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Abstract

This thesis is based on [5], which is joint work with David Schrittesser

and Asger Törnquist. We study the notion of J -MAD families where J
is a Borel ideal on ω. We show that if J is an arbitrary Fσ ideal,

or is any finite or countably iterated Fubini product of Fσ ideals, then

there are no analytic infinite J -MAD families; and assuming Projective

Determinacy there are no infinite projective J -MAD families; and under

the full Axiom of Determinacy + V “ LpRq there are no infinite J -mad

families. These results apply in particular when J is the ideal of finite

sets Fin, which corresponds to the classical notion of MAD families. The

proofs combine ideas from invariant descriptive set theory and forcing.

Resumé

Denne afhandling er baseret p̊a [5], som er lavet i samarbejde med

David Schrittesser og Asger Törnquist. Vi arbejder med J -MAD fami-

lier, hvor J er et Borel ideal p̊a ω. Vi viser at hvis J er et vilk̊arligt Fσ

ideal, eller et endelig eller tælleligt itereret Fubini produkt af Fσ idealer,

da er der ingen analytiske uendelige J -MAD familier, og under antagelse

af Projective Determinacy er der ingen projektive J -MAD familier, og

under det fulde Axiom of Determinacy + V “ LpRq er der ingen uen-

delige J -MAD familier. Disse resultater gælder specielt n̊ar J er idealet

best̊aende af endelige mængder Fin, hvilket svarer til den klassiske defini-

tion af MAD-familier. Beviserne kombinerer idéer fra invariant deskriptiv

mængdelære og forcing.



Acknowledgements

I sincerely thank my advisor Asger Törnquist for all his help and

support throughout the years, and for always believing in me. I also

thank David Schrittesser, who acted as an unofficial co-advisor for this

thesis, for a great collaboration and for taking the time to explain many a

complicated thing to me. Thanks to Vibeke Quorning and Martin Chris-

tensen for proof-reading the thesis, and to Kristian Olesen for letting me

exploit his LaTeX-skills. And last but not least, I thank my husband

Niels and my children Molly and Elmer for making me happy every day.



Contents

1 Introduction 7

2 Set theory 13

2.1 Preliminaries and notation . . . . . . . . . . . . . . . . . . . . . 13

2.2 Descriptive set theory: A study of definability . . . . . . . . . . 17

2.3 Determinacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4 Advanced set theory: Forcing, inner models, and absoluteness . 23

3 Definable J -MAD families 33

3.1 Classical MAD families (and a bit more) . . . . . . . . . . . . . 33

3.2 Simple Fubini products . . . . . . . . . . . . . . . . . . . . . . 40

3.3 Iterated Fubini products . . . . . . . . . . . . . . . . . . . . . . 54

4 Related questions 71

Bibliography 75

5





Chapter 1

Introduction

Consider a family A Ď rωsω of infinite sets of natural numbers. We say that A
is almost disjoint (short: AD) if for every two distinct A,B P A it holds that

|AXB| ă 8. Whenever we have an AD family A, we can ask if it is possible

to add another infinite set and maintain the almost disjointness of A. We say

that the AD family A is maximal (short: MAD) if this is not possible, i.e. if

for every x P rωsω the family AY txu is not almost disjoint.

We can easily find MAD families of any finite cardinality. The family

tt2n | n P ωu, t2n ` 1 | n P ωuu is one example. On the other hand there are

no countably infinite MAD families: indeed, let tAn | n P ωu be an AD family.

Construct x “ txn | n P ωu Ď ω by letting xn P Anz
Ť

iănAi be the least such

that xn ą xn´1. Then tAn | n P ωu Y txu is AD, and thus tAn | n P ωu is not

maximal.

However, infinite MAD families do exist. This is a consequence of Zorn’s

lemma. Indeed, let P be the set of all infinite, almost disjoint families partially

ordered by Ď. Note that P is non-empty; if ppkqkPω is an enumeration of the

primes and Pk :“ tpnk | n P ωu, then tPk | k P ωu P P. For any chain C in P,

consider the union
Ť

C. If A,B P
Ť

C, then since C is totally ordered, there

is some A P C such that A,B P A. Since A P P is almost disjoint, we have

|AXB| ă 8, thus proving that
Ť

C is almost disjoint. By Zorn’s lemma, there

is a maximal element in P, i.e. an infinite maximal almost disjoint family.

The non-constructive proof above gives us no information about what an

infinite MAD family looks like – all we know is that it has to be uncountable.

There are several perspectives one might take on infinite MAD families, and

from a descriptive set theoretic point of view it is natural to ask how complex

the definition of such a family would be. For this purpose, we identify the

power set Ppωq of ω with 2ω equipped with the product topology by identifying

each subset with its characteristic function. An infinite MAD family will then

7



8 CHAPTER 1. INTRODUCTION

be a subset of the Polish space 2ω, and we will in the following investigate the

possible complexity of its definition with respect to this topology.

The starting point of this area of research is Mathias’ famous result from

1969 (which was published in 1976) that there are no analytic infinite MAD

families [16]. Furthermore, he proved that assuming the existence of a Mahlo

cardinal, there is a model of ZFC in which there are no projective infinite

MAD families, and there is a model of ZF + Dependent Choice in which there

are no infinite MAD families at all. The weaker assumption that ”there is

some inaccessible cardinal” gives rise to Solovay’s model, which is a model

of ZF in which all sets of real numbers are Lebesgue measurable. In 2015,

Törnquist answered negatively the longstanding question, posed by Mathias,

about existence of infinite MAD families in Solovay’s model [21]. Horowitz and

Shelah removed the cardinal assumption altogether in 2016 by proving that ZF

+ Dependent Choice + ”There are no infinite MAD families” is equiconsistent

with ZFC [7].

The proofs in the present thesis are based on a Mathias-like forcing to-

gether with ideas from invariant descriptive set theory, which is the theory of

definable equivalence relations and invariance properties. This turned out to

be a fruitful approach, which led to a variety of results. Let us start by pre-

senting the most fundamental theorem, which was also showed independently

by Neeman and Norwood [20] using different methods:

Theorem 1.0.1. 1. Under ZF + Dependent Choice + Projective Deter-

minacy, there are no projective infinite MAD families.

2. Under ZF + Axiom of Determinacy + V “ LpRq, there are no infinite

MAD families.

The notion of almost disjointness easily generalizes to other ideals, which

we think of as collections of sets considered to be ”small” in some sense. Let

towards this end Fin denote the ideal on ω consisting of finite sets and let

Fin` denote the co-ideal. Then an AD family A Ď Ppωq is a family that

satisfies A Ď Fin` and for every two distinct A,B P A, the intersection

A X B P Fin. Consider now a countable set S, and let J be any ideal on S

with corresponding co-ideal J `. We say that a family A Ď PpSq is J -almost

disjoint (short: J -AD) if A Ď J ` and for every distinct A,B P A we have

AXB P J , and we say that A is maximal J -almost disjoint (short: J -MAD)

if it is maximal among J -AD families. The natural question to ask, which

has also been the motivation for the rest of the present thesis, is this:
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Question 1.0.2. For which ideals J do the non-existence results about MAD

families also apply to J -MAD families?

We will investigate a large class of Borel ideals, namely iterated Fubini

products of Fσ ideals. First, we study Fσ ideals, which are ideals that are

countable unions of closed sets. By a result of Mazur, any Fσ ideal is given

as the finite part of a lower semicontinuous submeasure, in the sense that any

Fσ ideal is of the form Finpφq “ tX Ď ω | φpXq ă 8u where φ is a lower

semicontinuous submeasure [17]. Note that Fin is Fσ, and given as the finite

part of the counting measure. As in the case of Fin, it is not hard to see that

for any Fσ ideal J there are J -MAD families of any finite cardinality, but

no countably infinite J -MAD family. Moreover, Zorn’s lemma also yields the

existence of an infinite J -MAD family. We prove the following:

Theorem 1.0.3. Let J Ď Ppωq be an Fσ ideal on ω.

1. There are no analytic infinite J -MAD families.

2. Under ZF + Dependent Choice + Projective Determinacy, there are no

projective infinite J -MAD families.

3. Under ZF + Determinacy + V “ LpRq, there are no infinite J -MAD

families.

In order to generalize this result even further, let pSk, IkqkPω be a sequence

of countable sets together with ideals, and let I be an ideal on ω. We construct

an ideal ‘IIk on S “
Ů

kPω Sk called the Fubini sum of pIkqkPω over I in the

following way:

‘IIk “ tI Ď S | tk P ω | I X Sk R Iku P Iu.

Note that if Sk “ ω and Ik “ I “ Fin for every k P ω, then the Fubini sum

equals the well-known ideal

FinbFin “ tI Ď ω ˆ ω | tn P ω | tm P ω | pn,mq P Iu is infinite u is finiteu.

We prove the following:

Theorem 1.0.4. Let J “ ‘IIk, where I, Ik are Fσ ideals on ω for every

k P ω.

1. There are no analytic infinite J -MAD families.

2. Under ZF + Dependent Choice + Projective Determinacy, there are no

projective infinite J -MAD families.
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3. Under ZF + Determinacy + V “ LpRq, there are no infinite J -MAD

families.

This notion of Fubini sums will be iterated into the transfinite, as will be

defined in Section 3.3. This way we obtain Borel ideals of aribitrarily high

complexity [22, Chapter 2], and we generalize the previous result even further:

Theorem 1.0.5. Let J “ Finp~φq be a Borel ideal as defined in Section 3.3.

1. There are no analytic infinite J -MAD families.

2. Under ZF + Dependent Choice + Projective Determinacy, there are no

projective infinite J -MAD families.

3. Under ZF + Determinacy + V “ LpRq, there are no infinite J -MAD

families.

This means that the Borel ideals which satisfy these results concerning non-

definability of corresponding MAD families lie cofinally in the Borel hierarchy.

The proofs of the theorems above all follow the same pattern. In order

to give an idea of this pattern we will now sketch a proof of the most basic

case, namely when the family A is analytic Fin-almost disjoint. The following

is therefore a sketch of a new proof of Mathias’ classical result that such a

family cannot be maximal.

Given an analytic AD-family A, we define a forcing notion, closely related

to Mathias forcing, which allows us to build a generic element which is infinite

and almost disjoint to everything inA. We denote by xG the generic real added

by this forcing. Since A is analytic, we can represent A by the projection of the

infinite branches through some countable tree T , i.e. A “ πrT s. We show the

Main Proposition (3.1.5), stating that for any generic G the set πrT sYtxGu

is almost disjoint also in the forcing extension. In order to prove the Main

Proposition we define for x Ď ω a pruned subtree T x Ď T that consists of the

nodes in T that have an extension whose projection intersects x in an infinite

set. In other words, T x is the subtree of T consisting of the nodes that have

infinite extensions that would witness non-almost disjointness of πrT s and x.

Then txu Y πrT s is almost disjoint if and only if T x “ H. It is not that

hard to see that the function x ÞÑ T x is invariant under E0-equivalence, i.e.

that for xE0z we have T x “ T z. For a generic G, the tree T xG is therefore

definable from the equivalence class rxGsE0 . Now we use a diagonalization

property of the forcing to prove that the sets that are hereditary definable

using parameteres from V Y trxGsE0u are in fact in V . The next crucial

ingredient in the proof is the Branch Lemma (3.1.14), which ensures that
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T xG does not split in the first coordinate, and that πrT xGs therefore has at

most one element. Now we see that if πrT xGs “ tyu, then y is definable

from rxGs and thus y P V . Moreover, since T xG Ď T , we obtain y P A. By

definition of T xG , we have xG X y R Fin, contradicting the definition of xG
which made sure that xG was almost disjoint from everything in A. Thus

πrT xGs “ T xG “ H for any generic G, and this proves the Main Proposition.

The fact that A cannot be maximal now follows from an absoluteness lemma.

In the proofs of all the other cases, where both the complexity of A and

the complexity of the Borel ideal in addition to the background theory varies,

we exploit the tree structure of A in the given setting to prove an analogue

of the Main Proposition by means of an invariant subtree and an analogue of

the Branch Lemma. The theorems above follow from the Main Proposition

by the already mentioned absoluteness lemma. The least straightforward part

is the proof of the Branch Lemma, which demands more work in the higher

dimensional cases. We will need to define an intermediary object Ux 9G with a

tree-like structure, and a well-founded partially ordered set Γ to keep track of

which elements that are forced into Ux 9G . The well-foundedness of Γ together

with a couple of lemmas that allow us to alter both the finite and the infinite

part of a forcing condition while maintaining that something is forced about

Ux 9G will then yield the wanted contradiction if we assume that the invariant

subtree has more than one branch.

The thesis is structured as follows:

In Chapter 2 we explain the background theory used in the thesis. The

chapter is divided into the following sections:

In Section 2.1 we give a few basic definitions and establish some notation.

In Section 2.2 we introduce the subject of definability in descriptive set

theory. We describe the Borel hierarchy and the projective hierarchy, and we

give several equivalent definitions of being analytic. We also briefly explain

the idea of invariant descriptive set theory.

In Section 2.3 we define determinacy and discuss a few crucial consequences

of the determinacy axioms.

In Section 2.4 we give an informal introduction to forcing, and give an

example of how forcing is used to prove independency of the continuum hy-

pothesis. We also define classical Mathias forcing. Moreover, we introduce

the subject of inner model theory and define the inner model L. We also state

lemmas which allows us to assume that our J -MAD families are κ-Suslin wit-

nessed by a tree from a model where PpPpωqq is countable. Finally, we discuss

the notion of absoluteness between models, and prove an absoluteness lemma

which will be used throughout the thesis.
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In Chapter 3 we are ready to see the proofs of the main results of the

present thesis.

In Section 3.1 we prove Theorem 1.0.3 for any Fσ ideal I. We define the

Mathias forcing MI relative to an ideal I. We claim the Main Proposition

3.1.5, saying that in this forcing extension, the AD-family in question is not

maximal, and use absoluteness to see that this holds in general. In order to

prove this proposition, we first collect some facts about the forcing. Then we

move on to the actual proof, which to great extent relies on the definition of

an invariant tree and the purely combinatorial Branch Lemma 3.1.14.

In Section 3.2 we prove Theorem 1.0.4. The structure is similar to that of

Section 3.1, however the proof of the corresponding Branch Lemma 3.2.11

is much more involved.

In Section 3.3 we prove Theorem 1.0.5. We introduce the α-dimensional

Fubini product Finp~φq, and define an α-dimensional version MI
α of MI . The

structure is again similar to that of Section 3.2, but the proofs are even more

intricate.

In Chapter 4 we discuss a few questions that could be interesting to pursue,

and also the general open problem of for which Borel ideals on ω one can hope

to achieve analogues of Theorem 1.0.5.



Chapter 2

Set theory

2.1 Preliminaries and notation

Sets and sequences

We will denote the natural numbers including zero by ω. By a natural number

n P ω we understand the ordinal n “ t0, . . . , n´ 1u.

Let X be a set. We denote the powerset of X by PpXq. The set of finite

subsets of X is denoted rXsăω, while rXsω denotes the set of countably infinite

subsets of X. For a P rXsăω and b P rXsăωYrXsω, we write a Ď b if and only

if a Ď b and n P bzañ n ą maxpaq.

We let Xăω denote the set of finite sequences in X, i.e.

Xăω “ tps0, . . . , sn´1q | n P ω ^ p@i ă nq si P Xu.

For a finite sequence s “ ps0, . . . , sn´1q P X
ăω, we let lhpsq “ n denote the

length of s. For m ď n, we let sæm “ ps0, . . . , sm´1q. If s, t P Xăω, we

say that s is an initial segment of t and t extends s if s “ tæm for some

m ď lhptq, and we write s Ď t. If s Ď t and lhptq ą lhpsq, then we write

s Ĺ t and say that t is a proper extension of s. Two finite sequences that

satisfies that one is an initial segment of the other are called compatible. If

this is not the case, the sequences are incompatible. The concatenation of

s “ ps0, . . . , sn´1q P X
ăω and t “ pt0, . . . , tm´1q P X

ăω is denoted s"t and

defined by s"t “ ps0, . . . , sn´1, t0, . . . , tm´1q. If a P X we write s"a for the

sequence ps0, . . . , sn´1, aq.

The set of infinite sequences in X is denoted by

Xω “ tpxkqkPω | p@k P ωq xk P Xu.

13



14 CHAPTER 2. SET THEORY

For x P Xω and m P ω we let xæm “ px0, . . . , xm´1q. We say that s P Xăω and

x P Xω are compatible if s is an initial segment of x, i.e. if there exists n P ω

such that s “ xæn. The concatenation of a finite sequence s “ ps0, . . . , snq P

Xăω and an infinite sequence x “ pxkqkPω P X
ω is the infinite sequence given

by s"x “ ps0, . . . , sn´1, x0, x1, . . . q.

Note that Xδ in general can be viewed as a set of functions f : δ Ñ X.

For X “ 2 “ t0, 1u, a function f : δ Ñ 2 can be identified with the subset of

δ for which f is the characteristic function, so 2δ can be identified with Ppδq.

Trees

Let X be a set. A tree on X is a set T Ď Xăω of finite sequences, which

is closed under initial segments, i.e. if t P T , then for any m ď lhptq the

restriction tæm P T . Given a tree T , we can consider the set rT s of branches

through T ;

rT s “ tx P Xω | p@n P ωq xæn P T u.

For t P T we can also define trees

Tt “ tu P X
ăω | t"u P T u

and

Trts “ tu P T | u is compatible with tu.

We say that a tree T is well-founded if rT s “ H. For a well-founded tree T

we can recursively define a rank function ρT : T Ñ ω1 in the following way:

ρT ptq “ suptρT puq ` 1 | u P T, t Ĺ uu.

The rank of T is defined by ρpT q “ suptρT ptq ` 1 | t P T u. We say that

t P T is terminal if for every s P S we have t"s R T , i.e. if ρT ptq “ 0. Note

furthermore that ρT ptq “ ρTtpHq.

Trees can also be defined on finite product spaces. Let X0, X1 be a sets.

We follow established descriptive set theoretic conventions and call a tree T on

X0ˆX1 a subset of Xăω0 ˆXăω1 which is closed under initial segments and such

that pt0, t1q P T ñ lhpt0q “ lhpt1q (compare [10, 2.C]). Given t “ pt0, t1q P T ,

let πptq “ t0 be the projection onto the first coordinate. For any s P T , Trss “

tt P T | t is compatible with su, and Ts “ tt P
Ť

nPωX
n
0 ˆ Xn

1 | s
"t P T u.

Naturally we set

rT s “ tpx0, x1q P X
ω
0 ˆX

ω
1 | p@n P ωq px0æn, x1 æ nq P T u,
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and for w “ px0, x1q P rT s, we let πpwq “ x0 denote the projection onto the

first coordinate. Finally we write

πrT s “ tx0 P X
ω
0 | pDx1 P X

ω
1 q px0, x1q P rT su.

Ideals

Fix a countable set S. An ideal on S is a family J Ď PpSq satisfying

1. H P J ;

2. if A P J , then for any subset B Ď A we have B P J ;

3. if A P J and B P J , then AYB P J .

We denote by Fin the ideal of finite sets.

Given an ideal J , we write J ` to denote the co-ideal, i.e.,

J ` “ tA Ď S | A R J u.

For A, B P PpSq, we write

A Ď˚J B ô pDI P J q A Ď B Y I.

We write A Ď˚ B for A Ď˚Fin B.

We say that a family A Ď PpSq is J -almost disjoint (short: J -AD) if

A Ď J ` and for any A, B P A we have A X B P J . A set A Ď PpSq is said

to be a J -MAD family if A is a J -AD family which is maximal with respect

to inclusion among J -AD families.

Definition 2.1.1. Let A Ď PpSq. By the ideal generated by A we mean the

ideal I on S defined as follows:

I “ tI Ď S | pDn P ωqpDA0, . . . , An P Aq I Ď
ď

iďn

Aiu,

i.e., the smallest (under Ď) ideal on S containing each set from A.

Suppose A Ď PpSq and J is an ideal on S. Then note that the ideal

generated by AY J is

tI Ď S | I P J _ pDn P ωqpDA0, . . . , An P Aq I Ď˚J
ď

iďn

Aiu.

We point out that if A is an infinite J -AD family then J is proper (i.e.,

S R J ; otherwise there are no non-empty, let alone infinite, J -AD families).
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To avoid trivialities we always assume that rSsăω Ď J (otherwise discard all

singletons which are not in J). Moreover we could assume
Ť

A “ S (although

we shall never need this).

We also point out that enlarging an ideal J by an infinite J -AD family

yields a proper ideal:

Lemma 2.1.2. Let S be arbitrary, J an ideal on S and A Ď PpSq a J -AD

family. If A is infinite, the ideal I generated by AY J is proper. (The other

implication holds if
Ť

A “ S.)

Proof. We show the contrapositive. Suppose S P I. Then there existA0, . . . , An P

A, J P J such that S Ď
Ť

iďnAi Y J . Since A is J -almost disjoint A “

tA0, . . . , Anu is finite; indeed, if there were A P AztA0, . . . , Anu then

A “ S XA “ pYiďnAi XAq Y pJ XAq P J .

For the last claim, suppose
Ť

A “ S; show the contrapositive. If A is

finite, then S Ď
Ť

APAA, and thus S P I.

A submeasure on ω is a function φ : Ppωq Ñ r0,8s which satisfies

• φpHq “ 0;

• φpXq ď φpY q for X Ď Y ;

• φpX Y Y q ď φpXq ` φpY q for X,Y P Ppωq;

• φptnuq ă 8 for every n P ω.

We say that φ is lower semi-continuous (lsc) if identifying Ppωq with 2ω

carrying product topology, it is lower semi-continuous as a function φ : 2ω Ñ

r0,8s, i.e., if Xn Ñ X implies lim infnÑ8 φpXnq ě φpXq. For submeasures,

this is equivalent to saying that φpXq “ limnÑ8 φpX X nq.

As mentioned already in the introduction, an Fσ set is a countable union

of closed sets. Given a submeasure φ on ω, the family

Finpφq “ tX P Ppωq | φpXq ă 8u

is an Fσ ideal on ω and every Fσ ideal J Ě Fin arises in this way [17, 1.2].
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2.2 Descriptive set theory: A study of definability

Descriptive set theory is the study of ”definable” subsets of certain well-

behaved topological spaces called Polish spaces, where the notion of defin-

ability is referring to the topological definition of the set. In this section we

will review some of the most basic definitions and results. For a more thorough

exposition, the reader is referred to [10].

Definition 2.2.1. Let pX, T q be a topological space. If pX, T q is separable

and completely metrizable, then we say that pX, T q is Polish.

An important example of a Polish space is the real line R with the usual

topology. Moreover, any countable set X equipped with the discrete toplogy

is Polish, and so is the product Xω of countably infinitely many copies of the

countable, discrete space X. The topology of a space Xω has as a basis the

sets

Ns “ tx P X
ω | xælhpsq “ su,

where s P Xăω. In general, any finite or countably infinite product of Polish

spaces is Polish.

The following characterization of closed subsets in Polish spaces of the

form Xω will turn out to be crucial in determining the definability of the

various I-MAD families that we will be looking into:

Proposition 2.2.2. Let X be a discrete, countable set. Any closed subset of

the Polish space Xω is the set of branches through some tree. Conversely, any

set of branches is closed.

Proof. Let F Ď Xω be a closed set. Consider the map F ÞÑ TF , where TF is

the following tree:

TF “ ts P X
n | n P ω ^ pDx P F q s “ xænu.

Then F “ rTF s. Conversely, if T is a tree, then rT s is a closed set: suppose

rT s ‰ Xω and let x P XωzrT s. Then there is n P ω such that xæn R T , so

Nxæn Ď XωzrT s. Since x was arbitrary, the set XωzrT s is open.

There are two Polish spaces constructed in this fashion that are of partic-

ular interest. These are the Cantor space 2ω “ t0, 1uω and the Baire space

ωω. Before we look into them, we need to establish two important hierar-

chies describing the complexity of subsets of Polish spaces, namely the Borel

hierarchy and the projective hierarchy.
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In descriptive set theory we study sets of reals (or, more generally, sub-

sets of Polish spaces) that in some sense have a simple description in terms

of topology. In general, we are mostly interested in sets that are definable

using certain basic operations from a baseline of some collection of sets, and

continuous images of such sets.

Let pX, T q be a Polish space. By alternating between taking complements

and countable unions, we obtain a hierarchy of subsets of X definable from

the open sets using only these operations. This hierarcy is called the Borel

hierarchy, and is recursively defined as follows:

• Σ0
1pXq “ open subsets of X;

• Π0
1pXq “ closed subsets of X, i.e. complements of open sets;

• For 1 ă α ă ω1, Σ0
αpXq “ t

Ť

nPω Bn | Bn P Π0
βnpXq for βn ă αu;

• For 1 ă α ă ω1, Π0
αpXq “ complements of sets in Σ0

αpXq.

• ∆0
αpXq “ Σ0

αpXq XΠ0
αpXq.

It follows immediately from the definitions that
Ť

αăω1
Σ0
αpXq “

Ť

αăω1
Π0
αpXq.

This class of sets is called the Borel sets, and it is denoted by BpXq. In other

words, a set B is Borel if and only if B P Σ0
αpXq for some α ă ω1 (or,

equivalently, B P Π0
αpXq for some α ă ω1).

Note that Σ0
2pXq are exactly the Fσ subsets of X.

Once we have defined the Borel hierarcy, we can consider projections of

Borel sets, which are called analytic sets. More precisely, a set A Ď X of

a Polish space is analytic if there exists a Polish space Y and a Borel set

B Ď XˆY such that A “ projXpBq. The co-analytic sets are complements of

analytic sets. By continuing to take projections and complements, we obtain

another hierarchy of subsets of X definable with the analytic sets as baseline,

the projective hierarchy :

• Σ1
1pXq “ analytic subsets of X;

• Π1
1pXq “ co-analytic subsets of X;

• A P Σ1
n`1pXq ô pDY PolishqpDB P Π1

npX ˆ Y qq A “ projXpBq.

• Π1
n`1pXq “ complements of sets in Σ1

n`1pXq.

• ∆1
npXq “ Σ1

npXq XΠ1
npXq.



2.2. DESCRIPTIVE SET THEORY: A STUDY OF DEFINABILITY 19

As with the Borel hierarchy, we note that
Ť

nPω Σ1
npXq “

Ť

nPω Π1
npXq. We

call this the class of projective sets, and denote it by PpXq.
The collections Σ0

αpXq and Π0
αpXq for α ă ω1 and Σ1

npXq and Π1
npXq for

n P ω are called pointclasses.

The Borel hierarchy and the projective hierarchy are two distinct entities,

since projections of Borel sets need not be Borel. Indeed, the following theorem

due to Souslin ensures this (a proof can be found in [10, Theorem 14.2]):

Proposition 2.2.3. Let X be an uncountable Polish space. Then there are

analytic subsets of X that are not Borel.

Furthermore, it turns out that the following characterization holds (for a

proof, see [10, Theorem 14.11]):

Proposition 2.2.4. A set is Borel if and only if it is both analytic and co-

analytic.

The following two results indicates the importance of the already men-

tioned Cantor space and Baire space. For proofs, see [10, Theorem 6.4 and

Theorem 13.7]. Remember that a perfect space is a space whose points are all

limit points. A subset of a space is called perfect if it is closed and perfect in

the subspace topology. Any non-empty perfect Polish space contains a copy

of the Cantor space [10, Theorem 6.2], ensuring that the cardinality of a space

satisfying these conditions is at least 2ℵ0 .

Theorem 2.2.5 (Cantor-Bendixson). Let X be a Polish space. Then X can

be uniquely written as X “ P YC, where P is a perfect subset of X and C is

countable.

This means that an uncountable Polish space contains a homeomorphic

copy of the Cantor space, thus any Polish space satisfies the Continuum Hy-

pothesis; if it is not countable, it has cardinality at least 2ℵ0 .

Theorem 2.2.6 (Lusin-Souslin). Let X be Polish and A Ď X Borel. If

A ‰ H, then there is a continuous surjection f : ωω Ñ A from the Baire

space onto A.

This implies in particular that any Polish space is the continuous image

of the Baire space. In many cases this allows us to focus on the Baire space

when studying properties of Polish spaces, as long as we can ensure that the

properties in question are preserved under continuous images.

Note that since the cardinality of the Baire space is 2ℵ0 , the two theorems

imply that any uncountable Polish space has cardinality precisely 2ℵ0 .
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There are several equivalent characterizations of a set being analytic. One

that we will use is the following:

Proposition 2.2.7. Let X be a Polish space, and let A Ď X be a subset.

Then A is analytic if and only if there is a closed set F Ď X ˆ ωω such that

A “ projXpF q.

Proof. Let A Ď X be analytic, and let Y be a Polish space and B Ď X ˆ Y a

Borel subset such that projXpBq “ A. We may assume that A, and therefore

also B, is non-empty, and by Theorem 2.2.6 there is a continuous surjection

g : ωω Ñ B. Then F “ graphpprojX ˝gq is a closed subset of ωωˆX satisfying

projXpF q “ A.

The other direction holds since closed sets are Borel.

This can be generalized in the following way: Let X be a Polish space and

κ an ordinal with the discrete topology. If A “ projXpF q, where F Ď Xˆκω is

closed, then we say that A is κ-Suslin. Note that the analytic sets are exactly

the ω-Suslin sets.

If we let X be a countable, discrete set, we obtain the following character-

ization of the analytic subsets of Xω:

Proposition 2.2.8. A set A Ď Xω is analytic if and only if there is a tree

T on X ˆ ω with A “ πrT s, where π denotes the projection onto the first

coordinate.

Proof. By Proposition 2.2.7, A is analytic if and only if it is the projection

of a closed set F Ď Xω ˆ ωω. We may view Xω ˆ ωω as pX ˆ ωqω, and by

Proposition 2.2.2 the closed set F equals the branch set of a tree TF .

Also the κ-Suslin subsets of ωω has this tree structure:

Proposition 2.2.9. A set A Ď ωω is κ-Suslin if and only if there is some

tree on ω ˆ κ such that A “ πrT s.

There is another reason why the Cantor space is significant in this context.

As already noted, it is natural to identify the power set PpSq of a countably

infinite set S with the set of infinite sequences 2S . However, in order to

talk about the topological complexity of a family of subsets of S, we need

to view the power set PpSq as a topological space. To this end, we shall

therefore rather identify PpSq with the Polish space 2ω under some fixed

bijection φ : S Ñ ω. This means that any subset A Ď S will be identified

with its characteristic function χA P 2S , and then via φ with an element in 2ω.

Moreover, this means that A Ď PpSq is κ-Suslin if and only if there is a tree
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T on 2ˆ κ such that A “ tA P PpSq | χA ˝ φ P πrT su. We shall (sloppily and

through the identifications of S with ω and χA with A) also write A “ πrT s

in such a case.

Equivalence relations and invariant descriptive set theory

Invariant descriptive set theory studies the complexity of equivalence relations

on Polish spaces. In general, one is often interested in partitioning a class

of objects by assigning invariants to them and thus defining an equivalence

relation. We would then want to decide the complexity of such an equivalence

relation, the goal being that it is less complex than the identity relation while

also conserving a substantial amount of information about the objects within

each equivalence class.

Let X and Y be Polish spaces. We say that an equivalence relation E Ď

X ˆX is Borel-reducible to an equivalence relation F Ď Y ˆ Y if there is a

Borel map (i.e. a map satisfying that the preimage of a Borel set is Borel)

f : X Ñ Y such that x0Ex1 ô fpx0qFfpx1q. If this is the case, then we say

that E is less complex than F . If they are both Borel-reducible to each other,

we say that they have the same complexity.

The tail equivalence relation E0 on ωω will play an important role in this

thesis. It is defined by

xE0y ô pDn P ωqp@m ě nq xm “ ym,

and it holds that for any Borel equivalence relation E that is not Borel re-

ducible to equality on ωω, the tail equivalence relation E0 is Borel reducible

to E [6].

For a more solid introduction, the reader is referred to [3].

2.3 Determinacy

In order to talk about determinacy, we need to introduce the concept of infinite

games. For this, let X Ď ω be a non-empty set. Two players, player I and

player II, take turns playing one element in X. The same element may be

chosen several times, and both players have full information about the moves

already made. The game is infinite, so in the end we obtain an infinite sequence

pxnqnPω of elements of X. Before the game, a payoff set A Ď Xω is defined.

If pxnqnPω P A, then player I wins. If not, player II wins.

A strategy for a player is a function f : Xăω Ñ X taking finite sequences in

X (of even length for player I, and odd for player II) as input, and producing
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an element of X. The strategy is winning if whenever the player follows the

strategy, she wins the game. We say that the game is determined if one of the

players have a winning strategy.

The question is for which payoff sets A Ď Xω the game is determined.

The Axiom of Choice (AC) ensures that not all games are determined. AC

allows, for instance, the existence of a Bernstein set, i.e. a subset A Ď t0, 1uω

such that neither A nor t0, 1uωzA contains a non-empty perfect set (see [10,

Example 8.24]). For any strategy σ :
Ť

nPωt0, 1u
φpnq Ñ t0, 1u, where φpnq is

either 2n or 2n`1, the set of possible outcomes, tx P t0, 1uω | p@n P ωq xφpnq “

σpxæφpnqqu is a non-empty perfect set. Since for a strategy for player I or

player II resp. to be winning, we need the payoff set or the complement of the

payoff set resp. to contain the set of possible outcomes, neither player can have

a winning strategy. On the other hand, Martin proved Borel determinacy in

1975, i.e. that any such game where the payoff set is Borel is determined [13].

If we instead consider the case where the payoff set is projective, the sit-

uation is more complex. In 1964, Davis proved that if all projective games

are determined, then this implies that the perfect set property holds for all

projective sets, i.e. that every projective set is either countable or contains a

non-empty perfect set [1]. Alas, this property is known to be unprovable in

ZFC. Indeed, by results of Martin and Steele [15], Neeman [19] and Woodin

[18] it is characterized by the existence of suitable large cardinals, which also

implies consistency of ZFC. By Gödel’s incompleteness theorem we cannot

prove this within ZFC itself. However, since the assumption that every pro-

jective game is determined is not known to be inconsistent with ZFC, it can

therefore be considered as an additional axiom. The axiom is called the Axiom

of Projective Determinacy, and is abbreviated PD.

From PD, one can derive many basic structural properties of the projective

sets. Many of the proofs of such regularity properties rely on the fact that

PD implies that certain projective point classes are scaled. We shall therefore

look into what this means.

A rank on a set A is a function φ : A Ñ ON. A prewellordering is a

relation which is reflexive, transitive and connected (i.e. any two elements are

related). A rank φ on A gives rise to a prewellordering ďφ on A defined by

x ďφ y ô φpxq ď φpyq.

Let A Ď ωω, and let Γ be a pointclass. Let ΓC denote the pointclass

consisting of complements of sets in Γ. A rank φ : AÑ ON is called a Γ-rank

if there are relations ďΓ
φ, ďΓC

φ Ď ωω ˆ ωω in Γ and ΓC respectively, such that
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for y P A:

φpxq ď φpyq ô x P A^ φpxq ď φpyq ô x ďΓ
φ y ô x ďΓC

φ y.

A scale on A is a sequence φn : A Ñ ON of ranks such that if pxiqiPω P A

and xi Ñ x and furthermore φnpxiq Ñ αn for every n P ω (in the sense that

there exists j P ω such that φnpxiq “ αn for every i ą j), then x P A and

φnpxq ď αn for every n P ω. If φn : AÑ κ, we say that pφnqnPω is a κ-scale.

We say that a scale pφnqnPω is a Γ-scale if every rank φn is a Γ-rank. The

pointclass Γ is called scaled if every A P Γ admits a Γ-scale. A proof of the

following (which requires only ZF + Dependent Choice) can be found in [10,

Chapter 39]:

Theorem 2.3.1. (PD) The pointclasses Π1
2n`1 and Σ1

2n`2 are scaled for

every n P ω.

For our purpose, the most important consequence of this scale property

is the fact that it can be used to give projective sets a certain tree structure.

To see this, let A be projective. We may assume that A is Π1
2m`1 for some

m P ω. Let pφnqnPω be a Π1
2m`1-scale which is also a κ-scale for some ordinal

κ. Define a tree T~φ on ω ˆ κ in the following way:

ppk0, . . . , kn´1q, pα0, . . . , αn´1qq P T~φ ô

pDx P Aq xæn “ pk0, . . . , kn´1q ^ p@i ă nq αi “ φipxq.

Then A “ πrT~φs. This means that under the assumption of PD, any projective

set can be represented as the projection of a canonical tree.

The Axiom of Determinacy (AD) states that for any payoff set the above

game is determined. This is, as noted above, inconsistent with the Axiom of

Choice. Furthermore, we note that the tree structure of projective sets that

are obtained by PD and the scale property relies on the hierarchic structure of

the projective sets. Due to the lack of hierarchic structure of all sets, AD does

not provide a canonical tree structure representation of every set. However,

AD is still a powerful assumption which implies that sets of reals are well-

behaved in the sense that they are Lebesgue measurable, they have the Baire

property and the perfect set property. For a proof, see [8, Theorem 33.3].

2.4 Advanced set theory: Forcing, inner models,

and absoluteness

Suppose we have models M,N of ZFC. Any formula which is satisfiable by

either M or N is consistent with ZFC. If there is a formula φ satisfied in N
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such that  φ is satisfied in M , then we say that φ is independent of ZFC.

Moreover, the notion of absoluteness allows us to prove a theorem in general

by considering it in a specific model.

In order to prove consistency results or to make use of absoluteness, we

need to be able to expand or shrink a given model in a controlled manner. This

is the motivation behind the theory of forcing and inner model theory. We

will give a short introduction to both forcing and inner model theory before

we look into some of the most fundamental absoluteness results. For a more

elaborate introduction, see [12] or [8].

Forcing

Forcing is an efficient technique in set theory which is used to extend models

in order to obtain new ones. In a bit more detail, we do the following: let M

be a model of ZFC. This will be referred to as the ground model. We would

like to extend the model M by adding some element G and construct the

smallest model M rGs of ZFC which contains both M and G.

In order to add such an element while keeping full control of the extended

model, we work with posets and generics. Let pP,ďq be a set P together with

a partial order, i.e. a reflexive, antisymmetric and transitive relation. Such

a pair is called a poset. Elements of P are called conditions, and if q ď p we

say that q extends p or that q is stronger than p. We say that two conditions

p, q P P are compatible if there exists some r P P such that r ď p and r ď q.

If no such r exists, we say that p and q are incompatible, and we write p K q.

A forcing poset for the model M is a countably infinite set P together with a

partial order ď and a largest element 1 such that pP,ď, 1q PM and where the

partial order ď satisfies the following:

p@p P PqpDq, r P Pq q, r ď p^ q K r. (2.4.1)

The intuition is that if we have a sequence of conditions in P that extend

each other, then the stronger conditions provide more information about the

”limit”, in the same way that smaller and smaller intervals around a real

provide more and more information about the real in question. However, we

do not know whether this ”limit” exists in M and this is exactly the point;

we want to find such a ”limit” which does not exist in the ground model, and

then add this element in order to obtain a new model which properly extends

the ground model. To detect such elements, we need to talk about dense sets

and generic filters.

Let D Ď P be a subset. We say that D is dense if for every p P P there is

some q P D such that q ď p, i.e. for every condition p there is an extension q
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which is in D. We say that a set G Ď P is a filter if for every p, q P G there is

r P G such that r ď p and r ď q, and for every p P G and q P P, if p ď q then

q P G. So in other words, for every two conditions in G there is a condition in

G extending both of them, and every weakening of a condition in G is also in

G. We say that the filter G is P-generic over M if for every dense set D Ď P
such that D PM , the intersection GXD ‰ H is non-empty.

In the following, we will assume that the ground model M is countable and

transitive. Note that this is okay to assume for our purpose, since the count-

ability assumption follows from the Löwenheim-Skolem theorem [8, Theorem

12.1] if we just assume the existence of an infinite model, while the transi-

tivity assumption is enabled by the Mostowski’s Collapsing Theorem (see [8,

Theorem 6.15]) as long as the membership relation is well-founded. Abusing

notation, we will often write P for the triplet pP,ď, 1q. We will also often say

generic (or P-generic) when we mean pP,ď, 1q-generic.

Lemma 2.4.1. If p P P, then there is a filter G which is generic over M such

that p P G.

Proof. Since M is countable, let pDnqnPω be an enumeration of all the dense

sets Dn Ď P in M . Set q0 “ p, and recursively choose qn`1 P Dn such that

qn`1 ď qn. Let G be the filter generated by tqn : n P ωu.

However, the generic filter G will not be in M :

Lemma 2.4.2. If G is P-generic over M , then G RM .

Proof. Suppose towards a contradiction that G PM , and set D “ PzG. Since

M is transitive, we have PzG “ pPXMqzpGXMq, which means that D PM .

Since P is a forcing poset, for any p P P there are incomparable q, r P P such

that q ď p and r ď p. Since G is a filter, they cannot both be in G, so one

is in D, proving that D is dense. Since G is generic, we should then have

GXD ‰ H, which contradicts the definition of D.

When we have such a generic filter G which is not in M , then there is

a transitive set M rGs called the forcing extension which is a model of ZFC

containing the same ordinals as M and that contains M Y tGu as a subset

[8, Theorem 14.5]. Moreover, M rGs is minimal with these properties. To

construct M rGs, we add the generic filter G and close under set operations

definable in M . In this process, we give each element of M rGs a P-name in

M , which describes how the element is constructed in M rGs. Even though the

name can be understood within M , the element itself will not be decidable

in M , only in M rGs. For any element x P M , there is a canonical way of
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representing x by a P-name, x̌, decorated by a check. P-names of elements in

M rGszM are on the other hand decorated with dots, 9x. Since the P-names

are expressible inside M , then given any particular generic filter G, one can

also define how a P-name should be interpreted as a set in the specific model

M rGs. This is done such that P-names of elements of M are interpreted as

themselves. Abusing notation, we will therefore sometimes confuse an element

x PM with its name x̌.

We are now able to make first-order logic statements about M rGs express-

ible inside M by use of membership as binary relation and P-names as constant

symbols, and this language is called the forcing language. Such statements,

though expressible in M , are not necessarily decidable in M since their truth

value in general depend on the generic G. However, finite information about

G might be enough to determine the truth of a statement in the forcing lan-

guage. We define the forcing relation in the following way: if φ is a formula in

the forcing language and p P P, then p , φ if and only if M rGs satisfies φ for

every generic filter G containing p. In other words, this property is ”forced”

to hold in the extension M rGs, even though we only have partial information

about G (namely that p P G), and we say that p forces φ.

The powerful forcing theorem now states that for any formula φ in the

forcing lanuguage and any generic filter G, we have M rGs |ù φ if and only if

there is some p P P such that p , φ [8, Theorem 14.6]. In other words, for

any theorem of M rGs there is a finite p P P that forces it, meaning that truth

in M rGs of formulas in the forcing language can be decided within M .

The art of forcing is to find the suitable poset given a formula that we

would like to hold in the forcing extension. We want to build the poset in

such a way that each condition consists of a small fraction of sets of the kind

we need in order to prove the theorem in question. The generic filter is then

able to single out the object we want to add. However, we need to ensure

that the building blocks satisfies the poset axioms. If a proper poset P can be

defined, a sufficiently strong p P P will force the wanted statement.

A classical example is the independency result of the Continuum Hypothe-

sis (CH). We will sketch the proofs, in order to give the unexperienced reader

an overall idea of how forcing works [8, Theorem 14.32], [2]:

Example 2.4.3 (The Continuum Hypothesis). To prove that  CH is consis-

tent with ZFC, let M be a countable, transitive model of ZFC and let κ be

some ordinal such that M ( |κ| “ ℵ2, and let P be the poset of finite partial

functions from κˆ ω to t0, 1u. A generic filter G through this poset will then

correspond to a total function fG : κ ˆ ω Ñ t0, 1u. For each x P κ, we can

now define a function fx : ω Ñ t0, 1u by fxpnq “ fGpx, nq. Using genericity of
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G, it is not hard to prove that if x, y P κ and x ‰ y, then fx ‰ fy; indeed, the

set

D “ tp P P | ppx, nq ‰ ppy, nq for some nu

is dense in P and thus GXD ‰ H. Furthermore, each function fx corresponds

to a subset of ω, and thus the power set of ω has cardinality at least |κ|.

Moreover, it is one of the most fundamental results in forcing that if P satisfies

the countable chain condition, i.e. that any antichain in P is at most countable,

then P preserves cardinals [8, Theorem 13.34]. Since it can be showed that

P above has the countable chain condition, this means that |κ| “ ℵMrGs2 , and

this proves that  CH holds in the extension and is therefore consistent with

ZFC.

To see that CH is consistent with ZFC, let in stead P be the poset of count-

able (in M) partial functions from ℵM1 to PpωqM . Since the generic intersects

all dense subsets of P, for instance the sets Dx “ tp P P | ppxq is definedu

for x P ℵM1 and tp P P | pDxq ppxq “ ru for any r P Ppωq, the generic is a

totally defined surjection. So |PpωqM | ď |ℵM1 | in the extension. We only need

to show that PpωqM “ PpωqMrGs, and to see this we show that a function

f : ω Ñ t0, 1u in M rGs is actually contained in M . We can define a descend-

ing sequence of elements of P forcing more and more of f̌ . The union of this

is itself a countable function, and knows all values of f .

The forcing notion used in this thesis is based on Mathias forcing. Let us

introduce this, and establish some general facts:

Definition 2.4.4 (Mathias forcing). An element of the poset M in Mathias

forcing is a pair pa,Aq where a P rωsăω and A P rωsω are such that maxpaq ă

minpAq. The poset is ordered by

pa1, A1q ď pa,Aq ô a Ď a1 ^ a1 Ď aYA^A1 Ď A.

The maximal element is pH, ωq. Note how the order ensures that stronger

conditions fixes larger and larger finite sequences, while at the same time

narrowing the infinite set in which the sequence is allowed to grow. Note also

that this poset satisfies the condition 2.4.1: Let pa,Aq P M. Let b0 Ď A and

b1 Ď A be finite and disjoint subsets. Then pa,Azb0q, pa,Azb1q ď pa,Aq and

pa,Azb0q K pa,Azb1q.

Let G be a generic for the forcing, and let xG “
Ť

ta | pDAq pa,Aq P Gu

denote the union of the finite parts of the conditions in G. Note that for any

p P M we have p , appq Ď 9G. Furthermore xG is infinite; indeed, suppose

towards a contradiction that this does not hold. Then by the forcing theorem
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there is a forcing condition p P M and some n P ω such that p , x 9G Ď n. Let

now d P rωsăω be a finite set such that appq Ď d Ď appqYAppq and maxpdq ą n,

and set D “ tn P Appq | n ą maxpdqu. Then pd,Dq ď p, so pd,Dq , x 9G Ď n,

contradicting the fact that pd,Dq , d Ď x 9G and maxpdq ą n.

Furthermore, xG is not in the ground model. If this was not true, then the

dense set DxG “ tq | apqq Ę xGu would be in the ground model as well, but

DxG does not intersect the generic.

The set xG is called a Mathias real. One can put further restrictions on the

infinite sets, in order to steer the Mathias real in the direction that we want.

As we will see, this can for instance be done such that the generic almost

avoids every element in an AD-family.

Inner Model Theory

An inner model of ZF (or ZFC) is a transitive class that contains all the

ordinals and satisfies the axioms of ZF (or ZFC, respectively). It is called an

inner model because it can be viewed as an inner universe of the von Neumann

universe V .

The first non-trivial example of an inner model of ZF is Gödel’s con-

structible universe L. Before we give the formal definition, we remember that

a set X is definable over a model pM, Pq if there exists a formula φ in the

language of the model and some a0, . . . , an P M such that X “ tx P M |

pM, Pq ( φrx, a0, . . . , ansu. Now let

defpMq “ tX ĎM | X is definable over pM, Pqu,

where M is a set.

Definition 2.4.5. The building blocks of Gödel’s constructible universe L are

defined by transfinite recursion:

1. L0 “ H;

2. Lα`1 “ defpLαq;

3. Lα “
Ť

βăα Lβ if α is a limit ordinal.

Now set L “
Ť

αPON Lα.

In other words, Gödels constructible universe L is a class of sets such that

each set can be described entirely in terms of simpler sets. We say that a set

x is constructible if x P Lα for some α. It turns out that L is a model of ZF

[8, Theorem 13.3].
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The Axiom of constructibility is the axiom stating that every set is con-

structible, and is often denoted V “ L. The axiom of constructibility is

satisfied in L and therefore consistent with ZF. Note that the fact that V “ L

holds in L is not as trivial as one could suspect at first sight; one needs to

prove that the statement ”x is constructible” holds relative to L, meaning that

if there exists some ordinal α such that x P Lα, then there exists α P L such

that x P Lα when interpreted in L. It can furthermore be showed that V “ L

implies both Axiom of Choice and the Generalized Continuum Hypothesis

(GCH), which means that L is a model of both AC and GCH and proves their

relative consistency [4].

However, the constructible universe is too narrow for many purposes. In

stead, we often consider the universe LpRq which uses the reals as base set for

the recursive definition of constructible sets. i.e. with L0 “ R in the definition

of L above. The class LpRq is therefore the smallest transitive inner model

of ZF containing the reals. We will be considering the theory ZF + AD +

V “ LpRq. Note that since AD contradicts AC, the latter does not hold in

this theory. However, axiom of Dependent Choice (DC) does [9].

In stead of changing the base set in order to obtain various constructible

universes, we can also alter the definition of being definable. For a given set A,

we can talk about the sets that are constructible relative to A in the following

way:

defApMq “ tX ĎM | X is definable over pM, P, AXMqu,

where AXM is considered a unary predicate. The class of sets constructible

from A are now defined as follows:

1. L0rAs “ H;

2. Lα`1rAs “ defApLαrAsq;

3. LαrAs “
Ť

βăα LβrAs if α is a limit ordinal.

Now set LrAs “
Ť

αPON LαrAs. Then LrAs is a model of ZFC [8, Theorem

13.22 (i)].

Remember that assuming Dependent Choice and Projective Determinacy,

the pointclasses Π1
2n`1 and Σ1

2n`2 are known to be scaled, and that these scales

provide us with tree representations for projective set. At the same time, each

scale can be captured by a ‘small’ model, namely the model consisting of sets

that are constructible relative to this tree. We have the following lemma,

whose proof can be found in [5, Lemma 2.4]:
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Lemma 2.4.6. Assume PD and DC. Suppose A is projective. There exists

an inner model M of ZFC and a tree T P M on ω ˆ κ (for some ordinal κ)

such that πrT s “ A and PpPpωqqM is countable in V .

There is a version of this based on the full Axiom of Determinacy, which

we shall also use. The proof can be found in [5, Lemma 2.5].

Lemma 2.4.7. Assume AD holds and V “ LpRq. Suppose A is Σ2
1. There

exists an inner model M of ZFC and a tree T PM on ωˆκ (for some ordinal

κ) such that πrT s “ A and PpPpωqqM is countable in V .

Finally we shall need a result (due to Woodin) known as Solovay’s Basis

Theorem (see [11, Remark 2.29(3)]). Note that a Σ2
1 statement is equivalent to

a statement of the form pDX Ď Ppωqq φpX, rq where r is a fixed real parameter

and the quantifiers occuring in φ are ranging over Ppωq or ω.

Theorem 2.4.8 (Solovay’s Basis Theorem). Assume AD holds and V “

LpRq. Then every Σ2
1 statement is witnessed by a set A Ď R which is itself

∆2
1.

Absoluteness

Let M and N be models of a theory T , and φpx0, . . . , xn´1q a first order

formula with all free variables listed. Then we say that φ is absolute for M,N

iff

p@x0, . . . , xn´1q φ
M px0, . . . , xn´1q Ø φN px0, . . . , xn´1q.

In other words, φ is absolute for M,N if it is true when interpreted in M if

and only if it is true when interpreted in N . We say that φ is absolute for T

if it is absolute for any two models of T .

A formula φ is said to be upwards absolute for a theory T if for any two

models M and N such that M Ď N and φ is true in M , the formula φ is also

true in N . Similarly, we say that φ is downwards absolute for a theory T if for

any two models M and N such that M Ď N and φ is true in N , the formula

φ is also true in M .

It follows immediately from the definitions that formulas with only exis-

tensial quantifiers ranging over M,N are upwards absolute, while formulas

with only universal quantifiers ranging over M,N are downwards absolute.

Proposition 2.4.9. The notion of the empty set is absolute for transitive

models of ZF. In other words, the formula x “ H is absolute.
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Proof. Let M,N be transitive models of ZF and x P M X N . Note that

x “ HØ p@w P xq w ‰ w. Thus

px “ HqM Ø p@w P xXMq w ‰ w Ø p@w P xq w ‰ w Ø p@w P xXNq w ‰ w

Ø px “ HqN ,

where the first and last arrows are just the definition of relativization of for-

mulas, and the two middles ones follow from transitivity of M and N .

Recall how we noted above that the statement ”x is constructible” is true

relative to L, in the sense that if x P Lα holds when interpreted in V , then

it also holds when interpreted in L. What is actually shown is that the sets

Lα are absolute for inner models M,N of ZF, i.e. that LMα “ LNα for every

ordinal α. Thus we obtain

px is constructibleqN Ø pDα P Nq x P LNα Ø pDα PMq x P LMα

Ø px is constructibleqM .

Note that this implies that L is the smallest inner model of ZF. Indeed, for any

inner model M we can consider LM Ď M , the constructible universe defined

in M . Since LMα “ Lα for every ordinal α by absoluteness of Lα, and since M

contains all the ordinals, we have LM “ L and we conclude that L ĎM .

We have the following easy and well-known result:

Proposition 2.4.10. Let M , N be inner models of ZFC, and T P M X N

a countable tree. Then ”T is well-founded” (equivalently: ”rT s “ H”) is

absolute for M and N .

Proof. Suppose TM is well-founded. Then the rank function ρMT is well-

defined. This rank function also works for TN , ensuring well-foundedness

in N .

This gives rise to many deeper absoluteness results, such as Lévy-Shoenfield

Absoluteness, and it is also the basic idea behind the following absoluteness

lemma [5, Lemma 2.3]:

Lemma 2.4.11. Let T be a tree on 2 ˆ κ and let J be a Borel ideal on

a countable set S. Then the following properties are absolute between inner

models of ZFC:

1. “πrT s Ď J `”.

2. “πrT s is an J -almost disjoint family”.
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3. “There exists y such that y is J -almost disjoint from every set in πrT s”.

In the above, we mean by J the ideal obtained by interpreting the Borel defi-

nition in the current model.

Proof. (1) Let U be a tree on 2 ˆ ω such that J “ πrU s. Consider the tree

T` on 2ˆ κˆ ω defined by

T` “ tpa, s, uq | pa, sq P T, pa, uq P Uu.

Then πrT s Ď J ` if and only if rT`s “ H, which is absolute.

(2) By the previous item is suffices to show that “@x, y P πrT s x ‰ y ñ

x X y P J ” is absolute. Let U be a tree on 2 ˆ ω such that J ` “ πrU s.

Consider the tree TX on p2ˆ κq2 ˆ ω defined by

TX “tpa0, t0, a1, t1, uq |
ľ

iPt0,1u

pai, tiq P T, lhpa0q “ lhpa1q, and pa0 ¨ a1, uq P Uu

where we momentarily write a0 ¨a1 for the characteristic function of a0Xa1 on

lhpa0q. Then the statement in question holds if and only if rTXs “ H, which

is absolute.

(3) As in the previous item, let U be a tree on 2ˆω such that J ` “ πrU s,

and for y P 2ω consider the tree T yX on p2ˆ κˆ 2ˆ ωq defined by

T yX “ tpa, t, uq | pa, tq P T, and pa ¨ yælhpaq, uq P Uu.

Then y is J -almost disjoint to everything in πrT s if and only if T yX is well-

founded.

For s P 2ăω, define a similar tree T sX by

T sX “ tpa, t, uq | pa, tq P T, lhpaq ď lhpsq and pa ¨ sælhpaq, uq P Uu.

Define a tree T̂ on 2ˆ κ` by

T̂ “ tps, ρq | ρ : T sX Ñ κ` is a rank functionu.

Then T̂ has an infinite branch if and only if there exists some y P 2ω such

that T yX is well-founded.



Chapter 3

Definable J -MAD families

We are now ready to prove the main results of this thesis. This chapter is an

amended version of [5, Section 2, 3 and 4], with only minor changes made.

All of the results in this chapter have been obtained in joint work with David

Schrittesser and Asger Törnquist.

3.1 Classical MAD families (and a bit more)

In this section we prove the following:

Theorem 3.1.1. Let J “ Fin, or more generally J “ Finpφq where φ is an

lsc submeasure on ω.

1. There are no analytic infinite J -MAD families.

2. Under ZF + Dependent Choice + Projective Determinacy, there are no

projective infinite J -MAD families.

3. Under ZF + Determinacy + V “ LpRq there are no infinite J -MAD

families.

The first item was first shown by Mathias [16] (at least in the case of Fin).

The next two items are independently, and by a somewhat different method

shown by Neeman and Norwood [20] (also in the case of Fin).

We use the following close relative of Mathias forcing:

Definition 3.1.2. Suppose that I Ě Fin is a (proper) ideal on ω, and I` its

co-ideal. Define

MI “ tpa,Aq | a P rωsăω, A P I`,maxpaq ă minpAqu

33
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ordered by

pa1, A1q ď pa,Aq if and only if a Ď a1 Ď aYA and A1 Ď A.

We write M for MFin.

We use the following notation:

Notation 3.1.3.

1. Given a filter G on MI , let

xG “
ď

ta | pDA P I`q pa,Aq P Gu.

2. For pa,Aq P MI , and b Ď A finite, let A{b “ tn P A | n ą maxpbqu.

3. For p P MI , we write p “ pappq, Appqq when we want to refer to its

components.

4. For p P MI , we let MIpď pq “ tq P MI | q ď pu.

Assumption 3.1.4. Until the end of Section 3.1 let J “ Fin or more gen-

erally J “ Finpφq and assume A Ď Ppωq is an infinite J -AD family which

is κ-Suslin. Fix a tree T on 2 ˆ κ such that πrT s “ A. Let I be the ideal

generated by AY J .

To avoid overly cumbersome notation, we shall phrase our presentation in

terms of the ideal Fin. However this section is written so that whenever rele-

vant, the reader may replace Fin (but not the word “finite” or the expression

rωsăω) with Finpφq, for any lsc submeasure φ on ω, in which case she must

also replace “almost disjoint” by “Finpφq-AD”, etc. We will point out how to

modify proofs when these trivial substitutions do not suffice.

The main workload in the proof of Theorem 3.1.1 is carried by the following

Main Proposition. The proof of this depends to a great extent on the Branch

Lemma, and we will prove both the Branch Lemma and how this leads to the

Main Proposition after we have collected some properties of the forcing MI .

Main Proposition 3.1.5. ,MI p@y P πrT sq y X x 9G P Fin. In other words,

,MI x 9G R πrT s and tx 9Gu Y πrT s is an almost disjoint family.

Before we prove the Main Proposition, we show how easily it leads to

Theorem 3.1.1. Firstly, we give a very short proof of the classical result that

there are no analytic MAD families:

Corollary 3.1.6 ([16]). There are no analytic MAD families.
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Proof. SupposeA is an analytic almost disjoint family, and fix a tree T on 2ˆω

such that A “ πrT s (identifying Ppωq with 2ω). By Main Proposition 3.1.5

there is a forcing extension V rGs containing a real which is almost disjoint

from any set in πrT sV rGs, and by Item 3 of Lemma 2.4.11 the existence of such

a real is absolute for inner models of ZFC. Thus A is not maximal.

We likewise obtain an easy and transparent proof that under projective

determinacy, there are no projective MAD families.

Corollary 3.1.7. Under PD there are no projective MAD families.

Proof. Assume PD holds and suppose A is an infinite almost disjoint family

which is projective. Fix a tree T so that A “ πrT s and a model M as

in Lemma 2.4.6. Note that M ( πrT s is an infinite almost disjoint family.

Working inside M let I be the ideal generated by FinYπrT s and let P denote

MI in M . As PpPpωqqM is countable in V we may find r P rωsω which is

P-generic. By Main Proposition 3.1.5

M rrs ( p@y P πrT sq y is almost disjoint from r,

and then Item 3 of Lemma 2.4.11 ensures that A is not maximal in any inner

model of ZFC.

A similar proof can be given of the AD analogue:

Corollary 3.1.8. If LpRq ( AD, there are no MAD families in LpRq.

Proof. Suppose towards a contradiction that V “ LpRq, AD holds, and there

is a MAD family. The existence of a MAD family is a Σ2
1 statement:

pDX Ď Ppωqqp@x, y P Xqp@r P Ppωqq
rx ‰ y Ñ pDn P ωq xX y Ď ns ^ rr R X Ñ pDz P Xqp@n P ωq z X r Ę ns.

By Fact 2.4.8, there is a Σ2
1 MAD family A. By Lemma 2.4.7 we may pick

an ordinal κ and a tree T on κˆ ω such that πrT s “ A. Moreover, there is a

model M such that T PM and PpPpωqqM is countable. Proceed precisely as in

Corollary 3.1.7 above to show that A is not maximal, reaching a contradiction.
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Properties of Mathias forcing relative to an ideal

For the proof of the Main Proposition 3.1.5 we need to explore the immediate

properties of the forcing notion MI .

The following lemma holds not just under our Assumption 3.1.4 but for

any proper ideal I Ě Fin or more generally I Ě Finpφq.

Lemma 3.1.9.

1. ,MI p@y P Ǐq x 9G X y P Fin.

2. ,MI x 9G P Fin`.

3. Fix A P I` and a0, a1 P rωs
ăω with maxpaiq ă minpAq for each i P t0, 1u.

Let pi “ pai, Aq. Then h : MIpď p0q Ñ MIpď p1q given by

hpa0 Y b, Bq “ pa1 Y b, Bq,

where b Ď A is finite and B Ď A{b, is an isomorphism of partial orders.

4. For p0, p1 as above, θ a formula in the language of set theory, and v P V

it holds that

p0 , θpv, rx 9GsE0q if and only if p1 , θpv, rx 9GsE0q.

Proof. (1) For any y P I, the set

Dy “ tp P MI | Appq X y “ Hu

is dense in MI , which implies that for any generic G we have xG X y P Fin.

(2) We verify the general case where J “ Finpφq. Supposing p , x 9G P

Finpφq we can find p1 ď p and n P ω so that p1 , φpx 9Gq ă ň. Since φ is

lower semi-continuous and φpApp1qq “ 8 we can find a finite set a such that

app1q Ď a Ď app1q YApp1q and φpaq ą n. Since pa,App1q{aq , a Ď x 9G we reach

a contradiction.

(3) Immediate from the definitions.

(4) Suppose p1 , θpv, rx 9GsE0q. Let G be a generic such that p0 P G. Use

h : MIpď p0q Ñ MIpď p1q from (3) to obtain a generic hpGq containing p1.

Since xGE0xhpGq, we conclude θpv, rxhpGqsE0q, proving that “if” holds. The

proof of “only if” is analogous.

Furthermore, we have the following diagonalization result.
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Lemma 3.1.10. Let pAkqkPω be a sequence from I` satisfying that Ak`1 Ď Ak
for every k P ω. Then there is A8 P I` such that A8 Ď

˚ Ak for every k P ω.

For the reader who wishes to verify the lemma in the general case where

J “ Finpφq, we point out that since finite sets have finite measure for any

lower semicontinuous measure φ there is no need to substitute Ď˚Finpφq for Ď˚

and the lemma as well as its proof go through without this change.

Proof. We construct two sequences pBnqnPα and pCnqnPα of length α ď ω such

that for each n ă α,

• Bn Ď An;

• for each m, Bn Ď
˚ Am;

• Cn P AztAi | i ă nu;

• Bn X Cn R Fin and Bn X Ci P Fin for i ă n.

Suppose we have found Bi and Ci as above for i ă n. Define a sequence

m0,m1, . . . from ω by recursion on k as follows:

mk “ min
´

An`kz
`

tmi | i ă ku Y
ď

iăn

Ci
˘

¯

and let B “ tmk | k P ωu.

In the case of Finpφq, instead chose finite sets M0,M1, . . . such that Mk Ď

An`kz
`
Ť

iănCi Y
Ť

iăkMi

˘

and φpMkq ą 0 for each k P ω. This is pos-

sible since for each k, An`kz
`
Ť

iănCi Y
Ť

iăkMi

˘

P Finpφq`. Then let

B “
Ť

kPωMk.

If B P I`, we let A8 “ B and we are done since B Ď˚ Ai for every i P ω.

If on the other hand B R I`, we let Bn “ B; since B P Fin` we can pick

Cn P AztCi | i ă nu such that Bn X Cn R Fin.

Supposing that the construction does not end at a finite stage, let A8 “
Ť

nPω Bn X Cn. It is clear by construction that A8 Ď
˚ Am for every m P ω.

Furthermore, since A8 is an infinite union of sets in Fin` which are also

subsets of distinct elements in the AD-family A, we conclude that A8 P

I`.

The following lemma indicates how invariant descriptive set theory will

help us achieve the desired results. We say that a set S is hereditary definable

using parameters from V and X if S is definable by a first order formula using

parameters from V and X, and the same holds for every set in the transitive

closure of S. We will now see how we can use the previous diagonalization
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lemma to prove that any sequence of ordinals that is hereditary definable

using parameters from V and from the E0-equivalence class rxGs for a generic

G actually belongs to V .

Lemma 3.1.11. Let HVDpXq denote the sets which are hereditary definable

using parameters from V Y tXu. Then the following holds:

,MI pONωqHVDprx 9GsE0
q Ď V.

Proof. Suppose θpx1, x2, x3, x4q is a formula with all free variables shown,

p0 P MI , a is arbitrary, and 9x is a MI-name such that

p0 , 9x : ω Ñ ON^ p@n P ωqp@α P ONq 9xpnq “ αô θpn, α, ǎ, rx 9GsE0q.

Let A0 “ App0q, and build A0 Ě A1 Ě A2 Ě ¨ ¨ ¨ and α0, α1, α2, . . . a sequence

of ordinals as follows: given An, find pb, An`1q ď papp0q, Anq and αn such that

pb, An`1q , θpn, α̌n, ǎ, rx 9GsE0q.

Finally, find A8 such that A8 Ď
˚ An for every n P ω.

W claim that papp0q, A8q , p@n P ωq 9xpnq “ α̌n, and thus 9x P V . To

prove this, suppose towards a contradiction that there is n P ω such that

papp0q, A8q . 9xpnq “ α̌n, and find pb, Bq ď papp0q, A8q such that pb, Bq ,

9xpnq ‰ α̌n. That is, pb, Bq ,  θpn, α̌n, ǎ, rx 9GsE0q. By Lemma 3.1.9(4), also

papp0q, Bq ,  θpn, α̌n, ǎ, rx 9GsE0q. However, since B Ď A8 Ď
˚ An`1 we know

that papp0q, B X An`1q ď papp0q, Bq, papp0q, An`1q. This contradicts the fact

that papp0q, An`1q , θpn, α̌n, ǎ, rx 9GsE0q.

The Branch Lemma

We will now finally prove the Main Proposition 3.1.5. We make a crucial

definition (imported from [21]), followed by some fairly straightforward obser-

vations:

Definition 3.1.12. For x Ď ω, let

T x “ tt P T | pDw P rTrtssq πpwq X x R Finu.

Facts 3.1.13.

1. If x E0 z, then T x “ T z. This means that for a generic G, the tree T xG

is definable from rxGsE0 .
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2. T x is a pruned tree on 2ˆ κ.

3. t P T x if and only if there is some y P πrT x
rtss such that y X x R Fin.

4. H R T x is equivalent to T x “ H, as well as to rT xs “ H, as well as to

that txu YA is an AD family.

5. Since T x is a subtree of T , πrT xs Ď A.

The proof of the Main Proposition is based on the following Branch Lemma.

The Branch Lemma 3.1.14. ,MI |πrT x 9Gs| ď 1.

Momentarily assuming the Branch lemma, we can very quickly show the

Main Proposition 3.1.5, i.e., that

,MI p@y P πrT sq y X x 9G P Fin

as follows.

Proof of the Main Proposition 3.1.5. Towards a contradiction, suppose G is

MI-generic and we have y P πrT sV rGs such that y X xG R Fin. By the

Branch Lemma πrT xGs “ tyu. Thus, since y is definable from rxGsE0 , we

have y P πrT s X V Ď I by Lemma 3.1.11. But then by 3.1.9(1), xG X y P Fin,

contradiction. Main Proposition 3.1.5. l

For the proof of Theorem 3.1.1, it remains but to prove the Branch Lemma.

Proof of the Branch Lemma 3.1.14. Towards a contradiction, suppose G is

MI-generic and we have distinct x0, x1 P πrT
xGs. Fix n such that x0æn ‰

x1æn, and let si “ wiæn where xi “ πpwiq and wi P rT s.

Claim 3.1.15. There exists t0, t1 P T
xG such that

1. si Ď ti for i P t0, 1u;

2. for every x˚0 , x
˚
1 such that x˚i P πrT

xG
rtis
s it holds that x˚0 X x˚1 Ď πpt0q X

πpt1q.

Proof of claim. Suppose otherwise. Then for all t0, t1 P T
xG extending s0, s1

respectively, there exists x˚0 , x
˚
1 such that x˚i P πrT

xG
rtis
s and πpt0q X πpt1q Ĺ

x˚0 X x˚1 . We may build branches w˚0 , w
˚
1 P rT

xGs such that si Ď w˚i and

πpw˚0 q X πpw
˚
1 q R Fin. This however contradicts the fact that πrT xGs Ď πrT s,

which is an almost disjoint family. Claim 3.1.15. l
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Thus, pick t0, t1 P T
xG as in the claim, and let

yi “
ď

πrT xG
rtis
s, i P t0, 1u.

It must be the case that y0 P V since y0 is definable from rxGsE0 (the same is

true of y1). Noting y0 P Fin`, one of the two following cases occurs:

Case 1: xG X y0 P Fin. This, however, is a contradiction; indeed, since

y0 “
Ť

πrT xG
rt0s
s where t0 P T xG , Facts 3.1.13 yields the existence of a set

y P πrT xG
rt0s
s such that y X xG R Fin.

Case 2: If the first case fails, since tp P MI | Appq Ď˚ y0_AppqXy0 P Finu

is dense in MI we have xG Ď
˚ y0. But then xG X y1 P Fin. This is also a

contradiction, for the same reasons as above. Lemma 3.1.14. l

3.2 Simple Fubini products

The ideas from the previous section can be used to prove similar results about

ideals that are further up the Borel hierarchy. In this section, we will take one

step up the ladder, whilst in the following section we see that we can go all

the way.

Recall from Chapter 1 that given ideals J˚, Jk on ω (for each k P ω) we

can form the ideal
À

J˚ Jk on ω ˆ ω. If Jk “ J 1 for each k P ω, one writes

J˚ b J 1 for
À

J˚ Jk (called the Fubini product of J˚ with J 1).

We will study ideals of the form J “
À

Finpφq Finpφkq, where φ and φk for

each k P ω are lsc submeasures on ω. Clearly this includes FinbFin, which

is Finpφq b Finpφq where φ is the counting measure. For X Ď ω ˆ ω we write

Xpnq “ tk P ω | pn, kq P Xu,

dompXq “ tn P ω | Xpnq ‰ Hu,

domJ
8pXq “ tn P ω | Xpnq R Finpφnqu.

We write dom8 for domFinbFin
8 , and note that

Finb Fin “ tX Ď ω ˆ ω | dom8pXq P Finu.

We will use the two following orderings on Ppωˆωq. For X Ď ωˆω finite

and Y Ď ω ˆ ω we say

X Ď2 Y ô dompXq Ď dompY q ^ p@n P dompXqq Xpnq Ď Y pnq,
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and

X Ă2 Y ô dompXq Ĺ dompY q ^ p@n P dompXqq Xpnq Ĺ Y pnq

In the general case where J “
À

Finpφq Finpφkq, let

X Ă2 Y ô X Ď2 Y ^ φpdompXqq ă φpdompY qq^

p@n P dompXqq φnpXpnqq ă φnpY pnqq.

This section was written so that most proofs generalize almost mechanically

from FinbFin to the above more general case; often this is made possible by

the definition of Ă2 given above.

We let as usual pFinbFinq` (resp., J `) denote the co-ideal.

Definition 3.2.1. Let pFinbFinq`` denote the set of A P pFinbFinq` such

that for all k P dompAq, Apkq R Fin.

Conditions of the forcing notion M2 are pairs pa,Aq where

(a) a Ď ω ˆ ω and is finite;

(b) A P pFinbFinq``;

(c) maxpapkqq ă minpApkqq for every k P dompaq;

(d) dompaq Ď dompAq.

We let pa1, A1q ď pa,Aq just in case A1 Ď A, and a Ď2 a
1 Ď aYA.

In the general case when J “
À

Finpφq Finpφkq, J `` denotes the set of

A P J ` such that for all k P dompAq, Apkq R Finpφkq. Moreover, replace (b)

in the definition1 of M2 by A P J ``.

Note that if pa,Aq is a condition in M2 then for every k P dompaq, the

pair papkq, Apkqq is a Mathias forcing condition (resp., a condition in MFinpφkq).

Moreover, the pair pdompaq, dompAqq is a Mathias forcing condition (resp., a

condition in MFinpφq) as well.

As in the 1-dimensional case, a relativized forcing notion is needed.

Definition 3.2.2. If I` is a co-ideal of an ideal I Ě FinbFin, then we write

I`` for I` X pFinbFinq``. We let

MI
2 “ tpa,Aq P M2 : A P I``u

equipped with the ordering inherited from M2.
1This designation is left ambiguous in that M2 implicitly depends on the ideal J—or

rather, on the set J``. The same will be true of MI
2 introduced below.
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Note that if A P I`, then we can always find a subset B Ď A such that

B P I``. We need to establish some notation:

Notation 3.2.3.

1. Given a filter G on MI
2 , let

xG “
ď

ta : pDAqpa,Aq P Gu.

2. For p P MI
2 , we write p “ pappq, Appqq when we want to refer to the

components of p.

3. For pa,Aq P MI
2 and b Ď aYA finite, let

A{b “
ď

nPN

Apnqztm P ω | m ď maxpbpnqqu

where N “ dompbq Y rmaxpdompbqq ` 1,8q.

4. For p P MI
2 , let MI

2 pď pq “ tq P MI
2 | q ď pu.

Remark 3.2.4. Note that in order to meaningfully talk about κ-Suslin sets in

Ppωˆ ωq, we identify ωˆ ω with ω (via some fixed bijection), sets with their

characteristic functions, and in effect, Ppω ˆ ωq with 2ω.

Assumption 3.2.5. Until the end of Section 3.2 let J “ FinbFin, or more

generally let J “
À

Finpφq Finpφkq as above. Moreover suppose A Ď Ppωˆωq
to be a J -almost disjoint family which is κ-Suslin and fix a tree T on 2 ˆ κ

such that πrT s “ A. Finally, let I be the ideal generated by AY J .

To ease the notation, we will focus our attention on J “ FinbFin. How-

ever, our proofs work for J “
À

Finpφq Finpφkq as above. For the general case,

substitute FinbFin (but not the word finite or the expression rω2săω) by
À

Finpφq Finpφkq, dom8 by domJ
8, etc. wherever relevant, unless we provide

commentary.

Now we are ready to state the Main Proposition regarding MI
2 from which

Theorem 1.0.4 follows as a corollary, precisely analogous to the previous sec-

tion. The proof of the Main Proposition will again rely on a Branch Lemma

and will be postponed for now.

Main Proposition 3.2.6. ,MI
2
p@y P πrT sq y X x 9G P FinbFin.

As in the one-dimensional case, our main result about FinbFin also fol-

lows directly from the Main Proposition.
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Corollary 3.2.7. Theorem 1.0.4 holds.

Proof. The proofs are essentially identical to those of Corollary 3.1.6, Corol-

lary 3.1.7, and Corollary 3.1.8, simply substituting MI
2 for MI .

Properties of the two-dimensional forcing

Before we can prove the Main Proposition, we shall collect some of the neces-

sary facts about the forcing MI
2 .

Lemma 3.2.8.

1. For any y P I, ,MI
2
x 9G X y̌ P FinbFin.

2. For any k P ω the partial order MI
2 is isomorphic to the product Mk ˆ

MI
2 pď pH, pωzkq ˆ ωqq, where Mk is the set of k-tuples of classical (1-

dimensional) Mathias forcing conditions. In the general case where J “
À

Finpφq Finpφiq we have

MI
2 –

´

ź

iăk

MFinpφiq
¯

ˆMI
2

´

ď
`

H, pωzkq ˆ ω
˘

¯

.

3. ,MI
2
x 9G P pFinbFinq``.

Proof. (1) Follows from the fact that for any y P I, the set

Dy “ tp P M | Appq X y “ Hu

is dense.

(2) Define a map φ : Mk ˆMI
2 pď pH, pωzkq ˆ ωqq Ñ MI

2 by

ppci, Ciqiăk, pa,Aqq ÞÑ p
ď

iăk

tiu ˆ ci Y a,
ď

iăk

tiu ˆ Ci YAq

This map is easily seen to be bijective and order preserving. The same defi-

nition works in the general case.

(3) We prove this in general for
À

Finpφq Finpφiq. First note that ,MI
2

dompx 9Gq “ dom8px 9Gq: For let n and p be such that p , ň P dompx 9Gq. It

must hold that n P dompappqq. By Lemma 3.1.9(2),

`

appqpnq, Appqpnq
˘

,M x 9G R Finpφnq

so by item (2) of the present lemma, p ,MI
2
ň P dom8px 9Gq.
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It remains to show ,MI
2

dom8px 9Gq R Finpφq. Towards a contradiction,

suppose there is n and p so that p , φpdompx 9Gqq ă ň. Find a finite set d

such that dompappqq Ď d Ď dompappqq Y dompAppqq and φpdq ą n, and a such

that appq Ď2 a Ď appqYAppq and dompaq “ d. We reach a contradiction since

pd,Appq{dq , d Ď dompx 9Gq and φpdq ą n.

We prove a general diagonalization result (which shall be put to use in

Lemma 3.2.14 below):

Lemma 3.2.9. Let pAkqkPω be a sequence from I`` satisfying that Ak`1 Ď Ak
for every k P ω. Then there is A8 P I`` such that A8 Ď

˚
FinbFin Ak for every

k P ω.

Just as Lemma 3.1.10 for the one-dimension case, Lemma 3.2.9 holds ver-

batim for J “
À

Finpφq Finpφiq (i.e., with Ď˚FinbFin and not just with Ď˚J ).

Proof. As in the previous section, we construct two sequences pBnqnPα and

pCnqnPα of length α ď ω such that for each n ă α,

• Bn P pFinbFinq``;

• Bn Ď An and p@k P ωq Bn Ď
˚
FinbFin Ak;

• Cn P AztCi | i ă nu;

• Bn X Cn P pFinbFinq` and Bn X Ci P FinbFin for i ă n.

Suppose we have found Bi and Ci as above for i ă n. Define a sequence

mn
0 ,m

n
1 , . . . from ω by recursion on k as follows:

mn
k “ min

´

dom
`

An`kz
`

tmi | i ă ku Y
ď

iăn

Ci
˘˘

¯

and let B “
Ť

kPω An`kpm
n
kq.

In the case of Finpφq, instead chose finite sets Mn
0 ,M

n
1 , . . . such that Mn

k Ď

dom
`

An`kz
Ť

iănpCi YM
n
i q
˘

and φpMn
k q ą 0 for each k P ω. Then let

B “
ď

kPω

ď

mPMn
k

An`kpmq.

The remainder of the proof is essentially identical to the 1-dimensional case,

i.e., Lemma 3.1.10, simply replacing Fin by FinbFin everywhere. We leave

this to the reader.
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The two-dimensional Branch Lemma

The crucial definition is again that of an invariant tree, analogous to Defini-

tion 3.1.12.

Definition 3.2.10. For x Ď ω ˆ ω, let

T x “ tt P T | pDy P πrTrtssq y X x R FinbFinu

As in Fact 3.1.13(1), it is easy to see that the map x ÞÑ T x is invariant to

small changes in x, in the sense that whenever x∆x1 P FinbFin, T x “ T x
1

.

Moreover Facts 3.1.13(2)–(5) hold here as well.

We are now ready to state the main lemma of this section.

The Branch Lemma 3.2.11. ,MI
2
|πrT x 9Gs| ď 1.

We postpone the proof of the Branch Lemma and first give the proof of

the Main Proposition 3.2.6, assuming the lemma. The proof is not quite as

straightforward as in the previous section, but the idea remains the same.

Claim 3.2.12 will play the role as a less general analogue of Lemma 3.1.11.

Proof of the Main Proposition 3.2.6. Suppose towards a contradiction there

is p0 P MI
2 such that p0 , pDA P πrT sV r

9Gsq A X x 9G R FinbFin. By the

Branch Lemma 3.2.11, p0 forces that πrT x 9Gs has precisely one element; let 9A

be a name for it.

Claim 3.2.12. There is q P MI
2 and A1 P V such that q , 9A “ Ǎ1.

Proof of Claim. It suffices to show that if p ď p0 and p decides pn,mq P 9A then

in fact papp0q, Appqq decides pn,mq P 9A: For then we may pick A0 Ě A1 Ě . . .

such that for each pair pn,mq P ω ˆ ω, some papp0q, Akq decides pn,mq P 9A;

by Lemma 3.2.9 we can find A8 diagonalizing pAkqkPω. Any condition below

q “ papp0q, A8q is compatible with each papp0q, Akq, and so q decides all of 9A.

So suppose p ď q decides pn,mq P 9A; we must show papp0q, Appqq decides

pn,mq P 9A. Let us suppose that p , pn,mq P 9A; the proof is similar in case

p , pn,mq R 9A and we leave this case to the reader.

Fix any MI
2 -generic G such that papp0q, Appqq P G. By Lemma 3.2.8(2)

we can decompose G as G0 ˆ G1 where G1 is MI
2 -generic and G0 is Mk-

generic for k large enough so that dompappqq Ď k. Note that as xG∆xG1 P

FinbFin, T xG “ T xG1 P V rG1s. Since V rGs ( πrT xGs “ t 9AGu, by a simple

absoluteness argument the same must hold in V rG1s, i.e., 9AG P 9V rG1s and

V rG1s ( πrT xGs “ t 9AGu.
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Since dompappqq Ď k we can find G1 which is MI
2 -generic over V such

that G1 “ G10 ˆ G1 and p P G1. Clearly pn,mq P 9AG
1

(since p , pn,mq P 9A).

Arguing as before using absoluteness, this time between V rG1s and V rG1s, 9AG
1

must equal the unique element of πrT xG1 s, i.e., 9AG
1

“ 9AG and so pn,mq P 9AG.

Since G was arbitrary, papp0q, Appqq , pn,mq P 9A. Claim 3.2.12. l

Now A1 P πrT s X V and thus A1 P I, but also q , x 9G X Ǎ1 R FinbFin,

contradicting Lemma 3.2.8(1). Main Proposition 3.2.6. l

We now gradually work towards the proof of the Branch Lemma, for which

it is necessary to introduce some notation. Firstly, write

U “ rω ˆ ωsăω ˆ T.

Given a pair ~u P U , we write it as pap~uq, tp~uqq if we want to refer to the

components of ~u. We define a partial order ďU on U as follows:

~u1 ďU ~u0 ô ap~u1q Ě2 ap~u0q ^ tp~u1q Ě tp~u0q.

Now secondly assume G is MI
2 -generic over V ; working in V rGs for the

moment and for a fixed x P Ppω ˆ ωq, define the set Ux Ď U consisting of

those pairs pa, tq P U such that there is w P rTrtss with

1. πpwq X x R FinbFin;

2. dompaq Ď dom8pπpwq X xq;

3. for each k P dompaq, apkq Ď πpwqpkq X xpkq.

Intuitively, Ux searches for a branch through T whose projection has large

intersection with x and a subset of this intersection in pFinbFinq`` to witness

its largeness.

In analogy to the tree T x, when ~u0 P U write Ux
r~u0s

for t~u P U | ~u ďU ~u0u.

The following three lemmas gather some observations concerning UxG

which will be important in the proof of the Branch Lemma.

Lemma 3.2.13. Suppose pa,Aq , ~u P Ux 9G.

1. It holds that a Ě ap~uq and moreover if a1 Ď ap~uq also

pap~uq, Aq , pa1, tp~uqq P Ux 9G .
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2. The set A1 Ď ω ˆ ω defined by

A1 “ tpk, lq | pDp1 ď pa,AqqpD~u1 ďU ~uq pk, lq P ap~u
1q ^ p1 , ~u1 P Ux 9Gu

is not in I.

3. For any k P dompap~uqq, the set Ak Ď ω defined by

tl | pDp1 ď pa,AqqpD~u1 ďU ~uq l P ap~u
1qpkq ^ p1 , ~u1 P Ux 9Gu

is not in Fin (resp., not in Finpφkq).

Proof. (1) Immediate from the definition of Ux 9G .

(2) Assume to the contrary that A1 P I. Then AzA1 P I`, so take B Ď

AzA1 such that B P I`` and set p “ pa,Bq P MI
2 . Since p , ~u P Ux 9G we can

find a name 9w such that

p , 9w P πrTrtp~uqss ^ 9w X x 9G R FinbFin .

(In fact, all we need here is that p , T x 9G ‰ H). Thus we can extend p to p1 to

force a pair pk, lq into 9wXx 9Gzappq. But it has to be the case that pk, lq P app1q,

whence pk, lq P A1 by definition of A1, contradicting that also pk, lq P B which

is disjoint from A1.

(3) Assume to the contrary that k P dompap~uqq and Ak P Fin. Take

B Ď Azptku ˆ Akq such that B P I``, and set p “ pa,Bq P MI
2 . Since

p , ~u P Ux 9G we can find a name 9w such that

p , 9w P πrTrtp~uqss ^ 9w X x 9G P pFinbFinq`

and

p , dompap~uqq Ď dom8p 9w X x 9Gq.

As k P dom8p 9w X x 9Gq, we can extend p to p1 to force a pair pk, lq into 9w X

x 9Gzappq. But as in the proof of the previous item, it has to be the case

that pk, lq P app1q, whence l P Ak by definition of Ak, contradicting that also

l P Bpkq which is disjoint from Ak.

In order to prove the two-dimensional Branch Lemma, we also need to

introduce the partially ordered set Γ defined as follows:

Γ “ tpp, ~u0, ~u1q P MI
2 ˆ U ˆ U | p@i P t0, 1uq p , ~ui P Ux 9Gu.

This set carries a weak and a strict order, defined as follows:

pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q
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if and only if p1 ď p0, and for each i P t0, 1u, apui1q Ě2 apu
i
0q and tpui1q Ě tpui0q

(that is, ui1 ďU u
i
0); and

pp1, ~u
0
1, ~u

1
1q ăΓ pp0, ~u

0
0, ~u

1
0q

if and only in addition, ap~u0
0q X ap~u

1
0q Ă2 ap~u

0
1q X ap~u

1
1q.

Note that Γ is well-founded with respect to the second, strict ordering ăΓ;

indeed, suppose towards a contradiction that there is an infinite ăΓ-descending

sequence

. . . ăΓ pp3, ~u
0
3, ~u

1
3q ăΓ pp2, ~u

0
2, ~u

1
2q ăΓ pp1, ~u

0
1, ~u

1
1q

from Γ. Define

yi “
ď

ną1

tp~uinq

for i P t0, 1u and

A “
ď

ną1

ap~u0
nq X ap~u

1
nq.

Since the sequence is ăΓ-decreasing and from Γ, A P pFinbFinq`` and A Ď

πpy0q X πpy1q, contradicting that πrT s is FinbFin-almost disjoint.

The proof of the Branch Lemma will crucially depend on the two following

lemmas, which in combination will allow us to manipulate both the infinite

and the finite part of a forcing condition while maintaining that something is

forced about Ux 9G . Note that the second of these lemmas plays the same role

as Lemma 3.1.9(4).

Lemma 3.2.14. For each ~u0 P U the set Dp~u0q is dense and open in MI
2 ,

where we define Dp~u0q to be the set of p P MI
2 such that for all p1 ď p and

any ~u P U ,

”

p1 , ~u P U
x 9G

r~u0s

ı

ñ papp1q, Appq{app1qq , pDt P T q pap~uqq, tq P U
x 9G

r~u0s
.

The proof follows the same strategy as Lemma 3.2.9 (the diagonalization

lemma) to build a set in I``. While we build this set, we carefully anticipate

each of its finite subsets a to see if there is some t P T and some forcing

condition q P MI
2 which forces pa, tq to be in Ux 9G . If so, we make sure that

our final set is contained in aYApqq. We succeed as there are only countably

many finite a Ď ωˆω to consider. Note though that due to the nature of the

proof of Lemma 3.2.9, we have to consider each finite a again and again, and

the construction potentially takes ω ˆ ω stages.
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Proof. Fix q0 P MI
2 and ~u0 P U . If q0 . ~u0 P U

x 9G , then find q ď q0 such that

q0 , ~u0 R U
x 9G and note that q P Dp~u0q. Suppose therefore that q0 , ~u0 P U

x 9G .

We construct q ď q0 such that q P Dp~u0q.

As in the proof of Lemma 3.2.9, we construct sequences B0, B1, . . . , and

C0, C1, . . . both of which are possibly finite, such that whenever defined

• Bn P pFinbFinq``;

• Cn P AztCi | i ă nu;

• Bn X Cn P pFinbFinq` while for i ă n, Bn X Ci P FinbFin.

Suppose Bi and Ci have been defined for i ă n (this includes the case n “ 0).

In ω-many steps we define a descending sequence of conditions pbkn, B
k
nqk from

MI
2 and at the end let

Bn “
ď

kPω

bkn. (3.2.1)

If n “ 0, let b00 “ apq0q and B0
0 “ Apq0q. Otherwise, let

b0n “
ď

i,jăn

bij

and

B0
n “

`

Bn´1
n´1 X pdompb0nq ˆ ωq

˘

Y
`

Bn´1
n´1z

ď

tCi | i ă nu
˘

noting that B0
n P pFinbFinq` since Bn´1

n´1 P I`` by induction hypothesis. So

pb0n, B
0
nq P MI

2 and B0
n X Ci P FinbFin for i ă n.

Supposing we have already defined pbkn, B
k
nq P MI

2 make finitely many

extensions to reach pbkn, B
˚q ď pbkn, B

k
nq so that whenever a Ď bkn and

pDp1 ď papq0q, B
k
nqqpD~u P Uq ap~uq “ a^ app1q Ď bkn ^ p

1 , ~u P U
x 9G

r~u0s
(3.2.2)

then for some t1 P T

`

app1q, B˚{app1q
˘

, pap~uq, t1q P U
x 9G

r~u0s
. (3.2.3)

Extend bkn to some finite (we mean finite also in the general case!) set bk`1
n Ď

ω ˆ ω satisfying

bkn Ă2 b
k`1
n Ď bkn YB

˚ (3.2.4)

and let

Bk`1
n “ B˚{bk`1

n .
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Assuming we have defined bkn for each k P ω and letting Bn be defined by

(3.2.1), note that (3.2.4) ensures that Bn P pFinbFinq``. Should it be the

case that Bn P I` the construction terminates and we let

q “ papq0q, Bnq.

Otherwise, we may chose Cn P AztCi | i ă nu such that CnXBn P pFinbFinq`

as in Lemma 3.2.9 and continue the construction.

If the construction does not terminate at any stage n ă ω, let

B8 “
ď

nPω

bnn.

Note that B8 “
Ť

kPω Bk and thus since B8 X Ck P pFinˆFinq` for each

k P ω, it must be the case that B8 P I`` (as in the proof of Lemma 3.2.9).

So we obtain a condition in MI
2 by letting

q “ papq0q, B8q.

To see that q P Dp~u0q, let p1 ď q, ~u P U such that p1 , ~u P U
x 9G

r~u0s
be given.

Let us first assume that the construction did not stop at any stage n ă ω

and that B8 is defined. We can find n ą 0 so that app1q Ď bn´1
n´1. Thus, at

stage k “ n in the construction of Bn, (3.2.2) was satisfied for a “ ~u, and so

(3.2.3) is also satisfied. By construction B8zb
n´1
n´1 Ď Bn

n . Thus any condition

below papp1q, B8q “ papp1q, Apqqq is compatible with papp1q, Bn
nq, and so we

may replace B˚ by Apqq in (3.2.3), obtaining

pDt P T q papp1q, Apqqq , pap~uq, tq P U
x 9G

r~u0s

and showing that q P Dp~uq.

If the construction of B0, B1, . . . terminated with Bn P I``, we may find

k such that app1q Ď bk´1
n and argue similarly with Bn in place of B8.

Lemma 3.2.15. For any p P MI
2 , ~u P U such that p , ~u P Ux 9G and any

a Ď appq it holds that pa,Appq{aq , pa, tp~uqq P Ux 9G.

Proof. Let G be a generic over V with pa,Appq{aq P G, and let

I “ dompappqqzdompaq.

Suppose H is
ś

jPI M-generic over V rGs such that pappqpjq, AppqpjqqjPI P H.

Then GˆH is generic over V for

MI
2 ˆ

ź

jPI

M.
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We define a bijection

φ : MI
2

´

ď
`

a,Appq{a
˘

¯

ˆ
ź

jPI

M
´

ď
`

appqpjq, Appqpjq
˘

¯

Ñ MI
2 pď pq

by

Φ
`

pb, Bq, pcj , CjqjPI
˘

“

´

appq Y bY
ď

kPI

ck, B Y
ď

kPI

Ck

¯

.

Note that p P φpGˆHq, so ~u P UxφpGˆHq in V rGsrHs. By definition of Ux

this means that in V rGsrHs we can find w P rTrtp~uqss so that

pDu P pFinbFinq``q a Ď2 u Ď πpwq X xφpGˆHq. (3.2.5)

Since xG∆xφpGˆHq P FinbFin we may replace xφpGˆHq by xG in (3.2.5), and

thus in V rGsrHs,

pDw P rTrtp~uqssqpDu P pFinbFinq``q a Ď2 u Ď πpwq X xG. (3.2.6)

It is easy to find a tree S P V rGs such that rSs consists of the pairs pw, uq

witnessing the two existential quantifiers in (3.2.6). Since being well-founded

is absolute between models of ZFC, we conclude (3.2.6) holds in V rGs. But

(3.2.6) implies (in fact, is equivalent to) pa, tp~uqq P UxG , so since G was arbi-

trary, we have shown that pa,A{aq , pa, tp~uqq P Ux 9G .

With this notation and the lemmas at our disposal, we are ready to prove

,MI
2
|πrT x 9Gs| ď 1,

i.e., the Branch Lemma 3.2.11.

Proof of the Branch Lemma 3.2.11. Assume towards a contradiction that the

lemma is false, whence we may find p P MI
2 and a pair of MI

2 -names 9w0 and

9w1 so that

p , p@i P t0, 1uq 9wi P rT x 9Gs ^ x 9G X πp 9wiq R FinbFin

and p , πp 9w0q ‰ πp 9w1q. Then clearly we may also find pp0, ~u
0
0, ~u

1
0q P Γ such

that πptp~u0
0qq ‰ πptp~u1

0qq (ap~ui0q plays no role here).

Claim 3.2.16. One of the following holds:

1. There is n˚ P ω and pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q in Γ such that for any

pp2, ~u
0
2, ~u

1
2q ďΓ pp1, ~u

0
1, ~u

1
1q from Γ, dompap~u0

2qq X dompap~u1
2qq Ď n˚; or
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2. There is pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q, l

˚ P ω and k˚ P dompap~u0
1qq X

dompap~u1
1qq such that for any pp2, ~u

0
2, ~u

1
2q ďΓ pp1, ~u

0
1, ~u

1
1q from Γ,

ap~u0
2qpk

˚q X ap~u1
2qpk

˚q Ď l˚.

Proof of Claim. Suppose that both Items 1 and 2 above fail; we show that

there is a ăΓ-descending sequence in Γ, which contradicts the wellfoundedness

of pΓ,ăΓq.

It suffices to show that any pp, ~u0, ~u1q ďΓ pp0, ~u
0
0, ~u

1
0q has a ăΓ-extension.

That Items 1 and 2 above fail means precisely that

(1’) For each n˚ P ω and pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q in Γ there is n ą n˚ and

pp2, ~u
0
2, ~u

1
2q ďΓ pp1, ~u

0
1, ~u

1
1q such that n P dompap~u0

2qq X dompap~u1
2qq; and

(2’) For each pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q, k

˚ P dompap~u0
1qq X dompap~u1

1qq and

l˚ P ω there is l ą l˚ and pp2, ~u
0
2, ~u

1
2q ďΓ pp1, ~u

0
1, ~u

1
1q such that

l P ap~u0
2qpk

˚q X ap~u1
2qpk

˚q.

This means that in finitely many steps, we can extend any pp, ~u0, ~u1q ďΓ

pp0, ~u
0
0, ~u

1
0q to some pq,~v0, ~v1q ďΓ pp, ~u

0, ~u1q so that

ap~u0q X ap~u1q Ă2 ap~v
0q X ap~v1q

by applying (2’) once for each vertical in ap~u0q X ap~u1q and (1’) once for the

domain. Thus pq,~v0, ~v1q ăΓ pp, ~u
0, ~u1q.

Finally, having established that one of Items 1 and 2 above must hold,

we use Lemmas 3.2.15 and 3.2.14 to finish the proof of Lemma 3.2.11 by case

distinction.

Case 1: If Item 2 holds, we may fix pp1, ~u
0
1, ~u

1
1q P Γ, l˚ P ω and k˚ P

dompap~u0
1qqXdompap~u1

1qq such that for any pp2, ~u
0
2, ~u

1
2q ďΓ pp1, ~u

0
1, ~u

1
1q from Γ,

ap~u0
2qpk

˚q X ap~u1
2qpk

˚q Ď l˚.

We may also assume that p1 P Dp~u
0
1q XDp~u1

1q (see Lemma 3.2.14). We now

reach a contradiction: Define A Ď ω ˆ ω by letting Apkq “ App1qpkq for each

k ‰ k˚, and letting

Apk˚q “ tl P ω | pDp ď p1qpD~u ďU ~u
0
1q l P ap~uqpk

˚q ^ p , ~u P Ux 9Gu.

Lemma 3.2.13 ensures that A P I`` and that A Ď App1q. Let

p˚ “ papp1q, Aq.
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Since p˚ , ~u1
1 P U

x 9G , we can find p ď p˚, l P ωzl˚ and ~u such that

l P ap~uqpk˚q ^ p , ~u P U
x 9G

r~u11s
.

It follows that l P Apk˚q and so by definition of Apk˚q we can find p1 ď p1 and

~u1 such that

l P ap~u1qpk˚q ^ p1 , ~u1 P U
x 9G

r~u01s
.

Then, as p, p1 ď p1 and p1 P Dp~u
0
1qXDp~u

1
1q, we can find t0 P T and t1 P T and

set ~u0 “ pap~uq, t0q and ~u1 “ pap~u1q, t1q such that

l P ap~u0qpk˚q ^ pappq, App1q{appqq , ~u0 P U
x 9G

r~u01s

and

l P ap~u1qpk˚q ^ papp1q, App1q{app
1qq , ~u1 P U

x 9G

r~u11s
,

in order to uniformize the infinte parts of the forcing conditions. As we also

want to alter the finite part, note that tpk˚, lquY ap~ui1q Ď app1q Ď appqX app1q

for each i P t0, 1u. Let a “ appq X app1q, let p2 “ pa,App1q{aq and let ai “

ap~ui1q Y tpk
˚, lqu for each i P t0, 1u. By Lemma 3.2.15 we conclude

p2 , pa
i, tp~uiqq P U

x 9G

r~ui1s
,

which contradicts the choice of pp1, ~u
0
1, ~u

1
1q and l˚.

Case 2: Otherwise, Item 1 holds and we may fix n˚ P ω and pp1, ~u
0
1, ~u

1
1q P Γ

such that for any pp2, ~u
0
2, ~u

1
2q ďΓ pp1, ~u

0
1, ~u

1
1q from Γ,

dompap~u0
2qq X dompap~u1

2qq Ď n˚.

We now argue entirely analogously to the previous case, but in the domain

instead of in one of the verticals. To this end, set

A1 “ tpk, lq | pDp ď p1qpD~u ďU ~u
0
1q pk, lq P ap~u

1q ^ p , ~u P Ux 9Gu.

Note that A1 Ď App1q and A P I` by Lemma 3.2.13 (2). Let A Ď A1 be

the largest subset satisfying A P I``. Letting p˚ “ papp1q, Aq we reach a

contradiction almost exactly as in the previous case; details are left to the

reader. Lemma 3.2.11. l
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3.3 Iterated Fubini products

In this section we will look at iterated Fubini products of Finpφq-ideals. In

order to study these, we will first recursively define sets Mα:

Definition 3.3.1. Set M1 “ ω. For a successor ordinal, set Mα`1 “ ωˆMα.

For α limit ordinal, fix once and for all a sequence pαnqnPω Ď α which is cofinal

in α, and set Mα “
Ť

nPωtnu ˆM
αn .

We will fix some notation concerning the sets Mα:

Notation 3.3.2. We often write elements of Mα as vectors ~n “ pn0, . . . , nkq,

but also treat them as sequences via the obvious identification of k-tuples

and sequences of length k, writing ~npiq for ni, ~n æ l for pn0, . . . , nl´1q when

1 ď l ď k ` 1 and lhp~nq for k ` 1. Of course ~n æ 0 “ H and lhpHq “ 0.

Any proper initial segment of a sequence from Mα is called a domain

sequence. Note that we allow a domain sequence to be empty. Elements of

Mα are in contrast called terminal sequences.

Let X ĎMα. Viewing X as a relation, we write

Xpnq “ tx P
ď

βăα

Mβ | pn, xq P Xu.

For α ą 1, we let as usual dompXq “ tn P ω | Xpnq ‰ Hu. Given a domain

sequence ~n write Xp~nq for Xpn0q ¨ ¨ ¨ pnkq, setting XpHq “ X. We also set

domαpXq “ t~n æ l | l ă lhp~nq ^ ~n P Xu

and refer to the elements of this set as the domain sequences in X.

We denote by δαp~nq the ordinal δ ď α such that Xp~nq Ď M δ (for any

X Ď Mα). If the origin of the domain sequence ~n is unambiguous, we will

often just write δp~nq.

We now define a hierarchy of ideals which complexity-wise lies cofinally in

the Borel hierarchy:

Definition 3.3.3. We define an ideal Finα on Mα for α P ω1zt0u by recursion

as follows:

• Fin1 “ Fin.

• For a successor ordinal α` 1 ą 1, let

A P Finα`1 ô tn P ω | Apnq R Finαu P Fin .
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• For a limit ordinal α with cofinal sequence pαnqnPω, let

A P Finα ô tn P ω | Apnq R Finαnu P Fin .

Generalizing the previous definition, we also define iterated Fubini prod-

ucts of a sequence of Fσ ideals on ω (given as the finite part of a submeasure):

Definition 3.3.4. We define an ideal Finp~φq on Mα, where ~φ “ pφβq0ăβďα
is a sequence of lsc submeasures on ω and α P ω1zt0u. The definition is again

by recursion on α:

• For α “ 1 and A ĎM1 set

A P Finp~φq ô A P Finpφ1q.

• For a successor ordinal α ą 1 and A ĎMα set

A P Finp~φq ô tn P ω | Apnq R Finp~φ æ αqu P Finpφαq.

• For a limit ordinal α with cofinal sequence pαnqnPω and A ĎMα set

A P Finp~φq ô tn P ω | Apnq R Finpφ æ αn ` 1qu P Finpφαq.

Clearly Finα “ Finp~φq where for each β, φβ is just the counting measure.

One could think of defining yet more general ideals of the form Finp~φq on

Mα where ~φ “ pφsqsPDpαq is an assignment of submeasures on ω to the set

Dpαq of domain sequences in Mα, i.e. to the set

Dpαq “ domαpM
αq “ t~n æ l | l ă lhp~nq ^ ~n PMαu.

By convention Dp1q “ tHu. Write

~φ˚pnq “ pφn"tqtPDpαnq,

where if α is a limit ordinal, pαnqnPω is its cofinal sequence, and if α is a

successor we let αn “ α´ 1. Now define Finp~φq by recursion on α as follows:

For α “ 1 (when Dpαq “ H and M1 “ ω) let

Finp~φq “ FinpφHq.

For α ą 1, let

Finp~φq “
à

FinpφHq

Finp~φ˚pnqq,
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using the Fubini sum notation defined on p. 9 and noting that by induction

Finp~φ˚pnqq is an ideal on Mαn with αn as above. We conjecture all our proofs

go through for ideals of the form Finp~φq as well.

Since we can view any element in Mα as a finite sequence from ω, the set

Mα can be identified with a subset of ωăω – essentially, the set of terminal

sequences in Mα. Note that a set a Ď Mα is finite if and only if there are

finite sets K0, . . . Kn´1 with Ki Ď ω such that a Ď K0ˆK1ˆ¨ ¨ ¨ˆKn´1 under

this identification. Furthermore, there is a natural ordering on Mα, namely

the lexicographical ordering, ďlex, inherited from ωăω. We will also consider

several other orderings on Mα:

Definition 3.3.5. We recursively define Ďα on Mα as follows:

• Set X Ď1 Y if and only if X Ď Y , i.e. if X is an initial segment of Y .

• Set X Ďα`1 Y if and only if dompXq Ď dompY q and for every i P

dompY q we have Xpiq Ďα Y piq;

• For α a limit ordinal with cofinal sequence pαnqnPω, we set X Ďα Y

if and only if dompXq Ď dompY q and for every i P dompY q we have

Xpiq Ďαi Y piq.

In order to determine if a set properly extends another set, we need a strict

ordering Ăα on Mα to be a version of Ďα which is strict at every level. For

the case J “ Finα we make the following definition:

• Set X Ă1 Y if and only if X Ĺ Y , i.e. if X is a proper initial segment

of Y .

• Set X Ăα`1 Y if and only if dompXq Ĺ dompY q and for every i P

dompXq we have Xpiq Ăα Y piq;

• For α a limit ordinal with cofinal sequence pαnqnPω, we set X Ăα Y

if and only if dompXq Ĺ dompY q and for every i P dompY q we have

Xpiq Ăαi Y piq.

In the general case of an ideal J “ Finp~φq on Mα, we define Ăα on Mα

by recursion on α as follows:

• Set X Ă1 Y if and only if X Ď Y and φ1pXq ă φ1pY q.

• Set X Ăα`1 Y if and only if dompXq Ď dompY q,

φα`1pdompXqq ă φα`1pdompY qq,

and for every i P dompXq we have Xpiq Ăα Y piq;
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• For α a limit ordinal with cofinal sequence pαnqnPω, we set X Ăα Y if

and only if dompXq Ď dompY q, φαpdompXqq ă φαpdompY qq, and for

every i P dompY q we have Xpiq Ăαi Y piq.

As was the case for the previous section, the material of the present section

generalizes almost mechanically from Finα to Finp~φq. Often this is made

possible by the above definition of Ăα.

When defining the α-dimensional Mathias forcing notion, we will need an

ordering ăα on Mα defined as follows:

• Set X ă1 Y if and only if maxpXq ă minpY q.

• Set X ăα`1 Y if and only if dompXq Ĺ dompY q, and for every i P

dompXq we have Xpiq ăα Y piq.

• For α a limit ordinal with cofinal sequence pαnqnPω, we set X ăα Y

if and only if dompXq Ĺ dompY q and for every i P dompY q we have

Xpiq ăαi Y piq.

We let as usual pFinαq` denote the co-ideal.

The α-dimensional forcing notion is now defined as follows:

Definition 3.3.6. Let pFinαq`` denote the set of A Ď Mα such that for

every ~n P domαpAq we have Ap~nq R Finδαp~nq. Conditions of Mα are pairs

pa,Aq where

(a) a ĎMα is finite;

(b) A P pFinαq``;

(c) a ăα A.

We let pa1, A1q ď pa,Aq if and only if A1 Ď A and a Ďα a
1 Ď aYA.

For the general case, define Finp~φq`` to be the set of A Ď Mα such that

for every ~n P domαpAq we have Ap~nq R Finp~φ æ δp~nq ` 1q, and replace (b) by

A P Finp~φq`` in the definition of Mα.

Note that for any ~n P domαpaq, the pair pap~nq, Ap~nqq is a forcing condition

in Mδαp~nq. The pair pdompaq,dompAqq is a classical (1-dimensional) Mathias

forcing condition. As before, we need a relativized forcing notion:

Definition 3.3.7. If I` is the co-ideal of an ideal I Ě Finα, then we write

I`` for I` X pFinαq`` (or more generally, for I` X Finp~φq``) and we let

MI
α “ tpa,Aq P Mα | A P I``u.
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Note that if I “ Finα then MI
α “ Mα. Note furthermore that if A P I`,

then we can always find B Ď A such that B P I``.

Notation 3.3.8.

1. For any X PMα, we define the generalized infinity domain by

dom8
α pXq “ t~n P domαpXq | Xp~nq R Finδαp~nqu,

and note that A P pFinαq`` if and only if domαpAq “ dom8
α pAq.

2. Given a filter G on MI
α, let

xG “
ď

ta | pDAqpa,Aq P Gu.

3. For a condition p P MI
α, we write pappq, Appqq when we want to refer to

its components.

4. For pa,Aq P MI
α and b Ď aYA finite, let

A{b “
ď

~nPN

Ap~nqz
 

x PM δαp~nq |
`

D~m P bp~nq
˘

x ďlex ~m
(

,

where N “ domαpbq Y t~n | ~n ąlex maxpdomαpbqqu.

5. For p P MI
α, we let MI

αpď pq “ tq P MI
α | q ď pu.

Remark 3.3.9. The definition of A{b was made to guarantee b ăα A{b. Note

that ~n P A{b if and only if ~n R b and letting ~næ l be the longest common initial

segment of ~n with some element of b, then there is no ~m P b with ~n æ l Ď ~m

and ~nplq ă ~mplq.

Following the same strategy as in previous sections, our main pursuit will

be a generalization of the Main Proposition 3.2.6.

Remark 3.3.10. Recall that in order to meaningfully talk about κ-Suslin sets

in PpMαq, we identify Mα with ω (via some fixed arbitrary bijection), sets

with their characteristic functions, and in effect, PpMαq with 2ω.

Assumption 3.3.11. For the remainder of this article, let J “ Finα where

α ě 2 (or more generally, J “ Finp~φq). Suppose A Ď PpMαq is a J -almost

disjoint family which is κ-Suslin. Moreover, fix a tree T on 2 ˆ κ such that

πrT s “ A. Finally, let I be the ideal generated by AY J .



3.3. ITERATED FUBINI PRODUCTS 59

Although the proofs in this section work for Finp~φq as above we will of

notational concern only consider the case where φβ is the counting measure

for 0 ă β ď α, i.e., where J “ Finα. Whenever relevant, we either make

an explicit comment or the reader can substitute Finα by Finp~φq (perhaps

needless to mention at this point, do not substitute for the word finite).

Main Proposition 3.3.12. ,MI
α
p@y P πrT sq y X x 9G P Finα.

The Main Proposition will be proved in Section 3.3 below. All our results

about Finα from Theorem 1.0.5 follow from the Main Proposition 3.3.12 as a

corollary:

Corollary 3.3.13. Assuming the Main Proposition 3.3.12, Theorem 1.0.5

holds.

Proof. It suffices to replace MI by MI
α in the proofs of Corollaries 3.1.6, 3.1.7,

and 3.1.8 (just as we did in Corollary 3.2.7 in the two-dimensional case).

Properties of the general higher-dimensional forcing

Before we prove the Main Proposition 3.3.12 we collect the necessary facts

about MI
α.

Lemma 3.3.14.

1. For any y P I, ,MI
α
x 9G X y̌ P Finα.

2. Let k P ω. The partial order MI
α`1 is isomorphic to the product MI

α`1pď

pH, Aqq ˆ pMαq
k, where A “ t~n P Mα | ~np0q ě ku, and by pMαq

k

we mean k-fold (side-by-side) product of α-dimensional Mathias forcing

Mα. If α is a limit ordinal, MI
α is isomorphic to MI

αpď pH, Aqq ˆ

pΠiăkMαiq.

3. ,MI
α
x 9G P pFinαq``.

Proof. (1) Since Dy “ tp P MI
α | Appq X y “ Hu is dense for any y P I.

(2) First we consider the successor case. Define a map

φ : MI
α`1pď pH, Aqq ˆ pMαq

k Ñ MI
α`1

by

`

pb, Bq, pci, Ciqiăk
˘

ÞÑ

´

bY
ď

iăk

tiu ˆ ci, B Y
ď

iăk

tiu ˆ Ci

¯

.
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For a limit ordinal α the map can be defined in exactly the same way. Both

of these maps are easily seen to be bijective and order preserving.

(3) This is shown easily by induction, slightly adapting the general case of

the proof of 3.2.8(3). We leave this to the reader.

We shall need a more sophisticated way of decomposing the forcing as a

product.

Towards this, let pa,Aq P MI
α. Let us regard Mα and a as trees, ordered by

the initial segment relation Ď. Given ~n P A, let us see how we can characterize

the “type” of ~n in relation to a with respect to ďlex.

First note that since ~n P A and a ăα A it is enough to characterize the

type of ~n æ plhp~nq ´ 1q relative to the following set of domain sequences

a˚ “
 

~n1 æ
`

lhp~n1q ´ 1
˘

| ~n1 P a
(

(for if ~n extends ~n˚ P a˚, ~n1 ălex ~n for every ~n1 P a which extends ~n˚).

Let ~n0, . . . , ~nk enumerate a˚ in lexicographically increasing order, and

momentarily fix i such that ~ni is the lexicographically maximal in a˚ with

~ni ďlex ~n. We then know by a ăα A that ~n must have a longer initial segment

in common with ~ni than it does with ~ni`1, provided i ă k.

Let therefore ~mj be the shortest initial segment of ~nj such that ~mj ălex

~nj`1 for j ă k, and let ~mk “ H. We have just seen that ~mi Ď ~n (for i and

~n as above). Moreover if j ă i, ~mj Ę ~n (for ~mj ălex ~nj`1 ďlex ~ni and so

~mj ălex ~n).

We have thus shown the following lemma:

Lemma 3.3.15. Suppose pa,Aq P MI
α. Let ~n0, . . . , ~nk enumerate

a˚ “
 

~n æ
`

lhp~nq ´ 1
˘

| ~n P a
(

in lexicographically ascending order, let ~mk “ H and for i ă k let ~mi be the

shortest initial segment of ni such that ~mi ălex ~ni`1 (just as above).

Then for each ~n P A there is precisely one i such that ~mi Ď ~n and ~ni ďlex ~n

(namely the maximal i such that ~ni ďlex ~n).

Technical as the previous lemma may be, it allows us to decompose the

forcing as a product in a very useful manner.

Lemma 3.3.16. Suppose pa,Aq P MI
α, and ~m0, . . . , ~mk and ~n0, . . . , ~nk are

defined as in the previous lemma. Then MI
α

`

ď pa,Aq
˘

is isomorphic to
ˆ

ź

iăk

Mδp~miq

´

ď
`

aip~miq, Aip~miq
˘

¯

˙

ˆMI
α

´

ď
`

ak, Ak
˘

¯

(3.3.1)
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where we let

Ai “ AX t~n | ~mi Ď ~n^ ~ni ďlex ~nu,

ai “ aX t~n | ~ni Ď ~nu,

for each i ď k.

Proof. The crucial observation is that by Lemma 3.3.15, aYA may be written

as a disjoint union

aYA “
ď

iďk

ai YAi (3.3.2)

Define a map φ from MI
α

`

ď pa,Aq
˘

to the forcing in (3.3.1) as follows:

For pb, Bq ď pa,Aq define

φpb, Bq “
`

aip~miq Y
`

pbXAiqp~miq
˘

, pB XAiqp~miq
˘

iďk
.

Using the partition from (3.3.2), it is straightforward to verify that this map

is an isomorphism of partial orders.

Of course we also have a diagonalization lemma for MI
α (compare Lem-

mas 3.1.10 resp. 3.2.9). Just as these two lemmas, Lemma 3.3.17 holds ver-

batim with Ď˚Finα and not just with Ď˚J even for J “ Finp~φq .

Lemma 3.3.17. Let pAkqkPω be a sequence from I`` satisfying Ak`1 Ď Ak
for every k P ω. Then there is A8 P I`` such that A8 Ď

˚
Finα Ak for every

k P ω.

Proof. The proof of Lemma 3.2.9 can be transcribed completely mechanically

by replacing FinbFin by Finα everywhere; we leave this to the reader.

The Branch Lemma for general higher dimensions

The reader will find that our line of argumentation in this section is remarkably

close to that of the previous section; of course this is only true since the proofs

there were written with the general case in mind.

Yet again, the crucial definition is that of an invariant tree, analogous to

Definitions 3.1.12 and 3.2.10.

Definition 3.3.18. For x ĎMα, let

T x “ tt P T | pDw P πrTrtssq w X x R Finαu
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As in Sections 3.1 and 3.2, it is easy to see that whenever x∆x1 P Finα,

T x “ T x
1

. Moreover Facts 3.1.13(2)–(5) hold here as well.

We are now ready to state the main lemma of this section.

The Branch Lemma 3.3.19. ,MI
α
|πrT x 9Gs| ď 1.

In keeping with the pattern established in previous sections, we postpone

the proof of the Branch Lemma and first give the proof of the Main Propo-

sition 3.3.19, assuming the lemma. The proof is verbatim the proof of Main

Proposition 3.2.6 except that we use Lemma 3.3.14(2)to decompose the forc-

ing; we repeat it for the incredulous reader.

Proof of Main Proposition 3.3.12. Suppose towards a contradiction that some

p0 P MI
α forces that there is A P πrT sV r

9Gs with A X x 9G R Finα. The Branch

Lemma 3.3.19 lets us choose a name 9A so that p0 , πrT x 9Gs “ t 9Au.

We show the following generalization of Claim 3.2.12:

Claim 3.3.20. There is q P MI
α and A1 P πrT s such that q , 9A “ Ǎ1.

Proof of Claim. By the generalized diagonalization lemma (Lemma 3.3.17), it

suffices to show that if p ď p0 and p decides ~n P 9A then in fact papp0q, Appqq

decides ~n P 9A.

So let us assume p , ~n P 9A (if p , ~n R 9A the proof is similar). We must

show that for an arbitrary MI
α-generic G with papp0q, Appqq P G, it holds that

~n P 9AG.

Fix k large enough so that dompappqq Ď k. By Lemma 3.3.14(2) we can

decompose G as G0 ˆ G1 where G0 is generic for
ś

iăk MFinαi
αi and G1 is

MI
α-generic. As xG∆xG1 P Finα, T xG “ T xG1 P V rG1s.

By absoluteness, 9AG P V rG1s and πrT xGs “ t 9AGu holds in both V rGs and

V rG1s.

Since appq Ď
ś

iăktiu ˆM
αi we can find G10 which is p

ś

iăk Mαi , V rG1sq-

generic over V rG1s so that letting G1 “ G10 ˆ G1, p P G1. Again by Finα-

invariance of T x and by absoluteness, 9AG
1

P V rG1s and πrT xG1 s “ t 9AG
1

u and

so 9AG
1

“ 9AG and ~n P 9AG. Claim 3.3.20. l

Just as in the proof of Main Proposition 3.2.6 we conclude that A1 P I
by absoluteness while q , x 9G X Ǎ1 R Finα, contradicting Lemma 3.3.14(1).

Main Proposition 3.3.12. l

Gradually working towards a proof of the Branch Lemma 3.3.19, we start

by introducing some notation. Set

U “ tpa, tq P PpMαq ˆ T | a is finiteu.
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For ~u P U , we will often write ~u “ pap~uq, tp~uqq. Define an ordering ďU on U

by

~u1 ďU ~u0 ô ap~u1q Ěα ap~u0q ^ tp~u1q Ě tp~u0q.

Assume for a moment that G is MI
α-generic over V and work in V rGs. For

a fixed x P PpMαq, define a set Ux Ď U consisting of those pairs pa, tq P U

such that there is w P rTrtss with

1. πpwq X xG R Finα;

2. domαpaq Ď dom8
α pxX πpwqq;

3. p@~n P domαpaqq ap~nq Ď xp~nq X πpwqp~nq.

Note that Ux is closed under initial segments with respect to ďU , and that

an infinite chain through Ux will give a set A P πrT s with a large intersection

with x, and a pFinαq
``-subset of this intersection to witness its largeness in

a useful manner.

In analogy to trees, when ~u0 P U
x we again write

Uxr~u0s “ t~u P U
x | ~u0 ďU ~uu.

Finally working in V again, we note the following about Ux 9G :

Lemma 3.3.21. Suppose pa,Aq , ~u P Ux 9G.

1. It holds that ap~uq Ď a. Moreover if a1 Ď ap~uq also

pa,Aq , pa1, tp~uqq P Ux 9G .

2. If A1 Ď˚I A such that pa,A1q P MI
α, then also pa,A1q , ~u P Ux 9G.

3. The set A1 ĎMα defined by

A1 “ t~n | pDp1 ď pa,AqqpD~u1 ďU ~uq ~n P ap~u
1q ^ p1 , ~u1 P Ux 9Gu

is not in I.

4. For a non-empty domain sequence ~n P domαpap~uqq, the set A~n ĎM δαp~nq

defined by

A~n “ t~m | pDp1 ď pa,AqqpD~u1 ďU ~uq ~m P ap~u1qp~nq ^ p1 , ~u1 P Ux 9Gu

is in pFinδαp~nqq`.
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Proof. (1) Immediate from the definition of Ux 9G .

(2) Suppose that pa,A1q . ~u P Ux 9G . Then there is some pb, Bq ď pa,A1q

such that pb, Bq , ~u R Ux 9G . Since A1zA P I, there is some B1 Ď B X A such

that B1 P I``. However, pb, B1q ď pb, Bq and pb, B1q ď pa,Aq, which is a

contradiction.

(3) Although the proof is practically identical to that of Lemma 3.2.13(2),

we give the details for the reader’s convenience. Assume to the contrary that

A1 P I. Then AzA1 P I`, so take B Ď AzA1 such that B P I`` and set

p “ pa,Bq P MI
α. Since p , ~u P Ux 9G we can find a name 9w such that

p , 9w P πrTrtp~uqss ^ 9w X x 9G R Finα .

(As in Lemma 3.2.13(2) it would suffice if p , T x 9G ‰ H). Thus we can extend

p to p1 to force some terminal sequence ~n into 9w X x 9Gzappq. But it has to be

the case that ~n P app1q. Whence ~n P A1 by definition of A1, contradicting that

also ~n P B which is disjoint from A1.

(4) The proof is identical to that of Lemma 3.2.13(3) in essence, but differs

substantially in notation. Assume to the contrary that A~n P Finδp~nq. Then we

can find p ď pa,Aq such that Appqp~nq is disjoint from A~n. Since p , ~u P Ux 9G

we can find a name 9w such that

p , 9w P πrTrtp~uqss ^ 9w X x 9G P pFinαq`

and

p , domαpap~uqq Ď dom8
α p 9w X x 9Gq.

Therefore ~n P dom8
α p 9w X x 9Gq and we can extend p to p1 to force a terminal

sequence ~n " ~n1 into 9w X x 9Gzappq. But as in the proof of the previous item,

it has to be the case that ~n " ~n1 P app1q, whence ~n1 P A~n by definition of A~n,

contradicting that also ~n1 P App1qp~nq which is disjoint from A~n.

Define a set Γ as follows:

Γ “ tpp, ~u0, ~u1q P MI
α | p@i P t0, 1uqp , ~ui P Ux 9Gu.

Define two orderings on Γ:

pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q ô p1 ď p0 ^ ~u

i
1 ďU ~u

i
0

for i P t0, 1u, and

pp1, ~u
0
1, ~u

1
1q ăΓ pp0, ~u

0
0, ~u

1
0q ô

pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q ^

“

ap~u0
0q X ap~u

1
0q Ăα ap~u

0
1q X ap~u

1
1q
‰

.
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Note that Γ is well-founded with respect to the second ordering, ăΓ. Indeed,

suppose towards a contradiction that there is an infinite sequence pp0, ~u
0
0, u

1
0q ăΓ

pp1, ~u
0
1, u

1
1q ăΓ ¨ ¨ ¨ . Set

yi “
ď

nPω

tp~uinq

for i P t0, 1u, and

A “
ď

nPω

ap~u0
nq X ap~u

1
nq.

The sequence is ăΓ-decreasing and from Γ, hence A P pFinαq`` and A Ď

πpy0q X πpy1q, contradicting Finα-almost disjointness of πrT s.

The following lemmas are analogues of Lemma 3.2.14 and Lemma 3.2.15,

giving us some freedom in tampering with the both the infinite and the finite

parts of conditions while maintaining that something is forced about Ux 9G .

Lemma 3.3.22. For each ~u0 P U the set Dp~u0q is dense and open in MI
α,

where we define Dp~u0q to be the set of p P MI
α such that for all p1 ď p and

any ~u ďU ~u0 P U ,
”

p1 , ~u P U
x 9G

r~u0s

ı

ñ papp1q, Appq{app1qq , pDt P T qpap~uq, tq P U
x 9G

r~u0s
.

Proof. The proof from the two-dimensional case, i.e., of Lemma 3.2.14 applies

exactly as written once we make the following adaptations: Firstly replace

FinbFin by Finα. Secondly, replace Ă2 by Ăα. Thirdly, adapt the definition

of B0
n as follows:

B0
n “ t~n P B

n´1
n´1 | pD~n

1 P domαpb
0
nqq ~n

1 Ď ~nu YBn´1
n´1z

ď

tCi | i ă nu.

Then pb0n, B
0
nq P MI

α, and B0
n XCi P Finα for each i ă n. With these changes,

the remainder of the argument for Lemma 3.2.14 applies verbatim.

Lemma 3.3.23. Suppose we are given ~u P U , pa,Aq P MI
α, and a1 Ď a so that

pa1, A{a1q P MI
α, and so that the lexicographically maximal element of a1 is also

the lexicographically maximal element of a. Suppose further pa,Aq , ~u P Ux 9G.

Then

pa1, A{a1q , pa1, tp~uqq P Ux 9G .

We remark that the lemma is true without the assumption that a1 and a

have the same lexicographic maximum. But this is easy to arrange when we

apply the lemma, and simplifies notation in its proof.
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Proof. We will decompose the forcing as a product. Let ~n0, . . . , ~nk and ~m0, . . . , ~mk

be defined as in Lemma 3.3.15. Then by Lemma 3.3.16,

MI
α

`

ď pa,Aq
˘

–
ź

iăk

Mδp~miq

´

ď
`

aip~miq, Aip~miq
˘

¯

ˆ

MI
α

´

ď
`

ak, Ak
˘

¯

(3.3.3)

with Ai and ai defined as in the lemma.

Let D consist of those i ă k such that some element of a1 extends ~ni. Then

writing A1 “ A{a1, Lemma 3.3.16 also gives us an isomorphism

MI
α

`

ď pa1, A1q
˘

–
ź

iPD

Mδp~miq

´

ď
`

a1ip~miq, A
1
ip~miq

˘

¯

ˆ

MI
α

´

ď
`

a1k, A
1
k

˘

¯

(3.3.4)

with A1i and a1i defined analogously as in the lemma. We have A1i “ Ai for

each i P DYtku and so it is easy to see—e.g., using Lemma 3.3.14(2), a finite

induction, and Lemma 3.1.9(3)—that

Mδp~miq

`

ď paip~miq, Aip~miqq
˘

– Mδp~miq

`

ď pa1ip~miq, A
1
ip~miqq

˘

for i P D and

MI
α

´

ď
`

aip~mkq, Ak
˘

¯

– MI
α

´

ď
`

a1k, A
1
k

˘

¯

.

Write

P` “
ź

iRD

Mδp~miq

´

ď
`

aip~miq, Aip~miq
˘

¯

,

P´ “
ź

iPD

Mδp~miq

´

ď
`

aip~miq, Aip~miq
˘

¯

,

P1´ “
ź

iPD

Mδp~miq

´

ď
`

a1ip~miq, A
1
ip~miq

˘

¯

,

P8 “MI
α

´

ď
`

ak, Ak
˘

¯

,

P18 “MI
α

´

ď
`

a1k, A
1
k

˘

¯

.

noting that we have established

MI
α

`

ď pa1, A1q
˘

– P1´ ˆ P18 – P´ ˆ P8 (3.3.5)

and

MI
α

`

ď pa,Aq
˘

– P` ˆ P´ ˆ P8 (3.3.6)
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Now finally, let G1 be MI
α-generic over V with pa1, A1q P G1. We must

show pa1, tp~uqq P UxG1 . Using (3.3.5) transform G1 into a P´ ˆ P8 generic

H´ ˆ H8. Find a P`-generic H` over V rH´srH8s and let G be the MI
α-

generic given by H` ˆ H´ ˆ H8 using (3.3.6). By construction pa,Aq P G,

whence pap~uq, tp~uqq P UxG .

By definition of UxG this means that in V rGs we can find w P πrTrtp~uqss so

that

pDu P pFinαq``q a1 Ď2 u Ď πpwq X xG. (3.3.7)

Since xG∆xG1 P Finα we may replace xG by xG1 in (3.3.7), and thus

pDx P rTrtp~uqssqpDu P pFinαq``q a1 Ď u Ď πpxq X xG1 . (3.3.8)

Just as in the two-dimensional case (i.e., the proof of Lemma 3.2.15) an abso-

luteness argument easily shows that (3.3.8) and hence pa1, tp~uqq P UxG1 must

hold in V rG1s, proving pa1, A{a1q , pa1, tp~uqq P Ux 9G .

After all these preparations, we are finally ready to prove our last and

most general instance of the Branch Lemma.2

Proof of the Branch Lemma 3.3.19. Suppose towards a contradiction we have

p P MI
α and a pair of MI

α-names 9w0, 9w1 such that

p , p@i P t0, 1uq 9wi P πrT s ^ x 9G X 9wi R Finα

and p , 9w0 ‰ 9w1. By definition of Γ we may find pp0, ~u
0
0, ~u

1
0q P Γ such that

πptp~u0
0qq ‰ πptp~u1

0qq.

Claim 3.3.24. There is pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q, a terminal sequence ~n˚ P

ap~u0
1q X ap~u1

1q, and numbers l ă lhp~n˚q and and k˚ P ω such that for any

pp2, ~u
0
2, ~u

1
2q ďΓ pp1, ~u

0
1, ~u

1
1q and any

~n P ap~u0
2q X ap~u

1
2q

such that ~n˚ æ l Ď ~n, we have ~nplq ď k˚.

Proof of Claim. We show that if the claim fails, there is a ăΓ-descending

sequence in Γ. It suffices to show that any pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q has a

ăΓ-extension. So let pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q be given.

2We point out that the previous series of lemmas can also be used to show that every
sequence of ordinals in an MI

α-generic extension of V which is definable by a Σ1 formula
with parameters from V Y trxGsJ u is already in V , where rxsJ denotes tx1 | x∆x1 P J u.
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Since the claim fails, given any terminal sequence ~n P apu0
1q X apu1

1q, any

k ă lhp~nq, and

pp, ~u0, ~u1q ďΓ pp1, ~u
0
1, ~u

1
1q

we can form an extension

pq,~v0, ~v1q ďΓ pp, ~u
0, ~u1q

such that there is ~n1 P apv1q X apv1q with ~n1 æ k “ ~n æ k and ~n1pkq ą ~npkq.

In finitely many steps, construct a (finite) descending sequence

pp1, ~u
0
1, ~u

1
1q ěΓ pp2, ~u

0
2, ~u

1
2q ěΓ . . . ěΓ ppm, ~u

0
m, ~u

1
mq,

at each step taking an extension of the previous element as just described. We

can deal with each ~n P ap~u0
1q X ap~u

1
1q and each k ă lhp~nq, so that at the end

ap~u1
1q X ap~u

1
1q Ăα ap~u

m
1 q X ap~u

m
1 q.

Thus we have found ppm, ~u
0
m, ~u

1
mq ăΓ pp1, ~u

0
1, ~u

1
1q. Claim 3.3.24. l

Let pp1, ~u
0
1, ~u

1
1q ďΓ pp0, ~u

0
0, ~u

1
0q, ~n

˚ P ap~u0
1qXap~u

1
1q, l ă lhp~n˚q and k˚ P ω be

as in the claim. By Lemma 3.3.22 and by replacing p1 by a stronger condition

if necessary, we may assume that p1 P Dp~u
0
1q XDp~u

1
1q.

Case 1: Assume first that l “ 0. Let A1 Ď Mα be defined as in

Lemma 3.3.21(3), namely

A1 “ t~n | pDp1 ď p1qpD~u
1 ďU ~u

0
1q ~n P ap~u

1q ^ p1 , ~u1 P Ux 9Gu

By Lemma 3.3.21(3), A1 P I`. Find A Ď App1q such that A P I`` and letting

k˚˚ “ maxpdompapp1qqq we have

App1qpiq “ Apiq,

for i ď k˚˚ while

AX
`

ď

iąk˚˚

tiu ˆM δpiq
˘

Ď A1.

Letting p˚ “ papp1q, Aq we obtain a condition in MI
α such that p˚ ď p1. Since

p˚ , ~u1
1 P U

x 9G , and we can find p ď p˚, ~u, and ~n with ~np0q ą k˚, k˚˚ such

that

~n P ap~uq ^ p , ~u P U
x 9G

r~u11s
,

it follows that ~n P A1. Hence by definition of A1 we can find p1 ď p1 and ~u1

such that

~n P ap~u1q ^ p1 , ~u1 P U
x 9G

r~u01s
.



3.3. ITERATED FUBINI PRODUCTS 69

By extending p, p1 if necessary, we can assume that appq and app1q have the

same lexicographically maximal element. As p1 P Dp~u
0
1qXDp~u

1
1q and p, p1 ď p1,

we can find ~u0 and ~u1 such that

~n P ap~u0q ^ pappq, App1q{appqq , ~u0 P U
x 9G

r~u01s

and

~n P ap~u1q ^ papp1q, App1q{app
1qq , ~u1 P U

x 9G

r~u11s
.

Let a “ appq X app1q (whose lexicographically maximal element is also that of

appq as well as that of app1q). For each i P t0, 1u we have

ap~ui1q Y t~nu Ď a Ď appq, app1q

and so by Lemma 3.3.23

`

a,App1q{aq
˘

, pap~ui1q Y t~nu, tp~u
iqq P U

x 9G

r~ui1s

for each i P t0, 1u. Letting

p2 “
`

a,App1q{a
˘

and

ui2 “ pap~u
i
1q Y t~nu, tp~u

iqq

for i P t0, 1u we obtain pp2, ~u
0
2, ~u

1
2q ďΓ pp1, ~u

0
1, ~u

1
1q with ~n P ap~u0

2q X ap~u1
2q and

~np0q ą k˚, which contradicts the choice of pp1, ~u
0
1, ~u

1
1q, ~n

˚, and k˚.

Case 2: In case l ą 0, let ~n “ ~n˚ æ l and consider the set A~n defined as in

Lemma 3.3.21(4), namely

A~n “ t~m | pDp ď p1qpD~u ďU ~u
0
1q ~m P ap~uqp~nq ^ p , ~u P Ux 9Gu.

Lemma 3.3.21(4) ensures A~n P pFinδαp~nqq`.

Let k˚˚ “ maxpt~nplq | ~n P app1quq. Find A Ď App1q such that A P

pFinδp~nqq``,

App1qp~nq X t~m P ωăω | ~mp0q ď k˚˚u Ď A

and

Ap~nq X t~m P ωăω | ~mp0q ą k˚˚u Ď A~n.

By choice of k˚˚, letting p˚ “ papp1q, Aq we obtain a condition in MI
α, p˚ ď p1.

Since p˚ , ~u1
1 P U

x 9G we can find p ď p˚ and ~u ďU ~u1
1 such that there

exists a terminal sequence ~m P ap~uq with ~mplq ą k˚, k˚˚ and such that

p , ~u P T
x 9G

r~u11s
.
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By definition of A we infer ~m “ ~n" ~m1 for some ~m1 P A~n, and so we can find

p1 ď p1 and ~u1 ďU ~u
0
1 such that

~m P ap~u1q ^ p1 , ~u1 P T
x 9G

r~u01s
.

Using that p1 P Dp~u0
1q X Dp~u1

1q and Lemma 3.3.23, argue verbatim as in

the previous case to construct pp2, ~u
0
2, ~u21q ďΓ with ~m P ap~u0

2q X ap~u21q.

Since ~mplq ą k˚, this contradicts the choice of pp1, ~u
0
1, ~u

1
1q, ~n

˚, l, and k˚.

Branch Lemma 3.3.19. l



Chapter 4

Related questions

There are several questions related to the non-existence results from Chapter

3 that could be interesting to investigate further. We will discuss some of

them in this section, and start with a question that was asked in [5].

The results of this thesis show that for J in a rather vast class of Borel

ideals in ω, one can prove that there are no definable J -MAD families, under

suitable assumptions on either what definable means, or what background

theory is adopted.

It is worth noting that it is not the case that such a theorem is true for

every Borel ideal on ω. Indeed, the ideal on ω ˆ ω, defined by

J “ tx Ď ω ˆ ω : p@n P ωqtm : pn,mq P xu is finiteu

clearly admits the J -MAD family, namely ttiu ˆ ω : i P ωu.

It remains an interesting open problem if it is possible to characterize the

Borel ideals for which an analogue of Theorem 1.0.5 is true, and for which

that type of theorem fails. In other words:

Question 4.0.1. Is there a dichotomy for Borel ideals on ω which charac-

terizes when there are/are no definable MAD families with respect to a given

Borel ideal?

Secondly, we could ask the following question, which is related to Törnquist’s

result that there are no infinite MAD families in Solovay’s model:

Question 4.0.2. For which Borel ideals J are there no infinite J -MAD fam-

ilies in Solovay’s model?

Törnquist’s proof was based on his new proof that there are no analytic

MAD families [21]. In this proof, an ordinal analysis of a tree representation

71
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of the MAD families is used to, for an analytic family A of subsets of ω,

construct a sequence pAnqnPω of subsets of ω such that any x P A is almost

contained in the union of finitely many An, and ω without any finite union of

An is always infinite. If such a sequence exists, it is not hard to construct an

element which can be added to A without affecting the almost disjointness.

In other words, A is not maximal. The sequence is constructed by defining a

subtree of the tree representation of A called a diagonal sequence and proving

that the tree representation admits an infinite such diagonal sequence. The

leaves of this diagonal sequence give rise to a sequence pA0
nqnPω. Then a tree

derivative argument allows us to only consider the nodes with some extension

that is not almost covered by a finite union of this sequence, and repeat the

procedure at most countably many times. The proof that there are no infinite

MAD families in Solovay’s model mimics this, replacing the tree with a poset

P and the real with a P-name.

It would be interesting to investigate whether there is a corresponding

sequence pAnqnPω of subsets of ω ˆ ω in the case I “ FinbFin, and if so,

whether this sequence can be produced by ordinal analysis of the tree repre-

sentation in a similar way. If this is the case, then we could hope that the

proof could be mimicked in a similar way replacing the tree with a poset, in

order to answer Question 4.0.2 positively when I “ FinbFin.

In the case of Fin, it is not so hard to see that everytime the tree splits, it is

possible to extend the nodes so that their extensions are almost disjoint. This

ensures that the sets arising from the diagonal sequence are in fact almost

disjoint. This does not happen in the more complex case of a FinbFin-

AD family. In the earlier mentioned recent proof that there are no analytic

FinbFin-MAD families (which was a proof by forcing) a countably infinite

process was needed in order to approximate the extended tree in the ground

model, and this could pose a challenge with respect to finding a tree derivative

proof. However, we might be able to reuse the idea of considering pairs ps, tq

of nodes and add information about the intersection of extensions x and y of

s and t respectively, and perform a tree derivative argument on this expanded

tree instead.

If we succeed in performing this kind of tree analysis for some Borel ideal

J , for instance J “ FinbFin, then there is also another direction in which

this result could be generalized. In order to look into this, we need to know a

little bit about Martin’s axiom.

Martin’s axiom is an axiom introduced by Martin and Solovay in 1970 [14].

It is independent of ZFC, consistent with the negation of CH, and implied by

CH. It has many interesting comsequences, but is by many mathematicians
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considered less intuitive than many other possible axioms. First we define the

following statement:

MA(κ): If pP,ď, 1q is a non-empty poset which is c.c.c., and D is a family

of dense subsets of P such that |D| ď κ, then there is a filter G in P such that

p@D P Dq GXD ‰ H.

Now Martins’ axiom says: p@κ ă 2ωq MA(κ).

In the case of Fin, the tree analysis allowed Törnquist to, with small

alterations, conclude that if MA(κ) holds for κ ă 2ℵ0 , then there are no

infinite κ-Suslin MAD families. A natural question to ask is therefore the

following:

Question 4.0.3. Suppose MA(κ) holds for some κ ă 2ℵ0 . For which Borel

ideals I can we conclude that there are no infinite κ-Suslin I-MAD families?
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