

)2

for a prime p ≥ 5. It can easily be seen that this form T satisfies the properties of

a T -form and has a vanishing order of p
2−1
12 at infinity and weight p−1. Moreover,

we can show that this is the T -form with the lowest possible weight for Γ0(p):

Proposition 5.2.4. Let p ≥ 5 be a prime. The lowest weight in which one can

find a T -form for Γ0(p) is p− 1.

Proof. Let T be the T -form:

T (z) =

(
η(pz)p

η(z)

)2

in weight p − 1. Suppose there exists a T -form T ′ of lower weight. By the

defining properties of T -forms, it follows that T ′ divides T in the algebra of

modular forms, and that T
T ′ = T ′′ is a T -form in weight < p−1. Then T = T ′T ′′,

but this contradicts Lemma 4.4.5.
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The existence of this T -form over Z in weight p− 1 gives us an upper bound on

the generating weight of the algebra M(Γ0(p),Z):

Corollary 5.2.5. Let p ≥ 5 be a prime. The algebra M(Γ0(p),Z) is generated

in weight p2 + 11.

Proof. The vanishing order of the T -form in weight p − 1 is r = p2−1
12 . Let

mk = dimCMk(SL2(Z)). By the proof of Theorem 5.1.1, the algebra M(Γ0(p),Z)

is generated in weight d = max{k : mk < r or k ≤ p− 1}. By Proposition 1.2.11:

mk =

{
b k12c k ≡ 2 (mod 12),

1 + b k12c otherwise.

Hence d = p2 + 11.

5.3 Algorithms

Here we present algorithms to compute the structure of the algebras M(Γ, A).

Numerous examples are calculated explicitly using these algorithms, and the

results are listed in Appendix A.

5.3.1 Generators

Once we have a T -form over A, we also have an algorithm to calculate a set of gen-

erators for M(Γ, A), which we can ensure to be minimal if A is a PID. Note that

by Theorems 4.3.7 and 3.4.4, when (Γ, A) ∈ {(Γ1(N),Z[ 1
N ]), (Γ0(N),Z[ 1

6Nϕ(N) ])},
one can substitute the halting condition 3 below by the appropriate bound pro-

vided by these theorems and ensure that the output is a full list of generators for

the algebra.

Algorithm 5.3.1.

1. r = vanishing order of T -form at infinity.

2. GENERATORS = A-basis of M2(Γ, A) (we know an integral basis exists).

3. for each (k ∈ 2Z if Γ = Γ0(N), k ∈ Z otherwise), k > 2,mk < r:

a) BASIS = A-basis of Mk(Γ, A).

b) MONOMIALS = homogeneous polynomials in the elements of GENERATORS

of weight k which form an A-rational basis for F , the A-submodule of

Mk(Γ, A) spanned by homogeneous monomials of GENERATORS of

weight k.
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c) Express elements of MONOMIALS in terms of elements of BASIS.

Using the Smith normal form algorithm, find a new A-rational basis

D = {y1, · · · , yn} for Mk(Γ, A), and elements a1, · · · , am ∈ A, m ≤ n

such that {a1y1, · · · , amym} spans F . Add the elements of D which

are not in F to GENERATORS.

Theorem 5.3.2. For A a PID, Algorithm 5.3.1 outputs a minimal list of gener-

ators for M(Γ, A).

Proof. Each generator added for each weight is indispensable. Since we are adding

generators while increasing the weight, we have a minimal list of generators.

Remark 5.3.3. For Algorithm 5.3.1 to run as fast as possible, we should choose

the T -form with the least possible order of vanishing at infinity.

Remark 5.3.4. A trick can be used to make the algorithm run much faster. For

the sake of giving a concrete example, let us suppose we are working with the

congruence subgroup Γ0(p), for prime p ≥ 5. At each iteration, say for weight k,

we can perform the following check. We let S be the set of the vanishing orders

of all the homogeneous monomials in the elements of GENERATORS of weight

k whose first non-zero coefficient is a unit in A. If S contains all integers from

0 up to and including the vanishing order of the T -form, then by taking suitable

linear combinations, we can always divide by T to reduce the case to a lower

weight. Since M2(Γ0(p),Z) is not empty, and always contains a modular form

which is non-vanishing at infinity (for example, an Eisenstein series), it would

follow that for any higher weight, the situation described above will still be true,

we can again reduce the case to a weight lower than k, and hence we can halt the

algorithm.

5.3.2 Relations

We describe an algorithm that calculates the relations of degree at most d for

generators of the algebras M(Γ, A) where Γ ∈ {Γ0(N),Γ1(N)} and A is a PID.

These generators can for example be obtained using Algorithm 5.3.1. Note that

by Theorems 4.3.7 and 3.4.4, when (Γ, A) ∈ {(Γ1(N),Z[ 1
N ]), (Γ0(N),Z[ 1

6Nϕ(N) ])},
we can choose d so that the algorithm outputs a list of generators for the whole

ideal of relations.

Algorithm 5.3.5.

1. GENERATORS = {g1, · · · , gr} list of generators for M(Γ1(N), A).

2. RELATIONS = {}.

3. for each (k ∈ 2Z if Γ = Γ0(N), k ∈ Z otherwise), k ≤ d:
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a) B = integral basis of Mk(Γ, A).

b) M =

m1

...

ms

, the monomials of weight k in the elements of GENERATORS.

c) Express elements of M as an integral linear combination of elements

of B, obtaining an integral matrix C such that M = CB.

d) Calculate D, the Smith Normal Form of the matrix C, as well as the

transformation matrices U and V , such that D = UCV .

e) For every diagonal entry Dii of D, check if Dii is invertible in A:

• if Dii is not invertible in A, then the ith row of UCB is a relation.

Add it to RELATIONS.

f) For every row Dj of D:

• if Dj is a zero row, then the jth row of UCB is a relation. Add

it to RELATIONS.

4. Represent each generator gi as a variable xi. Find the ideal I of A[x1, · · · , xr]
generated by RELATIONS. This is the ideal of relations. Output a

Gröbner basis for I.





Chapter 6

Modular forms modulo pm

In this chapter, we explore some questions related to the reductions of modu-

lar forms modulo pm. The exposition is based on [CKW13] and [CK14]. The

discussion of the θpm cycles has not appeared elsewhere.

6.1 Congruences between modular forms

Let p be a prime number, and fix an algebraic closure Qp, and an embedding

Q → Qp. Let vp be the normalised p-adic valuation on Qp (i.e. vp(p) = 1). We

define:

Z/pmZ = Zp/{x ∈ Z : vp(x) > m− 1}.

Note that when m = 1, then modulo p means modulo a prime ideal p over p of

some extension of Qp. This definition is also invariant under field extensions.

For a, b ∈ Zp, we say that a ≡ b (mod pm) if the images of a and b in Z/pmZ
coincide. Equivalently, if a and b lie in the ring of integers OK of some extension

K/Qp, then a ≡ b (mod p) means that:

a− b ∈ pe(m−1)+1

where e is the ramification index. Note that for a, b ∈ Zp, this notion coincides

with the usual notion of congruence modulo pm. By “reducing modulo pm”, we

understand taking the image under the natural map Zp � Z/pmZ.

Let Γ ∈ {Γ0(N),Γ1(N)} be a congruence subgroup, and suppose that p - N .

Definition 6.1.1. A modular form modulo pm of weight k for Γ is the reduction

modulo pm of the q-expansion of a modular form in Mk(Γ,Zp), and we denote the

space of these modular forms by Mk(Γ,Z/pmZ). Similarly, a cuspidal modular
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form modulo pm is the reduction modulo pm of the q-expansion of a cuspidal

modular form, and we denote the space of these modular forms by Sk(Γ,Z/pmZ).

If

f =
∑
n≥0

anq
n ∈Mk(Γ,Z/pmZ)

and

g =
∑
n≥0

bnq
n ∈Mk′(Γ,Z/pmZ).

We say that f and g are congruent mod pm, and we write:

f ≡ g (mod pm)

if an ≡ bn for all n ≥ 0.

Note the inclusion Z/pmZ ↪→ Z/pmZ, which gives an embedding:

Mk(Γ,Z/pmZ) ↪→Mk(Γ,Z/pmZ),

where Mk(Γ,Z/pmZ) = Mk(Γ,Z)⊗ Z/pmZ as defined in 2.1.2. Congruences be-

tween modular forms force congruences on the weights, as we see in the following

theorem ([Ser73b]).

Theorem 6.1.2. Let f ∈ Mk(Γ,Zp), and g ∈ Mk′(Γ,Zp), and suppose we have

a congruence:

f ≡ g (mod pm).

Then we have a congruence on the weights:

k ≡ k′
{

(mod pm−1(p− 1)) p ≥ 3

(mod 2m−2) p = 2.

Now let p ≥ 5, and let Ep−1 be the level 1 Eisenstein series of weight p−1. Recall

Deligne’s congruence:

Ep−1 ≡ 1 (mod p).

This gives us, for each m ≥ 1, a congruence:

Ep
m−1

p−1 ≡ 1 (mod pm).

Therefore, multiplication by Ep
m

p−1 induces an embedding:

Mk(Γ,Z/pmZ) ↪→Mk+pm−1(p−1)(Γ,Z/pmZ).

This observation, combined with Theorem 6.1.2, gives the following:
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Proposition 6.1.3. Let p ≥ 5. Let f ∈ Mk(Γ,Zp), and g ∈ Mk′(Γ,Zp), where

k′ ≥ k. Then we have a congruence:

f ≡ g (mod pm)

if and only if there exists a non-negative integer a ≥ 0 such that

k′ = k + apm−1(p− 1)

and:

fAa ≡ g (mod pm)

where A = Ep
m−1

p−1 .

We now make the following definition:

Definition 6.1.4. Let f ∈ Mk(Γ,Z/pmZ). The mod pm filtration of f is the

number:

wpm(f) = inf{j : f ∈Mj(Γ,Z/pmZ)}.

If g ∈Mk(Γ,Zp), then we define the mod pm filtration wpm(g) of g to be the mod

pm filtration of its reduction modulo pm.

Let us examine these concepts from a geometric point of view, for modular forms

mod p. Let p ≥ 5, and Γ = Γ1(N) for N ≥ 5, with p - N . Recall (Section

3.2) that modular forms mod p of weight k for Γ1(N) are global sections of an

invertible sheaf ω⊗kFp on the modular curve X1(N)Fp . In the proof of Lemma 3.4.1,

we made use of a special modular form mod p, which is the Hasse invariant A: it

is the unique modular form mod p of weight p− 1 which has simple zeros at the

supersingular points and vanishes nowhere else. One can show ([Kat73], Section

2.0) that q-expansion of A is 1 at all cusps. Hence Deligne’s congruence:

Ep−1 ≡ 1 (mod p)

and the q-expansion principle (Theorem 3.2.2) tell us that Ep−1 is a lift of A.

Therefore if f ∈Mk(Γ1(N),Fp) is a mod p modular form, then wp(f) = k if and

only if f is not divisible by A in the algebra M(Γ1(N),Fp) of mod p modular

forms. Equivalently, if t is the highest power of A dividing f in M(Γ1(N),Fp),
then wp(f) = k − t(p− 1).

6.2 Weak and strong eigenforms mod pm

Fix a congruence subgroup Γ ∈ {Γ0(N),Γ1(N)}, and a prime p not dividing N .

We define Hecke operators modulo pm.
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Definition 6.2.1. Let f =
∑

n≥0 anq
n ∈ Mk(Γ,Z/pmZ). For a positive integer

n, the Hecke operator Tn modulo pm is the reduction∗ of the Hecke operator Tn
acting on Mk(Γ,Z).

Following [CKW13], we make the following definition. Let Γ ∈ {Γ0(N),Γ1(N)},
and p - N .

Definition 6.2.2. Let f = q +
∑

n≥2 anq
n ∈ Sk(Γ,Z/pmZ). We say that f is:

• a strong Hecke eigenform of weight k, level N , over Z/pmZ, if there exists

a Hecke eigenform f̃ ∈ Sk(Γ,Zp) that reduces to f modulo pm;

• a weak Hecke eigenform of weight k, level N , over Z/pmZ, if there is a

sequence {λ`}(` prime ) ⊂ Z/pmZ such that T`(f) = λ`f for all primes `.

The notions of weak and strong eigenforms coincide when m = 1 by the Deligne-

Serre lifting lemma ([DS74], Lemma 6.11):

Lemma 6.2.3 (Deligne-Serre liting lemma). Let f ∈Mk(Γ,Fp) be a weak eigen-

form. Then f is also a strong eigenform, i.e. there exists a lift f̃ of f to Mk(Γ,Zp)
which is a normalised eigenform for all Hecke operators.

Proof. For a proof in the context of modular forms, see [CKW13], Lemma 16.

When m ≥ 2 however, the lifting lemma fails: there exists weak eigenforms mod

pm with m ≥ 2 that are not strong. We will refer to these as strictly weak eigen-

forms, and we will give some examples.

A fundamental result in the theory of mod p modular forms is the following

theorem (see [Joc82a], Theorem 2.2, and [Joc82b], Lemma 4.4):

Theorem 6.2.4. Let f ∈Mk(Γ,Fp) be an eigenform. Then wp(f) ≤ p2 + p, and

so there are finitely many congruence classes of eigenforms modulo p.

We call the statement “wp(f) ≤ p2 + p for any mod p eigenform f” a weight

bound mod p, and the statement “there are finitely many congruence classes of

eigenforms modulo p” a finiteness statement. Note that a weight bound implies

a finiteness statement mod p only because of the Deligne-Serre liting lemma (and

the fact that in characteristic 0 there are only finitely many normalised eigen-

forms of a given weight).

We are interested in the extent to which Theorem 6.2.4 can be generalised in the

context of modular forms modulo pm with m ≥ 2. Thanks to work of Hatada

([Hat77], Theorems 3 and 4), we know the following in the case of modular forms

of level 1 modulo 2m, where m ∈ {1, 2, 3}:
∗Because of the existence of an integral structure on Mk(Γ), we know that there is a matrix

representation of Tn with entries in Z.
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Theorem 6.2.5 (Hatada). Let f ∈ Sk(SL2(Z),Z2) be a normalised eigenform.

For each Hecke operator Tp, let λp be the eigenvalue of Tp associated to f . Then:

λp ≡

{
0 (mod 8) p = 2,

1 + p (mod 8) p > 2.

Corollary 6.2.6. There are finitely many (only one) congruence classes of eigen-

forms for SL2(Z) modulo 2m for m ∈ {1, 2, 3}.

So for the case N = 1, p = 2, m ∈ {1, 2, 3}, we have a finiteness statement.

However, one can show that, for any m ≥ 2, there are infinitely many weak

eigenforms. In fact, if one picks two normalized eigenforms f, g ∈ Sk(Γ1(N),Zp)
such that:

f ≡ g (mod p),

f 6≡ g (mod p2),

then:

{αf + βg

α+ β
: (α, β) ∈ (Zurp )2 and α+ β invertible },

where Zurp is the maximal unramified extension of Zp, is an infinite set of weak

eigenforms modulo pm, only finitely many of which can lift to eigenforms in char-

acteristic 0 and weight k (see [CE04]).

In [CKW13], an explicit example is given of a weak eigenform that is not strong

at the same weight, meaning a modular form f ∈ Mk(Γ,Z/pmZ) that is a weak

eigenform and that is not the reduction of any normalised eigenform in Mk(Γ,Zp).
The question is raised concerning whether the notions of strong and weak eigen-

forms at a fixed level coincide in general when the weight is allowed to vary.

That is, f might not be strong at weight k, but it might in general be congruent

to a strong eigenform g at a different weight. We show that the answer to this

question is negative: there exists weak eigenforms that do not lift at any weight.

Corollary 6.2.7. The modular form f ∈M42(SL2(Z),Z/22Z) given by

f = E6
4∆ + 2∆3 (mod 4)

is a weak eigenform of level 1 mod 22 which is not congruent to any strong

eigenform of level 1 mod 22 at any weight.

Proof. By Hatada’s theorem (6.2.5), any strong eigenform modulo 22 must be

congruent to ∆. Hence it is obvious that f is not a strong eigenform. It remains

to check that f is indeed a weak eigenform. Using a computer, we check that f

is an eigenform for the Hecke operators T2, T3, T5:

T2(f) = 0,



76 CHAPTER 6. MODULAR FORMS MODULO pm

T3(f) = T5(f) = 2f.

The Sturm bound ([Kil08], Theorem 3.13) then implies that f is an eigenform

for all Hecke operators.

6.3 The θ operator

6.3.1 modulo p

The Ramanujan θ operator:

θ := q
d

dq
=

1

2πi

d

dz

has the following effect on q-expansions:

θ(
∑
n≥0

anq
n) =

∑
n≥1

nanq
n.

However, θ destroys modularity: if f is a modular form, then θ(f) is not a

modular form, as it does not transform the right way (Proposition 2.28, [Kil08]).

One can adjust for the loss of modularity, and obtain a differential operator on

modular forms:

∂ := ∂k := 12θ − kE2.

Then one finds that ∂f is again a modular form of weight k + 2, with the same

ring of coefficients. The Eisenstein series:

E2 = 1− 24
∑
n≥1

σ(n)qn

is not a classical modular form. However, it is a p-adic modular form, meaning

that there exists an increasing sequence ki of non-negative integers, and p-integral

modular forms Gki of weight ki for each i, such that ([Ser73b], §2):

E2 ≡ Gki (mod pi).

For the rest of this section, fix a prime p ≥ 5. One finds that:

E2 ≡ Ep+1 (mod p).

More generally:

Proposition 6.3.1 (Chen, Kiming [CK14]). Let m ≥ 2. Then for j ∈ {0 · · ·m−
1}, there exists modular forms fj 6≡ 0 (mod p), of level 1 and coefficients in

Z/pmZ, and weights:

kj :=

{
2 + pm−j−2(pj+1 − 1) j ∈ {0 · · ·m− 2}
pm−1(p− 1) j = m− 1,
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such that:

E2 ≡ −24
m−1∑
j=0

pjfj .

Moreover, fm−1 can be chosen to be fm−1 = cEp
m−1

p+1 for some normalising con-

stant c.

Thus the θ operator induces a differential operator on mod pm modular forms.

For m = 1, we have:

θp : Mk(Γ,Fp)→Mk+p+1(Γ,Fp)

f 7→ 1

12
∂fEp−1 −

k

12
Ep+1f.

Similarly, for m ≥ 2, we have:

Theorem 6.3.2 (Chen, Kiming [CK14]). The Ramanujan theta operator in-

duces, for each m ≥ 2, operators:

θpm : Mk(Γ,Z/pmZ)→Mk+k(p)(Γ,Z/pmZ)

where k(p) = 2 + 2pm−1(p− 1). Moreover, the following commutation rule holds

for every primes `:

T` ◦ θpm = lθpm ◦ T`.

A well known fact from the classical theory of mod p modular forms is the fol-

lowing:

Theorem 6.3.3. Let f be a mod p modular form of weight k. Then:

wp(θf) ≤ wp(f) + p+ 1,

with equality if and only if wp(f) 6≡ 0 (mod p).

Proof. A proof in the case of level 1 is given in [Ser73a], and generalised for higher

levels in [Kat77].

It is clear from the effect of the θpm operator on q-expansions (and by Fermat’s

little theorem) that one have the equality in q-expansions:

θ
ϕ(pm)
pm f = θpmf

for any f ∈M(Γ,Z/pmZ) where ϕ is the Euler totient function. Hence we make

the following definition:

Definition 6.3.4. Let f ∈ Mk(Γ,Z/pmZ). The θpm-cycle of f is the following

sequence of integers:

(wpm(θpmf), wpm(θ2
pmf), · · · , wpm(θ

ϕ(m)
pm f)).
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When m = 1, θp cycles can take a limited number of forms. The structure

theorem for θp-cycles is described in [Joc82b], Section 7. In particular:

Proposition 6.3.5. Let f ∈ Mk(Γ,Z/pmZ). If i ∈ {1 · · ·ϕ(pm)} is such that

wpm(θi+1
pm f) < wpm(θipmf), we say that i is a drop in the θpm cycle. If m = 1,

then for any modular form f mod p, there is at most one drop in the θp cycle of

f .

The operator θp plays a central role in the theory of modular forms mod p, and in

[Joc82a], it is the key to proving the finiteness statement for eigenforms mod p.

In [Edi92], θp cycles, are involved in Edixhoven’s study of the weights in Serre’s

conjectures, where he proved that the weak and strong forms of Serre’s conjecture

are equivalent. Therefore it is natural to wonder about whether the operators

θpm for m ≥ 2 behave as nicely as in the case of m = 1. We will see however that

their behaviour is more complicated.

6.3.2 modulo pm

The θ operator modulo pm was studied by Ian Kiming and Imin Chen in [CK14].

In Section 6.3.1 above, we saw that when m ≥ 2, the mod pm theta operator

θ := θpm increases the weight by 2+2pm−1(p−1), while the mod p theta operator

θp increases the weight by p+ 1 = 2 +ϕ(p). In view of Theorem 6.3.3, one might

expect the generalization to be:

wpm(θf) ≤ wpm(f) + 2 + ϕ(pm) = wpm(f) + 2 + pm−1(p− 1).

This however turns out to be false. The following lemma is a previous version of

Lemma 3 in [CK14], and which was generalised by Chen and Kiming to all levels.

Lemma 6.3.6. Let N ≥ 5, and b ∈Mκ(Γ1(N),Fp), b 6= 0, and wp(b) = κ. Then:

wp(Ep+1b) = wp(b) + p+ 1.

Proof. As in Section 3.2, we regard our modular forms Ep−1, Ep+1, and b re-

spectively as sections of the invertible sheaves ω
⊗(p−1)
Fp , ω

⊗(p+1)
Fp , and ω⊗κFp on the

fine modular scheme X1(N)Fp . Then Ep−1 is the Hasse invariant, and vanishes

precisely at the supersingular points of X1(N)Fp . Note that the filtration require-

ment on b means that b is not divisible by Ep−1 in the algebra M(Γ1(N),Fp), i.e.

b must be invertible at some supersingular point. Since the weight of Ep+1b is

κ+ p+ 1, it suffices to prove that Ep+1 is invertible on the supersingular locus of

X1(N)Fp . We have the following identity ([Ser73a], Exemple after Théorème 4):

θp∆ ≡ Ep+1∆ (mod p).

Therefore it is enough to show that the equality of orders of vanishing: ordx(θp∆) =

ordx(∆) (which is 0, although we won’t use this). By Katz’ local description of
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the action of θp (see [Kat77], last statement in the proof of Part (1) of Theorem),

and looking at the orders of vanishing of θp∆ and ∆ at every supersingular point

x, we have:

ordx(θp∆) = ordx(∆B)

(12 6≡ 0 (mod p) as p ≥ 5) where B (Katz’ notation) is a function which is

invertible (Remark on p. 57 of loc. sit.) on the supersingular locus, and so

ordx(θp∆) = ordx(∆) and ordx(Ep+1) = 0.

One can use Lemma 6.3.6 to prove the following theorem in the case where N ≥ 5.

Theorem 6.3.7 (Chen, Kiming). Let N ≥ 1. Suppose that f ∈Mk(Γ1(N),Zp),
f 6≡ 0 (mod p), and that wp(f) = k 6≡ 0 (mod p). Then:

wpm(θf) = wpm(f) + 2 + 2pm−1(p− 1).

Proof. We sketch a proof for congruence subgroups Γ1(N), N ≥ 5. For ease of

notation, let w := wpm , θ := θpm , and k(m) = 2 + 2pm−1(p − 1). Suppose that

w(θf) = k′ < w(f) + 2 + ϕ(pm), i.e. there exists g ∈ Mk′(Γ1(N),Zp) such that

f ≡ g (mod pm). By Theorem 6.1.2, we know that:

k′ ≡ k + k(m) (mod pm−1(p− 1)),

say k + k(m) = k′ + tpm−1(p− 1) with t ≥ 1. Define:

h := Ep
m−1

p−1 g.

Then θf and Ep
m−1

p−1 have the same weight, and:

θf ≡ Ep
m−1

p−1 .

Combining this identity with Proposition 6.3.1,

2kpm−1E
tm−1

p−1 fm−1f ≡ Ep
m−1

p−1 h+
1

12
E2pm−1

p−1 ∂f−2kf
m−2∑
j=0

pjE
tjp

m−j−1

p−1 fj (mod pm)

where the numbers tj , defined by:

tj :=
k(m)− kj

pm−j−1(p− 1)

are integers since k(m) ≡ kj (mod pm−j−1(p− 1)). Now it can easily be checked

that:

tm−1 < min{pm−1, pm−j−1tj}

for j ∈ {0 · · ·m− 2}. We deduce that:

pm−1E
tm−1

p−1 fm−1f ≡ Etm−1+1
p−1 h′ (mod pm)
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where h′ has weight k + k(m) − (p − 1)(tm−1 + 1). We now have that h′ ≡ 0

(mod pm−1), hence there exists h′′ of weight k + k(m) − (p − 1)(tm−1 + 1) such

that h′′ 6≡ 0 (mod p), and:

fm−1f ≡ Ep−1h
′′.

Recalling that fm−1 is a constant times Ep
m−1

p+1 , it follows that:

wp(E
pm−1

p+1 f) < k + pm−1(p+ 1).

Since wp(f) = k, this contradicts Lemma 6.3.6.

In Section 6.3.1, we also saw that the θp cycles for mod p modular forms have

a simple structure, which is independent of the prime p. We ask whether this is

still true modulo pm where m ≥ 2.

To compute the θpm cycle for a modular form mod pm, we make use of the fact

that θpm is a derivation on the algebra of Z/pmZ modular forms, that is, for any

two modular forms f, g ∈Mk(Γ,Z/pmZ), we have:

θpm(f + g) = θpmf + θpmg,

and, if f ∈Mk(Γ,Z/pmZ) and g ∈Mk′(Γ,Z/pmZ):

θpm(fg) = θpm(f)g + fθpm(g).

The procedure is as follows, for a modular form f ∈M(Γ,Z/pmZ) and p ≥ 5:

Algorithm 6.3.8.

1. Find generators and relations for the algebra M(Γ,Z/pmZ) (For example,

using Algorithms 5.3.1 and 5.3.5).

2. Compute the action of θpm on the generators.

3. Represent the modular form f as a polynomial F in the generators.

4. Represent the Hasse invariant (as p ≥ 5, this is the reduction mod pm of

Ep−1) as a polynomial A in the generators.

5. Compute the representation Fi of the iteration θipm as a polynomial in the

generators by using the fact that θpm is a derivation, this is a simple alge-

braic operation.

6. Compute the highest power t of A dividing Fi, modulo the ideal of relations

between the generators. Thus wpm(θipm) = degFi − tϕ(pm).
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Computation results for θp2-cycles of ∆ modulo p2 in level 1 displayed in Section

A.5 suggests that the number of drops increases with p. Therefore, we do not

expect that any simple classification of θ-cycles modulo higher powers similar to

that of the case of modulo p should exist.

The θpm operator can be used to find weak eigenforms that are not strong at

the same weight. For example, consider the reduction modulo 52 of the modular

discriminant ∆. By using Algorithm 6.3.8, one can calculate that:

w52(θ12
52 (∆)) = 76.

The form θ12
52 (∆) is a weak eigenform by Theorem 6.3.2. Inspecting the mod 52

weight filtrations of the Hecke eigenforms in M76(SL2(Z),Q), we find that they

all have filtrations at most 56. We suspect that θ12
52 (∆) does not lift at any weight.

This might be checked in the future once the weak weight bounds in Theorem

7.2.1 are made explicit.





Chapter 7

Weight bounds modulo pm

In this chapter, we prove the existence of weight bounds on the filtrations of

mod pm weak eigenforms. We discuss a connection between these results and a

question of Buzzard. This is based on joint work with Ian Kiming and Gabor

Wiese ([KRW14]).

7.1 Weak weight bounds in the case N = 1, p = 2

In this section, we will prove a weight bound for eigenforms modulo 2m, m ≥ 1.

We will use the following notation: Q := E4 and R := E6. By Theorem 2.3.3,

the reductions of Q, R, and ∆ generate the algebra M(SL2(Z),Z/2mZ). Thus if

f ∈Mk(SL2(Z),Z/2mZ), we can write:

f =
∑

4a+12c=k

αa,cQ
a∆c

if k ≡ 0 (mod 4), and:

f = R ·
∑

4a+12c=k−6

αa,cQ
a∆c

if k ≡ 2 (mod 4). By Proposition 2.3.1, the coefficients αa,c are uniquely deter-

mined. We make the following definition:

Definition 7.1.1. Let f ∈ Sk(SL2(Z),Z/2mZ). The degree degm f of f is the

highest power of ∆ occurring in the expansion of f as above. In situations where

m does not vary and it is clear what it is, we may suppress the m from the

notation and just write deg f for degm f .

In joint work with Ian Kiming and Gabor Wiese ([KRW14]), we prove the fol-

lowing:

83
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Theorem 7.1.2. There exists a constant C(m) depending only on m such that

whenever f ∈ Sk(SL2(Z),Z/2mZ) is a weak eigenform then:

degm f ≤ C(m).

Any such form is the reduction modulo 2m of a form of weight bounded by a

constant κ(m) depending only on m, that can be taken to be 12C(m) for m =

1, 2, 3, and to be 6 + 2m−2 + 12C(m) if m ≥ 4.

We will give the proof. Recall Hatada’s theorem, stated here as Theorem 6.2.5.

Combined with the Deligne-Serre lifting lemma (Lemma 6.2.3), we obtain the

following corollary.

Corollary 7.1.3. Suppose that f is a weak eigenform modulo 2 on SL2(Z). Then

f ≡ ∆ (mod 2) and the Tp eigenvalue attached to f is 0 mod 2 for any prime p.

Proof. Clearly, the reduction mod 2 of weak eigenform f is a weak eigenform.

By the Deligne-Serre lifting lemma, f mod 2 is also a strong eigenform. Thus

Theorem 6.2.5 shows that every Tp eigenvalue attached to f is 0 mod 2.

7.1.1 Serre-Nicolas codes

In this subsection we work exclusively with modular forms mod 2 on SL2(Z).

As Q ≡ R ≡ 1 (mod 2), the algebra of modular forms mod 2 of level 1 is F2[∆].

We call an element of F2[∆] even resp. odd if the occurring powers of ∆ all have

even resp. odd exponents. By [NS12], Section 2.2, the subspaces of even and odd

elements are both invariant under the action of every Hecke operator T` where `

is an odd prime. If f ∈ F2[∆] we can write, in a unique fashion:

f = fe + fo

where fe and fo are even and odd, respectively. On the basis of results in [NS12],

particularly Section 4, we obtain the following result.

Proposition 7.1.4. For every odd integer k ≥ 0, there exists a constant N(k)

depending only on k such that, whenever f ∈ F2[∆] is odd with

sup{deg T3(f), deg T5(f)} ≤ k,

then:

deg f ≤ N(k).

We need to recall some definitions from [NS12], Section 4.
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Definition 7.1.5. Let k ≥ 0 be an integer, and write it in a binary expansion:

k =
∑∞

i=0 βi2
i. Define:

no(k) :=
∞∑
i=0

β2i+12i,

ne(k) :=

∞∑
i=0

β2i+22i,

h(k) := no(k) + ne(k).

The ordered pair [no(k), ne(k)] is called the code of k, and we denote it by co (k).

The map k 7→ co (k) defines a bijection between the set of odd (resp. even) non-

negative integers and (Z≥0)2. Note that no(2l+ 1) = no(2l), ne(2l+ 1) = ne(2l),

and h(2l + 1) = h(2l).

Definition 7.1.6. If k, l ≥ 0 are integers, then we say l dominates k, and we

write k ≺ l or l � k if we have h(k) < h(l), or h(k) = h(l) and ne(k) < ne(l).

We say that co (k) � co (l) if k � l.

The relation � thus defined is a total order on the set of odd (resp. even) non-

negative integers, and is a total order on the set of codes.

Definition 7.1.7. Suppose that 0 6= f = ∆m1 + ∆m2 + · · ·+ ∆mr ∈ F2[∆] is odd,

i.e., all mi are odd. Assume that:

m1 � m2 � · · · � mr.

We then define dom (f) := mr and we call it the dominant exponent of f . We

also define:

co (f) := co (dom (f)),

no(f) := no(dom (f)),

ne(f) := ne(dom (f)),

h(f) := h(dom (f)).

If f = 0 we define all of the above quantities to be 0.

Proposition 7.1.8 (Serre-Nicolas). Let 0 6= f ∈ F2[∆] be odd. Then:

1. If no(f) ≥ 1 then co (T3(f)) = [no(f)− 1, ne(f)] and h(T3(f)) = h(f)− 1.

2. If ne(f) ≥ 1 then co (T5(f)) = [no(f), ne(f)− 1] and h(T5(f)) = h(f)− 1.

The Proposition follows by combining Propositions 4.3 and 4.4 of [NS12].
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Proof of Proposition 7.1.4. If no(f) = ne(f) = 0 then co (f) = [0, 0], and hence

dom (f) = 1, i.e. f = ∆. If we take care to ensure that our definition N(k) is such

that N(k) ≥ 1 in any case, we may thus assume that h(f) = no(f) = ne(f) ≥ 1.

Assume now that sup{deg T3(f),deg T5(f)} ≤ k for some odd, positive integer k.

Case 1: no(f) ≥ 1. Define φ(l) to be the unique odd non-negative integer with

code [no(l) + 1, ne(l)]. Then it is easy to check that whenever l � l′, we have

φ(l) � φ(l′).

We have dom (f) = φ(l) for some odd l. By Proposition 7.1.8, we see that then

dom (T3(f)) = l so that l ≤ k. Let s be the supremum of the set {1, 3, 5 · · · , k}
with respect to the order relation �. Then dom (f) � φ(s). But the set {t| t �
φ(s)} is finite, hence there exists N(k) depending only on k such that deg f ≤
N(k).

Case 2: ne(f) ≥ 1. The argument in this case is similar to that of Case 1, with

φ(l) being the unique odd non-negative integer with code [no(l), ne(l) + 1].

7.1.2 Bounding the weight

Before the proof of Theorem 7.1.2 we need the following theorem that is a slight

generalisation of Theorem 6.1.2. The proof in [Ser73b] generalises immediately,

mutatis mutandis.

Theorem 7.1.9. Let f and g be modular forms on SL2(Z) with coefficients in the

valuation ring of some finite extension K of Q2 and weights k and k1, respectively.

Assume that at least one of the coefficients of f is a unit and that we have f ≡ g
(mod 2m) for some m ∈ N. Then

k ≡ k1 (mod 2α(m))

where

α(m) =

{
m− 1 if m ≤ 2

m− 2 if m ≥ 3.

Concerning the proof we recall our definition of (mod 2m): If v is the valuation

extending the normalised valuation v2 on Q2, i.e., v = 1
evp where e is the ramifi-

cation index of K/Q2, the prime of K is p, and vp is the normalised valuation on

K, then f ≡ g (mod 2m) means that

v(an(f)− an(g)) > m− 1

for all n. Working with v in the proof given in [Ser73b], one obtains the result.

Of course, there is a version of the theorem for odd primes, but we will not need

that.
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Proof of Theorem 7.1.2. Let us first show that the last statement of the theorem,

i.e., the weak weight bound, follows from the first. From the first statement, any

weak eigenform modulo 2m is the reduction of a form that can be written as

a linear combination of monomials Qa∆c, or RQa∆c, and where c ≤ C(m).

Now, from the q-expansion of Q we have that Q ≡ 1 (mod 24) whence Q2s ≡ 1

(mod 24+s). Suppose that m ≥ 4. Then for any non-negative a we have Qa ≡ Qa′

(mod 2m) for some a′ ≤ 2m−4. For such an a′ the weight of a monomial RQa
′
∆c

is ≤ 6 + 4 · 2m−4 + 12C(m) = 6 + 2m−2 + 12C(m), and the claim follows. For

m = 1, 2, 3 the claim follows from the congruences Q ≡ R ≡ 1 (mod 23).

We now show the existence of the constant C(m) by induction on m. For m =

1, the result is classical, and it is implied by Corollary 7.1.3 that we can take

C(1) = 1.

Assume m > 1 and that the statement is true for m − 1. Let f be a weak

eigenform modulo 2m. The reduction of f modulo 2m−1 is a weak eigenform

modulo 2m−1. By the induction hypothesis, degm−1 (f (mod 2m−1)) ≤ C(m−1).

Thus, (f (mod 2m−1)) is the reduction modulo 2m−1 of a form g of weight at most

κ(m − 1) and coefficients in Z2 and for which the highest power of ∆ occurring

in the expansion of g as a sum of monomials Qa∆c, or RQa∆c, is bounded by

C(m− 1).

Let the weights of f and g be k and k1, respectively. Since f and g have the same

reduction modulo 2m−1 we know by Theorem 7.1.9 that

k ≡ k1 (mod 2α(m−1)).

Replacing f by fQ2s with a sufficiently large s, we may assume that k ≥ k1 + 6.

Write k = k1+t·2α(m−1). Suppose first that m ≥ 5. Then Q2m−5 ≡ 1 (mod 2m−1)

and so the form

g1 := g · (Q2m−5
)t

is of weight k, and has the same reduction modulo 2m−1 as f . In the cases

2 ≤ m ≤ 4 one also finds a form g1 with these properties, by taking g1 := g ·Qr

when k ≡ k1 (mod 4), and g1 := g · RQr when k ≡ k1 + 2 (mod 4) with the

appropriate power r. It works because Q ≡ R ≡ 1 (mod 23).

Also, the highest power of ∆ occurring when we expand g1 in a sum of monomials

in Q, ∆, and, possibly, R, is bounded from above by C(m − 1). This follows

because g has that same property. By the argument in the beginning of the

proof, it follows that the form g1 is congruent modulo 2m to a form g2 of weight

bounded by a constant w(m) depending only on m (specifically, one can take the

weight bound from the beginning of the proof with C(m) replaced by C(m− 1).)

Clearly then, if p is any prime number we must have

degm Tpg1 = degm Tpg2 ≤
1

12
w(m).
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Consider now that we have

f ≡ g1 + 2m−1h (mod 2m)

with some modular form h with coefficients in Z2 and weight k.

Now, h (mod 2) is a polynomial in ∆, and if we can bound the degree of this

polynomial we are done.

Let λ2, λ3 and λ5 be respectively the eigenvalues of the operators T2, T3, and T5

associated to f . By Corollary 7.1.3, we know that λ2 ≡ λ3 ≡ λ5 ≡ 0 (mod 2).

Thus for p ∈ {2, 3, 5}, we have:

Tpf ≡ Tpg1 + 2m−1Tph ≡ λpf ≡ λpg1 (mod 2m)

which gives

2m−1Tph ≡ λpg1 − Tpg1 (mod 2m)

for p ∈ {2, 3, 5}. Thus,

degm(2m−1Tph) ≤ 1

12
w(m)

and hence

deg1(Tph) ≤ 1

12
w(m)

for p ∈ {2, 3, 5}.
Now split (h (mod 2)) into even and odd parts as explained above:

(h (mod 2)) = he + ho.

We have

deg1 Tphe , deg1 Tpho ≤
1

12
w(m)

for p ∈ {2, 3, 5}.
Consider the classical U and V operators on mod 2 modular forms. For the even

part he we have he = φ2 = V (φ) for some mod 2 modular form φ. Since T2 ≡ U
(mod 2), we see that:

T2he = UV (φ) = φ.

Hence deg1 φ ≤ 1
12w(m), and so deg1 he ≤ 1

6w(m).

For the odd part, we have deg1 Tpho ≤ 1
12w(m) for p ∈ {3, 5}. By Proposition

7.1.4, it follows that deg1 ho is bounded by N(b 1
12w(m)c) if b 1

12w(m)c is odd, and

by N(b 1
12w(m)c+ 1) if b 1

12w(m)c is even.

This finishes the proof.

It is natural to ask for an explicit “formula” for the constants C(m), but we

have not been able to find one. For any given m, though, a constant C(m) that

works in Theorem 7.1.2 can in principle be determined, the main obstacle being

determining constants N(·) that work in Proposition 7.1.4. For some explicit

values of the constants C(m) for low values of m, see Section A.6.
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7.2 Weight bounds in general

We can generalize the argument presented in Section 7.1, and prove the following:

Theorem 7.2.1. Let p ≥ 5, p - N . There exists a constant κ(N, p,m) depending

only on N , p, and m such that, for all weak eigenforms f ∈ M(Γ1(N),Z/pmZ),

we have:

wpm(f) ≤ κ(N, p,m).

We have not made the constants κ(N, p,m) explicit. Section A.7 provides a hint

as to the form of the constant κ.

The proof of Theorem 7.2.1 will rely on the following generalisation of Proposition

7.1.4:

Proposition 7.2.2. Let f ∈ Sk(Γ1(N),Fp) be a cuspidal modular form mod p.

Suppose that for some integer d, there exists a system {λ`}` prime of Hecke

eigenvalues (coming from a cuspidal eigenform) such that:

wp(T`f − λ`f) ≤ d

for all primes `. Then:

wp(f) ≤ η(N, p, d)

where η(N, p, d) is a constant depending only on N , p, and d.

We will describe how Proposition 7.2.2 implies Theorem 7.2.1. This is the same

strategy we have used in Section 7.1.

Lemma 7.2.3. Proposition 7.2.2 implies Theorem 7.2.1.

Proof. We argue by induction on the exponent m. Weight bounds for m = 1

are known, as in Theorem 6.2.4. Suppose that m ≥ 2 and that we know weight

bounds modulo pm−1.

Let f ∈ Mk(Γ1(N),Zp) be a modular form whose image in Z/pmZ is a weak

eigenform. For now, assume that f ∈ Sk(Γ1(N),Zp), and that a1(f) = 1.

The reduction of f modulo pm−1 is a weak cuspidal eigenform modulo pm−1. By

the induction hypothesis, we can find g ∈ Sk′(Γ1(N),Zp) with k′ ≤ κ(N, p,m−1)

such that a1(g) = 1 and f reduces to g modulo pm−1. Without loss of generality,

we can assume that k′ ≤ k. It follows from the Sturm bound ([Kil08], Theo-

rem 3.13) that the coefficients of f modulo pm are determined by a finite subset

{an(f) : 0 ≤ n ≤ d} for some d. So we may assume that the coefficients of f and

g lie in the ring of integers OK of some finite extension K of Qp.
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Let π be a generator of the maximal ideal p of OK , and let e be the ramification

degree. Then the congruence of f and g modulo pm−1 means that:

πe(m−2)+1|(an(f)− bn(f))

for all n ≥ 0. Moreover, by an argument similar to the proof of Theorem 7.1.9,

we have k ≡ k′ (mod pm−2(p − 1)). Thus, letting A = Ep−1, there exists some

t ≥ 0 such that pm−2|t, f and Atg have the same weight, and:

f = Atg − πe(m−2)+1h

for some h ∈ Sk(Γ1(N),OK). All we need to do is to find an upper bound for

wpm(πe(m−2)+1h) = wp(h).

Suppose that for some prime ` and some λ` ∈ OK , the Hecke operator T` − λ`I
annihilates f modulo pm. That is:

T`f − λ`f ≡ 0 (mod pm).

Then:

T`(A
tg)− λ`(Atg) ≡ πe(m−2)+1(T`h− λ`h) (mod pm).

Since Ap
m−1 ≡ 1 (mod pm), it follows that the difference:

wpm(T`(A
tg)− λ`(Atg))− wpm(g) = wpm(T`(A

tg)− λ`(Atg))− k′

is bounded above by a constant d depending only on p and m (since Ap
m−1 ≡ 1

(mod pm)). Therefore:

wp(h) ≤ d+ κ(N, p,m− 1).

Since ` was arbitrary, and the system {λ`}` prime reduces to cuspidal system of

Hecke eigenvalues modulo p, we see that h satisfies the condition of Proposition

7.2.2, which gives the required upper bound on wp(h).

If f ∈ Mk(Γ1(N),Zp) is not cuspidal, then by Theorem 6.3.2, we may find a

modular form f ′ ∈ Sk′(Γ1(N),Zp) which lifts θpm(f̃), where:

k′ = k + 2 + 2pm−1(p− 1)

and f̃ is the reduction of f modulo pm. Then f ′ is a cuspidal modular form whose

reduction is a cuspidal weak eigenform mod pm and hence has bounded weight

filtration mod pm by the above argument. This concludes the proof.

We will devote the rest of this section to the proof of Proposition 7.2.2. To

achieve this, we will introduce a new notion of filtration, called the nilpotency fil-

tration. The proof will rely on using the weight filtration to control the nilpotency

filtration and vice versa.
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7.2.1 The Hecke algebra modulo p

Throughout this section, we let Sk be the image of the q-expansion map:

Sk(Γ1(N),Fp)→ Fp[[q]].

We also let S =
∑

k≥2 Sk . Note that this is not a direct sum. Deligne’s congru-

ence:

Ep−1 ≡ 1 (mod p)

induces embeddings:

Sk ↪→ Sk+p−1.

However, we have the following decomposition. For α ∈ Z/(p− 1)Z, let:

Sα :=
⋃

k≡α (mod p−1)
k≥2

Sk.

Then:

S =
⊕

α∈Z/(p−1)Z

Sα.

Let Tk be Fp-subalgebra of EndFp(Sk) generated by the (reductions modulo p of)

the Hecke operators {T` : ` prime }. The embeddings:

Sk ↪→ Sk+p−1

commute with Hecke operators (since k ≥ 2), and therefore induce, via restric-

tions, surjective maps:

Tk+p−1 � Tk.

Definition 7.2.4. The Hecke algebra modulo p for Γ1(N) is the projective limit:

T := lim←−
k

Tk.

It follows from the deformation theory of Galois representations that the Hecke

algebra T is Noetherian. The maximal ideals of T are the kernels of Fp-algebra

homomorphisms:

Φ : T→ Fp

and are in 1-to-1 correspondence with systems {λ`}` prime of mod p Hecke

eigenvalues. Thus by the mod p theory of modular forms, T has finitely many

maximal ideals.

Proposition 7.2.5. Let m be a maximal ideal of T. The quotient T/mn is an

Artinian T-module.
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Proof. Since T is Noetherian, m is finitely generated. The quotients mi/mi+1

for i ∈ {0, · · · , n − 1} (with the convention that m0 = T) are thus each a finite

dimensional T/m-vector space. Moreover, the T-submodules of each mi/mi+1 are

exactly the T/m-vector subspaces. Thus we see that for each i, the quotient

mi/mi+1 is Artinian.

Now consider the finite chain of T-modules:

0 ⊆ mn−1/mn ⊆ mn−2/mn ⊆ · · · ⊆ T/mn.

Since the quotient of each two consecutive modules in the chain is Artinian, it

follows that T/mn is Artinian.

7.2.2 Weight and nilpotency filtrations

For an ideal I ⊂ T and a submodule N ⊂ M , we let N [I] be the subspace of N

which is killed by I. That is:

N [I] := {f ∈ N : Tf = 0 ∀T ∈ I}.

We let:

N [I∞] :=
⋃
n≥0

N [In].

Thus N [I∞] is the subspace of N on which I acts nilpotently.

Remark 7.2.6. In this context, N [I∞] is an abuse of notation. The space N [I∞]

will not in general be the kernel of:

I∞ =
⋂
n≥0

In

acting on N . The space N [I∞] is defined to be the part of N on which I acts

nilpotently.

For a commutative ring R, we denote by Max(R) the maximal spectrum of R,

that is, Max(R) is the set of maximal ideals of R.

Definition 7.2.7. Let m ∈ Max(T), and let f ∈ S[m∞]. We define the m-

nilpotency filtration of f by:

gm(f) = inf{t : f ∈ S[mt]}.

When m is understood from the context, we simply write g(f) for the m-nilpotency

filtration.
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Let Φ : T → Fp be a system of mod p Hecke eigenvalues. For each prime `, let

λ` = Φ(T`), and:

Tm
` := T` − λ`I

where I is the identity operator. Then the operators {Tm
` }` prime generate the

ideal m. This leads to the following useful characterisation of the nilpotency

filtration.

Lemma 7.2.8. Let f ∈ S[m∞], and let g = g(f) be the m-nilpotency filtration of

f . Then g is the smallest integer such that, for any sequence `1, · · · , `g of primes,

we have:

(Tm
`1 · · ·T

m
`g)f = 0.

Lemma 7.2.9. We have the following direct sum decomposition:

S =
⊕

m∈Max(T)

S[m∞].

Proof. Let k ≥ 2. We can define a pairing:

Tk × Sk → Fp, (∗)

(T, f) 7→ a1(Tf).

We check that this is a perfect pairing. Suppose that for some f ∈ Sk we have:

a1(Tnf) = an(f) = 0

for all n ≥ 1. Then f is a constant, and since f is cuspidal, it follows that

f = a0(f) = 0. Now suppose that for some T ∈ Tk we have a1(Tf) = 0 for all

f ∈ Sk. Then, for all n ≥ 1 and f ∈ Sk, we have:

a1(TTnf) = an(Tf) = 0.

As Tf ∈ Sk, we have a0(Tf) = 0, and hence Tf = 0 for all f ∈ Sk, which means

that T = 0, since it is by definition an endomorphism of Sk.

Since Tk is a finite dimensional Fp-vector space, it is an Artinian Fp-algebra.

Therefore, it can be decomposed as:

Tk ∼=
∏

m∈Spec(Tk)

Tk/m∞.

The perfect pairing ∗ gives rise to perfect pairings:

Tk/mn × Sk[mn]→ Fp (†)

(T` (mod mn), f) 7→ a1(T`f) = a`(f).
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for every m ∈ Spec(Tk) and n ≥ 0. It follows that there exists a decomposition

of Tk-modules:

Sk =
⊕

m∈Spec(Tk)

Sk[m
∞].

For α ∈ Z/(p− 1)Z, we now see that we have a decomposition:

Sα =
⊕

m∈Max(T)

Sα[m∞].

Therefore:

S =
⊕

α∈Z/(p−1)Z

Sα =
⊕

α∈Z/(p−1)Z

⊕
m∈Max(T)

Sα[m∞]

=
⊕

m∈Max(T)

⊕
α∈Z/(p−1)Z

Sα[m∞] =
⊕

m∈Max(T)

S[m∞].

Let m ∈ Max(T). We have, as in †, a pairing of T-modules:

T/mn × S[mn]→ Fp,

(T` (mod mn), f) 7→ a1(T`f) = a`(f).

As above, this pairing is perfect, and hence T/mn is dual to S[mn].

The following fact was kindly pointed out to us by Frank Calegari in a private

communication.

Proposition 7.2.10. For every n ≥ 0 and m ∈ Max(T), there exists an integer

km(n,N, p) ≥ 0 depending only on m, n, N , and p such that, for all k ≥ 2 and

for all f ∈ Sk[mn], we have:

wp(f) ≤ km(n,N, p)

Proof. Let k ≥ 2 and f ∈ Sk[m
n]. Since S[mn] is dual to T/mn, it follows by

Proposition 7.2.5 that S[mn] is a Noetherian T/mn module. Let:

Ni = {f ′ ∈ Sk′ [mn] : wp(f) ≤ i and k′ ≡ k (mod p− 1)}.

Then N0 ⊆ N1 ⊆ N2 ⊆ · · · . The space S[mn] is a T/mn-module, and each Ni is

a T/mn-submodule. By Noetherianity, this ascending chain must stabilise. Thus

there exists k0 ≥ 0 such that:

f ∈
∞⋃
i=0

Ni = Nk0 ,

This k0 depends only on m, n, N and p (and possibly on the congruence class of

k (mod p − 1), but there are only finitely many such congruence classes). Thus

the required constant km(n,N, p) exists.
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Proposition 7.2.10 allows us to control the weight filtration of a modular form

knowing its nilpotency filtration. We can also control the nilpotency filtration

knowing the weight filtration.

Proposition 7.2.11. For every k ≥ 0, there exists an integer h(k,N, p) ≥ 0

depending only on k, N , and p such that:

Sk[m
∞] = Sk[m

h].

Proof. The action of the elements of m on Sk[m
∞] can be represented by d × d

nilpotent matrices, where d = dimSk[m
∞]. From basic linear algebra, the product

of any d such matrices is zero, and we can take h = dimSk ≥ d.

We can now prove Proposition 7.2.2.

Proof of Proposition 7.2.2. Let f ∈ Sk be a mod p cuspidal modular form, and

suppose that for some fixed d and some m1 ∈ Max(T), we have:

wp(T
m1
` f) ≤ d

for all primes `. By Lemma 7.2.9, we can write f =
∑

m∈Max(T) fm where fm ∈
S[m∞]. Since the Hecke operators respect this decomposition, it follows that:

wp(T
m1
` fm) ≤ d

for all m ∈ Max(T) and primes `. Thus it suffices to consider the following two

cases.

Case 1. Suppose that f ∈ S[m∞1 ]. Let α = g(f). By Lemma 7.2.8, there exists

a sequence `1, · · · , `α−1 such that:

(Tm1
`1
· · ·Tm1

`α−1
)f 6= 0.

Then clearly:

α− 1 ≤ β = min{g(Tm
`i
f) : i = 1 · · ·α− 1}

and hence α ≤ β + 1. Since for all ` we have:

wp(T
m1
` f) ≤ d

it follows that by Proposition 7.2.11 that:

β ≤ h(d,N, p),

hence:

α ≤ h(d,N, p) + 1.
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Then from Proposition 7.2.10, we have:

wp(f) ≤ km1(h(d,N, p) + 1, N, p).

Case 2. Suppose that f ∈ S[m∞] where m ∈ Max(T) \ {m1}. Let α = g(f). By

Lemma 7.2.8, there exists a sequence `1, · · · , `α−1 such that:

f ′ := (Tm
`1 · · ·T

m
`α−1

)f 6= 0.

There must exist a prime ` such that Tm1
` f ′ 6= 0. For, if that is not the case, then

that would mean that:

f ′ ∈ S[m1] ∩ S[m∞] = {0},

which would give a contradiction. For such a prime `, we have:

α ≤ g(Tm1
` f).

Since wp(T
m1
` f) ≤ d, we get by Proposition 7.2.11:

α ≤ g(Tm1
` f) ≤ h(d,N, p).

And so by Proposition 7.2.10:

wp(f) ≤ km(h(d,N, p), N, p).

This concludes the proof.

7.3 Connection with a question of Buzzard

Let S0(N) and S1(N) be respectively the sets of normalised Hecke eigenforms in

characteristic zero for Γ0(N) and Γ1(N). Fix a prime p. For f ∈ S0(N)∪S1(N),

define:

Kf,p = Qp(a`(f) : ` is prime and ` - Np).

In [Buz05], Question 4.4, Buzzard asks:

Question 7.3.1. Is the following quantity:

sup
f∈S0(N)

[Kf,p : Qp]

finite?

In joint work with Ian Kiming and Gabor Wiese ([KRW14]), we investigate the

connection between Buzzard’s question and finiteness statements mod pm of the

numbers of strong eigenforms and attached Galois representations.
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We introduce the following statements. Let (B) be the following statement, in-

spired by Buzzard’s question:

For fixed N with p - N we have: sup
f∈S1(N)

[Kf,p : Qp] <∞. (B)

Let (Strongm) be the statement:

There are finitely many strong eigenforms modulo pm for Γ1(N). (Strongm)

If f ∈ S1(N), then one can attach to f a p-adic Galois representation:

ρf,p : Gal(Q/Q)→ GL2(Zp),

and a mod pm Galois representation:

ρf,p : Gal(Q/Q)→ GL2(Z/pmZ)

by composing with the reduction map Zp � Z/pmZ. Let Rm(N) be the set of

characters of the mod pm Galois representations attached to the forms f ∈ S1(N).

Let (Reprm) be the following statement:

For fixed N with p - N , the set Rm(N) is finite. (Reprm)

One more statement is needed to make the connection. With Kf,p as above, let

Of,p be its valuation ring, and pf,p its maximal ideal. Let ef,p be the ramification

index of Kf,p/Qp. Let:

Zp[a`(f)] = Zp[a` : ` is primes with ` - Np],

and consider the index:

If,p = [Of,p/p
ef,p(m−1)+1
f,p : ((Z/pmZ)[a`(f) (mod pm)])].

We define the “index finiteness” statement (Im):

For fixed N and p - N , we have: sup
f∈S1(N)

If,p <∞. (Im)

In [KRW14], we have shown the following implications:

Theorem 7.3.2.

• (B)⇒ (Strongm)⇒ (Reprm).

• (B)⇔ (Im) + (Reprm).

In [KRW14], we also stated the following conjectures.
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Conjecture 7.3.3. For every m ≥ 1, the statement (Reprm) is true.

(C1)

Conjecture 7.3.4. For every m ≥ 1, the statement (Strongm) is true.

(C2)

As already stated, the truth of Conjecture (C2) implies that of Conjecture (C1).

Moreover, the truth of Conjecture (C2) would imply the truth of the following

conjecture:

Conjecture 7.3.5. Given N , p, m as well as k ∈ N, there are only finitely many

f ∈ S1(N) such that wpm(f) ≤ k.

(C3)

It is clear now that Conjecture (C3) together with Theorem 7.2.1 imply Conjec-

ture (C2). We see that by Hatada’s theorem (see Corollary 6.2.6), Conjecture

(C2) holds for N = 1, p = 2, and m = {1, 2, 3}.

It remains to say that, based on the work of Coleman ([Col97], Theorem D) and

Wan ([Wan98], Theorem 1.1), we can show that Conjecture 1 holds true if one

fixes the slope of the eigenform to which the Galois representation is attached.

We recall the definition of slope:

Definition 7.3.6. Let f ∈ S1(N). The slope of f is the rational number α =

vp(ap(f)).

Explicitly ([KRW14], Proposition 4):

Proposition 7.3.7. Fix N , p, m, and α ∈ Q≥0. There are only finitely many

Galois representations modulo pm attached to eigenforms for Γ1(N) of p-slope α.
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Appendix A

Numerical results

A.1 Generating weights for M(Γ0(N),Z[ 1
6Nϕ(N) ])

The following table shows the maximal weight needed to generate the algebra

M(Γ0(N),Z[ 1
6Nϕ(N) ]), for levels N up to 83, up to the weight given in the third

column. These have been calculated using Algorithm 5.3.1 up to the bounds

given by Theorem 4.3.7. Each entry shows the number ε2 of elliptic points of

order 2, the number ε3 of elliptic points of order 3, as well as the number ε∞ of

cusps for the group Γ0(N).

101
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N ε2 ε3 ε∞ generated in weight

1 1 1 1 6

2 1 0 2 4

3 0 1 2 6

4 0 0 3 2

5 2 0 2 4

6 0 0 4 2

7 0 2 2 6

8 0 0 4 2

9 0 0 4 2

10 2 0 4 4

11 0 0 2 4

12 0 0 6 2

13 2 2 2 6

14 0 0 4 2

15 0 0 4 2

16 0 0 6 2

17 2 0 2 4

18 0 0 8 2

19 0 2 2 6

20 0 0 6 2

21 0 2 4 6

22 0 0 4 2

23 0 0 2 4

24 0 0 8 2

25 2 0 6 4

26 2 0 4 4

27 0 0 6 2

28 0 0 6 2

29 2 0 2 4

30 0 0 8 2

31 0 2 2 6

32 0 0 8 2

33 0 0 4 2

34 2 0 4 4

35 0 0 4 2

36 0 0 12 2

37 2 2 2 6

38 0 0 4 2

39 0 2 4 6

40 0 0 8 2
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N ε2 ε3 ε∞ generated in weight

41 2 0 2 4

42 0 0 8 2

43 0 2 2 6

44 0 0 6 2

45 0 0 8 2

46 0 0 4 2

47 0 0 2 4

48 0 0 12 2

49 0 2 8 6

50 2 0 12 4

51 0 0 4 2

52 0 0 6 2

53 2 0 2 4

54 0 0 12 2

55 0 0 4 2

56 0 0 8 2

57 0 2 4 6

58 2 0 4 4

59 0 0 2 4

60 0 0 12 2

61 2 2 2 6

62 0 0 4 2

63 0 0 8 2

64 0 0 12 2

65 4 0 4 4

66 0 0 8 2

67 0 2 2 6

68 0 0 6 2

69 0 0 4 2

70 0 0 8 2
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N ε2 ε3 ε∞ generated in weight

71 0 0 2 4

72 0 0 16 2

73 2 2 2 6

74 2 0 4 4

75 0 0 12 2

76 0 0 6 2

77 0 0 4 2

78 0 0 8 2

79 0 2 2 6

80 0 0 12 2

81 0 0 12 2

82 2 0 4 4

83 0 0 2 4

We see from the table that M(Γ0(N),Z[ 1
6Nϕ(N) ]) seems to always be generated

in weight at most 6. This is predicted by Theorem 4.3.7 for any level N for

which ε2ε3 = 0. In the case where ε2ε3 > 0, Theorem 4.3.7 gives a bound

of 12 on the generating weight. However, we see from the table above that

this bound is not optimal. This is an inherent limitation in working on the

coarse moduli scheme instead of on the stack. We believe that a version of

Mumford’s theorems (Theorem 3.3.1) might hold for the stacks X0(N). We make

the following conjecture:

Conjecture A.1.1. For any N ≥ 1, the generating weight for the algebra

M(Γ0(N),Z[ 1
6Nϕ(N) ]) is 6.

A.2 Relations for M(Γ0(N),Z[ 1
6Nϕ(N) ])

We calculate the smallest degree in which the ideal of relations between minimal

generators of M(Γ0(N),Z[ 1
6Nϕ(N) ]) is generated. In the table below, N indicates

the congruence subgroup Γ0(N), ε2 the number of elliptic points of order 2, ε3
the number of elliptic points of order 3, and ε∞ the number of cusps. Algorithm

5.3.5 was used to generate this table.
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N ε2 ε3 ε∞ related in degree

1 1 1 1 0

2 1 0 2 0

3 0 1 2 8

4 0 0 3 0

5 2 0 2 8

6 0 0 4 4

7 0 2 2 12

8 0 0 4 4

9 0 0 4 4

10 2 0 4 8

11 0 0 2 8

12 0 0 6 4

13 2 2 2 12

14 0 0 4 4

15 0 0 4 4

16 0 0 6 4

17 2 0 2 8

A.3 Generating weights for M(Γ0(p),Z)

Recall that the set S is defined as the set of modular forms f ∈ M(Γ0(p),Z)

such that vp(f̃) ≥ 0. Recall also the T -form T (z) :=
(
η(pz)p

η(z)

)2
. In Theorem

4.4.9, we proved that S and T generate the algebra M(Γ0(p),Z). We will provide

computational evidence for Conjecture 4.4.11:

Conjecture 4.4.11. The weights of the modular forms appearing in a mini-

mal set of generators for M(Γ0(p),Z) are in the set {2, 4, 6, p − 1}, and there is

only one generator of weight p− 1 (which can be chosen to be the T -form T ).

We use Algorithm 5.3.1 to calculate the degrees of generators in a minimal set

of generators for M(Γ0(p),Z). The following table details the results. The last

column shows the highest weight k such that the generators listed generated the

algebra up to weight k. When the last column contains a dash, it means the

generators found generate the whole algebra. In each level p above, the form in

weight p− 1 can be chosen to be the T -form.
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p weights of generators up to

5 2, 4, 4 -

7 2, 4, 4, 6, 6 -

11 2, 2, 4, 6, 10 -

13 2, 4, 4, 4, 4, 6, 6, 12 -

17 2, 2, 4, 4, 4, 6, 16 -

19 2, 2, 4, 4, 4, 6, 6, 18 -

23 2, 2, 2, 4, 4, 6, 22 -

29 2, 2, 2, 4, 4, 4, 4, 6, 28 -

31 2, 2, 2, 4, 4, 4, 4, 6, 6, 30 -

37 2, 2, 2, 4, 4, 4, 4, 4, 4, 6, 6, 36 56

41 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 40 54

43 2, 2, 2, 2, 4, 4, 4, 4, 4, 6, 6, 42 48

47 2, 2, 2, 2, 2, 4, 4, 4, 4, 6, 46 46

A.4 Relations for M(Γ1(N),Z[ 1
N ])

In the following table we provide the number of relations needed to generate the

ideal of relations of M(Γ1(N),Z[ 1
N ]), detailing the total number of generators of

M(Γ1(N),Z[ 1
N ]) and the number of generators in weights 2 and 3, as well as the

total number of relations and the number of relations in each degree.

N generators weight 2 weight 3 relations degree 4 degree 5 degree 6

5 7 3 4 17 1 6 10

6 7 3 4 17 1 6 10

7 12 5 7 58 6 24 28

8 12 5 7 58 6 24 28

9 17 7 10 124 15 54 55

10 17 7 10 124 15 54 55

11 25 10 15 281 35 125 121

12 22 9 13 215 28 96 91

13 33 13 20 502 64 226 212

14 30 12 18 412 54 186 172

15 40 16 24 749 104 344 301

16 38 15 23 673 89 306 278

17 52 20 32 1281 166 584 531

18 43 17 26 869 118 398 353

19 63 24 39 1902 246 867 789

20 56 22 34 1495 207 690 598

21 72 28 44 2497 346 1156 995

22 65 25 40 2027 270 930 827
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A.5 Computations of θp2-cycles

Computation results for θp2-cycles of ∆ modulo p2 in level 1 displayed below

suggests that there is no simple classification of θ-cycles modulo higher powers

similar to that of the case of modulo p. Computation was carried out following

Algorithm 6.3.8.

p Total drops Length of cycle = p(p− 1)

5 7 20

7 8 42

11 18 110

13 22 156

17 25 272

19 28 342

23 30 506

29 44 812

31 47 930

37 54 1332

41 61 1640

43 66 1806

A.6 Weight bounds mod 2, 4, 8, 16 for N = 1

We give now examples for the low values m = 1, 2, 3, 4. We have C(1) = 1

as already remarked and used in the above. To determine constants C(m) for

m = 2, 3, 4, we refer back to the inequalities appearing at the end of the proof of

Theorem 7.1.2:

deg1 he ≤
1

6
w(m),

and:

deg1 ho ≤

{
N(b 1

12w(m)c) if b 1
12w(m)c is odd

N(b 1
12w(m)c+ 1) if b 1

12w(m)c is even

where, as in the beginning of the proof, we have:

w(m) ≤

{
6 + 2m−2 + 12C(m− 1) if m ≥ 4

12C(m− 1) if m = 2, 3.

By the proof of Theorem 7.1.2, it then follows that we can take:

C(m) = sup{C(m− 1), b1
6
w(m)c, N(b 1

12
w(m)c)}.
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Using a computer, we compute the following values for the function N(·):

k N(k)

1 5

5 17

17 65

We also check that the function N is non-decreasing on the set of odd integers k

such that 1 ≤ k ≤ 100. The calculation of the values of C(m) are summarized in

the following table:

m w(m) ≤ b1
6w(m)c ≤ b 1

12w(m)c ≤ N(b 1
12w(m)c) ≤ C(m)

1 - - - - 1

2 19 3 1 5 5

3 68 11 5 17 17

4 214 35 17 65 65

A computer search shows that these values are sharp for m = 2 and m = 3, i.e.,

in each of these cases there exists a weak eigenform modulo 2m for which degm
attains the upper bound C(m). We do not know whether the value for C(4) is

sharp, as the calculations become too demanding.

A.7 Weight bounds for strong eigenforms mod pm

We will finally present a bit of numerical data that can be seen as experimental

approach to the constant κ(N, p,m) of Theorem 7.2.1.

For each entry in the following table, we generated all eigenforms of weight≤ kmax
on the group in question; then, we looked at the reduction modulo pm of each

of these eigenforms f and determined the smallest weight k(f) where it occurs

weakly modulo pm; the number κ in the corresponding entry is the maximum of

the k(f) for f in this particular set of eigenforms.
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Group p m κ kmax

Γ0(1) 5 2 76 320

Γ0(1) 5 3 276 288

Γ0(1) 7 2 148 246

Γ0(1) 11 2 364 374

Γ0(2) 5 2 76 174

Γ0(2) 5 3 276 316

Γ0(2) 7 2 148 246

Γ0(2) 11 2 364 370

Γ0(3) 5 2 76 174

Γ0(3) 5 3 276 278

Γ0(3) 7 2 148 222

Γ0(5) 5 2 76 138

Γ0(9) 5 2 76 150

Γ1(3) 5 2 76 174

Γ1(3) 5 3 276 296

Γ1(3) 7 2 148 204

Γ1(11) 5 2 76 88

Thus, the number κ can be seen as an “experimental value” for the constants

occurring in Conjecture C3. The values of κ in the table would be consistent

with a more precise version of the statement of Conjecture C3, namely that it

holds with a constant κ(N, p,m) that is in fact independent of N , and has the

following precise value:

κ(N, p,m) = 2pm + p2 + 1

when m ≥ 2.

We curiously remark that:

2pm + p2 + 1 = p2 + p+ (pm−1 − 1)(p− 1) + pm−1(p+ 1).

This significance of this observation is that (pm−1− 1)(p− 1) is the highest value

that the Hasse invariant Ep−1 can contribute to the mod pm filtration (since

Ep
m−1

p−1 ≡ 1 (mod pm)), and p2 + p is the highest weight filtration of a mod p

eigenform, as established in [Joc82a]. The number p + 1 is the weight of the

Eisenstein series Ep+1, which plays a central role in the mod p theory of modular

forms. Additionally, pm−1(p + 1) is the number of elements of P1(Z/pmZ), and

hence the number of irreducible components of the reduction modulo p of the

modular curve Y (Γ(pm)). We still do not know any theoretical justification for

this remark, but it might indicate a possible hint as to the true form of the

constants κ of Theorem 7.2.1.
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[BN10] Siegfried Böcherer and Gabriele Nebe, On theta series attached to maximal

lattices and their adjoints, J. Ramanujan Math. Soc. 25 (2010), no. 3, 265–

284. [cited at p. 6]

[Buz05] Kevin Buzzard, Questions about slopes of modular forms, Astérisque
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