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Abstract

Nonlinear Black-Scholes equations arise from considering parameters such as feedback

and illiquid markets effects or large investor preferences, volatile portfolio and nontrivial

transaction costs into option pricing models to have more accurate option price. Here

some finite difference schemes have been investigated to solve numerically such nonlinear

equations.

However the analytical solution of the linear Black-Scholes equation is known, different

numerical methods have been considered for solving the equation to make a general nu-

merical scheme for solving other more complicated models with no analytical solutions

such as nonlinear Black-Scholes models. Therefore at first some investigations for the

standard linear Black-Scholes equation have been considered for instance choosing a suit-

able right boundary condition and applying some remedies for dealing with nonsmooth

conditions of the equation. After that a number of nonlinear Black-Scholes models are

reviewed and different numerical methods have been investigated for solving some of

those models. At the end the numerical schemes have been compared with respect to

order of convergence.
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Chapter 1

Introduction

This thesis except this chapter as a general introduction consist of four chapters that

are written as academic articles on different topics and therefore are self-contained. In

this chapter an overview of linear and nonlinear Black-Scholes models, definitions and

properties of the models are given. Some remedies to deal with non-smooth condition of

the Black-Scholes equation has been investigated in Chapter 2 to restore the convergence

order of the Crank Nicolson. In Chapter 3 some standard finite difference schemes

have been considered for European option pricing and position of Smax as the right

boundary condition of the Black-Scholes equation is considered. After investigation on

linear Black-Scholes equation two different nonlinear Black-Scholes equations have been

investigated in Chapters 4 and 5.

1.1 Linear Black-Scholes Model

The standard Black-Scholes model is a well known linear equation derived by Fischer

Black and Myron Scholes in 1973 [5] and earlier by Robert Merton [33] for pricing options

in financial derivatives. Standard finite difference schemes for solving the partial differ-

ential equation formulation of European vanilla options are standard textbook material

today — see for example [11, 46, 26, 42]. Moreover numerous articles have investigated

this area — for instance [7, 9, 10, 13, 35, 43, 45].

1
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In section 1.1.1 we present the partial differential equation model for the European

vanilla option on the unbounded domain and derive boundary conditions to be used for

numerical solution on a bounded domain.

One of the main obstacles in numerical option pricing is the fact that the terminal condi-

tion at the expiration time for the option in general contains one or more discontinuities

either in the option value (this is the case for example for the “cash or nothing call” or

simply the bet option with one discontinuity or butterfly spread with three discontinu-

ities) or in some derivatives of this (as for example for the put and call options having

discontinuities in the first derivative of the option value with respect to the risky asset

price S. This derivative is commonly denoted the option ∆). All finite difference meth-

ods involves solving the model PDE only in a finite number of mesh points. It turns

out that the error committed with the various methods depends on the position of the

discontinuity with respect to these mesh points.

Following research questions have been posed where have been answered in Chapters 2

and 3:

(1) How should the discontinuity be positioned with respect to the mesh points in order

to obtain the minimal error for the various options and methods?

(2) How does these discontinuities influence the convergence properties of various nu-

merical methods?

1.1.1 PDE model of European vanilla options on unbounded domain

The classical boundary value problem for a European option posed over the financially

relevant domain Ω∞ = {(S, t) ∈]0,∞[×]0, T [} is found in most of the references in

section 1.1 to be the following terminal value problem:

Find V : (S, t) ∈ Ω̄∞ → R, V ∈ C0(Ω̄∞) ∩ C2,1(Ω∞) so that

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − γ)S

∂V

∂S
− rV = 0 in Ω∞

and V (S, T ) is payoff function as the terminal condition in Ω̄∞|t=T . (1.1)

Here the dependent variable V (S, t) is the value (price) of the option for a value S of the

risky asset at time t. γ, σ > 0 and r — the dividend yield, volatility (on the underlying
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risky asset) and market interest rate (on the riskfree asset) — are all assumed to be

independent of the value S of the underlying risky asset and time t in the standard

Black-Scholes model. The payoff is negotiated at time 0 between the buyer and seller of

the option. We shall here consider 4 simple options:

1. The put option where at time t = 0 it is agreed that you (the buyer of the option)

at time t = T may sell the underlying risky asset at the Strike Price K to your

opponent (the seller of the option) or you may choose to do nothing. This means

that at expiry you get a profit of — and hence the value V P of the option at expiry

is — V P (S(T ), T ) = max{K − S(T ), 0}.

2. The call option is another very common option where at time t = 0 it is agreed

that you (the buyer of the option) at time t = T may buy the underlying risky

asset at the Strike Price K from your opponent (the seller of the option) or you

may choose to do nothing. This means that at expiry you get a profit of — and

hence the value V C of the option at expiry is — V C(S(T ), T ) = max{S(T )−K, 0}.

3. The cash-or-nothing call option or the (Simple) Bet Option is an option where at

time t = 0 it is agreed that you (the buyer of the option) at time t = T get a lump

sum of B (the Bet) from your opponent (the seller of the option) if at that time,

the price of the risky asset is at least equal to the Strike Price K. This means that

at expiry you get a profit of — and hence the value V B of the option at expiry is

— V B(S(T ), T ) = BH(S(T )−K) where H(x) =

 1 for x ≥ 0

0 for x < 0
is the Heaviside

function.

4. The smoothened put option is introduced to serve as a reference in the investigation

of the above options. A main feature of the put, call and bet options are the

singularities in the terminal conditions at S = K.1 For the smoothened put option

we use the smooth terminal condition V SP (S(T ), T ) = K Smax−S(T )
Smax

e−2S(T ). Here

1Note that for the put and call options, the value functions V P (·, T ) and V C(·, T ) are continuous

whereas ∂V P

∂S
(·, T ) and ∂V C

∂S
(·, T ) are discontinuous as functions of S (at S = K), i.e. V P (·, T ) ∈

C0(]0,∞[) and V C(·, T ) ∈ C0(]0,∞[) while we have a singularity in the first derivative at expiry. Instead
for the bet option V B(·, T ) is discontinuous at S = K, so that we have a singularity already in the
function value at expiry. The bet option is included in order to investigate the influence of discontinuities
in the payoff on the solution V . It is well known that even a finite number of discontinuities in the
terminal or boundary conditions to a linear parabolic differential equation problem [DEP] does not
destroy the infinite smoothness of the solution in the interior of the domain as long as the coefficients
of the derivatives are smooth. (See for example [22] §3.1).
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Smax is the upper bound on the computational domain in the S variable, to be

introduced in more details later.

We shall use similar notation for any other relevant function such as V P , V C , V B, V SP

and V for the value function, ∆P , ∆C , ∆B, ∆SP and ∆ for the Delta-greek and so

on. For some predetermined strike price K, bet B and Smax we shall consider different

values of the 6 parameters T , K, B, r, γ and σ. However we shall define a Standard

Case with the parameters T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2.

1.1.2 Solutions and Greeks

For our first 3 option cases the option prices V are known from basic finance text books

as for example [46] §5.4–5.5 (for γ = 0), [29] §2.2 (for put and call) or [20] §1.1.6 and

§2.11.2 (for all cases) and are given by

V P (S, t) = Ke−r(T−t)N(−d2)− e−γ(T−t)SN(−d1), (1.2)

V C(S, t) = −Ke−r(T−t)N(d2) + e−γ(T−t)SN(d1), (1.3)

V B(S, t) = Be−r(T−t)N(d2), (1.4)

where N(d) =
1√
2π

∫ d

−∞
e−

1
2
y2
dy and

d1 =
ln S

K + (r − γ + 1
2σ

2)(T − t)
σ
√
T − t

, d2 =
ln S

K + (r − γ − 1
2σ

2)(T − t)
σ
√
T − t

.

2D solution plots for the standard case at start (t = 0) and expiration (t = T ) are shown

in Figure 1.1. Corresponding 3D solution plots showing solutions for all time values

t ∈ (0, T ) are shown in Figure 1.2.

From V the Deltas given by ∆ = ∂V
∂S can be computed. Only ∆P and ∆C are “challeng-

ing”, but these are well known from for example [46] §5.4 (for γ = 0) or [20] §1.3.1 (for
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Figure 1.1: Solutions to put, call, bet and smoothened put options at start and
expiration in the standard case (T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2.

Figure 1.2: Solutions to put, call, bet and smoothened put options at times t ∈ (0, T )
in the standard case (T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2)
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all cases):

∆P (S, t) =
∂V P

∂S
(S, t) = eγ(T−t)(N(d1)− 1), (1.5)

∆C(S, t) =
∂V C

∂S
(S, t) = eγ(T−t)N(d1), (1.6)

∆B(S, t) =
∂V B

∂S
(S, t) = Be−r(T−t)n(d2), (1.7)

where n(d) =
∂N(d)

∂S
so that

n(d1) =
e−

1
2
d2

1

√
2πSσ

√
T − t

and n(d2) =
e−

1
2
d2

2

√
2πSσ

√
T − t

.

2D Delta plots for the standard case at start (t = 0) and expiration (t = T ) are shown

in Figure 1.3. Corresponding 3D Delta plots showing Delta values for all time values

Figure 1.3: Deltas for put, call, bet and smoothened put options at start and expira-
tion in the standard case (T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2)

t ∈ (0, T ) are shown in Figure 1.4.

From V the Gammas given by Γ = ∂2V
∂S2 can be computed:

ΓP (S, t) =
∂2V P

∂S2
(S, t) = eγ(T−t)n(d1), (1.8)

ΓC(S, t) =
∂2V C

∂S2
(S, t) = eγ(T−t)n(d1), (1.9)

ΓB(S, t) =
∂2V B

∂S2
(S, t) = −Be−r(T−t)n(d2)

S

(
d2

σ
√
T − t

+ 1

)
. (1.10)
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Figure 1.4: Deltas for put, call, bet and smoothened put options at times t ∈ (0, T )
in the standard case (T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2)

2D Gamma plots for the standard case at start (t = 0) and expiration (t = T ) are shown

in Figure 1.5. Corresponding 3D Delta plots showing Gamma values for all time values

Figure 1.5: Gammas for put, call, bet and smoothened put options at start and
expiration in the standard case (T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2)

- The put and call Gammas are identical
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in (0, T ) are shown in Figure 1.6.

Figure 1.6: Gammas for put, call, bet and smoothened put options at times t ∈ (0, T )
in the standard case (T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2)

For particular parameter selections, the solution, ∆ and Γ of the smoothened put op-

tion can be computed for example using the Finance package of the Maple symbolic

computation environment. The solutions, ∆’s and Γ’s are shown in Figures 1.1–1.6.
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1.1.3 Limits

There are some interesting limits to the problem 1.1:

Volatility limit: For σ = 0 the option loses its stochastic aspect and behaves like a

riskfree asset with the payoff function as the terminal value at time T and dividend γ

in a world with interest rate r. The value at time t is then the amount of money that,

if put in the bank at interest rate r would result in the same value of payoff at time T

as if holding the option. But this amount is simply the terminal value back discounted

by r so that V (S, t)|σ=0 = V (S(T ), T )e−r(T−t). Here S(T ) is the value of the (now

risk-free) risky asset at expiration t = T . To express it by S we simply back discount

it by r − γ since we could get the interest rate r by selling the stock and putting the

money in the bank, but at the same time we would then lose the dividend rate γ. Hence

S = S(T )e−(r−γ)(T−t). In conclusion

V (S, t)|σ=0 = V (Se(r−γ)(T−t), T )e−r(T−t) (1.11)

As σ → 0, the convection-diffusion equation loses its diffusion part and becomes a

convection equation. Hence it is not known whether

lim
σ↓0

V (S, t) = V (S, t)|σ=0 (1.12)

but it will be investigated whether the numerical solutions have this desirable property.

Expiration limit: For t = T the option price is given by the payoff function V (S, T ).

Even though V B(S, T ) is discontinuous and V C(S, T ) and V P (S, T ) have discontinuous

first derivatives the formulas for the exact solutions show that these singularities are

instantaneously smoothened out for t < T or τ > 0 and also that

lim
t↑T

V (S, t) = V (S, T ). (1.13)

Enforcing V (S, T ) as a terminal boundary condition and solving backwards in time, also

a numerical solution will have this desirable property, but it will be investigated whether

the discontinuities as expected give rise to problems in the numerical solution.
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Left risky asset limit: For S = 0 the risky asset has lost all value corresponding

to Bankruptcy. If bankruptcy happens at a time t∗, then (see note 2 in [23]) S(t)

remains zero for t ≥ t∗. Hence the option has lost its stochastic aspect and behaves

like a riskfree asset with interest rate r. Hence the value is simply the terminal value

V (S(T ), T ) = V (0, T ) back discounted by r so that

V P (0, t) = Ke−r(T−t)

V C(0, t) = 0

V B(0, t) = 0

V SP (0, t) = Ke−r(T−t)

. (1.14)

This condition may (and will) be enforced as a boundary condition to the differential

equation 1.1. Note that this is not entirely unquestionable since the PDE 1.1 in the limit

S → 0 loses all dependence on S. Hence a boundary condition in S = 0 may actually

give rise to problems for a numerical solution.

Right risky asset limit: For S → ∞ the limiting behavior is again determined by

certainty, i.e. lack of stochastic uncertainty. If we are certain to get a payback M at time

T then the value at t ∈ (0, T ) is as above the r-backdiscounted value of M , Me−r(T−t).

For a put option with large S >> K at some time t ∈ (0, T ) we are almost certain to end

up at time T with the payback 0. As S is increasing, the certainty grows, and in the limit

S →∞ the certainty becomes total resulting in limS→∞ V
P (S, t) = 0. The smoothened

put will be given the same right boundary condition as the ordinary put. Similarly for

a bet option with large S >> K at some time t ∈ (0, T ) we are almost certain to end up

at time T with the payback B. As S is increasing, the certainty grows, and in the limit

S → ∞ the certainty becomes total resulting in limS→∞ V
B(S, t) = Be−r(T−t). For a

call option with large S >> K at some time t ∈ (0, T ) we are almost certain to end up

at time T with the payback S(T ) −K. As S is increasing, the certainty grows, and in

the limit S → ∞ the certainty becomes total. The problem is, that S(T ) is stochastic

so that the payoff is not certain. Considering instead a portfolio consisting of one call

option and minus one risky asset then the payoff at time T on this portfolio is certain to

be −K in the limit as S →∞. Hence limS→∞ (V (S(T ), T )− S(T )) = −K. To express

the terminal risky asset price S(T ) by the asset price S at time t we follow the argument

from the volatility limit and get limS→∞
(
V (S(T ), T )− Se(r−γ)(T−t)) = −K. To express

also the option price in terms of S and t we need — as explained for the volatility limit
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— to back discount by the interest rate r. Clearly both the −K and the S(T ) term must

be back discounted so that limS→∞
(
V (S, t)− Se(r−γ)(T−t)e−r(T−t)

)
= −Ke−r(T−t). In

conclusion we have

limS→∞ V
P (S, t) = 0

limS→∞(V C(S, t)− Se−γ(T−t)) = −Ke−r(T−t)

limS→∞ V
B(S, t) = Be−r(T−t)

limS→∞ V
SP (S, t) = 0

. (1.15)

For numerical computations it is convenient to have a bounded computational domain.

This is obtained by restricting S to some bounded interval S ∈ (0, Smax). 1.15 indicate

the following boundary condition in S = Smax:

V P (Smax, t) ' 0

V C(Smax, t) ' Smaxe
−γ(T−t) −Ke−r(T−t)

V B(Smax, t) ' Be−r(T−t)

V SP (Smax, t) ' 0

for Smax >> K. (1.16)

In the limit Smax → ∞ this is a valid boundary condition but it will be investigated

just how big Smax needs to be in order to get insignificant errors from the approximate

boundary condition 1.16.

1.1.4 Differential equation on a bounded domain

We now have arrived at the following BVP to be discretized and solved:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − γ)S

∂V

∂S
− rV = 0 ∀(S, t) ∈ (0, Smax)× (0, T ) (1.17)

with the following conditions

V (S, T ) = κ(S, T ), V (0, t) = κ(0, t), V (Smax, t) ' κ(Smax, t) (1.18)
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where function κ(S, t) is defined as follow

κ(S, t) =



max{Se−γ(T−t) −Ke−r(T−t), 0} call option

max{Ke−r(T−t) − Se−γ(T−t), 0} put option

Be−r(T−t)H(S −K) bet option

K Smax−S
Smax

e−2S−r(T−t) smoothened put

. (1.19)

1.1.5 Transformations of differential equation

By the simple change of variables

τ = T − t ∀t ∈ [0, T ], i.e. ∀τ ∈ [0, T ] (1.20)

1.17–1.19 is transformed into the following initial value problem:

Find U : (S, τ) ∈ Ω̄→ R where Ω = (0, Smax)× (0, T )

for some Smax >> K,

so that in a classical, weak or distributional sense

−∂U
∂τ

+
1

2
σ2S2∂

2U

∂S2
+ (r − γ)S

∂U

∂S
− rU = 0 in Ω and (1.21)

U(S, 0) = κ(S, T ), U(0, τ) = κ(0, τ), U(Smax, τ) ' κ(Smax, τ)

where the connection between 1.17 and 1.21 is that

U(S, τ) = V (S, T − t), ∀(S, t) ∈ Ω̄ i.e. ∀(S, τ) ∈ Ω̄. (1.22)

The two formulations are equivalent, and we shall stick to the former, without losing

generality. At any point it is easy to change to forward notation, simply changing from

time t to reverse time τ as shown above.

Another common transformation of 1.17 is determined by

τ =
1

2
σ2(T − t) ∀t ∈ [0, T ], i.e. ∀τ ∈ [0, T ].

x = ln

(
S

K

)
∀S ∈ [0, Smax], i.e. ∀x ∈ [−∞, xmax], where

xmax = ln

(
Smax

K

)
. (1.23)
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1.17 is then transformed into the following initial value problem:

Find W : (x, τ) ∈ Ω̄ln → R where Ωln = (−∞, xmax)× (0, T )

for some xmax >> 0,

so that in a classical, weak or distributional sense

∂W

∂τ
=
∂2W

∂x2
in Ωln and (1.24)

W (−∞, τ) =


e
−(β+ r

1
2σ

2
)τ

put or smoothened put option

0 call option

0 bet option

,

W (xmax, τ) '


0 put or smoothened put option

e−αxmax−βτ
(
Smax
K e

− γ
1
2σ

2
τ
− e
− r

1
2σ

2
τ
)

call option

B
K e
−αxmax−(β+ r

1
2σ

2
)τ

bet option

W (x, 0) =



e−αx max(1− ex, 0) put option

e−αx max(ex − 1, 0) call option B
K e
−αx for K(ex − 1) ≥ 0

0 for K(ex − 1) < 0
bet option

1
K e
−αx(1− ex−xmax)e−2Kex smoothened put option

,

where the connection between 1.17 and 1.24 is that

V (S, t) = Keαx+βτW (x, τ), ∀(S, t) ∈ Ω̄∞ i.e. ∀(x, τ) ∈ Ω̄ln

α =
1

2

(
1− r − γ

1
2σ

2

)
, β = −1

4

(
1− r − γ

1
2σ

2

)2

− r
1
2σ

2
(1.25)

and where it is assumed that α < 0 in order to avoid problems at x = −∞. The two

formulations are equivalent, and while we shall stick to the former, we shall utilize known

results from the second (the heat equation).

1.1.6 Numerical methods for solving European option on bounded do-

main

Some numerical methods for solving the option price model on the bounded domain are

the following standard text book finite difference schemes:
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a. Forward or explicit Euler: Forward2 in time t, central in S [FtCS]. Error and

stability condition for the heat equation: O(k + h2) and k ≤ h2

2 respectively.

b. Backward or implicit Euler: Backward in time t, central in S [FtCS]. Error and

stability condition for the heat equation: O(k + h2) and A- and L-stable respec-

tively.

c. Crank Nicolson: Central in time t, central in S [FtCS]. Error and stability condi-

tion for the heat equation: O(k2 + h2) and A- but not L-stable respectively.

d. Lax Friedrich: Error and stability condition for the heat equation: O(h2 + k+ h2

k )

and k ≤ h respectively.

e. Leapfrog: Error and stability condition for the heat equation: O(k2 + h2) and

unconditionally unstable respectively.

f. DuFort-Frankel: Error and stability condition for the heat equation: O(h2 + k2 +

k2

h2 ) and A- but not L-stable respectively.

All these methods are consistent3 except for the DuFort-Frankel method which is only

conditionally consistent.

The numerical schemes are constructed on a net of nodal points (Sn, tm), n = 1, . . . , N ,

m = 1, . . . ,M with step sizes h and k respectively, so that Sn = (n−1)h and tm = (M−

m)k and in particular S1 = 0, SN = Smax, t1 = T and tM = 0. Then the schemes consist

of simple replacements [;] in 1.17-1.19: The Dirichlet terminal and boundary conditions

are used as they are: V (0, tm) ; Ṽ1,m = V (0, tm), V (Smax, tm) ; ṼN,m = V (Smax, tm),

V (Sn, T ) ; Ṽn,1 = V (Sn, T ) for n = 1, . . . , N and m = 1, . . . ,M . The derivatives

DV (Sn, tm) in the relevant (mainly interior) nodal points in 1.17-1.19 are replaced by

2 Note that since we solve a backward DEP, The timesteps in Forward Euler is actually taking us
backwards in time, and similarly for the other noncentral methods.

3The finite difference schemes converge to the DEP as the stepsizes go to 0.
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finite differences δṼn,m varying from method to method:

Find Ṽn,m for n = 1, . . . , N and m = 1, . . . ,M :

δtṼn,m +
1

2
σ2S2

nδSSṼn,m + (r − γ)SnδSṼn,m − rδ0Ṽn,m = 0

for n = 2, . . . , N − 1 and m = 1, . . . ,M − 1, (M − 2 for Leapfrog and DuFort-Frankel),

Ṽ1,m = κ(0, tm), for m = 1, . . . ,M,

ṼN,m ' κ(Smax, tm), for m = 1, . . . ,M,

Ṽn,1 = κ(Sn, T ) for n = 1, . . . , N, (1.26)

For the various finite difference schemes we have the following replacements:

a. Forward Euler:

V (Sn, tm) ; δ0Ṽn,m = Ṽn,m,

∂V
∂t (Sn, tm) ; δtṼn,m =

Ṽn,m+1−Ṽn,m
k ,

∂V
∂S (Sn, tm) ; δSṼn,m =

Ṽn+1,m−Ṽn−1,m

2h ,

∂2V
∂S2 (Sn, tm) ; δSSṼn,m =

Ṽn+1,m−2Ṽn,m+Ṽn−1,m

h2 ,

for n = 2, . . . , N − 1, m = 1, . . . ,M − 1.

b. Backward Euler:

V (Sn, tm+1) ; δ0Ṽn,m = Ṽn,m+1,

∂V
∂t (Sn, tm+1) ; δtṼn,m =

Ṽn,m+1−Ṽn,m
k ,

∂V
∂S (Sn, tm+1) ; δSṼn,m =

Ṽn+1,m+1−Ṽn−1,m+1

2h ,

∂2V
∂S2 (Sn, tm+1) ; δSSṼn,m =

Ṽn+1,m+1−2Ṽn,m+1+Ṽn−1,m+1

h2 ,

for n = 2, . . . , N − 1, m = 1, . . . ,M − 1.

c. Crank Nicolson:

V (Sn, tm+ 1
2
) ; δ0Ṽn,m = 1

2

(
Ṽn,m+1 + Ṽn,m

)
,

∂V
∂t (Sn, tm+ 1

2
) ; δtṼn,m =

Ṽn,m+1−Ṽn,m
k ,

∂V
∂S (Sn, tm+ 1

2
) ; δSṼn,m = 1

2

(
Ṽn+1,m+1−Ṽn−1,m+1

2h +
Ṽn+1,m−Ṽn−1,m

2h

)
,

∂2V
∂S2 (Sn, tm+ 1

2
) ; δSSṼn,m = 1

2

(
Ṽn+1,m+1−2Ṽn,m+1+Ṽn−1,m+1

h2 +
Ṽn+1,m−2Ṽn,m+Ṽn−1,m

h2

)
,

for n = 2, . . . , N − 1, m = 1, . . . ,M − 1.

d. Lax Friedrich:

V (Sn, tm) ; δ0Ṽn,m = Ṽn,m,

∂V
∂t (Sn, tm) ; δtṼn,m =

Ṽn,m+1−Ṽn,m
k + h2

2k
Ṽn+1,m−2Ṽn,m+Ṽn−1,m

h2 ,
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∂V
∂S (Sn, tm) ; δSṼn,m =

Ṽn+1,m−Ṽn−1,m

2h ,

∂2V
∂S2 (Sn, tm) ; δSSṼn,m =

Ṽn+1,m−2Ṽn,m+Ṽn−1,m

h2 ,

for n = 2, . . . , N − 1, m = 1, . . . ,M − 1.

e. Leapfrog:

V (Sn, tm+1) ; δ0Ṽn,m = Ṽn,m+1,

∂V
∂t (Sn, tm+1) ; δtṼn,m =

Ṽn,m+2−Ṽn,m
2k ,

∂V
∂S (Sn, tm+1) ; δSṼn,m =

Ṽn+1,m+1−Ṽn−1,m+1

2h ,

∂2V
∂S2 (Sn, tm+1) ; δSSṼn,m =

Ṽn+1,m+1−2Ṽn,m+1+Ṽn−1,m+1

h2 ,

for n = 2, . . . , N − 1, m = 1, . . . ,M − 2.

f. DuFort-Frankel:

V (Sn, tm+1) ; δ0Ṽn,m = Ṽn,m+1,

∂V
∂t (Sn, tm+1) ; δtṼn,m =

Ṽn,m+2−Ṽn,m
2k + k2

h2
Ṽn,m+2−2Ṽn,m+1+Ṽn,m

k2 ,

∂V
∂S (Sn, tm+1) ; δSṼn,m =

Ṽn+1,m+1−Ṽn−1,m+1

2h ,

∂2V
∂S2 (Sn, tm+1) ; δSSṼn,m =

Ṽn+1,m+1−2Ṽn,m+1+Ṽn−1,m+1

h2 ,

for n = 2, . . . , N − 1, m = 1, . . . ,M − 2.

1.2 Nonlinear Black-Scholes Models

The standard Black-Scholes equation is supposed in a complete market under some

simplified assumptions such as liquid market with no transaction cost. Taking into

account one or some of theses parameters to have more reliable option price causes a

nonlinear Black-Scholes equation with a nonlinear volatility function. In Chapters 4-5

nonlinear Black-Scholes equations have been considered with nonlinear volatility that

depends on time t, underlying asset price S and the second derivative of option price

V (S, t) with respect to S. Also several schemes have been applied and compared to solve

the nonlinear Black-Scholes models in these two chapters. Here we review a number of

nonlinear volatility models. Note that in these models σ0 (the volatility of the underlying

asset) is assumed constant and if we take σ(t, S, VSS) = σ0 we will have the classical

linear Black-Scholes model.
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1.2.1 Leland Model

The models that we have grouped together here are all addressing the issue of nonzero

transaction cost assumed to be a fixed fraction of the volume of transactions. The

original paper [30] takes

σ2
L(t, S, VSS) = σ2

0

[
1 + Le× sign

(
∂2V

∂S2

)]
(1.27)

for a call option, where Le is the Leland number given by

Le =

√
2

π

κ

σ0

√
δt
.

κ denotes the round trip transaction cost per unit dollar of transaction and δt is the

transaction frequency (interval between successive revisions of the portfolio). There was

an error in the Leland argument, but it was apparently not published until 2003 in [47].

Some years before that Boyle and Vorst [6] modified the Leland number, replacing the

factor
√

2/π ' 0.8 by 2, and showed using the binomial model that if the transaction

frequency δt - taken equal to the time step in the binomial model - and the transaction

cost κ tend to zero (while keeping the ratio κ√
δt

of the order one) then the discrete option

price converges to the Black-Scholes price for a call option with a modified volatility of

the form

σ2(t, S, VSS) = σ2
0

[
1 +

2κ

σ0

√
δt
× sign

(
∂2V

∂S2

)]
.

For both of the above volatility models, the parameters κ and δt should be given so that

σ2(t, S, VSS) > 0. Two years later Hoggard et al [21] derived the following nonlinear

volatility model for a call option:

σ2(t, S, VSS) = σ2
0

[
1−

√
2

π

2κ

σ0

√
δt
× sign

(∂2V

∂S2

)]

including the negative of the product of the Leland factor
√

2
π and the Boyle and Vorst

factor 2. For a short position in a call option both Boyle and Vorst and Hoggard et al

changes the sign on the modified Leland number, thus still having opposite signs. The

Hoggard et al volatility model is known as the HWW transaction cost model.
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1.2.2 Risk Adjusted Pricing Methodology(RAPM)

The RAPM model was introduced by Kratka in 1998 [27] as an attempt to include

effects of transaction cost as well as risk from volatile portfolios into the Black-Scholes

model. Jandačka and Ševčovič [25] later criticized the Kratka method for not being

mathematically well-posed and scale invariant and presented the following alternative

version:

σ2
JS(t, S, VSS) = σ2

0

[
1 + µ(S

∂2V

∂S2
)

1
3

]
(1.28)

where µ = 3
(
κ2R
2π

) 1
3
. κ ≥ 0 (denoted C in [25]) is the transaction cost from the Leland

model and the risk premium coefficient R ≥ 0 represents the marginal value of the in-

vestor’s exposure to risk. More precisely, the change in the portfolio value arising from

risk from the volatility of the portfolio per unit asset price and per unit time ( ∆Π
S∆t) is

modelled by RVar(∆Π/S)
∆t , Var being the variance. Jandačka and Ševčovič model [25]

solves the nonlinear Black-Scholes problem by first deriving a quasilinear parabolic PDE

for H = S ∂
2V
∂S2 and solving this with a semi-implicit in time finite difference scheme and

then plugging the numerical values of H into the exact solution for the standard Black-

Scholes problem with constant volatility and integrating numerically using a trapezoidal

quadrature. Kútik and Mikula [28] proposed a Crank-Nicolson-type scheme for the solu-

tion of the quasilinear H-equation from Jandačka and Ševčovič model [25] and compared

it to the semi-implicit scheme in that paper. They found 2nd order convergence of the

Crank-Nicolson scheme against linear convergence of the semi-implicit scheme.

1.2.3 Barles and Soner model

As for the RAPM, Barles and Soner [4] considers both transaction cost and risk from

volatile portfolios. They start commenting on the Leland number that the size of the

constant
√

2
π is really irrelevant for the argument and may be replaced by any constant

c without changing the argument thus basically validating all the different Leland con-

stants in use. Then a different approach based on utility maximization is introduced
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resulting in the following adjustment of the volatility:

σ2
BS(t, S, VSS) = σ2

0

[
1 + Ψ

(
er(T−t)κ2RS2∂

2V

∂S2

)]
(1.29)

where κ is the Leland transaction cost (denoted µ in [4]) and R is a risk aversion factor

(denoted γ in [4]) and probably similar to the risk premium coefficient in Jandačka and

Ševčovič model [25]. Finally Ψ(x) is the solution of the nonlinear ODE

Ψ′(x) =
Ψ(x) + 1

2
√
xΨ(x)− x

, x 6= 0 (1.30)

with the initial condition Ψ(0) = 0. In appendix A of [4] the existence of a unique

continuous viscosity solution to this problem has been shown. It is also shown that

σ2
BS ≥ 0 i.e. that the adjustment factor to σ2

0 is nonnegative for any argument of Ψ. For

the numerical experiments an unspecified explicit time stepping finite difference scheme

is used with small time steps near maturity (t = T ) and larger time steps away from

maturity. Lesmana and Wang [31] present numerical results for the Barles and Soner

model using instead an implicit first order time stepping and upwind asset price stepping

finite difference method.

1.2.4 Feedback and illiquid market

Frey et al [16, 14, 15] do not consider transaction cost but look at the effects of assuming

that the asset price depends on the hedging strategy (feedback) applied in an illiquid

market with dynamic hedging. They argue for the nonlinear volatility model

σ2
FP (t, S, VSS) =

σ2
0(

1− ρλ(S)S ∂
2V
∂S2

)2 (1.31)

where ρ > 0 is a constant and λ(S) > 1 is a strictly convex function. For numerical

computations they put in cut-off’s to prevent σFP → 0 and σFP →∞:

σ̃2
FP (t, S, VSS) = σ2

0 max{α0,
1(

1−min{α1, ρλ(S)S ∂
2V
∂S2 }

)2 } (1.32)
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where α0 = 0.02 and α1 = 0.85. Liu and Yong [32] continue the work on the Frey model

but addresses also transaction cost. Frey’s ρ factor is absorbed into the λ function and

an expression for this function is given resulting in the model

σ2
LY (t, S, VSS) =

σ2
0(

1− λ(S, t)S ∂
2V
∂S2

)2 (1.33)

where λ(S, t) is given by

λ(S, t) =


γ
S (1− e−β(T−t)) for 0 ≤ S ≤ Smax

0 otherwise

where γ > 0 measures the price impact per traded share and is given the value 0.04 in the

article. β is given the value 100 in the article. Liu and Yong [32] have also established

sufficient conditions for existence and uniqueness of the solution of this generalized

Black-Scholes equation.

1.2.5 Parameterized Illiquidity Model

Bakstein and Howison [3] develop a parameterized model for illiquidity effects arising

from the discrete trading in an asset with transaction costs. Liquidity is defined via a

combination of a trader’s individual transaction cost and a price slippage impact, which

is felt by all market participants:

σ2
BH(t, S, VSS) = σ2

0

[
1 + 2λS

∂2V

∂S2
+

(
λµS

∂2V

∂S2

)2

+

(
κµ

σ0

√
δt

)2

+ 2

√
2

π

κ

σ0

√
δt

sign

(
∂2V

∂S2

)
+ 2

√
2

π
λµ2 κ

σ0

√
δt
S

∣∣∣∣∂2V

∂S2

∣∣∣∣
]
(1.34)

where λ > 0 models the market depth, which represents the elasticity of the asset price

to the quantity traded and µ > 0 models the slippage measure that transforms the

average transaction price into the next published price. Finally κ and δt are the Leland

transaction cost (denoted γ in the article) and transaction frequency. Bakstein and

Howison [3] present a model according to which the parameters are observable from

order-book data, rather than having to be estimated from market data.
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In Chapter 4 we consider the feedback and illiquid market (1.2.4) and solve this model

with Forward Euler, Backward Euler and Crank Nicolson schemes and also investigate

how choosing the right boundary (Smax) can effect on option price and numerical error

[24]. We investigate the Barles and Soner model (1.2.3) in Chapter 5. We consider some

different finite difference schemes Forward Euler, Positive preserving, Crank Nicolson,

Implicit Upwind and nonstandard finite difference mmethod for this nonlinear model

and present some comparisons of the schemes and some numerical experiments.





Chapter 2

Kα-Shifting, Rannacher Time

Stepping and Mesh Grading in

Crank Nicolson FDM for

Black-Scholes Option Pricing

Sima Mashayekhi and Jens Hugger

Abstract. Non-smooth conditions in partial differential equations cause discretization

error in numerical schemes and lead to decay in the convergence rate. Here the Kα-

shifting method is introduced for easy handling of uniform and nonuniform meshes and

for one or more singularities in the terminal condition. Combining this method with

Rannacher time stepping and mesh grading for the Crank-Nicolson Finite Difference

Method on some examples including call options, bet options and a butterfly spread is

shown to lead to higher accuracy and better convergence rate for the numerical solution.

Keywords: Black-Scholes model; Rannacher time stepping; finite difference schemes;

Crank-Nicolson scheme; European options

Subjectclass: 65M06; 65M12; 65N06; 65N12
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2.1 Introduction

We consider the well established Black-Scholes model for the pricing of a few standard

European vanilla options on a bounded domain:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − γ)S

∂V

∂S
− rV = 0 ∀(S, t) ∈ (0, Smax)× (0, T ) (2.1)

with the terminal and boundary conditions

V (S, T ) = κ(S, T ), V (0, t) = κ(0, t), V (Smax, t) ' κ(Smax, t) (2.2)

where we are using the utility function

κ(S, t) =



max{Se−γ(T−t) −Ke−r(T−t), 0} call option

max{Ke−r(T−t) − Se−γ(T−t), 0} put option

Be−r(T−t)H(S −K) bet option

max{(K + a)e−r(T−t) − Se−γ(T−t), 0}H(S −K)

+ max{Se−γ(T−t) − (K − a)e−r(T−t), 0}H(K − S) butterfly spread

(2.3)

V (S, t) is the (fair) option price for a value S of the risky asset at time t. r, σ and γ

are the market interest rate (on a risk free asset), the volatility (of the underlying risky

asset) and the dividend yield (on the risky asset) respectively. Smax >> K is the upper

bound for the computational domain in the S variable and the terminal time T is the

upper bound in the t variable. K is the Strike Price for the call and put, B the value of

the Bet and a is the distance from the strike prices K±a of the long options to the strike

price K of the two short options in the butterfly spread. H is the Heaviside function.

In this article we provide numerical solutions using the standard Crank-Nicolson (CN)

Finite Difference Method (FDM) with a few simple adaptations. Further we compute

the Greeks Delta (∆(S, t) = ∂V
∂S (S, t)) and Gamma (Γ(S, t) = ∂2V

∂S2 (S, t)) using second

order finite differences, centered in the interior points and one sided at the boundaries.

These methods are easy to program and account for the majority of the PDE-methods

in use today. The main underlying concept is that we would like to consider simple

(if possible a priori) modifications to the in practice most commonly used methods in

order to show how to improve results of these methods by simple adjustments without

abandoning the methods.
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(a) e(S, t) for call. (b) e(S, t) for bet. (c) e(S, t) for butterfly spread.

Figure 2.1: Plot of the error e(S, t) as function of S ∈ (0, Smax) and t ∈ (0, T ) for (a)
call option, (b) bet option and (c) butterfly spread with Smax ' 4K in the standard
case (T = 1, K = 1, a = 0.2, B = 0.3, r = 0.04, γ = 0, σ = 0.2 and Smax = 4K) with

the Crank-Nicolson (CN) method for a mesh with h = 0.08 and k = 0.01.

FDM’s only provide results in grid points of the finite difference subdivisions. Results

in other points are obtained by simple interpolation, typically linear but also higher

order interpolations may be used if higher degree of precision is required. This is an

issue if a value (or Greek) at a discontinuity is requested. If the discontinuity is a nodal

point, derivatives must be defined with care and if not the interpolation in the point

must be defined with care. We shall not require singularities to be nodal points since

this as we shall show may result in increased error. Instead we refer to interpolation

for such values. Using the Finite Element Method (including in the term all projection

based methods finding solutions in a finite dimensional subspace of a sufficiently smooth

function space) interpolation issues do not exist, but we shall not consider such methods

here, as they are still not very common in practice, in particular not methods with

enough smoothness to recover for example the Gamma (∂
2V
∂S2 ) since the Black-Scholes

equation naturally leads to weak solutions in H1 only offering a continuous solution V

and one weak derivative (∂V∂S ).

The discontinuities in the terminal condition or its first derivative seen in (2.2) lead

to decay in the convergence rate of most finite difference numerical schemes for “com-

putable” stepsizes h in the S-variable and k in the t-variable, see for example [46, 44].

This happens also for the Crank-Nicolson (CN) method which is the one that we shall

focus on in this article. Typical plots of the error e (CN solution minus exact solu-

tion in the nodal points) for call, bet and butterfly spread are shown in Figure 2.1,

where the dominating error concentrated around the singularity S = K or singularities
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S = K,K ± a respectively is notable. The goal of this work is to investigate how the

“size of the bump(s)” can be reduced without abandoning the CN method.

Rannacher [39] introduced a start-up procedure for Crank-Nicolson in which one or more

initial time steps are replaced by small implicit Euler time steps in order to achieve the

expected second order convergence in the follow up Crank-Nicolson method since the

order of the standard Crank-Nicolson scheme may be reduced all the way down to zero

in the case of rough terminal data. This approach, commonly known as Rannacher time

stepping, is widely adopted in financial engineering practice and hence will be considered

among the simple modifications allowed in this article.

Another approach, see [44, 38], addresses the decay in convergence order by considering

the position of the strike price K with respect to the grid points used in the method. It is

shown that having K in the middle between two nodal points in a finite difference scheme

decreases the oscillations around the strike price when compared to having K located in

a nodal point and consequently increases the accuracy of the finite difference method.

Pooley et al [38] consider another alternative for reducing error from nonsmooth terminal

conditions, namely smoothening of the terminal data either by a simple averaging over

half of the cells to the left and right of the nodal point or by a projection (an L2 projection

is suggested) onto a set of continuous piecewise linear Finite Element basis functions.

While the repositioning of a singular point can be performed a priori and hence can be

implemented in any existing code at very low cost, the smoothening methods require

reconstructing a code and thus falls outside the goal of this article to consider only

simple adjustments easily applicable to existing code. Instead they are highly relevant

when we in the future extend our work to finite element methods (see section 2.5).

It is also well known (see for example [40, 37]), that an alternative to Rannacher timestep-

ping is nonuniform (exponentially increasing) time steps (or equivalently a square root of

time variable change). Such methods show good promises even for singularities as strong

as the Dirac delta function and hence can be used also for at least some Greeks. The

method requires either a transformation of the problem or schemes accepting nonuni-

form time steps and hence falls outside the scope of this article and is relegated to future

work (see section 2.5).

In this article we introduce a shifting grid points method (Kα-shifting) which puts the

strike price at any preselected position between nodal points. In section 2.2 we explain
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in more details the Kα-shifting method for uniform and nonuniforn meshes with one or

more singularities in the terminal value and show its effect for some numerical examples.

Moreover we consider stability of the optimal choice of Kα with respect to different

parameters in the Black-Scholes equation.

In section 2.3 we compare Crank-Nicolson with and without the Kα-shifting method

and with and without Rannacher time stepping. We give results for uniform as well as

nonuniform graded meshes.

In section 2.4 we compare the orders of convergence of these four methods for option

prices and the Greeks ∆ and Γ.

Finally some concluding remarks and possible future work is discussed in section 2.5.

2.2 Kα-shifting

The Kα-shifting method addresses the significance of the location of singular points in

the terminal condition in relation to the end points of the S-elements. We consider

“reasonable” parameter values T = 1, K = 1, a = 0.2, B = 0.3, r = 0.04, γ = 0, σ = 0.2

and Smax = 4K (denoted the standard case) and solve the call, bet and butterfly spread.

(The put option is omitted since the put-call-parity makes it somewhat superfluous).

For the put, call and bet options the single singularity occurs in S = K whereas for the

butterfly spread there are 3 singularities in K − a, K and K + a.

Consider first the case of uniform meshes with step sizes h in the S-variable and k in the

t-variable and the case of one singularity in S = K. First the mesh interval containing

K (controlled by ı̃K) and the relative position of K in this interval (controlled by α) are

found from

Find ı̃K , α : K − Smin = (̃ıK + α)h̃ for some ı̃K ∈ N and 0 ≤ α < 1, (2.4)

where Smin denotes the left endpoint of the computational S-domain which is 0 in our

case, but may be 6= 0 in the generalizations of the Kα-shifting method below. Then h̃

is adjusted to h using

Find iK , h : K − Smin = (iK +Kα)h for some iK ∈ N : ı̃K ≤ iK ≤ ı̃K + 1. (2.5)
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iK is given by

iK =

⌈
K − Smin

h̃
−Kα

⌉
=

⌈
K − Smin

h̃
− α+ (α−Kα)

⌉
= dı̃K + (α−Kα)e

= ı̃K + dα−Kαe ∈ [̃ıK , ı̃K + 1], (2.6)

and hence

K − Smin = (

⌈
K − Smin

h̃
−Kα

⌉
+Kα)h⇔ h =

K − Smin⌈
K−Smin

h̃
−Kα

⌉
+Kα

. (2.7)

Note that the new S step size h is given by a simple updating formula from the known

input parameters h̃ and Kα without actually ever computing ı̃K and α. Also h is close

to h̃ since

ı̃Kh ≤ iKh ≤ K − Smin ≤ (̃ıK + 1)h̃

and (̃ıK + 2)h ≥ (iK + 1)h ≥ K − Smin ≥ ı̃K h̃

⇓
ı̃K

ı̃K + 2
h̃ ≤ h ≤ ı̃K + 1

ı̃K
h̃. (2.8)

For very coarse meshes the adjustment of the S step size may be substantial, like h
h̃
∈

[0.83, 1.1] for K situated in the 10’th interval (̃ıK = 10) but for more realistic meshes,

the adjustment is minimal, like h
h̃
∈ [0.98, 1.01] for K situated in the 100’th interval

(̃ıK = 100).

Two further adjustment must be made, that are not part of the Kα-shifting method, but

are necessary in order to adjust S = S̃max (the user requested maximal S value in the

computational domain) and t = 0 to be nodal points. First S̃max is adjusted (increased)

to Smax lying in the nodal point (in the S-variable) closest to but at least as big as S̃max

using

Smax − Smin =

⌈
S̃max − Smin

h

⌉
h ≥ S̃max − Smin. (2.9)

Finally k̃ is adjusted (reduced) to k so that t = 0 is a nodal point (in the t-variable)

using

k =
T⌈
T
k̃

⌉ ≤ k̃ and T −
⌈
T

k̃

⌉
k = 0 where

⌈
T

k̃

⌉
∈ N . (2.10)
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These adjustments (h̃ → h, S̃max → Smax and k̃ → k) are simple update formulas and

hence cheap (O(1)) that do not deteriorate the performance of the solution process and

can be performed a priory and hence used with any existing code. They may result

in slightly fluctuating errors when the requested step sizes are large and hence also the

adjustments are potentially large. For “reasonable” step sizes however the results of the

adjustments are negligible. Instead with the Kα-shifting method there are no fluctuation

in the error caused by K “moving around” inside the iK ’th interval when adjusting the

mesh interval size. This turns out to be a significant advantage in practical use, since

the error from K moving around is significant (up to a factor of more than 10 for the

maximal error).

The Kα-shifting method for uniform meshes easily generalizes to more than one singu-

larity. Just divide the S domain into patches each containing one of the singularities.

For each patch — starting from the left with the patch containing S = 0 — compute the

adjusted step size and adjust the right endpoint of the patch to be a nodal point with

the adjusted step size. In (2.4)–(2.9) just use the left patch endpoint as Smin, the right

endpoint of the patch as S̃max and the adjusted right endpoint of the patch as Smax.

For small requested stepsize h̃ all the actual stepsizes will be very close in size, so that

even uniform finite difference approximations will give good results in particular because

patch boundaries are situated in areas where the computed solution is almost linear, but

otherwise nonuniform finite differences across the patch boundaries may be used. The

only issue is that for more than one singularity the method cannot be performed entirely

a priory since it requires the ability to work with slightly different stepsizes in different

parts of the domain and preferably also with nonuniform finite difference approximations

across the patch boundaries, which a standard uniform mesh code will not be able to

handle.

For nonuniform meshes constructed by a grading function the idea would be the following

for a single singularity in S = K: If K is contained in the element number [SiK , SiK+1[

then simply relocate this element without resizing it to say [S0, S1[ so that K moves into

Kα-position in the element. This relocation is then followed by a uniform scaling of the

rest of the elements. The global scaling factors sK− and sK+ for the elements before

and after K respectively are given by

sK− =
S0 − Smin

SiK − Smin
, sK+ =

Smax − S1

Smax − SiK+1
, (2.11)
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so that the size of all elements before K are multiplied by sK− and the size of all

elements after K are multiplied by sK+. A simpler alternative would be simply to use

the Kα-shifting method for uniform meshes on the uniform mesh being graded. For small

elements the grading function will be sufficiently close to linear to put the singularity

close enough to the Kα-position.

For adaptively constructed nonuniform meshes with one singularity in S = K the idea

would be very similar to the first one for the grading function approach: If the element

[Sı̂K , Sı̂K+1[ containing K in Kα-position is up for subdivision — let us for simplic-

ity say uniform splitting into two equal elements — then the new elements are con-

structed, and the new element [SiK , SiK+1[ containing K (either [Sı̂K ,
Sı̂K+Sı̂K+1

2 [ or

[
Sı̂K+Sı̂K+1

2 , Sı̂K+1[) is relocated (but not resized), say to [S0, S1[ so that K is again in

Kα-position in this element. This relocation is followed by global scalings of the elements

to the left and right as for the grading function approach, using the scaling factors sK−

and sK+ defined in (2.11).

If finally N > 1 singularities are present with nonuniform meshes then N patches each

containing exactly one singularity are constructed and each patch is scaled with indi-

vidual scaling factors moving from the left to the right. If the nonuniform meshes are

created with a grading function, the simple approach also generalizes. Just use the Kα-

shifting method for uniform meshes with several singularities explained above on the

uniform mesh being graded.

Turning to the computational examples, instead of using h̃, k̃ and S̃max we shall use

the notation h ' . . ., k ' . . . and Smax ' . . . to account for the adjustments. For given

values of all parameters we compute maximal absolute solution errors at time t = 0 over

all S nodal points S1, . . . , SM as

E0
V = max

i=1...,M
|VFDM (Si, 0)− V BS(Si, 0)| (2.12)

where VFDM (Si, 0) is the computed finite difference solution in the nodal point S =

Si and t = 0 and V BS(Si, 0) is the exact (Black-Scholes) solution in the same point.

Similarly we define the maximal absolute errors E0
∆ and E0

Γ for the Greeks ∆ and Γ.

In Figure 2.2 we show the maximal absolute solution errors E0
V (Kα) at time t = 0 for

two different sets of step sizes (h, k) ' (0.08, 0.01) and (h, k) ' (0.03, 0.001) and as a
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(a) E0
V (Kα) for call with the coarse mesh. (b) E0

V (Kα) for call with the fine mesh.

(c) E0
V (Kα) for bet with the coarse mesh. (d) E0

V (Kα) for bet with the fine mesh.

Figure 2.2: Maximal error E0
V (Kα) at time t = 0 as function of Kα ∈ [0, 1] for call

and bet options in the standard case solved with CN using the coarse mesh (h, k) '
(0.08, 0.01) and the fine mesh (h, k) ' (0.03, 0.001).

function of 41 different Kα-values uniformly distributed from 0 to 1 for the call and

the bet option solution values. When Kα = 0 or 1 (or whenever S = K is a nodal

point) it becomes a numerical issue how to define V (K,T ) for the bet option. After

some experimentation we have decided to use the convention V (K,T ) = 0 for Kα < 0.5

and V (K,T ) = B for Kα ≥ 0.5 giving the smoothest graphs. We are interested in K̂α,

the optimal Kα, minimizing E0
V over all values of Kα ∈ [0, 1[. K̂α = 0.27 turns out to

be the optimal choice for the call option at time t = 0 (see Figures 2.2(a) and 2.2(b))

varying from 0.280 for the coarse mesh to 0.264 for the fine mesh when computed with

1001 uniformly distributed Kα-values from 0 to 1. Also we observe that the symmetric
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position Kα = 1−0.27 is quite good, and actually the entire interval (0.2, 0.8) gives good

results (at most the double maximal absolute solution error compared to the optimal

location). The general conclusion is that for the call option (and similarly for the put)

the strike price K should under no circumstances be located close to a nodal point.

Figures 2.2(c) and 2.2(d) show that K̂α = 0.50 is the optimal choice for the bet option

at time t = 0, varying from 0.508 for the coarse mesh to 0.504 for the fine mesh when

computed with 1001 Kα-values. Unsurprisingly K̂α = 0.50 is optimal also when solving

with graded meshes. Hence the best location for the strike price is in the middle between

two consecutive nodal points. The interval where the maximal error is at most the double

of the optimal error is (0.4, 0.6) and hence significantly smaller for the bet option than for

the call. Also the price for locating the strike price closer to a nodal point is significantly

bigger for the bet than for the call option. The general conclusion is that for the bet

option the strike price K should under no circumstances be located close to a nodal

point.

Figure 2.3 shows the maximal absolute errors at time t = 0 for the Greeks ∆ and Γ for

the call and bet options with the fine mesh (h, k) ' (0.03, 0.001) and for 41 different Kα-

values uniformly distributed from 0 to 1. Computing with 1001 uniformly distributed

Kα-values from 0 to 1 we get the following optimal K̂α-values: For the call option

K̂α = 0.00 and K̂α = 0.33 for the Delta and Gamma respectively. Note however, that

the value of Kα is of little importance for the Greeks of the call option, all minimal

errors lying within a factor significantly below 2 from the smallest value. For the bet

option K̂α = 0.51 and K̂α = 0.53 for the Delta and Gamma respectively. For the bet

option the value of Kα is important also for the Greeks, the factor two interval being

as small as [0.48, 0.58]. Concluding, for the bet option Kα = 0.5 is the sensible choice

for both the value, the Delta and the Gamma, whereas for the call Kα should be picked

in the interval [0.2, 0.8] and might be picked at Kα = 0.5 without an increase of more

than a factor 2 in the maximal error for the value, the Delta and the Gamma. The

small irregularities visible in Figures 2.2–2.3 (for the coarse mesh solution of the call

at Kα ' 0.5 and for the fine mesh solutions of the call Greeks at Kα ' 0.35) originate

from various numerical “issues” related to the computation of either numerical or exact

values. Since the irregularities do not influence the conclusions we have not investigated

the exact causes in each case.
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(a) E0
∆(Kα) for call with the fine mesh. (b) E0

Γ(Kα) for call with the fine mesh.

(c) E0
∆(Kα) for bet with the fine mesh. (d) E0

Γ(Kα) for bet with the fine mesh.

Figure 2.3: Maximal error E0
∆(Kα) and E0

Γ(Kα) at time t = 0 for the Greeks ∆ and
Γ for the call and bet options as function of Kα ∈ [0, 1] in the standard case solved

with CN using the fine mesh (h, k) ' (0.03, 0.001).

The butterfly spread requires 3 optimal Kα-values denoted K̂1
α, K̂2

α and K̂3
α for the

singularities K − a, K and K + a respectively. The corresponding 3 patches are chosen

a priori as [0,K − a
2 ], [K − a

2 ,K + a
2 ] and [K + a

2 , S̃max] and then adjusted by the

Kα-shifting method. For different values of N we have computed with N each of K1
α-

, K2
α- and K3

α-values uniformly distributed in [0, 1] for a total of N3 cases. Also we

have computed for the coarse as well as for the fine mesh as defined above. Given

the 3-dimensional parameter space (K1
α,K

2
α,K

3
α) ∈ [0, 1]3 visualization of the results is

somewhat challenging, so here we only show the results in tabular form in Table 2.1.

For comparison we have also in Table 2.1 given the errors for the two most likely cases
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Table 2.1: Optimal Kα-values for solution, ∆ and Γ for the butterfly spread in the
standard case solved with CN using the coarse mesh (h, k) ' (0.08, 0.01) and the fine

mesh (h, k) ' (0.03, 0.001).

Mesh No. Kα’s K̂1
α K̂2

α K̂3
α minKα E

0
V (Kα)

maxKα E
0
V (Kα)

minKα E
0
V (Kα)

1 0.00 0.00 0.00 0.016762 1
1 0.50 0.50 0.50 0.009338 1

Coarse V 113 0.50 0.33 0.33 0.000765 34.928762
213 0.55 0.30 0.20 0.000622 46.712522
413 0.53 0.28 0.18 0.000595 49.446807

1 0.00 0.00 0.00 0.004325 1
1 0.50 0.50 0.50 0.001495 1

Fine V 113 0.60 0.50 0.40 0.000105 93.523044
213 0.60 0.50 0.40 0.000105 93.523044
413 0.50 0.38 0.25 0.000091 −a

1 0.00 0.00 0.00 0.114845 1
1 0.50 0.50 0.50 0.039337 1

Coarse ∆ 113 0.40 0.00 0.60 0.008357 29.840102
213 0.45 0.05 0.65 0.008320 30.770937
413 0.38 0.00 0.65 0.007997 34.449918

1 0.00 0.00 0.00 0.020239 1
1 0.50 0.50 0.50 0.006166 1

Fine ∆ 113 0.20 0.00 0.80 0.001466 24.887289
213 0.30 0.10 0.85 0.001354 26.942537
413 0.28 0.08 0.85 0.001333 −a

1 0.00 0.00 0.00 0.385213 1
1 0.50 0.50 0.50 0.186919 1

Coarse Γ 113 0.40 0.10 0.90 0.116449 6.817861
213 0.40 0.10 0.85 0.108821 7.503789
413 0.40 0.10 0.85 0.108821 7.848675

1 0.00 0.00 0.00 0.086126 1
1 0.50 0.50 0.50 0.030656 1

Fine Γ 113 0.50 0.30 0.00 0.017846 6.569529
213 0.55 0.35 0.05 0.017247 7.348245
413 0.53 0.35 0.10 0.016665 −a

aOnly selected subintervals of Kα are computed.

Kα = [0, 0, 0] which would likely occur if no thought is given to the location of the

singularities (typically integer multiple of decimal steplengths) and Kα = [0.5, 0.5, 0.5]

which would likely occur if it was decided to put the singularities in a fixed position

different from nodal points without considering optimality of the position. First of all

the results show that Kα-optimization gives a significant reduction with a factor from

5 to 30 in the error in the solution, ∆ and Γ when compared to selecting Kα = [0, 0, 0].

When compared to Kα = [0.5, 0.5, 0.5] we still record a significant reduction in the error
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with an improvement of more than a factor 10 for the solution, less but still with a factor

of about 5 for the ∆ and least but still with a factor of around 2 for the Γ. This confirms

our previous results that the Kα-optimization is less important for the Greeks than for

the solution. For Γ basically any selection of Kα apart from putting the singularities in

(or close to) nodal points is good.

All the results of this section indicate that positioning the strike price near the middle

of a mesh interval might be a good although conservative approach giving reasonable

results for many options. If looking for the very best the positioning of the strike price

must be taking into consideration also the type of option.

For the Kα-optimization to be useful in practice it would need to be fairly stable against

variations in the parameters. So next we investigate whether the conclusions depend on

the particular selection of model parameters above. Here interest rate r and volatility

σ are deemed the most important parameters, whereas T , B and K basically can be

considered scaling parameters without much significance and the dividend yield γ is

expected to behave like some sort of additional interest rate, a constant γ not creating

new features by itself. Hence in the following two subsections we shall consider variations

of the optimal Kα with interest rate r and volatility σ respectively.

2.2.1 Stability of Kα with respect to the interest rate

We redo the computations from Figure 2.2 only adding a third axis with the interest rate

r ∈ [−0.1, 0.1]. Negative interest rates are considered since interest rates in Europe has

fallen very close to zero after the financial crisis in 2010 and there has been discussions of

whether negative interest rates were necessary in order to spawn investment in “growth”

i.e. in risky assets.

Two typical results for the fine mesh are shown in Figure 2.4 where we have computed

with equidistant r-values with the same difference 0.025 as is used for the Kα-values.

For the call option the optimal Kα is situated in (0.2, 0.3) ∪ (0.7, 0.8). Further a Kα in

the extended interval (0.2, 0.8) only changes the minimal error for the call option by a

factor of up to 2 whereas a Kα outside this interval may change the minimal error for

the call option by a factor of up to 4.
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(a) E0
V (Kα, r) for call with the fine mesh. (b) E0

V (Kα, r) for bet with the fine mesh.

Figure 2.4: Maximal error E0
V (Kα, r) at time t = 0 as function of Kα ∈ [0, 1] and

r ∈ [−0.1, 0.1] for (a) the call and (b) the bet option in the standard case except for r
solved with CN using the fine mesh (h, k) ' (0.03, 0.001).

For the bet option the optimal Kα is situated in (0.45, 0.55) and any Kα in this interval

only changes the minimal error for the bet option by a factor of up to 2 whereas a Kα

outside this interval may change the minimal error for the bet option by a factor of up

to 10.

Summing up, the conclusions from section 2.2 hold for all values of r and t. A reasonable

conservative choice is to pick Kα = 0.5, but for the call option a more refined choice

would be to select Kα = 0.725 for negative interest rates and 0.275 for positive interest

rates. Especially for the bet option a selection of Kα = 0 is somewhat disastrous and

should be avoided whether by choice or accident.

2.2.2 Stability of Kα with respect to the volatility

We redo the computations from Figure 2.2 this time adding a third axis with the volatility

σ ∈ (0.1, 0.4). Two results are shown in Figure 2.5. The conclusions are the same as

before: For the call option the optimal Kα shift for some σ-values from a “lower” value

close to the 0.275 observed typically for small values of σ to an “upper” value close to the

symmetric value 0.725 = 1− 0.275 observed typically for large values of σ. The optimal

Kα is situated in (0.1, 0.3) ∪ (0.7, 0.9). Further a Kα in the extended interval (0.1, 0.9)

only changes the minimal error for the call option by a factor of up to 2 whereas a Kα

outside this interval may change the minimal error for the call option by a factor of up

to 4.
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(a) E0
V (Kα, σ) for call with the fine mesh. (b) E0

V (Kα, σ) for bet with the fine mesh.

Figure 2.5: Maximal error E0
V (Kα, σ) at time t = 0 as function of Kα ∈ [0, 1] and

σ ∈ [0.1, 0.4] for (a) the call and (b) the bet option in the standard case except for σ
solved with CN using the fine mesh (h, k) ' (0.03, 0.001).

The optimal Kα for the bet option is still located solidly in 0.5 except for a few cases

with small σ, and for Kα ∈ (0.4, 0.6) the maximal error is at most the double of the

minimal value of the maximal error, whereas a Kα outside this interval may change the

minimal error for the bet option by a factor of up to 10.

Summing up, the conclusions from section 2.2 hold for all values of σ and r. A reasonable

conservative choice is to pick Kα = 0.5, but for the call option a more refined choice

would be to select Kα = 0.725 for large volatilities and 0.275 for small volatilities.

Especially for the bet option a selection of Kα = 0 is somewhat disastrous and should

be avoided whether by choice or accident.

2.3 Kα-shifting, Rannacher time stepping and mesh grad-

ing

Recall Figure 2.1 showing the CN error as a function of S ∈ (0, Smax) and t ∈ (0, T ). In

this section we focus on reducing the size of the “bump” in the error close to S = K for

all values of t ∈ (0, T ). As in section 2.2 we consider the 2D-slice t = 0 but limit to the

bet option with its larger error and hence bigger room for improvement than the call

option. We shall investigate the error in the Greeks ∆ and Γ as well as the error in the

solution and compare the base results for the standard CN method to results obtained

with CN with a Rannacher startup phase [CNR], CN with the optimal Kα [CNKα] and
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a new combination of CN with both a Rannacher startup phase as well as the optimal

Kα [CNRKα]. We compute with a uniform mesh but for the solution errors we also

show results computed with a nonuniform mesh (method suffix GS for Grid Stretching,

eg. CNGS) created with the mesh grading transformation

S(x) = K +
1

b
sinh(c1(1− x) + c2x) with

 c1 = arc sinh(−bK)

c2 = arc sinh(b(Smax −K))
(2.13)

changing a uniform mesh in x ∈ [0, 1] with stepsize dx into a nonuniform mesh in

S ∈ [0, Smax] (See more details in Appendix 2.A). The grading of the S-mesh depends

on the grading parameter b which we take to b = 15 (see [44, 36, 43]). The maximal

absolute solution error (see (2.12)) with nonuniform meshes is denoted E0
V,nu.

We consider the Rannacher method in the form where the first iteration of the Crank-

Nicolson method is replaced by four quarter-timesteps of the implicit Euler scheme. Giles

et al [17] have shown that four quarter-timesteps of the implicit Euler method replacing

the first CN step is more accurate than replacing the first two CN steps by four half-

timesteps of implicit Euler due to a reduction of the low wavenumber error introduced

by the Rannacher startup. Giles et al do so using an x = logS transformation of the

S-variable and no transformation of the time variable giving a reasonable expectation

that the conclusion will hold also without the transformation of the S-variable which we

shall not apply here. Moreover Giles et al have shown that choosing λ? = kσ
h
√

2T
∈ [0.5, 1]

causes maximum accuracy for a given computational cost. This result is not expected

to carry over to our case but keeping λ∗ the same as in the Giles et al paper gives a good

basis for comparison since logS is almost linear in the most interesting region around

S = K = 1.

For comparison we consider the same parameter values as chosen by Giles et al [17]:

T = 2, K = 1, B = 0.3, r = 0.05, γ = 0, σ = 0.2 and Smax ' 5K (denoted the

Giles case). Also we take λ? = 0.5 corresponding to k = 5h and h = 0.01. (For the

nonuniform meshes dx = 0.01/Smax to get the same number of elements in S). While h

and k are not disclosed in [17], it is evident from [17, Fig. 1-2] that also they do consider

the worst possible case (Kα = 0). In Figures 2.6–2.9 we show the solution, Delta and

Gamma errors at time t = 0 for the bet option with CN, CNR, CNKα and CNRKα.
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(a) enu(S, 0) for bet with CNGS. (b) enu(S, 0) for bet with CNRGS.

(c) enu(S, 0) for bet with CNKαGS. (d) enu(S, 0) for bet with CNRKαGS.

Figure 2.6: Solution error enu(S, 0) at time t = 0 as function of S ∈ (0, Smax)
with a mesh graded by (2.13) with b = 15 for the bet option in the Giles case with
dx = 0.01/Smax and k = 0.05 solved with (a) CNGS with Kα = 0, (b) CNRGS with

Kα = 0, (c) CNKαGS with Kα = 0.5 and (d) CNRKαGS with Kα = 0.5.

In Table 2.2 the maximal errors of the various cases considered in Figures 2.6–2.9 are

listed.

The results show two features: A high frequency oscillation and a “bump” both occurring

near S = K. For the standard CN method the oscillations are fairly small compared

to the bump for the solution error, sizable for the ∆ error and all dominating for the

Γ error. Rannacher startup completely removes the oscillations for the solution and ∆

error and very significantly reduces the oscillations for the Γ. Instead Rannacher startup

does nothing to reduce the “bump”. The Kα method reduces the size of the “bump”
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(a) e(S, 0) for bet with CN. (b) e(S, 0) for bet with CNR.

(c) e(S, 0) for bet with CNKα. (d) e(S, 0) for bet with CNRKα.

Figure 2.7: Solution error e(S, 0) at time t = 0 as function of S ∈ (0, Smax) for the
bet option in the Giles case with h = 0.01 and k = 5h solved with (a) CN with Kα = 0,

(b) CNR with Kα = 0, (c) CNKα with Kα = 0.5 and (d) CNRKα with Kα = 0.5.

but does not remove the oscillation like the Rannacher startup. Finally it is seen how

adding the Kα-optimization together with the Rannacher startup completely removes

the oscillatory part of the solution and ∆ error and significantly reduces it for the Γ

error. On top of this the size of the bump is significantly reduced for both solution,

∆ and Γ error. For the total error for the CNRKα-method, including oscillation and

bump, the maximal solution error is reduced by a factor of 100 with respect to the CNR

solution error. This factor reduces to 44 for the Delta error and 10 for the Gamma

error, but in all cases the reduction is at least an order of magnitude. These factors

are computed from Table 2.2. It should be noted that our results for CN and CNR are
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(a) e∆(S, 0) for bet with CN. (b) e∆(S, 0) for bet with CNR.

(c) e∆(S, 0) for bet with CNKα. (d) e∆(S, 0) for bet with CNRKα.

Figure 2.8: Delta error e∆(S, 0) at time t = 0 as function of S ∈ (0, Smax) for the bet
option in the Giles case with h = 0.01 and k = 5h solved with CN with Kα = 0 (a),

CNR with Kα = 0 (b), CNKα with Kα = 0.5 (c) and CNRKα with Kα = 0.5 (d).

completely consistent with those of [17, Fig. 2].

After establishing the merit of the CNRKα-method for the bet option for one mesh, we

turn to the question of whether this is just a very particular case? So we solve for both

the call and the bet option with a number of different values of h ∈ [0.002, 0.1] in the

Giles case. Also we again take λ? = 0.5 corresponding to k = 5h. For the Kα-shifting

methods we use Kα = 0.275 for the call option and Kα = 0.5 for the bet option. For

the non Kα-shifting methods actually we take Kα = 0 to show some sort of “worst case

scenario”. For the “true” non Kα-shifting methods, the error will fluctuate erratically
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(a) eΓ(S, 0) for bet with CN. (b) eΓ(S, 0) for bet with CNR.

(c) eΓ(S, 0) for bet with CNKα. (d) eΓ(S, 0) for bet with CNRKα.

Figure 2.9: Gamma error eΓ(S, 0) at time t = 0 as function of S ∈ (0, Smax) for the
bet option in the Giles case with h = 0.01 and k = 5h solved with (a) CN with Kα = 0,

(b) CNR with Kα = 0, (c) CNKα with Kα = 0.5 and (d) CNRKα with Kα = 0.5.

Table 2.2: The maximal solution, Delta and Gamma errors over S ∈ (0, Smax) at time
t = 0 for the bet option in the Giles case with h = 0.01 and k = 5h (dx = 0.01/Smax,
for E0

V,nu) solved with CN with Kα = 0, CNR with Kα = 0, CNKα with Kα = 0.5 and
CNRKα with Kα = 0.5

Methods E0
V,nu E0

V E0
∆ E0

Γ

CN 0.113659 0.00255428 0.0258461 24.9258
CNR 9.11740e-05 0.00191539 0.00580019 0.0303068
CNKα 0.113888 0.000743987 0.0268447 27.4361
CNRKα 5.48878e-06 1.71763e-05 0.000132096 0.00298739
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between this worst case scenario curve and the curve for the optimal Kα depending on

whether the actual Kα is far from or close to optimal.

Apart from uniform meshes we also compute for nonuniform meshes created with the

mesh grading function (2.13) indicated with a [GS] for grid stretching after the acronym

for the method. As above, for the nonuniform meshes we take dx = h/Smax to get the

same number of elements in S and k = 5h. In order to visualize the wide intervals of

h-values and corresponding maximal errors we show the results on double logarithmic

scales. Instead of showing plots of the errors for all values of S ∈ (0, Smax) at t = 0 as

we did in Figures 2.6–2.9 we now only show maximal errors over S ∈ (0, Smax) at t = 0

in Figure 2.10.

It is seen, that Rannacher time stepping is essential in order to obtain convergence

and for all cases Rannacher time stepping combined with mesh grading decreases the

error although not the order of convergence. Rannacher time stepping combined with

Kα-optimization is clearly the better choice when it comes to order of convergence

and combining also with mesh grading decreases the error further without increasing

the order of convergence. Hence only the CNRKα- and CNRKαGS-methods can be

recommended for general use. The CN, CNR and CNKα-methods (with or without

mesh grading) must be considered unsuited for general use even though of course they

can be used in particular cases especially if only limited precision is required. The

conclusion is, that the CNRKαGS-method is the overall winner as a general method for

computing solution, Delta and Gamma values for put, call and bet options.

Our results for the call option in the left column of Figure 2.10 for CN and CNR are

very similar in structure to those of Giles et al [see 17, Fig. 3]. In reality, the Giles et al

results more resemble our results for CNKα and CNRKα. For the bet option shown in

the right column of Figure 2.10 it is even more clear, that it is our results for CNKα and

CNRKα that are comparable with the Giles et al results for CN and CNR [see 17, Fig.

4]. A personal communication with Mike Giles reveals that Giles et al [17] as a matter

of fact consistently did use stepsizes putting the strike either in a nodal point [see 17,

Fig. 1-2] or in the middle of a mesh interval [see 17, Fig. 3-4].
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(a) Call maximal error. (b) Bet maximal error.

(c) Delta call maximal error. (d) Delta bet maximal error.

(e) Gamma call maximal error. (f) Gamma bet maximal error.

Figure 2.10: Maximal solution (a)-(b), ∆ (c)-(d) and Γ (e)-(f) errors at time t = 0
as function of h ∈ (0.002, 0.1) for the call option with Kα = 0.275 for the Kα methods
and Kα = 0 for the non Kα methods (left column) and bet option with Kα = 0.500 for
the Kα methods and Kα = 0 for the non Kα methods (right column) in the Giles case
with k = 5h and dx = h/Smax for graded meshes. Each plot is showing error curves
E0
V , E0

∆ or E0
Γ respectively for uniform meshes for the 4 methods CN, CNR, CNKα

and CNRKα and error curves E0
V,nu, E0

∆,nu or E0
Γ,nu respectively for graded meshes for

the 4 methods CNGS, CNRGS, CNKαGS and CNRKαGS.
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2.4 Order of Convergence

For problems without degenerations and singularities the maximal error with the Crank-

Nicolson method should converge to zero as O(h2) + O(k2) but the singular terminal

conditions are known to decrease the orders of convergence for “computable” step sizes.

The loss of convergence order is bigger the worse the singularity is and hence we focus

on the bet option showing results for the error in the solution, the ∆ and the Γ, the

latter having the strongest singularity.

Figure 2.11 shows the maximal solution errors at time t = 0 for the bet option with

logarithmic axes. The results are provided for the Giles case with h ∈ (2−8, 2−3) and

k ∈ (10−0.2, 10−1.7). For the CN and CNKα methods the (h, k)-plane is clearly divided

into two regions with different behavior of the error: In one part a reduction in k reduces

the error whereas a reduction in h increases the error. This part will be denoted the

bubble. The rest of the (h, k)-plane is denoted the asymptotic part. The CNR and

CNRKα methods show no bubble part, only the asymptotic part. In order to estimate

convergence orders in both h and k independently we use a weighted least squares fitting

of the computational errors E0
V of the form

min
a,b,α,β

∑
i,j

wi,j · ((E0
V )i,j − (a · hαi + b · kβj ))2. (2.14)

The stepsizes are recorded so that they decrease with increasing index, i.e. hi+1 ≤ hi

and kj+1 ≤ kj , and the simple weight function wi,j = i · j putting higher weight on

smaller step sizes is applied. Obviously selecting a different weight function may change

the results somewhat. Separate fittings are made for the bubble and asymptotic parts.

In the least squares minimizations the side conditions 0 ≤ a, 0 ≤ b, 0 ≤ α ≤ 3 and

0 ≤ β ≤ 3 are imposed. In a few cases β > 2. In these cases β is restricted to 0 ≤ β ≤ 2

and the least squares fitting is repeated. If the maximal fitting error is not increased on

the leading digit, then the latter result is selected. The following convergence orders are
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(a) E0
V for bet with CN. (b) E0

V for bet with CNR.

(c) E0
V for bet with CNKα. (d) E0

V for bet with CNRKα.

Figure 2.11: Maximal error E0
V over S ∈ (0, Smax) at time t = 0 as function of the

step sizes h = dS and k = dt for the bet option in the Giles case for (a) CN (Kα = 0),
(b) CNR (Kα = 0), (c) CNKα (Kα = 0.5) and (d) CNRKα (Kα = 0.5)

computed for the error in the bet option:

E0
V [CN ] '

 0.5 · k0.5 bubble

0.7 · h1.1 + 0.002 asymptotic

E0
V [CNR] ' 0.7 · h1.0 + 0.001 · k0.5

asymptotic

E0
V [CNKα] '

 0.6 · k0.7 bubble

0.4 · h1.9 asymptotic

E0
V [CNRKα] ' 0.4 · h1.9 + 0.005 · k2.0

asymptotic (2.15)

Similar computations are performed for the Delta and Gamma errors of the bet option
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but the convergence plots look very similar in structure to Figure 2.11 and are not shown

here. Instead the approximate convergence results are given. The Delta errors for the

bet option are computed as

E0
∆[CN ] '

 77 · k0.7 bubble

1.0 · h0.8 asymptotic

E0
∆[CNR] ' 1.1 · h0.9 + 0.06 · k2.0

asymptotic

E0
∆[CNKα] '

 77 · k0.7 bubble

3.6 · h1.9 asymptotic

E0
∆[CNRKα] ' 3.7 · h1.9 + 0.004 · k2.0

asymptotic (2.16)

and the Gamma errors for the bet option are computed as

E0
Γ[CN ] '

 36000 · k0.3 bubble

8.0 · h0.9 + 0.9 · k2.0 asymptotic

E0
Γ[CNR] ' 7.9 · h1.0 + 1.0 · k1.2

asymptotic

E0
Γ[CNKα] '

 35000 · k0.3 bubble

18.3 · h1.7 + 1.6 · k2.0 asymptotic

E0
Γ[CNRKα] ' 17.0 · h1.7 + 0.03 · k0.9

asymptotic (2.17)

We see evidence that the CN and CNR methods are missing one order of convergence in

h i.e. in the S-direction. The convergence in k i.e. in the t-direction is quite imprecise.

Because of the small coefficient the term is only visible for large values of k where the

results are maybe not even in the asymptotic range. The CNKα and CNRKα methods

reestablishes (almost) full quadratic convergence in h (1.9 for solution and ∆ errors and

1.7 for Γ error). The convergence in k is also for these methods “problematic”, but

somewhat better than for the methods without Kα optimization.

Similar calculations for the call option results in the same conclusion only with a more

perfect recovery of the optimal results since the singularity for the call option is weaker

than for the bet option. Hence again, the CNRKα method must be the one recommended

for general use.
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2.5 Conclusions and future work

We investigated the Crank-Nicolson finite difference method [CN] and simple improve-

ments for European vanilla options (put, call, bet and butterfly spread).

We proposed the Kα method for uniform and nonuniform meshes with one or more

singularities in the terminal condition and tested it with good results for uniform and

graded meshes with 1 or 3 singularities.

We found that the Rannacher start up method removes high frequency oscillations in

the CN-solution, Delta and Gamma error around the “bump” in the maximal error (see

Figure 2.1) and partially reestablishes the optimal second order convergence in the t-

direction of the CN method. Instead it does not decrease the size of the error bump or

improve the order of convergence in the S-direction.

The Kα method instead reduces the size of the bump in the CN-error and partially

reestablishes the optimal second order convergence in the S-direction of the CN method.

Instead it does not remove the high frequency oscillations around the bump or improve

the order of convergence in the t-direction.

The CN method with the addition of both the Rannacher and the Kα method re-

moves the high frequency oscillations around the maximal error in the solution, Delta

and Gamma and significantly reduces the size of the error bump. Further it partially

reestablishes the optimal second order convergence in the S and t-direction of the CN

method.

Finally we found that mesh grading further reduces the maximal error in all methods

without changing orders of convergence thus establishing the merit of utilizing nonuni-

form meshes in the S-variable.

The Rannacher and Kα methods can be included into any finite difference scheme with

very low cost, and is expected to give similar improvements as for the Crank-Nicolson

method.

We have also shown that the optimal Kα-values depend on the option but that they

are almost independent of the parameters (in particular of the interest r, the volatility

σ and the step sizes h and k). For the call option the optimal Kα lies in (0.2, 0.3) or

(0.7, 0.8) for the solution error but the error is not very sensitive to values of Kα in
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(0.2, 0.8). Values outside this interval may instead lead to significant increases in the

error. For the ∆ and Γ errors for the call the choice of Kα is almost insignificant but

does have an optimal value at Kα = 0 (and 1) and 0.3 respectively. For the bet option

the optimal Kα is 0.5 for the solution, ∆ as well as the Γ error and should be picked in

(0.45, 0.55). Values outside this interval may lead to significant increases in the error.

For possible future work we are planning to apply Kα-shifting to nonuniform S-grids

considering both graded meshes and adaptive meshes. We intend to do this for finite

difference grids, but also to extend to the finite element method, where theoretical results

are more easily obtained.

Also we will apply Kα-shifting to problems without closed form solutions such as Amer-

ican options, Asian options, basket options, options with variable parameters (such as σ

and γ) and options from a generalized Black-Scholes world taking into consideration for

example nonvanishing trading cost, influence from trading volume on stock prices and

other features leading to “nonlinear volatility” options.





Appendix

2.A Grid Stretching

The grid stretching transformation concentrates nodal points around non-smooth points

of initial conditions for instance the strike price for European options and leads decreas-

ing the error due to non-smoothness and then yields a better convergence rate. Hence,

this method transforms underlying asset S with strike price K in the following form:

S = φ(x) =
1

b
sinh(c2x+ c1(1− x)) +K (2.18)

where c1 = sinh−1(b(−K)), c2 = sinh−1(b(Smax −K)) are normalization constant that

cause x is a number in [0, 1] and b is a stretching parameter. Therefore Jacobian J(x)

and Hessian H(x) of the transformation giving

J(x) =
∂φ(x)

∂x
=

(c2 − c1)

b
cosh(c2x+ c1(1− x)) +K)

and

H(x) =
∂2φ(x)

∂x2
=

(c2 − c1)2

b
sinh(c2x+ c1(1− x)) +K)

By using the chain rule for the above functions,

∂V

∂S
=

1

J(x)

∂u

∂x

and

∂2V

∂S2
=

1

J(x)2

∂2u

∂x2
− H(x)

J(x)3

∂u

∂x
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Therefore Black-Scholes equation (2.1) will be transformed to the following equation

∂u

∂t
− 1

2
σ2∂

2φ(x)

∂x2

∂2u

∂S2
−

[
(r − γ)

∂φ(x)

∂x
− 1

2
σ2∂

2φ(x)H(x)

J(x)3

]
∂u

∂x
+ ru = 0

where u(x, t) = V (S, t). Figure 2.A.1 shows how the grid stretching transformation put

more nodal points around the strike price. In this figure we assumed b(the stretching

parameter) equal to 5, K = 1, Smax = 4 and the number of nodal points equal to 40.

Oosterlee et al. [36] considered keeping constant the quantity of bK especially on coarse

Figure 2.A.1: The position of nodal points Si and the difference between consecutive nodal points

with parameters K = 1, Smax = 4, b = 5 and N = 40 (the number of nodal points)

grids and they claimed bK = 15 ia an appropriate choice for a variety of option pricing

parameters.



Chapter 3

Standard Finite Difference

Schemes for European Options

Jens Hugger and Sima Mashayekhi

Abstract. Standard finite difference schemes like explicit, implicit and Crank Nichol-

son methods are used on a daily basis to solve standard European vanilla options or

small variations of such like the put, call and bet options considered here.

The first question we have considered is, just how big values Smax of the risky asset do we

need to compute with in order that errors from artificially cutting off the computations in

S = Smax does not negatively influence the results in the computational domain, when

applying the best available boundary conditions in Smax? Extensive experimentation

shows that Smax = 4K, K being the strike price, is a fairly conservative selection, valid

for most financially reasonable parameter values and all of the tested numerical methods.

The second question we have considered is that of convergence: How fast does various

numerical finite difference methods converge? Here it turns out, that the singularities in

the terminal conditions do “cost us some of the speed of convergence”, but the methods

are still converging. Within our computational domain it is possible to get errors below

0.001% for the put and call options and 0.1% for the bet option with the stronger

singularity. Instead it has not been possible to determine understandable bounds for

the stable region for the conditionally A-stable methods even though a (conservative)

curve is given for the standard case in the computational domain.

53
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The third and fourth questions we have considered are about limiting cases: Do the

numerical results when the volatility vanishes go towards the known “no volatility so-

lution”? Here the answer turns out to be affirmative. Do the numerical results when

the time approaches the expiration time for the option go towards the known “terminal

solution”? Here the answer turns out to be more questionable.

Keywords: European vanilla option, finite difference methods, Heat equation, bound-

ary value problem, discontinuous boundary condition, numerical solution

Subjectclass: 35K61, 65M06

3.1 Introduction

The classic Black-Scholes equation for pricing the European vanilla options on a bounded

domain is the following BVD:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ (r − γ)S

∂V

∂S
− rV = 0 ∀(S, t) ∈ (0, Smax)× (0, T ) (3.1)

with the terminal and boundary conditions

V (S, T ) = κ(S, T ), V (0, t) = κ(0, t), V (Smax, t) ' κ(Smax, t) (3.2)

where we are using the utility function

κ(S, t) =



max{Se−γ(T−t) −Ke−r(T−t), 0} call option

max{Ke−r(T−t) − Se−γ(T−t), 0} put option

Be−r(T−t)H(S −K) bet option

K Smax−S
Smax

e−2S−r(T−t) smoothened put

. (3.3)

V (S, t) is the option price of the underlying asset S at time t. r, σ and γ are the market

interest rate (on a risk free asset), the volatility (of the underlying risky asset) and the

dividend yield (on the risky asset) respectively. Smax >> K is the upper bound for the

computational domain in the S variable and the terminal time T is the upper bound in

the t variable. K is the Strike Price for the call and put, B the value of the Bet and H

is the Heaviside function.
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Chapter 2 shows that the computational error depends on the location of the singular

point S = K with respect to the nodal points of the mesh. So we chose Kα = 0.3 for

put and call options and Kα = 0.5 for bet option as the optimal selection of Kα.

We consider three standard finite difference schemes explicit Euler, implicit Euler and

Crank Nicolson methods for the numerical solution of (3.1–3.3) with investigation on

the following issues in sections 3.2–3.4 and then in section 3.5 we conclude the work.

1. Sensitivity to Smax: Limiting the risky asset price S to values S < Smax for some

positive asset price Smax turns out to allow only an approximated boundary condition

in S = Smax. The error generated by this inexact boundary condition turns out to be

damped away from Smax when Smax is sufficiently large.

Therefor the question is how big should Smax be selected for the error generated by the

incorrect boundary condition to not influence significantly the computational results for

the asset prices of interest?

For the standard case T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2 and a number

of stepsizes h and k in the S and t directions respectively we study the sensitivity to the

selection of Smax by computing with Smax = 1.25K, 1.5K, 2K and 4K and comparing

the errors at time t = 0. We also compute for several nonstandard cases, varying the

various parameter values, and considering only a few step sizes. The goal is to select an

Smax that “works in most cases” to be used for the remainder of the computations.

2. Convergence: For the standard case T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and

σ = 0.2, the Smax selected in (1) and the Kα selected based on chapter 2 we study the

observed convergence properties of the method by varying the stepsizes h and k in the

S and t directions respectively. The goal is to obtain observed orders of convergence.

3. Volatility limit: we check if the numerical results approximate the exact solution also

when the market volatility σ goes to zero.

lim
σ↓0

V (S, t) = V (S, t)|σ=0 = κ(S, t).

The experiments will be performed for the standard case except for σ → 0 and with the

Smax selected in (1).

4. Expiration limit: lim
t↑T

V (S, t) = V (S, T ) = κ(S, T ).

We investigate whether the singularities in κ show up in V in Ω. The experiments will

be performed for the standard case and with the Smax selected in (1).
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3.2 Numerical results for the explicit Euler method

3.2.1 Computational results for the standard case

We consider our standard case with parameter values T = 1, K = 1, B = 0.3, r = 0.04,

γ = 0 and σ = 0.2. We compute the maximal error at time t = 0 i.e.

e0 = max
1≤n≤N

|Ṽn,M − V (Sn, 0)| (3.4)

with the exact solution V (Sn, 0) given by (1.2–1.4) (and by Maple for the smoothened

put option) and where Ṽn,M have been computed with approximate stepsizes h in the

S-direction and k in the t-direction. k is adjusted to get an integer number of steps

between 0 and T and for reasons of Kα-shifting explained in Chapter 2, h is adjusted so

that K is located in a position 0.3h from the start of an S-interval (Kα = 0.3). Finally

Smax is adjusted to lie in a nodal point. Values for h, k and Smax are reported before

these adjustments. We compute with Smax ' 4K, 2K, 1.5K and 1.25K for the put

option. Based on the results for these cases we compute only with Smax ' 4K for the

call and bet options and Smax ' 30K for the smoothened put option. The resulting

maximal errors are shown in tables below. Additionally we show the initial error at

t = 0 for all values of S

e0,n = Ṽn,M − V (Sn, 0), for n = 1, . . . , N (3.5)

for the put option for h ' 0.1 and k ' 0.001 and for h ' 0.01 and k ' 0.00001 for each

selection of Smax in figures below.

To compute the errors, a 32 bit Maple code is used on a standard 64 bit notebook com-

puter running Windows 7. The computing times for each of the values in the following

tables are insignificant (up to a few seconds) apart from the last two columns taking up

to 5 minutes per entry again apart from the last error (h ' 0.001 and k ' 0.00001) tak-

ing about an hour for Smax ' 1.25 and increasing gradually to “several hours” (overnight

run) for Smax ' 4, setting the limit for how long time we allow an individual computation

to take.
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First we show computational results for the put option. We compute with Smax ' 4K,

2K, 1.5K and 1.25K and the resulting maximal errors are shown in Tables 3.2.1–3.2.4

below.

Table 3.2.1: Maximal error e0 for the put option at t = 0 with Smax ' 4K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001 .00001

.5 0.00743837 0.00713173 0.00691619 0.00673155 0.00671354 0.00671174 0.00671156

.4 0.00510416 0.00465733 0.00434556 0.00407992 0.00405408 0.0040515 0.00405124

.3 0.00330838 0.00273907 0.00280946 0.0032261 0.00326644 0.00327047 0.00327087

.2 0.00248046 0.00173754 0.00174807 0.00238843 0.00245008 0.00245622 0.00245683

.1 0.0108413 0.00193851 0.000666593 0.000495351 0.000551367 0.000556939 0.000557495
.08 0.0915953 0.0295096 0.00105769 0.000278598 0.000336479 0.000342234 0.000342809
.06 0.595397 0.663165 0.292642 0.00014363 0.000207122 0.000213432 0.000214069
.05 1.63976 4.81078 8.41182 47.2881 0.000149196 0.00015549 0.000156127
.04 6.02711 56.3561 701.131 2.24429e+12 9.42570e-05 0.000100889 0.000101557
.03 32.6835 1277.01 611264 2.79243e+26 4.89039e-05 5.54650e-05 5.61361e-05
.02 248.668 51318.3 2.01551e+09 2.34431e+47 3.95663e+184 2.55921e-05 2.62812e-05
.01 8557.03 3.06243e+07 1.73748e+15 3.81028e+93 4.85708e+779 5.9550e-06 6.7561e-06
.001 8.86874e+08 3.28432e+16 2.12565e+34 1.19895e+285 2.50670e+1998 5.58607e+18226 3.42919e+104005

Table 3.2.2: Maximal error e0 for the put option at t = 0 with Smax ' 2K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001 .00001

.5 0.00740498 0.00706996 0.00683287 0.00662891 0.00660898 0.00660699 0.00660679

.4 0.00510416 0.00465693 0.00434345 0.00407532 0.00404918 0.00404658 0.00404632

.3 0.00330838 0.00273907 0.00280946 0.00322612 0.00326647 0.00327049 0.00327089

.2 0.00248046 0.00173754 0.00174807 0.00238843 0.00245008 0.00245622 0.00245684

.1 0.0108413 0.00193851 0.000666593 0.000495351 0.000551367 0.000556939 0.000557495
.08 0.0915953 0.0295096 0.00105769 0.000278598 0.000336479 0.000342234 0.000342809
.06 0.595397 0.663165 0.292642 0.00014363 0.000207122 0.000213432 0.000214069
.05 1.63976 4.81078 8.41182 8.58571e-05 0.000149196 0.00015549 0.000156127
.04 6.02711 56.3561 701.131 5.95539e-05 9.42570e-05 0.000100889 0.000101557
.03 32.6835 1277.01 611264 1.84602e+12 4.89039e-05 5.54650e-05 5.61361e-05
.02 248.668 51318.3 2.01551e+09 2.89985e+46 1.90594e-05 2.55921e-05 2.62812e-05
.01 8557.03 3.06243e+07 1.73748e+15 3.81028e+93 3.55043e+232 8.7574e-06 8.7574e-06
.001 8.86874e+08 3.28432e+16 2.12565e+34 1.19895e+285 2.50670e+1998 9.84577e+14179 1.88245e+32710
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Table 3.2.3: Maximal error e0 for the put option at t = 0 with Smax ' 1.5K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001 .00001

.5 0.00719295 0.00706996 0.00683287 0.00662891 0.00660898 0.00660699 0.00660679

.4 0.00463336 0.00443712 0.0040623 0.00374328 0.00371226 0.00370916 0.00370886

.3 0.00294854 0.0027368 0.00280985 0.00322743 0.0032679 0.00327194 0.00327234

.2 0.00200846 0.00172792 0.00175017 0.0023947 0.00245687 0.00246306 0.00246368

.1 0.00415232 0.00193851 0.000666593 0.000657543 0.000657543 0.000657543 0.000657543
.08 0.0429848 0.0295096 0.00104401 0.00104401 0.00104401 0.00104401 0.00104401
.06 0.734071 0.663165 0.292642 0.00105242 0.00105242 0.00105242 0.00105242
.05 3.21598 4.81078 8.41182 0.000840836 0.000840836 0.000840836 0.000840836
.04 20.7412 56.3561 701.131 0.00106134 0.00106134 0.00106134 0.00106134
.03 227.045 1277.01 611264 0.000931848 0.000931848 0.000931848 0.000931848
.02 3941.24 51318.3 2.01551e+09 3.08433e+34 0.000976963 0.000976963 0.000976963
.01 562262 3.06243e+07 1.73748e+15 3.81022e+93 0.0010275 0.0010275 0.0010275
.001 5.91920e+12 3.28432e+16 2.12565e+34 1.19895e+285 2.50670e+1998 7.76348e+11971 3.24985e+25823

Table 3.2.4: Maximal error e0 for the put option at t = 0 with Smax ' 1.25K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001 .00001

.5 0.00612437 0.00612437 0.00612437 0.00612437 0.00612437 0.00612437 0.00612437

.4 0.00463336 0.00443712 0.0040623 0.00374328 0.00371226 0.00370916 0.00370886

.3 0.00278618 0.00278618 0.00286254 0.00330471 0.00334768 0.00335196 0.00335239

.2 0.00532862 0.00532862 0.00532862 0.00532862 0.00532862 0.00532862 0.00532862

.1 0.0087067 0.0087067 0.0087067 0.0087067 0.0087067 0.0087067 0.0087067
.08 0.0429848 0.0138345 0.00762432 0.00762432 0.00762432 0.00762432 0.00762432
.06 0.734071 0.663165 0.0482418 0.0080478 0.0080478 0.0080478 0.0080478
.05 3.21598 4.81078 5.36216 0.0074617 0.0074617 0.0074617 0.0074617
.04 20.7412 56.3561 677.905 0.00851633 0.00851633 0.00851633 0.00851633
.03 227.045 1277.01 611264 0.00933452 0.00933452 0.00933452 0.00933452
.02 3941.24 51318.3 2.01551e+09 1.24698e+17 0.00942338 0.00942338 0.00942338
.01 562262 3.06243e+07 1.73748e+15 8.36689e+90 0.00913899 0.00913899 0.00913899
.001 5.91920e+12 3.28432e+16 2.12565e+34 1.19895e+285 1.99598e+1989 1.26388e+10423 6.75542e+23568
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(a) FE error, coarse mesh, Smax ' 4K. (b) FE error, coarse mesh, Smax ' 2K.

(c) FE error, coarse mesh, Smax ' 1.5K. (d) FE error, coarse mesh, Smax ' 1.25K.

Figure 3.2.1: Error {e0,n}Nn=1 at t = 0 for the put option with Smax ' (a) 4K, (b)
2K, (c) 1.5K and (d) 1.25K for stepsizes h ' 0.1 and k ' 0.001 and Kα = 0.3 in the

standard case with the forward Euler method.

Next we show — still for the put option — {e0,n}Nn=1 for h ' 0.1 and k ' 0.001 and for

h ' 0.01 and k ' 0.00001 for each selection of Smax in Figures 3.2.1–3.2.2.
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(a) FE error, fine mesh, Smax ' 4K. (b) FE error, fine mesh, Smax ' 2K.

(c) FE error, fine mesh, Smax ' 1.5K. (d) FE error, fine mesh, Smax ' 1.25K.

Figure 3.2.2: Error {e0,n}Nn=1 at t = 0 for the put option with Smax ' (a) 4K, (b)
2K, (c) 1.5K and (d) 1.25K for stepsizes h ' 0.01 and k ' 0.00001 and Kα = 0.3 in

the standard case with the forward Euler method.
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Turning to the call option, the maximal error e0 at time t = 0 with Smax ' 4K for the

call option corresponding to Table 3.2.1 is shown in Table 3.2.5.

Table 3.2.5: Maximal error e0 for the call option at t = 0 with Smax ' 4K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001 .00001

.5 0.00769685 0.00728627 0.00699325 0.00673924 0.00671431 0.00671182 0.00671157

.4 0.00536264 0.00481187 0.00442263 0.00408761 0.00405485 0.00405158 0.00405125

.3 0.00356686 0.00289361 0.0027324 0.00321841 0.00326567 0.00327039 0.00327086

.2 0.00273894 0.00189207 0.001671 0.00238074 0.00244931 0.00245614 0.00245682

.1 0.018031 0.560793 554.292 0.00050304 0.000552135 0.000557015 0.000557503
.08 0.0918538 5.15677 101216. 0.000286287 0.000337248 0.00034231 0.000342816
.06 0.595656 47.3567 1.70551e+07 2.32531e+27 0.000207891 0.00021351 0.000214072
.05 1.64001 177.894 3.50119e+08 4.67393e+46 0.000149964 0.000155568 0.000156128
.04 6.02736 1085.51 2.17304e+10 3.87789e+70 9.50257e-05 0.000100965 0.000101558
.03 32.6837 13054.2 6.16465e+12 3.61905e+100 4.96718e-05 5.55403e-05 5.61268e-05
.02 248.669 281922 6.06568e+15 2.40486e+136 6.90317e+294 2.56686e-05 2.62522e-05
.01 8557.03 8.75659e+07 2.85592e+21 2.82917e+198 2.61827e+1043 6.03150e-06 6.62002e-06
.001 8.86874e+08 1.33514e+17 1.01450e+41 6.46243e+399 1.20367e+3092 3.81939e+20988 7.83496e+106762

Then looking at the bet option, the maximal error e0 at time t = 0 with Smax ' 4K for

the bet option corresponding to Table 3.2.1 and 3.2.5 is shown in Table 3.2.6. Finally

Table 3.2.6: Maximal error e0 for the bet option at t = 0 with Smax ' 4K and
Kα = 0.5 in the standard case with the forward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001 .00001

.5 0.0151327 0.0160641 0.0167154 0.0172708 0.0173249 0.0173303 0.0173308

.4 0.0151327 0.0160641 0.0167154 0.0172708 0.0173249 0.0173303 0.0173308

.3 0.0153395 0.0172512 0.0185667 0.0196757 0.0197830 0.0197937 0.0197948

.2 0.0018399 0.0056229 0.0085849 0.0110874 0.0113291 0.0113532 0.0113556

.1 0.3445796 0.2079453 274.481 0.0026521 0.0028800 0.0029027 0.0029050
.08 1.49439 0.9410296 9537.11 0.0016191 0.0018450 0.0018676 0.0018699
.06 17.5034 36.3931 6.70313e+06 4.29681e+28 0.0009594 0.0009812 0.0009833
.05 50.7228 243.656 1.34536e+08 4.18966e+47 0.0006937 0.0007136 0.0007156
.04 208.533 2878.77 7.97850e+09 1.30621e+71 0.0004343 0.0004537 0.0004556
.03 1156.695 54263.16 1.23731e+12 1.22676e+98 0.0002439 0.0002643 0.0002664
.02 14333.2 3.81941e+06 2.26010e+15 1.59028e+136 3.20829e+299 0.0001144 0.0001164
.01 914805 4.02255e+09 5.99658e+20 2.35827e+197 4.2964e+1043 0.0000272 0.0000292
.001 8.92510e+11 3.89745e+19 5.97178e+38 1.98691e+396 1.0626e+3088 3.3316e+15551 5.6970e+101379

we show computational results for the smoothened put option. Likely because of the

lack of singularity at S = K the maximal error shows a more significant dependence on

Smax. For example for the mesh h = 0.5, k = 0.3 we observe the slow decrease in the

maximal error with increasing Smax shown in Table 3.2.7. Computing with Smax ' 30K

the resulting maximal errors are shown in Table 3.2.8 below.
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Table 3.2.7: Maximal error e0 for the smoothened put option at t = 0 with different
values of Smax and in the standard case with the forward Euler method

Smax 4 8 12 20 30 40 80
e0 0.00211441 0.00194163 0.00188404 0.00183646 0.00181393 0.00180266 0.00178576

Table 3.2.8: Maximal error e0 for the smoothened put option at t = 0 with Smax '
30K in the standard case with the forward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001 .00001 0.000001

.5 0.00174456 0.00170318 0.00162096 0.00154756 0.00154025 0.00153952 0.00153945 0.00153981

.4 0.000958889 0.000915192 0.000828236 0.000750474 0.000742723 0.000741949 0.000741873 0.00074163

.3 0.000623236 0.000579629 0.000492918 0.000422407 0.000415393 0.000414691 0.000414618 0.000414586

.2 0.000497333 0.000454331 0.000368881 0.000292605 0.000285009 0.00028425 0.00028418 0.000283717

.1 0.000294504 0.000250077 0.00370947 7.72736e+022 7.26825e+764 7.45196e-005 7.44454e-005 7.40195e-05
.08 0.000264834 0.000220447 0.982961 4.44241e+176 2.44328e+1017 4.48330e-05 4.47481e-05 4.41198e-05
.06 0.000246947 0.000202473 286.39 4.36105e+199 1.81505e+1264 3.24554e+293 2.65257e-05 2.59330e-05
.05 0.000239666 0.00146648 5.36896e+07 3.67745e+213 4.04348e+1410 7.49605e+2689 1.92572e-05 1.83604e-05
.04 0.000251355 0.010996 3.32478e+09 4.88994e+232 1.38130e+1609 7.41537e+5383 1.23878e-05 1.12536e-05
.03 0.00169661 0.16102 1.23513e+12 1.14286e+259 8.24320e+1879 2.15613e+8587 6.7196e-06 1.14450e-05
.02 0.0424713 8.84656 6.00126e+15 1.40665e+292 1.32217e+2217 2.30563e+12244 3.0852e-06 1.32023e-05
.01 13.2113 9.33967e+08 8.80241e+22 2.03646e+201 2.70492e+1047 1.07367e+14390 0.0433444 1.92865e-05
.001 9.97943e+06 9.33068e+16 2.83332e+41 2.83332e+41 8.41379e+4819 1.41552e+38528 ∞ ∞

3.2.2 Computational results for nonstandard cases

Now let us consider some other parameter values than the ones given by the standard

case in order to be able to investigate the robustness in the selection of Smax. Recall

the standard case having parameter values T = 1, K = 1, B = 0.3, r = 0.04, γ = 0

and σ = 0.2. We consider the following variations in the parameters: T = 0.1, 1, 10.

K = 0.1, 1, 10. r = 0.01, 0.04, 0.1. σ = 0.01, 0.2, 0.9. Instead we shall keep the

dividend yield γ = 0 based on the assumption that this parameter is insignificant for

realistic dividends. We shall however test this hypothesis by considering γ = 0, 0.5 and

1.0 but with the other parameters fixed as in the standard case, i.e. T = 1, K = 1,

B = 0.3, r = 0.04 and σ = 0.2. Here 0.5 is considered a very conservative upper bound

for realistic dividends, and 1.0 (100% dividend) is included in order to see how things

work in the extreme. The bet value B is similarly tested by considering B = 0.01, 0.3,

1.0 and 10.0 but with the other parameters fixed as in the standard case, i.e. T = 1,

K = 1, γ = 0, r = 0.04 and σ = 0.2. Since B is a parameter in the model only for the

bet option, variation in B is considered only in this case.

We restrict to the same two meshes that we used above for Figures 3.2.1 and 3.2.2: A

coarse mesh with h ' 0.1 and k ' 0.001 and a fine mesh with h ' 0.01 and k ' 0.00001,
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in both cases with Kα = 0.3. For each mesh, we shall find the smallest value of Smax

where the error in S = Smax is negligible compared to the maximal error e0 and report

the results in tables below.

For comparison we show in figures below {e0,n}Nn=0 (see 3.5) for the standard case except

for T = 0.1 and T = 10 for the coarse and fine meshes.

As for the standard case we first show results for the put option. The smallest values

of Smax where the error in S = Smax is negligible compared to the maximal error e0

are shown in Table 3.2.9 and 3.2.10 and the results for the fine mesh are shown in

Table 3.2.11 and 3.2.12.

Table 3.2.9: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.001 and Kα = 0.3 in various nonstandard cases with the forward
Euler method for the put option. “-” indicates an unstable case. “(NN)” indicates a

nearly unstable case.

K = 10 K = 1 K = 0.1

T = 10

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.5K (15K) -
.04 2K (11K) -
.1 3K (4K) -

@
@r
σ

.01 .2 .9

.001 2K (10K) -
.04 1.25K (8K) -
.1 1.25K (3K) -

T = 1

@
@r
σ

.01 .2 .9

.001 1.25 - -
.04 1.25 - -
.1 1.25 - -

@
@r
σ

.01 .2 .9

.001 1.5K 3K -
.04 1.5K 3K -
.1 1.5K 2K -

@
@r
σ

.01 .2 .9

.001 2K 3K (30K)
.04 2K 3K (30K)
.1 2K 3K (30K)

T = .1

@
@r
σ

.01 .2 .9

.001 1.25K 1.5K -
.04 1.25K 1.5K -
.1 1.25K 1.5K -

@
@r
σ

.01 .2 .9

.001 1.5K 1.5K 4K
.04 1.5K 1.5K 4K
.1 1.5K 1.5K 4K

@
@r
σ

.01 .2 .9

.001 2K 2K 4K
.04 2K 2K 4K
.1 2K 2K 4K

Table 3.2.10: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.001 and Kα = 0.3 in the standard case except for γ with the
forward Euler method for the put option. “-” indicates an unstable case. “(NN)”

indicates a nearly unstable case.

γ 0 0.5 1.0
minSmax 3K 4K 6K
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Table 3.2.11: Smallest Smax not giving significant error at S = Smax with the fine
mesh h ' 0.01, k ' 0.00001 and Kα = 0.3 in various nonstandard cases with the
forward Euler method for the put option. “-” indicates an unstable case. “(NN)”

indicates a nearly unstable case.

K = 10 K = 1 K = 0.1

T = 10

@
@r
σ

.01 .2 .9

.001 2K - -
.04 3K - -
.1 4K - -

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K (8K) -

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K (10K) -
.1 1.25K 4K -

T = 1

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.25K 3K -
.04 1.25K 3K -
.1 1.25K 3K -

@
@r
σ

.01 .2 .9

.001 1.5K 3K -
.04 1.5K 3K -
.1 1.5K 3K -

T = .1

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.25K 1.5K -
.04 1.25K 1.5K -
.1 1.25K 1.5K -

@
@r
σ

.01 .2 .9

.001 1.5K 1.5K 4K
.04 1.5K 1.5K 4K
.1 1.5K 1.5K 4K

Table 3.2.12: Smallest Smax not giving significant error at S = Smax with the fine
mesh h ' 0.01, k ' 0.00001 and Kα = 0.3 in the standard case except for γ with
the forward Euler method for the put option. “-” indicates an unstable case. “(NN)”

indicates a nearly unstable case.

γ 0 0.5 1.0
minSmax 3K 4K 8K

Still considering the put option we show for comparison in Figure 3.2.3 {e0,n}Nn=0 (see 3.5)

for the standard case except for T = 0.1 and T = 10 for the coarse and fine meshes.

Figure 3.2.1a should be compared to Figure 3.2.3a and 3.2.3b and Figure 3.2.2a should

be compared to Figure 3.2.3c and 3.2.3d.
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(a) Smax ' 4K, T = 0.1, coarse mesh. (b) Smax ' 4K, T = 10, coarse mesh.

(c) Smax ' 4K, T = 0.1, fine mesh. (d) Smax ' 4K, T = 10, fine mesh.

Figure 3.2.3: Error {e0,n}Nn=1 at t = 0 for the put option with Smax ' 4K (a) h ' 0.1,
k ' 0.001, T = 0.1, (b) h ' 0.1, k ' 0.001, T = 10, (c) h ' 0.01, k ' 0.00001, T = 0.1
and (d) h ' 0.01, k ' 0.00001, T = 10 and Kα = 0.3, in the standard case apart from

the value of T with the forward Euler method.

Doing identical calculations for the call option (only for the coarse mesh, i.e. corre-

sponding to tables 3.2.9 and 3.2.10) results in almost identical results regarding the

optimal choice of Smax. Only is the call option slightly more prone to instability than

the put option resulting in a few additional unstable cases. The results are shown in

tables 3.2.13 and 3.2.14.

Finally, doing identical calculations for the bet option (only for the coarse mesh, i.e.

corresponding to tables 3.2.9 and 3.2.10) again result in almost identical results regarding
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Table 3.2.13: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.001 and Kα = 0.3 in various nonstandard cases with the forward
Euler method for the call option. “-” indicates an unstable case. “(NN)” indicates a

nearly unstable case.

K = 10 K = 1 K = 0.1

T = 10

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.5K (15K) -
.04 2K (11K) -
.1 3K (4K) -

@
@r
σ

.01 .2 .9

.001 2K (10K) -
.04 2K (8K) -
.1 1.25K (3K) -

T = 1

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.5K 3K -
.04 1.5K 3K -
.1 1.5K 3K -

@
@r
σ

.01 .2 .9

.001 2K 3K (30K)
.04 2K 3K (30K)
.1 2K 3K (30K)

T = .1

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.5K 1.5K -
.04 1.5K 1.5K -
.1 1.5K 1.5K -

@
@r
σ

.01 .2 .9

.001 2K 2K 4K
.04 2K 2K 4K
.1 2K 2K 4K

Table 3.2.14: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.001 and Kα = 0.3 in the standard case except for γ with the
forward Euler method for the call option. “-” indicates an unstable case. “(NN)”

indicates a nearly unstable case.

γ 0 0.5 1.0
minSmax 3K 4K 6K

the optimal choice of Smax. Only is the bet option slightly more prone to instability than

the put option resulting in a few additional unstable cases. The results corresponding to

Table 3.2.9 are shown in Table 3.2.15. Instead the bet option is slightly more sensitive

Table 3.2.15: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.001 and Kα = 0.5 in various nonstandard cases with the forward
Euler method for the bet option. “-” indicates an unstable case. “(NN)” indicates a

nearly unstable case.

K = 10 K = 1 K = 0.1

T = 10

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.5K (15K) -
.04 2K (11K) -
.1 3K (6K) -

@
@r
σ

.01 .2 .9

.001 2K (10K) -
.04 2K (8K) -
.1 1.25K (4K) -

T = 1

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.5K 3K -
.04 1.5K 3K -
.1 1.5K 3K -

@
@r
σ

.01 .2 .9

.001 2K 3K (30K)
.04 2K 3K (30K)
.1 2K 3K (30K)

T = .1

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.5K 1.5K -
.04 1.5K 1.5K -
.1 1.5K 1.5K -

@
@r
σ

.01 .2 .9

.001 2K 2K 4K
.04 2K 2K 4K
.1 2K 2K 4K
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than the put and call options to changes in the dividend than the put and call options.

The results showing this fact are shown to the left in Table 3.2.16. Also, the bet option is

completely insensitive to changes in B which is demonstrated to the right in Table 3.2.16.

We show no results for the smoothened put option for nonstandard cases.

Table 3.2.16: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.001 and Kα = 0.5 in the standard case except for γ (to the left)
and B (to the right) with the forward Euler method for the bet option. “-” indicates

an unstable case. “(NN)” indicates a nearly unstable case.

γ 0 0.5 1.0
minSmax 3K 5K 7K

B 0.01 0.3 1.0 10
minSmax 3K 3K 3K 3K

3.2.3 Sensitivity to Smax

We start with the put option in the standard case. For Smax ' 1.25K Table 3.2.4

shows significantly bigger error values than Table 3.2.1–3.2.3 for all step sizes. Also

Figures 3.2.1–3.2.2 show that the error is dominated by the contribution at Smax both

for the coarse and fine step sizes.

For Smax ' 1.5K Table 3.2.3 shows error values of the same order of magnitude as

Table 3.2.1–3.2.2 for coarse step sizes. For fine step sizes instead the error values are

significantly bigger. Also Figures 3.2.1–3.2.2 show that the error is dominated by the

contribution at Smax both for the coarse and fine step sizes.

For Smax ' 2K Table 3.2.2 shows error values of the same order of magnitude as Ta-

ble 3.2.1 for all step sizes. But Figures 3.2.1–3.2.2 show that the error is dominated by

the contribution at Smax for the fine step sizes.

For Smax ' 4K we have errors of the same order of magnitude as for Smax = 2K but

Figures 3.2.1–3.2.2 show that the error is insignificant close to Smax for all step sizes.

The conclusion is that Smax ' 4K is required if a high degree of robustness against

variation in step sizes is required while Smax ' 2K may be used for coarse meshes.

Moving to the nonstandard cases, still considering the put option, tables 3.2.9 and

3.2.11 indicate that Smax is fairly independent of T , K, r and σ as long as we stay away

from instabilities. Smax = 4K seems to work for all “not nearly unstable” selections of
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parameters. Note that for the nonstandard cases with T = 10 and σ ≥ 0.2 all cases

are unstable (or nearly so). This explains the results shown in Figure 3.2.3 (b) and (d)

where the error in Smax dominates for Smax = 4K.

Tables 3.2.10 and 3.2.12 indicate that Smax is likewise fairly independent of γ. Smax =

4K seems to work for all realistic dividends. For extreme dividends (like γ = 1.0) bigger

values of Smax are needed.

For the call and bet options the conclusion remains that Smax = 4K is a good choice for

all but extreme cases (Unstable, nearly unstable, or extreme parameter cases).

Hence the computational results indicate that Smax is fairly independent of the parame-

ters T , K, r, σ, γ and B as long as we stay away from instabilities and extreme dividends.

Smax = 4K seems to work for all selections of parameters with these two exceptions.

For extreme dividends (like γ = 1.0) bigger values of Smax are needed.

3.2.4 Convergence

Convergence is expressed by

e0 ' CShα + Ctk
β (3.6)

where e0 is the maximal error (see 3.4), h is the S-stepsize, k is the t-stepsize, α is

the order of convergence in S, β is the order of convergence in t and CS and Ct are

proportionality constants. we use the weighted least squares (2.14) in order to estimate

convergence order of convergence in both h and k directions independently and we get

the following result:

e0 ' 0.068h2 (3.7)

Plotting the maximal errors e0 for the put option at time t = 0 from Table 3.2.1 with

logarithmic axes, we get the result shown in Figure 3.2.4. This plot indicates the ex-

pected (from the forward Euler method implemented) quadratic convergence in S until

we reach instability. Instead we do not see the expected linear convergence in t but this

is merely because of a small proportionality constant:



Chapter 3. Standard FDMs for European Options 69

Figure 3.2.4: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of stepsizes
dS = h and dt = k (logarithmic axes) for the put option in the standard case (T = 1,
K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2) with Smax = 4K and Kα = 0.3 with the
forward Euler method. In this case the maximal error is attained in the interior of the

S-interval, close to S = K.

A further investigation shows that the slow linear divergence in t appears to be connected

with the discontinuity in the first derivative with respect to S of the terminal condition.

This discontinuity generates an error that decays slowly as t decreases from T towards

0 and is — very slowly — increasing as k is reduced. In Figure 3.2.5 we show the error

e0,nm = Ṽn,m − V (Sn, tm) for n = 1, . . . , N, m = 1, . . . ,M, (3.8)

i.e. the error as a function of both S and t for 5 different meshes:

Mesh 1: h ' 0.1, k ' 0.1,

Mesh 2: h ' 0.1, k ' 0.01,

Mesh 3: h ' 0.1, k ' 0.001,

Mesh 4: h ' 0.05, k ' 0.001,

Mesh 5: h ' 0.03, k ' 0.001.
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(a) Mesh 1 error. (b) Mesh 2 error. (c) Mesh 3 error.

(d) Mesh 4 error. (e) Mesh 5 error.

Figure 3.2.5: Plot of the error as a function of S and t for the put option with
Smax = 4K and Kα = 0.3 in the standard case (T = 1, K = 1, B = 0.3, r = 0.04,
γ = 0 and σ = 0.2) with the forward Euler method for mesh 1 (a), mesh 2 (b), mesh 3

(c), mesh 4 (d) and mesh 5 (e).
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Figure 3.2.6: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of stepsizes
dS = h and dt = k (logarithmic axes) for the call option in the standard case (T = 1,
K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2) with Smax = 4K and Kα = 0.3 with the
forward Euler method. In this case the maximal error is attained in the interior of the

S-interval, close to S = K.

Therefore for the put option solved with the forward Euler method we observe the

expected quadratic convergence in S, whereas we because of the discontinuity in the

first derivative ∂V
∂S at (S, t) = (K,T ) see no convergence in t in the computational

domain. It would be expected that a linear convergence in t would show up once h

becomes small enough to “resolve the singularity”. But because of the conditional lack

of stability, this requires such small values of k that they are out of our computational

domain.

Now the convergence plot for the call option based on the data in Table 3.2.5 is shown

in Figure 3.2.6. Using the same the weighted least squares formula as we did for the put

option we get the following convergence result:

e0 ' 0.068h2 (3.9)

As for the put option we get divergence in t in the computational part of the stability

region. Also 3D error plots for the call option are identical to those of the put option in

Figure 3.2.5 to the naked eye, so they are not shown here. Furthermore the conclusion

is the same as for the put option

Then the convergence plot for the bet option based on the data in Table 3.2.6 is shown
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Figure 3.2.7: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of stepsizes
dS = h and dt = k (logarithmic axes) for the bet option in the standard case (T = 1,
K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2) with Smax = 4K and Kα = 0.5 with the
forward Euler method. In this case the maximal error is attained in the interior of the

S-interval, close to S = K.

in Figure 3.2.7. Using the same the weighted least squares formula as we did for the put

and call options we get the following convergence result:

e0 ' 0.017h1.4 (3.10)

As for the put and call options we get divergence in t in the computational part of the

stability region, but unlike these two options, for the bet option we also loose some of

the quadratic convergence in S (the order dropping from 2 to 1.4), likely because of the

stronger singularity in the terminal data, the bet having a discontinuity in the value

whereas the put and call have discontinuities only in the first derivative with respect to

S of the value.

As for the put option a further investigation of the divergence in t is performed, plotting

e0,nm from 3.8 for the 5 meshes “Mesh 1 . . . , 5”. For the bet option, the “Mesh 1” case

is unstable, whereas the other cases show the same general behaviour as those of the

put and call options. Instead the shape of the error curve is different, starting out with

a significantly greater error 0.05. Also this value does not decrease for Mesh 3 and 4 as

for the put and call options. The results are shown in Figure 3.2.8. The conclusion is

different from the one for the put and call options. This is likely caused by the stronger
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(a) Mesh 2 error. (b) Mesh 3 error.

(c) Mesh 4 error. (d) Mesh 5 error.

Figure 3.2.8: Plot of the error as a function of S and t for the bet option with
Smax = 4K and Kα = 0.5 in the standard case (T = 1, K = 1, B = 0.3, r = 0.04,
γ = 0 and σ = 0.2) with the forward Euler method for mesh 2 (a), mesh 3 (b), mesh 4

(c) and mesh 5 (d).

singularity in the terminal condition. For the bet option there is a singularity in the

price V itself at (S, t) = (K,T ) and not just in the derivative ∂V
∂S as for the put and

call. For the bet option solved with the forward Euler method we observe a reduction

in the order of convergence in S compared to the expected quadratic convergence. As

for the put and call options, also for the bet option we see no convergence in t in the

computational domain. It would be expected that a quadratic convergence in S and

a linear convergence in t would show up once h becomes small enough to “resolve the

singularity”. But because of the conditional lack of stability, this requires such small

values of k that they are out of our computational domain. Because of the stronger

singularity, the domain where we get the expected convergence orders is probably further

out of range for the bet option than for the put and call options.
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Finally the convergence plot for the smoothened put option based on the data in Ta-

ble 3.2.8 is shown in Figure 3.2.9 with the following convergence result:

e0 ' 0.005h2 + 0.001k (3.11)

Unlike the results for the put, call and bet options we finally see the expected quadratic

Figure 3.2.9: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of stepsizes
dS = h and dt = k (logarithmic axes) for the smoothened put option the standard case
(T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2) with Smax = 30K with the
forward Euler method. In this case the maximal error is attained in the interior of the

S-interval, between S = 0 and S = K

convergence in S and linear (albeit slow) convergence in t in the computational part of

the stability region.

As for the other options a further investigation of the convergence properties is performed

by visualizing the global shape of the error function, plotting e0,nm from 3.8. The 5

meshes “Mesh 1 . . . , 5” used for the put, call and bet options are all unstable for the

smoothened put option, (see Table 3.2.8) so we need to turn to finer meshes. Hence we
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(a) Mesh 6 error. (b) Mesh 7 error. (c) Mesh 8 error.

(d) Mesh 9 error. (e) Mesh 10 error.

Figure 3.2.10: Plot of error as a function of S and t for the smoothened put option
with Smax = 30K in the standard case (T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and

σ = 0.2) for mesh 6 (a), mesh 7 (b), mesh 8 (c), mesh 9 (d), mesh 10 (e)

compute for

Mesh 6: h ' 0.1, k ' 0.0001,

Mesh 7: h ' 0.1, k ' 0.00001,

Mesh 8: h ' 0.1, k ' 0.000001,

Mesh 9: h ' 0.05, k ' 0.00001,

Mesh 10: h ' 0.03, k ' 0.00001.

The results are shown in Figure 3.2.10. To be able to compare directly to the similar

plots for the put, call and bet options, all results are shown only for S ∈ [0, 4] even

though the computations are made with Smax = 30K.

For the smoothened put option the error increases linearly with time as t → 0 and the

maximal errors lies in the region S ∈ (0,K) at t = 0. The linear decrease in the maximal

error with k is not visible to the naked eye whereas the quadratic decrease in the maximal

error with h is highly visible. The error obviously can not be blaimed on a singularity
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in the boundary condition at (S, t) = (K,T ), since such a singularity is not present in

the smoothened put option. Instead the error may be blaimed on the degeneracy in

the PDE as S → 0 where the S-dependency in the PDE vanishes conflicting with the

boundary condition in S = 0 (recall the discussion in section 1.1.3 under “Left risky

asset limit”). The results show, that this degeneracy although dominating the error is

not so significant that we loose the expected convergence orders. So the degeneracy

shows up only in the size of the constants CS and Ct in 3.6.

For comparison, the convergence results with the forward Euler method are repeated

here:

Put: e0 ' 0.068h2

Call: e0 ' 0.068h2

Bet: e0 ' 0.017h1.4

Smoothened put: e0 ' 0.005h2 + 0.001k

The conclusion is that the discontinuity in the derivative ∂V
∂S at (S, t) = (K,T ) for the

put and call options means the loss of one order of convergence in t (with respect to

the expected linear convergence for the forward Euler method) in the computational

domain. Instead the expected quadratic order of convergence in S is observed in the

computational domain. The discontinuity in V at (S, t) = (K,T ) for the bet option

means the loss of both one order of convergence in t (with respect to the expected linear

convergence for the forward Euler method) as well as part of the expected quadratic order

of convergence in S in the computational domain. It would be expected that a quadratic

convergence in S and a linear convergence in t would show up once h becomes small

enough to “resolve the singularity”. But because of the conditional lack of stability, this

requires such small values of k that they are out of our computational domain. Because

of the stronger singularity, the domain where we get the expected convergence orders

is probably further out of range for the bet option than for the put and call options.

These speculations could merit further research but are not treated here. Also it has

not been possible to establish understandable bounds for the stability regions, possibly

for the same reason – we need smaller step sizes.

The smoothened put option has no discontinuity in V or its derivatives and we do get

the expected orders of convergence even though the “constants” in 3.6 (in particular
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the t-constant Ct) are small. The error is dominated by a contribution estimated to

originate from the degeneracy in the PDE at S = 0 described in section 1.1.3 under

“Left risky asset limit”.

The recovery of the full order of convergence for the smoothened put further confirms

the conclusion from above, that the decrease in orders of convergence for the put, call

and bet options are explained by the discontinuity in V or some derivative with respect

to S of V at expiration time t = T .

3.2.5 Volatility limit

As mentioned in section 1.1.3 for σ = 0 the pricing problem loses its stochastic aspect

and the exact solution is easily accessible (see 1.11). At the same time, the convection-

diffusion equation loses its diffusion part and becomes a convection equation and it is

unknown whether the limit of the solution to the convection-diffusion problem equals the

solution to the limiting convection problem (see 1.12). This is what we investigate here

for the numerical solution and for simplicity we show results only for the put option. We

consider the option price when volatility tends to 0 and Table 3.2.17 shows the maximal

error e0 for a number of volatilities tending to zero for the put option for the coarse and

fine mesh h ' 0.1, k ' 0.001 and h ' 0.01, k ' 0.00001 respectively.

Table 3.2.17: Maximal error e0 for the put option at t = 0 with Smax ' 4K and
Kα = 0.3 in the standard case except for σ with the coarse and fine meshes h ' 0.1,
k ' 0.001 and h ' 0.01, k ' 0.00001 respectively with the forward Euler method.

σ 0.4 0.2 0.01 0.001 0.0001 0.00001 0.

Coarse mesh 0.147944 0.0715007 0.00694667 0.00659941 0.00659593 0.00659589 0.00659589

Fine mesh 0.150188 0.0745655 0.00318934 0.00272693 0.00274538 0.00274558 0.00274557

We can see that when σ goes to zero the maximal errors tend to the maximal error for the

option price with zero volatility and by a closer inspection (see also Figure 3.2.11(e),(f)

and 3.2.12)(e),(f) it turns out that also the numerical solution for a given value of σ

converges to the numerical no volatility solution as σ → 0. Hence 1.12 holds for the

numerical solutions.

The error that occurred in the option price with no volatility is concentrated around

S = K originating in the non-continuous derivative of the initial condition here. This is

shown in Figures 3.2.11(e),(f) and 3.2.12(e),(f) for the coarse and fine mesh respectively.
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The leftmost plots of Figures 3.2.11 and 3.2.12 show the changes of option price when

the volatility tends to zero and the rightmost plots show the difference between the

numerical solution with different values of σ and the exact solution with σ = 0 for the

coarse and fine mesh respectively.

Similar results are obtained for the call and bet options leading to the conclusion, that

1.12 holds for the numerical solutions in all cases considered here and probably for a

much wider range of options.
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(a) Option Price, σ = 0.2. (b) Error curve, σ = 0.2.

(c) Option Price, σ = 0.001. (d) Error curve, σ = 0.001.

(e) Option Price, σ = 0. (f) Error curve, σ = 0.

Figure 3.2.11: The left curves show option price and the right curves error {e0,n}Nn=1

for the put option at t = 0 with Smax ' 4K and Kα = 0.3 in the standard case except
for σ with(a)-(b) σ = 0.2, (c)-(d) σ = 0.001, and (e)-(f) σ = 0 with the coarse mesh

h ' 0.1, k '= 0.001 and with the forward Euler method
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(a) Option Price, σ = 0.2. (b) Error curve, σ = 0.2.

(c) Option Price, σ = 0.001. (d) Error curve, σ = 0.001.

(e) Option Price, σ = 0. (f) Error curve, σ = 0.

Figure 3.2.12: The left curves show option price and the right curves error {e0,n}Nn=1

for the put option at t = 0 with Smax ' 4K and Kα = 0.3 in the standard case except
for σ with(a)-(b) σ = 0.2, (c)-(d) σ = 0.001, and (e)-(f) σ = 0 with the fine mesh

h ' 0.01, k '= 0.00001 and with the forward Euler method
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3.2.6 Expiration limit

We have concluded in subsection 3.2.4 that the singularity at S = K for t = T for the

put, call and bet options give rise to large errors for all values of t down to 0 and for

S-values close to K. Here we investigate the expiration limit i.e. limt↑T Ṽ (S, t)−V (S, T )

where Ṽ is the numerical solution.

Table 3.2.18: Maximal error e0 for the put option at t = T − k with Smax ' 4K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00330986 0.000365137 3.65209e-05 3.65220e-06 3.65200e-07 3.65200e-08

.1 0.00195856 0.000859999 0.000149512 1.49515e-05 1.49515e-06 1.49515e-07
.01 0.115326 0.00736102 0.000173821 8.18825e-05 1.40976e-05 1.40977e-06

Table 3.2.19: Maximal error e0 for the put option at t = T −5k with Smax ' 4K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00591054 0.00181311 0.000182598 1.82608e-05 1.82600e-06 1.82500e-07

.1 0.000971536 0.00182457 0.000647555 7.47198e-05 7.47536e-06 7.47550e-07
.01 921821 4.51905 8.46229e-05 0.00018975 6.13366e-05 7.04452e-06

Table 3.2.20: Maximal error e0 for the call option at t = T − k with Smax ' 4K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00331785 0.000365217 3.65217e-05 3.65217e-06 3.65217e-07 3.65217e-08

.1 0.00196655 0.000860079 0.000149513 1.49515e-05 1.49515e-06 1.49515e-07
.01 0.115334 0.0073611 0.000173821 8.18826e-05 1.40976e-05 1.40977e-06

Table 3.2.21: Maximal error e0 for the call option at t = T −5k with Smax ' 4K and
Kα = 0.3 in the standard case with the forward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00594985 0.00181351 0.000182602 1.82608e-05 1.82609e-06 1.82609e-07

.1 0.00676164 0.00182497 0.000647559 7.47198e-05 7.47535e-06 7.47569e-07
.01 1.16591e+06 4.51905 0.000173821 0.000189751 6.13366e-05 7.04452e-06

Table 3.2.22: Maximal error e0 for the bet option at t = T − k with Smax ' 4K and
Kα = 0.5 in the standard case with the forward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00352959 0.000360024 3.60002e-05 3.60000e-06 3.60000e-07 3.60000e-08

.1 0.00479606 0.00433301 0.00066 6.60000e-05 6.60000e-06 6.60000e-07
.01 5.9237 0.486603 0.00422699 0.00415875 0.000606 6.06000e-05
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Table 3.2.23: Maximal error e0 for the bet option at t = T −5k with Smax ' 4K and
Kα = 0.5 in the standard case with the forward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00945254 0.00178699 0.00017987 1.79987e-05 1.79999e-06 1.80000e-07

.1 0.00479606 0.014457 0.00317254 0.000329586 3.29959e-05 3.29996e-06
.01 1.21441e+08 627.543 0.00422699 0.013079 0.00293048 0.000302635

Table 3.2.24: Maximal error e0 for the smoothened put option at t = T − k with
Smax ' 30K in the standard case with the forward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00016328 1.55526e-05 1.55440e-06 2.71270e-07 1.18485e-05 4.90119e-05

.1 1.64707e-05 8.41900e-07 1.34900e-07 1.21080e-06 1.57217e-05 8.20377e-05
.01 9.28420e-06 1.04300e-07 2.99900e-07 2.52440e-06 2.14538e-05 0.000283342

Table 3.2.25: Maximal error e0 for the smoothened put option at t = T − 5k with
Smax ' 30K in the standard case with the forward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.000814118 7.77619e-05 7.74500e-06 7.80100e-07 1.58410e-06 1.18576e-05

.1 8.17004e-05 4.19010e-06 3.73600e-07 4.12400e-07 3.49770e-06 4.63119e-05
.01 1551.52 0.0151725 1.21505e-07 5.16000e-07 3.85330e-06 3.60322e-05
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3.3 Numerical results for the backward Euler method

In this section we consider the Backward Euler method for the standard case T = 1,

K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2 with the same computational setup as

described in section 3.2.1. Since the backward Euler method is implicit, the computing

times are significantly higher than for the forward Euler method.

3.3.1 Computational results for the standard case

First we compute the maximal error e0 (see 3.4) at time t = 0 with Smax ' 4K, 2K, 1.5K

and 1.25K for the put option in the standard case with the backward Euler method. The

results are shown in tables 3.3.1–3.3.4. Also the errors {e0, n}Nn=1 (see 3.5) are plotted in

Figures 3.3.1–3.3.2 for a coarse and a fine mesh and Smax ' 4K, 2K, 1.5K and 1.25K.

Table 3.3.1: Maximal error e0 for the put option at t = 0 for Smax ' 4K and Kα = 0.3
in the standard case with the backward Euler method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00609529 0.00633076 0.00651671 0.00669163 0.00670955 0.00671134

.4 0.00384639 0.00362807 0.00377233 0.00402266 0.00404835 0.00405093

.3 0.00462138 0.00411196 0.003704 0.00331544 0.00327538 0.00327136

.2 0.00448745 0.00372868 0.00311489 0.00252487 0.00246372 0.00245758

.1 0.00345368 0.00230403 0.00141278 0.000619103 0.000563741 0.000558176
.08 0.00328116 0.00210526 0.00120253 0.000406398 0.000349258 0.000343511
.06 0.00322514 0.00202104 0.00109011 0.000283795 0.000221138 0.000214835
.05 0.00323412 0.00201015 0.0010629 0.000225674 0.000163177 0.000156889
.04 0.00323177 0.00199248 0.00103742 0.000174862 0.000108983 0.00010236
.03 0.00321785 0.00197012 0.0010115 0.000134884 6.34725e-5 5.69204e-5
.02 0.00319782 0.00194879 0.000990868 0.00011523 3.35668e-5 2.70425e-5
.01 0.00318483 0.00193659 0.000978546 0.000102356 1.41839e-5 7.41565e-6
.001 0.00317989 0.00193236 0.000974538 9.81804e-5 9.86248e-6 1.02276e-6
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Table 3.3.2: Maximal error e0 for the put option at t = 0 for Smax ' 2K and Kα = 0.3
in the standard case with the backward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00592172 0.00618406 0.00639076 0.00658473 0.00660456 0.00660655

.4 0.00384835 0.00362908 0.00376364 0.0040174 0.00404339 0.004046

.3 0.00462213 0.00411226 0.00370411 0.00331547 0.0032754 0.00327138

.2 0.00448786 0.00372881 0.00311492 0.00252487 0.00246373 0.00245759

.1 0.00345381 0.00230406 0.00141279 0.000619103 0.000563741 0.000558176
.08 0.00328127 0.00210527 0.00120253 0.000406398 0.000349258 0.000343511
.06 0.0032253 0.00202108 0.00109011 0.000283796 0.000221138 0.000214835
.05 0.00323426 0.00201018 0.0010629 0.000225674 0.000163177 0.000156889
.04 0.00323189 0.0019925 0.00103742 0.000174862 0.000108983 0.00010236
.03 0.00321795 0.00197013 0.0010115 0.000134884 6.34725e-5 5.69205e-5
.02 0.00319791 0.00194881 0.000990869 0.00011523 3.35668e-5 2.70425e-5
.01 0.00318492 0.0019366 0.000978547 0.000102356 1.41839e-5 8.75748e-6
.001 0.00317997 0.00193237 0.000974539 9.81804e-5 9.8625e-6 8.21241e-06

Table 3.3.3: Maximal error e0 for the put option at t = 0 for Smax ' 1.5K and
Kα = 0.3 in the standard case with the backward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00608397 0.00618406 0.00639076 0.00658473 0.00660456 0.00660655

.4 0.00375692 0.00366857 0.00348810 0.00367456 0.00370539 0.00370848

.3 0.00431481 0.00411786 0.00370732 0.00331706 0.00327687 0.00327283

.2 0.00404811 0.00375119 0.00312869 0.00253232 0.00247063 0.00246444

.1 0.00275091 0.00231131 0.00141581 0.00065754 0.00065754 0.00065754
.08 0.00257032 0.00212018 0.00120921 0.00104401 0.00104401 0.00104401
.06 0.00251582 0.00204956 0.00109854 0.00105242 0.00105242 0.00105242
.05 0.00249824 0.00202773 0.00107062 0.00084084 0.00084084 0.00084084
.04 0.00249322 0.00201610 0.00106134 0.00106134 0.00106134 0.00106134
.03 0.00246513 0.00198700 0.00101864 0.00093185 0.00093185 0.00093185
.02 0.00244382 0.00196552 0.00099786 0.00097696 0.00097696 0.00097696
.01 0.00243401 0.00195532 0.00102750 0.00102750 0.00102750 0.00102750
.001 0.00243205 0.00195318 0.00107541 0.00107541 0.00107541 0.00107541

Table 3.3.4: Maximal error e0 for the put option at t = 0 for Smax ' 1.25K and
Kα = 0.3 in the standard case with the backward Euler method

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00612437 0.00612437 0.00612437 0.00612437 00612437 0.00612437

.4 0.00375692 0.00366857 0.0034881 0.00367456 00370539 0.00370848

.3 0.00446444 0.00425374 0.00381534 0.0033999 0.0033572 0.00335292

.2 0.00532862 0.00532862 0.00532862 0.00532862 0.00532862 0.00532862

.1 0.0087067 0.0087067 0.0087067 0.0087067 0.0087067 0.0087067
.08 0.00762432 0.00762432 0.00762432 0.00762432 0.00762432 0.00762432
.06 0.0080478 0.0080478 0.0080478 0.0080478 0.0080478 0.0080478
.05 0.0074617 0.0074617 0.0074617 0.0074617 0.0074617 0.0074617
.04 0.00851633 0.00851633 0.00851633 0.00851633 0.00851633 0.00851633
.03 0.00933452 0.00933452 0.00933452 0.00933452 0.00933452 0.00933452
.02 0.00942338 0.00942338 0.00942338 0.00942338 0.00942338 0.00942338
.01 0.00913899 0.00913899 0.00913899 0.00913899 0.00913899 0.00913899
.001 0.0095676 0095676 0.0095676 0.0095676 0.0095676 0.0095676
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(a) BE error, coarse mesh, Smax ' 4K. (b) BE error, coarse mesh, Smax ' 2K.

(c) BE error, coarse mesh, Smax ' 1, 5K. (d) BE error, coarse mesh, Smax ' 1.25K.

Figure 3.3.1: Error {e0,n}Nn=1 at t = 0 for the put option and Smax ' (a) 4K, (b)
2K, (c) 1.5K and (d) 1.25K for stepsizes h ' 0.1 and k ' 0.01 and Kα = 0.3 in the

standard case with the backward Euler method.
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(a) BE error, fine mesh, Smax ' 4K. (b) BE error, fine mesh, Smax ' 2K.

(c) BE error, fine mesh, Smax ' 1, 5K. (d) BE error, fine mesh, Smax ' 1.25K.

Figure 3.3.2: Error {e0,n}Nn=1 at t = 0 for the put option and Smax ' (a) 4K, (b)
2K, (c) 1.5K and (d) 1.25K for stepsizes h ' 0.01 and k ' 0.001 and Kα = 0.3 in the

standard case with the backward Euler method.
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Next we consider the maximal error e0 at time t = 0 with Smax ' 4K for the call

option in the standard case with the backward Euler method. The results are shown in

Table 3.3.5.

Table 3.3.5: Maximal error e0 for the call option at t = 0 with Smax ' 4K and
Kα = 0.3 in the standard case with the backward Euler method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00584133 0.00617784 0.00644005 0.00668395 0.00670878 .00671127

.4 0.00410038 0.00378099 0.00369567 0.00401498 0.00404758 0.00405085

.3 0.00487537 0.00426488 0.00378066 0.00332312 0.00327615 0.00327144

.2 0.00474144 0.0038816 0.00319155 0.00253255 0.00246449 0.00245766

.1 0.00370767 0.00245695 0.00148944 0.000611419 0.000562973 0.000558099
.08 0.00353515 0.00225818 0.00127919 0.000398713 0.00034849 0.000343434
.06 0.00347913 0.00217397 0.00116677 0.000276111 0.00022037 0.000214758
.05 0.00348811 0.00216308 0.00113956 0.000218683 0.000162408 0.000156813
.04 0.00348576 0.00214541 0.00111408 0.000176433 0.000108215 0.000102283
.03 0.00347183 0.00212304 0.00108816 0.000142568 6.27039e-5 5.68435e-5
.02 0.00345181 0.00210172 0.00106753 0.000122914 3.27982e-5 2.69657e-5
.01 0.00343882 0.00208951 0.00105521 0.00011004 1.49526e-5 7.33879e-6
.001 0.00343326 0.00208528 0.0010512 0.000105865 1.06311e-5 1.11788e-6

Now we consider the maximal error e0 at time t = 0 with Smax ' 4K for the bet

option in the standard case with the backward Euler method. The results are shown in

Table 3.3.6. Finally we consider the maximal error e0 at time t = 0 with Smax ' 30K

Table 3.3.6: Maximal error e0 for the bet option at t = 0 with Smax ' 4K and
Kα = 0.5 in the standard case with the backward Euler method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.0191664 0.0184684 0.0179142 0.0173906 0.0173369 0.0173315

.4 0.0191664 0.0184684 0.0179142 0.0173906 0.0173369 0.0173315

.3 0.0233774 0.0220285 0.0209460 0.0199133 0.0198068 0.0197961

.2 0.0193172 0.0163493 0.0139397 0.0116225 0.0113826 0.0113586

.1 0.0102039 0.0075571 0.0053355 0.0031568 0.0029305 0.0029078
.08 0.0098829 0.0068268 0.0043824 0.0021216 0.0018953 0.0018726
.06 0.0084057 0.0056381 0.0033703 0.0012254 0.0010078 0.0009860
.05 0.0084496 0.0054217 0.0030508 0.0009371 0.0007381 0.0007181
.04 0.0079794 0.0051162 0.0028181 0.0006869 0.0004774 0.0004580
.03 0.0078160 0.0049174 0.0026128 0.0004926 0.0002892 0.0002689
.02 0.0077169 0.0047655 0.0024506 0.0003494 0.0001392 0.0001188
.01 0.0076450 0.0046647 0.0023648 0.0002628 0.0000525 0.0000317
.001 0.0076188 0.0046369 0.0023344 0.0002343 0.0000237 2.63038e-6

for the smoothened put option in the standard case with the backward Euler method.

The results are shown in Table 3.3.7.



Chapter 3. Standard FDMs for European Options 88

Table 3.3.7: Maximal error e0 for the smoothened put option at t = 0 with Smax '
30K in the standard case with the backward Euler method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00133865 0.00137846 0.00145861 0.00153132 0.00153862 0.00153935

.4 0.000528457 0.000570851 0.000656069 0.000733258 0.000741002 0.000741777

.3 0.000222407 0.000260449 0.000337129 0.000406829 0.000413835 0.000414536

.2 9.80089e-005 0.000116921 0.000200182 0.000275735 0.000283323 0.000284082

.1 0.000157431 0.000117528 3.74274e-005 6.60896e-005 7.36013e-005 7.43528e-005
.08 0.000176201 0.000136901 5.8008e-005 3.63254e-005 4.39059e-005 4.46643e-005
.06 0.000192115 0.000149016 6.82257e-005 1.79547e-005 2.56681e-005 2.64405e-005
.05 0.000199072 0.000155875 7.15357e-005 1.07863e-005 1.84008e-005 1.9174e-005
.04 0.000205495 0.000162334 7.56172e-005 4.36875e-006 1.15366e-005 1.23051e-005
.03 0.000211081 0.000167848 8.09551e-005 6.3233e-006 5.88777e-006 6.65884e-006
.02 0.000214585 0.000171347 8.44484e-005 7.25001e-006 2.2793e-006 3.04957e-006
.01 0.000216855 0.000173615 8.67112e-005 8.01286e-006 7.10504e-007 7.05265e-007
.001 0.000217601 0.000174376 8.74691e-005 8.76639e-006 8.70483e-007 4.77757e-007

3.3.2 Computational results for nonstandard cases

Here we consider robustness in the selection of Smax against variations in the other

parameters in the problem when solving with the backward Euler method like we have

done for the forward Euler method in section 3.2.2. As we have mentioned before, since

backward Euler is an implicit method it is also computationally more demanding than

the forward Euler method. Therefore we choose somewhat coarser meshes both for the

coarse mesh and for the fine mesh calculations. We choose a coarse mesh with h ' 0.1

and k ' 0.01 and a fine mesh with h ' 0.01 and k ' 0.001. For each mesh, we shall

find the smallest value of Smax where the error in S = Smax is negligible compared to

the maximal error e0.

As observed when solving with the forward Euler method, we expect no significant

differences between the results for the put, call and bet options. Hence we compute only

for the put option. The results for the coarse mesh are shown in Tables 3.3.8 and 3.3.9

and the results for the fine mesh are shown in Tables 3.3.10 and 3.3.11. In Figure 3.3.3

we show {e0,n}Nn=0 (see 3.5) for the standard case except for T = 0.1 and T = 10 for the

coarse and fine meshes. Figure 3.3.3(a) and (b) should be compared to Figure 3.3.1(a)

and Figure 3.3.3(c) and (d) should be compared to Figure3.3.2(a).
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Table 3.3.8: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.01 and Kα = 0.3 in various nonstandard cases for the put option
with the backward Euler method. “-” indicates a case where it has not been possible

to establish a functional Smax.

K = 10 K = 1 K = 0.1

T = 10

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K 6K -

@
@r
σ

.01 .2 .9

.001 1.5K 15K -
.04 3K 10K -
.1 4K 4K -

@
@r
σ

.01 .2 .9

.001 4K 14K -
.04 8K 8K -
.1 10K 4K -

T = 1

@
@r
σ

.01 .2 .9

.001 1.25K 3K -
.04 1.25K 3K -
.1 1.25K 3K -

@
@r
σ

.01 .2 .9

.001 1.5K 3K 70K
.04 2K 3K 60K
.1 2K 3K 60K

@
@r
σ

.01 .2 .9

.001 4K 5K 50K
.04 4K 5K 40K
.1 4K 4K 30K

T = .1

@
@r
σ

.01 .2 .9

.001 1.25K 1.5K 4K
.04 1.25K 1.5K 4K
.1 1.25K 1.5K 4K

@
@r
σ

.01 .2 .9

.001 1.5K 2K 4K
.04 1.5K 2K 4K
.1 1.5K 2K 4K

@
@r
σ

.01 .2 .9

.001 4K 4K 7K
.04 4K 4K 7K
.1 4K 4K 7K

Table 3.3.9: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.01 and Kα = 0.3 in the standard case except for γ in the put

option with the backward Euler method.

γ 0 0.5 1.0
minSmax 3K 3K 5K

Table 3.3.10: Smallest Smax not giving significant error at S = Smax with the fine
mesh h ' 0.01, k ' 0.001 and Kα = 0.3 in various nonstandard fine for the put option
with the backward Euler method. “-” indicates a case where it has not been possible

to establish a functional Smax.

K = 10 K = 1 K = 0.1

T = 10

@
@r
σ

.01 .2 .9

.001 - - -
.04 - - -
.1 - - -

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.5K 20K -
.04 3K 15K -
.1 4K 4K -

T = 1

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.25K 3K -
.04 1.25K 3K -
.1 1.25K 3K -

@
@r
σ

.01 .2 .9

.001 1.5K 3K 50K
.04 1.5K 3K 50K
.1 2K 3K 50K

T = .1

@
@r
σ

.01 .2 .9

.001 1.25K 1.5K 4K
.04 1.25K 1.5K 4K
.1 1.25K 1.5K 4K

@
@r
σ

.01 .2 .9

.001 1.25K 1.5K 4K
.04 1.25K 1.5K 4K
.1 1.25K 1.5K 4K

@
@r
σ

.01 .2 .9

.001 1.5K 2K 4K
.04 1.5K 2K 4K
.1 1.5K 2K 4K
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Table 3.3.11: Smallest Smax not giving significant error at S = Smax with the fine
mesh h ' 0.01, k ' 0.001 and Kα = 0.3 in the standard case except for γ in the put

option with the backward Euler method.

γ 0 0.5 1.0
minSmax 3K 3K 5K

(a) BE error, coarse mesh, T = 0.1. (b) BE error, coarse mesh, T = 10.

(c) BE error, fine mesh, T = 0.1. (d) BE error, fine mesh, T = 10.

Figure 3.3.3: Error {e0,n}Nn=1 at t = 0 for the put option with Smax ' 4K (a) h ' 0.1,
k ' 0.01, T = 0.1, (b) h ' 0.1, k ' 0.01, T = 10, (c) h ' 0.01, k ' 0.001, T = 0.1 and
(d) h ' 0.01, k ' 0.001, T = 10 and Kα = 0.3, in the standard case apart from the

value of T with the backward Euler method.
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3.3.3 Sensitivity to Smax

Tables 3.3.8 and 3.3.10 show the smallest Smax with the backward Euler method are

very similar to tables 3.2.9 and 3.2.11 show the smallest Smax with the forward Euler

method. There is a big difference however. Whereas the forward Euler method is only

conditionally stable, the backward Euler method is unconditionally stable. Hence the

large values of Smax for the backward Euler case — in particular for σ = 0.9 but also in

some cases for σ = 0.2 — can not be explained by instability as we did for the forward

Eular case. We may “discard” the results with σ = 0.9 as being extreme cases since

σ > 0.5 is generally considered such, but this is not sufficient to explain the results.

Instead looking at the error plots corresponding to the ones in Figure 3.3.3 — which are

the ones used for deciding on the minimal Smax — it seems that the error originating

near S = K from the discontinuity in the first derivative in the terminal condition decay

more and more slowly as σ is increasing. Hence the reason for the non-vanishing error

in S = Smax is not that the boundary condition is introducing an error, but that the

error from S = K has simply not yet vanished. For example for the coarse mesh h = 0.1

and k = 0.01 in the case T = 10, K = 0.1, B = 0.3, r = 0.001, γ = 0 and σ = 0.2 the

maximal error with the “preferred” Smax = 14K is e0 = 0.0020457 whereas the maximal

error with Smax = 4K is almost the same, namely e0 = 0.0020464.

Hence the results with the backward Euler method confirm the results with the forward

Euler method: Smax ' 4K seems to be adequate independently of the numerical scheme

used for the solution.

3.3.4 Convergence

First we consider the put option in the standard case with Smax = 4K solved with the

backward Euler method. Plotting the maximal errors e0 (see 3.4) at time t = 0 from

Table 3.3.1 with logarithmic axes, we get the result shown in Figure 3.3.4. From the

data in Table 3.3.1 we get the following convergence result:

e0 ' 0.069h2 + 0.006k (3.12)

Unlike what is observed for the forward Euler method, here we get the expected quadratic

convergence in S and linear convergence in t.
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Figure 3.3.4: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of
stepsizes dS = h and dt = k (logarithmic axes) for the put option in the standard case
with Smax = 4K and Kα = 0.3 with the backward Euler method. In this case the

maximal error is attained in the interior of the S-interval, close to S = K.

In Figure 3.3.5 we show the error e0,nm (see 3.8) as a function of both S and t for 5

different meshes: Mesh 1: h ' 0.1, k ' 0.1, Mesh 2: h ' 0.1, k ' 0.01, Mesh 3: h ' 0.1,

k ' 0.001, Mesh 4: h ' 0.05, k ' 0.001, Mesh 5: h ' 0.03, k ' 0.001.
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(a) Mesh 1 error. (b) Mesh 2 error.

(c) Mesh 3 error.

(d) Mesh 4 error. (e) Mesh 5 error.

Figure 3.3.5: Plot of the error as a function of S and t for the put option with
Smax = 4K and Kα = 0.3 with the backward Euler method for mesh 1 (a), mesh 2 (b),

mesh 3 (c), mesh 4 (d) and mesh 5 (e).
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Figure 3.3.6: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of
stepsizes dS = h and dt = k (logarithmic axes) for the call option in the standard case
with Smax = 4K and Kα = 0.3 with the backward Euler method. In this case the

maximal error is attained in the interior of the S-interval, close to S = K.

Next we turn to the call option in the standard case with Smax = 4K solved with the

backward Euler method. Plotting the maximal errors e0 (see 3.4) at time t = 0 from

Table 3.3.5 with logarithmic axes, we get the result shown in Figure 3.3.6. From the

data in Table 3.3.5 we get the following convergence result:

e0 ' 0.07h2 + 0.006k (3.13)

Unlike what is observed for the forward Euler method, here we get the expected quadratic

convergence in S and linear convergence in t.

Then we consider the bet option in the standard case with Smax = 4K solved with the

backward Euler method. Plotting the maximal errors e0 (see 3.4) at time t = 0 from

Table 3.3.6 with logarithmic axes, we get the result shown in Figure 3.3.7. From the

data in Table 3.3.6 we get the following convergence result:

e0 ' 0.016h1.4 + 0.001k (3.14)

As observed for the forward Euler method, for the bet option we get a reduction in the

expected quadratic convergence in S. We still observe the expected linear convergence

in t.



Chapter 3. Standard FDMs for European Options 95

Figure 3.3.7: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of
stepsizes dS = h and dt = k (logarithmic axes) for the bet option in the standard case
with Smax = 4K and Kα = 0.5 with the backward Euler method. In this case the

maximal error is attained in the interior of the S-interval, close to S = K.

Finally we consider the smoothened put option in the standard case with Smax = 30K

solved with the backward Euler method. Plotting the maximal errors e0 (see (3.4)) at

time t = 0 from Table 3.3.7 with logarithmic axes, we get the result shown in Figure 3.3.8

with the following convergence result:

e0 ' 0.005h2 + 0.01k (3.15)

For comparison, the convergence results with the backward Euler method are repeated

here:

Put: e0 ' 0.069h2 + 0.006k

Call: e0 ' 0.07h2 + 0.006k

Bet: e0 ' 0.016h1.4 + 0.001k

Smoothened put: e0 ' 0.005h2 + 0.01k

The conclusion is that the discontinuity in the derivative ∂V
∂S at (S, t) = (K,T ) for the

put and call options shows up in the computational results, but that we observe no loss

of convergence neither in t nor in S (with respect to the expected linear convergence in
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Figure 3.3.8: Plot of maximal error e0 at time t = 0 (see (3.4)) as a function of
step sizes dS = h and dt = k (logarithmic axes) for the smoothened put option in the
standard case (T = 1, K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2) with Smax = 30K

with the backward Euler method.

t and quadratic convergence in S for the backward Euler method) in the computational

domain. Instead the stronger discontinuity in V at (S, t) = (K,T ) for the bet option

means the loss of one order of convergence in S (with respect to the expected quadratic

convergence for the backward Euler method) whereas there is no loss in the order of

convergence in t in the computational domain. It would be expected that a quadratic

convergence in S and a linear convergence in t would show up once h becomes small

enough to “resolve the singularity”. Only for the bet option the singularity can not

be resolved inside the computational domain. These speculations could merit further

research but are not treated here. And as we expected for the smoothened put option

with no discontinuity in V or its derivatives we get the expected second order and linear

convergence in S and t respectively.

3.3.5 Volatility limit

Now we consider the put option price when volatility tends to 0 with the backward Euler

method and Table 3.3.12 shows the maximal error e0 when σ tends to zero.

In Figure 3.3.9(e)-(f) we show for the fine mesh h ' 0.01, k ' 0.001 the changes in

option price when the volatility tends to zero to the left and the difference between

numerical solution with different values of σ and exact solution with σ = 0 to the right.
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Table 3.3.12: Maximal error e0 for the put option at t = 0 with Smax ' 4Kand
Kα = 0.3 in the standard case except σ with the coarse and fine meshes h ' 0.1,
k ' 0.01 and h ' 0.01, k ' 0.001 respectively with the backward Euler method.

σ 0.4 0.2 0.01 0.001 0.0001 0.00001 0.

Coarse mesh 0.147722 0.0714003 0.00698829 0.00664124 0.00663775 0.00663772 0.00663772

Fine mesh 0.150168 0.0745572 0.00320859 0.00270294 0.00272136 0.00272155 0.00272155

We conclude, as for the forward Euler method, that the numerical solutions computed

with the backward Euler method satisfy 1.12.
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(a) Option Price, σ = 0.2. (b) Error curve, σ = 0.2.

(c) Option Price, σ = 0.001. (d) Error curve, σ = 0.001.

(e) Option Price, σ = 0. (f) Error curve, σ = 0.

Figure 3.3.9: The left curves show option price and the right curves error {e0,n}Nn=1

for the put option at t = 0 with Smax ' 4K and Kα = 0.3 in the standard case except
for σ with(a)-(b) σ = 0.2, (c)-(d) σ = 0.001, and (e)-(f) σ = 0 with the fine mesh

h ' 0.01, k '= 0.001 and with the backward Euler method
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3.3.6 Expiration limit

Here we compute the expiration limit for the options as we did in subsection 3.2.6 with

the for ward Euler method.

Table 3.3.13: Maximal error e0 for the put option at t = T − k with Smax ' 4K and
Kα = 0.3 in the standard case with the backward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00331879 0.000365234 3.65219e-05 3.65218e-06 3.65217e-07 3.65217e-08

.1 0.00184363 0.000824394 0.00014914 1.49477e-05 1.49511e-06 1.49514e-07
.01 0.0028557 0.000898223 0.00019204 7.77653e-05 1.40544e-05 1.40934e-06

Table 3.3.14: Maximal error e0 for the put option at t = T −5k with Smax ' 4K and
Kα = 0.3 in the standard case with the backward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00565441 0.00181357 0.000182603 1.82608e-05 1.82609e-06 1.82609e-07

.1 0.0020224 0.00178869 0.000645733 7.47011e-05 7.47517e-06 7.47567e-07
.01 0.00139073 000454277 0.000201432 0.000189783 6.11255e-05 7.04235e-06

Table 3.3.15: Maximal error e0 for the call option at t = T − k with Smax ' 4K and
Kα = 0.3 in the standard case with the backward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00331084 0.000365154 3.65211e-05 3.65217e-06 3.65217e-07 3.65217e-08

.1 0.00185158 0.000824314 0.000149139 1.49477e-05 1.49511e-06 1.49514e-07
.01 0.00286365 0.000898302 0.00019204 7.77653e-05 1.40544e-05 1.40934e-06

Table 3.3.16: Maximal error e0 for the call option at t = T −5k with Smax ' 4K and
Kα = 0.3 in the standard case with the backward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00561531 0.00181317 0.000182599 1.82608e-05 1.82609e-06 1.82609e-07

.1 0.00206151 0.00178829 0.000645729 7.47011e-05 7.47517e-06 7.47567e-07
.01 0.00142983 000454676 0.000201436 0.000189783 6.11255e-05 7.04235e-06

Table 3.3.17: Maximal error e0 for the bet option at t = T − k with Smax ' 4K and
Kα = 0.5 in the standard case with the backward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00340489 0.000358709 3.59870e-05 3.59987e-06 3.59999e-07 3.60000e-08

.1 0.02724 0.00394572 0.000655884 6.59586e-05 6.59959e-06 6.59996e-07
.01 0.0192518 0.0205107 0262852 0.00381672 000602376 6.05635e-05
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Table 3.3.18: Maximal error e0 for the bet option at t = T −5k with Smax ' 4K and
Kα = 0.5 in the standard case with the backward Euler method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.0102349 0.00178064 0.000179806 1.79981e-05 1.79998e-06 1.80000e-07

.1 0.00944335 0.0160589 0.00315253 0.000329379 3.29938e-05 3.29994e-06
.01 0.0045153 0.00467452 0.00957738 0.0144031 0.00291284 0.000302454

3.4 Numerical results for the Crank Nicolson method

In this section we consider the Crank Nicolson method for the standard case T = 1,

K = 1, B = 0.3, r = 0.04, γ = 0 and σ = 0.2 with the same computational setup as

described in sections 3.2.1 and 3.3.1. Since the Crank Nicolson method is an implicit

scheme like the backward Euler method, the computing times are similarly high.

3.4.1 Computational results for the standard case

First we compute the maximal error e0 (see 3.4) at time t = 0 with Smax ' 4K, 2K, 1.5K

and 1.25K for the put option in the standard case with the Crank Nicolson method.

The results are shown in Tables 3.4.1–3.4.4 and in Figures 3.4.1–3.4.2.

Table 3.4.1: Maximal error e0 for the put option at t = 0 for Smax ' 4K and Kα = 0.3
in the standard case with the Crank Nicolson method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00672936 0.00671793 0.00671314 0.00671156 0.00671154 0.00671154

.4 0.00408546 0.00406345 0.00405426 0.00405125 0.00405122 0.00405122

.3 0.00322124 0.00325308 0.00326646 0.00327087 0.00327091 0.00327091

.2 0.00233565 0.00241369 0.00244614 0.00245679 0.0024569 0.0024569

.1 0.000501005 0.000536946 0.00055238 0.000557505 0.000557557 0.000557557
.08 0.000284197 0.000320717 0.000337337 0.000342817 0.000342872 0.000342872
.06 0.000651676 0.000174949 0.000204624 0.00021404 0.000214133 0.000214134
.05 0.00113038 0.000126523 0.00014705 0.0001561 0.00015619 0.00015619
.04 0.0018367 0.00024821 9.14746e-5 0.000101488 0.000101623 0.000101624
.03 0.00290236 0.000737749 4.7315e-5 5.60747e-5 5.61908e-5 5.6192e-5
.02 0.00400788 0.00150029 0.000119567 2.62052e-5 2.6316e-5 2.63171e-5
.01 0.00534424 0.00265056 0.000704856 6.56793e-6 6.68405e-6 6.68515e-6
.001 0.00666172 0.00391332 0.00181799 7.31236e-5 6.65842e-8 6.77993e-8
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Table 3.4.2: Maximal error e0 for the put option at t = 0 for Smax ' 2K and Kα = 0.3
in the standard case with the Crank Nicolson method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00662353 0.00661279 0.00660828 0.00660679 0.00660677 0.00660677

.4 0.0040794 0.0040581 0.00404923 0.00404632 0.00404629 0.00404629

.3 0.00322131 0.00325312 0.00326649 0.00327089 0.00327094 0.00327094

.2 0.00233568 0.0024137 0.00244615 0.0024568 0.00245691 0.00245691

.1 0.000501005 0.000536946 0.00055238 0.000557505 0.000557557 0.000557557
.08 0.000284198 0.000320718 0.000337338 0.000342817 0.000342872 0.000342872
.06 0.000651674 0.00017495 0.000204624 0.00021404 0.000214133 0.000214134
.05 0.00113038 0.000126523 0.00014705 0.0001561 0.000156189 0.00015619
.04 0.00187367 0.00024821 9.14746e-5 0.000101488 0.000101623 0.000101624
.03 0.00290235 0.000737749 4.73149e-5 5.60746e-5 5.61908e-5 5.6192e-5
.02 0.00400788 0.00150029 0.000119568 2.62052e-5 2.6316e-5 2.63171e-5
.01 0.00534424 0.00265056 0.000704857 8.75748e-6 8.75748e-6 8.75748e-6
.001 0.00666172 0.00391332 0.00181799 7.31236e-5 8.29540e-6 8.21241e-6

Table 3.4.3: Maximal error e0 for the put option at t = 0 for Smax ' 1.5K and
Kα = 0.3 in the standard case with the Crank Nicolson method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00661619 0.00661279 0.00660828 0.00660679 0.00660677 0.00660677

.4 0.00372853 0.00372142 0.00371196 0.00370885 0.00370882 0.00370882

.3 0.0032449 0.00325481 0.0032680 0.00327234 0.00327239 0.00327239

.2 0.00239739 0.00242142 00245322 0.00246365 0.00246375 0.00246375

.1 0.000657543 0.000657543 0.000657543 0.000657543 0.000657543 0.00065754
.08 0.00104401 0.00104401 0.00104401 0.00104401 0.00104401 0.00104401
.06 0.00105242 0.00105242 0.00105242 0.00105242 0.00105242 0.00105242
.05 0.000840836 0.000840836 0.000840836 0.000840836 0.00084084 0.00084084
.04 0.00106134 0.00106134 0.00106134 0.00106134 0.00106134 0.00106134
.03 0.00124797 0.000931848 0.000931848 0.000931848 0.00093185 0.00093185
.02 0.00214265 0.0014987 0.000976963 0.000976963 0.00097696 0.00097696
.01 0.0033607 0.00264872 0.00102750 0.0010275 0.00102750 0.0010275
.001 0.004640 0.00391119 00181926 0.00107541 0.00107541 0.00107541

Table 3.4.4: Maximal error e0 for the put option at t = 0 for Smax ' 1.25K and
Kα = 0.3 in the standard case with the Crank Nicolson method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00612437 0.00612437 0.00612437 0.00612437 0.00612437 0.00612437

.4 0.00372853 0.00372142 0.00371196 0.00370885 0.00370882 0.00370882

.3 0.00332707 0.00333621 0.00334839 0.00335240 0.00335244 0.00335244

.2 0.00532862 0.00532862 0.00532862 0.00532862 0.00532862 0.00532862

.1 0.0087067 0.0087067 0.00870670 0.00870670 0.00870670 0.00870670
.08 0.00762432 0.00762432 0.00762432 0.00762432 0.00762432 0.00762432
.06 0.0080478 0.00804780 0.00804780 0.00804780 0.00804780 0.00804780
.05 0.0074617 0.00746170 0.00746170 0.0074617 0.00746170 0.00746170
.04 0.00851633 0.00851633 0.00851633 0.00851633 0.00851633 0.00851633
.03 0.00933452 0.00933452 0.00933452 0.00933452 0.00933452 0.00933452
.02 0.00942338 0.00942338 0.00942338 0.00942338 0.00942338 0.00942338
.01 0.00913899 0.00913899 0.00913899 0.00913899 0.00913899 0.00913899
.001 0.00956760 0.00956760 0.00956760 0.00956760 0.00956760 0.0095676
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(a) CN error, coarse mesh, Smax ' 4K. (b) CN error, coarse mesh, Smax ' 2K.

(c) CN error, coarse mesh, Smax ' 1, 5K. (d) CN error, coarse mesh, Smax ' 1.25K.

Figure 3.4.1: Error {e0,n}Nn=1 at t = 0 for the put option and Smax ' (a) 4K, (b)
2K, (c) 1.5K and (d) 1.25K for stepsizes h ' 0.1 and k ' 0.01 and Kα = 0.3 in the

standard case with the Cranck Nicolson method.
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(a) CN error, fine mesh, Smax ' 4K. (b) CN error, fine mesh, Smax ' 2K.

(c) CN error, fine mesh, Smax ' 1, 5K. (d) CN error, fine mesh, Smax ' 1.25K.

Figure 3.4.2: Error {e0,n}Nn=1 at t = 0 for the put option and Smax ' (a) 4K, (b)
2K, (c) 1.5K and (d) 1.25K for stepsizes h ' 0.01 and k ' 0.001 and Kα = 0.3 in the

standard case with the Cranck Nicolson method.
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Now we consider the maximal error e0 at time t = 0 with Smax ' 4K for the call

option in the standard case with the Crank Nicolson method. The results are shown in

Table 3.4.5.

Table 3.4.5: Maximal error e0 for the call option at t = 0 for Smax ' 4K and Kα = 0.3
in the standard case with the Crank Nicolson method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.00672993 0.00671814 0.00671319 0.00671156 0.00671154 0.00671154

.4 0.00408603 0.00406365 0.00405431 0.00405125 0.00405122 0.00405122

.3 0.00322067 0.00325287 0.00326641 0.00327087 0.00327091 0.00327091

.2 0.00233508 0.00241348 0.00244609 0.00245679 0.0024569 0.0024569

.1 0.000501575 0.000537151 0.000552431 0.000557506 0.000557557 0.000557557
.08 0.000284767 0.000320923 0.000337389 0.000342817 0.000342872 0.000342872
.06 0.000652245 0.000175154 0.000204675 0.00021404 0.000214133 0.000214134
.05 0.00113095 0.000126728 0.000147102 0.0001561 0.00015619 0.00015619
.04 0.00187424 0.000248416 9.1526e-5 0.000101489 0.000101623 0.000101624
.03 0.00290292 0.000737954 4.73664e-5 5.60753e-5 5.61909e-5 5.6192e-5
.02 0.00400845 0.0015005 0.000119516 2.62058e-5 2.63161e-5 2.63172e-5
.01 0.0053448 0.00265076 0.000704805 6.56847e-6 6.68407e-6 6.68515e-6
.001 0.0066619 0.00391352 0.00181794 7.3123e-5 6.65894e-8 6.77994e-8

Finally we consider the maximal error e0 at time t = 0 with Smax ' 4K for the bet

option in the standard case with the Crank Nicolson method. The results are shown in

Table 3.4.6.

Table 3.4.6: Maximal error e0 for the bet option at t = 0 with Smax ' 4K and
Kα = 0.5 in the standard case with the Crank Nicolson method.

@
@h
k

.3 .2 .1 .01 .001 .0001

.5 0.0172728 0.0173101 0.0173257 0.0173308 0.0173309 0.0173309

.4 0.0172728 0.0173101 0.0173257 0.0173308 0.0173309 0.0173309

.3 0.0196424 0.0197403 0.0197813 0.0197948 0.0197949 0.0197949

.2 0.0105562 0.0110726 0.0112855 0.0113552 0.0113559 0.0113559

.1 0.0020692 0.0026026 0.0028317 0.0029045 0.0029052 0.00290525
.08 0.0020888 0.0016613 0.0017822 0.0018692 0.0018701 0.00187013
.06 0.0125431 0.0007964 0.0009074 0.0009828 0.0009836 0.000983583
.05 0.0211934 0.0019972 0.0006579 0.0007153 0.0007159 0.000715862
.04 0.0356145 0.0073694 0.0004022 0.0004553 0.0004559 0.000455861
.03 0.0554435 0.0202956 0.0004334 0.0002660 0.0002666 0.00026659
.02 0.0832861 0.0481960 0.0071909 0.0001160 0.0001166 0.000116588
.01 0.1156278 0.0931800 0.0479155 0.0000288 0.0000294 0.0000294
.001 0.1474289 0.1446246 0.1383441 0.0476325 2.90458e-7 4.83086e-7

3.4.2 Computational results for nonstandard cases

Here we consider robustness in the selection of Smax against variations in the other

parameters in the problem when solving with the Crank Nicolson method like we have
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done for the forward and backward Euler methods in sections 3.2.2 and 3.3.2. since

Crank Nicolson method is an implicit method, we choose the same mesh sizes that we

chose for the backward Euler method in section 3.3.2 therefore the coarse mesh with

h ' 0.1 and k ' 0.01 and the fine mesh with h ' 0.01 and k ' 0.001. For each mesh, we

shall find the smallest value of Smax where the error in S = Smax is negligible compared

to the maximal error e0.

As observed when solving with the forward Euler method, we expect no significant

differences between the results for the put, call and bet options. Hence here we compute

only for the put option as well. The results for the coarse mesh are shown in Tables 3.4.7

and 3.4.8 and the results for the fine mesh are shown in Tables 3.4.9 and 3.4.10.

Table 3.4.7: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.01 and Kα = 0.3 in various nonstandard cases for the put option
with the Crank Nicolson method. “-” indicates a case where it has not been possible

to establish a functional Smax.

K = 10 K = 1 K = 0.1

T = 10

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K 5K -

@
@r
σ

.01 .2 .9

.001 1.25K 8K -
.04 1.5K 5K -
.1 1.5K 2K -

@
@r
σ

.01 .2 .9

.001 2K 3K -
.04 2K 2K -
.1 2K 2K -

T = 1

@
@r
σ

.01 .2 .9

.001 1.25K 3K -
.04 1.25K 3K -
.1 1.25K 2K -

@
@r
σ

.01 .2 .9

.001 1.5K 2K 24K
.04 1.5K 2K 23K
.1 1.5K 2K 22K

@
@r
σ

.01 .2 .9

.001 2K 2K 7K
.04 2K 2K 6K
.1 2K 2K 6K

T = .1

@
@r
σ

.01 .2 .9

.001 1.25K 1.25K 2K
.04 1.25K 1.25K 2K
.1 1.25K 1.25K 2K

@
@r
σ

.01 .2 .9

.001 1.25K 1.25K 3K
.04 1.25K 1.25K 3K
.1 1.25K 1.25K 3K

@
@r
σ

.01 .2 .9

.001 2K 2K 2K
.04 2K 2K 2K
.1 2K 2K 2K

Table 3.4.8: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.1, k ' 0.01 and Kα = 0.3 in the standard case except for γ in the put

option with the Crank Nicolson method.

γ 0 0.5 1.0
minSmax 2K 3K 4K
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(a) CN error, coarse mesh, T = 0.1. (b) CN error, coarse mesh, T = 10.

(c) CN error, fine mesh, T = 0.1. (d) CN error, fine mesh, T = 10.

Figure 3.4.3: Error {e0,n}Nn=1 at t = 0 for the put option with Smax ' 4K (a) h ' 0.1,
k ' 0.01, T = 0.1, (b) h ' 0.1, k ' 0.01, T = 10, (c) h ' 0.01, k ' 0.001, T = 0.1 and
(d) h ' 0.01, k ' 0.001, T = 10 and Kα = 0.3, in the standard case apart from the

value of T with the Crank Nicolson method.
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Table 3.4.9: Smallest Smax not giving significant error at S = Smax with the fine
mesh h ' 0.01, k ' 0.001 and Kα = 0.3 in various nonstandard cases for the put
option with the Crank Nicolson method. “-” indicates a case where it has not been

possible to establish a functional Smax.

K = 10 K = 1 K = 0.1

T = 10

@
@r
σ

.01 .2 .9

.001 - - -
.04 - - -
.1 - - -

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.25K 8K -
.04 1.25K 5K -
.1 1.25K 2K -

T = 1

@
@r
σ

.01 .2 .9

.001 1.25K - -
.04 1.25K - -
.1 1.25K - -

@
@r
σ

.01 .2 .9

.001 1.25K 3K -
.04 1.25K 3K -
.1 1.25K 2K -

@
@r
σ

.01 .2 .9

.001 1.25K 2K 25K
.04 1.25K 2K 25K
.1 1.25K 1.5K 25K

T = .1

@
@r
σ

.01 .2 .9

.001 1.25K 1.5K 3K
.04 1.25K 1.5K 3K
.1 1.25K 1.5K 3K

@
@r
σ

.01 .2 .9

.001 1.25K 1.25K 4K
.04 1.25K 1.25K 4K
.1 1.25K 1.25K 4K

@
@r
σ

.01 .2 .9

.001 1.25K 1.25K 3K
.04 1.25K 1.25K 3K
.1 1.25K 1.25K 3K

Table 3.4.10: Smallest Smax not giving significant error at S = Smax with the coarse
mesh h ' 0.01, k ' 0.001 and Kα = 0.3 in the standard case except for γ in the put

option with the Crank Nicolson method.

γ 0 0.5 1.0
minSmax 3K 4K 5K

3.4.3 Sensitivity to Smax

Sensitivity to for the Crank-Nicolson method Smax shows there is no indication in the

computations that have been performed that the results would differ from the forward

or backward Euler methods. Thus Smax = 4K still seems to be a fairly good all round

selection for most reasonable parameter values.

3.4.4 Convergence

First we consider the put option in the standard case with Smax = 4K solved with the

Crank Nicolson method. Plotting the maximal errors e0 (see 3.4) at time t = 0 from

Table 3.4.1 with logarithmic axes, we get the result shown in Figure 3.4.4. Obviously

there are 2 significantly different parts of the domain, that we shall refer to as “inside

the bubble”(h ∈]0, 0.08] and k ∈ [0.3, 0.001]) and “outside the bubble”(h ∈ [0.08, 0.5]

and k ∈ [0.001, 0.0001]) respectively. Technically the “bubble” is where the error is

increasing with decreasing dS = h. From the data in Table 3.4.1 we get the following
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Figure 3.4.4: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of
stepsizes dS = h and dt = k (logarithmic axes) for the put option in the standard case
with Smax = 4K and Kα = 0.3 with the Crank Nicolson method. In this case the

maximal error is attained in the interior of the S-interval, close to S = K.

convergence result:

e0 '

 0.019k1.5 ”in the bubble”

0.069h2 ”outside the bubble”
(3.16)

Unlike what is observed for the forward Euler method, here we get the expected quadratic

convergence in S and t, but only in the bubble.

In Figure 3.4.5 we show the error e0,nm (see 3.8) as a function of both S and t for 5

different meshes: Mesh 1: h ' 0.1, k ' 0.1, Mesh 2: h ' 0.1, k ' 0.01, Mesh 3: h ' 0.1,

k ' 0.001, Mesh 4: h ' 0.05, k ' 0.001, Mesh 5: h ' 0.03, k ' 0.001.
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(a) Mesh 1 error. (b) Mesh 2 error.

(c) Mesh 3 error.

(d) Mesh 4 error. (e) Mesh 5 error.

Figure 3.4.5: Plot of the error as a function of S and t for the put option with
Smax = 4K and Kα = 0.3 with Cranck Nicolson method for mesh 1 (a), mesh 2 (b),

mesh 3 (c), mesh 4 (d) and mesh 5 (e).
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Figure 3.4.6: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of
stepsizes dS = h and dt = k (logarithmic axes) for the call option in the standard case
with Smax = 4K and Kα = 0.3 with the Crank Nicolson method. In this case the

maximal error is attained in the interior of the S-interval, close to S = K.

Next we turn to the call option in the standard case with Smax = 4K solved with the

Crank Nicolson method. Plotting the maximal errors e0 (see 3.4) at time t = 0 from

Table 3.4.5 with logarithmic axes, we get the result shown in Figure 3.4.6. Obviously

there are 2 significantly different parts of the domain, that we shall refer to as “inside

the bubble” and “outside the bubble” respectively. From the data in Table 3.4.5 we get

the following convergence result:

e0 '

 0.02k1.5 ”in the bubble”

0.07h2 ”outside the bubble”
(3.17)

Unlike what is observed for the forward Euler method, here we get the expected quadratic

convergence in S and t, but only in the bubble.

Finally we consider the bet option in the standard case with Smax = 4K solved with the

Crank Nicolson method. Plotting the maximal errors e0 (see 3.4) at time t = 0 from

Table 3.4.6 with logarithmic axes, we get the result shown in Figure 3.4.7. Obviously

there are 2 significantly different parts of the domain, that we shall refer to as “inside

the bubble” and “outside the bubble” respectively. From the data in Table 3.4.6 we get
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Figure 3.4.7: Plot of maximal error e0 at time t = 0 (see 3.4) as a function of
stepsizes dS = h and dt = k (logarithmic axes) for the bet option in the standard case
with Smax = 4K and Kα = 0.5 with the Crank Nicolson method. In this case the

maximal error is attained in the interior of the S-interval, close to S = K.

the following convergence result:

e0 '

 0.118k0.6 ”in the bubble”

0.017h1.4 ”outside the bubble”
(3.18)

Here we are far from getting the expected quadratic convergence in S and t.

For comparison, the convergence results with the Crank Nicolson method are repeated

here:

Put: e0 '

 0.019k1.5 ”in the bubble”

0.069h2 ”outside the bubble”

Call: e0 '

 0.02k1.5 ”in the bubble”

0.07h2 ”outside the bubble”

Bet: e0 '

 0.118k0.6 ”in the bubble”

0.017h1.4 ”outside the bubble”

The conclusion is that the discontinuity in the derivative ∂V
∂S at (S, t) = (K,T ) for the

put and call options means the loss of two orders of convergence in t (with respect

to the expected quadratic convergence for the Crank Nicolson method) for bigger step

sizes h in the computational domain. For smaller step sizes h in the computational
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domain we observe the full quadratic convergence. Instead the expected quadratic order

of convergence in S is observed in the computational domain. The discontinuity in V

at (S, t) = (K,T ) for the bet option still means the loss of two orders of convergence in

t (with respect to the expected quadratic convergence for the Crank Nicolson method)

for bigger step sizes h in the computational domain. For smaller step sizes h in the

computational domain we still lose more than one order in t because of the stronger

singularity for the bet option than for the put and call options. The stronger singularity

for the bet option (with respect to the put and call options) also means the loss of one

order of convergence in S (with respect to the expected quadratic convergence for the

Crank Nicolson method) in the entire computational domain. It would be expected that

a quadratic convergence in S and t for the bet option would show up once h becomes

small enough to “resolve the singularity”. But because of the strong singularity this

requires such small values of h that they are out of our computational domain. These

speculations could merit further research but are not treated here.

3.4.5 Volatility limit

Now we consider the put option price computed with the Crank-Nicolson method when

volatility tend to 0 and Table 3.4.11 shows the maximal error e0 when σ tends to zero.

Table 3.4.11: Maximal error e0 for the put option with the Crank-Nicolson method
at time 0 with the standard case except σ at Smax ' 4K and Kα = 0.3 with the coarse

and fine meshes h ' 0.1, k ' 0.01 and h ' 0.01, k ' 0.001 respectively.

σ 0.4 0.2 0.01 0.001 0.0001 0.00001 0.

Coarse mesh 0.147924 0.0714919 0.00695045 0.00660321 0.00659973 0.00659969 0.00659969

Fine mesh 0.150188 0.0745654 0.00318953 0.00212712 0.00211662 0.00211651 0.00211651

In Figure 3.4.8 we show for the fine mesh h ' 0.01, k ' 0.001 the changes in option price

when the volatility tends to zero to the left and the difference between the numerical

solution with different values of σ and the exact solution with σ = 0 to the right.

We conclude, as for the forward and backward Euler methods, that the numerical solu-

tions computed with the Crank-Nicolson method satisfy 1.12.
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(a) Option Price, σ = 0.2, fine mesh. (b) Error curve, σ = 0.2, fine mesh.

(c) Option Price, σ = 0.001, fine mesh. (d) Error curve, σ = 0.001, fine mesh.

(e) Option Price, σ = 0, fine mesh. (f) Error curve, σ = 0, fine mesh.

Figure 3.4.8: The left curves show option price and the right curves error {e0,n}Nn=1

at t = 0 for the put option with Smax ' 4K and Kα = 0.3 in the fine mesh h ' 0.01,
k ' 0.001 (a)-(b) σ = 0.2, (c)-(d) σ = 0.001, and (e)-(f) σ = 0 in the standard case

apart from the value of σ with the Crank-Nicolson method
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3.4.6 Expiration limit

Here we compute the expiration limit for the options as we did in subsection 3.2.6 with

the Crank Nicolson method.

Table 3.4.12: Maximal error e0 for the put option at t = T − k with Smax ' 4K and
Kα = 0.3 in the standard case with the Crank Nicolson method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00331452 0.000365186 3.65214e-05 3.65217e-06 3.65217e-07 3.65217e-08

.1 0.0016035 0.000841773 0.000149326 1.49496e-05 1.49513e-06 1.49514e-07
.01 0.00491866 0.000711182 0.000176365 7.97703e-05 1.40759e-05 1.40955e-06

Table 3.4.13: Maximal error e0 for the put option at t = T −5k with Smax ' 4K and
Kα = 0.3 in the standard case with the Crank Nicolson method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00577972 0.00181334 0.000182601 1.82608e-05 1.82609e-06 1.82609e-07

.1 0.000698467 0.00180658 0.000646642 7.47104e-05 7.47526e-06 7.47568e-07
.01 0.00151497 3.37966e-05 7.15088e-05 0.000189811 6.12308e-05 7.04344e-06

Table 3.4.14: Maximal error e0 for the call option at t = T − k with Smax ' 4K and
Kα = 0.3 in the standard case with the Crank Nicolson method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00331453 000365186 3.65214e-05 3.65217e-06 3.65217e-07 3.65217e-08

.1 0.00160351 0.000841773 0.000149326 1.49496e-05 1.49513e-06 1.49514e-07
.01 0.00491867 0.000711182 0.000176365 7.97703e-05 1.40759e-05 1.40955e-06

Table 3.4.15: Maximal error e0 for the call option at t = T −5k with Smax ' 4K and
Kα = 0.3 in the standard case with the Crank Nicolson method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00577974 0.00181334 0.000182601 1.82608e-05 1.82609e-06 1.82609e-07

.1 0.000698441 0.00180658 0.000646642 7.47104e-05 7.47526e-06 7.47568e-07
.01 0.00151499 3.37966e-05 7.15088e-05 0.000189811 6.12308e-05 7.04344e-06

Table 3.4.16: Maximal error e0 for the bet option at t = T − k with Smax ' 4K and
Kα = 0.5 in the standard case with the Crank Nicolson method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00346605 0.000359353 3.59935e-05 3.59994e-06 3.59999e-07 3.60000e-08

.1 0.0180289 0.00413281 0.000657935 6.59793e-05 6.59979e-06 6.59998e-07
.01 0.113615 0.0458532 0.0179404 0.00398222 0.000604182 6.05818e-05
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Table 3.4.17: Maximal error e0 for the bet option at t = T −5k with Smax ' 4K and
Kα = 0.5 in the standard case with the Crank Nicolson method

@
@h
k

.1 .01 .001 .0001 .00001 .000001

.5 0.00985266 0.00178381 0.000179838 1.79984e-05 1.79998e-06 1.80000e-07

.1 0.00439463 0.0152823 0.0031625 0.000329483 3.29948e-05 3.29995e-06
.01 0.0723394 0.00358273 0.00440593 0.0137592 0.00292163 0.000302544

3.5 Conclusion

We considered some explicit and implicit finite difference schemes such as forward Eu-

ler, backward Euler and Crank-Nicolson methods for solving the standard linear Black-

Scholes equation. We applied Kα method introduced in Chapter 2 for the given schemes

here to reduce the schemes errors and reestablish the expected second oder of conver-

gence in S-direction. We computed the order of convergence of the different schemes

for different options and showed that we can not get the expected order of schemes

convergences because of nonsmooth terminal condition of the equation.

We investigated the optimal value of Smax of the underlying asset as the right boundary

condition of the Black-Scholes equation to have negligible errors around Smax in a stan-

dard case and some nonstandard case. we found that Smax ' 4K is a good choice for

different options such as put, call and bet option solved with the given three schemes.

Also the computational results showed that Smax is fairly independent of the equation

parameters like T,K, r, σ, γ and B except extreme value for dividends.

Furthermore volatility and expiration limits for these schemes have been considered.

The volatility limit showed that when the volatility goes to zero the maximal errors

tend to the maximal errors of the option price with no volatility. Also the expiration

limit confirmed that when t → T , the numerical solution tend to the exact terminal

condition V (S, T ).





Chapter 4

Feedback Options in Nonlinear

Numerical Finance

Jens Hugger and Sima Mashayekhi

Abstract. Feedback options are options where information about the trading of the

underlying asset is fed back into the pricing model. This results in nonlinear pricing

models. A survey of the literature about feedback options in finance is presented. The

pricing model for the full feedback option on an infinite slab is presented and bound-

ary values on a bounded domain are derived. This bounded, nonlinear, 2 dimensional

initial-boundary value problem is solved numerically using a number of standard finite

difference schemes and the methods incorporated in the symbolic software MapleTM.

Keywords: Nonlinear PDE’s, Feedback option, boundary value problem, numerical

solution

Subjectclass: 35K61, 65M06

4.1 Introduction

In the classical Black-Scholes theory the price of financial derivatives is assumed to

be independent on the trading strategy for the derivatives. The recent crisis on the

European markets have proven otherwise as the price of the Greek, Italian and Spanish

State bonds have fallen drastically. In this article we investigate feed back models where

information about trading strategies are fed back into the model. This results in fully

117



Chapter 4. Feedback Options in Nonlinear Numerical Finance 118

nonlinear models that must be solved numerically. We investigate how liquidity(λ)

can affect the option values. If we assume that a hedger holds the number of stocks

dictated by the analytical Black- Scholes delta,then this leads to the linear PDE that

is called First-order Feedback Model. But with assuming the trading strategy affect

the price based on the actual delta of the modified price, it causes nonlinear PDE is

called Full Feedback Model. At first in section 4.2 we present a survey of the literature

about feedback options. After that in section 4.3 we present the partial differential

equation model for the feedback option on the unbounded domain and derive boundary

conditions to be used for numerical solution on a bounded domain. Then in section 4.4

we present the numerical methods to be used for solving the feedback option model.

Finally in section 4.5 we present results obtained with the numerical methods presented

in section 4.4 and conclude the work.

4.2 Literature survey on illiquid markets and feedback op-

tions

The classical Black-Scholes model is assumed on base of frictionless and perfectly liquid

markets. Actually, it is assumed that buying arbitrarily large quantities of the underlying

assets does not affect price of the underlying asset. Here we consider a realistic model

for illiquid market that the effects of trading on the underlying asset price is considered

[18], [12] and [14].

We suppose that the function f(S, t) is the number of extra shares that should be held

due to some deterministic hedging or trading strategy and therefore df(S, t) will be the

number of shares needed to be bought or sold at time t and price S. And also we assume

that λ(S, t) shows the form of price impact and liquidity factor. We can add these terms

to the underlying process [18], so we will have

dS = µSdt+ σSdW + λ(S, t)df (4.1)

where S is the price of the underlying, µ is the measure of the average rate of growth of

the asset price, σ is the volatility of the underlying asset and W is a geometric Brownian

motion.



Chapter 4. Feedback Options in Nonlinear Numerical Finance 119

We can expand f(S + dS, t+ dt) in a Taylor expansion at (S, t):

df =
∂f

∂t
dt+

∂f

∂S
dS +

1

2

∂f

∂S2
(dS)2 + ...

and substituting in (4.1) to obtain

(1− λ∂f
∂S

)dS = (µS + λ
∂f

∂t
)dt+ λ

∂2f

∂S2
(dS)2 + σSdW. (4.2)

To find an expression for (dS)2, we obtain squaring equation (4.2) and simply it when

dt→ 0

(dS)2 =
σ2S2dt

(1− λ ∂f∂S )

2

+ o(dt)

where we have used this condition that (dW )2 → dt as dt → 0. Substituting above

expression of (dS)2 into (4.2), we obtain the following stochastic process:

dS = µ̂Sdt+ σ̂SdW (4.3)

where

ˆµ(S, t) =
1

1− λ ∂f∂S

[
µS + λ(

∂f

∂S
+

1

2
σ̂2
∂2f

∂S2
)
]

We use Black-Scholes equation to option pricing under the modified stochastic process

∂V

∂t
+

σ2S2

2
(

1− λ(S, t) ∂f∂S

)2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (4.4)

Delta hedging is a trading strategy that could impact the price clearly. Therefore the

trading strategy f can be an option delta under the option price V ∗

f = ∆∗ =
∂V ∗

∂S
.

Depends on which strategy the hedgers follow, we will have two pricing PDEs. If V ∗

were assumed the classical Black-Scholes value, from (4.4) we obtain

∂V

∂t
+

σ2S2

2
(

1− λ(S, t)∂
2V BS

∂S2

)2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (4.5)

That is a linear PDE and is called first-order feedback. The second choice of V ∗ is when

we assume that the hedger exactly know the feedback effect so accordingly changes the
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hedging strategy therefore V ∗ = V and the pricing PDE

∂V

∂t
+

σ2S2

2
(

1− λ(S, t)∂
2V
∂S2

)2

∂2V

∂S2
+ rS

∂V

∂S
− rV = 0 (4.6)

that is a nonlinear PDE and is called full feedback.

Equation (4.6) have been considered with different forms of the function λ(S, t). One

case is a constant value of the liquidity factor which is discussed in [18] and [46] and

will be discussed further in next sections. Furthermore, Bordag and Frey in [12] has

introduced three different frameworks for modelling illiquid markets:

1) Transaction-cost models:

∂V

∂t
+

1

2
σ2S2

(
1 + 2ρS

∂2V

∂S2

)∂2V

∂S2

2) Reduced-form SDE models:

∂V

∂t
+

1

2

σ2S2(
1− ρS ∂2V

∂S2

)2

∂2V

∂S2

3) Equilibrium or reaction-function models:

∂V

∂t
+

1

2

σ2S2(
1− ρgα(ρVS)

g(ρVS) S
∂2V
∂S2

)2

∂2V

∂S2

where ρ is a positive constant and the third model for g(α) = eα reduces to the second

model, and for g(α) = 1
1−α [16] we will have:

∂V

∂t
+

1

2

σ2S2
(
1− ρ∂V∂S

)2(
1− ρ∂V∂S − ρS

∂2V
∂S2

∂2V
∂S2

)2

∂2V

∂S2

4.3 PDE model for feedback options on an unbounded and

on a bounded domain

The classical boundary value problem for a feedback European option posed over the

financially relevant domain Ω∞ = {(S, t) ∈]0,∞[×]0, T [} is found in [18] (based on
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[16, 14, 15] and for the special case of no dividend) to be

Find V : (S, t) ∈ Ω̄∞ → R, V ∈ C0(Ω̄∞) ∩ C2,1(Ω∞) so that

∂V

∂t
+

σ2(t)S2

2
(

1− λ(S, t)∂
2V ∗

∂S2

)2

∂2V

∂S2
+
(
r(t)S − γ(t)S

)∂V
∂S
− r(t)V = 0 in Ω∞

and V (S, T ) = κ(S) in Ω̄∞|t=T . (4.7)

Here the dependent variable V (S, t) is the value (price) of the option for a value S of

the risky asset at time t. V ∗ is either V (giving the nonlinear full feedback case) or

V BS the “no feedback” Black-Scholes-price of the European vanilla option (giving the

linear first-order feedback case). γ, σ > 0 and r — the dividend yield, volatility (on

the underlying risky asset) and market interest rate (on the riskfree asset) — are all

assumed to depend only on time t and be independent of the value S of the underlying

risky asset. Instead λ(S, t) and κ(S) — the market liquidity and payoff — are functions

of the value of the underlying risky asset — but not of any of the derivatives of S. While

the liquidity is decided by the market and hence must be modeled, the payoff κ(S) is

negotiated at time 0 between the buyer and seller of the option. In (4.7) κ(S) is given

by:

κC(S) = max{S −K, 0}, (4.8)

κP (S) = max{K − S, 0}, (4.9)

κB(S) = BH(S −K) =

 B for S −K ≥ 0

0 for S −K < 0
. (4.10)

Whereas κC , κP and κB are the payoff functions for the call, put and simple bet options

respectively.

For our 3 option cases the “no feedback” Black-Scholes-prices of the European vanilla

options are known from basic finance text books as for example [46] §5.4–5.5. The focus

in this work is on the challenges posed by the nonlinearity of the BVP(4.7) in the full

feedback case when solving the problem numerically. As a warm up to this problem,

we shall investigate also the linear first-order feedback case and address problems not

connected to the nonlinearity here. To simplify we shall take r as a constant and

γ = 0. Also we shall consider σ ∈ (0, 1) and λ ∈ (0,∞) constant. This results in the

following Backward DEP [Differential Equation Problem] or IBVP [Initial, Boundary
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Value Problem]:

Find V : (S, t) ∈ Ω̄→ R where Ω = (0, Smax)× (0, T ) for some Smax >> K,

so that in a classical, weak or distributional sense

∂V

∂t
+

σ2S2

2
(

1− λ∂2V ∗

∂S2

)2

∂2V

∂S2
+ r
(
S
∂V

∂S
− V

)
= 0 in Ω and

V (0, t) = κ(0)e−r(T−t), in Ω̄|S=0, (4.11)

V (Smax, t) '


Smax −Ke−r(T−t) for κ = κC

0 for κ = κP

Be−r(T−t) for κ = κB

, in Ω̄|S=Smax ,

V (S, T ) = κ(S) in Ω̄|t=T ,

where we consider the 2 feedback cases

Full Feedback case: V ∗ = V and First-order Feedback case: V ∗ = V BS , (4.12)

and the 3 payoff cases

Call option: κ = κC , Put option: κ = κP and Simple Bet option: κ = κB. (4.13)

moreover for numerical computations it is convenient to have a bounded computational

domain. This is obtained by restricting S to some bounded interval S ∈ (0, Smax). As

long as we require Smax >> K.

4.4 Numerical methods for solving the feedback options

We consider the following consistent standard finite difference schemes for the numerical

solution of (4.11-4.13).

a. Forward Euler: Forward in time t, central in S [FtCS]. Error and stability condi-

tion for the heat equation: O(k + h2) and k ≤ h2

2 respectively.

b. Backward Euler: Backward in time t, central in S [BtCS]. Error and stability

condition for the heat equation: O(k + h2) and A- and L-stable respectively.
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c. Crank Nicolson: Central in time t, central in S [CtCS]. Error and stability condi-

tion for the heat equation: O(k2 + h2) and A- but not L-stable respectively.

The numerical schemes are constructed on a net of nodal points (Sn, tm), n = 1, . . . , N ,

m = 1, . . . ,M with step sizes h and k respectively, so that Sn = (n − 1)h and tm =

(M −m)k and in particular S1 = 0, SN = Smax, t1 = T and tM = 0. Then the schemes

consist of simple replacements [;] in (4.11): The Dirichlet terminal and boundary

conditions are used as they are: V (0, tm) ; Ṽ1,m, V (Smax, tm) ; ṼN,m, V (Sn, T ) ; Ṽn,1

for n = 1, . . . , N and m = 1, . . . ,M . The derivatives DV (Sn, tm) in the relevant (mainly

interior) nodal points in (4.11) are replaced by finite differences δṼn,m varying from

method to method:

Find Ṽn,m for n = 1, . . . , N and m = 1, . . . ,M :

δtṼn,m +
σ2S2

n

2
(

1− λδSSṼ ∗n,m
)2 δSSṼn,m + r

(
SnδSṼn,m − δ0Ṽn,m

)
= 0

for n = 2, . . . , N − 1 andm = 1, . . . ,M − 1,

Ṽ1,m = κ(0)e−r(T−tm), for m = 1, . . . ,M,

ṼN,m '


Smax −Ke−r(T−tm) for κ = κC

0 for κ = κP

Be−r(T−tm) for κ = κB

, for m = 1, . . . ,M,

Ṽn,1 = κ(S) for n = 1, . . . , N, (4.14)

where we consider the two feedback cases

Full Feedback case: δSSṼ
∗
n,m = δSSṼn,m and

First-order Feedback case: δSSṼ
∗
n,m = δSSV

BS
n,m,

for n = 1, . . . , N and m = 1, . . . ,M, (4.15)

and the 3 payoff cases

Call option: κ = κC , Put option: κ = κP and Simple Bet option: κ = κB. (4.16)

For the various finite difference schemes we have the following replacements:
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a. Forward Euler:

V (Sn, tm) ; δ0Ṽn,m = Ṽn,m,

∂V
∂t (Sn, tm) ; δtṼn,m =

Ṽn,m+1−Ṽn,m
k ,

∂V
∂S (Sn, tm) ; δSṼn,m =

Ṽn+1,m−Ṽn−1,m

2h ,

∂2V
∂S2 (Sn, tm) ; δSSṼn,m =

Ṽn+1,m−2Ṽn,m+Ṽn−1,m

h2 ,

∂2V BS

∂S2 (Sn, tm) ; δSSṼ
BS
n,m = ∂2V BS

∂S2 (Sn, tm),

for n = 2, . . . , N − 1, m = 1, . . . ,M − 1.

b. Backward Euler:

V (Sn, tm+1) ; δ0Ṽn,m = Ṽn,m+1,

∂V
∂t (Sn, tm+1) ; δtṼn,m =

Ṽn,m+1−Ṽn,m
k ,

∂V
∂S (Sn, tm+1) ; δSṼn,m =

Ṽn+1,m+1−Ṽn−1,m+1

2h ,

∂2V
∂S2 (Sn, tm+1) ; δSSṼn,m =

Ṽn+1,m+1−2Ṽn,m+1+Ṽn−1,m+1

h2 ,

∂2V BS

∂S2 (Sn, tm+1) ; δSSṼ
BS
n,m = ∂2V BS

∂S2 (Sn, tm+1),

for n = 2, . . . , N − 1, m = 1, . . . ,M − 1.

c. Crank Nicolson:

V (Sn, tm+ 1
2
) ; δ0Ṽn,m = 1

2

(
Ṽn,m+1 + Ṽn,m

)
,

∂V
∂t (Sn, tm+ 1

2
) ; δtṼn,m =

Ṽn,m+1−Ṽn,m
k ,

∂V
∂S (Sn, tm+ 1

2
) ; δSṼn,m = 1

2

(
Ṽn+1,m+1−Ṽn−1,m+1

2h +
Ṽn+1,m−Ṽn−1,m

2h

)
,

∂2V
∂S2 (Sn, tm+ 1

2
) ; δSSṼn,m = 1

2

(
Ṽn+1,m+1−2Ṽn,m+1+Ṽn−1,m+1

h2 +
Ṽn+1,m−2Ṽn,m+Ṽn−1,m

h2

)
,

∂2V BS

∂S2 (Sn, tm+ 1
2
) ; δSSṼ

BS
n,m = ∂2V BS

∂S2 (Sn, tm+ 1
2
),

for n = 2, . . . , N − 1, m = 1, . . . ,M − 1.

4.5 Numerical results and conclusions

We define the error E for a test case with Smax = Stest
max with respect to the reference

case with Smax = Sref
max ' 4Stest

max as

E(h, k, Stest
max,method) = max

i,j

∣∣∣Ṽi,j(h, k, Stest
max,method)− Ṽi,j(h, k, Sref

max,method)
∣∣∣

where the maximum is taken over all nodal points for the test case (Sref
max is selected so

that all these point are also nodal points in the reference case) and Ṽi,j(h, k, S
case
max,method)

is the numerical solution in the nodal point indexed by i, j in the test case, with step
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sizes h and k in the S and t directions respectively, with Smax = Scase
max and using the

finite difference scheme “method”.

We consider for the first-order feedback and full feedback call option, two sets of step

sizes: h = k = 0.1 and h = 0.05 and k = 0.001, five values of Stest
max: 4K, 3K, 2K,

1.5K and 1.1K, and the 3 methods: Forward Euler [FE], Backward Euler [BE] and

Crank-Nicolson [CN]. The goal is to find an appropriate scheme for the first-oder and

full feedback options and select Smax = Stest
max so that E(h, k, Stest

max,method) < 10−4. The

relative errors for the first-order and full feedback call option solved with these three

methods and with various values of Stest
max are given in Tables 4.1-4.4 for two step sizes

h = k = 0.1 and h = 0.05 and k = 0.001 respectively.

Table 4.1: First-order feedback error E(h = .1, k = .1, Stest
max,method)

Method/Stest
max 1.1K 1.5K 2K 3K 4K

FE 0.0136848 0.000930708 7.70656e-05 0.550371 329.79

BE 0.0130196 0.00120136 4.44045e-05 7.65906e-05 7.66613e-05

CN 0.0133154 0.00108415 1.40325e-05 5.63610e-08 5.12348e-08

Table 4.2: First-order feedback error E(h = .05, k = .001, Stest
max,method)

Method/Stest
max 1.1K 1.5K 2K 3K 4K

FE 0.0207339 0.00108041 1.01585e-5 9.29013e+351 3.06264e+605

BE 0.0207211 0.00108332 8.94370e-6 7.67815e-07 7.68611e-07

CN 0.0207275 0.00108187 9.55081e-6 7.32806e-10 5.02608e-12

Table 4.3: Full feedback error E(h = .1, k = .1, Stest
max,method)

Method/Stest
max 1.1K 1.5K 2K 3K 4K

FE 2.77760e-05 7.70689e-05 7.70689e-05 7.70656e-05 7.70656e-05

BE 0.00256037 0.000211262 8.01231e-05 7.66742e-05 7.66809e-05

CN 0.00828538 0.0217787 0.0422436 0.0829726 0.1237

Table 4.4: Full feedback error E(h = .05, k = .001, Stest
max,method)

Method/Stest
max 1.1K 1.5K 2K 3K 4K

FE 1.90943e-05 7.68651e-07 7.68652e-07 7.68652e-07 7.68652e-07

BE 0.000843621 5.18059e-05 1.21166e-06 7.68647e-07 7.68612e-07

CN 0.00689234 0.0219523 0.0424089 0.0832193 0.124029

Based on these results for the first-order feedback the explicit scheme Forward Euler is

not stable for bigger Smax. Therefore the implicit schemes backward Euler and Crank

Nicolson solve the first-order feedback more accurately. Furthermore selecting Smax =

2K is sufficient for the given error (10−4).
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But for the full feedback option the explicit scheme is more accurate than implicit

schemes since in implicit scheme we should solve a system of nonlinear equations by

linearization of the nonlinear part of the equations and using an iterative method such as

Newton method to solve the system of linearized equations. Moreover more complicated

nonlinearity in Crank Nicolson scheme causes bigger errors than Backward Euler. Also

for the given error (10−4) in full feedback Smax = 2K is adequate.

Moreover all max errors are located in the last iteration and close to S = Smax however

there is some oscillation around S=K. In Figure 4.1 we show two examples of numerical

solutions of the first-order and full feedback call option with Crank Nicolson scheme

in the above set up, namely Ṽi,j(.05, .001, Smax,CN) and the 3-D plot of relative errors

(E(.05, .001, Stest
max,CN)) in all nodal points.
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(a) First-order feedback call with Stest
max = 2K. (b) Full feedback call with Stest

max = 2K.

(c) First-order feedback errors with respect to Sref
max. (d) Full feedback errors with respect to Sref

max.

Figure 4.1: Top curves are the first-order feedback (a) and full feedback (b) call option
with Stest

max = 2K, and two curves (c) and (d) are their errors in all nodal points with
respect to Sref

max = 4Stest
max with step sizes h = 0.05 and k = 0.001.
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Abstract. Several nonlinear Black-Scholes models have been proposed to take trans-

action cost, large investor performance and illiquid markets into account. One of the

most comprehensive models was introduced by Barles and Soner in [4] and considers

transaction cost in the hedging strategy and risk from an illiquid market. In this paper

we compare several finite difference methods for the solution of this model with respect

to precision and order of convergence within a computationally feasible domain allow-

ing at most 200 space steps and 10000 time steps. We conclude that standard explicit

Euler comes out as the preferred explicit method and standard Crank Nicolson with

Rannacher time stepping as the preferred implicit method.
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5.1 Introduction

The classical linear Black-Scholes model for option pricing assumes a complete market

without transaction cost, illiquidity or feedback issues like large investor performance.

Several nonlinear Black-Scholes models have been proposed in recent years to deal with

these inadequacies. Nonlinearity in the nonlinear Black-Scholes models always arises

from a nonlinear volatility function depending not only on time t and underlying asset

price S but also on the Greek Gamma i.e. the second derivative of the option price

V (S, t) with respect to S. Hence the nonlinear Black-Scholes model equation is

∂V

∂t
+

1

2
σ2(t, S,

∂2V

∂S2
)S2∂

2V

∂S2
+ (r − γ)S

∂V

∂S
− rV = 0, (S, t) ∈ (0, Smax)× (0, T ) (5.1)

with the following terminal and boundary Dirichlet conditions:

V (S, T ) = κ(S, T ), V (0, t) = κ(0, t), V (Smax, t) ' κ(Smax, t) (5.2)

where we are using the utility function

κ(S, t) =


max{Se−γ(T−t) −Ke−r(T−t), 0} for the call option

max{Ke−r(T−t) − Se−γ(T−t), 0} for the put option

Be−r(T−t)H(S −K) for the bet option

. (5.3)

γ, σ and r are the dividend yield, volatility (on the underlying risky asset) and market

interest rate (on the riskfree asset) respectively, K is the Strike Price, H the Heaviside

function and Smax >> K is the upper bound on the computational domain in the S

variable.

Two known “numerical issues” from the linear case are expected to carry over to the

nonlinear case:

First of all many methods oscillate either around the strike price S = K or around

the upper bound for the computational domain S = Smax. One way to eliminate such

oscillations is to use a monotone method that cannot oscillate. Alternatively oscillations

near S = Smax are easily observed and removed simply by increasing Smax of course

at the cost of an increase in computational time. Initiating methods oscillating around

S = K by smaller timesteps (4 initial quartersteps has been suggested as optimal) with a
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nonoscillating method tends to remove the oscillations without changing the convergence

rate of the oscillating method. Most notable example is probably Crank-Nicolson with

4 initial quartersteps by implicit Euler explored in Chapter 2.

The second “numerical issue” is the degradation in observed convergence order caused

by the singular terminal condition for options unless extremely small stepsizes are used.

Stepsizes often lying outside what is computationally feasible.

In this article we will investigate these two problems for a number of finite difference

schemes and one particular nonlinear model proposed by Barles and Soner in [4].

The nonlinearity of the nonlinear case may provide “numerical issues” of its own.

Uniqueness of solution is typically an issue for nonlinear problems just as the “nice”

smoothening feature of linear heat conduction may be lost. Such nonlinear features will

not be dealt with here, but let us just note, that no practical problems in this direction

have been observed.

In section 5.2 we review the Barles and Soner model for nonlinear volatility. In section 5.3

we present a number of different finite difference methods for the Barles and Soner

model. In section 5.4 we present some numerical results with the different finite difference

schemes for the Barles and Soner model. Finally in section 5.5 we discuss our results

and present the conclusions.

5.2 The Barles and Soner nonlinear volatility model

Barles and Soner considers in [4] both transaction cost and risk from volatile portfolios.

They take an approach based on utility maximization which results in the following

adjustment of the volatility:

σ2
BS(t, S,

∂2V

∂S2
) = σ2

0

[
1 + Ψ

(
er(T−t)aS2∂

2V

∂S2

)]
. (5.4)

Here a = κ2R where κ is the “Leland transaction cost” (denoted µ in [4]) and R is a risk

aversion factor (denoted γ in [4]). Finally Ψ(x) is the solution of the nonlinear ODE

Ψ′(x) =
Ψ(x) + 1

2
√
xΨ(x)− x

, x 6= 0 (5.5)
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with the initial condition Ψ(0) = 0. In appendix A of [4] the existence of a unique

continuous viscosity solution to this problem has been shown. It is also shown that

Ψ ≥ 0 i.e. that the adjustment factor to σ2
0 is nonnegative for any argument of Ψ. For

the numerical experiments an unspecified explicit time stepping finite difference scheme

is used with small time steps near maturity (t = T ) and larger time steps away from

maturity. Lesmana and Wang present in [31] an implicit first order time stepping and

upwind asset price stepping finite difference method that we here shall denote ImpUp.

Zhou et al present in [48] a positivity-preserving scheme that we shall denote PosPre.

Both schemes are used to solve the Barles and Soner model.

Note that σ0 — the volatility of the underlying asset — is assumed constant and if we

take σ(t, S, VSS) = σ0 we will have the classical linear Black-Scholes model.

5.3 Finite Difference Schemes

Arenas et al present in [2] a nonstandard explicit finite difference scheme for the nu-

merical pricing of options in an illiquid market modeled by Frey et al in [16], [14] and

[15]. González et al in [19] then applies the same scheme for the parameterized model by

Bakstein and Howison from [3]. The method is shown to be nonnegative, nondecreasing,

stable and consistent for both model problems. Here we shall consider this method for

solving the option pricing problem with the Barles and Soner model (5.4–5.5) which has

not previously been attempted (See Appendix 5.A-5.C for more details). For short the

method will be denoted NFDM and we will compare NFDM to ImpUp and PosPre,

both previously used to solve the Barles and Soner model. Finally we shall compare

to two standard methods, namely explicit first order in time and central second order

in S denoted FtCS and Crank-Nicolson denoted CN. CN is stabilized with “Rannacher

time stepping” — starting up with 4 quarter steps using the fully implicit first order in

time and second order in S “Implicit Euler” scheme — and hence the notation CNR is

used. Also we shall apply Kα-optimization to all 5 methods minimizing the error by

adjusting stepsizes so that the strike price K is situated in an optimal position in the

element that it resides in (see Chapter 2).

The volatility function in (5.1) is then taken to be σBS from (5.4–5.5) and in order to

follow the original presentation dividend is not considered (γ = 0) and time is reversed
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by replacing the time variable t by τ = T − t and consequently V (S, t) by U(S, τ). This

transforms equation (5.1) into

∂U

∂τ
− 1

2
σ2
BS(T − τ, S, ∂

2U

∂S2
)S2∂

2U

∂S2
− rS ∂U

∂S
+ rU = 0 (5.6)

with σBS given by (5.4–5.5) whereas the terminal and boundary conditions (5.2) for V

are transformed into the obvious initial and boundary conditions for U

U(S, 0) = κ(S, T ), U(0, τ) = κ(0, T − τ), U(Smax, τ) ' κ(Smax, T − τ) (5.7)

with κ still given by (5.3).

We describe our 5 FDM’s using the following finite difference operators:

δ+
τ u

n
j =

un+1
j − unj

k
, δ̃+

τ u
n
j =

un+1
j − unj
θ(k)

, (5.8)

δ+
S u

n
j =

unj+1 − unj
h

, δ0
Su

n
j =

unj+1 − unj−1

2h
,

δ0
SSu

n
j =

unj+1 − 2unj + unj−1

h2
, δ̃0

SSu
n
j =

unj+1 − 2unj + unj−1

φ(h)
,

δ̄0
SSu

n
j =

unj+1 − 2un+1
j + unj−1

h2
,

where φ(h) = (e
√
rh − 2 + e−

√
rh)/r = h2 +O(h4) and θ(k) = (1− e−rk)/r = k+O(k2).

Noting that the initial and boundary conditions are the same for all methods, our 5

FDM’s are described by their main update equations:

NFDM δ̃+
τ u

n
j −

1

2
σ2
BS(T − τn, Sj , δ̃0

SSu
n
j )S2

j δ̃
0
SSu

n
j − rSjδ+

S u
n
j + runj = 0 (5.9)

ImpUp δ+
τ u

n
j −

1

2
σ2
BS(T − τn+1, Sj , δ

0
SSu

n+1
j )S2

j δ
0
SSu

n+1
j − rSjδ+

S u
n+1
j

+ run+1
j n = 0

PosPre δ+
τ û

n
j −

1

2
σ2
BS(T − τn, xnj , δ̄0

xxû
n
j )(xnj )2δ̄0

xxû
n
j = 0

FtCS δ+
τ u

n
j −

1

2
σ2
BS(T − τn, Sj , δ0

SSu
n
j )S2

j δ
0
SSu

n
j − rSjδ0

Su
n
j + runj = 0

CN δ+
τ u

n
j −

1

2
σ2
BS

(
T − τn+ 1

2
, Sj , δ

0
SS

(
un+1
j + unj

2

))
S2
j

· δ0
SS

(
un+1
j + unj

2

)
− rSjδ0

S

(
un+1
j + unj

2

)
+ r

(
un+1
j + unj

2

)
= 0
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PosPre is solving ûτ − 1
2σ

2
BSx

2ûxx = 0 arising from equation (5.6) through the transfor-

mation x(S, τ) = erτS and û(x, τ) = erτU(S, τ) used in [48]. PosPre for (5.6) is highly

non standard.

NFDM is explicit, i.e. has short computational time, but is only conditionally stable. It

is non negative and non oscillating and has order of convergence O(dt+ dS).

ImpUp is implicit, i.e. has long computational time, but is unconditionally stable. It is

non oscillating and has order of convergence O(dt+ dS).

PosPre is explicit, i.e. has short computational time, and is unconditionally stable. It is

non negative and non oscillating and has order of convergence O(dt + dS2 + dt
dS2 ) and

hence is only conditionally consistent with the condition dt
dS2 −→ 0 as dt and dS go to

zero but the tough condition dt = O(dS4) in order to not lose orders of convergence

compared to the standard FtCS method.

FtCS is explicit, i.e. has short computational time, but is only conditionally stable. It

may oscillate (but in practice only around S = Smax) and has order of convergence

O(dt+ dS2).

CN is implicit, i.e. has long computational time, but is unconditionally stable. It in not

L-Stable and may oscillate (in practice both at S = K and at S = Smax) and has order

of convergence O(dt2 + dS2).

The proof of the properties of NFDM, FtCS and CN for the Barles and Soner model will

be presented elsewhere. The properties of ImpUp are shown in [31] and the properties

of PosPre are shown in [48].

5.4 Numerical Results

We reuse the parameter values from [31] γ = 0, r = 0.1, σ0 = 0.2, K = 40, T = 1,

Smax = 80 and B = 1. We compare results obtained with NFDM, ImpUp, PosPre, FtCS

and CNR (see (5.8–5.9)) with these parameter values. For the transaction cost parameter

a we shall consider the values 0 (linear Black-Scholes), 0.02 and 0.05 (considered in

[31]) and also 0.1 and 0.4 (as extreme values). As it turns out, Smax = 2K = 80

is sufficient to avoid oscillations in FtCS and CN at S = Smax. Since in any case a



Chapter 5. FDM for Nonlinear B-S 135

computational domain including S ∈ [0, 2K] would seem reasonable, the non oscillatory

methods provide no advantage when it comes to reducing the size of the computational

domain.

The first step in solving the Barles and Soner model is the solution of the nonlinear

ODE (5.5). This equation has been solved in [1] with the ”ode45” solver in MATLAB

based on the well known Ruge-Kutta-Fehlberg 45 scheme. Instead we shall follow the

approach from [31] using an implicit exact solution derived in [8]. We then use Maple’s

fsolve command to find specific values of Ψ. The implicit exact solution takes the form

√
|x| =


− sinh−1(

√
Ψ(x)√

Ψ(x)+1
+
√

Ψ(x) for x > 0

− sin−1(
√
−Ψ(x)√

Ψ(x)+1
−
√
−Ψ(x) for x < 0

(5.10)

We begin our numerical experiments by illustrating the effect of the transaction cost

parameter a on the initial option price at t = 0 that we compute with NFDM for

h = dS = 2, k = dt = 0.00078125 and a = 0, 0.02, 0.05, 0.1 and 0.4. The results for the

bet (digital call) option are very similar to those for the put and call which are almost

identical because of the put-call-parity. Hence we only show results for the put option.

In the top left of Figure 5.1 we show the option price V (S, 0) = U(S, T ) for the put

option and in the top right we show the difference between the nonlinear put option

solved by NFDM and the exact solution to the linear put option (a = 0). Similarly, the

bottom row shows the difference between two Greeks for the nonlinear put option and

the exact Greeks for the linear put option. The Greeks (Delta (∂V∂S (S, 0) = ∂U
∂S (S, T )) and

Gamma (∂
2V
∂S2 (S, 0) = ∂2U

∂S2 (S, T ))) are computed from the NFDM solution using second

order finite differences. Note that only for the case a = 0 (the curves marked by circles

in Figure 5.1) the differences actually constitute a numerical error. For other values of

a the difference is only used for scaling. Figure 5.1 shows that bigger transaction cost

parameters cause more extreme solution values without otherwise changing the overall

picture. It should be noted however, that increasing the transaction cost parameter a

heavily influences the stability condition for NFDM. For dS = 2 and a ≤ 0.1, dt = 0.0125

is sufficient, whereas for a = 0.4 it has been necessary to take dt = 0.00078125 in

order to get a stable numerical solution. In Figure 5.2 we show the stability regions

for NFDM for a = 0.02 and a = 0.4 respectively with the boundary consisting of

unstable points (dS, dt = 0.1 · 2−j) such that (dS, dt = 0.1 · 2−(j+1)) is stable. For
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Figure 5.1: Nonlinear European Put option solved with NFDM for different transac-
tion cost parameters at time 0 and differentiated with second order finite differences.
Top left: Numerical option price. (Insert shows (S, V ) ∈ [30, 50] × [0, 11]). Top right:
Numerical option price minus exact option price in the linear case a = 0. Bottom left:
Numerical option Delta minus exact option delta in the linear case a = 0. Bottom
right: Numerical option Gamma minus exact option gamma in the linear case a = 0

comparison we have included also the stability boundary for the classical FtCS. The

results indicate that explicit FDM’s become increasingly problematic with increasing

transaction cost parameter a. In order to maintain a reasonably sized stability region

within the computational domain, we shall compare the various methods for a low

transaction cost parameter a = 0.02 below.

For a systematic comparison of the 5 finite difference methods we shall compute base
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Figure 5.2: Log-Log-Stability region for NFDM and FtCS with transaction cost pa-
rameter a = 0.02 (Left figure) and a = 0.4 (Right figure)

solutions (BasSol) with a series of meshes with dS ∈ [0.5, 8.0] and dt ∈ [0.1, 0.0002]. We

need an estimate of the exact solution which is not known for the nonlinear models. The

estimate will be based on a Fine mesh reference solution (RefSol) computed on a mesh

with dS = 0.375 and dt ' 0.0001 which is finer than the base meshes. The fine mesh

is defined as our limit for computational feasibility and takes several days to compute

in our Maple setup. RefSol will either be computed with the method itself or with the

CNR method which is found to be the better performing method for the linear problem

(a = 0). (These results will be presented elsewhere).

We shall consider the local error estimate E(S) = RefSol− BasSol at any S ∈ [0, Smax]

and at time t = 0 which is a time discretization point for all methods. Instead the S

grid of RefSol will be finer than that of BasSol and will generally not have overlapping

nodes. When nodes are not overlapping a linear interpolation between the 2 closest

neighbors is then performed resulting in a RefSol in the same nodal points as BasSol.

We also consider the global error estimate E∞ = maxS |E(S)|, the maximum taken over

all S-nodal points for BasSol.

The local error estimate E(S) with transaction cost parameter a = 0.02 at time t = 0

and with CNR as reference method is shown in Figure 5.3 for step sizes h = dS = 2 and

k = dt = 0.0125. For this particular snapshot clearly FtCS is providing the smallest

global error estimate, closely followed by CNR while NFDM, ImpUp and PosPre are

falling significantly behind. Note that the 10 times smaller E(S) for the bet option than

for the call option is countered by the 40 times smaller maximal solution value for the

bet (V bet
max = 1) than for the call (V call

max = 40).
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BetCall

Figure 5.3: Local estimated errors E(S) for nonlinear European option solved with
NFDM, ImpUp, PosPre, FtCS and CNR with dS = 2 and dt = 0.01245 for transaction
cost parameter a = 0.02. The reference solution is computed with CNR for a fine mesh
with dS = 0.375 and dt = 0.00009765625. Left: Call option. (Insert shows FtCS and

CNR with (S,E(S)) ∈ [0, 80]× [−0.0055, 0.008]). Right: Bet option

Table 5.1: Convergence results for the nonlinear call option solved with NFDM and
FtCS

Nodes NFDM FtCS
S t Error Difference Ratio Error Difference Ratio

10 320 0.969558 0.126505
20 640 0.362126 0.607432 0.032240 0.094265
40 1280 0.161670 0.200456 3.03 0.009176 0.023064 4.09
80 2560 0.090007 0.071663 2.80 0.002706 0.006470 3.56
160 5120 0.026759 0.063248 1.13 0.000986 0.001720 3.76

For a more thorough investigation the global error estimate is computed for call and bet

options for all 5 FDM’s, and for all BasSol using the FDM itself for RefSol. A selection

of convergence plots with logarithmic axes showing the global error estimate E∞ for the

call option solved with NFDM, PosPre, FtCS and CNR and for all BasSol are shown in

Figure 5.4. The bet options are omitted since they show very similar results. ImpUp is

omitted since it in the linear case (a = 0) shows a behavior very similar to CNR only

with significantly bigger errors (smaller order of convergence).

Since the exact solution is not known for the nonlinear options, we estimate conver-

gence orders based on the numerical solutions in two different ways: Tables 5.1–5.2

illustrate the convergence of the error eR ' CRq (not knowing whether R is dS or dt)

for NFDM, PosPre, FtCS and CNR when halving both step sizes in each iteration so

that Ratio = 2q =
|eh−eh/2|
|eh/2−eh/4|

. We obtain quadratic convergence for FtCS and CNR,

linear but decreasing order of convergence for NFDM and sublinear but increasing order
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(a) log10(estimated NFDM error) (b) log10(estimated PosPre error)

(c) log10(estimated FtCS error) (d) log10(estimated CNR error)

Figure 5.4: Global estimated errors E∞ for nonlinear European Call options when
solved with NFDM (a), PosPre (b), FtCS (c) and CNR (d) for transaction cost param-
eter a = 0.02 at time t = 0. The reference solution is computed with NFDM, PosPre,
FtCS and CNR respectively for a fine mesh with dS = 0.375 and dt = 0.00009765625

Table 5.2: Convergence results for the nonlinear call option solved with CNR and
PosPre

Nodes CNR PosPre
S t Error Difference Ratio Error Difference Ratio

10 320 0.127837 0.077035
20 640 0.032952 0.094885 0.075434 0.001601
40 1280 0.009476 0.023476 4.04 0.065135 0.010299 0.16
80 2560 0.002836 0.006640 3.53 0.040396 0.024739 0.42
160 5120 0.001026 0.001810 3.66 0.011714 0.028682 0.86
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of convergence for PosPre. Clearly, neither NFDM nor PosPre stabilize with respect to

order of convergence within the computationally feasible domain. We also propose a

more thorough approach focusing on convergence order in both variables S and t simul-

taneously and utilizing data from all BasSol in a weighted least squares approximation

over all stable data points (dSi, dtj , (E∞)i,j) of the form

min
a,b,α,β

∑
i,j

wi,j · ((E∞)i,j − (a · dSαi + b · dtβj ))2. (5.11)

The stepsizes are recorded so that they decrease with increasing index, i.e. dSi+1 ≤ dSi

and dtj+1 ≤ dtj , and the simple weight function wi,j = i · j putting higher weight

on smaller step sizes is applied. Obviously selecting a different weight function may

change the results somewhat. Points where the error is increasing with decreasing dS

are omitted. In the least squares minimizations the side conditions 0 ≤ a, 0 ≤ b,

0 ≤ α ≤ 2.5 and 0 ≤ β ≤ 2.5 are imposed. The following convergence orders are

computed. For the implicit PosPre and CNR the results in the square braces [·] are for

the “bubbles” for large dt and small dS where the error start increasing with decreasing

dS(see Figure 5.4):

NFDM ECall
∞ = 0.067dS1.3 EBet

∞ = 0.012dS1.1 (5.12)

FtCS ECall
∞ = 0.002dS2.0 EBet

∞ = 0.008dS1.1

CNR ECall
∞ = 0.002dS2.0 [0.089dt1.1] EBet

∞ = 0.007dS1.2

PosPre ECall
∞ = 0.058 [7.170dt0.5] EBet

∞ = ”Oscillating error”

The oscillating error for the PosPre bet is consistent with the conditional consistency

condition dt
dS2 −→ 0, indicating that smaller dt’s are required.

We venture the following conclusions based on the graphs and the least squares calcu-

lations: The implicit methods PosPre and CNR show convergence with decreasing dt

of order 0.5 and 1.1 respectively in the bubble. For the explicit methods NFDM and

FtCS the bubbles are covered by the instability region. In order to get errors below

0.001 smaller values of dS are required which is computationally infeasible. A better

alternative to investigate obviously is mesh grading the S-mesh, or some transformation

method as suggested in [41] (ch. 11, for a nonlinear jumping volatility model) but this

is beyond the scope of the current article. For the call option FtCS and CNR show
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the expected quadratic convergence with dS outside the bubble whereas NFDM only

shows an order slightly above linear and PosPre shows no convergence at all. For the

bet option both FtCS, CNR and NFDM show orders of convergence in dS slightly above

linear. The stability area for FtCS is comparable to the one for NFDM (see Figure 5.2).

Comparing the methods clearly FtCS and CNR stand out above the rest, the choice

being whether to go for the fast computational times for the explicit FtCS, dealing with

the instability area increasing in size with the transaction cost parameter a and reducing

the usable area for the explicit methods to approximately 0 ≤ a ≤ 0.1, or whether to

accept the longer computational times of the implicit CNR, avoiding the concerns about

feasible dt–dS combinations for the implicit, absolutely stable CNR.

5.5 Conclusions

The “classical Explicit Euler” is the better explicit method and the “classical with

a twist Crank-Nicolson with Rannacher time stepping” is the better implicit method

among the FDM’s tested on the Barles and Soner nonlinear Black-Scholes model. The

non oscillating methods do not offer any enhancement of the performance in the cases

considered. The explicit methods suffer from an instability region growing with the

transaction cost parameter a rendering them somewhat useless for a ≥ 0.1. None of

the methods considered show significant convergence with dt — the error from the S-

direction dominating except for the coarsest time step sizes. Because of computer time

limitations the brute force solution (smaller dS) seems out of reach pointing instead

towards graded S-meshes as the obvious solution to get in the ideal zone where the

errors from t and S are balanced.





Appendix

5.A NFDM Scheme

The nonstandard finite difference scheme [NFDM] is based on an “exact finite difference

scheme” for the linear first order reaction and convection terms removing the diffusion

term by taking σ0 = 0. Then this scheme is applied to the complete problem only adding

nonstandard finite difference approximations of the diffusion term. So first we consider

the problem
∂U

∂τ
− rS ∂U

∂S
+ rU = 0 for (S, τ) ∈ (0, Smax)× (0, T )

U(S, 0) = κ(S, T ) for S ∈ (0, Smax)

where κ(S, t) is the utility function defined in (5.3). The solution to this problem is

U(S, τ) = κ(Serτ , T )e−rτ and it is easily seen that this function satisfies

U(S, τ + ∆τ)− U(Ŝ, τ)

θ(∆τ)
= −rU(Ŝ, τ)

where

θ(∆τ) =
1− e−r∆τ

r
= ∆τ +O(∆τ2)

and

Ŝ = Ser∆τ =
S

1− rθ(∆τ)
⇒ Ŝ − S = S

rθ(∆τ)

1− rθ(∆τ)
.

143
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This is in the form of an “exact finite difference scheme” for the above linear equation.

By Taylor expansion using ∆τ
θ(∆τ) = 1 +O(∆τ) it is easily seen that (for any smooth U)

∂U

∂τ
(S, τ)− rS ∂U

∂S
(S, τ) + rU(S, τ) =

U(S, τ + ∆τ)− U(Ŝ, τ)

θ(∆τ)
+ rU(Ŝ, τ) +O(∆τ).

(5.13)

Note that the approximation retains the order if θ(∆τ) is replaced by ∆τ .

In order to reach a useful finite difference scheme the solution in the ghost point Ŝ

is “split” between the two adjacent mesh points S and S + ∆S by Taylor expansion.

Arenas et el [2] use the following 1st order Taylor expansion:

U(Ŝ, τ) = Ũ0
∆S,∆τ (S, τ) +O(∆S∆τ + ∆τ2) where

Ũ0
∆S,∆τ (S, τ) = U(S, τ) + (Ŝ − S)

U(S + ∆S, τ)− U(S, τ)

∆S
. (5.14)

Requiring S ≤ Ŝ ≤ S + ∆S ∀S ∈ [0, Smax] which is equivalent to the condition

Smax(er∆τ − 1) ≤ ∆S ⇔ ∆τ ≤ 1

r ln(1 + ∆S
Smax

)
≤ ∆S

rSmax
+O(∆S2) (5.15)

we end up with the truncation error O(∆S2). Inserting Ũ0
∆S,∆τ (S, τ) instead of U(Ŝ, τ)

in (5.13) we get

∂U

∂τ
(S, τ)− rS ∂U

∂S
(S, τ) + rU(S, τ)

=
U(S, τ + ∆τ)− Ũ0

∆S,∆τ (S, τ)

θ(∆τ)
+ rŨ0

∆S,∆τ (S, τ) +O(∆τ) +O(∆S)

=
U(S, τ + ∆τ)− U(S, τ)

θ(∆τ)
− rSU(S + ∆S, τ)− U(S, τ)

∆S
+ rU(S, τ)

+O(∆τ) +O(∆S). (5.16)

Clearly, this does not lead to 2nd order consistency in S as claimed in [2]. The method

is only first order consistent in S as well as t. Following [34] Arenas et al then suggest

the approximation arising from

∂2U

∂S2
(S, τ) =

U(S −∆S, τ)− 2U(S, τ) + U(S + ∆S, τ)

φ(∆S)
+O(∆S2) where

φ(∆S) =
1

r
(e
√
r∆S − 2 + e−

√
r∆S) = ∆S2 +O(∆S4) (5.17)
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for the second derivatives (noting that ∆S2

φ(∆S) = 1 + O(∆S2)) whereas the remaining S

and τ in the diffusion term are left unaltered. Note that the approximation retains the

order if φ(∆S) is replaced by ∆S2. This results in the following approximation:

∂U

∂τ
(S, τ)− rS ∂U

∂S
(S, τ) + rU(S, τ)− 1

2
σ2
BS(T − τ, S, USS)S2∂

2U

∂S2
(S, τ)

=
U(S, τ + ∆τ)− U(S, τ)

θ(∆τ)
− rSU(S + ∆S, τ)− U(S, τ)

∆S
+ rU(S, τ)

−1

2
σ2
BS(T − τ, S, USS)S2U(S −∆S, τ)− 2U(S, τ) + U(S + ∆S, τ)

φ(∆S)

+O(∆τ) +O(∆S). (5.18)

Now consider a uniform mesh Sj = jh for j = 0, . . . ,M and τn = nk for n = 0, . . . , N

where the condition (5.15) takes the form T
N = k ≤ 1

r ln(1 + h
Smax

) = 1
r ln(1 + 1

M ) or

N & rT ·M which is a very mild condition satisfied for sufficiently small time stepsizes

k. We use unj as our approximation to U(Sj , τn), U being the solution to (5.6–5.7). Also

introduce the following difference operators:

δ+
τ u

n
j =

un+1
j − unj

k
, δ̃+

τ u
n
j =

un+1
j − unj
θ(k)

,

δ+
S u

n
j =

unj+1 − unj
h

, δ0
Su

n
j =

unj+1 − unj−1

2h
,

δ0
SSu

n
j =

unj+1 − 2unj + unj−1

h2
, δ̃0

SSu
n
j =

unj+1 − 2unj + unj−1

φ(h)
, δ̄0

SSu
n
j =

unj+1 − 2un+1
j + unj−1

h2
.

Discarding the truncation error terms in (5.18) we arrive at the explicit nonstandard

finite difference scheme for (5.6–5.7) [NFDM]

δ̃+
τ u

n
j −

1

2
σ2
BS(T − τn, Sj , δ̃0

SSu
n
j )S2δ̃0

SSu
n
j − rSjδ+

S u
n
j + runj = 0

for j = 1, . . . ,M − 1, n = 0, . . . , N − 1 (h =
Smax

M
, k =

T

N
, N & rT ·M),

u0
j = κ(jh, T ), un0 = κ(0, T − nk), unM = κ(Smax, T − nk)

for j = 1, . . . ,M − 1, n = 0, . . . , N. (5.19)

This is easily recognized as an explicit upwinding method except for the nonstandard

first order approximations to h and k in most of the derivatives. By construction and

by the boundedness and smoothness of U and its derivatives this scheme is first order
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consistent in τ and S in any Lp-norm (also L∞) under the assumption that

Ψ(ernkκ2R(jh)2δ0
SSU

n
j )−Ψ(ernkκ2R(jh)2USS(jh, nk)) = O(h1+q) = O(∆S1+q)

for q = 0, 1 and any smooth U. (5.20)

q = 0 is required for NFDM using (5.14) whereas q = 1 is required for FtCS using (5.21)

below, where (5.20) results in second order consistency in S in any Lp norm. Note that

these orders of consistency are valid also if replacing θ(k) by k and φ(h) by h2.

Note that FtCS may actually be created from NFDM simply by splitting Ŝ between the

mesh points S−∆S and S+ ∆S instead of between S and S+ ∆S and hence replacing

(5.14) by

U(Ŝ, τ) = Ũ1
∆S,∆τ (S, τ) +O(∆S2∆τ + ∆τ2) where

Ũ1
∆S,∆τ (S, τ) = U(S, τ) + (Ŝ − S)

U(S + ∆S, τ)− U(S −∆S, τ)

2∆S
(5.21)

still assuming (5.15). Combining (5.13) and (5.21) we get

∂U

∂τ
(S, τ)− rS ∂U

∂S
(S, τ) + rU(S, τ)

=
U(S, τ + ∆τ)− Ũ1

∆S,∆τ (S, τ)

θ(∆τ)
+ rŨ1

∆S,∆τ (S, τ) +O(∆τ) +O(∆S2)

=
U(S, τ + ∆τ)− U(S, τ)

θ(∆τ)
− rSU(S + ∆S, τ)− U(S −∆S, τ)

2∆S
+ rU(S, τ)

+O(∆τ) +O(∆S2). (5.22)

Note that also this approximation retains the order if θ(∆τ) is replaced by ∆τ . Using

(5.17) and replacing θ(∆τ) by ∆τ and φ(∆S) by ∆S2 without the loss of consistency

order we arrive at FtCS. Since ∆τ ≤ O(∆S) by (5.15) the practical difference between

the different orders of NFDM and FtCS needs to be investigated further.
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Now we focus on NFDM and FtCS who may be rewritten in a unified fashion as follows

(q = 0 for NFDM and q = 1 for FtCS):

un+1
j = (1− rθ(k))

{
unj +

rθ(k)

(1 + q)(1− rθ(k))
j(unj+1 − unj−q)

}
+
θ(k)

2
σ2

0

(
1 + Ψ(ernkκ2R(jh)2δ̃0

SSu
n
j )
)
j2h2δ̃0

SSu
n
j

for q = 0, 1, j = 1, . . . ,M − 1, n = 0, . . . , N − 1 (h =
Smax

M
, k =

T

N
, N & rT ·M),

u0
j = κ(jh, T ), un0 = κ(0, T − nk), unM = κ(Smax, T − nk)

for j = 1, . . . ,M − 1, n = 0, . . . , N. (5.23)

Note that Arenas et al [2] apply the boundary conditions ∂2U
∂S2 = 0 in (0, τ) and (Smax, τ)

in hard form by δ0
SSu

n
0 = δ0

SSu
n
M = 0 thus introducing the ghost points S−1 = −h and

SM+1 = Smax + h and at the same time extending the finite difference scheme (5.23) to

include also j = 0 and j = M . We shall do the same for our theoretical investigations

even though we for the practical computations are using the Dirichlet conditions from

(5.7) only approximately satisfying these conditions. By rearranging the terms (5.23)

can be written as

un+1
j = anj u

n
j+1 + bnj u

n
j + cnj u

n
j−1

for j = 1, . . . ,M − 1, n = 0, . . . , N − 1 and

u0
j = κ(jh, T ), un0 = κ(0, T − nk), unM = κ(Smax, T − nk)

for j = 1, . . . ,M − 1, n = 0, . . . , N (h =
Smax

M
, k =

T

N
, N & rT ·M) (5.24)

or with derivative boundary conditions

un+1
j = anj u

n
j+1 + bnj u

n
j + cnj u

n
j−1

for j = 0, . . . ,M, n = 0, . . . , N − 1 (h =
Smax

M
, k =

T

N
, N & rT ·M) and

u0
j = κ(jh, T ), δ0

SSu
n
0 = δ0

SSu
n
M = 0

for j = 0, . . . ,M, n = 0, . . . , N (h =
Smax

M
, k =

T

N
, N & rT ·M) (5.25)
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where

anj =
rθ(k)j

1 + q
+
θ(k)ωnj
2φ(h)

,

bnj = 1− rθ(k)

(
1− q
1 + q

j + 1

)
−
θ(k)ωnj
φ(h)

,

cnj = −qrθ(k)j

1 + q
+
θ(k)ωnj
2φ(h)

,

ωnj = σ2
0(jh)2

[
1 + Ψ

(
ernkκ2R(jh)2δ0

SSu
n
j

)]
= S2

j σ
2
BS(T − τn, Sj , δ0

SSu
n
j ) ≥ 0

for q = 0, 1, j = 0, . . . ,M, n = 0, . . . , N (h =
Smax

M
, k =

T

N
, N & rT ·M).(5.26)

Here q = 0 corresponds to NFDM while q = 1 corresponds to FtCS. The theoretical

properties of NFDM (and FtCS) are covered by Appendix 5.B

5.B NFDM Perperties Theorem

Theorem 5.1. If

θ(k)

(
rM +

r2θ(k)M2

1− rθ(k)
+

1

φ(h)
max

j=0,...,M
n=0,...,N−1

ωnj

)
≤ 1 (5.27)

(which will be satisfied for sufficiently small time stepsizes k) then

1. the nonstandard finite difference schemes (5.24) and (5.25) for q = 0 are nonneg-

ative, i.e. unj ≥ 0 for all j = 0, . . . ,M and n = 0, . . . , N .

2. the nonstandard finite difference scheme (5.25) for q = 0 is monotonicity preserv-

ing in S, i.e. unj+1 ≥ (≤) unj for all j = 0, . . . ,M − 1 and any n = 0, . . . , N − 1⇒

un+1
j+1 ≥ (≤) un+1

j for all j = 0, . . . ,M − 1.

3. the nonstandard finite difference scheme (5.25) for q = 0 for the put option is

monotone nonincreasing with S, i.e. un0 ≥ . . . ≥ unM for all n = 0, . . . , N . For the

call and bet options the scheme is monotone nondecreasing with S, i.e. un0 ≤ . . . ≤

unM for all n = 0, . . . , N .

4. the nonstandard finite difference schemes (5.24) and (5.25) are consistent in any

Lp norm (p ∈ [1,∞]) of order 1 in τ and order 1 + q in S (for q = 0, 1) assuming

(5.20).
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5. the nonstandard finite difference schemes (5.24) and (5.25) are stable in the L∞

norm (for q = 0, 1), i.e. ‖un‖∞ ≤ Ceβτ
n‖u0‖∞ for all n = 0, 1, . . . for some

C, β ≥ 0 where un = [un0 , . . . , u
n
M ]T .

6. the nonstandard finite difference schemes (5.24) and (5.25) are convergent in the

L∞ norm of order 1 in τ and order 1 + q in S (for q = 0, 1) to the solution to

(5.6–5.7) assuming (5.20).

Proof.

1.

Here we provide the proof for the nonnegativity of (5.24), the details for (5.25) following

from the exposition in [19].

For all j = 1, . . . ,M −1, n = 0, . . . , N with initial data given by (5.24) and by definition

of the put, call and bet options, u0
j ≥ 0, un0 ≥ 0 and unM ≥ 0. By (5.26) also anj ≥ 0 for

q = 0, 1 and cnj ≥ 0 for q = 0. In order to have cnj ≥ 0 also for q = 1 we would need

φ(h) ≤ 1

rM
min

j=0,...,M
n=0,...,N−1

ωnj for q = 1 (5.28)

but since ωnj ' 0 close to the S-boundaries, this condition is not satisfied. Hence FtCS

cannot be shown to be nonnegative by this method, which is consistent with the practical

observations that FtCS may oscillate near S = Smax but does not oscillate near S = K.

If only bnj ≥ 0 for j = 1, . . . ,M − 1, n = 0, . . . , N − 1, (5.24) implies that unj ≥ 0 for

j = 0, . . . ,M , n = 0, . . . , N , i.e. the scheme is nonnegative.

The nonnegativity of bnj hinges on the properties of δnj and the function Ψ and is here

only stated in general terms as the assumption (5.27).

Obviously (5.27) ⇒ minj=1,...,M−1
n=0,...,N−1

(
1− rθ(k)

(
1−q
1+q j + 1

)
− qr2θ(k)2j2

1−rθ(k) −
θ(k)
φ(h)ω

n
j

)
≥ 0⇔

minj=1,...,M−1
n=0,...,N−1

bnj ≥ 0.

2.

Let us consider only the nondecreasing case, since the nonincreasing case is identical

apart from the orientation of the inequality signs. Hence assume that

unj+1 ≥ unj for all j = 0, . . . ,M − 1 and any n = 0, . . . , N − 1. (5.29)

Note that δn0 = 0 ⇔ un−1 = 2un0 − un1 = un0 + (un0 − un1 )
(5.29)

≤ un0 . Hence (5.29) can be

extended to j = −1.
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Also δnM = 0⇔ unM+1 = 2unM − unM−1 = unM + (unM − unM−1)
(5.29)

≥ unM . Hence (5.29) can

be extended to j = M .

Thus we have

unj+1 ≥ unj for all j = −1, . . . ,M and some n = 0, . . . , N − 1. (5.30)

Also note that by simple computation from (5.26)

anj + (bnj + rθ(k)) + cnj = 1 for all j = 0, . . . ,M. (5.31)

For j = 0, . . . ,M − 1:

un+1
j − unj

(5.24)
= anj u

n
j+1 + bnj u

n
j + cnj u

n
j−1 − unj

(5.30)

≤ anj u
n
j+1 + bnj u

n
j + cnj u

n
j − unj

= anj (unj+1 − unj ) + (anj + bnj + cnj − 1)unj
(5.31)

= anj (unj+1 − unj )− rθ(k)unj

and

un+1
j+1 − unj+1

(5.24)
= anj+1u

n
j+2 + bnj+1u

n
j+1 + cnj+1u

n
j − unj+1

(5.30)

≥ anj+1u
n
j+1 + bnj+1u

n
j+1 +

cnj+1u
n
j − unj+1

= −cnj+1(unj+1 − unj ) + (cnj+1 + anj+1 + bnj+1 − 1)unj+1

(5.31)
= −cnj+1(unj+1 − unj )− rθ(k)unj+1.

and hence

un+1
j+1−u

n+1
j = (un+1

j+1−unj+1)+(unj+1−unj )−(un+1
j −unj ) ≥

(
−cnj+1 + 1− anj − rθ(k)

)(
unj+1 − unj

)
≥ 0 where the last term is nonnegative by (5.30) and the first term is nonnegative by

(5.27) and the following argument:

−cnj+1 + 1− anj − rθ(k)
(5.26)

= − θ(k)
2φ(h)ω

n
j+1 + 1− rjθ(k)− θ(k)

2φ(h)ω
n
j + 1− rθ(k)

= 1−r(j+1)θ(k)− θ(k)
2φ(h)(ωnj +ωnj+1) ≥ 1−rMθ(k)− θ(k)

2φ(h)(maxj=0,...,M−1 ω
n
j +maxj+1=1,...,M ωnj+1)

≥ 1− rMθ(k)− θ(k)
φ(h) max j=0,...,M

n=0,...,N−1
ωnj

(5.27)

≥ 0.

3.

For the put option, u0
j+1 ≤ u0

j for all j = 0, . . . ,M − 1.

For the call and bet options u0
j+1 ≥ u0

j for all j = 0, . . . ,M − 1.

The results then follow from monotonicity preservation.

4.

For (5.24) see below (5.19). The consistency in the L∞ norm for (5.25) follows from the

exposition in [19] and the general Lp-norm is a simple generalization.

5.

Here we provide the proof for the stability of (5.24), the details for (5.25) following from

the exposition in [19].



Chapter 5. Appendix 151

First un0 = [0∨Ke−rτ ∨0] ≤ [0∨K∨0] = u0
0 ≤ ‖u0‖∞ satisfying the stability requirement

with C = 1 and β = 0.

Also unM = [Smax −Ke−rτ ∨ 0 ∨Be−rτ ] ≤ [Smax−Ke−rτ
Smax−K (Smax −K) ∨ 0 ∨B] ≤ [α(Smax −

K) ∨ 0 ∨ B] ≤ max{α, 1}u0
0 ≤ max{α, 1}‖u0‖∞ where α = Smax−Ke−rT

Smax−K ≥ Smax−Ke−rτ
Smax−K .

Hence the stability requirement is satisfied with C = max{α, 1} and β = 0.

Finally for j = 1, . . . ,M − 1:

un+1
j

(5.24)
= anj u

n
j+1 + bnj u

n
j + cnj u

n
j−1 ≤ (anj + bnj + cnj )‖un‖∞

where 0 ≤ anj + bnj + cnj
(5.31)

= 1− rθ(k) ≤ 1 so that un+1
j ≤ ‖un‖∞ ⇒ unj ≤ ‖u0‖∞ which

satisfies the stability requirement with C = 1 and β = 0.

In conclusion ‖un‖∞ ≤ C‖u0‖∞ where C = max{α, 1}.

6.

This follows from Lax’s convergence theorem and bullets 4 and 5.

5.C Ψ(x) Plot

A plot of Ψ is shown in Figure 5.C.1.

Figure 5.C.1: The Barles and Soner Ψ function satisfying (5.5).
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