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Abstract

Entanglement constitutes one of the important resources in quantum information theory. Ac-

cordingly, characterizing the entanglement content of a given quantum state is an important

concept in quantum information. A natural approach to quantifying entanglement is to consider

how an entangled quantum state can be transformed, by transformations that cannot generate

entanglement in a system. A central class of such operations are so-called Local Operations and

Classical Communication (LOCC).

This thesis deals with asymptotic conversion rates for pure quantum states under exact LOCC

transformations, in particular by expressing such rates through various kinds of entanglement

monotones.

Firstly, the hierarchy of multipartite states under stochastic LOCC (SLOCC) is studied via

its equivalence to restrictions of tensors. The tensor rank is of particular interest, as it describes

the cost of creating the associated state by Greenberger–Horne–Zeilinger (GHZ) states. The

fact that the GHZ-cost is non-linear is equivalent to the non-multiplicativity of tensor rank

under the Kronecker product. In order to better understand how and why this non-linearity

occurs, we consider whether strict sub-multiplicativity of tensor rank stems entirely from the

joining of tensor legs, or if it can happen without joining tensor legs. It is shown that strict

sub-multiplicativity happens for both tensor rank and border rank when just taking the tensor

product.

A tool for working with asymptotic tensor rank is that of an asymptotic spectrum of

a preordered semiring. This theory reduces the question of asymptotic restrict-ability to

majorization on the set of order preserving homomorphisms into the reals. This concept will

be introduced and an example will be computed in the tripartite case, for the sub-semiring

generated by the W and GHZ state together with an Einstein–Podolsky–Rosen (EPR) pair

shared between two fixed parties.

As the ultimate goal should be characterizing multipartite entanglement through non-

stochastic LOCC, the asymptotic spectrum method is applied to a refinement of the tensor

semiring. This refinement keeps some control on the probability of successful outcomes of LOCC

protocols, specifically yielding a set of monotones, describing asymptotic conversion rates given

any converse error exponent, r. While this is still some distance from the ideal asymptotic

regime, we see that in the bipartite case, in fact the conversion rate for success probability going

to 1 is also captured by these monotones.

Finally, a formula for the pure, bipartite, exact, deterministic conversion rate is presented,

as derived through type class arguments.
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Resumé

Kvantesammenfiltring udgør en vigtig resource i kvanteinformationsteori. Derfor er beskrivelsen

af kvantesammenfiltringen for en kvantetilstand en vigtig opgave indenfor feltet. En naturlig

tilgang til denne opgave er at undersøge hvordan sammenfiltrede kvantetilstande transformeres via

operationer der ikke kan generere sammenfiltring. En central klasse af sådanne transformationer

er såkaldte Lokale Operationer og Klassisk Kommunikation (LOCC).

Denne afhandling omhandler asymptotiske konverteringsrater for rene kvantetilstande un-

der LOCC transformationer, især ved at udtrykke sådanne rater ved forskellige former for

sammenfiltringsmonotoner.

I første omgang studeres hierakiet af mangedelte kvantetilstande under stochastisk LOCC

(SLOCC) via dets relation til restriktion af tensorer. Tensorrang er af særlig interesse, da

rangen beskriver omkostningen ved produktion af den givne kvantetilstand målt i antal af

Greenberger–Horne–Zeilinger (GHZ) tilstande. At GHZ-omkostning er ikke-lineær er ækvivalent

med ikke-multiplikativitet af tensorrang under Kronecker produktet. For bedre at forstå hvordan

denne ikke-linearitet opstår, stilles der spørgsmål ved hvorvidt streng submultiplikativitet af

tensorrang er forårsaget udelukkende ved sammensætningen af tensordele, eller om det kan

forekomme ved det almindelige tensor produkt. Det vises at både tensorrang og “borderrang”

kan være strengt submultiplikativ under det almindelige tensorprodukt.

Et værktøj ved arbejde med asymptotisk tensorrang er det asymptotiske spektrum for

en præordnet semiring. Teorien reducerer spørgsmål om asymptotisk restriktionsbarhed til

evaluering af ordensbevarende homomorfier ind i de reelle tal. Det asymptotiske spektrum

introduceres og et eksempel bliver udregnet for del-semiringen genereret af de tredelte tilstande

W og GHZ samt et Einstein–Podolsky–Rosen (EPR) par delt mellem to bestemte lokationer.

Da karakterisering af mangedelt sammenfiltring under ikke-stokastik LOCC bør være det

endelige mål, anvendes den ovennævnte metode på en forfining af semiringen af tensorer under

restriktion. Denne forfining bibeholder en hvis kontrol med sandsynligheden for succesfuldt

udfald af LOCC protokoller, hvilket fører til monotoner, der beskriver asymptotiske konverter-

ingsrater, givet enhver omvendt fejleksponent, r. Selvom dette stadig er et stykke fra det ideelle

asymptotiske regime, ser vi at konverteringsraten for konverteringssandsynlighed gående mod 1,

i det todelte tilfælde, er beskrevet præcis ved disse monotoner.

Endelig udledes en formel for konverteringsraten under eksakt, deterministisk konvertering

af rene todelte kvantetilstande.
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Notation

• [d]: For d ∈ N, [d] = {1, . . . , d}

• S(H): Density operators on Hilbert space H, i.e. positive semidefinite operators with trace

1.

• K∗: Given a matrix K, K∗ is the conjugate transpose of the matrix. In much quantum

information literature, this is denoted K†.

• �: The flattened tensor product. See Section 1.1.1

• suppP : Given a probability distribution P on a finite set X . The support is the set

suppP = {x ∈ X |P (x) 6= 0}.

• X n: sequences of length n with values in X . In other words, maps I : [n]→ X .

• CX : The vector space of functions (families) v : X → C. As a special case we have:

• Cd: The vector space of functions (families) v : [d]→ C or v : {0, . . . d− 1} → C depending

on indexing.

• log: log will always be taken to mean log2, as is standard in much of quantum information

theory.

• |ψP 〉: Given a probability distribution P : I → [0, 1] on some finite set I, |ψP 〉 =
∑
i∈I
√
P (i) |ii〉

is the bipartite pure state with Schmidt coefficients
√
P .

• ur: The unit tensor |ur〉 =
∑r
i=1 |i . . . i〉. The order of ur is inferred from context or

specified with a superscript ukr .

• |GHZr〉: The r-level, k-partite GHZ-state |GHZr〉 = 1√
r
|ur〉. Again, the order is inferred

from context or written with superscript.

• P⊗n: Given probability distribution P : I → [0, 1], P⊗n(x) =
∏n
i=1 P (xi) for x ∈ In.

• n� 1: For n sufficiently large.
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Chapter 1

Introduction

A major concept setting quantum reality apart from the classical is the notion of entanglement.

The fact that physical systems can be correlated in ways that exceed shared randomness is an

important tool in many quantum computing protocols which exceed the best known classical

protocols. But characterizing, quantifying and even defining entanglement in a multipartite

scenario is tricky business. We can easily make sense of what it means for quantum systems to be

entangled; they are correlated in a way that cannot be described as simply shared randomness.

But if we then ask how entangled the systems are, the answer is unclear. Since entanglement

between systems is only created when the systems come into contact with each other, we are

comfortable in saying that any local action performed on an entangled system will always produce

a less entangled state, at least on average. For this reason we quantify entanglement through

so-called entanglement monotones; functions that assign a positive number to each possible

state, in a way that respects whichever operations we consider to be entanglement-reducing.

Entanglement monotone is a notion from the resource theory of entanglement, arguably

the most widely studied quantum resource theory. For a recent review of quantum resource

theories in general, see [1]. In general, a resource theory consists of two things; resources and

allowed operations. The resources of any quantum resource theory are quantum states and the

allowed operations are generally some subset of completely positive maps between state spaces.

Monotones in a resource theory are then maps that assign real numbers to states in a way that is

monotone under allowed operations. Since the goal is to characterize entanglement, the allowed

operations will be precisely the ones which can produce only classical correlations between

separated systems. That is, local quantum operations and classical communication (LOCC).

Given a resource theory, the mathematical tasks can generally be split into two categories. 1:

Quantify the resource by determining all monotones with certain properties (e.g. additivity for
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entanglement monotones). 2: Characterize which conversions are possible, for instance by deter-

mining how much of a resource is needed to obtain another, either in a single-shot way or in some

asymptotic way. Sometimes the answers to questions in the second category will be expressed in

terms of some subset of monotones, and so we may sometimes reduce questions about convertibil-

ity to questions of determining monotones. This thesis is heavily focused on this kind of reduction.

The most famous entanglement montone is the entropy of entanglement, which to a bi-

partite pure state, ρAB = |ψ〉〈ψ|AB, associates the von Neumann entropy of either marginal,

−Tr ρA log ρA. This monotone is by itself a good measure of pure bipartite entanglement as it

characterizes the asymptotic conversion rate between any pair of bipartite pure states up to

any arbitrarily small fixed error in terms of fidelity [2]. However, for bipartite mixed states or

multipartite pure states, there is no single measure that perfectly quantifies entanglement. For

bipartite states, the asymptotic entanglement cost of a state, ρ, is the number of maximally

entangled qubit pairs needed per copy of ρ to create many copies of ρ. The asymptotic distillable

entanglement is, conversely, the number of maximally entangled pairs that can be created per

copy of ρ. For bipartite mixed states, there is a gap between asymptotic entanglement cost

and asymptotic distillable entanglement, showing that asymptotic entanglement transformation

is irreversible. An example of mixed states with such a gap are bound entangled states [3],

which are entangled and therefore have positive entanglement cost, but with zero distillable

entanglement. The multipartite case (k ≥ 3) is also very difficult, even for pure states and has

been studied extensively in recent decades (see e.g. [4, 5, 6, 7, 8, 9, 10] to mention a few). There

are multiple reasons for considering entanglement transformations with fidelity loss. For one,

the knowledge of a real physical state is only ever up to some approximation, so describing

a state up to some error is physically realistic. But accepting some error can also make the

mathematically difficult task of determining convertibility of entanglement easier, as witnessed

by the case of bipartite pure states and the entropy of entanglement.

A different kind of relaxation which one can consider is that of probabilistic conversion.

Rather than allowing for output states within some proximity of the target state, we might

allow for only some chance of successful conversion. This leads to a different resource theory

of entanglement, where the set of permissible operations increase. A benefit of this resource

theory of entanglement under stochastic LOCC (SLOCC) is the simplicity of describing the

channels, as they are merely represented by the tensor product of linear maps (Proposition 1.1.16).

This thesis will be dealing entirely with asymptotic, exact LOCC conversions and mostly in a
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probabilistic regime. By exact, we mean that the output state of an (S)LOCC protocol must

yield the target state exactly, with no loss in fidelity. It is the belief of this author that there is

a relation between the LOCC spectrum ∆(Sk) of Chapter 4 and the set of additive multipartite

entanglement monotones describing asymptotic bound fidelity-loss entanglement transformations.

The overarching theme of this thesis is the transformation of many copies of a resource into

many copies of some other resource of the same kind. The resources will be pure quantum states

(Chapter 4), tensors (Chapter 2 and Chapter 3) and probability distributions (Chapter 5) and

the set of allowed operations will vary, depending on probabilistic regime. The initial motivation

is resource theories of quantum entanglement. By Proposition 1.1.16, the resource theory of

pure multipartite quantum states under SLOCC is equivalent to the resource theory of tensors

under restriction (see Definition 2.1.3), motivating the study of restrictions of tensors from a

quantum information standpoint.

The only way the many-copy setting of a resource theory can differ from the single-copy

setting is if the amount of [phenomenon] in a collection of resources is somehow different from

the sum of the amounts of the members of the collection. For instance, in the entanglement

resource theory of multipartite states, one might consider the GHZ state 1√
2
(
|0 . . . 0〉+ |1 . . . 1〉

)
as the gold-standard of multipartite entanglement. It seems reasonable to quantify the amount

of entanglement of a pure state, |ψ〉, as either the number of GHZ states needed to produce

|ψ〉 (GHZ-cost) with allowed operations (e.g. LOCC or SLOCC) or as the number of GHZ

states which can be produced from |ψ〉 (GHZ-distillation). Generally, the collection of multiple

quantum states is described by taking the flattened tensor product (or Kronecker product,

see Section 1.1.1) of the individual states. As it turns out, neither the GHZ-cost nor the

GHZ-distillability of pure quantum states are additive under the flattened tensor product. For

SLOCC, the GHZ-cost and GHZ-value of a pure state, |ψ〉, relates naturally to the logarithm of

the rank and sub-rank of the corresponding tensor ψ (see Proposition 2.1.5 and the subsequent

discussion). The fact that GHZ-cost is sub-additive is, by the state-tensor correspondence,

equivalent to tensor rank being sub-multiplicative under the flattened tensor product. In order

to better understand how this strict sub-multiplicativity occurs, it was asked and answered in

[11], whether the strict sub-multiplicativity was dependent on the flattening. It turns out that

the rank drop can happen both in the process of taking the non-flattened tensor product and

with taking the flattening. The first examples found of strict sub-multiplicativity of tensor rank

were found with tensors that have a gap between tensor rank, R(ψ), and border rank R(ψ).
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R(ψ) > R(ψ) means that R(ψ) is on the boundary of the rank-R(ψ) tensors, implying that these

examples of strict sub-multiplicativity are very non-generic. This motivated the question of

whether also border rank can be strictly sub-multiplicative, which turned out also to be possible

[12]. These results will be discussed in Chapter 2.

In Chapter 3 a tool, called the asymptotic spectrum of tensors, is described. It is a tool for

working with many copies in the resource theory of tensors under restrictions. The asymptotic

spectrum, which consists of certain homomorphic monotones, entirely determine the asymptotic

conversion rates between tensors. The known spectral points from the literature [8, 13] are

presented, together with some of the implications for conversion rates between pure states under

SLOCC.

In an effort to move from SLOCC to LOCC, [14] constructed a refinement of the asymptotic

spectrum of tensors, which retains some control on the asymptotic behavior of the stochastic part

(the S) in SLOCC. This refinement is called the asymptotic spectrum of LOCC transformations,

and is introduced in Chapter 4. Concretely, the asymptotic spectrum of tensors from [15] deals

with pure states under SLOCC, while the refinement deals with pure states under unnormalized

LOCC transformations. Just like the asymptotic spectrum of tensors encodes all information

on conversion rates under SLOCC, so does the LOCC spectrum describe the conversion rates

under LOCC in the regime of converse error exponents (see Eq. (4.2)). A characterization of

LOCC spectral points is given in the multipartite case. In the bipartite case, the entire LOCC

spectrum is determined and a concrete formula for rates, given converse error exponents, is given

(see Section 4.3).

Though entropy of entanglement is a good measure of pure bipartite entanglement, it deals

with approximate entanglement transformations, as is appropriate when describing physics. For

exact transformations, which is the topic of this thesis, the formula from Section 4.3, mentioned

above, hints at a formula for conversion rates for exact LOCC transformations of bipartite

states, both for success probability going to 1 (Theorem 5.3.3) and for deterministic conversion

(Theorem 5.2.9, conjectured in [16]). These formulas are shown in [14] and [17] respectively. In

this thesis they are both shown in Chapter 5.

The majority of this thesis is a recap of large parts of the original work in [11], [12], [14] and

[17], which has been carried out in collaboration with co-authors M. Christandl ([11], [12]), F.
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Gesmundo ([12]), J. Zuiddam ([11]) and P. Vrana ([14]). The results on non-multiplicativity of

tensor rank and border rank in Chapter 2 are from [11] and [12], respectively, while the results in

Chapter 4 and Chapter 5 are from [14] and [17], respectively, with the exception that a section

from [14] has been moved to Section 5.3 as this section depends on results in [17]. The contents

of Section 3.4 is work done in collaboration with Péter Vrana.
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1.1. Introduction to LOCC

The fundamental objects of study in this thesis are quantum states spread out on multiple

quantum systems, also known as multipartite quantum states. In this thesis, a quantum system

A is represented by a finite dimensional Hilbert space HA, known as the state space. Given

multiple state spaces, H1, . . . ,Hk, the composite system is represented by the k-partite state

space H1⊗· · ·⊗Hk. This thesis will make use of Dirac notation (see Appendix A.2), in particular

inner products will be conjugate linear in the first variable and linear in the second. A state of

the system A is represented by a positive semidefinite operator ρ on HA with Tr(ρ) = 1, known

as a density operator. The set of density operators on the state space HA will be denoted by

S(HA). Of particular interest are the pure states, represented by one-dimensional projections,

|ψ〉〈ψ| ∈ S(HA).

Given a quantum state we wish to describe the ways in which it can be manipulated. If a

party has access to the entire system H, they may apply quantum channels to the state. In

reality there will be limitations on which quantum channels can practically be implemented, but

we idealize and imagine that any channel can be implemented.

Definition 1.1.1. A linear map Λ : End(H) → End(H′) is said to be completely positive if

the map Λ ⊗ IdEnd(Cn) : End(H) ⊗ End(Cn) → End(H′) ⊗ End(Cn) is positive (sends positive

semidefinite operators to positive semidefinite operators) for all n ∈ N.

Definition 1.1.2. Given two state spaces H and H′, a quantum channel Λ is a completely

positive, trace preserving (commonly abbreviated CPTP) linear map Λ : S(H)→ S(H′) [18]. If Λ

is completely positive and trace non-increasing, then we say that Λ is an unnormalized quantum

channel.

By linear, we mean that Λ extends to a linear map End(H) → End(H′). Note that the

positive and trace preserving maps End(H)→ End(H′) are exactly the maps that map density

operators to density operators. We imagine that the k-partite state ρ ∈ S(H1⊗ · · · ⊗Hk) is split

between k spatially separated locations. At each location, one might manipulate the state by

performing some quantum operation, represented by locally applying a quantum channel. By

complete positivity it also makes sense to talk of local application of quantum channels in the

following sense:

Definition 1.1.3. Given two k-partite state spaces H1⊗· · ·⊗Hi⊗· · ·⊗Hk and H1⊗· · ·⊗H′i⊗· · ·⊗Hk,

whose i’th system are possibly different, a local quantum channel on the i’th system, is a quantum
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channel that can be written as a tensor product

Id1⊗ · · · ⊗ Λ⊗ · · · ⊗ Idk : S(H1 ⊗ · · · ⊗ Hi ⊗ · · · ⊗ Hk)→ S(H1 ⊗ · · · ⊗ H′i ⊗ · · · ⊗ Hk),

for some quantum channel Λ : S(Hi)→ S(H′i).

As is common in quantum theory, when Λ : S(Hi) → S(H′i) and ρ ∈ S(H1 ⊗ · · · ⊗ Hk),

then we shall understand Λρ = Λ(ρ) to mean (Id1⊗ · · · ⊗ Λ⊗ · · · ⊗ Idk) (ρ). Similarly, when

K : Hi → H′i is a linear map and |ψ〉 ∈ H1 ⊗ · · · ⊗ Hk, we shall understand K |ψ〉 to mean

(IH1 ⊗ · · · ⊗ K ⊗ · · · ⊗ IHk) |ψ〉. If we imagine that the k parties sharing a state ρ can only

manipulate their own part of the system and have no way of sending information, either classical

or quantum, between each other, then compositions of the above operations are the only channels

available. We might call compositions of above channels LO-channels, where LO is short for

Local Operations.

A state ρ ∈ Md(C) is called classical, if ρ is diagonal. Given a probability distribution

P : [d]→ [0, 1], the diagonal density operator ρ =
∑d
i=1 P (i) |i〉〈i| represents a physical system,

with d possible states, which is in state i with probability P (i). One might reasonably say that

a classical system is always in some definite state, and that describing the state of a classical

system probabilistically is weird. As such the density operator ρ, does not really describe the

intrinsic state of the system, but rather describes an observers knowledge of the system, or

perhaps an observers knowledge of a future state of a system, given some stochastic process

which is to be applied. In my view, these are the appropriate ways to think of a state, quantum

or classical. There are multiple ways that scientists interpret the physical meaning of a density

operator, so the above description should merely be thought of as my own personal interpretation

and a suggestion to the uninitiated, rather than a postulate on how one should interpret the

physicality. Any reader with a separate interpretation of the physical meaning of a quantum

state is therefore welcome to apply their own understanding to what follows. The physical in-

terpretation of quantum mechanics is not the topic of this thesis, and will not be further discussed.

Since the ultimate goal is to understand and classify entanglement, we need to distinguish

between shared entanglement and shared classical randomness. For this reason we want to work

with a resource theory where shared classical randomness is free, which motivates the extension

of allowed operations from just local quantum operations to combinations of local quantum

operations and sharing of classical information (LOCC). An LOCC channel is the result of

applying an LOCC protocol (precisely defined in Definition 1.1.10 below). An LOCC protocol
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is a protocol where the parties in turn perform local quantum operations, known to the other

parties, and share their measurement results. In order to formalize the notion of sharing classical

information, we first define a quantum-classical state: A quantum-classical state is a bipartite

state ρ ∈ S(H⊗ CX ) of the form

∑
x∈X

P (x)ρx ⊗ |x〉〈x| , (1.1)

where X is some finite set, each ρi ∈ S(H) and P : X → [0, 1] is a probability distribution

on X ; i.e.
∑
x∈X P (x) = 1. The quantum classical states are precisely the intersection of

S(H ⊗ CX ) and End(H) ⊗ Diag(CX ), where Diag(CX ) denotes the set of diagonal matrices

w.r.t. the basis
(
|x〉
)
x∈X . A quantum-classical state represents the joint state of a system which

has both a quantum and a classical part. For instance, this could be the joint system of some

quantum system in a laboratory together with either a classical register storing the results of

measurements, or a monitor which a scientist uses to read off the results of measurements. The

scientist reading off the result would then correspond to a measurement of the classical register in

the computational basis. As such, the state (1.1) may be interpreted as the quantum part being

in the state ρx with probability P (x), while the classical part flags the state of the quantum

system. If we want to model a channel that performs measurements and stores the measurement

result in a classical register, we start by adding a classical register to the output system. If we

demand that a channel Λ : S(H)→ S(H′ ⊗ Cd) only outputs quantum-classical states, then one

sees that Λ can be written as

Λ : ρ 7→
∑
j∈[d]
Ej(ρ)⊗ |j〉〈j| , (1.2)

where (Ej)j∈[d] is a family of unnormalized quantum channels Ej : S(H) → S(H′) with
∑
j Ej

trace preserving. Note that from Eq. (1.2) Tr ◦
∑
j Ej = Tr ◦Λ. The collection E = (Ej)j∈[d] is

called a quantum instrument and we interpret the map (1.2) as an operation involving mea-

surements of the quantum part with a total of d different possible outcomes. The resulting

quantum state after applying a quantum instrument is thus Ej(ρ) with probability Tr Ej(ρ) and

the information about the resulting state is stored in the classical register as |j〉〈j|. The maps

Ej defining the instrument E will be called the components of E . If H = H1 ⊗ · · · ⊗ Hk is a

composite quantum system and each Ej is local with respect to the same subsystem, Hi, in the

sense of Definition 1.1.3, we say that (Ej)j∈[d] is a local quantum instrument.

Local quantum instruments form the basis for the concept of LOCC conversion. If k parties

share a state ρ ∈ S(H1 ⊗ · · · ⊗ Hk), and they may share classical information, then we simply
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assume that the results of quantum operations are public knowledge. We model this by adding a

public classical register, Cd, which each party has access to. The state space, including register,

is then

H1 ⊗ · · · ⊗ Hk ⊗ Cd, (1.3)

and a state of the full system is a quantum-classical state, i.e. an element ρ ∈ S
(
H1 ⊗ · · · ⊗ Hk ⊗ Cd

)
of the form

ρ =
d∑
j=1

P (j)ρj ⊗ |j〉〈j| , (1.4)

where ρj ∈ S (H1 ⊗ · · · ⊗ Hk) and P is some probability distribution on [d]. The i’th party may

choose which quantum instrument to apply, depending on the information in the public register.

Formally that is, they can choose to apply different quantum instruments to each ρj :

Definition 1.1.4. Given a composite quantum-classical system S(H1 ⊗ · · · ⊗ Hk)⊗Diag(CX ),

we say that a conditional application of local quantum instruments on the i’th system is a

channel Λ = E(J, f) given as

E(J, f) def= Λ :
∑
x∈X

ρx ⊗ |x〉〈x| 7→
∑
x∈X

∑
j∈f−1(x)

Ej(ρx)⊗ |j〉〈j| =
∑
j∈J
Ej(ρf(j))⊗ |j〉〈j| . (1.5)

Here f : J → X is a map and for all x ∈ X , Ex = (Ej)j∈f−1(x) is a local quantum instrument on

the i’th system. J is a set of unique labels flagging the outcome of application of the quantum

instruments.

The above definition corresponds to applying the instrument Ex = (Ej)j∈f−1(x) conditioned

on the register reading x. The resulting state is then
∑
j∈J Ej(ρf(j))⊗ |j〉〈j|.

Remark 1.1.5. The map Λ from Definition 1.1.4 is indeed a quantum channel on the surrounding

system S(H1 ⊗ · · ·Hk ⊗ CX ), since it extends to

Λ : ρ 7→
∑
j∈J

[
Ej ⊗ Λ|j〉〈f(j)|

]
ρ.

Here Λ|j〉〈f(j)| is the map Λ|j〉〈f(j)| : ρ 7→
∣∣j〉〈f(j)

∣∣ ρ ∣∣f(j)
〉〈
j
∣∣, which is completely positive, and

complete positivity is stable under both tensor product and sum, so Λ is completely positive.

Furthermore

Tr
∑
j∈J

[
Ej ⊗ Λ|j〉〈f(j)|

]
ρ =

∑
j∈J

Tr Ej 〈f(j)| ρ |f(j)〉 =
∑
x∈X

Tr
∑

j∈f−1(x)
Ej 〈x| ρ |x〉

=
∑
x∈X

Tr 〈x| ρ |x〉 = Tr ρ,
(1.6)

where we have used the fact that
∑
j∈f−1(x) Ej is trace preserving for all x ∈ X .
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Given a quantum-classical state ρ =
∑
j ρj ⊗ |j〉〈j|, the parties may choose to “delete some

of the classical information” or “join some of the conditional states”. Formally we call this a

coarse-graining and it is a channel Πg : S(H)⊗Diag(CJ)→ S(H)⊗Diag(CX ) of the form

Πg :
∑
j∈J

ρj ⊗ |j〉〈j| 7→
∑
j∈J

ρj ⊗
∣∣g(j)

〉〈
g(j)

∣∣ (1.7)

where g : J 7→ X is some map into the output register X .

Example 1.1.6. When g : J → {0},

Πg :
∑
j∈J

ρj ⊗ |j〉〈j| 7→

∑
j∈J

ρj

⊗ |0〉〈0| . (1.8)

If we make the association H⊗ C ' H, Πg corresponds to taking the partial trace of the register

system. In this case we shall write Πg = Trreg.

Definition 1.1.7 (LOCC). We define a one-step LOCC channel to be a channel Λ which is the

composition of a conditional application of local quantum instruments at a subsystem i, followed

by a coarse-graining.

An LOCC protocol is a finite sequence of composable one-step LOCC channels and the

composition is an LOCC channel.

One might ask why we allow for coarse-graining after each local application of quantum

instruments. All the coarse-graining does is throw away information, which can hardly be useful

in achieving a conversion task. This intuition is valid as we shall now see, that any LOCC

channel may be implemented in such a manner that any coarse-graining is deferred to the end

of the protocol.

Lemma 1.1.8. Let Λ = E(J, f) ◦Πg be an LOCC channel acting on the space S(H1⊗ · · · ⊗Hk)

⊗ Diag(CX ). Πg is a coarse-graining given by a map g : X → Y. E(J, f) is a conditional

application of local quantum instruments f : J → Y.

Then there exists a conditional application of local quantum instruments Ẽ(J̃, f̃), f : J̃ → X

and Πg̃, g : J → J̃ such that

Λ = Πg̃ ◦ Ẽ(J̃, f̃).

Proof. Let ρ =
∑
x∈X ρx ⊗ |x〉〈x|, then

Λ : ρ Πg7→
∑
x∈X

ρx ⊗
∣∣g(x)

〉〈
g(x)

∣∣ E(J,f)7→
∑
x∈X

∑
j∈f−1(g(x))

Ej(ρx)⊗ |j〉〈j| =
∑
j∈J

∑
x∈X

g(x)=f(j)

Ej(ρx)⊗ |j〉〈j| .

(1.9)
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Let J̃ =
{
(j, x) ∈ J ×X

∣∣f(j) = g(x)
}
and f̃ : J̃ → X be the map (j, x) 7→ x. Define the

conditional quantum instrument Ẽ(J̃, f̃) by Ẽ(j,x) = Ej . Let Πg̃ be given by the map g̃ : J̃ → J

defined as g̃ : (j, x) 7→ j. Then

Πg̃ ◦ Ẽ(J̃, f̃) : ρ Ẽ(J̃,f̃)7→
∑

(j,x)∈J̃

Ẽ(j,x)
(
ρf̃(j,x)

)
⊗ |j, x〉〈j, x| =

∑
(j,x)∈J̃

Ej (ρx)⊗ |j, x〉〈j, x|

Πg̃7→
∑

(j,x)∈J̃

Ej (ρx)⊗ |j〉〈j| .
(1.10)

Note that the right-hand-side of (1.9) and (1.10) are equal.

Proposition 1.1.9. Let Λ be an LOCC channel. Then Λ can be written as a composition of

conditional applications of local quantum instruments, followed by a single coarse-graining.

Proof. By Definition 1.1.7, Λ is of the form

Λ = ΠgnEn(Jn, fn) · · ·Πg1E1(J1, f1), (1.11)

for some choices of conditional instruments and coarse-grainings. Since the composition of two

coarse-grainings is again a coarse-graining, we apply Lemma 1.1.8 n− 1 times to obtain

Λ = Πg̃Ẽn(J̃n, f̃n) · · · Ẽ1(J̃1, f̃1). (1.12)

Since

S(H1 ⊗ · · · ⊗ Hk)
ρ↔ρ⊗|0〉〈0|
' S(H1 ⊗ · · · ⊗ Hk)⊗Diag(C) (1.13)

we may associate any k-partite state on the left-hand-side, with the quantum-classical state on

the right-hand-side. This corresponds to considering a k-partite quantum state versus considering

the same quantum state together with some shared classical system in a default state. Using

this association, it makes sense to apply LOCC channels to entirely quantum states. Given two

k-partite states ρ and σ we write

ρ
LOCC−−−−→ σ

def⇐⇒ ∃Λ ∈ LOCC : Λ(ρ) = σ. (1.14)

The above tranformation of ρ to σ is an exact, deterministic LOCC-tranformation, in the sense

that the output is exactly equal to σ and the channel outputs σ with certainty. As mentioned,

we shall also consider probabilistic LOCC-conversion. Given a k-partite state ρ and some

LOCC-channel Λ as defined in Definition 1.1.7, the output is of the form

∑
x∈X

P (x)ρx ⊗ |x〉〈x| (1.15)
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for some family (ρx)x∈X and probability distribution P : X → [0, 1], corresponding to the

quantum part being in state ρx with probability P (x), flagged by the classical register. This

formalizes what we mean by ρ being LOCC-convertible to ρx with some probability P (x). A

convenient way of characterising probabilistic conversion is by the use of trace non-increasing

LOCC channels.

Definition 1.1.10 (Unnormalized LOCC). A trace non-increasing one-step LOCC channel is

defined exactly as the usual one-step LOCC channels in Definition 1.1.7, except that instead

of conditional application of local quantum instruments, we allow for conditional application

of local trace-non-increacing quantum instruments. That is, instruments (Ej)j∈f−1(x) such that∑
j∈f−1(x) Ej is trace-non-increasing.

A trace-non-increasing LOCC channel is a finite composition of trace non-increasing one-step

LOCC channels.

Remark 1.1.11. Lemma 1.1.8 and Proposition 1.1.9 also work for trace non-increasing LOCC

channels, by the exact same proofs.

Given a trace non-increasing conditional instrument E(J, f) acting on S(H1⊗· · ·⊗Hk)⊗Diag(CX )

Λ :
∑
x∈X

ρx ⊗ |x〉〈x| 7→
∑
j∈J
Ej
(
ρf(j)

)
⊗ |j〉〈j| , (1.16)

we may extend to a trace preserving LOCC channel by introducing the instrument Ẽ(J̃, f̃), where

J̃ = J t X and f̃ extends f by f̃(x) = x for x ∈ X ⊂ J̃ . Ẽj = Ej for j ∈ J ⊂ J̃ and

Ẽx : ρx 7→ 1− Tr

 ∑
j∈f−1(x)

Ej(ρx)

 ρ0, (1.17)

where ρ0 is some fixed state, which we might consider as a failure output. In order to group

the failures together we post-compose with the coarse-graining Πg where g : J̃ → J ⊕ {⊥} is

the identity on J ⊂ J̃ and sends X ⊂ J̃ to ⊥. The resulting channel Λ̃ = ΠgẼ(J̃, f̃) is trace

preserving and acts as

Λ̃ = ΠgẼ(J̃, f̃) :
∑
x∈X

ρx ⊗ |x〉〈x| 7→
∑
j∈J
Ej(ρf(j))⊗ |j〉〈j|+ Cρρ0 ⊗ |⊥〉〈⊥| , (1.18)

where the scalar Cρ = 1−
∑
x∈X Tr Λρx. The convenience of introducing trace non-increasing

LOCC channels is captured by the following proposition:

Proposition 1.1.12. A k-partite state ρ can be LOCC-transformed into σ with probability p if

and only if

Λ(ρ) = pσ (1.19)
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for some trace-non-increasing LOCC channel Λ. When this is the case we write ρ LOCC−−−−→ pσ.

Proof. The “only-if”-part is the easy implication: Assume that ρ can be LOCC-transformed into

σ with probability p. That is, for some trace-preserving LOCC channel Λ,

Λ(ρ) =
∑
x∈X

P (x)ρx ⊗ |x〉〈x| , (1.20)

where ρx0 = σ and P (x0) = p for some x0 ∈ X . Now let Λ0 be the one-step trace non-increasing

LOCC channel, acting on the output system of Λ;

Λ0 :
∑
x∈X

ρx ⊗ |x〉〈x| 7→ ρx0 ⊗ |0〉〈0| . (1.21)

Then Λ0 ◦ Λ witnesses ρ LOCC−−−−→ pσ.

Conversely, suppose Λ(ρ) = pσ for some trace non-increasing LOCC channel. By Proposition

1.1.9, we can assume that Λ = Trreg En(Jn, fn) · · · E1(J1, f1) is a composition of trace non-

increasing conditional quantum instruments followed by a coarse-graining, which must necessarily

be the partial trace of the register, since the output pσ which is independent of the register.

Since Λ(ρ) = pσ we must have

En(Jn, fn) · · · E1(J1, f1)ρ =
∑
j∈Jn

P (j)ρj ⊗ |j〉〈j| , (1.22)

where
∑
j∈Jn P (j)ρj = pσ. Starting from the right, we iteratively replace each E l(Jl, fl) with

the corresponding Λl = Πgl Ẽ l(J̃l, f̃l) from (1.17), such that

Λn · · ·Λ1ρ =
∑
j∈Jn

P (j)ρj + (1− p)ρ0 ⊗ |⊥〉〈⊥| . (1.23)

Now apply the coarse-graining g which contracts Jn to a single register point 0 and

ΠgΛn · · ·Λ1ρ = pσ ⊗ |0〉〈0|+ (1− p)ρ0 ⊗ |⊥〉〈⊥| . (1.24)

Definition 1.1.13. When ρ LOCC−−−−→ pσ for some p > 0 we say that ρ can be transformed to σ

via SLOCC and write ρ SLOCC−−−−−→ σ.

In particular when dealing with pure states, it is often convenient to break down the

completely positive maps into their Kraus decompositions.
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Theorem 1.1.14 (Kraus representation). A map Λ : End(H)→ End(H′) is completely positive

if and only if there exists a finite family of operators (Kj)j∈J ⊂ End(H,H′) such that for all

states ρ ∈ S(H)

Λ(ρ) =
∑
j∈J

KjρK
∗
j . (1.25)

Furthermore, Λ is trace preserving if and only if
∑
jK
∗
jKj = IH and trace non-increasing if and

only if
∑
jK
∗
jKj ≤ IH.

The minimal number of Kraus operators needed to represent a completely positive map is

called the Kraus rank. This coincides with the rank of the Choi-state associated to Λ. Now for

any Kraus decomposition Λ : ρ 7→
∑
jKjρK

∗
j of a completely positive map, we may associate

the instrument E with components Ej : ρ 7→ KjρK
∗
j . Λ is trace preserving, respectively trace

non-increasing, if and only if the associated instrument is trace preserving, respectively trace

non-increasing. In fact, any conditional quantum instrument E(J, f) may be written as such a

“Kraus instrument” followed by a coarse-graining. Simply replace each Ej with the instrument

defined by a collection of Kraus operators (Kj
l )l∈Lj representing Ej . That is, consider the

instrument Ẽ(
⊔
j Lj , f̃) consisting of all the maps Ej,l : ρ 7→ Kj

l ρ(K
j
l )∗ for all j ∈ J and l ∈ Lj

and let f̃ : (j, l) 7→ f(j). Post-composing with the coarse-graining Lj → j reproduces the channel

Λ. In light of this construction and Proposition 1.1.9 we get the following:

Proposition 1.1.15. Λ is an LOCC channel (respectively trace non-increasing LOCC channel)

if and only if

Λ = ΠgΛn · · ·Λ1 (1.26)

for some n ∈ N where each Λl is a conditional application of local quantum instruments, with

the components of each condtitional instrument having Kraus rank 1. I.e. Λl is of the form

Λl : ρ 7→
∑
j

(
Kj ⊗

∣∣j〉〈f(j)
∣∣) ρ (K∗j ⊗ ∣∣f(j)

〉〈
j
∣∣) (1.27)

where ρ ∈ S(H1 ⊗ · · · ⊗ Hk) ⊗ Diag(CX ), f : J → X , Kj : Hi → H′i for some i ∈ [k] and∑
j∈J K

∗
jKj = IHi (respectively

∑
j∈J K

∗
jKj ≤ IHi). Furthermore if the output of Λ has trivial

register, Πg = Trreg.

Proposition 1.1.16. Given two pure, k-partite states |ψ〉〈ψ| S(H1 ⊗ · · · ⊗ Hk) and

|φ〉〈φ| ∈ S(H′1 ⊗ · · · ⊗ H′k), the following are equivalent.

1. |ψ〉〈ψ| SLOCC−−−−−→ |φ〉〈φ|

2. There exist linear maps Ai : Hi → H′i such that

(A1 ⊗ · · · ⊗Ak) |ψ〉 = |φ〉 (1.28)
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Proof. First we show 2 =⇒ 1. Assume that (A1 ⊗ · · · ⊗Ak) |ψ〉 = |φ〉. Let

Λl : ρ 7→ 1
Tr(AlA∗l )

AlρA
∗
l . (1.29)

Then Λn · · ·Λ1 |ψ〉〈ψ| = 1
TrAn···TrA1

|φ〉〈φ|, as claimed.

Then we show 1 =⇒ 2. Assume that |ψ〉〈ψ| SLOCC−−−−−→ |φ〉〈φ|. Then Λ |ψ〉〈ψ| = p |φ〉〈φ| for

some p > 0 and

Λ = Trreg Λn · · ·Λ1, (1.30)

where each Λl is of the form (1.27). Let Jl, fl, (K l
j)j∈Jl , il be the objects definining Λl from

Proposition 1.1.15. Now

Λn · · ·Λ1 |ψ〉〈ψ| =
∑

(j1,...,jn)∈J

(
Kn
jn · · ·K

1
j1

)
|ψ〉〈ψ|

(
Kn
jn · · ·K

1
j1

)∗
⊗ |jn〉〈jn| , (1.31)

where J =
{
(j1, . . . , jn) ∈ J1 × · · · × Jn

∣∣fl(jl) = jl−1 for l = 2, . . . , n
}
. Since tracing out the

register yields p |φ〉〈φ|, we conclude that
(
Kn
jn · · ·K

1
j1

)
|ψ〉〈ψ|

(
Kn
jn · · ·K

1
j1

)∗
must be a multiple

of |φ〉〈φ| for all (j1, . . . , jn) ∈ J . Since each Kj is local, Kn
jn · · ·K

1
j1 is of the form A1 ⊗ · · · ⊗Ak,

so by rescaling we obtain 2.

Given a k-partite quantum state ρ ∈ S(H1⊗· · ·⊗Hk), each party can apply the local quantum

channel Tri : S (Hi)→ C, resulting in the trivial state ρ0 = |0 . . . 0〉〈0 . . . 0|. So ρ LOCC−−−−→ ρ0 for

all k-partite states ρ, showing that ρ0 is a smallest element in the resource theory of k-partite

entanglement and any smallest element must necessarily be in the LOCC orbit of ρ0.. The

LOCC orbit of ρ is the class of states that can be reached from ρ via LOCC and for ρ0 the

LOCC orbit is the class of separable states. I.e. states of the form
∑
j pjρ1,j ⊗ · · · ⊗ ρk,j , where

ρi,j ∈ S(Hi) and
∑
j pj = 1. These states are precisely the ones corresponding to the k parties

only having shared classical randomness: The shared state is ρ1,j ⊗ · · · ⊗ ρk,j with probability pj .

Therefore, entangled states are by definition the states which are not separable. States that are

pure and separable are necessarily product states, i.e. states of the form |ψ〉 = |ψ1〉 ⊗ · · · ⊗ |ψk〉.

1.1.1. Multiple copies

When our imagined k parties share two states with density operators ρ1 ∈ S(H1 ⊗ · · · ⊗ Hk)

and ρ2 ∈ S(K1 ⊗ · · · ⊗ Kk), then the combined state is described by the density operator

ρ1 ⊗ ρ2 ∈ S(H1 ⊗ K1 ⊗ · · · ⊗ Hk ⊗ Kk) and for LOCC protocols the i’th party may perform

quantum operations that are local to the subsystem (Hi ⊗Ki), as we imagine that both systems
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are in their possession. When we interpret ρ1 ⊗ ρ2 as a k-partite state in this manner we shall

write ρ1 � ρ2. But we might also interpret the density operator ρ1 ⊗ ρ2 as a 2k-partite state,

where all quantum instruments in an LOCC protocol have to be local with respect to Hi or Ki,

but not across these systems. When we interpret ρ1⊗ ρ2 as a 2k-partite state we shall stick with

the notation ρ1 ⊗ ρ2. It is non-standard to use the notation ρ1 � ρ2 for the so-called Kronecker

product or “flattened” tensor product, and in most of the literature the interpretation of ⊗

is inferred from context with little risk of confusion. The notation is mainly introduced here,

because of the distinction being necesarry in the study of the multiplicativity of tensor rank in

Chapter 2. In the paper [11], in which the non-multiplicativity of tensor rank under ⊗ was first

described, the symbol � was used for the Kronecker product. The choice of using � instead of �

is mainly aesthetic and because of the lack of available Latex packages with a neat � version of

the large symbols
⊗

and
⊙

used for writing the application of the operation to a family of objects.

For some quantum states ρ 6LOCC−−−−→ σ, yet ρ� ρ LOCC−−−−→ σ � σ. So if our k parties have a pool

of multiple copies of a resource state, ρ, and wish to convert these to as many copies of a target

state, σ, as possible, then they can often benefit from manipulating the entire resource pool

jointly, rather than each resource state individually.

This thesis is mostly concerned with the asymptotic behavior of entanglement manipulation.

Given many copies, ρ�n = ρ�· · ·�ρ, of a resource state, ρ, we ask how many copies of a certain

target state, σ, can be obtained per copy of ρ via LOCC conversion. We call this number of

copies of σ obtained per copy of ρ the conversion rate. This rate has many variations, depending

on which demands we make on the asymptotic precision of the LOCC conversion. We might

demand the conversion to be exact or allow for some loss in fidelity and make certain demands

on the asymptotic behavior of this fidelity loss. We could also allow for a probability of failed

conversion and just like with fidelity make demands on the asymptotic behavior of success

probability. Most of these rates are only well understood for pure, bipartite states, if even for

these.

The exact, deterministic rate is

Eexact(ρ, σ) = sup
{
τ ∈ R+

∣∣∣∣ρ�n LOCC−−−−→ σ�bnτc for n� 1
}
, (1.32)

which will be addressed for pure bipartite states in Chapter 5. The famous result on entropy

of entanglement [1][19, ch. 19.4] mentioned in the introduction is that when ρ = |ψ〉〈ψ| and
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σ = |φ〉〈φ| are pure bipartite states,

EF>1−ε(ρ, σ) = lim
n→∞

sup
{
τ ∈ R+

∣∣∣∣∃σn : ρ�n LOCC−−−−→ σn and F
(
σn, σ

�bnτc
)
> 1− ε

}
= H(P )
H(Q) ,

(1.33)

where P and Q are the squared Schmidt coefficients of |ψ〉 and |φ〉 respectively and ε > 0 is

some fixed arbitrarily small allowed error. H(P ) is defined in Definition 1.2.1.

1.2. Type classes and Shannon entropy

In this section we fix a set X of size |X | = d and consider the space of probability distributions

P = P (X ) =
{
P : X → [0, 1]

∣∣∣∑x∈X P (x) = 1
}
. In the following we shall sometimes interpret

0 log 0 as 0, with the justification that limx→0 x log x = 0. Now might also be a good time to

mention that log = log2 will always denote the 2-logarithm, rather than the natural logarithm,

for the entirety of this thesis.

Definition 1.2.1. For P ∈ P, the Shannon entropy of P is defined as

H(P ) = −
∑

x∈supp(P )
P (x) logP (x) ”0 log 0=0”= −

∑
x∈X

P (x) logP (x). (1.34)

For α ∈ (0,∞)\{1}, the α-Rényi entropy is defined as

Hα(P ) = 1
1− α log

∑
x∈X

P (x)α. (1.35)

For α ∈ {0, 1,∞}, we define Hα(P ) by taking the limit lim
β→α

Hβ(P ). That is,

H0(P ) = log
∣∣supp(P )

∣∣ , (1.36)

H1(P ) = H(P ), (1.37)

and

H∞(P ) = −max
x∈X

logP (x). (1.38)

Definition 1.2.2. Given two probability distributions P,Q ∈ P with supp(Q) ⊆ supp(P ), we

define the relative entropy, also called the Kullback-Leibler divergence as

D
(
Q||P

)
=

∑
x∈supp(Q)

Q(x) log
(
Q(x)
P (x)

)
”0 log 0=0”=

∑
x∈X

Q(x) log
(
Q(x)
P (x)

)
. (1.39)

When supp(Q) 6⊆ supp(P ), we set D
(
Q||P

)
=∞.
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We denote by Pn ⊂ P , the set of n-types on X , i.e. the set of probability distributions on X

such that all point probabilities are a multiple of 1
n . For Q ∈ Pn, and a finite sequence I ∈ X n,

viewed as a function I : [n]→ X , we say the I is of type Q, if |I−1(x)| = nQ(x) for all x ∈ X .

We denote by TnQ ⊂ X n the sequences of type Q. TnQ will be called the type class of the type Q.

In other words; TnQ is the set of sequences of length n, whose relative frequency of symbols are

described by Q. Since choosing an element of Q ∈ Pn means choosing nQ(x) ∈ {0, . . . , n} for

each x ∈ X , with the restriction that these numbers sum to n, we get a coarse but adequate

upper bound on the number of type classes

|Pn| ≤ (n+ 1)d , (1.40)

showing that the number of type classes only grows polynomially in n. Therefore the size of the

individual type classes must grow exponentially in n, and this exponential growth is captured

by the following lemma:

Lemma 1.2.3. [20, Lemma 2.3] Let Q ∈ Pn, then

1
(n+ 1)d 2nH(Q) ≤

∣∣∣TnQ∣∣∣ ≤ 2nH(Q) (1.41)

Applying limn→∞
1
n log to Eq. (1.41), one obtains the following:

Proposition 1.2.4. Let Q ∈ Pn, then

lim
n→∞

1
n

log
∣∣∣TnQ∣∣∣ = H(Q). (1.42)

For a probability distribution P ∈ P(X ), P⊗n ∈ P(X n) is the probability distribution given

by P⊗n(I) =
∏
i∈[n] P

(
I(i)

)
, corresponding to a sequence of n independent and identically

distributed stochastic variables with distribution P . Letting Q ∈ Pn, P ∈ P, and I ∈ TnQ we

have

P⊗n(I) =
∏
x∈X

P (x)nQ(x) = 2n
∑

x
Q(x) logP (x) = 2n(−H(Q)−D(Q||P )). (1.43)

If we consider a stochastic variable X = (X1, . . . , Xn), where X1, . . . , Xn are independent and

identically distributed, with distribution P ∈ P(X), then the probability that X is of type Q is

Pr
(
X ∈ TnQ

)
=
∑
I∈TnQ

P⊗n(I) =
∣∣∣TnQ∣∣∣ 2n(−H(Q)−D(Q||P )). (1.44)

By Lemma 1.2.3 and Eq. (1.44), we get:

Lemma 1.2.5. Let Q ∈ Pn, then

1
(n+ 1)d 2−nD(Q||P ) ≤

∑
I∈TnQ

P⊗n(I) ≤ 2−nD(Q||P ). (1.45)
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Again, we may take the limit, to obtain

Proposition 1.2.6. Let Q ∈ Pn, then

lim
n→∞

1
n

log
∑
I∈TnQ

P⊗n(I) = −D(Q||P ). (1.46)
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Chapter 2

Tensors

In some scientific communities a vector is simply a finite family of elements from some set, which

is usually, but not always, a field, while in mathematics, a vector is an element of a vector space.

When the underlying set is a field, then the two definitions of course translate to each other after

choosing a basis for the vector space. Likewise, a tensor is defined somewhat differently depending

on who is talking about them. We might think of a 3-tensor as a family of elements indexed over a

multiindex (ai,j,k)(i,j,k)∈I×J×K or as a vector in the tensor product of vector spaces ψ ∈ A⊗B⊗C.

If (ai)i∈I , (bj)j∈J , (ck)k∈K are bases of A,B,C then ψ ↔
(
〈ai ⊗ bj ⊗ ck|ψ〉

)
i,j,k∈I×J×K yields a

correspondence between the two notions. In what follows, a tensor will simply mean a vector in

a tensor product of vector spaces. Given a 2-tensor ψ ∈ A⊗B, we may consider |ψ〉 as a linear

map B∗ 3 〈φ| 7→ 〈φ|ψ〉 ∈ A, and as such it has a rank, which coincides with the Schmidt rank

of |ψ〉 or equivalently the rank of the matrix [〈ai ⊗ bj |ψ〉]i,j . This notion of rank has a natural

extension to k-tensors.

2.1. Tensor Rank

Definition 2.1.1. Let ψ ∈ V1 ⊗ · · · ⊗ Vk. The tensor rank of ψ is

R(ψ) = min

r ∈ N
∣∣∣∣∣∣∃(ψi,j)rj=1 ⊂ Vi : ψ =

r∑
j=1

ψ1,j ⊗ . . . ψk,j

 . (2.1)

The integer k will be called the order of ψ and ψ will be called a k-tensor.

Tensors of the form ψ = ψ1 ⊗ · · · ⊗ ψk ∈ V1 ⊗ · · · ⊗ Vk are called simple tensors, or

tensors of rank 1, and correspond to unnormalized, separable, pure, k-partite quantum states

|ψ〉〈ψ| ∈ S(V1 ⊗ · · · ⊗ Vk). The rank of ψ is then the smallest number of simple tensors needed

to write ψ. While the rank of a tensor is simple enough to define, it is almost always hard to

compute. Tensor rank has been studied much in the context of algebraic complexity theory,
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because of its relation to the multiplicative complexity of the corresponding forms: A tensor

ψ ∈ A⊗B ⊗ C may for instance be viewed as a trilinear form

A∗ ×B∗ × C∗ 3 〈ψA| × 〈ψB| × 〈ψC | 7→ 〈ψA ⊗ ψB ⊗ ψC |ψ〉 ∈ C

or as a bilinear map

A∗ ×B∗ 3 〈ψA| × 〈ψB| × 7→ 〈ψA ⊗ ψB|ψ〉 ∈ C.

A rank decomposition of ψ for k = 3 encodes a method for computing these operations, which is

what makes the notion relevant in algebraic complexity theory. In particular, one might consider

the 2× 2 matrix multiplication tensor

|MaMu2〉 =
2∑

i,j,k=1
|ij〉A ⊗ |jk〉B ⊗ |ik〉C ∈ (C2 � C2)A ⊗ (C2 � C2)B ⊗ (C2 � C2)C . (2.2)

MaMu2 is related to the complexity of performing matrix multiplication (see e.g. [21] [22] [23]),

in the following sense: When 〈ψA| =
∑
ij aij 〈ij|A and 〈ψB| =

∑
jk bjk 〈jk|B the map

〈ψA| ⊗ 〈ψB| 7→ 〈ψA ⊗ ψB|MaMu2〉 ∈ C, (2.3)

outputs
∑
k,i cik |ik〉C where the matrix [cik]ik is the product of the matrices [aij ]ij and [bjk]jk.

One very simple and important tensor is the so-called unit k-tensor of rank r:

Definition 2.1.2. We denote by

ukr =
r−1∑
j=0
|j · · · j︸ ︷︷ ︸
k times

〉 ∈ Cr ⊗ · · · ⊗ Cr (2.4)

the r-level unit k-tensor. When k is clearly implied from context it will be suppressed; ur = ukr

and when r = 2 we shall sometimes omit it in notation. When k = 2 we use the notation er = u2
r.

More generally, when I ⊂ [k], we denote by uIr, the unit tensor living on the subsystem
⊗
i∈I Vi:

uIr =

r−1∑
j=0

⊗
i∈I
|j〉Vi


⊗

⊗
i 6∈I
|0〉Vi

 ∈ V1 ⊗ · · · ⊗ Vk (2.5)

where Vi = Cr for i ∈ I and Vi = C otherwise. Specially, when i, j ∈ [k], we write ei,jr = u
{i,j}
r .

Notice that |uk2〉 =
√

2 |GHZk〉 is the unnormalized k-partite Greenberger–Horne–Zeilinger

state and generally |ukr 〉 =
√
r |GHZkr 〉 is what is sometimes called the unnormalized r-level

GHZ-state. In the special case of k = 2, |e2〉 =
√

2 |EPR〉 is the unnormalized Einstein–Podolsky–

Rosen pair (or a Bell state, if one pleases). Generally 1√
2 |e

i,j
2 〉 corresponds to an EPR-pair being

shared by parties i and j. A notion closely related to the concept of tensor rank is that of

restrictions:
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Definition 2.1.3. Let ψ ∈ V1 ⊗ · · · ⊗ Vk and φ ∈W1 ⊗ · · · ⊗Wk. We say that ψ restricts to φ

if and only if (X1 ⊗ · · · ⊗Xk)ψ = φ for some Xi ∈ End(Vi,Wi) and we write

ψ ≥ φ.

If ψ ≥ φ and φ ≥ ψ, we say that the tensors are equivalent and write

ψ ∼ φ.

Let Tk denote the set of equivalence classes of k-tensors under this restriction equivalence.

It is immediately clear that ur ∼ us if and only if s = r and when k = 2 it follows from the

singular value decomposition of matrices (or equivalently, the Schmidt decomposition) that any

ψ ∈ V1 ⊗ V2 is equivalent to a unit tensor er, where r is the rank of ψ.

Example 2.1.4. [24] The first tensor one comes upon which is not restriction-equivalent to a

unit tensor is the W tensor:

|W 〉 = |001〉ABC + |010〉ABC + |100〉ABC ∈ C
2
A ⊗ C2

B ⊗ C2
C . (2.6)

Here we have labelled each copy of C2 to distinguish between the spaces. By the way |W 〉 is

written above, it has rank at most 3. In fact the rank is exactly 3. To see this, we assume, for

the sake of reaching a contradiction, that

|W 〉 = |ψ1〉 ⊗ |φ1〉 ⊗ |η1〉+ |ψ2〉 ⊗ |φ2〉 ⊗ |η2〉 ∈ C2
A ⊗ C2

B ⊗ C2
C . (2.7)

Then

〈0|A |W 〉 = 〈0|ψ1〉 |φ1〉 ⊗ |η1〉+ 〈0|ψ2〉 |φ2〉 ⊗ |η2〉 = |01〉BC + |10〉BC . (2.8)

Since the latter has rank 2, |φ1〉 and |φ2〉 must be linearly independent, as must |η1〉 and |η2〉.

But

〈1|A |W 〉 = 〈1|ψ1〉 |φ1〉 ⊗ |η1〉+ 〈1|ψ2〉 |φ2〉 ⊗ |η2〉 = |00〉BC (2.9)

is rank 1. This implies that either 〈1|ψ1〉 or 〈1|ψ2〉 is 0. Without loss of generality we assume

that |ψ1〉 = |0〉 and so |φ2〉 ⊗ |η2〉 must be a multiple of |00〉BC , but this makes (2.8) impossible

as |01〉BC + |10〉BC − z |00〉BC has rank 2 for any z ∈ C and |φ1〉 ⊗ |η1〉 has rank 1. So

R(W ) = 3. (2.10)

Arguably, this is the easiest non-trivial rank computation for a tensor. The technique used is a

case of what is called the substitution method (see e.g. [25, Proposition 3.1]), which is a crude

way to gain lower bounds on the rank of a tensor. To see that W is not equivalent to a unit
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tensor, note that since rank is stable under equivalence, if W is equivalent to any unit tensor, it

must be u3. But W 6≥ u3 since as a linear map from A∗ to B ⊗ C, |W 〉 has rank 2 and |u3〉 has

rank 3, and a restriction will necessarily lower the rank of a linear map.

Note that by Proposition 1.1.16, ψ ≥ φ ⇐⇒ |ψ〉〈ψ| SLOCC−−−−−→ |φ〉〈φ|. In the resource theory

of SLOCC, normalizing the states is of no matter, since |ψ〉〈ψ| SLOCC−−−−−→ |φ〉〈φ| if and only if the

same is true when multiplying by any positive real on either side. In other words Tk is invariant

under rescaling, i.e. R+ψ ⊂ [ψ]∼ ∈ Tk. Now that it is clear how the resource theory of pure

quantum states under SLOCC is the same as the resource theory of tensors under restriction,

let us see how they both relate to tensor rank

Proposition 2.1.5. Let ψ ∈ V1 ⊗ · · · ⊗ Vk be a k-tensor. Then

R(ψ) = min {r ∈ N|ur ≥ ψ} . (2.11)

Proof. Let

ψ =
r∑
j=1

ψ1,j ⊗ · · · ⊗ ψk,j , (2.12)

be a rank decomposition of ψ. Let Xi =
∑r
j=1

∣∣ψi,j〉〈j∣∣, then
(X1 ⊗ · · · ⊗Xk) |ur〉 = |ψ〉 , (2.13)

showing that R(ψ) ≥ min {r ∈ N|ur ≥ ψ}.

Conversely, suppose that (X1 ⊗ . . .⊗Xk) |ur〉 = |ψ〉, for some Xi ∈ End(Cr, Vi). Then

|ψ〉 =
r∑
j=1

X1 |j〉 ⊗ · · · ⊗Xk |j〉 , (2.14)

is a rank decomposition of |ψ〉, showing that R(ψ) ≤ min {r ∈ N|ur ≥ ψ}.

Inspired by Proposition 2.1.5 we define the sub-rank

Rsub(ψ) = max {r ∈ N|ψ ≥ ur} . (2.15)

By Proposition 2.1.5, the tensor rank of a tensor ψ is simply the minimal size of GHZ-state

needed to extract |ψ〉 in the resource theory of k-partite quantum states under SLOCC, while

the sub-rank by definition is the maximal GHZ-state extractable from |ψ〉. Given two tensors

ψ ∈ V1 ⊗ · · · ⊗ Vk, φ ∈ W1 ⊗ · · · ⊗Wk, we might consider the tensor product ψ ⊗ φ and ask

what the rank is or which tensors it restricts to or from. However, here we run into the same
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ambiguity as discussed in Section 1.1.1. Are we considering |ψ〉 ⊗ |φ〉 as a k-tensor, or are we

thinking of it as a 2k-tensor? That is, does it live in

(V1 ⊗W1)⊗ . . .⊗ (Vk ⊗Wk) . (2.16)

or in

V1 ⊗ . . .⊗ Vk ⊗W1 ⊗ . . .⊗Wk (2.17)

The two are of course isomorphic as vector spaces, through a canonical isomorphism, but the

notion of “simple tensor” is different, as is the notion of restriction and the notion of rank. From

the perspective of k-partite quantum states, the distinction is whether we think of |ψ〉 ⊗ |φ〉 as

k parties sharing two entangled states, or as k parties sharing a state |ψ〉 and k other parties

sharing a state |φ〉. To deal with this ambiguity we shall use � and ⊗ in the same manner as in

Section 1.1.1.

ψ � φ ∈ (V1 ⊗W1)⊗ · · · ⊗ (Vk ⊗Wk) . (2.18)

ψ ⊗ φ ∈ V1 ⊗ · · · ⊗ Vk ⊗W1 ⊗ · · · ⊗Wk. (2.19)

Since there are more simple tensors in (2.16) than in (2.17), R(ψ ⊗ φ) ≥ R(ψ � φ). When

ψ =
∑R(ψ)
j=1 ψj and φ =

∑R(φ)
j=1 φj are k-tensors, written as a sum of simple tensors, ψj and φj ,

then ψ ⊗ φ =
∑R(ψ)
j1=1

∑R(φ)
j2=1 ψj1 ⊗ φj2 is a sum of simple tensors, so

R
(
ψ)R(φ

)
≥ R (ψ ⊗ φ) ≥ R (ψ � φ) . (2.20)

And when both systems are binary (k = 2), the above inequalities are in fact equalities, since it

follows from multiplicativity of matrix rank under Kronecker product, that

R(ψ)R(φ) ≥ R(ψ ⊗ φ) ≥ R(ψ � φ) = R(ψ)R(φ). (2.21)

It is well-known that for k ≥ 3 there is often strict inequality between R
(
ψ)R(φ

)
and R (ψ � φ),

as we shall also see in examples below. In fact, as was shown in [11] and will be shown again

below, the first inequality in Eq. (2.20) can also be strict. The fact that rank is sometimes

strictly sub-multiplicative with respect to � and ⊗ makes it worth considering the asymptotic

rank:

R�(φ) def= lim
n→∞

R
(
φ�n

)1/n
, (2.22)

and the less studied non-flattening asymptotic rank

R⊗(φ) def= lim
n→∞

R
(
φ⊗n

)1/n
. (2.23)
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Similarly we define the asymptotic sub-rank

R�sub(φ) def= lim
n→∞

Rsub
(
φ�n

)1/n
. (2.24)

We shall now see that the asymptotic sub-rank of a tensor is 0 if and only if it is separable over

some bipartition, which was also shown in [26]. Given a bipartition [k] = I1 t I2, we say that

ψ ∈ V1 ⊗ · · · ⊗ Vk is separable over the I1-I2 bipartition if ψ = ψ1 ⊗ ψ2 for some ψ1 ∈
⊗

i∈I1 Vi

and ψ2 ∈
⊗

i∈I2 Vi. Clearly being separable over some bipartition means that the asymptotic

subrank is 0, since separability is preserved by both Kronecker product and restriction. To see

the converse, we first show that we can extract EPR-pairs between each pair of parties.

Lemma 2.1.6 (slighty stronger version of [26, Lemma 4]). Let i1, i2 ∈ [k] and let ψ ∈ V1⊗· · ·⊗Vk
be such that ψ is not separable over any partition [k] = I1 t I2 with i1 ∈ I1 and i2 ∈ I2. Then

ψ ≥ ei1,i2

Proof. Let i0 be any i0 ∈ [k] different from i1 and i2. Now let I1 t I2 = [k]\{i0} with i1 ∈ I1

and i2 ∈ I2. Let SepI1,I2 ⊂
⊗
i 6=i0 Vi be the tensors which are separable across the I1-I2 partition

and let AI1,I2 ⊂ V ∗i0 be the subset characterized by

AI1,I2 =
{
〈ψi0 | ∈ V ∗i0

∣∣∣〈ψi0 |ψ〉 ∈ SepI1,I2
}
. (2.25)

AI1,I2 cannot be all of V ∗i0 , since this would imply separability of ψ. Since SepI1,I2 is an algebraic

set, so is AI1,I2 . Now
⋃
AI1,I2 , where the union is taken over all partitions I1 t I2 = [k]\{i0}

with i1 ∈ I1 and i2 ∈ I2, is a finite union of proper algebraic subsets and therefore not all of

V ∗i0 . So for some 〈ψi0 | ∈ V ∗i0 , 〈ψi0 |ψ〉 is non-separable over all partitions I1 t I2 = [k]\{i0} with

i1 ∈ I1 and i2 ∈ I2. Iterating this process we end up with a restriction X =
⊗
i 6=i1,i2 〈ψi| such

that X |ψ〉 ∈ Vi1 ⊗ Vi2 is non-separable and therefore equivalent to ei1,i2r for some r ≥ 2 which

restricts to ei1,i2 .

We say that a tensor ψ is globally entangled if ψ is non-separable over any bipartition.

We can now show that it is possible to extract a unit tensor, by applying what is basically a

simplified stochastic version of quantum teleportation.

Proposition 2.1.7. Let ψ ∈ V1 ⊗ · · · ⊗ Vk be globally entangled. Then ψ�k−1 ≥ u2.

Proof. By the previous lemma ψ�k−1 ≥
⊙k
i=2 e

1,i.

k⊙
i=2
|e1,i〉 =

2∑
j2...jk=0

|j2 . . . jk〉1 ⊗ |j2〉2 ⊗ . . .⊗ |jk〉k . (2.26)

Applying the restriction |0〉〈0 . . . 0|1 + |1〉〈1 . . . 1|1 to the first system results in a tensor equivalent

to u2.
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Definition 2.1.8. Given two k-tensors ψ and φ, we define the asymptotic restriction cost of φ

with respect to ψ as

ω(ψ, φ) = inf
{
τ ∈ R+

∣∣∣ψ�bτnc ≥ φ�n for n� 1
}
. (2.27)

Since restriction of tensors correspond to SLOCC conversion of pure quantum states, we may

define the corresponding asymptotic notion for general quantum states. That is, the asymptotic

extraction rate of one resource, σ, from another, ρ:

ESLOCC (ρ, σ) = sup
{
τ ∈ R+

∣∣∣∣ρ�n SLOCC−−−−−→ σ�bτnc for n� 1
}
. (2.28)

Or we may conversely consider the cost of σ in terms of ρ

CSLOCC (ρ, σ) = 1
ESLOCC (ρ, σ) = inf

{
τ ∈ R+

∣∣∣∣ρ�bτnc SLOCC−−−−−→ σ�n for n� 1
}
. (2.29)

In light of Proposition 2.1.5,

ω(ψ, φ) = CSLOCC
(
|ψ〉〈ψ| , |φ〉〈φ|

)
. (2.30)

When the resource is ψ = u2, the entanglement cost of a pure state |ψ〉 is closely related to the

concept of asymptotic rank;

ω (φ) def= ω (u2, φ) = logR�(φ). (2.31)

And like sub-rank, we also consider

ωsub (φ) def= 1
ω (φ, u2) = logR�sub(φ). (2.32)

As previously mentioned, one of the most studied tensors is MaMu2. Especially determining

the value of ω = ω (MaMu2) has been the subject of much research focus. Currently the best

known bounds are 2 ≤ ω ≤ 2.3729 [27], or equivalently, that 4 ≤ R�(MaMu2) ≤ 22.3729 ≈ 5.18.

Since it is known that R(MaMu2) = 7 [28], we can conclude that R(MaMu�n) < R(MaMu)n for

sufficiently large n, giving an example that the left-hand-side and right-hand-side of Eq. (2.20)

are not always equal, and indeed that R� and R are not the same thing.

Another notion of rank that has been used to study R� is the border rank, R, which shall

now be introduced.

Border rank and degenerations

A notion of rank for tensors, which is popular in the field of algebraic geometry, is the border

rank. Border rank is in a sense the closure of tensor rank. The border rank is upper bounded by

tensor rank and often coincides with tensor rank.
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Definition 2.1.9. Given ψ ∈ V1 ⊗ · · · ⊗ Vk, the border rank of ψ is defined as

R(ψ) = min
{
r ∈ N

∣∣∣∣∃ψn ⊂ V1 ⊗ · · · ⊗ Vk such that lim
n
ψn = ψ and ∀n : R(ψn) ≤ r

}
. (2.33)

When k = 2, tensor rank coincides with the rank of the corresponding linear map and since

the matrices of rank at most r form a closed set, tensor rank and border rank coincide for

2-tensors.

Example 2.1.10. The W tensor is the simplest example of a tensor where the rank and border

rank differ [29, Sec. 2]. Let

|ψε〉 =
(
|0〉+ ε |1〉

)⊗3 − |000〉 = ε |W 〉+ ε2 (|011〉+ |101〉+ |110〉
)

+ ε3 |111〉 . (2.34)

Then R(ψε) = 2 and 1
εψε →W as ε→ 0, showing that R(W ) ≤ 2. In fact, it is then not hard to

see that R(W ) = 2 < 3 = R(W ), by a flattening argument (see Section 2.3).

Just like tensor rank and restriction of unit tensors relate, so does border rank relate to the

concept of degeneration:

Definition 2.1.11. Let ψ ∈ V1 ⊗ · · · ⊗ Vk and φ ∈W1 ⊗ · · · ⊗Wk. We write ψ D φ if

φ ∈ {φ′ ∈W1 ⊗ · · · ⊗Wk|ψ ≥ φ′} . (2.35)

When this is the case we say that ψ degenerates to φ.

Note that by the above definitions and Proposition 2.1.5, we have

R(ψ) = min {r ∈ N|ur D ψ} . (2.36)

A neat thing about degenerations is that the set of tensors that degenerate from ψ form an

algebraic variety, which leads to us only having to consider polynomial approximations (see

Theorem 2.1.13 below).

Definition 2.1.12. Let ψ ∈ V1 ⊗ · · · ⊗ Vk and φ ∈ W1 ⊗ · · · ⊗ Wk. We say that ψ degen-

erates to φ with error degree e and approximation degree d, denoted ψ Ded φ, if there exists

fi(ε) ∈ Hom(Vi,Wi)[ε] such that

(
f1(ε)⊗ · · · ⊗ fk(ε)

)
ψ = εdφ+ εd+1φ1 + · · ·+ εd+eφe, (2.37)

for some φ1, . . . , φe. Here Hom(Vi,Wi)[ε] is the polynomial ring over Hom(Vi,Wi), which, given

choice of bases, may be thought of as matrices with entries that are polynomial in ε. The map(
f1(ε)⊗ · · · ⊗ fk(ε)

)
is called a degeneration. We write ψ De φ and ψ Dd φ, if ψ Ded φ for any

e, d ∈ N.
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In the example with the W tensor above, the error degree, e, was 2 and the approximation

degree, d, was 1. The following important theorem is due to Strassen. A proof will not be

presented here.

Theorem 2.1.13. [21, Theorem 5.8] ψ D φ if and only if ψ Ded φ for some e, d ∈ N.

Applying the fact that[(
f1(ε)⊗ · · · ⊗ fk(ε)

)
⊗
(
g1(ε)⊗ · · · ⊗ gk(ε)

)]
ψ1 ⊗ ψ2

=
[(
f1(ε)⊗ · · · ⊗ fk(ε)

)
ψ1
]
⊗
[(
g1(ε)⊗ · · · ⊗ gk(ε)

)
ψ2
]
,

(2.38)

to (2.37) we immediately get:

Proposition 2.1.14. If ψ1 D
e1
d1
φ1 and ψ2 D

e2
d2
, then

ψ1 � ψ2 D
e1+e2
d1+d2

φ1 � φ2 (2.39)

and

ψ1 ⊗ ψ2 D
e1+e2
d1+d2

φ1 ⊗ φ2. (2.40)

The error degree is upper bounded by the approximation degree in the following sense: If

ψ Dd φ via a degeneration

(
f1(ε)⊗ · · · ⊗ fk(ε)

)
ψ = εdφ+ o(εd+1), (2.41)

then by removing all terms in each fi(ε) of degree strictly higher than d, (2.41) remains true,

and then we have no terms of degree higher than kd on the right-hand-side. Therefore

ψ Dd φ =⇒ ψ Dkd−dd . (2.42)

Proposition 2.1.15. Given k-tensors ψ and φ such that ψ De φ, then ψ � ue+1 ≥ φ.

Proof. By assumption there are fi(ε) such that(
ε−df1(ε)⊗ · · · ⊗ fk(ε)

)
ψ = φ+ εφ1 + · · ·+ εeφe. (2.43)

Let p(ε) = φ+ εφ1 + · · ·+ εeφe. Given distinct non-zero z0, . . . , ze ∈ C, we have by Lagrange

interpolation [30] (or e.g. [31])

φ = p(0) =
e∑
j=0

λjp(zj), (2.44)

where λj =
∏
i 6=j

zi
zi−zj . Let g1 =

∑e
j=0 λjz

−d
j f1(zj)� 〈j| and gi =

∑e
j=0 λjfi(zj)� 〈j|. Then

(g1 ⊗ · · · ⊗ gk)
(
|ψ〉 � |u〉

)
=

n∑
j=0

λj
(
f1(zj)⊗ · · · ⊗ fk(zj)

)
|ψ〉

=
e∑
j=0

λjp(zj) = p(0) = |φ〉 .
(2.45)
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By Eq. (2.36) and Theorem 2.1.13 we always have uR(ψ) D
e ψ for some error degree e.

Corollary 2.1.16.

R(ψ⊗n) ≤ R(ψ)n(ne+ 1), (2.46)

where e is the error degree of a degeneration uR(ψ) D
e ψ

Proof. By Proposition 2.1.14 u⊗nR(ψ) D
ne ψ⊗n. By Proposition 2.1.15,

uR(ψ)n(ne+1) ∼ u⊗nR(ψ) � une+1 ≥ ψ⊗n, (2.47)

showing that R(ψ⊗n) ≤ R(ψ)n(ne+ 1).

By Corollary 2.1.16, the border rank versions of asymptotic rankR�(φ) def= limn→∞R
(
φ�n

)1/n

and R⊗(φ) def= limn→∞R
(
φ⊗n

)1/n
coincide with the same notions for tensor rank; R� = R�,

R⊗ = R⊗. In other words, if we wish to upper bound asymptotic rank of ψ, it is just as good to

find degenerations from u to ψ as to find restrictions. This gives some extra freedom.

Another consequence of Corollary 2.1.16 is the first example of how the first inequality in

Eq. (2.20) can be strict:

Corollary 2.1.17. Given a tensor ψ such that R(ψ) < R(ψ), then for large enough n

R(ψ⊗n) < R(ψ)n. (2.48)

In the concrete case of the W -tensor, there is a degeneration with error degree e = 2, so

R(W⊗n) ≤ R(W )n(2n+ 1) = (2n+ 1)2n. This is smaller than R(W )n = 3n for n ≥ 7, so we get

an example of rank non-multiplicativity with ψ = W⊗j and φ = W for some j ≤ 6. In fact, the

rank drop happens already at j = 1:

Proposition 2.1.18. R(W⊗2) ≤ 8 < 9 = R(W )2

Proof. For any z ∈ C 6= 0, let
√
z be some square root of z. Then

|W 〉+ z |111〉 = 1
2
√
z

((
|0〉+

√
z |1〉

)⊗3
−
(
|0〉 −

√
z |1〉

)⊗3
)
, (2.49)

showing that R(|W 〉+ z |111〉) = 2 for all z 6= 0. Now

|W 〉 ⊗ |W 〉 =
(
W + |111〉

)⊗2 −
(
W + 1

2 |111〉
)
⊗ |111〉 − |111〉 ⊗

(
W + 1

2 |111〉
)
. (2.50)

The ranks of the three terms on the right-hand-side are, from left to right, at most 2 · 2 = 4,

2 · 1 = 2 and 1 · 2 = 2, respectively, so the entire thing has rank at most 4 + 2 + 2 = 8.

As Proposition 2.1.18 shows, we didn’t have to look far for an example of non-multiplicativity

of tensor rank. In Section 2.2 we shall see that we pretty much couldn’t have found a simpler

example.
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2.2. Multiplicativity for matrix pencils and 2-tensors

The goal of this section is to prove the following proposition.

Proposition 2.2.1. Let ψ ∈ C⊗ Cd ⊗ Cd and φ ∈ C2 ⊗ Cn ⊗ Cm. Then

R(φ� ψ) = R(φ⊗ ψ) = R(φ)R(ψ). (2.51)

Remark 2.2.2. Proposition 2.2.1 shows that the non-multiplicativity example in Proposi-

tion 2.1.18 is essentially minimal. Namely, any example of non-multiplicativity of tensor rank

under ⊗ must either be with a 5-tensor in (Cd ⊗ Cd) ⊗ (Cd1 ⊗ Cd2 ⊗ Cd3) with d1, d2, d3 ≥ 3,

d ≥ 2 or in a tensor space of order 6 or more. Whether counterexamples with 5-tensors ex-

ist at all is still an open question. Moreover, one can show using Proposition 2.2.1 and the

well-known classification of the GL×3
2 -orbits in C2 ⊗ C2 ⊗ C2 that if ψ, φ ∈ C2 ⊗ C2 ⊗ C2 and

R(ψ ⊗ φ) < R(ψ) R(φ), then ψ and φ are both equivalent to W .

The elements of C2 ⊗ Cn ⊗ Cm are often called matrix pencils. The tensor rank of matrix

pencils is completely understood, in the sense that every matrix pencil is equivalent under local

isomorphisms to a pencil in canonical form (Theorem 2.2.4), for which the rank is given by a

simple formula (Theorem 2.2.6). This formula allows a short proof of Proposition 2.2.1.

We begin with introducing the canonical form for matrix pencils (Theorem 2.2.4). For a

proof of Theorem 2.2.4 see [32, Chapter XII].

Definition 2.2.3. Given ψi ∈ U ⊗ Vi ⊗Wi, define DiagU (ψ1, . . . , ψn) as the image of
⊕n
i=1 ψi

under the natural inclusion U ⊗
⊕

i(Vi ⊗Wi)→ U ⊗
(⊕

i Vi
)
⊗
(⊕

iWi
)
. For ζ ∈ N define the

tensor Lζ ∈ C2 ⊗ Cζ ⊗ Cζ+1 by

|Lζ〉 := |0〉 ⊗
ζ−1∑
i=0
|ii〉 + |1〉 ⊗

ζ−1∑
i=1
|i〉 |i+ 1〉

= |0〉 ⊗

 1 0
1 0
...

...
1 0

+ |1〉 ⊗

 0 1
0 1
...

...
0 1


and for η ∈ N define the tensor Nη ∈ C2 ⊗ Cη+1 ⊗ Cη by

|Nη〉 := |0〉 ⊗
η−1∑
i=0
|ii〉 + |1〉 ⊗

η−1∑
i=0
|i+ 1〉 |i〉

= |0〉 ⊗

 1
1
...

1
0 0 ··· 0

+ |1〉 ⊗

 0 0 ··· 0
1

1
...

1

.
The matrix notation in above equations is via the association |ij〉 ↔ |i〉〈j|.
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Theorem 2.2.4 (Canonical form). Let ψ ∈ C2 ⊗ Cn ⊗ Cm. There exist invertible linear maps

A ∈ GL2, B ∈ GLn and C ∈ GLm and natural numbers ζ1, . . . , ζp, η1, . . . , ηq ∈ N and an

`× ` Jordan matrix F such that, with M = |0〉 ⊗ I` + |1〉 ⊗ F , we have

(A⊗B ⊗ C)ψ = DiagC2(0, Lζ1 , . . . , Lζp , Nη1 , . . . , Nηq ,M), (2.52)

where the 0 stands for some 0-tensor of appropriate dimensions. The right-hand side of (2.52)

is called the canonical form of ψ.

We now have the necessary notation to present the formula for the tensor rank of matrix

pencils in canonical form (Theorem 2.2.6). Theorem 2.2.6 is due to Grigoriev [33], JáJá [34] and

Teichert [35], see also [36, Theorem 19.4] or [22, Theorem 3.11.1.1].

Definition 2.2.5. Let F be a Jordan matrix with eigenvalues λ1, λ2, . . . , λp. Let d(λi) be the

number of Jordan blocks in F of size at least two with eigenvalue λi. Define m(F ) := maxi d(λi).

Theorem 2.2.6. Let ψ = DiagC2(0, Lζ1 , . . . , Lζp , Nη1 , . . . , Nηq , |0〉 ⊗ I` + |1〉 ⊗F ) be a tensor in

canonical form as in (2.52). The tensor rank of ψ equals

R(ψ) =
p∑
i=1

(ζi + 1) +
q∑
i=1

(ηi + 1) + `+m(F ).

We are now ready to give the short proof of Proposition 2.2.1.

Proof of Proposition 2.2.1. Let ψ ∈ C⊗Cd⊗Cd, φ ∈ C2⊗Cn⊗Cm. By Eq. (2.20) it suffices to

show thatR(ψ)R(φ) = R(ψ�φ). We may assume that |ψ〉 = 1⊗
∑r−1
i=0 |ii〉 with r = R(ψ). By The-

orem 2.2.4 we may assume that φ is in canonical form, φ = DiagC2(0, Lζ1 , . . . , Lζ` , Nε1 , . . . , Nεk ,M).

The Kronecker product φ� ψ is isomorphic to

φ� ψ ∼= DiagC2(φ, . . . , φ︸ ︷︷ ︸
r

).

By an appropriate local basis transformation we put this in canonical form

ψ � φ ∼= DiagC2(L⊕rζ1 , . . . , L
⊕r
ζ`
, N⊕rε1 , . . . , N

⊕r
εk
,M⊕r),

which by Theorem 2.2.6 has rank r · R(φ) = R(ψ) R(φ).

2.3. Non-multiplicativity of border rank

As we saw in Corollary 2.1.17 and Proposition 2.1.18, tensor rank is sometimes strictly sub-

multiplicative. A natural question to ask is then, what about border rank? In Corollary 2.1.17 the

discrepancy between border rank and tensor rank was the witness of strict sub-multiplicativity, so

there does not immediately seem to be a good way to generalize this technique. Furthermore, the

W tensor cannot be a counterexample to border rank multiplicativity, as a flattening argument

will show.
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Flattenings

Given a k-tensor, one might group some of the tensor legs together and view it as a tensor of order

k′ < k. The fact that this can never increase the tensor rank or border rank of a tensor, gives a

way of providing lower bounds on tensor and border rank. In particular if ψ ∈ V1 ⊗ · · · ⊗ Vk,

we may consider |ψ〉 as a linear map V ∗1 ⊗ · · · ⊗ V ∗j → Vj+1 ⊗ · · · ⊗ Vk, corresponding to k′ = 2.

The rank of this linear map then lower bounds both the rank and border rank of ψ.

Example 2.3.1. Consider the tensor W ∈ C⊗2
A ⊗C

⊗2
B ⊗C

⊗2
C of Example 2.1.4. As a linear map

C⊗2∗
A ⊗ C⊗2∗

B → C⊗2
C , this has rank 2, so R(W ) ≥ 2.

If V = V1 ⊗ · · · ⊗ Vk a generalized flattening is a linear map F : V → Hom(A,B), where A

and B are vector spaces. This generalizes the usual flattenings with k′ = 2.

Proposition 2.3.2. Let F : V1 ⊗ · · · ⊗ Vk → Hom(A,B) and

r0 = max
{
R
(
F (ψ)

)∣∣∣R (ψ) = 1
}
. (2.53)

Then for all T ∈ V1 ⊗ · · · ⊗ Vk,

R (T ) ≥ R
(
F (T )

)
r0

∀T ∈ V. (2.54)

Proof. Let T ∈ V1⊗· · ·⊗Vk with R(T ) = r and let (Ti)i∈N be a sequence of tensors with R(Ti) ≤ r

converging to T . Since F (ψ) ≤ r0 for all simple tensors, ψ, we have R
(
F (Ti)

)
≤ r0R(Ti) ≤ r0r.

And since F (Ti)
i→∞→ F (T ), it follows that R

(
F (T )

)
= R

(
F (T )

)
≤ maxi∈NR

(
F (Ti)

)
≤ r0r,

from which Eq. (2.54) follows.

One might also consider flattenings, F , that map into higher order tensor spaces, but this

is rarely done, since the merit of the flattening technique is precisely that ranks are easy to

compute for linear maps, which is why one wants to reduce a problem to that of linear maps.

If F1 : V1⊗· · ·⊗Vk → Hom(A1, B1) and F2 : W1⊗· · ·⊗Wk → Hom(A2, B2), then F1⊗F2 maps

into Hom(A1, B1)⊗Hom(A2, B2). Let r1 and r2 be the maximum values of Eq. (2.53) for F1 and

F2 respectively. It follows from Eq. (2.21) that R
(
(F1 ⊗ F2)(T1 ⊗ T2)

)
= R

(
F1(T1)

)
R
(
F2(T2)

)
and that

max
{
R
(
(F1 ⊗ F2)(ψ)

)∣∣∣R (ψ) = 1
}

= r1r2, (2.55)

such that Proposition 2.3.2 applied to F1 ⊗ F2 gives

R (T1 ⊗ T2) ≥ R
(
F1(T1)

)
R
(
F2(T2)

)
r1r2

. (2.56)
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In this sense lower bounds provided by generalized flattenings are multiplicative. As a conse-

quence, if a flattening provides a lower bound r to the border rank of T , then R⊗(T ) is also

lower bounded by r.

Example 2.3.3. We saw in Example 2.3.1 how a simple flattening yielded a lower bound

R(W ) ≥ 2. Since flattening lower bounds are multiplicative R
(
W⊗n

)
≥ 2n. Since we saw in

Example 2.1.4 that R(W ) ≤ 2, we conclude that R
(
W⊗n

)
= R

(
W�n

)
= 2n.

Counter example for border rank

Even if the W tensor cannot produce a counterexample to border rank multiplicativity, Proposi-

tion 2.1.18 still provides a technique that can work for proving non-multiplicativity of border

rank for other tensors. Note that Eq. (2.50) generalizes as

T⊗2 = (T + ψ)⊗2 −
(
T + 1

2ψ
)
⊗ ψ − ψ ⊗

(
T + 1

2ψ
)
, (2.57)

for any tensors T and ψ. If we can find T and ψ such that ψ is a simple tensor and

R (T + ψ) = R
(
T + 1

2ψ
)

= R (T )− 1, then the border rank of Eq. (2.57) is upper bounded by

(
R (T )− 1

)
+
(
R (T )− 1

)
+
(
R (T )− 1

)
= R (T )2 − 1, (2.58)

meaning that R
(
T⊗2

)
≤ R (T )2 − 1 < R (T )2, providing a counterexample to border rank

multiplicativity. In fact we may look for something even more general. Consider the line

LT,ψ = {T + zψ|z ∈ C} . (2.59)

Since the tensors of border rank at most n − 1, commonly denoted σn−1, forms an algebraic

variety [22], LT,ψ is either entirely contained in σn−1 or intersects with σn−1 at finitely many

points. If the intersection is finite and consists of at least two points, then we get an example as

in Eq. (2.57). This can be done by rescaling ψ and leting T ′ = T + zψ be of border rank n with

T ′ + ψ and T ′ + 1
2ψ of border rank n− 1. Proposition 2.3.4 presents such an example.

Proposition 2.3.4. Consider the tensors T, ψ ∈ A⊗B ⊗ C, with A = B = C = C3, given by

|T 〉 = |000〉ABC + |111〉ABC + |222〉ABC +
(
|0〉+ |1〉+ |2〉

)⊗3

+ 2
(
|0〉A + |1〉A

) (
|0〉B + |2〉B

) (
|1〉C + |2〉C

)
,

(2.60)

|ψ〉 =
(
|0〉A + |1〉A

) (
|0〉B + |2〉B

) (
|1〉C + |2〉C

)
. (2.61)

Then R (T ) = 5 and R (T − ψ) = R (T − 2ψ) = 4, implying that

R
(
T⊗2

)
≤ 24 < 25 = R (T )2 . (2.62)
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Proof. R (T ) ≤ 5 and R (T − 2ψ) ≤ 4 by the decomposition Eq. (2.60). There are two things

to show. First that R (T ) ≥ 5, which is done by a flattening, and that R (T − ψ) ≤ 4, which is

done by simply providing the decomposition:

|T 〉 − |ψ〉 =2
(
|0〉+ |1〉+ 1

2 |2〉
)(
|0〉+ 1

2 |1〉+ |2〉
)(1

2 |0〉+ |1〉+ |2〉
)

+
(
|1〉+ 1

2 |2〉
)
|1〉
(1

2 |0〉+ |1〉
)

+
(
|0〉+ 1

2 |2〉
)(
|0〉+ 1

2 |1〉
)
|0〉

+ |2〉
(1

2 |1〉+ |2〉
)(1

2 |0〉+ |2〉
)
.

(2.63)

Now consider the flattening F : A⊗B ⊗ C → Hom
(
A⊗B∗,

(
∧2A

)
⊗ C

)
given by

F (φ) : |ψ1〉A ⊗ 〈ψ2|B 7→ |ψ1〉A ∧ 〈ψ2|B |φ〉 . (2.64)

Written differently, F (φ) is a composition of the mapsA⊗B∗ IdA⊗|ψ〉→ A⊗A⊗C
π∧2A⊗IdC→

(
∧2A

)
⊗C.

If |φ〉 = |φ1〉A ⊗ |φ2〉B ⊗ |φ3〉C , then

F (φ) : |ψ1〉A ⊗ 〈ψ2|B 7→ 〈ψ2|φ2〉B |φ1〉A ∧ |ψ1〉A ⊗ |φ3〉C , (2.65)

has rank at most 2, since the image of F (φ) is contained in the 2-dimensional space{
|φ1〉A ∧ |ψ〉A ⊗ |φ3〉C

∣∣ψ ∈ A}. So the r0 of Eq. (2.54) is 2. Now inserting Eq. (2.60) into

Eq. (2.64) yields

F (T ) |0〉A ⊗ 〈0|B = |0〉A ∧
[
|00〉AC +

(
|0〉+ |1〉+ |2〉

)
A

(
|0〉+ |1〉+ |2〉

)
C

+ 2
(
|0〉+ |1〉

)
A

(
|1〉+ |2〉

)
C

]

= |0 ∧ 1〉A
(
|0〉+ 3 |1〉+ 3 |2〉

)
C + |0 ∧ 2〉A

(
|0〉+ |1〉+ |2〉

)
C .

(2.66)

Similarly we calculate F (T ) |i〉A ⊗ 〈j|B and express it in the basis
(
|i ∧ j〉A ⊗ |k〉C

)
i<j,k. This

results in the following matrix, where the first column was calculated in Eq. (2.66) above:

1 1 1 −2 −1 −1 0 0 0

3 2 3 −3 −1 −3 0 0 0

3 1 3 −3 −1 −3 0 0 0

1 1 1 0 0 0 −2 −1 −1

1 1 1 0 0 0 −3 −1 −3

1 1 2 0 0 0 −3 −1 −3

0 0 0 1 1 1 −1 −1 −1

0 0 0 1 1 1 −3 −2 −3

0 0 0 1 1 1 −3 −1 −3



, (2.67)
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which has full rank, 9. By Eq. (2.54) R (T ) ≥ 9
2 > 4 as wanted. By Eq. (2.58)

R
(
T⊗2

)
≤ 24 < 25 = R (T )2 . (2.68)

By now we have seen examples that both tensor rank and border rank can be strictly

sub-multiplicative under the tensor product. The fact that tensor rank can be strictly sub-

multiplicative under the non-flattened tensor product implies that R⊗ and R are not the same

thing. The fact that border rank can also be strictly sub-multiplicative, implies that the second

inequality below, can be strict.

R(ψ) ≥ R(ψ) ≥ R⊗(ψ) ≥ R�(ψ). (2.69)

So some of the difference between R and R� does not come the flattening of tensor legs. A

natural question to ask now might then be if the last inequality above can be strict, or if in fact

R⊗ and R� are the same. This is also not the case. As previously mentioned, the best known

upper bound on R�(MaMu2) is 22.3729 ≈ 5.18. Yet R⊗(MaMu2) ≥ 6:

Proposition 2.3.5. R⊗(MaMu2) ≥ 6

Proof. We prove this lower bound by a Young flattening, as in Proposition 2.3.4. By applying

the map IA + |00〉〈11|A − |11〉〈11|A, to the first tensor leg, we obtain a restriction.

|MaMu2〉 =
1∑

i,j,k=0
|ij〉A |jk〉B |ki〉C

≥ |00〉A
(
|00〉B |00〉C + |10〉B |01〉C + |11〉B |11〉C + |01〉B |10〉C

)
+ |10〉A

(
|01〉B |11〉C + |00〉B |01〉C

)
+ |01〉A

(
|10〉B |00〉C + |11〉B |10〉C

)
∈ C3 ⊗ C4 ⊗ C4.

(2.70)

Let us call the tensor on the right-hand-side above T . Like in the proof of Proposition 2.3.4, we

consider the flattening F : A⊗B ⊗ C → Hom
(
A⊗B∗,

∧2A⊗ C
)
given by

F (φ) : |ψ1〉A ⊗ 〈ψ2|B 7→ |ψ1〉A ∧ 〈ψ2|B |φ〉 . (2.71)

The image of a simple tensor under the flattening F , has at rank at most 2, so

R(T ) ≥ R(F (T ))
2 . (2.72)

Expressing the linear map F (T ) in the basis
(
|ij〉A 〈kl|B

)
{i,j,k,l∈{0,1}|(i,j)6=(1,1)}, for the domain

and
(
|ij ∧ kl〉A |nm〉C

)
{i,j,k,l,n,m∈{0,1}|(i,j)6=(1,1),(k,l) 6=(1,1)} for the co-domain, both ordered lexico-
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graphically, we get the matrix:

0 0 1 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0 0 0 0 0

0 0 0 1 0 −1 0 0 0 0 0 0

0 0 0 0 0 0 0 −1 0 0 0 0

0 0 0 0 0 0 0 0 −1 0 0 0

1 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 0 0 −1 0 0

0 1 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 0 0 0 0 0 −1 0

0 0 0 0 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 −1

0 0 0 0 0 1 0 0 0 0 0 0



, (2.73)

which has rank 12. So R(T ) ≥ 6. As discussed previously, and expressed in Eq. (2.56), flattening

lower bounds are multiplicative under tensor product, so R⊗(MaMu2) ≥ 6.

The exact value of R⊗(MaMu2) is unknown, but it must necessarily be in the interval [6, 7].
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Chapter 3

The asymptotic spectrum of tensors

Tensor rank, border rank and their asymptotic versions, introduced in Chapter 2, constitute

what could reasonably be called entanglement monotones for pure states, in the sense that

they decrease under application of any SLOCC channel, and therefore specially any LOCC

channel. However there are certain properties that are often considered desirable for entanglement

monotones. One is a sense of continuity, which shall not be touched upon in this thesis. Another

is additivity under tensor product. That is, for states ρ and σ we wish for a monotone to

satisfy f(ρ � σ) = f(ρ) + f(σ). In other words, the combined entanglement of two resources

should be the sum of the entanglement of the parts. These kinds of entanglement monotones

can necessarily not distinguish between asymptotic and single-shot conversions of resources. In

the case of pure states under SLOCC (equivalently tensors under restriction), it was shown by

V. Strassen that in fact the asymptotics are entirely determined by a subset of the additive

entanglement monotones, namely by what Strassen called the asymptotic spectrum of tensors,

which shall now be introduced. Note that in what follows we are considering monotones which

are multiplicative under tensor product: f(ρ� σ) = f(ρ)f(σ), but this is of course equivalent to

log f being additive. Considering log f(ψ) rather than f(ψ) is the same difference as considering

ω(ψ) rather than R�(ψ).

3.1. The asymptotic spectrum of a preordered semiring

In [15], Strassen considers the semiring (Tk,�,⊕,≥) of equivalence classes of k-tensors under

mutual restriction, see Definition 2.1.3. This is a semiring with respect to direct sum and

Kronecker product and the partial order, given by restriction, respects the algebraic structure of

this semiring. By applying the spectral theorem [15, Theorem 2.3] (here Theorem 3.1.4 below),

one gets the asymptotic spectrum ∆(Tk) of tensors.
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Definition 3.1.1. A commutative semiring (S,+, ·) is a set S with two binary, commutative,

and associative operations (+, ·) containing distinct additive and multiplicative identity elements

0, 1 ∈ S, satisfying the distributive law:

a(b+ c) = ab+ ac. (3.1)

Note that what distinguishes a semiring from a ring, is that there is no guarantee of an

additive inverse. In fact the semiring we will consider in this chapter has no additive inverses,

except for 0, which is always its own additive inverse. In this thesis all semirings are commutative

and semiring shall therefore be understood to implicitly mean commutative semiring.

Definition 3.1.2. A preorder ≤ on S is a binary relation which is transitive and reflexive (but

not necessarily antisymmetric). We say that (S,+, ·,≤) is a preordered semiring, if ≤ respects

the algebraic structure on S. That is, when a ≤ b and c ≤ d:

a+ c ≤ b+ d (3.2)

ac ≤ bd. (3.3)

Remark 3.1.3. Note that in order to show conditions (3.2) and (3.3) it suffices to show

a + c ≤ b + c and ac ≤ bc whenever a ≤ b, since this implies a + c ≤ b + c ≤ b + d whenever

a ≤ b and c ≤ d, and similarly for the product.

One can always turn a semiring into a preordered semiring by defining ≤ to be either the

equality preorder (x ≤ y ⇐⇒ x = y) or the other extreme preorder (∀x, y ∈ S : x ≤ y). We

shall only be interested in certain non-trivial preorders, namely semirings where N ⊂ S and the

preorder restricted to N is the usual ordering of N.

Theorem 3.1.4 (Strassen, [15], see also [37, Theorem 2.2]). Let (S,≤) be a preordered semiring

with N ⊆ S satisfying the following:

1. ≤ restricted to N is the usual ordering of N.

2. For any a, b ∈ S\{0} there is an r ∈ N such that a ≤ rb.

Define the asymptotic preorder . on S by; a . b if and only if aN ≤ 2xN bN for some integer-

valued sequence xN ∈ o(N). Then (S,.) is also a preordered semiring. Let

∆(S) =
{
f ∈ Hom(S,R+)|∀a, b ∈ S : a ≤ b =⇒ f(a) ≤ f(b)

}
.

That is ∆(S) is the set of order-preserving semiring homomorphisms from S to R+. Then

a . b ⇐⇒ ∀f ∈ ∆(S) : f(a) ≤ f(b). (3.4)
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Let ∆(S) be equipped with the topology generated by the maps â : ∆(S)→ R, given by â : f 7→ f(a).

That is, ∆(S) is equipped with the coarsest topology making these maps continuous. Then ∆(S)

is a compact Hausdorff space and a 7→ â is a semiring homomorphism S → C(∆(S)), which, by

Eq. (3.4), respects both . and ≤ on S. ∆(S) will be called the asymptotic spectrum of S.

Tk of Definition 2.1.3 naturally comes equipped with the structure of a partially ordered

semiring. When ψ ∈ V1 ⊗ · · · ⊗ Vk and φ ∈W1 ⊗ · · · ⊗Wk, the operations

ψ � φ ∈ (V1 �W1)⊗ . . .⊗ (Vk �Wk) (3.5)

and

ψ ⊕ φ ∈ (V1 ⊕W1)⊗ . . .⊗ (Vk ⊕Wk) (3.6)

both respect restriction and therefore also equivalence, making (Tk,�,⊕,≥) a partially ordered

semiring. Furthermore, the conditions of Theorem 3.1.4 are met (for details see [21] and [15]).

The unit element of the semiring Tk is the equivalence class of simple tensors, which we might

represent by [u1] =
[
|0 . . . 0〉

]
and since ui ⊕ uj ∼ ui+j and ui � uj ∼ uij , the embedding of the

natural numbers in Tk is r 7→ [ur]. So the term 2xN of Theorem 3.1.4, in the case of S = Tk,

corresponds to the element u�xN2 ∼ u2xN , and per definition

[ψ] & [φ] ⇐⇒ ψ�N � u�o(N)
2 ≥ φ�N . (3.7)

By [15, eq (2.7)-(2.10)], also

ψ & φ ⇐⇒ ∀θ > 1 ∀N � 1 : ψ�N � udθNe ≥ φ
�N . (3.8)

Since for the rest of this chapter we shall be dealing with Tk, we shall sometimes omit the

brackets and simply write ψ in place of [ψ], as this is unlikely to cause confusion.

Lemma 3.1.5. Let ψ, φ ∈ Tk with ψ globally entangled. Then

ψ & φ ⇐⇒ ω(ψ, φ) ≤ 1. (3.9)

Proof. Assume first that ω(ψ, φ) ≤ 1 and let θ > 1 be given. Let r = logR(ψ), such that

u�n2 ≥ ψ�b
n
r c for all n. Then

udθNe ≥ ψ
�
⌊
N log θ
r

⌋
, (3.10)

which implies

ψ�N � udθNe ≥ ψ
�N � ψ�

⌊
N log θ
r

⌋
= ψ

�
⌊(

1+ log θ
r

)
N

⌋
≥ φ�N . (3.11)

Here the last relation holds for N � 1, since 1 + log θ
r > 1 ≥ ω(ψ, φ).
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Conversely, assume that [ψ] & [φ], such that ψ�N � u�xN2 ≥ φ�N for some xN ∈ o(N).

Let τ > 1 be given. We need to show that ψ�bτNc ≥ φ�N for large N . By Proposition 2.1.7

ψ�b(τ−1)nc ≥ u2 for some n. So for large N :

ψ�bτNc = ψ�N � ψ�b(τ−1)Nc ≥ ψ�N � u�bN/nc2 ≥ ψ�N � u�xN2 ≥ φ�N . (3.12)

Here the second to last relation holds because bN/nc dominates any function in o(N) for large

N .

Proposition 3.1.6. For (Tk,≥), the asymptotic preorder . of Theorem 3.1.4, is precisely the

preorder

ψ & φ ⇐⇒ ω(ψ, φ) ≤ 1. (3.13)

Proof. The proof of the implications ⇐= in Lemma 3.1.5 did not use the fact that ψ�N

was globally entangled, so we just have to prove the reverse implication for general ψ. If

ψ ∈ V1 ⊗ · · · ⊗ Vk is separable across some bipartition where φ is not, then ψ 6& φ and

ω(ψ, φ) =∞. So we can assume that ψ = ψ1 ⊗ · · · ⊗ ψl and φ = φ1 ⊗ · · · ⊗ φl for some partition

I1 t · · · t Il = [k] and ψj , φj ∈
⊗
i∈Ij Vi with each ψj globally entangled in

⊗
i∈Ij Vi. It is not

hard to see that ω(ψ, φ) ≤ 1 if and only if ω(ψj , φj) ≤ 1 for all j. Showing that also

ψ & φ ⇐⇒ ∀j : ψj & φj , (3.14)

finishes the proof, as Lemma 3.1.5 implies ψj & φj ⇐⇒ ω(ψj , φj) ≤ 1. So we prove (3.14). The

implication ⇐= follows from the fact that u[k]
2 ≥ u

Ij
2 . The implication =⇒ is slightly harder.

For the quantum information reader, who is comfortable with arguments by protocol description,

we have to show that the sublinear number of global GHZ states can be replaced by local GHZ

states within each entanglement cluster. This is done by having one party in each cluster locally

create the states of the other entanglement clusters and then mimic the global protocol. In

mathematical terms: Assume that (f1 ⊗ · · · ⊗ fk)(ψ�n � u�xn2 ) = φ�n and let a cluster j0 ∈ [l]

be given. It suffices to prove that ψ�nj0 �
(
u
Ij0
2

)�xn
≥ φ�nj0 . Fix any party i0 ∈ Ij0 . Consider the

flattening of ψ�n � u�xn2 , to a
∣∣Ij0∣∣-tensor:

Flat
(
ψ�n � u�xn2

)
∈

Vi0 �⊙
i 6∈Ij

Vi

⊗ ⊗
i∈Ij0\{i0}

Vi. (3.15)

Notice that by applying a suitable map to Vi0 , we have ψ�nj0 �
(
u
Ij0
2

)�xn
≥ Flat

(
ψ�n � u�xn2

)
and Flat

(
ψ�n � u�xn2

)
≥ Flat(φ�n) ≥ φj0 , where the first restriction is the flattening of

(f1 ⊗ · · · ⊗ fk), while the second is taking the partial trace on the systems
(
Vi0 �

⊙
i 6∈Ij Vi

)
.

40



Combining Proposition 3.1.6 and Theorem 3.1.4 we see that ω(ψ, φ) ≤ 1 if and only if

f(ψ) ≥ f(φ) for all f ∈ ∆(Tk). Since for any a, b ∈ N: ω(ψ�a, φ�b) = b
aω(ψ, φ) we obtain the

following formula:

Corollary 3.1.7.

ω(ψ, φ) = max
f∈∆(Tk)

log f(φ)
log f(ψ) , (3.16)

where we ignore all f that are 1 on both φ and ψ, and interpret x
0 as ∞

Since log f(u2) = 1 for all f ∈ ∆, we infer the following corollary from Corollary 3.1.7 applied

to Eq. (2.31) and Eq. (2.32).

Corollary 3.1.8.

R�(ψ) = max
f∈∆(T3)

f(ψ). (3.17)

R�sub(ψ) = min
f∈∆(T3)

f(ψ). (3.18)

Since we are often interested in expressing costs in terms of exponents, i.e. computing ω(ψ, φ),

we shall often consider the logarithmic spectrum log ∆(Tk), which is simply {log f}f∈∆(Tk). By

Corollary 3.1.7, knowing the entire spectrum ∆(Tk) means seeing the complete picture of

asymptotic restrictions of k-tensor, or equivalently asymptotic SLOCC transformation rates

between pure k-partite quantum states. It is then not surprising that finding members of ∆(Tk)

is not an easy task.

Example 3.1.9. The first points in ∆k which one finds are the local ranks. Given ψ ∈ V1⊗· · ·⊗Vk
and any bipartition I1 t I2 = [k], we may consider the flattening rank RI1,I2 (ψ) of ψ viewed as a

map
⊗
i∈I1 V

∗
i →

⊗
i∈I2 Vi. That is, the rank of the map 〈φ|I1 7→ 〈φ|I1 |ψ〉I1tI2 . It is easy to see

that RI1,I2 is additive under ⊕ and multiplicative under � and respects the restriction order, so

RI1,I2 ∈ ∆(Tk).

In the following section, some non-trivial spectral points found in [13] and [8] will be presented.

3.2. Support and quantum functionals

In [13] V. Strassen found spectral points in ∆(O3), called support functionals, for a certain

sub-semiring O3 ⊂ T3 of oblique tensors (see Definition 3.2.2 below). These spectral points were

recently extended in [8, see Cor. 3.31] to monotones in ∆(Tk). In the following sections we shall

only work with k = 3, so here is a quick recap of the relevant results from [13] and [8] for k = 3.
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Definition 3.2.1. Let ψ ∈ CX⊗CY ⊗CZ for some finite sets X,Y, Z, then supp(ψ) ⊂ X×Y ×Z

are the tuples (x, y, z), such that 〈xyz|ψ〉 6= 0.

Definition 3.2.2. Let ψ ∈ CX ⊗ CY ⊗ CZ , then ψ is said to be oblique if for some total

orderings of X, Y and Z, supp(ψ) ⊂ X × Y × Z forms as antichain in the product order. I.e.

for (x1, y1, z1), (x2, y2, z2) ∈ supp(ψ);

x1 ≥ x2 and y1 ≥ y2 and z1 ≥ z2 =⇒ (x1, y1, z1) = (x2, y2, z2). (3.19)

O3 is the subset of [ψ] ∈ T3 such that ψ is equivalent to an oblique tensor.

Definition 3.2.3. Given Φ ⊂ X × Y × Z and probability measure θ : {1, 2, 3} → [0, 1], define

hθ(Φ) as

hθ(Φ) = max
P∈P(Φ)

3∑
i=1

θ(i)H(Pi), (3.20)

where Pi is the marginal probability distribution on system i, e.g. P1(x′) =
∑

(x,y,z)∈Φ:x=x′
P (x, y, z).

Theorem 3.2.4. [13, Thm. 4.4.] For [ψ] ∈ O3, let φ ∼ ψ be an oblique representative of the

equivalence class, then the map

ρθ : [ψ]→ hθ
(
supp(φ)

)
, (3.21)

is well-defined and ζθ = 2ρθ ∈ ∆(O3). Or equivalently, ρθ ∈ log ∆(O3).

The subset {ζθ}θ ⊂ ∆(O3) is what Strassen calls the support simplex, as it is the image of

the simplex P([3]), under the continuous map θ 7→ ζθ. Note that if
(
θ(i)

)3
i=1 = (1, 0, 0), then ζθ

is simply the local rank R{1},{2,3} of Example 3.1.9.

Theorem 3.2.5. [8, Cor. 3.31] For ψ ∈ H1⊗H2⊗H3 and probability measure θ : {1, 2, 3} → [0, 1],

let Hθ(ψ) =
∑3
i=1 θ(i)H(ρi), where ρi = Tr{1,2,3}\{i}

|ψ〉〈ψ|
〈ψ|ψ〉 is the normalized marginal state of

|ψ〉 on system i and H(ρ) = −Tr(ρ log ρ) is the von Neumann entropy. For [ψ] ∈ T3, let

Eθ(ψ) = sup
φ≤ψ

Hθ(φ). (3.22)

Then Fθ = 2Eθ ∈ ∆(T3). Furthermore F θ|O3 = ζθ (see [8, Sec. 3.4]).

Whether these so-called quantum functionals or Theorem 3.2.5 form the entirety of ∆(T3)

is unclear. If this was the case, it would imply that the maximal local dimension is an upper

bound to the asymptotic rank, and in particular that ω(MaMu2) = 2. Though no such strong

results are known for R�, a weaker version, for the sub-semiring of tight tensors (defined below)

is known for R�sub, as shall now be explained.
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Definition 3.2.6. A tensor ψ ∈ CX ⊗ CY ⊗ CZ is said to be tight if there exist injective maps

α : X → Z, β : Y → Z, γ : Z → Z such that

(x, y, z) ∈ supp(ψ) =⇒ α(x) + β(y) + γ(z) = 0. (3.23)

Tight tensors are necessarily oblique and form a sub-semiring of T3 (see [13, sec. 5]). We

denote by Otight
3 ⊂ T3 the sub-semiring of equivalence classes of tight tensors.

Theorem 3.2.7. [13, Theorem 5.5] For any sub-semiring S ⊂ Otight
3 we order ∆(S) by the

usual ordering of functions by point-wise majorization. The minimal points of {ζθ|S}θ ⊂ ∆(S)

coincide with the minimal points of ∆(S).

When S = 〈ψ1, . . . , ψn〉 ⊂ T is the sub-semiring generated by ψ1, . . . , ψn, let us write

∆(ψ1, . . . , ψn) = ∆(S). We shall always think of sub-semirings as unital. For [ψ] ∈ Otight
3 , we

may consider the sub-semiring 〈ψ〉 ⊂ T3 generated by ψ. Since any f ∈ ∆(ψ) is determined by

its action on ψ, it follows from Theorem 3.2.7 that

R�sub(ψ) = min
f∈∆(ψ)

f(ψ) = min
θ∈P({1,2,3})

ζθ(ψ). (3.24)

So while the asymptotic rank is not known to be determined by the support simplex, for tight

tensors, the asymptotic sub-rank is. Whether this generalizes to the sub-rank of general tensors

and the quantum functionals, is currently unknown.

Example 3.2.8. The tensor W ∈ CX ⊗ CY ⊗ CZ , with X = Y = Z = {0, 1} has

supp(W ) = {x1 = (1, 0, 0), x2 = (0, 1, 0), x3 = (0, 0, 1)} ⊂ {0, 1}×3, (3.25)

which is tight as witnessed by the injective maps α, β, γ : {0, 1} → Z, given by α(x) = x, β(y) = y,

γ(z) = z − 1. When P ∈ P({x, y, z}), the entropy of the marginals are H(P1) = h(P (x1)),

H(P2) = h(P (x2)), H(P3) = h(P (x3)), where h (p) = −p log p− (1− p) log(1− p) is the binary

entropy function. Let Q be the uniform distribution on {x1, x2, x3}, then

ρθ(W ) = max
P∈P(suppW )

θ(1)h(P (x1)) + θ(2)h(P (x2)) + θ(3)h(P (x3))

≥ θ(1)h(Q(x1)) + θ(2)h(Q(x2)) + θ(3)h(Q(x3)) = h

(1
3

)
= log(3)− 2

3 .
(3.26)

When θ0 is the uniform distribution, the fact that h is concave, implies, by Jensen’s inequality,

that Eq. (3.26) becomes an equality, so

ρθ0(W ) = log(3)− 2
3 . (3.27)

In conclusion

logR�sub(W ) = min
θ∈P([3])

ρθ(W ) = log(3)− 2
3 ≈ 0.9183, (3.28)

as was also shown in [26]. Furthermore, since logR�(W ) = maxθ∈P([3]) ρ
θ(W ) = 1 and

ρ(1,0,0)(W ) = 1 and θ 7→ ρθ is continuous, we conclude that log ∆(W ) ∼= [log(3)− 2
3 , 1].
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3.3. The support simplex of W and one EPR-pair

Let us add another tensor into the mix and see if we can determine the spectrum. Let us consider

the unnormalized EPR-pair |e〉 = |e1,2〉 = |000〉+ |110〉 ∈ C2 ⊗ C2 ⊗ C, which is also tight, as

witnessed by the maps α, β, γ : {0, 1} → Z, given by α(x) = −x, β(y) = y, γ(z) = z. We shall

determine log ∆(e,W ).

Since supp(e) is a two-point set, any P ∈ P
(
supp(e)

)
is determined by the value p = P

(
(0, 0, 0)

)
.

Note also that the marginal P3 is supported on a one-point set, so that H(P3) = 0. So

ρθ(e) = max
P∈P(supp(e))

θ(1)H(P1) + θ(2)H(P2)

= max
p∈[0,1]

(
θ(1) + θ(2)

)
h(p)

= θ(1) + θ(2).

(3.29)

Since f ∈ log ∆(e,W ) is determined by its value at e and W , we may visualize log ∆(e,W )

as a subset of R2
+ by the inclusion log ∆(e,W ) 3 f 7→

(
f(e), f(W )

)
∈ R2

+. The points

ρθ ∈ log ∆(e,W ), for θ ∈ P
(
{1, 2, 3}

)
, then correspond to the points

([
θ(1) + θ(2)

]
, ρθ(W )

)
.

We describe what this set looks like. Let supp(W ) = {x1, x2, x3} as in Eq. (3.25) and for

P ∈ P
(
supp(W )

)
, let

F (θ, P ) =
∑

i∈{1,2,3}
θ(i)h

(
P (xi)

)
, (3.30)

such that

ρθ(W ) = max
P∈P({x1,x2,x3})

F (θ, P ). (3.31)

For any θ ∈ P
(
{1, 2, 3}

)
, let θ̃ be given by θ̃(1) = θ̃(2) = θ(1)+θ(2)

2 , θ̃(3) = θ(3). Then

ρθ̃(W ) = max
P∈P

F (θ̃, P ) = max
P∈P

P (x1)=P (x2)

F (θ̃, P ) = max
P∈P

P (x1)=P (x2)

F (θ, P ) ≤ ρθ(W ), (3.32)

where the second equality holds by concavity of h and the third is true since F (θ̃, P ) = F (θ, P )

whenever P (x1) = P (x2). From Eq. (3.32) it follows that for fixed t = ρθ(e) = θ(1) + θ(2), the

minimal value of ρθ(W ) is attained at (θt(1), θt(2), θt(3)) = (t/2, t/2, 1− t), with value

ρθt(W ) = max
p

t

2h(p) + t

2h(p) + (1− t)h(1− 2p) = max
p

[
th(p) + (1− t)h(2p)

]
. (3.33)

Let Lp be the line parametrized by t 7→
(
t, th(p) + (1− t)h(2p)

)
∈ R2. Then the lines Lp cut

out the support simplex from below. See Fig. 3.1 for illustration.
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Figure 3.1: Support simplex {ρθ}θ∈P({1,2,3}) shown in purple.

ρθ(e) along the x-axis and ρθ(W ) along the y-axis.

Tangent lines L1/4, L1/3, L3/8, L1/2 shown in respectively

olive, black, red and blue.

Figure 3.2: The green region is not in log ∆(e,W ) by Theorem 3.2.7

The yellow region needs to be determined
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Now by Theorem 3.2.7, we can rule out the green region in Fig. 3.2 as points in log ∆(e,W ).

In other words, all points below the lines Lp for p ∈
[

1
4 ,

1
3

]
are not in log ∆(e,W ). To deal

with the yellow region will take some work, deferred to Section 3.4, but let us first see what

our current knowledge of the spectrum allows us to say about ω and SLOCC. Let p ∈
[

1
4 ,

1
3

]
.

Since Lp cuts out log ∆(e,W ) from below, we know that for any f ∈ log ∆(e,W ), we have

f(W ) ≥ f(e)h(p) +
(
1− f(e)

)
h(2p). So for any f ∈ log ∆(e,W )

f(W ) +
(
h(2p)− h(p)

)
f(e) ≥ f(e)h(p) +

(
1− f(e)

)
h(2p) +

(
h(2p)− h(p)

)
f(e)

≥ h(2p),
(3.34)

from which it follows, by Corollary 3.1.8, that for any n ∈ N and p ∈
[

1
4 ,

1
3

]
W�n � e�d(h(2p)−h(p))ne & u�bnh(2p)c

2 . (3.35)

In terms of SLOCC, this means that given a large number of W -states and (h(2p) − h(p))

EPR-pairs shared between two of the parties per W -state, we can extract h(2p) GHZ-states per

W . Putting p = 1
3 , we recover the asymptotic sub-rank of W from Example 3.2.8. For p = 1

4 we

see that we can asymptotically convert W states to GHZ states at rate 1-to-1 given the aid of

(h(1/2)− h(1/4)) ≈ 0.189 EPR-pairs per W -state.

Theorem 3.2.7 can only tell us that the green region of Fig. 3.2 is not in log ∆(e,W ). In

the following section we will show that Eq. (3.34) also holds for p ∈
[

1
3 ,

1
2

]
. Note, that for such

p, h(2p) − h(p) is negative. Therefore the expression Eq. (3.35) does not really make sense,

as we have not defined negative Kronecker powers of tensors. The correct interpretation is

then that negative powers should be moved to the other side of the inequality. In the proof of

Theorem 3.4.1 below, we will essentially prove the negative power version of Eq. (3.35) in the

more general setting where, W is replaced with any tight tensor.

3.4. Extracting EPR-pairs and GHZ-states from a tight tensor

In order to determine whether the yellow section of Fig. 3.2 is in log ∆(e,W ), we need to get

a bit technical. The proof of the following theorem uses a variation of the technique used for

proving Theorem 3.2.7 in [13]. The technique in [13], which is an integral part of what is called

the laser method, is a way of extracting large unit tensors from a tight tensor. In what follows,
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the same technique is used for extracting direct sums of high-level maximally entangled states

between a fixed pair of parties.

Theorem 3.4.1. Let ψ ∈ CX ⊗ CY ⊗ CZ be a tight tensor with Ψ = supp(ψ) ⊂ X × Y × Z

and |e〉 = |000〉 + |110〉 ∈ C2 ⊗ C2 ⊗ C. Let f ∈ log ∆(e, ψ) and P ∈ P (Ψ) such that

H(P3) ≤ min
{
H(P1), H(P2)

}
. Let s = f (ψ) and t = f (e). Then

s ≥ t
(

min
i∈{1,2}

H(Pi)−H(P3)
)

+H(P3). (3.36)

Proof. The overall idea is to first take a large tensor power ψ�n ∈ CXn ⊗ CY n ⊗ CZn , and

then choose subsets Xn ⊂ Xn, Yn ⊂ Y n, Zn ⊂ Zn, such that projecting onto these subsets

creates a tensor φn = (πXn ⊗ πYn ⊗ πZn)ψ�n, equivalent to u�α2 � e�β , where α ≈ nH(P3) and

β ≈ n
(
mini∈{1,2}H(Pi)−H(P3)

)
.

We may assume that the values of P are rational and obtain the general result by taking

limits. Let δ > 0 be given. Let n ∈ N be large with nP integral, such that we may consider the

type classes TnP1
, TnP2

, TnP3
(defined in Section 1.2). Let Ψn

P = Ψn ∩
[
TnP1
× TnP2

× TnP3

]
. Note that

for each z ∈ TnP3
the sets Ψn

P ∩
(
Xn × Y n × {z}

)
are of the same size, so∣∣∣Ψn

P ∩
(
Xn × Y n × {z}

)∣∣∣ = |Ψ
n
P |∣∣∣TnP3

∣∣∣ , and similarly for x ∈ TnP1
and y ∈ TnP2

. Let M = M(n) be a

prime depending on n with

M

2 ≤
|ΨPn |

min
(
|TnP1
|, |TnP2

|
)2nδ ≤M. (3.37)

By [13, Proof of Lemma 5.1 pp 151-153] (for completeness the statement is proven in Lemma 3.4.2

below), we may choose n and therefore M sufficiently large that the following holds: There exist

random maps a : Xn → ZM , b : Y n → ZM , c : Zn → ZM and a set S ⊂ ZM of size |S| > M1−δ,

such that for (x, y, z) ∈ Ψn
P

Pr
[
a(x), b(y), c(z) ∈ S

]
= |S|
M2 , (3.38)

and for all pairs of distinct (x, y, z), (x′, y′, z′) ∈ Ψn
P with x = x′ or y = y′ or z = z′

Pr
[
a(x′), a(x′), b(y), b(y′), c(z), c(z′) ∈ S

]
= |S|
M3 .

(3.39)

Note that a, b, c are not random maps in the sense that their domains Xn, Y n, Zn are measure

spaces, but rather, in the sense that the maps a, b, c themselves are randomly chosen. That is, for

some probability space Ω, we have Ω 3 ω 7→ aω ∈ Homset(Xn,ZM ), where we have suppressed

the ω in the notation, as one usually does with stochastic variables.
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Now let V = Ψn
P ∩

(
a−1(S)× b−1(S)× c−1(S)

)
and

E =

{(x, y, z), (x′, y′, z′)
}
∈
(
V

2

)∣∣∣∣∣∣x = x′ or y = y′

 . (3.40)

Let Γ ⊂ V be the set of isolated vertices in the graph (V,E). Furthermore, let

Vz = V ∩
(
Xn × Y n × {z}

)
be the vertices with fixed z coordinate, and Ez be the edges with at

least one end-node in Vz. For each z let Γz = Γ∩Vz. LetXn = πXn(Γ), Yn = πY n(Γ), Zn = πZn(Γ),

such that the support of φn = (πXn ⊗ πYn ⊗ πZn)ψ�n is supp(φn) = Γ =
⋃
z∈TnP3

Γz. By the fact

that Γ is the set of isolated vertices in (V,E), all x and y coordinates of points in Γ are unique.

So

Γ =
⋃

z∈TnP3

⋃
(x,y,z)∈Γz

(x, y, z), (3.41)

with each x and y unique in the union above. So by a rescaling fX : CXn 7→ CXn given by

fX : |x〉 7→ 1
〈xyz|φn〉 |x〉, we get

|φn〉
fX⊗I⊗I∼

∑
z∈TnP3

∑
(x,y,z)∈Γz

|x〉 |y〉 |z〉 ∼
∑
z∈TnP3

|Γz |∑
x=1
|x, z〉 |x, z〉 |z〉 ∼

⊕
z

|e|Γz |〉 . (3.42)

Here |em〉 =
∑m−1
i=0 |ii0〉 denotes the m-level bipartite unit tensor shared between the first two

systems. For reasons which will become clear, we are interested in lower bounding the t’th

moment E|Γz|t for z ∈ TnP3
. To do this, we lower bound E|Γz| and then upper bound E|Γz|2,

since a lower bound of E|Γz|t then follows from Hölder’s inequality. First, the expectation value:

Since a subgraph with no edges consists of isolated points, and adding an edge will de-isolate

only the vertices it connects we get the coarse lower bound |Γz| ≥ |Vz| − 2|Ez|.

E|Vz| =
∑

(x,y,z)∈ΨnP∩(Xn×Y n×{z})
Pr
[
a(x) ∈ S, b(y) ∈ S, c(z) ∈ S

]

=
∣∣∣Ψn

P ∩
(
Xn × Y n × {z}

)∣∣∣ |S|
M2

=
∣∣Ψn

P

∣∣ |S|∣∣∣TnP3

∣∣∣M2
.

(3.43)
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E|Ez| ≤
∑

(x,y,z)∈ΨnP∩(Xn×Y n×{z})


∑

(x′,y,z′)∈Ψn
P
∩(Xn×{y}×Zn)

(x′,y,z′) 6=(x,y,z)

Pr
[
a(x), a(x′), b(y), c(z), c(z′) ∈ S

]

+
∑

(x,y′,z′)∈Ψn
P
∩({x}×Y n×Zn)

(x′,y,z′)6=(x,y,z)

Pr
[
a(x), b(y), b(y′), c(z), c(z′) ∈ S

]


<
∣∣∣Ψn

P ∩
(
Xn × Y n × {z}

)∣∣∣ [2 max
{∣∣∣Ψn

P ∩
(
Xn × {y} × Zn

)∣∣∣ , ∣∣∣Ψn
P ∩

(
{x} × Y n × Zn

)∣∣∣} |S|
M3

]

= 2
∣∣Ψn

P

∣∣2 |S|∣∣∣TnP3

∣∣∣min
{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣}M3
.

(3.44)

Combining Eq. (3.43) and Eq. (3.44) with both inequalities in Eq. (3.37) yields

E|Γz| ≥ E|Vz| − 2E|Ez|
3.43,3.44
≥

∣∣Ψn
P

∣∣ |S|∣∣∣TnP3

∣∣∣M2

1− 4
∣∣Ψn

P

∣∣
M min

{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣}


3.37(second)
≥

∣∣Ψn
P

∣∣ |S|∣∣∣TnP3

∣∣∣M2

(
1− 4

2nδ
)

3.37(first)
≥

min
{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣}∣∣∣TnP3

∣∣∣ 1
M δ2nδ+1

(
1− 4

2nδ
)
.

(3.45)

Now for the second moment. First off |Γz|2 ≤ |Vz|2, and the latter can be estimated from

above as follows:

E |Vz|2 =
∑

(x,y,z)∈ΨnP∩(Xn×Y n×{z})

∑
(x′,y′,z)∈ΨnP∩(Xn×Y n×{z})

Pr
[
a(x), a(x′), b(y), b(y′), c(z) ∈ S

]

<
∑

(x,y,z)∈ΨnP∩(Xn×Y n×{z})

|S|
M2 +

∑
(x,y,z)∈ΨnP∩(Xn×Y n×{z})

∑
(x′,y′,z)∈ΨnP∩(Xn×Y n×{z})

|S|
M3

=
∣∣Ψn

P

∣∣ |S|∣∣∣TnP3

∣∣∣M2
+
∣∣Ψn

P

∣∣2 |S|∣∣∣TnP3

∣∣∣2M3
=
∣∣Ψn

P

∣∣ |S|∣∣∣TnP3

∣∣∣M2

1 +
∣∣Ψn

P

∣∣∣∣∣TnP3

∣∣∣M


3.37
≤

min
{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣}∣∣∣TnP3

∣∣∣
1 +

min
{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣}∣∣∣TnP3

∣∣∣
 ≤ 2


min

{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣}∣∣∣TnP3

∣∣∣


2

.

(3.46)

Here the last inequality follows from the fact that min
{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣} ≥ ∣∣∣TnP3

∣∣∣. We can now use the

estimates of the first and second moment to lower bound E |Γz|t. Let ρ = t
2−t , p = 2− t, q = 2−t

1−t .
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Since 1
p + 1

q = 1
2−t + 1−t

2−t = 1, it follows from Hölder’s inequality applied to |Γz| = |Γz|ρ |Γz|1−ρ

that

E |Γz| ≤
(
E |Γz|ρp

) 1
p

(
E |Γz|(1−ρ)q

) 1
q , (3.47)

which implies, by taking the p’th power on both sides, that(
E |Γz|

)2−t ≤ (E |Γz|t) (E |Γz|2)1−t
. (3.48)

Therefore

E |Γz|t ≥
(
E |Γz|

)2−t(
E |Γz|2

)1−t >


min
{∣∣∣TnP1

∣∣∣,∣∣∣TnP2

∣∣∣}∣∣∣TnP3

∣∣∣ 1
Mδ2nδ+1

(
1− 4

2nδ
)

2−t

21−t


min
{∣∣∣TnP1

∣∣∣,∣∣∣TnP2

∣∣∣}∣∣∣TnP3

∣∣∣


2−2t

=
min

{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣}∣∣∣TnP3

∣∣∣
t

2t−1
(

1
M δ2nδ+1

(
1− 4

2nδ
))2−t

,

(3.49)

such that

lim
n→∞

1
n

logE |Γz|t ≥ t lim
n→∞

1
n

log
min

{∣∣∣TnP1

∣∣∣ , ∣∣∣TnP2

∣∣∣}∣∣∣TnP3

∣∣∣
+ (2− t)

(
−δ − δ lim

n→∞
1
n

logM + lim
n→∞

1
n

log
(

1− 4
2nδ

))

≥ t
(
min

{
H(P1), H(P2)

}
−H(P3)

)
+ (2− t) (−δ)

(
1 + log |Ψ|+ δ

)
.

(3.50)

Here the last inequality comes from the upper bound on M in Eq. (3.37):

lim
n→∞

1
n

logM(n) ≤ lim
n→∞

1
n

log |Ψ|n 2nδ = log |Ψ|+ δ. (3.51)

If f ∈ log ∆(e,W ), then

2
f

(⊕
z∈Tn

P3
e|Γz |

)
=

∑
z∈TnP3

2f(e|Γz |) =
∑
z∈TnP3

2f(e) log|Γz | =
∑
z∈TnP3

|Γz|t . (3.52)

So

ns = nf(ψ) = f
(
ψ�n

)
≥ f(φn) = f

 ⊕
z∈TnP3

e|Γz |

 = log
∑
z∈TnP3

|Γz|t . (3.53)

For some realization of the stochastic variable
∑
z∈TnP3

|Γz|t, we have
∑
z∈TnP3

|Γz|t ≥ E
∑
z∈TnP3

|Γz|t,

and for this realization

s ≥ 1
n

log
∑
z∈TnP3

|Γz|t ≥
1
n

logE
∑
z∈TnP3

|Γz|t = 1
n

log
∑
z∈TnP3

E |Γz|t ≥
1
n

log
∣∣∣TnP3

∣∣∣+ lim
n→∞

1
n

logE |Γz|t ,

(3.54)
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which in the limit n→∞, gives

s ≥ H(P3) + t
(
min

{
H(P1), H(P2)

}
−H(P3)

)
+ (2− t)

(
−δ(1 + log |Ψ|+ δ)

)
. (3.55)

Taking δ → 0 removes the last term and concludes the proof.

Applying Theorem 3.4.1 to ψ = W , we see that log ∆(W, e) is exactly the purple region in

Fig. 3.2, so that the support simplex (or equivalently the quantum functionals of [8]) is the

entire spectrum. By Theorem 3.4.1, for any p ∈
[

1
3 ,

1
2

]
,

W�n & e�
⌊
(h(p)−h(2p))n

⌋
� u�bnh(2p)c

2 . (3.56)

When p = 1
3 we recover the subrank of W . For p = 1

2 we get W�n & e�n, which follows trivially

from W ≥ e. But for p strictly between 1
3 and 1

2 , Eq. (3.56) seems about as non-trivial as

Theorem 3.4.1.

In terms of asymptotic restrictions for tight tensors, ψ, in general, Theorem 3.4.1 implies

ψ�n & e�
⌊
(mini∈{1,2}H(Pi)−H(P3))n

⌋
� u�bnH(P3)c

2 (3.57)

for any probability distribution P ∈ P(supp(ψ)) with H(P3) < mini∈{1,2}H(Pi).

Before ending this chapter, a proof of the technical lemma, used in the proof of Theorem 3.4.1

is presented below.

Lemma 3.4.2 (Technical lemma following the proof in [13]). Let Ψ ⊂ X × Y × Z be tight and

δ > 0 be given. For sufficiently large n and prime M = M(n) n→∞ there exist random maps

a : Xn → ZM , b : Y n → ZM , c : Zn → ZM and a set S ⊂ ZM of size |S| ≥ M1−δ such that

Eq. (3.38) and Eq. (3.39) hold.

Proof. Let δ > 0 be given and let α, β, γ : X,Y, Z → Z be the injective maps witnessing tightness

of Ψ. By adding a large constant K, to both α and β, while subtracting 2K from γ, we can

assume that α and β only take positive values, while γ only takes negative values. This will

be important later and resolves an issue with the original proof in [13], which seems to have

gone unnoticed. Let M be a prime larger then 2|α(x)|, 2|β(y)| and 2|γ(z)| for all x, y, z. Let

ω1, . . . , ωn+3 be independent uniformly distributed stochastic variables with values in ZM . Now

define a : Xn → ZM , b : Y n → ZM and c : Zn → ZM by

a(x) =
n∑
i=1

α(xi)ωi + ωn+1 − ωn+2, (3.58)
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b(x) =
n∑
i=1

β(yi)ωi + ωn+2 − ωn+3, (3.59)

c(x) = −1
2

 n∑
i=1

γ(zi)ωi + ωn+3 − ωn+1

 . (3.60)

By [38] we may find S ⊂
{

0, . . . , M−1
2

}
of size |S| ≥M1−δ such that for s1, s2, s3 ∈ S,

s1 + s3 = 2s2 =⇒ s1 = s2 = s3. (3.61)

In other words, S has no three elements in arithmetic progression. Clearly a(x), b(y) and c(z) are

uniformly distributed and pairwise independent for each x, y, z. Furthermore for (x, y, z) ∈ Ψn,

tightness implies

a(x) + b(y)− 2c(z) =
n∑
i=1

(
α(xi) + β(yi) + γ(zi)

)
ωi = 0. (3.62)

Since S has no three-term arithmetic progressions,

a(x), b(y), c(z) ∈ S ⇐⇒ a(x) = b(y) ∈ S ⇐⇒ b(y) = c(z) ∈ S ⇐⇒ a(x) = c(z) ∈ S, (3.63)

which by pairwise independence and uniformity implies Eq. (3.38), as wanted.

We now need to establish Eq. (3.39). Let (x, y, z), (x′, y′, z′) ∈ Ψn
P be distinct points which

agree on either the x, y or z coordinate. We consider the case where z 6= z′ and x = x′. The

other cases are shown in the exact same way and the particular case is chosen for the simple fact

that the typographical distance between c and γ is larger than for the other letters in use. By

Eq. (3.63), a(x), b(y), b(y′), c(z), c(z′) ∈ S if and only if a(x) = c(z) = c(z′) ∈ S. So all we need

to show is that a(x), c(z), c(z′) are independent. a(x) is independent of the pair
(
c(z), c(z′)

)
, by

the fact that this pair does not depend on ωn+2, so it suffices to show that c(z) and c(z′) are

independent, which is equivalent to showing that
∑n
i=1 γ(zi)ωi and

∑n
i=1 γ(z′i)ωi are independent.

This will follow as we show that the γ part is linearly independent:

Since z and z′ both belong to the same type class, and γ is injective, the vectors

γ(z) :=
(
γ(zi)

)n
i=1 ∈ Q

n and γ(x′) :=
(
γ(z′i)

)n
i=1 ∈ Q

n also have the same type (i.e. they take

values in Q equally many times), and by injectivity, γ(z) 6= γ(z′). Since γ(z) and γ(z′) have all

entries of the same sign (negative, by the assumption at the beginning of the proof), are different,

yet of the same type, they must necessarily be linearly independent. When M is sufficiently

large this implies that γ(z) and γ(z′) are also linearly independent in ZnM .
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We now return to showing that
∑n
i=1 γ(zi)ωi = 〈γ(z)|ω〉 and

∑n
i=1 γ(z′i)ωi = 〈γ(z′)|ω〉 are

uniformly and independently distributed. Since γ(z), γ(z′) ∈ ZnM are linearly independent we

may find A ∈ GL2(ZM ) such that the matrixv
v′

 = A

γ(z)

γ(z′)

 ∈M2×n(ZM ), (3.64)

has j’th column

vj
v′j

 =

1

0

 for some j. It follows that the stochastic variables
∑n
i=1 viωi = 〈v|ω〉

and
∑n
i=1 v

′
iωi = 〈v′|ω〉 expressible as 〈v|ω〉

〈v′|ω〉

 = A

 〈γ(z)|ω〉

〈γ(z′)|ω〉

 , (3.65)

are stochastically independent and uniformly distributed, since only 〈v|ω〉 depends on ωj . Since

A acts as a permutation on Z2
M , it follows that since

 〈v|ω〉
〈v′|ω〉

 is uniformly distributed on Z2
M , so

is

 〈γ(z)|ω〉

〈γ(z′)|ω〉

 = A−1

 〈v|ω〉
〈v′|ω〉

, which is equivalent to the variables 〈γ(z)|ω〉 and 〈γ(z′)|ω〉 being

independently and uniformly distributed in ZM as wanted.
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Chapter 4

The asymptotic spectrum of LOCC

transformations

In the previous chapter, we considered the spectrum ∆(Tk) of the ordered semiring, (Tk,�,⊕,≥),

of tensors under restriction, corresponding to SLOCC channels and pure states. In SLOCC,

there is no control on the probability by which the conversion succeeds. If we wish to retain

information on this probability when passing to monotones, then for p ∈ R\{0} we must distin-

guish between ψ and pψ, which in Tk belong to the same equivalence class. In this chapter we

shall refine the notion of equivalence of tensors, creating a finer division of the class of states.

Two tensors ψ and φ will be equivalent if and only if their corresponding operators |ψ〉〈ψ|, |φ〉〈φ|

are equivalent under LOCC. In particular they must have the same norm. It turns out that

the set of equivalence classes, ordered by LOCC, which will be denoted Sk, is also an ordered

semiring, to which Theorem 3.1.4 applies. The asymptotic ordering of Theorem 3.1.4 then gives

asymptotic LOCC conversion given a converse error exponent and Theorem 3.1.4 provides a

relation between this rate and the spectrum ∆(Sk).

In this chapter we consider asymptotic, exact, probabilistic LOCC conversion of pure k-

partite states. That is, given many copies of a resource state |ψ〉, we ask how many copies of

a target state |φ〉 we can probabilistically obtain through exact LOCC, as a function of the

asymptotic behavior of success. In [39] they considered the special bipartite case when the

target |φ〉 = 1√
2
(
|00〉+ |11〉

)
was the maximally entangled state. The optimal exact extraction

rate, was described as a function of the asymptotic exponential behavior of the probability of

successful transformation: If probability of failure behaves like 2−nr, where n is the number of

copies of the resource, r is called the direct error exponent. If probability of success behaves

like 2−nr, r is called a converse error exponent. Given converse error exponent r, the following

54



formula for the concentration rate was given in [39]:

E∗(r) = inf
α∈[0,1)

rα+ log
∑
i p
α
i

1− α . (4.1)

Here (√pi)i are the Schmidt coefficients of the resource state |ψ〉. In [14] this formula was

extended to multi-partite states and other target states than the maximally entangled state.

This chapter largely follows the content of this paper.

For two multipartite pure states, |ψ〉 and |φ〉, we let E∗P(r, ψ, φ) be the number of copies of

|φ〉 that can be asymptotically extracted per copy of |ψ〉 with success probability behaving like

2−nr+o(n). The “P” stands for probabilistic and the ∗ represents the fact that we are considering

the converse error exponent, rather than the direct error exponent. We say that the optimal

extraction rate from |ψ〉 to |φ〉 with converse error exponent r is E∗P(r, ψ, φ). In the light of

Proposition 1.1.12, E∗P(r, ψ, φ) is formally defined, also for mixed states, as

E∗P(r, ρ, σ) = sup
{
τ ∈ R+

∣∣∣∣ρ�n LOCC−−−−→ 2−nr+o(n)σ�bτnc for n� 1
}
. (4.2)

As a consequence of Theorem 4.1.4 below we show in Eq. (4.51) that for k parties and globally

entangled resource state |ψ〉, the optimal extraction rate between pure states can be expressed

as

E∗P(r, ψ, φ) = inf
f∈∆(Sk)

rα(f) + log f(|ψ〉)
log f(|φ〉) . (4.3)

Here ∆(Sk) is the spectrum of a certain partially ordered semiring, which is to be constructed,

from Theorem 3.1.4. Concretely ∆(Sk) is the set of real, LOCC-monotone functions on the set of

unnormalized states, that are additive under direct sum, multiplicative under tensor product and

normalized, and α(f) = log f
(√

2 |0 . . . 0〉
)
. ∆(Sk) will be called the asymptotic LOCC spectrum.

Due to Eq. (4.3), an explicit description of the ∆(Sk) would imply a complete understanding of the

asymptotic extraction rates given a converse error exponent. In Theorem 4.2.1 a characterization

of the functions in ∆(Sk) is presented. Note that in the case where the target |φ〉 is the normalized

GHZ-state |0...0〉+|1...1〉√
2 , we have log f(|φ〉) = 1−α(f), showing the resemblance between Eq. (4.1)

and Eq. (4.3) and once the bipartite spectrum is fully described in Section 4.3, we shall see that

Eq. (4.1) is the special case of Eq. (4.3) with k = 2 and |φ〉 = 1√
2
(
|00〉+ |11〉

)
.

4.1. The semiring of unnormalized pure states

We wish to apply Strassen’s Theorem 3.1.4 to a semiring of unnormalized pure quantum states

with preorder determined by LOCC conversion via trace non-increasing LOCC channels cf.

Definition 1.1.10. Since the class of all k-partite states acting on some tensor product of finite
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dimensional Hilbert spaces is not a set we shall deal with equivalence classes of pure states, just

like in Chapter 3. These equivalence classes will be the elements of the semiring.

Definition 4.1.1. Given k ∈ N and finite dimensional Hilbert spaces H1,H′1, . . . ,Hk,H′k we say

that two unnormalized states |φ〉 ∈ H1 ⊗ · · · ⊗ Hk and |ψ〉 ∈ H′1 ⊗ · · · ⊗ H′k are locally unitarily

equivalent (or LU-equivalent), if there exist partial isometries Ui : Hi → H′i such that

|ψ〉 = (U1 ⊗ · · · ⊗ Uk) |φ〉

and

|φ〉 = (U∗1 ⊗ · · · ⊗ U∗k ) |ψ〉 .

Let Sk denote the set of local unitary equivalence classes, commonly abbreviated as the LU

classes.

To call this local unitary equivalence could be somewhat confusing, since the witnessing

operators are partial isometries rather than unitaries, and indeed in most of the literature

the Ui’s are to be unitaries. The reason the definition uses partial isometries instead is be-

cause this corresponds to disregarding the dimension of the ambient spaces. The definitions

are morally the same, since if we choose any family of Hilbert spaces (Ki)i∈[k] that are large

enough that Hi and H′i can both be embedded in Ki for each i, then the images of |ψ〉 and |φ〉

in K1 ⊗ · · · ⊗ Kk under the product of these embeddings are unitarily equivalent in the sense

of unitaries Ui acting on Ki if and only if |ψ〉 and |φ〉 are equivalent in the sense of Definition 4.1.1.

In the bipartite case k = 2, each LU equivalence class is uniquely represented by its ordered

non-zero Schmidt coefficients. In the case k ≥ 3 characterizing LU classes is a highly non-trivial

task. For a characterization of LU classes in the k-qubit case, i.e. when each of the local systems

are 2-dimensional, see [5].

Note that for any two representatives, [|ψ〉] = [|φ〉], of an element of Sk, the partial isometries

witnessing this equivalence define k-step LOCC channels mapping one to the other and back;

|ψ〉 LOCC−−−−→ |φ〉 LOCC−−−−→ |ψ〉. In other words, unnormalized states that are locally unitarily

equivalent are also LOCC-equivalent. The following preorder on Sk is therefore well-defined:

[
|ψ〉
]
≥
[
|φ〉
]
iff |ψ〉 LOCC−−−−→ |φ〉 .

By [40, Corollary 1], LOCC equivalence also implies local unitary equivalence. So the above

preorder is in fact a partial order. This is not of importance for the theory to work, but still
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worth noting.

When |ψ〉 ∈ H1⊗ · · · ⊗Hk and |φ〉 ∈ H′1⊗ · · · ⊗H′k we may take their direct sum and tensor

product to get new k-partite states:

|ψ〉 ⊕ |φ〉 ∈ (H1 ⊕H′1)⊗ · · · ⊗ (Hk ⊕H′k),

|ψ〉 � |φ〉 ∈ (H1 �H′1)⊗ · · · ⊗ (Hk �H′k).

The direct sum, |ψ〉 ⊕ |φ〉, is the sum of the images of |ψ〉 and |φ〉 under the natural inclusions

into (H1 ⊕H′1)⊗ · · · ⊗ (Hk ⊕H′k).

Both sum and product respect local unitary equivalence, turning (Sk,⊕,�) into a semiring. As

mentioned, we wish to apply Theorem 3.1.4 to (Sk,⊕,�,≤). For this purpose, what remains to

be shown is that (Sk,⊕,�,≤) is a preordered semiring and that conditions 1 and 2 of Theo-

rem 3.1.4 are satisfied. We start out by showing that it is a preordered semiring. Eq. (3.3) is

immediate, so we proceed to proving Eq. (3.2), which is done in Proposition 4.1.2.

We say that a state ρ ∈ B(H1) ⊗ · · · ⊗ B(Hk) ⊗ Diag(CX ) is conditionally pure if it can

be written in the form

ρ =
∑
x∈X
|φx〉〈φx| ⊗ |x〉〈x| . (4.4)

Proposition 4.1.2. Let |ψ〉 , |φ〉 and |η〉 be unnormalized, k-partite pure states then

|ψ〉 LOCC−−−−→ |φ〉 =⇒ |ψ〉 ⊕ |η〉 LOCC−−−−→ |φ〉 ⊕ |η〉 . (4.5)

Proof. Assume that |ψ〉 LOCC−−−−→ |φ〉 and |η〉 ∈ K1 ⊗ · · · ⊗ Kk. By Proposition 1.1.15

|φ〉〈φ| = Trreg Λn · · ·Λ1 |ψ〉〈ψ| , (4.6)

for some trace non-increasing channels (Λl)nl=1 of the form (1.27). Let Jl, il, fj : Jl → Jl−1 and

(K l
j)j∈Jl be the defining objects of Λl for l = 1, . . . , n as in Proposition 1.1.15. Then

Λn · · ·Λ1 |ψ〉〈ψ| =
∑
j∈Jn

aj |φ〉〈φ| ⊗ |j〉〈j| (4.7)

for some aj ≥ 0 with
∑
j aj = 1. We wish to show that there exists an LOCC channel Φ such

that

Φ |ψ ⊕ η〉〈ψ ⊕ η| =
∑
j∈Jn

aj |φ⊕ η〉〈φ⊕ η| ⊗ |j〉〈j| . (4.8)

This is shown by induction on n. The induction hypothesis is; if for any unnormalized states

|ψ〉, |φ〉 and |η〉 and any Λn, . . . ,Λ1 of the form Eq. (1.27) such that Eq. (4.7) holds, then there
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exists Λ′ such that Eq. (4.8) holds. Assume the hypothesis holds for n− 1, we are to show that

it holds for n. So assume Eq. (4.7) holds. Now

Λ1 |ψ〉〈ψ| =
∑
j1∈J1

∣∣ψj1〉〈ψj1∣∣⊗ |j1〉〈j1| , (4.9)

where |ψj1〉 = K1
j1 |ψ〉 in the notation of Proposition 1.1.15. Now Λ2 acts on

∑
j1∈J1

∣∣ψj1〉〈ψj1∣∣⊗|j1〉〈j1|,
and we may break Λ2 down to the sum of its conditional actions

Λ2 =
∑
j1∈J1

Λj12 (4.10)

where Λj1
2 : ρ⊗ |j〉〈j| 7→ δj=j1

∑
j2∈f−1

2 (j1)Kj2ρK
∗
j2 ⊗ |j2〉〈j2|. Now Λn . . .Λ2 =

∑
j1∈J1 Λn . . .Λj1

2

and

Λn . . .Λj12
∣∣ψj1〉〈ψj1∣∣⊗|j1〉〈j1| = ∑

jn∈J
j1
n

ajn |φ〉〈φ|⊗ |jn〉〈jn| =
∑

jn∈J
j1
n

ajn
cj1

∣∣∣√cj1φ〉〈√cj1φ∣∣∣⊗|jn〉〈jn| ,
(4.11)

where J j1n ⊂ Jn is the subset J j1n = (fn ◦ . . . ◦ f2)−1 (j1) and cj1 =
∑
jn∈J

j1
n
ajn . Since∑

jn∈J
j1
n

ajn
cj1

= 1 and since Λj1
2 only acts on a single part of the register, we may apply the

induction hypothesis to the states |ψj1〉, |φj1〉 = |√cj1φ〉 and |ηj1〉 = |√cj1η〉 with the n − 1

channels Λn, . . . ,Λj12 . The induction hypothesis grants a channel Φj1 such that

Φj1 :
∣∣ψj1 ⊕ ηj1〉〈ψj1 ⊕ ηj1∣∣⊗ |j1〉〈j1| 7→ ∑

jn∈J
j1
n

ajn
cj1

∣∣φj1 ⊕ ηj1〉〈φj1 ⊕ ηj1∣∣⊗ |jn〉〈jn|
=

∑
jn∈J

j1
n

ajn |φ⊕ η〉〈φ⊕ η| ⊗ |jn〉〈jn| .
(4.12)

Finally, let Φ1 = Ẽ(J1, f1) be the map acting on |ψ ⊕ η〉〈ψ ⊕ η| by the Kraus operatorsK1
j1⊕
√
cj1I,

where (K1
j1) are the Kraus operators of Λ1 = E(J1, f1) and I is the identity operator acting on

Ki1 . Here i1 is the index of the Hilbert space on which Λ1 acts. Φ1 is trace non-increasing since∑
j1∈J1

(
K1
j1 ⊕
√
cj1I

)∗ (
K1
j1 ⊕
√
cj1I

)
=
∑
j1∈J1

(K1
j1)∗K1

j1 ⊕
∑
j1∈J1

cj1I ≤ IHi1 ⊕ IKi1 , (4.13)

and

Φ1 |ψ ⊕ η〉〈ψ ⊕ η| =
∑
j1∈J1

∣∣ψj1 ⊕ ηj1〉〈ψj1 ⊕ ηj1∣∣⊗ |j1〉〈j1| . (4.14)

Now ∑
j1∈J1

Φj1

Φ1 |ψ ⊕ η〉〈ψ ⊕ η| =

 ∑
j1∈J1

Φj1

 ∑
j1∈J1

∣∣ψj1 ⊕ ηj1〉〈ψj1 ⊕ ηj1∣∣⊗ |j1〉〈j1|
=
∑
j1∈J1

∑
jn∈J

j1
n

ajn |φ⊕ η〉〈φ⊕ η| ⊗ |jn〉〈jn|

=
∑
j∈Jn

aj |φ⊕ η〉〈φ⊕ η| ⊗ |j〉〈j| ,

(4.15)

finishing the induction step. Tracing out the register results in |ψ〉 ⊕ |η〉 LOCC−−−−→ |φ〉 ⊕ |η〉.
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By Remark 3.1.3 it follows that Eq. (3.2) holds for (Sk,⊕,⊗,≤), which is therefore a pre-

ordered semiring.

It remains to be shown that conditions 1 and 2 in 3.1.4 are satisfied. The multiplicative unit

in Sk is represented by the pure state |0 . . . 0〉 ∈ C⊗k and the additive unit is represented by the

zero-vector 0 ∈ C⊗k. N embeds into Sk in the following sense: An integer d ∈ N is represented

in Sk by the d-level, k-partite, unnormalized GHZ state, which we in Definition 2.1.2 identified

with the unit tensor
√
d |GHZd〉 = |ud〉 =

d−1∑
i=0
|i . . . i〉 ∈ (Cd)⊗k. (4.16)

If d1 ≥ d2, then the one-step trace reducing LOCC channel, defined by the single Kraus operator

K =
∑d2−1
i=0 |i〉〈i| acting on the first system, witnesses |ud1〉

LOCC−−−−→ |ud2〉. And since LOCC

channels never increase the trace, we have |ud1〉
LOCC−−−−→ |ud2〉 iff d1 ≥ d2, so condition 1 holds.

We proceed by proving that condition 2 holds:

Proposition 4.1.3. For any non-zero pure states |ψ〉 and |φ〉, there is a d ∈ N such that

|ud〉 � |ψ〉
LOCC−−−−→ |φ〉 . (4.17)

Proof. By having one party locally construct the normalized |φ〉, converting GHZ states to EPR

pairs between parties [41] [42] and using quantum teleportation [43] [19, s. 6.5.3], one obtains a

protocol that extracts the normalized version of |φ〉 from |ud〉 for large enough d. Furthermore

|ψ〉 LOCC−−−−→ ‖ψ‖ |u1〉. So for sufficiently large d

|ud〉 � |ψ〉
LOCC−−−−→ 1

‖φ‖
|φ〉 � |ψ〉 LOCC−−−−→ ‖ψ‖

‖φ‖
|φ〉 . (4.18)

In order to obtain |φ〉 one simply increases d to dn for large enough n and traces out the GHZ

states not used for teleportation:

|udn〉 � |ψ〉 = |un〉 � |ud〉 � |ψ〉
LOCC−−−−→ ‖ψ‖

‖φ‖
|un〉 � |φ〉

LOCC−−−−→
√
n
‖ψ‖
‖φ‖
|φ〉 . (4.19)

And for n > ‖φ‖2
‖ψ‖2

√
n
‖ψ‖
‖φ‖
|φ〉 LOCC−−−−→ |φ〉 . (4.20)

Theorem 3.1.4 now applies to Sk and we get the following:
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Theorem 4.1.4. Let ∆(Sk) be the set of order preserving semiring homomorphisms Sk → R+.

Then [
|ψ〉
]
&
[
|φ〉
]
⇐⇒ ∀f ∈ ∆(Sk) : f

(
|ψ〉
)
≥ f

(
|φ〉
)
. (4.21)

We call ∆(Sk) the asymptotic LOCC spectrum.

Concretely [|ψ〉] & [|φ〉] means that

|u2〉�o(n) � |ψ〉�n LOCC−−−−→ |φ〉�n , (4.22)

where |u2〉 = |0 . . . 0〉 + |1 . . . 1〉 is the unnormalized two-level GHZ state. In other words; to

extract n copies of |φ〉, we need n copies of |ψ〉, a proportionally vanishing number of GHZ states

and the success probability decays as 2n(log‖ψ‖2−log‖φ‖2)+o(n). Since we only need a proportionally

vanishing number of GHZ states, we may, assuming that |ψ〉 is globally entangled, extract these

GHZ states from |φ〉�n without further cost in the asymptotic limit (see Proposition 2.1.7).

Indeed, one can show that when |ψ〉 is globally entangled, |ψ〉�k LOCC−−−−→ x |u2〉 for some x > 0,

e.g. by extracting EPR-pairs (see [26, Lemma 4]) and using teleportation. That is, for any

globally entangled |ψ〉,

E∗P(r, ψ, φ) = sup
{
τ ∈ R+

∣∣∣∣2nr+o(n) |ψ〉〈ψ|�n LOCC−−−−→ |φ〉〈φ|�bτnc for n� 1
}

= sup
{
τ ∈ R+

∣∣∣∣∣
[(

2r/2 |ψ〉
)�n]

&
[
|φ〉�bτnc

]
for n� 1

}

= sup
{
τ ∈ R+

∣∣∣∣∀f ∈ ∆(Sk) : f
(
2r/2 |ψ〉

)
≥ f

(
|φ〉
)τ}

.

(4.23)

It is unclear whether this is also true for states which are separable across some bipartition (i.e.

not globally entangled). It is the intuition of the author that this is indeed the case, but a proof

has not been found.

4.2. Characterizing the spectrum

The goal of this section is to prove Theorem 4.2.1 below, which establishes a condition for a

semiring homomorphism f : Sk → R+ to be monotone (i.e. order preserving) and hence define a

point in ∆(Sk).

Theorem 4.2.1. Let f : Sk → R+ be a semiring homomorphism. Then f is monotone if and

only if there is an α ∈ [0, 1] such that f(√p |0 . . . 0〉) = pα for all p > 0 and

f(|φ〉) ≥
(
f
(
Π |φ〉

)1/α + f
(
(I −Π) |φ〉

)1/α)α (4.24)

for any |φ〉 ∈ H1 ⊗ · · · ⊗ Hk, i ∈ {1, . . . , k} and orthogonal projection Π ∈ B(Hi).
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In the above theorem, and for the duration of this section, the case α = 0 should be

interpreted in the sense of α→ 0. That is, Eq. (4.24) becomes

f(|φ〉) ≥ max
{
f
(
Π |φ〉

)
, f
(
Π |ψ〉

)}
. (4.25)

We start by showing that the α of Theorem 4.2.1 necessarily exists.

Proposition 4.2.2. Let f : Sk → R+ be a monotone semiring homomorphism. There is an

α ≥ 0 such that

f
(√
p |φ〉

)
= pαf

(
|φ〉
)

(4.26)

for each |φ〉 and each p > 0.

Proof. Since p 7→ f(√p |0 . . . 0〉) is multiplicative, non-decreasing, sends 0 to 0 and 1 to 1, it

follows from the solution to the Cauchy functional equation that

f
(√
p |0 . . . 0〉

)
= pα

for all p > 0 and some α ≥ 0. Therefore

f
(√
p |φ〉

)
= f

(√
p |φ〉 ⊗ |0 . . . 0〉

)
= f

(
|φ〉
)
f
(√
p |0 . . . 0〉

)
= pαf

(
|φ〉
)
f
(
|0 . . . 0〉

)
= pαf

(
|φ〉
)
.

For the proof of Theorem 4.2.1 the following extension of a monotone homomorphism

f : Sk → R+ to conditionally pure states is introduced: Given f such that f(√p |0 . . . 0〉) = pα

for some α > 0, define

f

∑
x∈X
|φx〉〈φx| ⊗ |x〉〈x|

 =

∑
x∈X

f(|φx〉)1/α

α ,
and if α = 0, let the extension be defined as

f

∑
x∈X
|φx〉〈φx| ⊗ |x〉〈x|

 = max
x∈X

f
(
|φx〉

)
.

Proposition 4.2.3. The extension of f is multiplicative under tensor product.
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Proof. For α > 0

f


∑
x∈X
|φx〉〈φx| ⊗ |x〉〈x|

�
∑
y∈Y

∣∣ψy〉〈ψy∣∣⊗ |y〉〈y|



= f

∑
x∈X
y∈Y

(
|φx〉〈φx| �

∣∣ψy〉〈ψy∣∣)⊗ |xy〉〈xy|


=

∑
x∈X
y∈Y

f(|φx〉 � |ψy〉)1/α


α

=

∑
x∈X
y∈Y

f(|φx〉)1/αf(|ψy〉)1/α


α

=

∑
x∈X

f(|φx〉)1/α∑
y∈Y

f(|ψy〉)1/α

α =

∑
x∈X

f(|φx〉)1/α

α∑
y∈J

f(|ψy〉)1/α

α

= f

∑
x∈X
|φx〉〈φx| ⊗ |x〉〈x|

 f
∑
y∈Y

∣∣ψy〉〈ψy∣∣⊗ |y〉〈y|
 .

(4.27)

If α = 0, then

f


∑
x∈X
|φx〉〈φx| ⊗ |x〉〈x|

�
∑
y∈Y

∣∣ψy〉〈ψy∣∣⊗ |y〉〈y|



= max
x∈X
y∈Y

f
(
|φx〉

)
f
(
|ψy〉

)
= max

x∈X
f
(
|φx〉

)
max
y∈Y

f
(
|ψy〉

)

=f

∑
x∈X
|φx〉〈φx| ⊗ |x〉〈x|

 f
∑
y∈Y

∣∣ψy〉〈ψy∣∣⊗ |y〉〈y|
 .

(4.28)

Proposition 4.2.4. If f is monotone, then the extension of f to conditionally pure states is

monotone under conditional application of local quantum instruments with components having

Kraus rank 1. That is, f is monotone under maps of the form Eq. (1.27) acting on conditionally

pure states.

Proof. First assume α > 0 and start with the case where the initial state is pure:

|ψ〉〈ψ| LOCC−−−−→
∑
i∈I

P (i) |φi〉〈φi| ⊗ |i〉〈i| . (4.29)

Here the |φi〉’s are normalized and P : I → R+ is a map.

Recall from Section 1.2, that for n ∈ N we say that a probability distribution Q : I → R+ is an

n-type, if nQ(i) ∈ N for each i ∈ N. Given an n-type Q, we say that a sequence in In is of type

Q, if i appears nQ(i) times. The type class TnQ ⊂ In is the set of sequences of type Q. Given
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any n-type Q:

|ψ〉〈ψ|�n LOCC−−−−→

∑
i∈I

P (i) |φi〉〈φi| ⊗ |i〉〈i|

�n

=
∑
a∈In

n∏
j=1

P (aj)
n⊙
j=1

∣∣∣φaj〉〈φaj ∣∣∣⊗ |a〉〈a|
LOCC−−−−→ |TnQ|2−n(H(Q)+D(Q||P ))⊙

i∈I
|φi〉〈φi|�nQ(i) .

(4.30)

The last LOCC transformation is the projection onto the multi-indices of type Q followed by a

unitary reshuffling of indices and a partial trace on the classical register. H(Q) is the Shannon

entropy of Q, defined in Definition 1.2.1, and D(Q||P ) is the relative entropy as defined in

Definition 1.2.2. Since the last expression in Eq. (4.30) is a pure state we can apply monotonicity

of f on pure states to get

f(|ψ〉)n ≥
(
|TnQ|2−n(H(Q)+D(Q||P ))

)α∏
i∈I

f(|φi〉)nQ(i). (4.31)

By Lemma 1.2.3 |TnQ| ≥ 2nH(Q)−|I| log(n+1) this implies, by taking the n-th root of the above

expression:

f(|ψ〉) ≥
(

2−D(Q||P )+
∑

i
Q(i) log f(|φi〉)1/α

)α
2−α|I|

log(n+1)
n . (4.32)

Let Z =
∑
i∈I P (i)f(|φi〉)1/α and let Pφ be the probability distribution Pφ(i) = P (i)f(|φi〉)1/α

Z .

Then

−D (Q||P ) +
∑
i

Q(i) log f(|φi〉)1/α = −D
(
Q
∣∣∣∣∣∣ZPφ) = logZ −D

(
Q
∣∣∣∣∣∣Pφ) . (4.33)

Using Eq. (4.33), Eq. (4.32) becomes

f(|ψ〉) ≥ 2(logZ−D(Q‖Pφ))α2−α|I|
log(n+1)

n . (4.34)

For each n ∈ N, let Qn be an n-type with suppQn = suppPφ such that limnQn = Pφ. Then

D(Qn‖Pφ)→ D(Pφ‖Pφ) = 0. Inserting Qn in Eq. (4.34) and letting n→∞ yields

f(|ψ〉) ≥ Zα =
[∑
i∈I

P (i)f(|φi〉)1/α
]α

= f

(∑
i∈I

P (i) |φi〉〈φi| ⊗ |i〉〈i|
)
, (4.35)

showing that the extension is monotone under remembering one-step LOCC channels applied

to pure states. We use this result to generalize to LOCC channels of the form Eq. (1.27) on

conditionally pure states. The action of such channels on a conditionally pure state always looks

like this: ∑
x∈X
|ψx〉〈ψx| ⊗ |x〉〈x|

LOCC−−−−→
∑
x∈X

∑
j∈g−1(x)

∣∣φj〉〈φj∣∣⊗ |j〉〈j| , (4.36)
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where |φj〉 = Kj |φg(j)〉, in the notation of Proposition 1.1.15 (except for the fact that we use g

in place of f , which is already in use). By restricting the protocol to only the Kraus operators

acting on |ψx〉 one gets for each x ∈ X

|ψx〉〈ψx|
LOCC−−−−→

∑
j∈g−1(x)

∣∣φj〉〈φj∣∣⊗ |j〉〈j| . (4.37)

Therefore

f

( ∑
x∈X
|ψx〉〈ψx| ⊗ |x〉〈x|

)
=
( ∑
x∈X

f(|ψx〉)1/α
)α

≥
( ∑
x∈X

∑
j∈g−1(x)

f(|φj〉)1/α
)α

= f

( ∑
x∈X

∑
j∈g−1(x)

∣∣φj〉〈φj∣∣⊗ |j〉〈j|
)
.

For the case α = 0, note that

|ψx〉〈ψx|
LOCC−−−−→

∑
j∈g−1(x)

∣∣φj〉〈φj∣∣⊗ |j〉〈j| (4.38)

implies |ψx〉
LOCC−−−−→ |φj〉 for each j ∈ g−1(x), which by monotonicity of f on pure states implies

f(|ψx〉) ≥ maxj∈g−1(x) f(|φj〉). Therefore

f

( ∑
x∈X
|ψx〉〈ψx| ⊗ |x〉〈x|

)
= max

x∈X
f(|ψx〉)

≥ max
j∈J

f(|φj〉)

= f

( ∑
x∈X

∑
j∈g−1(x)

∣∣φj〉〈φj∣∣⊗ |j〉〈j|
)
.

Remark 4.2.5. It is not so hard to see that if ρ is conditionally pure and Πg is a coarse-graining

such that Πgρ is also conditionally pure, then the extension of f also satisfies f(ρ) ≥ f
(
Πgρ

)
.

By Proposition 4.2.4 this implies that when ρ
LOCC−−−−→ σ, for conditionally pure states, then

f(ρ) ≥ f(σ).

Lemma 4.2.6. Let f : Sk → R+ be a semiring homomorphism with f(√p |0 . . . 0〉) = pα for

some α ∈ [0, 1] which satisfies Eq. (4.24) for any choice of pure state and orthogonal projection.

Then

f
(
|φ〉
)
≥
(
f
(
A |φ〉

)1/α
+ f

(
B |φ〉

)1/α
)α

(4.39)

for any |φ〉 ∈ H1 ⊗ · · · ⊗ Hk, i ∈ {1, . . . , k} and A,B ∈ B(Hi) with A∗A+B∗B ≤ I.
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Proof. Consider the operator U =


A

B
√
I −A∗A−B∗B

 : Hi → H3
i . This is an isometry, so

f(|φ〉) = f(|ψ〉), where |ψ〉 = U |φ〉. Let Π : H3
i → H3

i be the projection onto the first summand.

Then [Π |ψ〉] = [A |φ〉] and [(I −Π) |ψ〉] ≥ [B |φ〉], so

f
(
|φ〉
)

= f(|ψ〉) ≥
(
f
(
Π |ψ〉

)1/α
+ f

(
(I −Π) |ψ〉

)1/α
)α

≥
(
f
(
A |φ〉

)1/α
+ f

(
B |φ〉

)1/α
)α
.

(4.40)

Proof of Theorem 4.2.1. Suppose f is monotone, then by Proposition 4.2.2 there is an α ≥ 0

such that f(√p |φ〉) = pαf(|φ〉) for all |φ〉 and p > 0. Consider the extension of f to conditionally

pure states. Let |φ〉 and Π be given as in the statement of the theorem, then

|φ〉〈φ| LOCC−−−−→ Π |φ〉〈φ|Π⊗ |0〉〈0|+ (I −Π) |φ〉〈φ| (I −Π)⊗ |1〉〈1| , (4.41)

so by monotonicity of the extension of f we get

f
(
|φ〉
)
≥
(
f
(
Π |φ〉

)1/α
+ f

(
(I −Π) |φ〉

)1/α
)α
.

When |φ〉 = |0 . . . 0〉+ |1 . . . 1〉, Π =

1 0

0 0

 and I −Π =

0 0

0 1

, we get by Eq. (4.24)

2 = f
(
|φ〉
)
≥
(
f
(
Π |φ〉

)1/α
+f
(
(I−Π) |φ〉

)1/α
)α

=
(
f
(
|0 . . . 0〉

)1/α
+f
(
|1 . . . 1〉

)1/α
)α

= 2α,

(4.42)

showing that α ≤ 1. This concludes the proof of the “only if” statement.

Conversely, suppose f is a homomorphism satisfying Eq. (4.24). By Lemma 4.2.6, f satis-

fies Eq. (4.39). Consider the extension of f to conditionally pure states. By Proposition 1.1.15

we need only check that f is monotone under conditional application of local instruments with

components of Kraus rank 1 Eq. (1.27), and when tracing out the register of a state of the form∑
i ai |φ〉〈φ| ⊗ |i〉〈i|. f is monotone under the latter, since(∑

i

f
(√

ai |φ〉
)1/α

)α
=
(∑

ai

)α
f(|φ〉) = f

(∑
i

√
ai |φ〉

)
. (4.43)

Now for monotonicity under conditional application of rank 1 instruments. Like in the proof of

Proposition 4.2.4 we first consider the case when the initial state is pure. That is, we need to
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show:

f
(
|φ〉
)
≥
(

d∑
j=1

f

(
Kj |φ〉

)1/α
)α

(4.44)

whenever
∑
jK
∗
jKj ≤ I, for some local maps (Kj)dj . Assume for the sake of induction that

Eq. (4.44) is true for d− 1 and let (Kj)dj=1 be some Kraus operators with
∑
jK
∗
jKj ≤ I. Set

A =

√√√√√d−1∑
j=1

K∗jKj , (4.45)

B = Kd, (4.46)

and

K̃j = KjA
−1 j = 1, . . . , d− 1. (4.47)

Here A−1 denotes the Moore–Penrose pseudoinverse. Since
d−1∑
j=1

K̃∗j K̃j = A−1
d−1∑
j=1

K∗jKjA
−1 = A−1A2A−1 ≤ I, (4.48)

we may apply the induction hypothesis to the operators (K̃j)d−1
j and the vector A |φ〉 to obtain

f
(
|φ〉
)
≥
(
f
(
A |φ〉

)1/α
+ f

(
B |φ〉

)1/α
)

≥

(( d−1∑
j=1

f
(
K̃jA |φ〉

)1/α
)α)1/α

+ f
(
B |φ〉

)1/α
α

=
(
d−1∑
j=1

f
(
Kj |φ〉

)1/α
+ f

(
Kd |φ〉

)1/α
)α

=
(

d∑
j=1

f
(
Kj |φ〉

)1/α
)α
,

(4.49)

finishing the induction step.

Just like in the proof of Proposition 4.2.4, this extends to conditionally pure states. Through-

out this proof it has been assumed that α 6= 0. For the case α = 0, the proof is similar, and

obtained by simply replacing every instance of α-anti-norm [44]
(∑

j x
α
j

)1/α
by maxj xj in the

above proof.

Note that for α = 0 an LOCC spectral point is in fact a point in the asymptotic spectrum of

tensors ∆(Sk), see Section 4.4. For α = 1 there is just one spectral point, the norm squared:

Proposition 4.2.7. Let f : Sk → R be a monotone semiring homomorphism with

f(√p |0 . . . 0〉) = pf(|0 . . . 0〉) for p > 0, then

f(|φ〉) = 〈φ|φ〉.

66



Proof. Given |φ〉 of norm 1 we have 1√
d
|ud〉

LOCC−−−−→ |φ〉 LOCC−−−−→ |0 . . . 0〉 for sufficiently large d.

Furthermore

f

( 1√
d
|ud〉

)
= 1
d

d∑
i=1

f(|i . . . i〉) = 1
d

d∑
i=1

f(|0 . . . 0〉) = f(|0 . . . 0〉), (4.50)

showing that f(|φ〉) = f(|0 . . . 0〉) = 1. So f(√p |φ〉) = p for p > 0.

By Proposition 4.2.2 we can pull scalings of unnormalized states outside spectral evaluation,

which allows us to reformulate Eq. (4.23). For globally entangled |ψ〉:

E∗P(r, ψ, φ) = sup
{
τ ∈ R+

∣∣∣∣∀f ∈ ∆(Sk) : f(2r/2 |ψ〉) ≥ f(|φ〉)τ
}

= sup
{
τ ∈ R+

∣∣∣∣∀f ∈ ∆(Sk) : rα(f) + log f(|ψ〉) ≥ τ log f(|φ〉)
}

= inf
f∈∆(Sk)

rα(f) + log f(|ψ〉)
log f(|φ〉) .

(4.51)

Here α(f) = log f
(√

2 |0 . . . 0〉
)
is the α from Theorem 4.2.1. For resources which are not globally

entangled, the formula expresses the extraction rate, provided a proportionately vanishing amount

of entanglement shared between each pair of parties.

4.3. Example: Bipartite states and ∆(S2)

When k = 2, we may, by the Schmidt decomposition, write any element in S2 as a finite direct

sum of terms of the form √p |00〉. Therefore any monotone semiring homomorphism, f , is

entirely determined by the value of α(f) ∈ [0, 1]: For |φ〉 = |ψP 〉 =
∑
i

√
P (i) |ii〉 a monotone

semiring homomorphism, f , must be given by

f(|φ〉) =
∑
i

P (i)α = Tr
[
(Tr2 |φ〉〈φ|)α

]
, (4.52)

where Tr2 is the partial trace of the second system.

The question to answer is then: For which α ∈ [0, 1] does fα : |φ〉 7→ Tr
[
(Tr2 |φ〉〈φ|)α

]
satisfy

equation Eq. (4.24). The answer is all of them.

Theorem 4.3.1. ∆(S2) = {fα|α ∈ [0, 1]} where

fα : |φ〉 7→ Tr
[
(Tr2 |φ〉〈φ|)α

]
.

Proof. When α = 0, fα(|ψ〉) is the Schmidt rank, which is monotone. Assume instead that

α ∈ (0, 1]. Let |φ〉 ∈ Cd ⊗ Cd and Π ∈ B(Cd) be an orthogonal projection. It suffices to verify

Eq. (4.24) for projections acting on the first system. Let X ∈ B(Cd) be such that

|φ〉 =
d∑
i=1

X |i〉 ⊗ |i〉 .
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Since the coefficients of |φ〉 are the square roots of the eigenvalues of Tr2 |φ〉〈φ| and

Tr2 |φ〉〈φ| =
d∑
i=1

X |i〉〈i|X∗ = XX∗,

Eq. (4.24) is equivalent to

[Tr(XX∗)α]1/α ≥ [Tr(ΠXX∗Π)α]1/α + [Tr((I −Π)XX∗(I −Π))α]1/α.

Since Y Y ∗ and Y ∗Y always have the same eigenvalues we may formulate it instead as

[Tr(X∗X)α]1/α ≥ [Tr(X∗ΠX)α]1/α + [Tr(X∗(I −Π)X)α]1/α.

For α = 1 this inequality holds since X∗X = X∗IX = X∗(Π+(I−Π))X = X∗ΠX+X∗(I−Π)X.

For α ∈ (0, 1) it follows from [44, Proposition 3.7].

Note that the topology on ∆(S2) as described in Theorem 3.1.4 is the Euclidean topology on

[0, 1], such that ∆(S2) can topologically be identified with the unit interval.

Since ∆(S2) is known we get the following formula for the asymptotic extraction rate

between normalized states given converse error exponent r, using the α-Rényi entropy from

Definition 1.2.1.

E∗P(r, ψP , ψQ) = inf
α∈[0,1)

rα+ log
∑
P (i)α

log
∑
Q(i)α = inf

α∈[0,1)

r α
1−α +Hα(P )
Hα(Q) . (4.53)

When |ψQ〉 = 1√
2(|00〉+ |11〉) is the maximally mixed state we retrieve the result [39, eq. (114)]

mentioned in Eq. (4.1):

E∗P(r, ψP , ψQ) = inf
α∈[0,1)

rα+ log
∑
P (i)α

1− α . (4.54)

4.4. Known points in the asymptotic spectrum of LOCC transformation for

3-partite states

We finish this chapter by reviewing what we know about the LOCC spectral points in the tripartite

case. Firstly, note that because |ψ〉 LOCC−−−−→ |φ〉 =⇒ |ψ〉 SLOCC−−−−−→ |φ〉 for any unnormalized states

|ψ〉 and |φ〉, we have a surjective, order preserving semiring homomorphism Sk → Tk, where

Tk is the semiring of tensors discussed in Chapter 3. This implies that any f ∈ ∆(Tk), can

naturally be considered as an element of ∆(Sk) by simply composing with the map Sk → Tk. The

α(f) ∈ [0, 1] from Theorem 4.2.1 for such spectral points is necessarily α(f) = 0 as these spectral

points are invariant under scaling. On the other hand, |ψ〉 SLOCC−−−−−→ |φ〉, then |ψ〉 LOCC−−−−→ p |φ〉 for
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some p > 0. So if f ∈ ∆(Sk) such that α(f) = 0, then f respects the SLOCC ordering of Tk. In

this way, the α(f) = 0 part of ∆(Sk) is simply ∆(Tk):

∆(Tk) ⊂ ∆(Sk) (4.55)

In the k = 3 case we therefore might consider the quantum functionals Fθ of Theorem 3.2.5 also

as members of ∆(Sk).

For any partition
⊔
j∈J Ij = [k] the corresponding flattening map

⊗
i∈[k]Hi →

⊗
j∈J

(⊙
i∈Ij Hi

)
induces an order preserving semiring homomorphism Sk 7→ S|J |. Composing with this homomor-

phism, gives a map ∆(S|J |) ↪→ ∆(Sk). In the special case of k = 3 we have three fattenings onto

bipartite systems, by grouping two of the three tensor legs together. So from Theorem 4.3.1 it

follows that

f iα : |ψ〉 7→ Tr
[
(Tr[3]\{i} |φ〉〈φ|)α

]
, (4.56)

also belongs to ∆(S3), for α ∈ [0, 1] and i ∈ [3]. Note that for α = 0, f i0 = Fθi , where θi is

the distribution on [3] with all it’s weight at i, i.e. θi(j) = δj=i. For α = 1, f i1(|ψ〉) = ‖ψ‖2,

independent of i. Perhaps Theorem 4.2.1 will be useful in finding other points of ∆(S3) in the

future.
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Chapter 5

Asymptotic majorization of

probability distributions

In Chapter 4 we considered conversion rates given a converse error exponent for pure states.

E∗P(r, ρ, σ) = sup
{
τ ∈ R+

∣∣∣∣2nr+o(n)ρ�n
LOCC−−−−→ σ�bτnc for n� 1

}
. (5.1)

In this chapter we consider the case when the probability of success goes to 1 rather than to 0

EP(ρ, σ) = sup
{
τ ∈ R+

∣∣∣∣(1 + o(1)
)
ρ�n

LOCC−−−−→ σ�bτnc for n� 1
}
, (5.2)

and the conversion rate when success probability equals 1 for large n

Eexact(ρ, σ) = sup
{
τ ∈ R+

∣∣∣∣ρ�n LOCC−−−−→ σ�bτnc for n� 1
}
. (5.3)

Again we only consider the pure case and in this chapter only the bipartite case. The connection

between this chapter and entanglement transformation rests on Nielsen’s theorem.

Theorem 5.0.1 (Nielsen, [45]). Let P and Q be finitely supported probability distributions.

Then

|ψP 〉
LOCC−−−−→ |ψQ〉 ⇐⇒ P � Q. (5.4)

Here P � Q reads as Q majorizes P , as defined in Definition 5.1.1 below. So majorization of

probability distributions is inverse to the LOCC ordering of the corresponding pure bipartite

states.

Majorization of probability distributions (see Definition 5.1.1) is an important notion in the

field of information theory. Given probability distributions P and Q, we ask whether P⊗n � Q⊗n

for large n, and we ask how large r ∈ R is allowed to be for P⊗n � Q⊗bnrc to be true for large

n. We denote the supremum of such r by E(P,Q). Since the squared Schmidt coefficients of
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|ψP 〉�n are P⊗n, this implies, by Nielsen’s theorem, that in the context of LOCC conversion

of bipartite pure states, E(P,Q) is the optimal rate at which one can extract exact copies of a

pure state with squared Schmidt coefficients Q from copies of a pure state with squared Schmidt

coefficients P :

Eexact
(
ψP , ψQ

)
= E(P,Q). (5.5)

In Theorem 5.2.9, one of the main result of this chapter, it is shown that

E(P,Q) = min
α∈[0,∞]

Hα(P )
Hα(Q) . (5.6)

This formula was conjectured in [16, Example 8.26].

That the rate cannot be larger follows from the well-known fact that Hα is Schur-concave

(see Proposition 5.2.6). The main tool for showing that the rate is attainable is a description of

the growth exponents defined in Definition 5.1.2. This description is found in Proposition 5.1.5.

One immediate consequence of Eq. (5.6) is that the asymptotic resource theory of exact entan-

glement transformations is irreversible, in the sense that E(P,Q)E(Q,P ) < 1 for generic P andQ.

Using the method for showing Eq. (5.6) and the result from the previous chapter in Eq. (4.53),

we arrive at the second main result of this chapter: A formula for the conversion rate, for exact,

probabilistic LOCC transformations of bipartite pure quantum states with success probability

going to 1, which is denoted by EP , and defined in Eq. (5.2) above. This will be done in

Section 5.3. The formula for EP is the same as Eq. (5.6), except that the minimum is taken

only over the interval α ∈ [0, 1].

EP
(
ψP , ψQ

)
= min

α∈[0,1]

Hα(P )
Hα(Q) . (5.7)

The attainability of this probabilistic rate rests on the techniques for showing Eq. (5.6). The

fact that it is optimal follows from Eq. (4.53). The two rates EP and E then coincide precisely

when the minimal ratio of Rényi entropies is obtained at α ∈ [0, 1], which is sometimes the case.

Other resource theories where majorization plays a role include the resource theory of

coherence, of purity and thermodynamics (see e.g. [46] [47] [48] [49]). It might be possible to

interpret the results of this chapter in those contexts. In particular the result Eq. (5.6) bears

some resemblance with the result in [50] on catalytic majorization. The exact relation between

the two results, would be interesting to study further.
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5.1. Asymptotic exponents

Given a probability distribution P : X → [0, 1] with finite support
∣∣supp(P )

∣∣ = d, we let

P ↓ : [d] = {1, . . . , d} → [0, 1] be P ordered non-increasingly. We may naturally extend to

P ↓ : N → [0, 1] by letting P (i) = 0 for i > d. Like in previous chapters, all probability

distributions will have finite support.

Definition 5.1.1. Given two probability distributions P,Q, we say that Q majorizes P , written

P � Q, if
N∑
i=1

P ↓(i) ≤
N∑
i=1

Q↓(i), (5.8)

for all N ∈ N.

For n ∈ N, P⊗n : X n → [0, 1] is the n’th product distribution given by P⊗n(I) =
∏n
j=1 P (Ij).

We wish to study majorization of P⊗n by Q⊗n for large n. To this end, given a value v, we are

interested in the size of the set of multiindicies I, such that P⊗n(I) ≥ v and the sum of these

probabilities. In order to asymptotically compare these for different probability distributions, it

is useful to let v depend exponentially on n and look at asymptotic growth rates.

Definition 5.1.2. For V ∈
[
logP (d), logP (1)

]
let

mP
n (V ) =

∑
I∈[d]n

P⊗n(I)≥2nV

P⊗n(I), (5.9)

mP
n∗(V ) =

∑
I∈[d]n

P⊗n(I)≤2nV

P⊗n(I), (5.10)

sPn (V ) =
∣∣∣{I ∈ [d]n|P⊗n(I) ≥ 2nV }

∣∣∣ , (5.11)

sPn∗(V ) =
∣∣∣{I ∈ [d]n|P⊗n(I) ≤ 2nV }

∣∣∣ . (5.12)

We define asymptotic exponents of these functions as follows:

MP (V ) = lim
n→∞

1
n

logmP
n (V ), (5.13)

MP
∗ (V ) = lim

n→∞
1
n

logmP
n∗(V ), (5.14)

SP (V ) = lim
n→∞

1
n

log sPn (V ), (5.15)

SP∗ (V ) = lim
n→∞

1
n

log sPn∗(V ). (5.16)
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It is not immediately clear that the limits describing MP ,MP
∗ , S

P and SP∗ are well defined,

but this will follow from Lemma 5.1.3 below. The letters chosen stand for value, mass and size.

V,MP and SP might be called the value, mass and size exponents, respectively. MP
∗ and SP∗

might then be called the converse mass and size exponents. The first step to creating tangible

formulas for these exponents is to relate them to the sizes of type classes.

Lemma 5.1.3. Given a probability distribution P = P ↓ with
∣∣supp(P )

∣∣ = d and

V ∈
[
logP (d), logP (1)

]
,

MP (V ) = max
−H(Q)−D(Q||P )≥V

−D(Q||P ), (5.17)

MP
∗ (V ) = max

−H(Q)−D(Q||P )≤V
−D(Q||P ), (5.18)

SP (V ) = max
−H(Q)−D(Q||P )≥V

H(Q), (5.19)

SP∗ (V ) = max
−H(Q)−D(Q||P )≤V

H(Q). (5.20)

Proof. We show Eq. (5.19), as the other equations are shown in the same way: By Eq. (1.43)

sPn (V ) =
∣∣∣∣{I ∈ [d]n

∣∣∣P⊗n(I) ≥ 2nV
}∣∣∣∣ =

∑
Q∈Pn

−H(Q)−D(Q||P )≥V

|TnQ|. (5.21)

By Eq. (1.40) and Lemma 1.2.3,

∑
Q∈Pn

−H(Q)−D(Q||P )≥V

|TnQ| ≤ (n+ 1)d max
Q∈Pn

−H(Q)−D(Q||P )≥V

|TnQ|

≤ (n+ 1)d max
Q∈Pn

−H(Q)−D(Q||P )≥V

2nH(Q)

≤ max
Q∈P

−H(Q)−D(Q||P )≥V

(n+ 1)d2nH(Q).

(5.22)

Applying “limn→∞
1
n log” to both sides shows that SP (V ) ≤ max

−H(Q)−D(Q||P )≥V
H(Q). Similarly,

by applying the other inequality from Lemma 1.2.3,
∑
Q∈Pn

−H(Q)−D(Q||P )≥V

|TnQ| ≥ max
Q∈Pn

−H(Q)−D(Q||P )≥V

|TnQ|

≥ max
Q∈Pn

−H(Q)−D(Q||P )≥V

1
(n+ 1)d 2nH(Q).

(5.23)
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Since
⋃
n Pn is dense in P and H is continuous we get SP (V ) ≥ max

Q∈P
−H(Q)−D(Q||P )≥V

H(Q). We

conclude that

SP (V ) = max
−H(Q)−D(Q||P )≥V

H(Q). (5.24)

Eq. (5.20) is shown in a similar manner. By using Lemma 1.2.5 in place of Lemma 1.2.3 in the

above argument, one obtains Eq. (5.17) and Eq. (5.18)

Once Proposition 5.1.5 has been established it becomes clearer how the Rényi entropy enters

the picture. In order to prove Proposition 5.1.5 we need Lemma 5.1.4. It should be said that

the proof of Proposition 5.1.5 has been extracted from [39].

Lemma 5.1.4. Let X ⊂ Rn be a compact, convex set. Let g : X → R be continuous and

h : X → R be continuous and strictly concave. Suppose h takes its maximum value at x2 ∈ X.

If g takes its minimum value at x1 ∈ X, then

y 7→ max
x:g(x)=y

h(x) y ∈ [g(x1), g(x2)] (5.25)

is strictly monotonely increasing.

If g takes its maximum value at x1 ∈ X, then

y 7→ max
x:g(x)=y

h(x) y ∈ [g(x2), g(x1)] (5.26)

is strictly monotonely decreasing.

Proof. Assume g takes its minimum value at x1. Let g(x1) ≤ y′ < y′′ ≤ g(x2). Let x′ ∈ g−1 (y′)
such that maxx:g(x)=y′ h(x) = h(x′). By continuity of g we may find x′′ on the line segment

between x′ and x2, such that g(x′′) = y′′. That is

x′′ = λx2 + (1− λ)x′ (5.27)

for some λ ∈ (0, 1]. Since h is strictly concave

h(x′′) ≥ λh(x2) + (1− λ)h(x′) > h(x′). (5.28)

So

max
x:g(x)=y′

h(x) = h(x′) < h(x′′) ≤ max
x:g(x)=y′′

h(x). (5.29)

The second part of the lemma follows from the first by replacing g with −g.

Given a probability distribution P with support [d], we let

FP (α) = log
∑
i∈[d]

P (i)α. (5.30)
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Note that FP (α) is just (1− α)Hα(P ). In order to make things simpler, we shall only consider

FP for probability distributions that are non-uniform (such that FP is strictly convex) and

ordered non-increasingly (such that we may simply write P (1) instead of maxx∈X P (x) and P (d)

instead of minx∈X P (x)).

The function FP will be central to the rest of the chapter. Note that

F ′P (α) =
∑
i P (i)α logP (i)∑

i P (i)α (5.31)

is negative and monotone increasing F ′P : R→
(
logP (d), logP (1)

)
. We shall define

F ′P (∞) = lim
α→∞

F ′P (α) = logP (1) (5.32)

and

F ′P (−∞) = lim
α→−∞

F ′P (α) = logP (d). (5.33)

FP is decreasing and strictly convex. Two important values to keep in mind are

F (0) = H0(P ) = log d,

F (1) = 0.
(5.34)

Also note the following bijections

F ′P



[−∞, 0] ←→
[
logP (d),

∑
i
logP (i)
d

]
,

[0, 1] ←→
[∑

i
logP (i)
d ,−H(P )

]
,

[1,∞] ←→
[
−H(P ), logP (1)

]
.

(5.35)

We are now ready to give explicit formulas for the exponent functions Eq. (5.13), Eq. (5.14),

Eq. (5.15), Eq. (5.16). The following proposition is in fact also true for uniform distribution, the

statement just becomes trivial as
[
logP (d), logP (1)

]
becomes a one-point set and the exponent

functions become constant.

Proposition 5.1.5. Let P be a non-uniform probability distribution with supp(P ) = [d] which is

ordered non-increasingly. For V ∈
[
logP (d), logP (1)

]
let αV ∈ [−∞,∞] be the unique solution

to F ′P (α) = V , then

MP (V ) =

 0 if V ∈
[
logP (d),−H(P )

]
,

FP (αV ) + (1− αV )F ′P (αV ) if V ∈
[
−H(P ), logP (1)

]
.

(5.36)

MP
∗ (V ) =

 FP (αV ) + (1− αV )F ′P (αV ) if V ∈
[
logP (d),−H(P )

]
,

0 if V ∈
[
−H(P ), logP (1)

]
.

(5.37)

75



SP (V ) =


log d if V ∈

[
logP (d),

∑
logP (i)
d

]
,

FP (αV )− αV F ′P (αV ) if V ∈
[∑

logP (i)
d , logP (1)

]
.

(5.38)

SP∗ (V ) =


FP (αV )− αV F ′P (αV ) if V ∈

[
logP (d),

∑
logP (i)
d

]
,

log d if V ∈
[∑

logP (i)
d , logP (1)

]
.

(5.39)

Whenever αV = ±∞ the above formulas are to be interpreted as the limit α→ ±∞.

Proof. Let P([d]) be the set of probability distributions on [d]. The map h : Q 7→ H(Q) is

concave on P([d]) and takes its maximum value at the uniform distribution, where

−H(Q) − D(Q||P ) =
∑

logP (i)
d . The map g : Q → −H(Q) − D(Q||P ) has maximim value

logP (1) and minimum value logP (d). According to Lemma 5.1.4,

V 7→ max
−H(Q)−D(Q||P )=V

H(Q) (5.40)

is strictly monotone decreasing on
[∑

logP (i)
d , logP (1)

]
and strictly monotone increasing on[

logP (d),
∑

logP (i)
d

]
.

Similarly, since D(Q||P ) is convex with respect to Q, Lemma 5.1.4 tells us that

V 7→ max
−H(Q)−D(Q||P )=V

−D(Q||P ) (5.41)

is strictly monotone increasing on
[
logP (d),−H(P )

]
and strictly monotone decreasing on[

−H(P ), logP (1)
]
. For each V ∈

[
logP (d), logP (1)

]
we wish to find the probability distribu-

tion, Q, that solves the maximization problems in Eq. (5.40) and Eq. (5.41).

Given V ∈
(
logP (d), logP (1)

)
, let α be the solution to F ′P (α) = V and consider the

distribution Pα(i) = P (i)α∑
j
P (j)α . Note that −H(Pα) − D(Pα||P ) = F ′P (α) = V . We prove

that Pα solves the above optimization problems. Let V ∈ (logP (d), logP (1)) be given and

choose α ∈ (−∞,∞) such that −H(Pα) − D(Pα||P ) = V . Let Q ∈ P([d]) be such that also
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−H(Q)−D(Q||P ) = V . We need to show that H(Pα) ≥ H(Q).

1
1− α

[
D(Q||Pα)−H(Pα) +H(Q)

]

= 1
1− α

[
D(Q||Pα) +D(Pα||P )−D(Q||P )

]

= 1
1− α

[∑
i

−Q(i) log P (i)α∑
j P (j)α + P (i)α∑

j P (j)α log P (i)α∑
j P (j)α −

P (i)α∑
j P (j)α logP (i) +Q(i) logP (i)

]

= 1
1− α

[
(1− α)

∑
i

(
Q(i)− P (i)α∑

j P (j)α
)

logP (i)
]

=
∑
i

(
Q(i)− P (i)α∑

j P (j)α
)

logP (i) = H(Pα) +D(Pα||P )−H(Q)−D(Q||P ) = 0.

(5.42)

So

H(Pα)−H(Q) = D(Q||Pα) ≥ 0, (5.43)

which proves that Pα solves the optimization problems with the values

H(Pα) = −
∑
i

P (i)α∑
j P (j)α log P (i)α∑

j P (j)α = log
∑

P (i)α − α
∑
P (i)α logP (i)∑

P (i)α

= FP (α)− αF ′P (α),

−D(Pα||P ) = H(Pα)−
(
H(Pα) +D(Pα||P )

)
= H(Pα) + F ′P (α)

= FP (α) + (1− α)F ′P (α).

(5.44)

By Lemma 5.1.3 we obtain for V ∈
[∑

logP (i)
d , logP (1)

)

SP (V ) = max
−H(Q)−D(Q||P )≥V

H(Q) = max
−H(Q)−D(Q||P )=V

H(Q)

= H(Pα) = FP (α)− αF ′P (α).
(5.45)

Similarly, for V ∈
(

logP (d),
∑

logP (i)
d

]

SP∗ (V ) = max
−H(Q)−D(Q||P )≤V

H(Q) = max
−H(Q)−D(Q||P )=V

H(Q)

= H(Pα) = FP (α)− αF ′P (α).
(5.46)

For V ∈
(
logP (d),−H(P )

]
MP
∗ (V ) = max

−H(Q)−D(Q||P )≤V
−D(Q||P ) = max

−H(Q)−D(Q||P )=V
−D(Q||P )

= −D(Pα||P ) = FP (α) + (1− α)F ′P (α).
(5.47)
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And for V ∈
[
−H(P ), logP (1)

)
MP (V ) = max

−H(Q)−D(Q||P )≥V
−D(Q||P ) = max

−H(Q)−D(Q||P )=V
−D(Q||P )

= −D(Pα||P ) = FP (α) + (1− α)F ′P (α).
(5.48)

We may take α to −∞ or ∞ and get the results at the boundary.

Remark 5.1.6. Define mP
n (V ) on

[
logP (d), logP (1)

]
to be equal to mP

n (V ) at the endpoints,

but for V ∈
(
logP (d), logP (1)

)
we use a strict inequality and define

mP
n (V ) =

∑
I∈[d]n

P⊗n(I)>2nV

P⊗n(I). (5.49)

Define mP
n∗, s

P
n and sPn∗ similarly. By continuity of MP ,MP

∗ , S
P and SP∗ one sees that we

could replace mP
n ,m

P
n∗, s

P
n , s

P
n∗ in equations Eq. (5.13), Eq. (5.14), Eq. (5.15), Eq. (5.16) with

respectively mP
n ,m

P
n∗, s

P
n , s

P
n∗, without the limit changing. Furtermore since all functions are

monotone and the limit functions are monotone, continuous and bounded, the convergences are

all uniform. This will be important later.

A few nice values to keep in mind for SP ,MP and MP
∗ are the following

MP (−H(P )) = 0

MP (logP (1)) = logP (1) + log
∣∣∣{i ∈ [d] | P (i) = P (1)

}∣∣∣
MP
∗ (−H(P )) = 0

SP (logP (1)) = log
∣∣∣{i ∈ [d] | P (i) = P (1)

}∣∣∣
SP (−H(P )) = H(P )

SP
(∑ logP (i)

d

)
= log d = H0(P ).

(5.50)

5.2. A sufficient and almost necessary condition for asymptotic majorization

Lemma 5.2.1. Let P and Q be non-uniform probability distributions with

min
α∈[0,1]

Hα(P )
Hα(Q) > 1. (5.51)

For sufficiently small ε > 0 and all V ∈
[∑

logP (i)
dP

,−H(P )
]
and W ∈

[∑
logQ(i)
dQ

,−H(Q)
]

SP (V ) ≤ SQ(W ) + ε =⇒ MP
∗ (V ) ≥MQ

∗ (W ) + ε. (5.52)

Proof. We wish to apply Lemma A.1.1 to F = FP : [0, 1] → R and G = FQ : [0, 1] → R. The

conditions of the lemma are satisfied, since for α ∈ [0, 1), Hα(P ) > Hα(Q) is equivalent to
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FP (α) > FQ(α) and F ′P (1) = −H(P ) < −H(Q) = F ′Q(1). By Lemma A.1.1, there is an ε > 0

such that

FP (x)− xF ′P (x) ≤ FQ(y)− yF ′Q(y) + ε =⇒ FP (x) + (1− x)F ′P (x) ≥ FQ(y) + (1− y)F ′Q(y) + ε.

(5.53)

By Eq. (5.37) and Eq. (5.38) applied to P and Q, this is precisely the same as

SP (V ) ≤ SQ(W ) + ε =⇒ MP
∗ (V ) ≥MQ

∗ (W ) + ε. (5.54)

Lemma 5.2.2. Let P and Q be non-uniform probability distributions with

min
α∈[1,∞]

Hα(P )
Hα(Q) > 1. (5.55)

For sufficiently small ε > 0 and all V ∈
[
−H(P ), logP (1)

]
and W ∈

[
−H(Q), logQ(1)

]
SP (V ) ≤ SQ(W ) + ε =⇒ MP (V ) + ε ≤MQ(W ). (5.56)

Proof. The proof of this lemma is essentially the same as the previous proof, using Lemma A.1.2

in place of Lemma A.1.1, again with F = FP and G = FQ and by using Eq. (5.36) in place of

Eq. (5.37). The lemma applies since for α > 1, Hα(P ) > Hα(Q) is equivalent to FP (α) < FQ(α),

because 1 − α is negative and limα→∞ F
′
P (α) = −H∞(P ) < −H∞(Q) = limα→∞ F

′
Q(α). Fur-

thermore the limits limα→∞ FP (α)− αF ′P (α) and limα→∞ FQ(α)− αF ′Q(α) exist according to

Proposition 5.1.5 and are equal to respectively SP (logP (1)) and SQ(logQ(1)).

Proposition 5.2.3. Let P = P ↓ : [dP ] → [0, 1] and Q = Q↓ : [dQ] → [0, 1] be non-uniform

probability distributions with P (1) > P (2) such that

min
α∈[0,1]

Hα(P )
Hα(Q) > 1. (5.57)

Let V ∗ ∈
[
logP (dP ), logP (1)

]
be such that SP (V ∗) ∈

(
H(Q), H(P )

)
. Then for all sufficiently

large n, and all N such that V = 1
n log(P⊗n↓(N)) ∈

[
logP (dP ), V ∗

]
,

N−1∑
i=1

P⊗n↓(i) ≤
N−1∑
i=1

Q⊗n↓(i). (5.58)

Proof. Let ε > 0 be small enough that Lemma 5.2.1 applies. By the assumption that P (1) > P (2),

SP surjects
[
logP (dP ), logP (1)

]
decreasingly onto

[
0, H0(P )

]
. Assuming ε < H0(P )−H0(Q),

we have H0(Q) + ε < H0(P ) and we therefore have V1 ∈
[
logP (dP ), logP (1)

]
such that

SP (V1) = H0(Q) + ε. Now let n be large enough that for both P and Q and all V and W
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Eq. (5.13), Eq. (5.14), Eq. (5.15) and Eq. (5.16) are good approximations, and also good approx-

imations when replaced by the alternative versions in Remark 5.1.6 (this may be done since the

convergences are uniform). Note that P⊗n↓(N) = 2nV such that N ≥ sPn (V ). We split into three

cases: Either V ∈
[
logP (dP ), V1

]
, or V1 < −H(P ) and V ∈

[
V1,−H(P )

]
, or V ∈ [−H(P ), V ∗].

First assume that V ∈
[
logP (dP ), V1

]
. Then

1
n

logN ≥ 1
n

log sPn (V ) ≥ 1
n

log sPn (V1) ' SP (V1) = H0(Q) + ε > H0(Q), (5.59)

which implies N > 2nH0(Q), so
N−1∑
i=1

Q⊗n↓(i) = 1 (5.60)

and Eq. (5.58) holds trivially.

Assume instead that V ∈
[
V1,−H(P )

]
, provided that the interval is non-empty. Without

loss of generality we can assume that ε < H(P )−H(Q). Since SQ maps
[∑

logQ(i)
dQ

,−H(Q)
]

onto
[
H(Q), H0(Q)

]
and H(Q) + ε < H(P ) = SP (−H(P )) and H0(Q) + ε = SP (V1), we may

find W ∈
[∑

logQ(i)
dQ

,−H(Q)
]
such that SQ(W ) + ε = SP (V ). By Lemma 5.2.1, this implies

MP
∗ (V ) ≥MQ

∗ (W ) + ε. (5.61)

And

1
n

logN ≥ 1
n

log sPn (V ) ' SP (V ) = SQ(W ) + ε > SQ(W ) ' 1
n

log sQn (W ), (5.62)

which implies N > sQn (W ). Therefore

1
n

log
∞∑
i=N

P⊗n↓(i) ≥ 1
n

logmP
n∗(V ) 'MP

∗ (V ) ≥MQ
∗ (W ) + ε

> MQ
∗ (W ) ' 1

n
logmQ

n∗(W ) = 1
n

log
∑

I∈[dQ]n

Q⊗n(I)≤2nW

Q⊗n(I)

≥ 1
n

log
∞∑

i=sQn (W )

Q⊗n↓(i) ≥ 1
n

log
∞∑
i=N

Q⊗n↓(i),

(5.63)

which implies Eq. (5.58).

Finally, assume that V ∈ [−H(P ), V ∗]. Let W be such that SQ(W ) ∈
(
H(Q), SP (V ∗)

)
.

Note, importantly, that W is chosen independently from V , so that n does not depend on V .

Then
1
n

logN ≥ 1
n

log sPn (V ) ' SP (V ) ≥ SP (V ∗) > SQ(W ) ' 1
n

log sQn (W ), (5.64)
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So N > sQn (W ). Since SQ is strictly decreasing W < −H(Q), and since V ≥ −H(P ) it follows

from Eq. (5.38) that MP
∗ (V ) = 0 > MQ

∗ (W ). We conclude as in Eq. (5.63) that

1
n

log
∞∑
i=N

P⊗n↓(i) ≥ 1
n

log
∞∑
i=N

Q⊗n↓(i). (5.65)

Proposition 5.2.4. Let P = P ↓ : [dP ] → [0, 1] and Q = Q↓ : [dQ] → [0, 1] be non-uniform

probability distributions with

min
α∈[1,∞]

Hα(P )
Hα(Q) > 1. (5.66)

Let V ∗ ∈
[
logP (dP ), logP (1)

]
be such that SP (V ∗) ∈

(
H(Q), H(P )

)
. Then for all sufficiently

large n, and all N such that V = 1
n log(P⊗n↓(N)) ∈

[
V ∗, logP (1)

]
,

N∑
i=1

P⊗n↓(i) ≤
N∑
i=1

Q⊗n↓(i). (5.67)

Proof. Like in the proof of Proposition 5.2.3 we let ε > 0 be small enough that Lemma 5.2.2 ap-

plies. We split into three cases. Letting ε > 0 be sufficiently small we may letW1 ∈
(
logP (1), logQ(1)

)
be the solution to SQ(W1) = SQ(logQ(1)) + ε.

Firstly, we assume that SP (V ) ≤ SQ(W1), then

1
n

logN ≤ 1
n

log sPn (V ) ' SP (V ) ≤ SQ(W1) < SQ(logP (1)) ' 1
n

log sQn (logP (1)), (5.68)

showing that N ≤ sQn (logP (1)), which implies that Q⊗n↓(i) ≥ logP (1) for all i ∈ [N ]. So

N∑
i=1

Q⊗n↓(i) ≥ N logP (1) ≥
N∑
i=1

P⊗n↓(i). (5.69)

Secondly, we assume that SP (V ) ∈
[
SQ(W1), H(Q)

]
, provided that the interval is non-empty.

Let W ∈
[
−H(Q), logQ(1)

]
be such that SQ(W ) + ε = SP (V ), which is possible by the choice

of W1. By Lemma 5.2.2

MP (V ) + ε ≤MQ(W ). (5.70)

And

1
n

logN ≥ 1
n

log sPn (V ) ' SP (V ) = SQ(W ) + ε/2 > SQ(W ) ' 1
n

log sQn (W ), (5.71)

81



showing that N > sQn (W ).

1
n

log
N∑
i=1

P⊗n↓(i) ≤ 1
n

logmP
n (V ) 'MP (V )

< MP (V ) + ε ≤MQ(W ) ' 1
n

logmQ
n (W )

= 1
n

log
sQn (W )∑
i=1

Q⊗n↓(i) ≤ 1
n

log
N∑
i=1

Q⊗n↓(i).

(5.72)

Finally, assume that SP (V ) ∈
[
H(Q), SP (V ∗)

]
. LetW > −H(Q) be such thatMQ(W ) > MP (V ∗).

Then
1
n

logN ≥ 1
n

log sPn (V ) ' SP (V ) ≥ H(Q) > SQ(W ) ' 1
n

log sQn (W ), (5.73)

showing that N > sQn (W ).

1
n

log
N∑
i=1

P⊗n↓(i) ≤ 1
n

logmP
n (V ) 'MP (V ) ≤MP (V ∗) < MQ(W )

' 1
n

logmQ
n (W ) = 1

n
log

∑
I∈[dQ]n

Q⊗n(I)≥2nW

Q⊗n(I)

= 1
n

log
sQn (W )∑
i=1

Q⊗n↓(i) ≤ 1
n

log
N∑
i=1

Q⊗n↓(i).

(5.74)

’

So far we have assumed that all probability distributions are non-uniform. This was mainly

a matter of convenience. In the following we no longer make this assumption. If Q is the trivial

probability distribution (i.e.
∣∣supp(Q)

∣∣ = 1), then P⊗n � Q⊗n holds for any P and n, so this

case is rather uninteresting.

Proposition 5.2.5. Let P = P ↓ : [dP ] → R and Q = Q↓ : [dQ] → R be two probability

distributions with dQ > 1 and assume that

min
α∈[0,∞]

Hα(P )
Hα(Q) > 1. (5.75)

For sufficiently large n

P⊗n � Q⊗n (5.76)

Proof. If dP = 1 then Hα(P ) = 0 for all α, so we may assume that dP > 1. For small δ > 0, let

Pδ(i) =



P (1) + δ if i = 1,

P (i) if 1 < i < dP ,

P (dP )− δ if i = dP .

(5.77)
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Qδ(i) =



Q(1)− δ if i = 1,

Q(i) if 1 < i < dQ,

Q(dQ) + δ if i = dQ.

(5.78)

When δ is sufficiently small

min
α∈[0,∞]

Hα(Pδ)
Hα(Qδ)

> 1. (5.79)

By applying Propositions 5.2.3 and 5.2.4 to Pδ and Qδ, we get for large n

P⊗n � P⊗nδ � Q⊗nδ � Q⊗n. (5.80)

We have now established a sufficient condition for asymptotic majorization. In fact this

condition is almost necessary, since for α ∈ (0,∞) the α-Rényi entropy is strictly Schur-concave:

Proposition 5.2.6. Let P and Q be two probability distribution with P � Q. Then either

P ↓ = Q↓ (5.81)

or

Hα(P ) > Hα(Q) for all α ∈ (0,∞). (5.82)

I.e. Hα is strictly Schur-convcave for α ∈ (0,∞); see [51, 3.A.1].

For a proof of Proposition 5.2.6 see e.g. [51, 3.C.1.a], which applied to the map p 7→ −p log p

shows that H1 is strictly Schur-concave. Applying [51, 3.C.1.a] to the map p 7→ pα, shows that

P 7→
∑
i P (i)α is strictly Schur-concave for α ∈ (0, 1) and strictly Schur-convex for α ∈ (1,∞).

So Hα is strictly Schur-concave for all α ∈ (0,∞).

Using the fact that Hα(P⊗n) = nHα(P ), we may sum up the contents of Propositions 5.2.5

and 5.2.6 as follows: When P ↓ 6= Q↓;

∀α ∈ [0,∞] : Hα(P ) > Hα(Q)

⇓ Proposition 5.2.5

∃n ∈ N : P⊗n � Q⊗n

⇓ Proposition 5.2.6

∀α ∈ (0,∞) : Hα(P ) > Hα(Q).

(5.83)
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Remark 5.2.7. It is natural to ask if we can make requirements at 0 and ∞ in order to get

a biimplication, that is, if we can determine ∃n ∈ N : P⊗n � Q⊗n entirely from comparing

Rényi entropies. It seems that in order to do so, we would have to be more careful with our

estimations. I cautiously conjectures that requiring a weak inequality at ∞ is sufficient, and that

the requirement of a sharp inequality at 0 could be replaced by a similar condition regarding the

α-Rényi entropies for negative α.

Definition 5.2.8. When P and Q are probability distributions with finite support, we let

E(P,Q) = sup
{
r ∈ R≥0

∣∣∣ for large n P⊗n � Q⊗bnrc
}
. (5.84)

When |supp Q| = 1, E(P,Q) =∞.

Theorem 5.2.9. Given finitely supported probability distributions P and Q, with |supp(Q)| > 1,

E(P,Q) = min
α∈[0,∞]

Hα(P )
Hα(Q) . (5.85)

Proof. Let r < minα∈[0,∞]
Hα(P )
Hα(Q) . Then for large n

min
α∈[0,∞]

Hα(P⊗n)
Hα(Q⊗bnrc)

= min
α∈[0,∞]

n

bnrc
Hα(P )
Hα(Q) > 1. (5.86)

By Proposition 5.2.5, P⊗n � Q⊗bnrc.

Let r > minα∈[0,∞]
Hα(P )
Hα(Q) and choose some αr such that r > Hαr (P )

Hαr (Q) . Then for large n

Hαr(P⊗n)
Hαr(Q⊗bnrc)

= n

bnrc
Hαr(P )
Hαr(Q) < 1. (5.87)

By Proposition 5.2.6 P⊗n � Q⊗bnrc.

5.3. Success probability going to 1

In Chapter 4 we considered optimal extraction rates where the success probability was allowed

to go to 0. Setting r = 0 in equation Eq. (4.53) gives the optimal extraction rate between the

two states, where the success rate is allowed to go to 0, but not exponentially fast. This is a

good candidate for the optimal extraction rate, when we demand that the success probability

goes to 1, the rate which we called EP in Eq. (5.2).

Indeed, as is shown in Theorem 5.3.3 below, setting r = 0 in Eq. (4.53) gives a formula for

EP(ψ, φ).
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Proposition 5.3.1. Let P = P ↓ : [dP ]→ R and Q = Q↓ : [dQ]→ R be probability distributions,

such that

min
α∈[0,1]

Hα(P )
Hα(Q) > 1. (5.88)

Then for sufficiently large n
√
xn |ψP 〉�n

LOCC−−−−→ |ψQ〉�n (5.89)

for some sequence of xn ≥ 1 with xn → 1. That is, one can asymptotically transform n copies

of |ψ〉 to n copies of |φ〉 with probability of success going to 1 as n→∞.

Proof. Analogue to the proof of Proposition 5.2.5, if we assume that we have proven the statement

of Proposition 5.3.1 for all non-uniform P and Q with P (1) > P (2). Then for general P and Q

satisfying Eq. (5.88), we let Pδ and Qδ be non-uniform probability distributions with P � Pδ
and Qδ � Q, such that minα∈[0,1]

Hα(P )
Hα(Q) > minα∈[0,1]

Hα(Pδ)
Hα(Qδ) > 1. Then by Theorem 5.0.1 and

Proposition 5.3.1 for Pδ and Qδ, the statement follows for P and Q. So without loss of generality,

we can assume that P and Q are satisfy the conditions of Proposition 5.2.3.

|ψP 〉�n = |ψP⊗n〉 =
∑

I∈[dP ]n

√
P⊗n(I) |II〉 . (5.90)

From Eq. (5.88) we conclude that H(P ) > H(Q). Let V ∗ > −H(P ) be chosen such that

Proposition 5.2.3 applies. Set tn = 2nV ∗ and note that

|ψP 〉�n
LOCC−−−−→

∑
I∈[dP ]n

min(
√
P⊗n(I),

√
tn) |II〉 . (5.91)

Let xn =
(∑

I∈[dP ]n min(P⊗n(I), tn)
)−1

such that

|ηn〉 =
√
xn

∑
I∈[dP ]n

min(
√
P⊗n(I),

√
tn) |II〉 (5.92)

is normalized and
√
xn |ψP 〉�n

LOCC−−−−→ |ηn〉 . (5.93)

The proof is complete, when it is shown that xn → 1 and |ηn〉
LOCC−−−−→ |ψQ〉�n for large n.

To see that xn → 1, first note that

∑
I∈[dP ]n

min(P⊗n(I), tn) ≥ 1−
∑

I∈[dP ]n

P⊗n(I)≥tn

P⊗n(I). (5.94)

By Eq. (5.36), since P is non-uniform and V ∗ > −H(P ),

lim
n→∞

1
n

log
∑

I∈[dP ]n

P⊗n(I)≥tn

P⊗n(I) = MP (V ∗) < 0, (5.95)
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which implies

lim
n→∞

∑
I∈[dP ]n

P⊗n(I)≥tn

P⊗n(I) = 0. (5.96)

So by Eq. (5.94), xn → 1.

To see that |ηn〉
LOCC−−−−→ |ψQ〉�n for large n, let Pn ∈ P([dP ]n) be the probability distribution

given by Pn(I) = xn min(P⊗n(I), tn), such that |ηn〉 = |ψPn〉. By Theorem 5.0.1, it must be

shown that Pn � Q⊗n for large n. When N is large enough that P⊗n↓(N) ≤ 2nV ∗ , then for all

i ≥ N , P ↓n(i) = xnP
⊗n↓(i) ≥ P⊗n↓(i), so

N−1∑
i=1

P ↓n(i) ≤
N−1∑
i=1

P⊗n↓(i). (5.97)

And by Proposition 5.2.3, we have for large n
N−1∑
i=1

P ↓n(i)
Eq. (5.97)
≤

N−1∑
i=1

P⊗n↓(i)
Proposition 5.2.3

≤
N−1∑
i=1

Q⊗n↓(i). (5.98)

What remains is to deal with all N such that P⊗n↓(N) > 2nV ∗ . To this end, let N∗ be the

largest number such that P⊗n↓(N∗) > 2nV ∗ . By Eq. (5.98)
N∗∑
i=1

P ↓n(i) ≤
N∗∑
i=1

Q⊗n↓(i), (5.99)

and since P ↓n(i) = xntn is constant for i ∈ [N∗], we have
N∑
i=1

P ↓n(i) ≤
N∑
i=1

Q⊗n↓(i) (5.100)

for all N ≤ N∗.

Using Hα(P⊗n) = nHα(P ), we obtain the following:

Corollary 5.3.2. Given n,m ∈ N with

m

n
> min

α∈[0,1]

Hα(P )
Hα(Q) . (5.101)

Then
√
xk |ψ〉⊗nk

LOCC−−−−→ |φ〉⊗mk (5.102)

for large k and some sequence xk → 1.

Corollary 5.3.2 and Eq. (4.53) with r = 0, yield respectively a lower and upper bound on

EP(ψ, φ), which can be summed up as:

Theorem 5.3.3. Given probability distributions P and Q

EP
(
ψP , ψQ

)
= min

α∈[0,1]

Hα(P )
Hα(Q) . (5.103)
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5.4. Minimizing the ratio of Rényi entropies

In Theorem 5.2.9 and Theorem 5.3.3, we are minimizing the same ratio Hα(P )
Hα(Q) , but over different

intervals. So EP(ψP , ψQ) = E(ψP , ψQ) if and only if the minimum is attained at α ∈ [0, 1]

and one might ask when this happens. Let us first study what happens in the simplest case

of binary probability distributions; suppP ↓ = suppQ↓ = {1, 2}, such that the corresponding

quantum states are qubits. If P ↓(1) ≤ Q↓(1), then P � Q, which implies that E(P,Q) ≥ 1.

But H0(P )
H0(Q) = log(2)

log(2) = 1, so the minimum is attained at α = 0. To see what happens when

P ↓(1) > Q↓(1) we need the following lemma.

Lemma 5.4.1.

f(x) = log
(
xα + (1− x)α

)
log x (5.104)

is an increasing function for x ∈ (0, 1), when α > 1 and a decreasing function for x ∈ (0, 1),

when α ∈ (0, 1)

Proof. Let us assume that α > 1.

f(x) = log
(
xα + (1− x)α

)
log x =

log (xα) + log
(
1 + ( 1

x − 1)α
)

log x

= α+
log

(
1 + ( 1

x − 1)α
)

log x = α−
log

(
1 + ( 1

x − 1)α
)

log 1
x

,

(5.105)

by substituting y = 1
x − 1, it suffices to show that g : y 7→ log(1+yα)

log(1+y) is increasing for y > 0.

Taking the derivative of g gives

g′(y) = αyα (1 + y) log (1 + y)− y (1 + yα) log (1 + yα)
y (1 + y) (1 + yα) log (1 + y)2 , (5.106)

which is positive if and only if the numerator is positive. This is equivalent to

αyα (1 + y) log (1 + y) > y (1 + yα) log (1 + yα) (5.107)

which is equivalent to

(1 + y) log (1 + y)
y log(y) >

(1 + yα) log (1 + yα)
yα log (yα) . (5.108)

Since the maps z 7→ 1+z
z and z 7→ log(1+z)

log(z) are decreasing for z ∈ (0, 1) and z ∈ (1,∞) and

since yα > y and yα and y belong to the same interval, we conclude that Eq. (5.108) holds and

therefore f is increasing. When α ∈ (0, 1) we have yα < y for y > 0, so the inequalities flip and

f is therefore decreasing.

Proposition 5.4.2. When P and Q are probability distributions with
∣∣supp(P )

∣∣ =
∣∣supp(Q)

∣∣ = 2,

the minimum minα∈[0,∞]
Hα(P )
Hα(Q) is attained at either α = 0 or α =∞.
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Proof. As we already saw, when P ↓(1) ≤ Q↓(1), the minimum is attained at α = 0. Assume

instead that p = P ↓(1) > Q↓(1) = q. For any α 6∈ {0, 1,∞},

Hα(P )
H∞(P ) =

1
1−α log

(
pα + (1− p)α

)
− log p , (5.109)

which by Lemma 5.4.1 is larger than
1

1−α log
(
qα + (1− q)α

)
− log q = Hα(Q)

H∞(Q) . (5.110)

So
Hα(P )
Hα(Q) >

H∞(P )
H∞(Q) . (5.111)

By continuity in α, there is at least weak inequality for α ∈ {0, 1}.

In order to get α ∈ (0,∞) into play, we thus need to consider probability distributions with

support larger than 2. When the support is larger than 2, we sometimes get minimizations on the

interior of the interval, and the minimizing α can be both larger and smaller than 1. For instance

when
(
P (1), P (2), P (3)

)
=
(

5
8 ,

1
3 ,

1
24

)
and

(
Q(1), Q(2), Q(3)

)
=
(

2
3 ,

1
5 ,

2
15

)
, the minimizing α is

around α ≈ 0.802, with a rate Hα(P )
Hα(Q) ≈ 0.9168. Or when

(
P (1), P (2), P (3)

)
=
(

1
2 ,

5
12 ,

1
12

)
and(

Q(1), Q(2), Q(3)
)

=
(

1
2 ,

1
4 ,

1
4

)
, the minimizing α is around α ≈ 1.96, with a rate Hα(P )

Hα(Q) ≈ 0.8591.

88



Appendix A

A.1. Inequalities

Lemma A.1.1. Let F,G : [0, 1]→ R be decreasing, strictly convex and continuously differentiable

functions with F (x) > G(x) for all x ∈ [0, 1), F (1) = G(1) = 0 and F ′(1) < G′(1). Then there

exists an ε > 0 such that for all x, y ∈ [0, 1]

F (x)− xF ′(x) ≤ G(y)− yG′(y) + ε =⇒ F (x) + (1− x)F ′(x) ≥ G(y) + (1− y)G′(y) + ε (A.1)

Proof. We start by proving (A.1) without the ε and with a sharp inequality on the right-hand-

side, since then (A.1) follows by compactness.

Let x, y ∈ [0, 1] and let g : [0, 1]→ R be the affine function

g(t) = G(y) + (t− y)G′(y)− F (x)− (t− x)F ′(x) (A.2)

We wish to prove that g(0) ≥ 0 =⇒ g(1) < 0. If x = y = 1 then g(0) = −G′(1) + F ′(1) < 0, so

in this case the implication is true. Now assume that x and y are not both 1. By convexity of G

g(x) = G(y) + (x− y)G′(y)− F (x) ≤ G(x)− F (x) ≤ 0, (A.3)

with equality if and only if x = y = 1, which we assumed was not the case. Since g is affine and

g(x) < 0 we have g(0) ≥ 0 =⇒ g(1) < 0 as wanted. This is equivalent to

F (x)− xF ′(x) ≤ G(y)− yG′(y) =⇒ F (x) + (1− x)F ′(x) > G(y) + (1− y)G′(y). (A.4)

By Lemma A.1.3 below, with X = [0, 1]× [0, 1], S(x, y) = G(y)− yG′(y)− F (x) + xF ′(x) and

R(x, y) = F (x) + (1− x)F ′(x)−G(y)− (1− y)G′(y), we get (A.1).

Lemma A.1.2. Let F,G : [1,∞)→ R be decreasing, strictly convex and continuously differen-

tiable functions with F (x) < G(x) for all x ∈ (1,∞). Assume further that F (1) = G(1) = 0,
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F ′(1) < G′(1), that limx→∞ F (x) − xF ′(x) and limy→∞G(y) − yG′(y) both exist and that

limx→∞ F
′(x) < limy→∞G

′(y). Then there exists and ε > 0 such that for all x, y ∈ [1,∞]

F (x)−xF ′(x) ≤ G(y)− yG′(y) + ε =⇒ F (x) + (1−x)F ′(x) + ε ≤ G(y) + (1− y)G′(y). (A.5)

Here x =∞ or y =∞ is to be interpreted in the sense of limits.

Proof. Like in the proof of Lemma A.1.1, we start by proving (A.5) without the ε and with a

sharp inequality on the right-hand-side.

The case y =∞ follows from the fact that F ′(x) < limy→∞G
′(y) for all x ∈ [1,∞].

Let x ∈ [1,∞] and y ∈ [1,∞). Like in the proof of Lemma A.1.1, let g : [0, 1] → R be the

affine function

g(t) = G(y) + (t− y)G′(y)− F (x)− (t− x)F ′(x). (A.6)

We wish to prove that g(0) ≥ 0 =⇒ g(1) > 0. Again, we don’t need to consider the case

x = y = 1 since then g(0) = −G′(1) + F ′(1) < 0.

By strict convexity of F ,

g(y) = G(y)− F (x)− (y − x)F ′(x) ≥ G(y)− F (y) ≥ 0, (A.7)

with equality if and only if x = y = 1, which we can assume is not the case. Since g is affine and

g(y) > 0 we have g(0) ≥ 0 =⇒ g(1) > 0, which implies

F (x)− xF ′(x) ≤ G(y)− yG′(y) =⇒ F (x) + (1− x)F ′(x) < G(y) + (1− y)G′(y). (A.8)

We consider [1,∞] with the one-point compactification topology. By Lemma A.1.3 with

X = [1,∞]× [1,∞],

S(x, y) = G(y)− yG′(y)− F (x) + xF ′(x)

and

R(x, y) = G(y) + (1− y)G′(y)− F (x)− (1− x)F ′(x),

we get (A.5).

Lemma A.1.3. Let X be a compact topological space and S,R : X → R be continuous functions.

If

S(x) ≥ 0 =⇒ R(x) > 0 (A.9)

then there is an ε > 0 such that

S(x) ≥ −ε =⇒ R(x) ≥ ε (A.10)
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Proof. The set A = {x ∈ X|S(x) ≥ 0} ⊂ X is closed and therefore compact, so R takes a

minimum value, ε1 > 0 on A. So

S(x) ≥ 0 =⇒ R(x) ≥ ε1. (A.11)

Contraposing, we get

S(x) < 0 ⇐= R(x) < ε1 ⇐= R(x) ≤ ε1/2. (A.12)

The set B = {x ∈ X|R(x) ≤ ε1/2} ⊂ X is compact, so S takes a maximum value −ε2 < 0 on B.

So

S(x) < −ε2 ⇐= R(x) ≤ ε1/2. (A.13)

Contraposing again yields

S(x) > −ε2 =⇒ R(x) > ε1/2. (A.14)

For ε = min{ε2, ε1/2} we now have

S(x) ≥ −ε =⇒ R(x) ≥ ε. (A.15)
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A.2. Bra-ket notation

Given a vector space V and a vector ψ ∈ V over a field F, we consider the linear map |ψ〉 : F→ V

|ψ〉 : z 7→ zψ. (A.16)

This association is a bijection between V and Hom(F, V ) through the canonical isomorphisms

V ∼= F ⊗ V ∼= Hom(F, V ). Often we shall write |ψ〉 ∈ V , understood via this isomorphism

between V and Hom(F, V ). This seems a little ridiculous at first, but turns out to be very

convenient notation.

When F = C, as is usually the case in quantum theory and V has an inner product 〈·, ·〉V
(conjugate linear in first entry!), this provides a natural antilinear bijection V 3 ψ ↔ 〈ψ, ·〉 ∈ V ∗.

Given a choice of bijection between V and its dual, the image of ψ ∈ V under this bijection will

be denoted 〈ψ| : V → F.

Now 〈ψ| and |ψ〉 are composable maps and we may write

|ψ〉〈ψ| = φ 7→
(
ψ∗(φ)

)
ψ (A.17)

for the map that projects onto ψ or

〈ψ||φ〉 = ψ∗(φ) if inner product= 〈ψ, φ〉 , (A.18)

for φ measured along ψ. 〈ψ||φ〉 is often shortened as 〈ψ|φ〉.

When V = CX = Hom(X,C), and x′ ∈ X, we shall denote the natural basis elements

ex : x′ 7→ δx,x′ by |ex〉 = |x〉. When V = CX ⊗ CY ⊗ CZ we shall also use the notation

|xyz〉 = |x〉 |y〉 |z〉 = |x〉 ⊗ |y〉 ⊗ |z〉 . (A.19)

As an example, consider the unnormalized GHZ state, given by |000〉+ |111〉 = |ψ〉, where ψ is

the vector e0 ⊗ e0 ⊗ e0 + e1 ⊗ e1 ⊗ e1 in the space C{0,...,d1−1} ⊗ C{0,...,d2−1} ⊗ C{0,...,d3−1}, for

some d1, d2, d3 ≥ 2.
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