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Abstract

This thesis is based on [5], which is joint work with David Schrittesser
and Asger Tornquist. We study the notion of J-MAD families where J
is a Borel ideal on w. We show that if J is an arbitrary F, ideal,
or is any finite or countably iterated Fubini product of F, ideals, then
there are no analytic infinite 7-MAD families; and assuming Projective
Determinacy there are no infinite projective J-MAD families; and under
the full Axiom of Determinacy + V = L(R) there are no infinite J-mad
families. These results apply in particular when J is the ideal of finite
sets Fin, which corresponds to the classical notion of MAD families. The
proofs combine ideas from invariant descriptive set theory and forcing.

Resumé

Denne athandling er baseret pa [5], som er lavet i samarbejde med
David Schrittesser og Asger Térnquist. Vi arbejder med J-MAD fami-
lier, hvor J er et Borel ideal pa w. Vi viser at hvis J er et vilkarligt F,
ideal, eller et endelig eller teelleligt itereret Fubini produkt af F,, idealer,
da er der ingen analytiske uendelige J-MAD familier, og under antagelse
af Projective Determinacy er der ingen projektive J-MAD familier, og
under det fulde Axiom of Determinacy + V = L(R) er der ingen uen-
delige J-MAD familier. Disse resultater geelder specielt nar J er idealet
bestaende af endelige meengder Fin, hvilket svarer til den klassiske defini-
tion af MAD-familier. Beviserne kombinerer idéer fra invariant deskriptiv
maengdelaere og forcing.
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Chapter 1

Introduction

Consider a family A € [w]“ of infinite sets of natural numbers. We say that A
is almost disjoint (short: AD) if for every two distinct A, B € A it holds that
|A N B| < 00. Whenever we have an AD family A, we can ask if it is possible
to add another infinite set and maintain the almost disjointness of A. We say
that the AD family A is maximal (short: MAD) if this is not possible, i.e. if
for every x € [w]® the family A U {z} is not almost disjoint.

We can easily find MAD families of any finite cardinality. The family
{{2n | new},{2n+ 1| n € w}} is one example. On the other hand there are
no countably infinite MAD families: indeed, let {A,, | n € w} be an AD family.
Construct « = {x, | n € w} < w by letting x,, € A,\ | J;_,, Ai be the least such
that x, > x,,—1. Then {4, | n € w} U {z} is AD, and thus {A,, | n € w} is not
maximal.

However, infinite MAD families do exist. This is a consequence of Zorn’s
lemma. Indeed, let PP be the set of all infinite, almost disjoint families partially
ordered by . Note that P is non-empty; if (px)ke, is an enumeration of the
primes and Py := {p} | n € w}, then {P} | k € w} € P. For any chain C in P,
consider the union | JC. If A, B € [ JC, then since C is totally ordered, there
is some A € C such that A,B € A. Since A € P is almost disjoint, we have
|AnB| < o0, thus proving that | J C is almost disjoint. By Zorn’s lemma, there
is a maximal element in P, i.e. an infinite maximal almost disjoint family.

The non-constructive proof above gives us no information about what an
infinite MAD family looks like — all we know is that it has to be uncountable.
There are several perspectives one might take on infinite MAD families, and
from a descriptive set theoretic point of view it is natural to ask how complex
the definition of such a family would be. For this purpose, we identify the
power set P(w) of w with 2¢ equipped with the product topology by identifying
each subset with its characteristic function. An infinite MAD family will then

7



8 CHAPTER 1. INTRODUCTION

be a subset of the Polish space 2¥, and we will in the following investigate the
possible complexity of its definition with respect to this topology.

The starting point of this area of research is Mathias’ famous result from
1969 (which was published in 1976) that there are no analytic infinite MAD
families [16]. Furthermore, he proved that assuming the existence of a Mahlo
cardinal, there is a model of ZFC in which there are no projective infinite
MAD families, and there is a model of ZF + Dependent Choice in which there
are no infinite MAD families at all. The weaker assumption that ”there is
some inaccessible cardinal” gives rise to Solovay’s model, which is a model
of ZF in which all sets of real numbers are Lebesgue measurable. In 2015,
Tornquist answered negatively the longstanding question, posed by Mathias,
about existence of infinite MAD families in Solovay’s model [21]. Horowitz and
Shelah removed the cardinal assumption altogether in 2016 by proving that ZF
+ Dependent Choice + ”There are no infinite MAD families” is equiconsistent
with ZFC [7].

The proofs in the present thesis are based on a Mathias-like forcing to-
gether with ideas from invariant descriptive set theory, which is the theory of
definable equivalence relations and invariance properties. This turned out to
be a fruitful approach, which led to a variety of results. Let us start by pre-
senting the most fundamental theorem, which was also showed independently
by Neeman and Norwood [20] using different methods:

Theorem 1.0.1. 1. Under ZF + Dependent Choice + Projective Deter-
minacy, there are no projective infinite MAD families.

2. Under ZF + Axiom of Determinacy + V = L(R), there are no infinite
MAD families.

The notion of almost disjointness easily generalizes to other ideals, which
we think of as collections of sets considered to be ”small” in some sense. Let
towards this end Fin denote the ideal on w consisting of finite sets and let
Fin* denote the co-ideal. Then an AD family A € P(w) is a family that
satisfies A < Fin' and for every two distinct A, B € A, the intersection
A n B e Fin. Consider now a countable set S, and let J be any ideal on S
with corresponding co-ideal J+. We say that a family A < P(S) is J-almost
disjoint (short: J-AD) if A € J* and for every distinct A, B € A we have
An B e J, and we say that A is maximal J-almost disjoint (short: J-MAD)
if it is maximal among [J-AD families. The natural question to ask, which
has also been the motivation for the rest of the present thesis, is this:



Question 1.0.2. For which ideals [J do the non-existence results about MAD
families also apply to J-MAD families?

We will investigate a large class of Borel ideals, namely iterated Fubini
products of F, ideals. First, we study F, ideals, which are ideals that are
countable unions of closed sets. By a result of Mazur, any F, ideal is given
as the finite part of a lower semicontinuous submeasure, in the sense that any
F, ideal is of the form Fin(¢) = {X < w | ¢(X) < o0} where ¢ is a lower
semicontinuous submeasure [I7]. Note that Fin is F,, and given as the finite
part of the counting measure. As in the case of Fin, it is not hard to see that
for any F, ideal J there are J-MAD families of any finite cardinality, but
no countably infinite J-MAD family. Moreover, Zorn’s lemma also yields the
existence of an infinite J-MAD family. We prove the following:

Theorem 1.0.3. Let J < P(w) be an Fy ideal on w.
1. There are no analytic infinite J-MAD families.

2. Under ZF + Dependent Choice + Projective Determinacy, there are no
projective infinite J-MAD families.

3. Under ZF + Determinacy + V = L(R), there are no infinite J-MAD
families.

In order to generalize this result even further, let (S, Zx)kew be a sequence
of countable sets together with ideals, and let Z be an ideal on w. We construct
an ideal @77y on S = | |, Sk called the Fubini sum of (Zy)ge, over I in the
following way:

(—DIIkZ{IQS|{k‘Ew|IﬁSk¢Ik}€I}.

Note that if S, = w and Z, = Z = Fin for every k € w, then the Fubini sum
equals the well-known ideal

Fin@Fin={I Cwxw|{new|{mew| (n,m)e I} is infinite } is finite}.
We prove the following:

Theorem 1.0.4. Let J = @71y, where I, I, are F, ideals on w for every
ke w.

1. There are no analytic infinite J-MAD families.

2. Under ZF + Dependent Choice + Projective Determinacy, there are no
projective infinite J-MAD families.
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3. Under ZF + Determinacy + V = L(R), there are no infinite J-MAD

families.

This notion of Fubini sums will be iterated into the transfinite, as will be
defined in Section [3.3] This way we obtain Borel ideals of aribitrarily high
complexity [22, Chapter 2], and we generalize the previous result even further:

Theorem 1.0.5. Let J = Fin(¢) be a Borel ideal as defined in Section .
1. There are no analytic infinite J-MAD families.

2. Under ZF + Dependent Choice + Projective Determinacy, there are no
projective infinite J-MAD families.

3. Under ZF + Determinacy + V = L(R), there are no infinite J-MAD
families.

This means that the Borel ideals which satisfy these results concerning non-
definability of corresponding MAD families lie cofinally in the Borel hierarchy.

The proofs of the theorems above all follow the same pattern. In order
to give an idea of this pattern we will now sketch a proof of the most basic
case, namely when the family A is analytic Fin-almost disjoint. The following
is therefore a sketch of a new proof of Mathias’ classical result that such a
family cannot be maximal.

Given an analytic AD-family A, we define a forcing notion, closely related
to Mathias forcing, which allows us to build a generic element which is infinite
and almost disjoint to everything in A. We denote by x the generic real added
by this forcing. Since A is analytic, we can represent A by the projection of the
infinite branches through some countable tree 7', i.e. A = 7[T]. We show the
Main Proposition (3.1.5), stating that for any generic G the set 7[T U {zg}
is almost disjoint also in the forcing extension. In order to prove the Main
Proposition we define for z € w a pruned subtree T% < T that consists of the
nodes in T that have an extension whose projection intersects z in an infinite
set. In other words, T is the subtree of T' consisting of the nodes that have
infinite extensions that would witness non-almost disjointness of 7[T] and x.
Then {x} u w[T] is almost disjoint if and only if 7% = . It is not that
hard to see that the function x — T% is invariant under Fy-equivalence, i.e.
that for xFEgz we have T% = T%. For a generic GG, the tree T7¢ is therefore
definable from the equivalence class [r¢]|g,. Now we use a diagonalization
property of the forcing to prove that the sets that are hereditary definable
using parameteres from V' u {[zg]g,} are in fact in V. The next crucial
ingredient in the proof is the Branch Lemma (3.1.14)), which ensures that
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T*G does not split in the first coordinate, and that w[T%¢] therefore has at
most one element. Now we see that if #[7%¢] = {y}, then y is definable
from [z¢] and thus y € V. Moreover, since T%¢ < T, we obtain y € A. By
definition of T%¢, we have xg N y ¢ Fin, contradicting the definition of z¢
which made sure that zg was almost disjoint from everything in 4. Thus
w[T*6¢] = T*¢ = F for any generic G, and this proves the Main Proposition.
The fact that A cannot be maximal now follows from an absoluteness lemma.

In the proofs of all the other cases, where both the complexity of A and
the complexity of the Borel ideal in addition to the background theory varies,
we exploit the tree structure of A in the given setting to prove an analogue
of the Main Proposition by means of an invariant subtree and an analogue of
the Branch Lemma. The theorems above follow from the Main Proposition
by the already mentioned absoluteness lemma. The least straightforward part
is the proof of the Branch Lemma, which demands more work in the higher
dimensional cases. We will need to define an intermediary object U*¢ with a
tree-like structure, and a well-founded partially ordered set I' to keep track of
which elements that are forced into U*¢. The well-foundedness of I' together
with a couple of lemmas that allow us to alter both the finite and the infinite
part of a forcing condition while maintaining that something is forced about
U%¢& will then yield the wanted contradiction if we assume that the invariant
subtree has more than one branch.

The thesis is structured as follows:

In Chapter [2] we explain the background theory used in the thesis. The
chapter is divided into the following sections:

In Section 2.1 we give a few basic definitions and establish some notation.

In Section we introduce the subject of definability in descriptive set
theory. We describe the Borel hierarchy and the projective hierarchy, and we
give several equivalent definitions of being analytic. We also briefly explain
the idea of invariant descriptive set theory.

In Section 2.3]we define determinacy and discuss a few crucial consequences
of the determinacy axioms.

In Section [2.4] we give an informal introduction to forcing, and give an
example of how forcing is used to prove independency of the continuum hy-
pothesis. We also define classical Mathias forcing. Moreover, we introduce
the subject of inner model theory and define the inner model L. We also state
lemmas which allows us to assume that our J-MAD families are x-Suslin wit-
nessed by a tree from a model where P(P(w)) is countable. Finally, we discuss
the notion of absoluteness between models, and prove an absoluteness lemma
which will be used throughout the thesis.
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In Chapter [3] we are ready to see the proofs of the main results of the
present thesis.

In Section [3.1] we prove Theorem for any F, ideal Z. We define the
Mathias forcing MZ relative to an ideal Z. We claim the Main Proposition
3.1.5] saying that in this forcing extension, the AD-family in question is not
maximal, and use absoluteness to see that this holds in general. In order to
prove this proposition, we first collect some facts about the forcing. Then we
move on to the actual proof, which to great extent relies on the definition of
an invariant tree and the purely combinatorial Branch Lemma [3.1.14

In Section [3.2] we prove Theorem [I.0.4] The structure is similar to that of
Section however the proof of the corresponding Branch Lemma [3.2.T]]
is much more involved.

In Section [3.3| we prove Theorem We introduce the a-dimensional
Fubini product Fin(ﬁ), and define an a-dimensional version MZ of MZ. The
structure is again similar to that of Section but the proofs are even more
intricate.

In Chapter [ we discuss a few questions that could be interesting to pursue,
and also the general open problem of for which Borel ideals on w one can hope
to achieve analogues of Theorem [1.0.5



Chapter 2

Set theory

2.1 Preliminaries and notation

Sets and sequences

We will denote the natural numbers including zero by w. By a natural number
n € w we understand the ordinal n = {0,...,n — 1}.

Let X be a set. We denote the powerset of X by P(X). The set of finite
subsets of X is denoted [X]<“, while [ X]“ denotes the set of countably infinite
subsets of X. For a € [X]|=¥ and b e [X]|~¥ U [X]¥, we write a C b if and only
if a € b and n € b\a = n > max(a).

We let X < denote the set of finite sequences in X, i.e.

X~ ={(s0,---y8n-1) | n€ewn (Vi<n)s; X}
For a finite sequence s = (sg,...,Sn—1) € X%, we let lh(s) = n denote the
length of s. For m < n, we let sfm = (sg,...,8m-1). If s,t € X=“ we

say that s is an initial segment of t and ¢ extends s if s = tIm for some
m < 1h(t), and we write s £ ¢. If s © ¢t and lh(¢) > lh(s), then we write
s = t and say that t is a proper extension of s. Two finite sequences that
satisfies that one is an initial segment of the other are called compatible. If
this is not the case, the sequences are incompatible. The concatenation of

s = (80,-..,8p-1) € X% and t = (to,...,tm—1) € X=“ is denoted st and
defined by st = (80,5 8n-1,t05---5tm—1). If a € X we write s a for the
sequence (Sq,...,Sn—1,a).

The set of infinite sequences in X is denoted by

X = {(21)hew | (VK € w) 7 € X}

13
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For z € X and m € w we let z|m = (xq,...,Tm—1). We say that s € X =% and
x € X% are compatible if s is an initial segment of x, i.e. if there exists n € w
such that s = zn. The concatenation of a finite sequence s = (sg,...,8,) €
X <% and an infinite sequence x = (zj)ke, € X¥ is the infinite sequence given
by $7x = (80, -, Sn—1,T0, T1s---)-

Note that X? in general can be viewed as a set of functions f: § — X.
For X =2 = {0,1}, a function f: 6 — 2 can be identified with the subset of
§ for which f is the characteristic function, so 2° can be identified with P(4).

Trees

Let X be a set. A tree on X is a set T < X< of finite sequences, which
is closed under initial segments, i.e. if ¢ € T, then for any m < lh(¢) the

restriction t}m € T. Given a tree T', we can consider the set [1'] of branches
through T

[T] ={ze X¥| (Vnew)xlneT}.
For t € T we can also define trees
Ti={ue X~¥|tTueT}
and
Ty = {u € T | u is compatible with t}.

We say that a tree T is well-founded if [T] = . For a well-founded tree T'
we can recursively define a rank function pr : T — w; in the following way:

pr(t) = sup{pr(u) + 1 |ueT,t < u}.

The rank of T is defined by p(T) = sup{pr(t) +1 | t € T'}. We say that
t € T is terminal if for every s € S we have t s ¢ T, i.e. if pp(t) = 0. Note
furthermore that pr(t) = pr, ().

Trees can also be defined on finite product spaces. Let Xy, X; be a sets.
We follow established descriptive set theoretic conventions and call a tree T' on
Xox X1 asubset of X5 x X~ which is closed under initial segments and such
that (to,t1) € T = lh(tp) = lh(t1) (compare [10, 2.C]). Given t = (to,t1) € T,
let 7(t) = to be the projection onto the first coordinate. For any s € T', Ty =
{t € T | t is compatible with s}, and Ty = {t € |J,c, X§ x X]' | st e T}.
Naturally we set

new

[T] = {(x0,21) € X§ x XV | (Vnew) (xoln,z1 | n) €T},
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and for w = (xg,x1) € [T], we let m(w) = z¢ denote the projection onto the
first coordinate. Finally we write

7[T] = {0 € X¥ | 3z € X¥) (w0, 21) € [T]}.

Ideals

Fix a countable set S. An ideal on S is a family J < P(S) satisfying
1. JeJ;
2. if A e J, then for any subset B € A we have B € J;
3.ifAe J and Be J,then AuBeJ.

We denote by Fin the ideal of finite sets.
Given an ideal J, we write J T to denote the co-ideal, i.e.,

Jt={AcS|A¢ T}
For A, B € P(S), we write
AcY Be (3IeJ)AcBuUl

We write A =* B for A <}, B.

We say that a family A < P(S) is J-almost disjoint (short: J-AD) if
Ac Jt and for any A, B€ A we have An Be J. A set A< P(9) is said
to be a J-MAD family if A is a J-AD family which is maximal with respect
to inclusion among J-AD families.

Definition 2.1.1. Let A < P(S). By the ideal generated by A we mean the
ideal Z on S defined as follows:

I={IcS|(@Enew)(BA,...,Ane A) T | A},
i<n
i.e., the smallest (under <) ideal on S containing each set from .A.

Suppose A < P(S) and J is an ideal on S. Then note that the ideal
generated by Au J is

{IcS|[IeJv@new)(3A,...,Ane ATy | ) A

i<n

We point out that if A is an infinite J-AD family then J is proper (i.e.,
S ¢ J; otherwise there are no non-empty, let alone infinite, J-AD families).
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To avoid trivialities we always assume that [S]<¥ < J (otherwise discard all
singletons which are not in J). Moreover we could assume | J A = S (although
we shall never need this).

We also point out that enlarging an ideal J by an infinite J-AD family
yields a proper ideal:

Lemma 2.1.2. Let S be arbitrary, J an ideal on S and A < P(S) a J-AD
family. If A is infinite, the ideal T generated by A J is proper. (The other
implication holds if | JA = S.)

Proof. We show the contrapositive. Suppose S € Z. Then there exist Ag,..., A, €

A, J € J such that S < Uz‘gn A; u J. Since A is J-almost disjoint A =

{Ap,..., A} is finite; indeed, if there were A € A\{Ay,...,A,} then
A=5SnA=(VicndinA)u(JnA)eJ.

For the last claim, suppose | JA = S; show the contrapositive. If A is
finite, then S < (J 4 A, and thus S e 7. O

A submeasure on w is a function ¢: P(w) — [0, 00] which satisfies

o (X)) <op(Y)for X €Y
e H(XUY)<o(X)+ oY) for X,Y € P(w);
e ¢({n}) < o for every n € w.

We say that ¢ is lower semi-continuous (Isc) if identifying P(w) with 2¢
carrying product topology, it is lower semi-continuous as a function ¢: 2“ —
[0, 0], i.e., if X;, — X implies liminf, o ¢(X,) = ¢(X). For submeasures,
this is equivalent to saying that ¢(X) = lim, o ¢(X N n).

As mentioned already in the introduction, an F, set is a countable union
of closed sets. Given a submeasure ¢ on w, the family

Fin(¢) = {X € P(w) | ¢(X) < 0}

is an F, ideal on w and every F, ideal J 2 Fin arises in this way [I7, 1.2].
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2.2 Descriptive set theory: A study of definability

Descriptive set theory is the study of ”definable” subsets of certain well-
behaved topological spaces called Polish spaces, where the notion of defin-
ability is referring to the topological definition of the set. In this section we
will review some of the most basic definitions and results. For a more thorough
exposition, the reader is referred to [10].

Definition 2.2.1. Let (X,7) be a topological space. If (X,7) is separable
and completely metrizable, then we say that (X,7) is Polish.

An important example of a Polish space is the real line R with the usual
topology. Moreover, any countable set X equipped with the discrete toplogy
is Polish, and so is the product X“ of countably infinitely many copies of the
countable, discrete space X. The topology of a space X“ has as a basis the
sets

Ng = {z e X¥ | zlh(s) = s},

where s € X<“. In general, any finite or countably infinite product of Polish
spaces is Polish.

The following characterization of closed subsets in Polish spaces of the
form X% will turn out to be crucial in determining the definability of the
various Z-MAD families that we will be looking into:

Proposition 2.2.2. Let X be a discrete, countable set. Any closed subset of
the Polish space X% is the set of branches through some tree. Conversely, any
set of branches is closed.

Proof. Let F < X% be a closed set. Consider the map F +— Tr, where Tg is
the following tree:

Tr={seX"|newna (IxeF)s=uzln}

Then F = [Tr]. Conversely, if T is a tree, then [T] is a closed set: suppose
[T] # X“ and let x € X“\[T]. Then there is n € w such that zIn ¢ T, so
Nzr € X9\[T]. Since x was arbitrary, the set X“\[T] is open. O

There are two Polish spaces constructed in this fashion that are of partic-
ular interest. These are the Cantor space 2 = {0,1}* and the Baire space

wv.

Before we look into them, we need to establish two important hierar-
chies describing the complexity of subsets of Polish spaces, namely the Borel

hierarchy and the projective hierarchy.
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In descriptive set theory we study sets of reals (or, more generally, sub-
sets of Polish spaces) that in some sense have a simple description in terms
of topology. In general, we are mostly interested in sets that are definable
using certain basic operations from a baseline of some collection of sets, and
continuous images of such sets.

Let (X, T) be a Polish space. By alternating between taking complements
and countable unions, we obtain a hierarchy of subsets of X definable from
the open sets using only these operations. This hierarcy is called the Borel
hierarchy, and is recursively defined as follows:

e XY(X) = open subsets of X;
) H?(X ) = closed subsets of X, i.e. complements of open sets;

For 1 < a <wi, B(X) = {Upe, Bn | Bn € I} (X) for B, < a};

e For 1 < a < wi, M2(X) = complements of sets in X0 (X).
e A2(X) =32%X)nTI2(X).

It follows immediately from the definitions that  J,,_, (X)) =, o T (X).
This class of sets is called the Borel sets, and it is denoted by B(X). In other
words, a set B is Borel if and only if B € X2(X) for some a < w; (or,
equivalently, B € TI2 (X) for some o < wy).

Note that £9(X) are exactly the F, subsets of X.

Once we have defined the Borel hierarcy, we can consider projections of
Borel sets, which are called analytic sets. More precisely, a set A € X of
a Polish space is analytic if there exists a Polish space Y and a Borel set
B < X xY such that A = projy(B). The co-analytic sets are complements of
analytic sets. By continuing to take projections and complements, we obtain
another hierarchy of subsets of X definable with the analytic sets as baseline,
the projective hierarchy:

e X1(X) = analytic subsets of X;

IT{ (X) = co-analytic subsets of X
e AeX! (X) < (3Y Polish)(3B e I} (X x Y)) A = projx(B).

(X) = complements of sets in =}, (X).

[ ]
=
3
+
—_

°
>

=
I

=L(X) n L (X).
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As with the Borel hierarchy, we note that ( J, ., 5(X) = U, I.(X). We
call this the class of projective sets, and denote it by P(X).

The collections 32(X) and IT% (X) for o < w; and X! (X) and I} (X) for
n € w are called pointclasses.

new

The Borel hierarchy and the projective hierarchy are two distinct entities,
since projections of Borel sets need not be Borel. Indeed, the following theorem
due to Souslin ensures this (a proof can be found in [I0, Theorem 14.2]):

Proposition 2.2.3. Let X be an uncountable Polish space. Then there are
analytic subsets of X that are not Borel.

Furthermore, it turns out that the following characterization holds (for a
proof, see [10, Theorem 14.11]):

Proposition 2.2.4. A set is Borel if and only if it is both analytic and co-
analytic.

The following two results indicates the importance of the already men-
tioned Cantor space and Baire space. For proofs, see [10, Theorem 6.4 and
Theorem 13.7]. Remember that a perfect space is a space whose points are all
limit points. A subset of a space is called perfect if it is closed and perfect in
the subspace topology. Any non-empty perfect Polish space contains a copy
of the Cantor space [10, Theorem 6.2], ensuring that the cardinality of a space
satisfying these conditions is at least 2%0.

Theorem 2.2.5 (Cantor-Bendixson). Let X be a Polish space. Then X can
be uniquely written as X = P u C, where P is a perfect subset of X and C is
countable.

This means that an uncountable Polish space contains a homeomorphic
copy of the Cantor space, thus any Polish space satisfies the Continuum Hy-
pothesis; if it is not countable, it has cardinality at least 2%0.

Theorem 2.2.6 (Lusin-Souslin). Let X be Polish and A < X Borel. If
A # (J, then there is a continuous surjection f : w* — A from the Baire
space onto A.

This implies in particular that any Polish space is the continuous image
of the Baire space. In many cases this allows us to focus on the Baire space
when studying properties of Polish spaces, as long as we can ensure that the
properties in question are preserved under continuous images.

Note that since the cardinality of the Baire space is 280, the two theorems
imply that any uncountable Polish space has cardinality precisely 2%0.
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There are several equivalent characterizations of a set being analytic. One
that we will use is the following:

Proposition 2.2.7. Let X be a Polish space, and let A < X be a subset.
Then A is analytic if and only if there is a closed set ' € X x w" such that
A = projy (F).

Proof. Let A € X be analytic, and let Y be a Polish space and B< X xY a
Borel subset such that projx(B) = A. We may assume that A, and therefore
also B, is non-empty, and by Theorem there is a continuous surjection
g :w* — B. Then F = graph(projy og) is a closed subset of w* x X satisfying
projx (F) = A.

The other direction holds since closed sets are Borel. O

This can be generalized in the following way: Let X be a Polish space and
k an ordinal with the discrete topology. If A = projy (F'), where F' € X x k“ is
closed, then we say that A is k-Suslin. Note that the analytic sets are exactly
the w-Suslin sets.

If we let X be a countable, discrete set, we obtain the following character-
ization of the analytic subsets of X%:

Proposition 2.2.8. A set A © X% is analytic if and only if there is a tree
T on X x w with A = «[T], where ™ denotes the projection onto the first
coordinate.

Proof. By Proposition A is analytic if and only if it is the projection
of a closed set F' < X*“ x w*. We may view X“ x w* as (X x w)*, and by
Proposition [2.2.2] the closed set F' equals the branch set of a tree Tp. O

Also the x-Suslin subsets of w® has this tree structure:

Proposition 2.2.9. A set A € w¥ is xk-Suslin if and only if there is some
tree on w X K such that A = w[T].

There is another reason why the Cantor space is significant in this context.
As already noted, it is natural to identify the power set P(S) of a countably
infinite set S with the set of infinite sequences 2°. However, in order to
talk about the topological complexity of a family of subsets of S, we need
to view the power set P(S) as a topological space. To this end, we shall
therefore rather identify P(S) with the Polish space 2¢ under some fixed
bijection ¢ : S — w. This means that any subset A € S will be identified
with its characteristic function x4 € 2°, and then via ¢ with an element in 2¢.
Moreover, this means that A < P(S) is k-Suslin if and only if there is a tree
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T on 2 x k such that A = {4 € P(S) | xao¢ern[T]}. We shall (sloppily and
through the identifications of S with w and x4 with A) also write A = 7[T']
in such a case.

Equivalence relations and invariant descriptive set theory

Invariant descriptive set theory studies the complexity of equivalence relations
on Polish spaces. In general, one is often interested in partitioning a class
of objects by assigning invariants to them and thus defining an equivalence
relation. We would then want to decide the complexity of such an equivalence
relation, the goal being that it is less complex than the identity relation while
also conserving a substantial amount of information about the objects within
each equivalence class.

Let X and Y be Polish spaces. We say that an equivalence relation £ <
X x X is Borel-reducible to an equivalence relation FF € Y x Y if there is a
Borel map (i.e. a map satisfying that the preimage of a Borel set is Borel)
f:+ X — Y such that xgEx1 < f(x)F f(x1). If this is the case, then we say
that F is less complex than F'. If they are both Borel-reducible to each other,
we say that they have the same complexity.

The tail equivalence relation FEy on w® will play an important role in this
thesis. It is defined by

and it holds that for any Borel equivalence relation E that is not Borel re-
ducible to equality on w®, the tail equivalence relation Fj is Borel reducible
to E [6].

For a more solid introduction, the reader is referred to [3].

2.3 Determinacy

In order to talk about determinacy, we need to introduce the concept of infinite
games. For this, let X € w be a non-empty set. Two players, player I and
player II, take turns playing one element in X. The same element may be
chosen several times, and both players have full information about the moves
already made. The game is infinite, so in the end we obtain an infinite sequence
(Zn)new of elements of X. Before the game, a payoff set A € X“ is defined.
If (z))new € A, then player I wins. If not, player IT wins.

A strategy for a player is a function f : X <“ — X taking finite sequences in
X (of even length for player I, and odd for player II) as input, and producing
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an element of X. The strategy is winning if whenever the player follows the
strategy, she wins the game. We say that the game is determined if one of the
players have a winning strategy.

The question is for which payoff sets A € X“ the game is determined.
The Axiom of Choice (AC) ensures that not all games are determined. AC
allows, for instance, the existence of a Bernstein set, i.e. a subset A < {0, 1}*
such that neither A nor {0,1}*\A contains a non-empty perfect set (see [10,
Example 8.24]). For any strategy o : [ J,,{0,1}°™ — {0,1}, where ¢(n) is
either 2n or 2n+1, the set of possible outcomes, {x € {0,1}* | (Vn € w) Ty) =
o(xlp(n))} is a non-empty perfect set. Since for a strategy for player I or
player II resp. to be winning, we need the payoff set or the complement of the
payoff set resp. to contain the set of possible outcomes, neither player can have
a winning strategy. On the other hand, Martin proved Borel determinacy in
1975, i.e. that any such game where the payoff set is Borel is determined [13].

If we instead consider the case where the payoff set is projective, the sit-
uation is more complex. In 1964, Davis proved that if all projective games
are determined, then this implies that the perfect set property holds for all
projective sets, i.e. that every projective set is either countable or contains a
non-empty perfect set [I]. Alas, this property is known to be unprovable in
ZFC. Indeed, by results of Martin and Steele [15], Neeman [19] and Woodin
[18] it is characterized by the existence of suitable large cardinals, which also
implies consistency of ZFC. By Godel’s incompleteness theorem we cannot
prove this within ZFC itself. However, since the assumption that every pro-
jective game is determined is not known to be inconsistent with ZFC, it can
therefore be considered as an additional axiom. The axiom is called the Aziom
of Projective Determinacy, and is abbreviated PD.

From PD, one can derive many basic structural properties of the projective
sets. Many of the proofs of such regularity properties rely on the fact that
PD implies that certain projective point classes are scaled. We shall therefore
look into what this means.

A rank on a set A is a function ¢ : A — ON. A prewellordering is a
relation which is reflexive, transitive and connected (i.e. any two elements are
related). A rank ¢ on A gives rise to a prewellordering <, on A defined by

z <y y = o(x) < B(y)

Let A € w¥, and let T be a pointclass. Let I'C denote the pointclass
consisting of complements of sets in I'. A rank ¢ : A — ON is called a I'-rank
if there are relations <g, <gcg w? x w? in I" and T'C respectively, such that
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for y € A:

da) <dly) e reArd@) <dly) sr<byer<l y

A scale on A is a sequence ¢,,: A — ON of ranks such that if (z;)e, € A
and x; — x and furthermore ¢, (x;) — ay, for every n € w (in the sense that
there exists j € w such that ¢,(z;) = a, for every i > j), then z € A and
On(x) < ay, for every n € w. If ¢, : A — K, we say that (¢p)new is a k-scale.

We say that a scale (¢, )new is a I'-scale if every rank ¢, is a I'-rank. The
pointclass I' is called scaled if every A € I" admits a I'-scale. A proof of the
following (which requires only ZF + Dependent Choice) can be found in [10]
Chapter 39]:

Theorem 2.3.1. (PD) The pointclasses H%nﬂ and 2%,”2 are scaled for
every n € w.

For our purpose, the most important consequence of this scale property
is the fact that it can be used to give projective sets a certain tree structure.
To see this, let A be projective. We may assume that A is H%m 41 for some
m € w. Let (¢n)new be a H%m 41-scale which is also a k-scale for some ordinal
k. Define a tree Tq; on w X k in the following way:

((ko, ey kn—1)7 (Ozg, . ,an_l)) € qu 54
(Jze A) xtn = (ko,...,kn-1) A (Vi <n) a; = ¢i(x).

Then A = ﬂ[T(g]. This means that under the assumption of PD, any projective
set can be represented as the projection of a canonical tree.

The Aziom of Determinacy (AD) states that for any payoff set the above
game is determined. This is, as noted above, inconsistent with the Axiom of
Choice. Furthermore, we note that the tree structure of projective sets that
are obtained by PD and the scale property relies on the hierarchic structure of
the projective sets. Due to the lack of hierarchic structure of all sets, AD does
not provide a canonical tree structure representation of every set. However,
AD is still a powerful assumption which implies that sets of reals are well-
behaved in the sense that they are Lebesgue measurable, they have the Baire
property and the perfect set property. For a proof, see [8, Theorem 33.3].

2.4 Advanced set theory: Forcing, inner models,
and absoluteness

Suppose we have models M, N of ZFC. Any formula which is satisfiable by
either M or N is consistent with ZFC. If there is a formula ¢ satisfied in N
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such that —¢ is satisfied in M, then we say that ¢ is independent of ZFC.
Moreover, the notion of absoluteness allows us to prove a theorem in general
by considering it in a specific model.

In order to prove consistency results or to make use of absoluteness, we
need to be able to expand or shrink a given model in a controlled manner. This
is the motivation behind the theory of forcing and inner model theory. We
will give a short introduction to both forcing and inner model theory before
we look into some of the most fundamental absoluteness results. For a more
elaborate introduction, see [12] or [§].

Forcing

Forcing is an efficient technique in set theory which is used to extend models
in order to obtain new ones. In a bit more detail, we do the following: let M
be a model of ZFC. This will be referred to as the ground model. We would
like to extend the model M by adding some element G and construct the
smallest model M|[G] of ZFC which contains both M and G.

In order to add such an element while keeping full control of the extended
model, we work with posets and generics. Let (P, <) be a set P together with
a partial order, i.e. a reflexive, antisymmetric and transitive relation. Such
a pair is called a poset. Elements of P are called conditions, and if ¢ < p we
say that q extends p or that q is stronger than p. We say that two conditions
p,q € P are compatible if there exists some 7 € P such that » < p and r < gq.
If no such r exists, we say that p and ¢ are incompatible, and we write p L q.
A forcing poset for the model M is a countably infinite set P together with a
partial order < and a largest element 1 such that (P, <,1) € M and where the
partial order < satisfies the following:

(VpeP)(3q,reP)gr<parqlr (2.4.1)

The intuition is that if we have a sequence of conditions in P that extend
each other, then the stronger conditions provide more information about the
”limit”, in the same way that smaller and smaller intervals around a real
provide more and more information about the real in question. However, we
do not know whether this ”limit” exists in M and this is exactly the point;
we want to find such a ”limit” which does not exist in the ground model, and
then add this element in order to obtain a new model which properly extends
the ground model. To detect such elements, we need to talk about dense sets
and generic filters.

Let D < P be a subset. We say that D is dense if for every p € P there is
some ¢q € D such that ¢ < p, i.e. for every condition p there is an extension ¢
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which is in D. We say that a set G € P is a filter if for every p, g € G there is
r € G such that r < p and r < ¢, and for every pe G and ¢ € P, if p < ¢q then
g € G. So in other words, for every two conditions in G there is a condition in
G extending both of them, and every weakening of a condition in G is also in
G. We say that the filter G is P-generic over M if for every dense set D < P
such that D € M, the intersection G n D # (J is non-empty.

In the following, we will assume that the ground model M is countable and
transitive. Note that this is okay to assume for our purpose, since the count-
ability assumption follows from the Lowenheim-Skolem theorem [8, Theorem
12.1] if we just assume the existence of an infinite model, while the transi-
tivity assumption is enabled by the Mostowski’s Collapsing Theorem (see [8|
Theorem 6.15]) as long as the membership relation is well-founded. Abusing
notation, we will often write P for the triplet (P, <,1). We will also often say
generic (or P-generic) when we mean (PP, <, 1)-generic.

Lemma 2.4.1. Ifp € P, then there is a filter G which is generic over M such
that p € G.

Proof. Since M is countable, let (Dj,)ne, be an enumeration of all the dense
sets D, € P in M. Set gy = p, and recursively choose ¢,+1 € D, such that
dn+1 < gn. Let G be the filter generated by {g,: n € w}. O

However, the generic filter G will not be in M:
Lemma 2.4.2. If G is P-generic over M, then G ¢ M.

Proof. Suppose towards a contradiction that G € M, and set D = P\G. Since
M is transitive, we have P\G = (P n M)\(G n M), which means that D € M.
Since P is a forcing poset, for any p € P there are incomparable ¢, r € P such
that ¢ < p and r» < p. Since G is a filter, they cannot both be in GG, so one
is in D, proving that D is dense. Since G is generic, we should then have
G n D # &, which contradicts the definition of D. O

When we have such a generic filter G which is not in M, then there is
a transitive set M[G] called the forcing extension which is a model of ZFC
containing the same ordinals as M and that contains M U {G} as a subset
[8, Theorem 14.5]. Moreover, M[G] is minimal with these properties. To
construct M[G], we add the generic filter G and close under set operations
definable in M. In this process, we give each element of M[G] a P-name in
M, which describes how the element is constructed in M[G]. Even though the
name can be understood within M, the element itself will not be decidable
in M, only in M[G]. For any element x € M, there is a canonical way of
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representing x by a P-name, &, decorated by a check. P-names of elements in
M[G]\M are on the other hand decorated with dots, #. Since the P-names
are expressible inside M, then given any particular generic filter G, one can
also define how a P-name should be interpreted as a set in the specific model
M][G]. This is done such that P-names of elements of M are interpreted as
themselves. Abusing notation, we will therefore sometimes confuse an element
x € M with its name Z.

We are now able to make first-order logic statements about M[G] express-
ible inside M by use of membership as binary relation and P-names as constant
symbols, and this language is called the forcing language. Such statements,
though expressible in M, are not necessarily decidable in M since their truth
value in general depend on the generic G. However, finite information about
G might be enough to determine the truth of a statement in the forcing lan-
guage. We define the forcing relation in the following way: if ¢ is a formula in
the forcing language and p € P, then p I ¢ if and only if M[G] satisfies ¢ for
every generic filter G containing p. In other words, this property is ”forced”
to hold in the extension M[G], even though we only have partial information
about G (namely that p € G), and we say that p forces ¢.

The powerful forcing theorem now states that for any formula ¢ in the
forcing lanuguage and any generic filter G, we have M[G] = ¢ if and only if
there is some p € P such that p |- ¢ [8, Theorem 14.6]. In other words, for
any theorem of M|[G] there is a finite p € IP that forces it, meaning that truth
in M[G] of formulas in the forcing language can be decided within M.

The art of forcing is to find the suitable poset given a formula that we
would like to hold in the forcing extension. We want to build the poset in
such a way that each condition consists of a small fraction of sets of the kind
we need in order to prove the theorem in question. The generic filter is then
able to single out the object we want to add. However, we need to ensure
that the building blocks satisfies the poset axioms. If a proper poset IP can be
defined, a sufficiently strong p € P will force the wanted statement.

A classical example is the independency result of the Continuum Hypothe-
sis (CH). We will sketch the proofs, in order to give the unexperienced reader
an overall idea of how forcing works [8, Theorem 14.32], [2]:

Example 2.4.3 (The Continuum Hypothesis). To prove that —CH is consis-
tent with ZFC, let M be a countable, transitive model of ZFC and let x be
some ordinal such that M k& |k| = Ng, and let P be the poset of finite partial
functions from x x w to {0,1}. A generic filter G through this poset will then
correspond to a total function fg : k x w — {0,1}. For each z € k, we can
now define a function f, : w — {0,1} by f.(n) = fa(z,n). Using genericity of
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G, it is not hard to prove that if x,y € kK and = # y, then f, # f,; indeed, the
set

D ={peP|p(x,n)# p(y,n) for some n}

is dense in P and thus G D # . Furthermore, each function f, corresponds
to a subset of w, and thus the power set of w has cardinality at least |k|.
Moreover, it is one of the most fundamental results in forcing that if P satisfies
the countable chain condition, i.e. that any antichain in IP is at most countable,
then P preserves cardinals [8, Theorem 13.34]. Since it can be showed that
[P above has the countable chain condition, this means that || = Né\/l[G], and
this proves that —CH holds in the extension and is therefore consistent with

ZFC.

To see that CH is consistent with ZFC, let in stead IP be the poset of count-
able (in M) partial functions from RM to P(w)M. Since the generic intersects
all dense subsets of P, for instance the sets D, = {p € P | p(x) is defined}
for z € RV and {p € P | (3x) p(z) = r} for any r € P(w), the generic is a
totally defined surjection. So | P(w)M| < [RM| in the extension. We only need
to show that P(w)™ = P(w)MIE] and to see this we show that a function
f:w—{0,1} in M[G] is actually contained in M. We can define a descend-
ing sequence of elements of P forcing more and more of f. The union of this
is itself a countable function, and knows all values of f.

The forcing notion used in this thesis is based on Mathias forcing. Let us
introduce this, and establish some general facts:

Definition 2.4.4 (Mathias forcing). An element of the poset M in Mathias
forcing is a pair (a, A) where a € [w]=* and A € [w]“ are such that max(a) <
min(A). The poset is ordered by

(dA)<(a,A) sacd rd cavAnrA cA

The maximal element is (¢J,w). Note how the order ensures that stronger
conditions fixes larger and larger finite sequences, while at the same time
narrowing the infinite set in which the sequence is allowed to grow. Note also
that this poset satisfies the condition Let (a, A) € M. Let by € A and
by € A be finite and disjoint subsets. Then (a, A\by), (a, A\b1) < (a, A) and
(a, A\bg) L (a, A\by).

Let G be a generic for the forcing, and let z¢ = (J{a | (34) (a, A) € G}
denote the union of the finite parts of the conditions in G. Note that for any
p € M we have p | a(p) = G. Furthermore z¢ is infinite; indeed, suppose
towards a contradiction that this does not hold. Then by the forcing theorem
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there is a forcing condition p € M and some n € w such that p |-z S n. Let
now d € [w]=* be a finite set such that a(p) = d < a(p) v A(p) and max(d) > n,
and set D = {n e A(p) | n > max(d)}. Then (d,D) < p, so (d, D) I~z S n,
contradicting the fact that (d, D) I d & x4 and max(d) > n.

Furthermore, z¢ is not in the ground model. If this was not true, then the
dense set D, = {q | a(q) & xz¢} would be in the ground model as well, but
D, does not intersect the generic.

The set x¢ is called a Mathias real. One can put further restrictions on the
infinite sets, in order to steer the Mathias real in the direction that we want.
As we will see, this can for instance be done such that the generic almost
avoids every element in an AD-family.

Inner Model Theory

An inner model of ZF (or ZFC) is a transitive class that contains all the
ordinals and satisfies the axioms of ZF (or ZFC, respectively). It is called an
inner model because it can be viewed as an inner universe of the von Neumann
universe V.

The first non-trivial example of an inner model of ZF is Gddel’s con-
structible universe L. Before we give the formal definition, we remember that
a set X is definable over a model (M, €) if there exists a formula ¢ in the
language of the model and some ag,...,a, € M such that X = {x € M |
(M,€) = ¢|z,ao,...,a,]}. Now let

def(M)={X < M | X is definable over (M, €)},
where M is a set.

Definition 2.4.5. The building blocks of G6del’s constructible universe L are
defined by transfinite recursion:

1. Ly = &;

2. Loy1 = def(La);

3. Ly = U5<a Lg if o is a limit ordinal.
Now set L = ([ con La-

In other words, Godels constructible universe L is a class of sets such that
each set can be described entirely in terms of simpler sets. We say that a set
x is constructible if x € L, for some «. It turns out that L is a model of ZF
[8, Theorem 13.3].
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The Aziom of constructibility is the axiom stating that every set is con-
structible, and is often denoted V = L. The axiom of constructibility is
satisfied in L and therefore consistent with ZF. Note that the fact that V = L
holds in L is not as trivial as one could suspect at first sight; one needs to
prove that the statement ”x is constructible” holds relative to L, meaning that
if there exists some ordinal « such that x € L., then there exists a € L such
that x € L, when interpreted in L. It can furthermore be showed that V = L
implies both Axiom of Choice and the Generalized Continuum Hypothesis
(GCH), which means that L is a model of both AC and GCH and proves their
relative consistency [4].

However, the constructible universe is too narrow for many purposes. In
stead, we often consider the universe L(R) which uses the reals as base set for
the recursive definition of constructible sets. i.e. with Ly = R in the definition
of L above. The class L(R) is therefore the smallest transitive inner model
of ZF containing the reals. We will be considering the theory ZF + AD +
V = L(R). Note that since AD contradicts AC, the latter does not hold in
this theory. However, axiom of Dependent Choice (DC) does [9].

In stead of changing the base set in order to obtain various constructible
universes, we can also alter the definition of being definable. For a given set A,
we can talk about the sets that are constructible relative to A in the following
way:

defa(M) ={X < M | X is definable over (M,e, An M)},

where A n M is considered a unary predicate. The class of sets constructible
from A are now defined as follows:

1. Lo[A] = &;
2. Lay1[A] = defa(La[A));
3. LalA] = Up<q LslA] if o is a limit ordinal.

Now set L{A] = J,con LalA]. Then L[A] is a model of ZFC [8, Theorem
13.22 (i)].

Remember that assuming Dependent Choice and Projective Determinacy,
the pointclasses IT}, , ; and 3, are known to be scaled, and that these scales
provide us with tree representations for projective set. At the same time, each
scale can be captured by a ‘small’ model, namely the model consisting of sets
that are constructible relative to this tree. We have the following lemma,
whose proof can be found in [5, Lemma 2.4]:
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Lemma 2.4.6. Assume PD and DC. Suppose A is projective. There exists
an inner model M of ZFC and a tree T € M on w x k (for some ordinal k)

such that w[T] = A and P(P(w))M is countable in V.

There is a version of this based on the full Axiom of Determinacy, which
we shall also use. The proof can be found in [B, Lemma 2.5].

Lemma 2.4.7. Assume AD holds and V = L(R). Suppose A is 2. There
exists an inner model M of ZFC and a tree T € M on w X k (for some ordinal
%) such that 7[T] = A and P(P(w))M is countable in V.

Finally we shall need a result (due to Woodin) known as Solovay’s Basis
Theorem (see [IT, Remark 2.29(3)]). Note that a 32 statement is equivalent to
a statement of the form (3X < P(w)) ¢(X,r) where r is a fixed real parameter
and the quantifiers occuring in ¢ are ranging over P(w) or w.

Theorem 2.4.8 (Solovay’s Basis Theorem). Assume AD holds and V =
L(R). Then every X% statement is witnessed by a set A € R which is itself
A2,

Absoluteness

Let M and N be models of a theory T, and ¢(xo,...,zn—1) a first order
formula with all free variables listed. Then we say that ¢ is absolute for M, N
iff

(Vﬂ?o, ey l‘n,1) ¢M($0, . ,SUn,l) > ¢N($0, . ,SUn,l).

In other words, ¢ is absolute for M, N if it is true when interpreted in M if
and only if it is true when interpreted in N. We say that ¢ is absolute for T'
if it is absolute for any two models of 7.

A formula ¢ is said to be upwards absolute for a theory T if for any two
models M and N such that M € N and ¢ is true in M, the formula ¢ is also
true in V. Similarly, we say that ¢ is downwards absolute for a theory T if for
any two models M and N such that M € N and ¢ is true in N, the formula
¢ is also true in M.

It follows immediately from the definitions that formulas with only exis-
tensial quantifiers ranging over M, N are upwards absolute, while formulas
with only universal quantifiers ranging over M, N are downwards absolute.

Proposition 2.4.9. The notion of the empty set is absolute for transitive
models of ZF. In other words, the formula x = J is absolute.



2.4. ADVANCED SET THEORY: FORCING, INNER MODELS, AND
ABSOLUTENESS 31

Proof. Let M, N be transitive models of ZF and x € M n N. Note that
= < (Ywez)w#w. Thus

(=)Mo (VweznM)w#wo Vwer)w#we Ywezn N)w#w
H(:L‘:@)N?

where the first and last arrows are just the definition of relativization of for-
mulas, and the two middles ones follow from transitivity of M and N. O

Recall how we noted above that the statement ”x is constructible” is true
relative to L, in the sense that if © € L, holds when interpreted in V', then
it also holds when interpreted in L. What is actually shown is that the sets
L., are absolute for inner models M, N of ZF, i.e. that L} = LY for every
ordinal a. Thus we obtain

x is constructible)y < (Jae N)ze LY & (Jae M)z e LM
(e} (7

o (z is constructible)™.

Note that this implies that L is the smallest inner model of ZF. Indeed, for any
inner model M we can consider LM < M, the constructible universe defined
in M. Since LM = L, for every ordinal o by absoluteness of L, and since M
contains all the ordinals, we have L™ = L and we conclude that L < M.

We have the following easy and well-known result:

Proposition 2.4.10. Let M, N be inner models of ZFC, and T € M n N
a countable tree. Then T is well-founded” (equivalently: "[T]| = &7) is
absolute for M and N .

Proof. Suppose TM is well-founded. Then the rank function p{‘# is well-
defined. This rank function also works for TV, ensuring well-foundedness
in N. O

This gives rise to many deeper absoluteness results, such as Lévy-Shoenfield
Absoluteness, and it is also the basic idea behind the following absoluteness
lemma [5, Lemma 2.3]:

Lemma 2.4.11. Let T be a tree on 2 x & and let J be a Borel ideal on
a countable set S. Then the following properties are absolute between inner

models of ZFC:
1. “r[T]cJ*".

2. “r[T] is an J-almost disjoint family”.
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”

3. “There exists y such thaty is J-almost disjoint from every set in w[T]”.

In the above, we mean by J the ideal obtained by interpreting the Borel defi-
nition in the current model.

Proof. Let U be a tree on 2 x w such that J = n[U]. Consider the tree
T, on 2 X kK X w defined by

T, ={(a,s,u) | (a,s) €T, (a,u) € U}.

Then 7[T] < J* if and only if [T'y] = &, which is absolute.

By the previous item is suffices to show that “Vz,y € n[T] x # y =
xny € J” is absolute. Let U be a tree on 2 x w such that 7 = =[U].
Consider the tree T, on (2 x k)? x w defined by

Tr\ Z{((lo, tO, ar,t, u) |

/\ (ai,t;) € T,1h(ag) = h(as), and (ag - a1, u) € U}
i€{0,1}

where we momentarily write ag- a1 for the characteristic function of ag ma; on
Ih(ap). Then the statement in question holds if and only if [T~] = &, which
is absolute.

As in the previous item, let U be a tree on 2 x w such that J = 7[U],
and for y € 2¥ consider the tree TX on (2 x £ x 2 x w) defined by

TY = {(a,t,u) | (a,t) € T, and (a-yllh(a),u) € U}.

g

Then y is J-almost disjoint to everything in 7[T] if and only if TY is well-
founded.
For s € 2=“, define a similar tree T by

TS ={(a,t,u) | (a,t) € T,1h(a) < 1h(s) and (a - sllh(a),u) € U}.

n

Define a tree 7' on 2 x st by

T ={(s,p) | p: TS — k" is a rank function}.

Then T has an infinite branch if and only if there exists some y € 2¥ such
that TY is well-founded.
O



Chapter 3

Definable 7-MAD families

We are now ready to prove the main results of this thesis. This chapter is an
amended version of [5, Section 2, 3 and 4], with only minor changes made.
All of the results in this chapter have been obtained in joint work with David
Schrittesser and Asger Tornquist.

3.1 Classical MAD families (and a bit more)

In this section we prove the following:

Theorem 3.1.1. Let J = Fin, or more generally J = Fin(¢) where ¢ is an
lsc submeasure on w.

1. There are no analytic infinite J-MAD families.

2. Under ZF + Dependent Choice + Projective Determinacy, there are no
projective infinite J-MAD families.

3. Under ZF + Determinacy + V = L(R) there are no infinite J-MAD

families.

The first item was first shown by Mathias [L6] (at least in the case of Fin).
The next two items are independently, and by a somewhat different method
shown by Neeman and Norwood [20] (also in the case of Fin).

We use the following close relative of Mathias forcing:

Definition 3.1.2. Suppose that Z 2 Fin is a (proper) ideal on w, and Z7 its
co-ideal. Define

M? = {(a,A) |a e [w]™, Ae TT max(a) < min(A)}

33



34 CHAPTER 3. DEFINABLE J-MAD FAMILIES

ordered by
(a',A) < (a,A)ifand only ifaE d' S au A and A’ € A.
We write M for M,

We use the following notation:

Notation 3.1.3.

1. Given a filter G on MZ, let

vo =|J{a| BA€T") (a,4) € G}.

2. For (a,A) e MZ, and b C A finite, let A/b = {ne€ A |n > max(b)}.

3. For p € MZ, we write p = (a(p), A(p)) when we want to refer to its
components.

4. For pe MZ, we let MZ(< p) = {ge MT | ¢ < p}.

Assumption 3.1.4. Until the end of Section [3.I] let 7 = Fin or more gen-
erally J = Fin(¢) and assume A € P(w) is an infinite J-AD family which
is k-Suslin. Fix a tree T on 2 x k such that 7[T] = A. Let Z be the ideal
generated by Au J.

To avoid overly cumbersome notation, we shall phrase our presentation in
terms of the ideal Fin. However this section is written so that whenever rele-
vant, the reader may replace Fin (but not the word “finite” or the expression
[w]=¥) with Fin(¢), for any lsc submeasure ¢ on w, in which case she must
also replace “almost disjoint” by “Fin(¢)-AD”, etc. We will point out how to
modify proofs when these trivial substitutions do not suffice.

The main workload in the proof of Theorem3.1.1}is carried by the following
Main Proposition. The proof of this depends to a great extent on the Branch
Lemma, and we will prove both the Branch Lemma and how this leads to the
Main Proposition after we have collected some properties of the forcing MZ.

Main Proposition 3.1.5. |kyz (Vy € 7[T]) y N x € Fin. In other words,
Fyz 2 & 7[T] and {x;:} U w[T] is an almost disjoint family.

Before we prove the Main Proposition, we show how easily it leads to
Theorem Firstly, we give a very short proof of the classical result that
there are no analytic MAD families:

Corollary 3.1.6 ([16]). There are no analytic MAD families.
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Proof. Suppose A is an analytic almost disjoint family, and fix a tree T on 2 xw
such that A = 7[T] (identifying P(w) with 2¢). By Main Proposition
there is a forcing extension V[G] containing a real which is almost disjoint
from any set in 7[7]VI%], and by Item [3|of Lemma the existence of such
a real is absolute for inner models of ZFC. Thus A is not maximal. O

We likewise obtain an easy and transparent proof that under projective
determinacy, there are no projective MAD families.

Corollary 3.1.7. Under PD there are no projective MAD families.

Proof. Assume PD holds and suppose A is an infinite almost disjoint family
which is projective. Fix a tree T so that A = 7[T] and a model M as
in Lemma Note that M & 7[T] is an infinite almost disjoint family.
Working inside M let Z be the ideal generated by Fin un[T'] and let P denote
MZ in M. As P(P(w))™ is countable in V' we may find r € [w] which is
P-generic. By Main Proposition

M|r] & (Yy € w[T]) y is almost disjoint from 7,

and then Item [3| of Lemma [2.4.11] ensures that A is not maximal in any inner
model of ZFC. ]

A similar proof can be given of the AD analogue:
Corollary 3.1.8. If L(R) = AD, there are no MAD families in L(R).

Proof. Suppose towards a contradiction that V' = L(R), AD holds, and there
is a MAD family. The existence of a MAD family is a $7 statement:

(3X € P(w))(Vz,y € X)(Vr € P(w))
[t#y—> (Gnew)znySn]aré¢ X > (Fze X)(Vnew)znr Enl.

By Fact there is a £7 MAD family A. By Lemma we may pick
an ordinal x and a tree T on k x w such that 7[T] = A. Moreover, there is a

model M such that T e M and P(P(w))M is countable. Proceed precisely as in
Corollary above to show that A is not maximal, reaching a contradiction.
O
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Properties of Mathias forcing relative to an ideal

For the proof of the Main Proposition [3.1.5 we need to explore the immediate
properties of the forcing notion MZ.

The following lemma holds not just under our Assumption but for
any proper ideal Z 2 Fin or more generally Z 2 Fin(¢).

Lemma 3.1.9.
1. bz (Vy e 1) zy Ny € Fin.
2. vz vy € Fin™.
3. Fix Ae I and ag, a1 € [w]=* with max(a;) < min(A) for eachi € {0,1}.
Let p; = (a;, A). Then h: MZ(< po) — MZ(< py) given by
h(ap ub,B) = (a1 U b, B),
where b < A is finite and B < A/b, is an isomorphism of partial orders.

4. For po,p1 as above, 0 a formula in the language of set theory, andv € V
it holds that

po = 0(v, [xi]E,) if and only if p1 = 0(v, [z 4] 5,)-

Proof. For any y € Z, the set
Dy={peM" | A(p) ny =2}

is dense in MZ, which implies that for any generic G we have g N y € Fin.

We verify the general case where J = Fin(¢). Supposing p |-z €
Fin(¢) we can find p’ < p and n € w so that p’ I ¢(z.) < 7. Since ¢ is
lower semi-continuous and ¢(A(p')) = o0 we can find a finite set a such that
a(p’) Eaca(p’)uAp') and ¢(a) > n. Since (a, A(p')/a) |- a < x,, we reach
a contradiction.

Immediate from the definitions.

Suppose p1 I- 0(v, [z]E,). Let G be a generic such that po € G. Use
h: MZ(< pg) — MZ(< p1) from (3)) to obtain a generic h(G) containing p;.
Since xg Eory(q), we conclude 0(v, [vy)lE,), proving that “if” holds. The
proof of “only if” is analogous. O

Furthermore, we have the following diagonalization result.
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Lemma 3.1.10. Let (Ag)kew be a sequence from I satisfying that Ax 1 S Ay
for every k € w. Then there is Aw € I such that Ay, S* A, for every k € w.

For the reader who wishes to verify the lemma in the general case where
J = Fin(¢), we point out that since finite sets have finite measure for any
lower semicontinuous measure ¢ there is no need to substitute gi’;m( %) for c*
and the lemma as well as its proof go through without this change.

Proof. We construct two sequences (By, )nea and (Cp,)neq of length oo < w such
that for each n < a,

e B, C A,;

e for each m, B, €* A.;

o C,e A\{A; | i <n};

e B, nC,¢Fin and B,, n C; € Fin for i < n.

Suppose we have found B; and C; as above for i < n. Define a sequence
mg, M1, ... from w by recursion on k as follows:

my = min (An+k\({ml i <k}u U C'l))
<<n
and let B = {my, | k € w}.

In the case of Fin(¢), instead chose finite sets My, M, ... such that M <
An+k\(Ui<n Ci v Uik MZ) and ¢(My) > 0 for each k € w. This is pos-
sible since for each k, An+k\(Ui<n Ci U U<k Ml) € Fin(¢)*. Then let
B = ke, M.

If BeZ", welet Ay, = B and we are done since B =* A; for every i € w.
If on the other hand B ¢ 77, we let B, = B; since B € FinT we can pick
C,, € A\{C; | i <n} such that B, n C, ¢ Fin.

Supposing that the construction does not end at a finite stage, let Ay, =
Uhew, Bn 0 Cr. Tt is clear by construction that A, <* A, for every m € w.
Furthermore, since A, is an infinite union of sets in Fin' which are also
subsets of distinct elements in the AD-family A, we conclude that A, €
It. O

The following lemma indicates how invariant descriptive set theory will
help us achieve the desired results. We say that a set S is hereditary definable
using parameters from V and X if S is definable by a first order formula using
parameters from V' and X, and the same holds for every set in the transitive
closure of S. We will now see how we can use the previous diagonalization
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lemma to prove that any sequence of ordinals that is hereditary definable
using parameters from V' and from the Ep-equivalence class [z¢] for a generic
G actually belongs to V.

Lemma 3.1.11. Let HVD(X) denote the sets which are hereditary definable
using parameters from V- {X}. Then the following holds:

Fppz (ON9)HVD(lzeley) <y,

Proof. Suppose 0(x1,x2,x3,14) is a formula with all free variables shown,
po € ML, a is arbitrary, and & is a MZ-name such that

pol-2:w— ONA (Ynew)(VaeON) z(n) = a <= 0(n,a,a,[r:]E).

Let Ag = A(po), and build Ag 2 A; 2 A2 2 -+ and «ap, a1, ag, ... asequence
of ordinals as follows: given A, find (b, A,+1) < (a(po), Ay) and a, such that

(b, Ans1) 1= 0(n, Gn, @, [24] By )-

Finally, find A such that Ay, ©* A, for every n € w.

W claim that (a(po), Axw) I+ (Vn € w) &(n) = dy, and thus # € V. To
prove this, suppose towards a contradiction that there is n € w such that
(a(po), Aw) I &(n) = &y, and find (b, B) < (a(po), Aw) such that (b, B) |-
t(n) # an. That is, (b, B) = —0(n, &n, a, [2:]E,). By Lemma , also
(a(po), B) IF =0(n, éun, a, [z.]E,). However, since B € Ay S* Apy1 we know
that (a(po), B n Ap+1) < (a(po), B), (a(po), An+1). This contradicts the fact
that (a(po), An+1) IF 0(n, G, @, [T 3] 8, )-

O

The Branch Lemma

We will now finally prove the Main Proposition We make a crucial
definition (imported from [21]), followed by some fairly straightforward obser-

vations:
Definition 3.1.12. For z € w, let

T* ={teT | (Jwe [T}y]) 7(w) Nz ¢ Fin}.
Facts 3.1.13.

1. If z Ey z, then T% = T*. This means that for a generic GG, the tree T*¢
is definable from [z¢]g, -
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2. T" is a pruned tree on 2 X k.
3. t € T* if and only if there is some y € W[Tﬁ]] such that y Nz ¢ Fin.

4. ¢ T” is equivalent to T% = ¢F, as well as to [T*] = J, as well as to
that {z} U A is an AD family.

5. Since T* is a subtree of T, n[T*] < A.
The proof of the Main Proposition is based on the following Branch Lemma.
The Branch Lemma 3.1.14. |z |7[T%¢]| < 1.

Momentarily assuming the Branch lemma, we can very quickly show the
Main Proposition [3.1.5] i.e., that

vz (Vy € 7[T]) y Nz € Fin
as follows.

Proof of the Main Proposition[3.1.5, Towards a contradiction, suppose G is
MZ-generic and we have y € W[T]V[G] such that y n z¢ ¢ Fin. By the
Branch Lemma 7[T%¢] = {y}. Thus, since y is definable from [z¢]g,, we

have y € 7[T] n'V < Z by Lemma [3.1.11} But then by [3.1.9(1), x¢ n y € Fin,

contradiction. Main Proposition m l:‘

For the proof of Theorem [3.1.1] it remains but to prove the Branch Lemma.

Proof of the Branch Lemma[3.1.14, Towards a contradiction, suppose G is
M7 -generic and we have distinct xq,z; € 7[T%¢]. Fix n such that zgln #
x1In, and let s; = w; [n where z; = 7(w;) and w; € [T].

Claim 3.1.15. There exists tg,t1 € TC such that
1. s; ©t; forie{0,1};

2. for every xf,x} such that x} € W[Té_]] it holds that xf N x} < m(tp) N
7T(t1).

Proof of claim. Suppose otherwise. Then for all tg,t; € T*¢ extending sq, 1
respectively, there exists zfj, 2} such that z] € w[TﬁG]] and 7(tg) N 7w(t1) &

(3

x n zf. We may build branches w§,wf € [T%¢] such that s; & w} and
m(w§) N w(wf) ¢ Fin. This however contradicts the fact that 7[T*¢]| < 7[T],
which is an almost disjoint family. Claim [B.1.15) []
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Thus, pick tg,t1 € T%¢ as in the claim, and let

vi = JrlT3S), e {01}

(3

It must be the case that yo € V since yg is definable from [zg]fg, (the same is
true of y1). Noting yo € Fin™, one of the two following cases occurs:

Case 1: zg n yo € Fin. This, however, is a contradiction; indeed, since

Yo = UW[T[f;;]] where ¢y € T%¢, Facts |3.1.13] yields the existence of a set
yE W[Tﬁgj] such that y Nz ¢ Fin.

Case 2: If the first case fails, since {p € MZ | A(p) <* yov A(p) Nyo € Fin}
is dense in M? we have g <* 9. But then 2g n 3, € Fin. This is also a

contradiction, for the same reasons as above. Lemma[3.1.14 []

3.2 Simple Fubini products

The ideas from the previous section can be used to prove similar results about
ideals that are further up the Borel hierarchy. In this section, we will take one
step up the ladder, whilst in the following section we see that we can go all
the way.

Recall from Chapter (1| that given ideals Jx, Jx on w (for each k € w) we
can form the ideal @J* Jironw x w. If J, = J' for each k € w, one writes
T+ @ J' for (—Bj* Ji (called the Fubini product of J. with J').

We will study ideals of the form J = @Fin( 6) Fin(¢y), where ¢ and ¢y, for
each k € w are Isc submeasures on w. Clearly this includes Fin ® Fin, which
is Fin(¢) ® Fin(¢) where ¢ is the counting measure. For X € w x w we write

X(n)={kew]|(nk)e X},
dom(X) = {n e w | X(n) % &},
dom? (X) = {new | X(n) ¢ Fin(¢,)}.

We write domg, for domEm®¥n and note that

Fin ® Fin = {X € w x w | domy(X) € Fin}.

We will use the two following orderings on P(w x w). For X € w x w finite
and Y € w X w we say

X Y & dom(X) € dom(Y) A (Vn e dom(X)) X(n) & Y(n),
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and

X =Y « dom(X) & dom(Y) A (Vn e dom(X)) X(n) = Y(n)
In the general case where J = @y, (4) Fin(dx), let

XV X 5V A ¢(dom(X)) < ¢(dom(Y)) A
(Vn € dom(X)) ¢n (X (n)) < ¢n(Y (n)).
This section was written so that most proofs generalize almost mechanically

from Fin ® Fin to the above more general case; often this is made possible by
the definition of =5 given above.

We let as usual (Fin® Fin)™ (resp., J 1) denote the co-ideal.
Definition 3.2.1. Let (Fin® Fin)** denote the set of A € (Fin®Fin)" such

that for all k£ € dom(A), A(k) ¢ Fin.
Conditions of the forcing notion My are pairs (a, A) where

a € w X w and is finite;

(a)

(b) A€ (Fin®Fin)**
(¢) max(a(k)) < min(A(k)) for every k € dom(a);

(d) dom(a) = dom(A).

We let (o', A") < (a, A) just in case A’ € A, and a E3 a’ S a v A.

In the general case when J = @iy (y) Fin(¢x), J** denotes the set of
A e J* such that for all k € dom(A), ( ) ¢ Fin(¢;). Moreover, replace [(b)]
in the definition]l] of My by Ae J*+.

Note that if (a, A) is a condition in My then for every k € dom(a), the
pair (a(k), A(k)) is a Mathias forcing condition (resp., a condition in MF®(#%)),
Moreover, the pair (dom(a),dom(A)) is a Mathias forcing condition (resp., a
condition in M¥ ™)) as well.

As in the 1-dimensional case, a relativized forcing notion is needed.

Definition 3.2.2. If Z" is a co-ideal of an ideal Z 2 Fin ® Fin, then we write
It for ZT n (Fin®Fin)*+. We let

I —{(a,A)eMy:AeTt}

equipped with the ordering inherited from M.

!This designation is left ambiguous in that My implicitly depends on the ideal J—or
rather, on the set J+. The same will be true of M% introduced below.
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Note that if A € ZT, then we can always find a subset B < A such that
B e I*t. We need to establish some notation:

Notation 3.2.3.

1. Given a filter G on MZ, let
ve = | J{a: (34)(a, A) € G}.

2. For p € M2, we write p = (a(p), A(p)) when we want to refer to the
components of p.

3. For (a,A) € M% and b € a U A finite, let

A= A(n)\fm € w | m < max(b(n))}

where N = dom(b) U [max(dom(b)) + 1, c0).

4. For pe M2, let MZ(< p) = {ge M | ¢ < p}.

Remark 3.2.4. Note that in order to meaningfully talk about x-Suslin sets in
P(w x w), we identify w x w with w (via some fixed bijection), sets with their
characteristic functions, and in effect, P(w x w) with 2¢.

Assumption 3.2.5. Until the end of Section let 7 = Fin® Fin, or more
generally let J = @y, () Fin(x) as above. Moreover suppose A S P(w X w)
to be a J-almost disjoint family which is x-Suslin and fix a tree T on 2 X K
such that 7[T] = A. Finally, let Z be the ideal generated by A u J.

To ease the notation, we will focus our attention on J = Fin ® Fin. How-
ever, our proofs work for J = @Fin(¢) Fin(¢y) as above. For the general case,
substitute Fin®@Fin (but not the word finite or the expression [w?]<*) by
@Fin( %) Fin(¢g), domy, by dom%, etc. wherever relevant, unless we provide
commentary.

Now we are ready to state the Main Proposition regarding M% from which
Theorem follows as a corollary, precisely analogous to the previous sec-
tion. The proof of the Main Proposition will again rely on a Branch Lemma
and will be postponed for now.

Main Proposition 3.2.6. |-y (Vy € 7[T]) y n 2, € Fin®Fin.

As in the one-dimensional case, our main result about Fin ® Fin also fol-
lows directly from the Main Proposition.
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Corollary 3.2.7. Theorem holds.

Proof. The proofs are essentially identical to those of Corollary Corol-
lary and Corollary simply substituting MZ for MZ. O

Properties of the two-dimensional forcing

Before we can prove the Main Proposition, we shall collect some of the neces-
sary facts about the forcing MZ.

Lemma 3.2.8.
1. For anyyeZ, Pz 2 0 7 € Fin® Fin.

2. For any k € w the partial order M% is isomorphic to the product MF x
MI(< (T, (W\k) x w)), where M¥ is the set of k-tuples of classical (1-

dimensional) Mathias forcing conditions. In the general case where J =

Drin(p) Fin(d:) we have

MZ ~ (HMFin(¢i)> x M%( < (B, (W\k) x w))

i<k
3. mz ¢ € (Fin®Fin) ™.
Proof. Follows from the fact that for any y € Z, the set
Dy ={pe M| A(p) ny = &}
is dense.
Define a map ¢: M* x MZ(< (&, (w\k) x w)) — M3 by

((cir Ciicks (a, A)) = (| J{i} x e U a, | {i} x Ci U A)
i<k i<k
This map is easily seen to be bijective and order preserving. The same defi-

nition works in the general case.

We prove this in general for @y, Fin(¢;). First note that IFnaz
dom(z.) = domy(zs): For let n and p be such that p |- 7 € dom(wp). It

must hold that n € dom(a(p)). By Lemma [3.1.9/(2),
(a(p)(n), A(p)(n)) Irm @¢; ¢ Fin(én)

so by item of the present lemma, p Fnz 7€ domy ().
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It remains to show |-yz domy(z) ¢ Fin(¢). Towards a contradiction,
suppose there is n and p so that p I ¢(dom(zy)) < 7. Find a finite set d
such that dom(a(p)) & d < dom(a(p)) U dom(A(p)) and ¢(d) > n, and a such
that a(p) E2 a < a(p) U A(p) and dom(a) = d. We reach a contradiction since
(d, A(p)/d) I d < dom(z) and ¢(d) > n. O

We prove a general diagonalization result (which shall be put to use in

Lemma [3.2.14] below):

Lemma 3.2.9. Let (Ag)pew be a sequence from Tt satisfying that A1 S Ag
for every k € w. Then there is A € T such that Ay Sy o pim Ak for every
kew.

Just as Lemma [3.1.10] for the one-dimension case, Lemma holds ver-
batim for J = @iy () Fin(¢i) (i.e., with SF;) g gy, and not just with <%).

Proof. As in the previous section, we construct two sequences (Bj,)neq and
(Cn)nea of length o < w such that for each n < «,

e B, e (Fin®Fin)*:

e B, A, and (Vkew) B, Shine@Fin Ak

o Cphe A\{C; |i<n;

e B,nCp,e (Fin®Fin)* and B, n C; € Fin®Fin for i < n.

Suppose we have found B; and C; as above for ¢ < n. Define a sequence

mg, mY, ... from w by recursion on k as follows:

mj = min (dom (Api\({mi | i < k} U U CZ))>
i<n
and let B = |y, Antr(mp).
In the case of Fin(¢), instead chose finite sets Mg, M7, ... such that M}’ <
dom (Ap1\U;<n(Ci U M[")) and (M) > 0 for each k € w. Then let

B={]J (J Ansr(m).

kew meM}?

The remainder of the proof is essentially identical to the 1-dimensional case,
i.e., Lemma |3.1.10} simply replacing Fin by Fin® Fin everywhere. We leave
this to the reader.

O
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The two-dimensional Branch Lemma

The crucial definition is again that of an invariant tree, analogous to Defini-
tion 13.1.12)

Definition 3.2.10. For x € w X w, let
T*={teT|(Fyen[Tyl) ynx¢Fin®@Fin}

As in Fact 3.1.13, it is easy to see that the map x — T is invariant to
small changes in z, in the sense that whenever zAz’ € Fin®Fin, T% = T

Moreover Facts 3.1.137 hold here as well.

We are now ready to state the main lemma of this section.
The Branch Lemma 3.2.11. |-z |7[T7¢]| < 1.

We postpone the proof of the Branch Lemma and first give the proof of
the Main Proposition [3.2.6] assuming the lemma. The proof is not quite as
straightforward as in the previous section, but the idea remains the same.
Claim will play the role as a less general analogue of Lemma [3.1.11

Proof of the Main Proposition [3.2.6, Suppose towards a contradiction there
is po € MZ such that po I (3A € 7[T]VI€) Az, ¢ Fin®Fin. By the
Branch Lemma po forces that 7[T7¢] has precisely one element; let A
be a name for it.

Claim 3.2.12. There is g€ M% and A' € V such that g - A = A'.

Proof of Claim. It suffices to show that if p < pg and p decides (n,m) € A then
in fact (a(po), A(p)) decides (n,m) € A: For then we may pick Ag 2 A1 2 ...
such that for each pair (n,m) € w x w, some (a(py), Ai) decides (n,m) € A;
by Lemma we can find Ay diagonalizing (Ag)rew. Any condition below
q = (a(po), As) is compatible with each (a(po), Ax), and so ¢ decides all of A.

So suppose p < g decides (n,m) € A; we must show (a(po), A(p)) decides
(n,m) € A. Let us suppose that p IF (n,m) € A; the proof is similar in case
p - (n,m) ¢ A and we leave this case to the reader.

Fix any MZ-generic G such that (a(po), A(p)) € G. By Lemma
we can decompose G as Gy x (G; where G is M%—generic and Gy is Mk
generic for k large enough so that dom(a(p)) € k. Note that as xgAzg, €
Fin®Fin, T%¢ = T%61 € V|[Gy]. Since V[G] & w[T*¢] = {AG}, by a simple
absoluteness argument the same must hold in V[G], i.e., AG € V[Gl] and
V[G1] E w[T*¢] = {A%}.
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Since dom(a(p)) € k we can find G’ which is MZ-generic over V such
that G' = G x Gy and p € G'. Clearly (n,m) € A% (since p |- (n,m) € A)
Arguing as before using absoluteness, this time between V[G'] and V[G;], AS’
must equal the unique element of 7[T%¢1], i.e., AY" = A% and so (n,m) € AC.
Since G was arbitrary, (a(pg), A(p)) IF (n,m) € A. Claim 3212 []

Now A’ € n[T] n V and thus A’ € T, but also ¢ I x5 n A’ ¢ Fin®Fin,
contradicting Lemma [3.2.8|(1)). Main Proposition [3.2.6) []

We now gradually work towards the proof of the Branch Lemma, for which
it is necessary to introduce some notation. Firstly, write

U=|wxw]™xT.

Given a pair @ € U, we write it as (a(@),t(%)) if we want to refer to the
components of @. We define a partial order <y on U as follows:

U <y Uy < CL(’L_[l) - a(ﬁo) A t(ﬁl) = t(ﬁo).

Now secondly assume G is MZ-generic over V; working in V[G] for the
moment and for a fixed x € P(w x w), define the set U* < U consisting of
those pairs (a,t) € U such that there is w € [T};] with

1. m(w) Nz ¢ Fin® Fin;
2. dom(a) < domy (7(w) N z);
3. for each k € dom(a), a(k) < w(w)(k) N z(k).

Intuitively, U® searches for a branch through T" whose projection has large
intersection with z and a subset of this intersection in (Fin ® Fin) ™" to witness
its largeness.

In analogy to the tree T, when 1 € U write Uzl for {i e U | 4 <y to}.

The following three lemmas gather some observations concerning U®*¢
which will be important in the proof of the Branch Lemma.

Lemma 3.2.13. Suppose (a, A) |+ @ € U*c.
1. It holds that a = a(u) and moreover if ' < a(w) also

(a(w@), A) I+ (', t(@)) € U"6.
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2. The set A’ € w x w defined by
Al ={(k, )| 3P < (a,A))3d <y @) (k1) € a(d@) A p' IFd' € U ¢}
s not in I.
3. For any k € dom(a()), the set Ay < w defined by
{L| 3P < (a,A)3U <y u)lea(d)(k) Ap I-d €U ¢}
is not in Fin (resp., not in Fin(¢y)).

Proof. Immediate from the definition of U%¢.

Assume to the contrary that A’ € Z. Then A\A' € 77, so take B <
A\A’ such that B e Z*+ and set p = (a, B) € MZ. Since p |- i € U% we can
find a name w such that

pl-we W[T[t(ﬁ)]] AW N T ¢ Fin® Fin.

(In fact, all we need here is that p |- T%¢ # ¢f). Thus we can extend p to p’ to
force a pair (k,1) into w Nz \a(p). But it has to be the case that (k,1) € a(p’),
whence (k,1) € A’ by definition of A’ contradicting that also (k,l) € B which
is disjoint from A’.

Assume to the contrary that k& € dom(a(u)) and Ay € Fin. Take
B < A\({k} x Ay) such that B € Z+* and set p = (a, B) € MJ. Since
p -4 € U% we can find a name w such that
pl-we W[T[t(ﬁ)]] AW N Ty € (Fin®Fin)+
and
p I dom(a()) S dome (w N ).

As k € dome (w N z), we can extend p to p’ to force a pair (k,1) into w N
rs\a(p). But as in the proof of the previous item, it has to be the case
that (k,1) € a(p’), whence [ € Ay by definition of Aj, contradicting that also
[ € B(k) which is disjoint from Ay. O

In order to prove the two-dimensional Branch Lemma, we also need to
introduce the partially ordered set I' defined as follows:

L= {(p,ad ad)eM:xUxU|(Vie{0,1}) pI- @ e U},
This set carries a weak and a strict order, defined as follows:

(p17 ﬁ?: ﬁ%) <r <P07 687 ﬁ(l))
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if and only if p; < po, and for each i € {0, 1}, a(u}) Za a(u}) and t(ut) 3 t(ud)
(that is, uf <y u); and

(p17 ﬁ(‘f7 ﬂ%) <r (p07 687 ﬁ[l))

if and only in addition, a(@)) N a(i}) =2 a(i@d) N a(u}).

Note that I' is well-founded with respect to the second, strict ordering <r;
indeed, suppose towards a contradiction that there is an infinite <p-descending
sequence

... <7 (p3vﬁgaﬁzl’)) <r (p2711gvﬁ%) <r (phﬁ(l)?ﬁ%)

from I'. Define

for i € {0,1} and

A= a(@) ~a(id).

n>1

Since the sequence is <p-decreasing and from I', A € (Fin®Fin)** and A <
7(y°) N w(y'), contradicting that 7[7] is Fin ® Fin-almost disjoint.

The proof of the Branch Lemma will crucially depend on the two following
lemmas, which in combination will allow us to manipulate both the infinite
and the finite part of a forcing condition while maintaining that something is
forced about U*¢. Note that the second of these lemmas plays the same role

as Lemma .

Lemma 3.2.14. For each iy € U the set D(iiy) is dense and open in M3,
where we define D(iiy) to be the set of p € MZ such that for all p' < p and
any U € U,

[ @ U8 | = ), A@)/a) - Gt e T) (i), 0) € Ug).

The proof follows the same strategy as Lemma (the diagonalization
lemma) to build a set in Z**. While we build this set, we carefully anticipate
each of its finite subsets a to see if there is some ¢t € T and some forcing
condition ¢ € MZ which forces (a,t) to be in U%¢. If so, we make sure that
our final set is contained in a U A(q). We succeed as there are only countably
many finite ¢ € w X w to consider. Note though that due to the nature of the
proof of Lemma we have to consider each finite a again and again, and
the construction potentially takes w x w stages.
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Proof. Fix qo € MZ and iy € U. If g If @lp € U%¢, then find g < qo such that
qo |+ @y ¢ U*c¢ and note that ¢ € D(ip). Suppose therefore that qg I iy € U%¢.
We construct ¢ < ¢ such that g € D(wp).

As in the proof of Lemma [3.2.9] we construct sequences By, By, ..., and
Cy, C1, ... both of which are possibly finite, such that whenever defined

e B, € (Fin®Fin)™*
o (e A{C;|i<n};
e B, nC,e (Fin®Fin)* while for i < n, B, n C; € Fin® Fin.

Suppose B; and C; have been defined for i < n (this includes the case n = 0).
In w-many steps we define a descending sequence of conditions (b%, BF);, from
MZ and at the end let

B, =]k (3.2.1)

kew
If n =0, let b = a(go) and BY = A(qo). Otherwise, let
0 i
U
1,j<n

and

By = (Bp~} n (dom(by) x w)) v (B )\ J{Ci | i < n})

noting that BY € (Fin®Fin)* since B"~} € Z** by induction hypothesis. So
(02, B%) € MZ and BY n C; € Fin®Fin for i < n.

Supposing we have already defined (bF, BY¥) € MZ make finitely many
extensions to reach (b¥, B*) < (b, BF) so that whenever a < bF and

(3’ < (alqo), B) @i e U) a(@) =ana@) bt Ap i€ Ufﬁf’)] (3.2.2)
then for some t' € T

(a(®), B*/a(®)) I (a(@),t') € U[”;G(')]. (3.2.3)

Extend b% to some finite (we mean finite also in the general case!) set b1 <
w X w satisfying

b oo b C bF U B (3.2.4)

and let
Bk‘-‘rl — B*/bk’-‘rl
n n *
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Assuming we have defined b¥ for each k € w and letting B,, be defined by
(3.2.1)), note that (3.2.4) ensures that B, € (Fin®Fin)**. Should it be the

case that B,, € ZT the construction terminates and we let

q = (a(qo), Bn)-

Otherwise, we may chose C), € A\{C; | i < n} such that C;,nB,, € (FiIn®Fin)™*
as in Lemma [3.2.9] and continue the construction.

If the construction does not terminate at any stage n < w, let

By, = | b5

new

Note that By = |Je, Br and thus since By, n Cy € (Fin x Fin)™ for each
k € w, it must be the case that By, € ZT1 (as in the proof of Lemma [3.2.9).
So we obtain a condition in M% by letting

q = (a(qo), Bo)-
To see that g € D(dp), let p’ < g, @ e U such that p' |- 4 € U[xﬁi] be given.
Let us first assume that the construction did not stop at any stage n < w
and that By is defined. We can find n > 0 so that a(p’) < b"”1. Thus, at

n—1-
stage k = n in the construction of By, (3.2.2) was satisfied for a = , and so
(3:2.3) is also satisfied. By construction B, \b"~] € BP. Thus any condition
below (a(p'), Bx) = (a(p’), A(q)) is compatible with (a(p’), B), and so we

may replace B* by A(g) in (3.2.3), obtaining
(AteT) (a®),A(Q) IF (a(@),t) € U[J;C‘;]

and showing that ¢ € D(%).
If the construction of By, By, ... terminated with B, € Zt*, we may find
k such that a(p’) < b5~! and argue similarly with B,, in place of By. O

Lemma 3.2.15. For any p € MZ, i € U such that p |- i@ € U% and any
a € a(p) it holds that (a, A(p)/a) IF (a,t(d)) € U%c.

Proof. Let G be a generic over V with (a, A(p)/a) € G, and let
I = dom(a(p))\ dom(a).

Suppose H is | [;c; M-generic over V[G] such that (a(p)(j), A(p)(4))jer € H.
Then G x H is generic over V for

M5 x [ [M.
jel
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We define a bijection

6 ME( < (o, Ap)/a) ) x [TM( < (alp)(), A) (7)) ) — ME(< p)

jel
<I>((b, B), (Cj,Cj)jeI) = (a(p) ubu Uck,B U U C’k>.
kel kel

Note that p € ¢(G x H), so @ € U*¢@xH) in V[G]|[H]. By definition of U”*
this means that in V[G][H] we can find w € [T];(a] so that

(Ju e (Fin®Fin)™) a =2 u S w(w) N Ty(Gxm)- (3.2.5)

Since 1Ay ) € Fin®@Fin we may replace 4« m) by z¢ in (3.2.5), and
thus in V[G][H],

(Jw € [Tiya]) Gu e (Fin®Fin) ™) a =9 u = w(w) M zq. (3.2.6)

It is easy to find a tree S € V[G] such that [S] consists of the pairs (w,u)
witnessing the two existential quantifiers in . Since being well-founded
is absolute between models of ZFC, we conclude holds in V[G]. But
implies (in fact, is equivalent to) (a,t(u)) € U*¢, so since G was arbi-
trary, we have shown that (a, A/a) I (a,t(@)) € U%c. O

With this notation and the lemmas at our disposal, we are ready to prove
ez 77761 < 1,
i.e., the Branch Lemma |3.2.11

Proof of the Branch Lemma[3.2.11 Assume towards a contradiction that the
lemma is false, whence we may find p € MZ and a pair of MZ-names %" and
W' so that

p I (Vie {0,1}) @' € [T*¢] Az nm(i') ¢ Fin®@Fin

and p I m(@w°) # 7(w!). Then clearly we may also find (po, @), @3) € T' such
that 7(t(@))) # 7(t(@})) (a(@) plays no role here).

Claim 3.2.16. One of the following holds:

1. There is n* € w and (p1, @Y, @) <r (po, @), @5) in T such that for any

(pa, @3, 15) <r (p1,u?,@}) from T, dom(a(i@9)) N dom(a(@})) S n*; or
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2. There is (p1,d3,4l) <r (po, @, ), I¥ € w and k* € dom(a(@?)) N
dom(a(iil)) such that for any (p2, @y, uWs) <r (p1,d3, 1) from T,

a(ty) (k*) ~ a(iy) (k") < 1*.

Proof of Claim. Suppose that both Items [I] and [2] above fail; we show that
there is a <p-descending sequence in I', which contradicts the wellfoundedness
of (F, <1’*).

It suffices to show that any (p,@°, @) <r (po, i), ig) has a <p-extension.
That Items [T and [2] above fail means precisely that

(1) For each n* € w and (p1, w0, @}) <r (po, @y, iy) in T there is n > n* and

(pa, @3, 15) <r (p1,u?, @) such that n € dom(a(@y)) N dom(a(id)); and

(2') For each (p1, 4, 4}) <r (po, ), @), k* € dom(a(a})) N dom(a(})) and
I* € w there is | > [* and (pa, @3, @s) <r (1,4}, @) such that

L€ a(iy) (k") 0 a(iy) (k")

This means that in finitely many steps, we can extend any (p, @, ') <r
(po, @3, i) to some (q,7°, 7)) <r (p, @, @') so that

a(i@®) na(i') =g a(@) A a(@)

by applying once for each vertical in a(i’) N a(@') and once for the

domain. Thus (¢, ", 7') <r (p, @, @t). O

Finally, having established that one of Items [I] and [2] above must hold,
we use Lemmas [3.2.15] and [3.2.14] to finish the proof of Lemma [3.2.11] by case

distinction.

Case 1: If Item 2| holds, we may fix (p1, ), ul) € T, I* € w and k* €
dom(a(u?)) n dom(a(i})) such that for any (po, @3, @3) <r (p1,u?,d}) from T,

a(ty) (k*) n a(iy) (k") < 1*.

We may also assume that p; € D(@) n D(i1) (see Lemma [3.2.14). We now
reach a contradiction: Define A € w x w by letting A(k) = A(p1)(k) for each
k # k*, and letting

AR*) ={lew | Bp<p)@i <y @)l € a(@)(k*) Ap - ide U},
Lemma |3.2.13| ensures that A € Z*+ and that A < A(p;). Let

p* = (a(pl>7 A)
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Since p* |- i} € U%¢, we can find p < p*, [ € w\l* and @ such that

e
[a3]

lea(@)(k*) Apl-ueU,

It follows that [ € A(k*) and so by definition of A(k*) we can find p’ < p; and
@ such that

ZEMWMM)Aﬂu47eq%T
1

Then, as p,p’ < p1 and p; € D(u@?) n D(i}), we can find tg € T and t; € T and
set @’ = (a(@),t9) and @' = (a(i’),t1) such that

Le a(@) (k) A (a(p), Alp1)/a(p)) I+ @ € Upg,

and
Le a(@)(k) A (a(p), Alpr) /o)) |- @' € UL,

in order to uniformize the infinte parts of the forcing conditions. As we also
want to alter the finite part, note that {(k*,1)} U a(@) < a(p1) E a(p) N a(p’)
for each i € {0,1}. Let a = a(p) n a(p’), let po = (a, A(p1)/a) and let a* =
a(ii}) u {(k*,1)} for each i € {0,1}. By Lemma we conclude

p2 I (o', 1(@) € U,

which contradicts the choice of (p1, !, @}) and I*.

Case 2: Otherwise, Itemholds and we may fix n* € w and (py, @), @) € T
such that for any (po, @3, @) <r (p1,dY, @) from T,

dom(a(i@y)) N dom(a(id)) < n*.

We now argue entirely analogously to the previous case, but in the domain
instead of in one of the verticals. To this end, set

A ={(k,)) | Bp <p)BE<v @) (k,1) € a(T) A pl-de U}

Note that A" < A(p1) and A € Z* by Lemma [@). Let A < A" be
the largest subset satisfying A € Zt*+. Letting p* = (a(p1), A) we reach a
contradiction almost exactly as in the previous case; details are left to the
reader. Lemma [3.2.11] []
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3.3 Iterated Fubini products

In this section we will look at iterated Fubini products of Fin(¢)-ideals. In
order to study these, we will first recursively define sets M:

Definition 3.3.1. Set M! = w. For a successor ordinal, set M+ = w x M?.
For « limit ordinal, fix once and for all a sequence (o, )new S « which is cofinal
in o, and set M* = |, {n} x M.

We will fix some notation concerning the sets M:

Notation 3.3.2. We often write elements of M as vectors 77 = (ng,...,nk),
but also treat them as sequences via the obvious identification of k-tuples
and sequences of length k, writing 7i(¢) for n;, 7 | [ for (ng,...,n;—1) when
1 <l <k+1andlh(7) for £+ 1. Of course 77 | 0 = & and 1h(¥) = 0.

Any proper initial segment of a sequence from M% is called a domain
sequence. Note that we allow a domain sequence to be empty. Elements of
M® are in contrast called terminal sequences.

Let X € M“. Viewing X as a relation, we write

X(n)={zxe U Mg | (n,z) e X}.

B<a

For a > 1, we let as usual dom(X) = {n € w | X(n) # &}. Given a domain
sequence 71 write X (1) for X (ng)-- - (ng), setting X () = X. We also set

doma(X) = {ii 1 1|1 < 1h(7i) A 7l € X}

and refer to the elements of this set as the domain sequences in X.

We denote by d,(7) the ordinal § < « such that X (@) < M? (for any
X € M®). If the origin of the domain sequence 7 is unambiguous, we will
often just write d(7).

We now define a hierarchy of ideals which complexity-wise lies cofinally in
the Borel hierarchy:

Definition 3.3.3. We define an ideal Fin® on M for « € w1\{0} by recursion
as follows:

e Fin! = Fin.
e For a successor ordinal oo + 1 > 1, let

AeFin"™ < {new| A(n) ¢ Fin®} € Fin.
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e For a limit ordinal o with cofinal sequence (v, )new, let

AeFin® « {new| A(n) ¢ Fin®"} € Fin.

Generalizing the previous definition, we also define iterated Fubini prod-
ucts of a sequence of Fy, ideals on w (given as the finite part of a submeasure):

Definition 3.3.4. We define an ideal Fin(&) on M, where ¢ = (08)o<p<a
is a sequence of lsc submeasures on w and « € w;\{0}. The definition is again
by recursion on «:

e Fora=1and A< M set

-,

A € Fin(¢) < A € Fin(¢1).

e For a successor ordinal o > 1 and A € M? set

—, —

AeFin(¢p) & {new| A(n) ¢ Fin(¢ | o)} € Fin(¢y).

e For a limit ordinal « with cofinal sequence (o, )ne, and A € M set

-

A€ Fin(¢p) & {new| A(n) ¢ Fin(¢ | an + 1)} € Fin(¢,).
Clearly Fin® = Fin(q?) where for each 3, ¢z is just the counting measure.

-,

One could think of defining yet more general ideals of the form Fin(¢) on
M where ¢ = (¢s)sep(a) is an assignment of submeasures on w to the set
D(«) of domain sequences in M®, i.e. to the set

D(a) = doma(M®) = {ii | 1|1 <1h(ii) A il e M“}.
By convention D(1) = {¢J}. Write

6*(n) = (dn1)ieD(an):

where if « is a limit ordinal, (ay)new is its cofinal sequence, and if « is a
successor we let o, = o — 1. Now define Fin(cz_;) by recursion on « as follows:
For a = 1 (when D(a) = & and M! = w) let

-,

Fin(¢) = Fin(¢g).

For a > 1, let

Fin(¢) = @ Fin(¢*(n)),

Fin(¢g)
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using the Fubini sum notation defined on p. [9] and noting that by induction
Fin(¢*(n)) is an ideal on M** with a,, as above. We conjecture all our proofs

—.

go through for ideals of the form Fin(¢) as well.

Since we can view any element in M as a finite sequence from w, the set
M¢® can be identified with a subset of w<% — essentially, the set of terminal
sequences in M. Note that a set a € M is finite if and only if there are
finite sets Ky, ... K,_1 with K; € w such that a € Kox Kq x---x K,,_1 under
this identification. Furthermore, there is a natural ordering on M“, namely
the lexicographical ordering, <., inherited from w<%. We will also consider
several other orderings on M“:

Definition 3.3.5. We recursively define =, on M“ as follows:
e Set X &1 YV if and only if X £ Y, i.e. if X is an initial segment of Y.

o Set X C,i1 Y if and only if dom(X) = dom(Y) and for every i €
dom(Y") we have X (i) =, Y (i);

e For o a limit ordinal with cofinal sequence (ay)new, we set X S, Y
if and only if dom(X) = dom(Y') and for every i € dom(Y) we have
X (i) Eq, Y (7).

In order to determine if a set properly extends another set, we need a strict
ordering =, on M to be a version of =, which is strict at every level. For
the case J = Fin® we make the following definition:

e Set X =1 Y if and only if X = Y, i.e. if X is a proper initial segment
of Y.

e Set X =q41 Y if and only if dom(X) = dom(Y) and for every i €
dom(X) we have X (i) =, Y (i);

e For o a limit ordinal with cofinal sequence (o )new, we set X =4 Y
if and only if dom(X) & dom(Y') and for every ¢ € dom(Y) we have
X (1) Cq, Y(2).

-,

In the general case of an ideal J = Fin(¢) on M®, we define =, on M*

by recursion on « as follows:
e Set X =1 Y ifand only if X T Y and ¢1(X) < ¢1(Y).
e Set X —41 Y if and only if dom(X) & dom(Y),
Bas1(dom(X)) < Gsa (dom(Y)),

and for every i € dom(X) we have X (i) =, Y (i);
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e For o a limit ordinal with cofinal sequence (ay,)new, we set X =, Y if
and only if dom(X) = dom(Y), ¢(dom(X)) < ¢q(dom(Y’)), and for
every i € dom(Y) we have X (i) =, Y (7).

As was the case for the previous section, the material of the present section

—,

generalizes almost mechanically from Fin® to Fin(¢). Often this is made
possible by the above definition of =.

When defining the a-dimensional Mathias forcing notion, we will need an
ordering <, on M defined as follows:

e Set X <; Y if and only if max(X) < min(Y).

o Set X <p4+1 Y if and only if dom(X) & dom(Y'), and for every i €
dom(X) we have X (i) <, Y (7).

e For o a limit ordinal with cofinal sequence (v, )new, we set X <, Y
if and only if dom(X) & dom(Y) and for every i € dom(Y) we have
X (i) <q; Y (7).

We let as usual (Fin®)* denote the co-ideal.

The a-dimensional forcing notion is now defined as follows:

Definition 3.3.6. Let (Fin®)™" denote the set of A = M® such that for
every 7 € domg(A) we have A(7) ¢ Fin®*(™. Conditions of M, are pairs
(a, A) where

(a) a € M* is finite;
(b) A e (Fin®)**;
(¢) a<q4 A.
We let (a', A") < (a,A) if and only if A’ € A and a &, a' S a U A.
For the general case, define Fin(¢)™" to be the set of A € M such that

—

for every 7 € dom,(A) we have A(77) ¢ Fin(¢ | 6(7) + 1), and replace @ by
A € Fin(¢)™* in the definition of M,.

Note that for any 7i € dom,(a), the pair (a(7?), A(77)) is a forcing condition
in My, (7). The pair (dom(a),dom(A)) is a classical (1-dimensional) Mathias
forcing condition. As before, we need a relativized forcing notion:

Definition 3.3.7. If 7+ is the co-ideal of an ideal Z 2 Fin®, then we write
It for It A (Fin®) ™" (or more generally, for Z+ n Fin(¢) ™) and we let

MZ = {(a,A)e M, | AeT™}.
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Note that if Z = Fin® then MZ = M,. Note furthermore that if A € Z+,
then we can always find B < A such that Be ZT+.

Notation 3.3.8.
1. For any X € M%, we define the generalized infinity domain by
dom®(X) = {i € domy(X) | X (77) ¢ Fin%(M},
and note that A € (Fin®)** if and only if dom,(A) = domy’ (A).

2. Given a filter G on MZ, let

ve = | J{a| (34)(a, A) € G}.

3. For a condition p e MZ, we write (a(p), A(p)) when we want to refer to

its components.

4. For (a, A) € MZ and b € a U A finite, let

A= | AG)\{z e M%) | (3 € b(71)) @ <jew T},

neN
where N = domg,(b) U {7l | 7i >}, max(domey(b))}.

5. For pe ML, we let ME(< p) = {ge MZ | ¢ < p}.

(67

Remark 3.3.9. The definition of A/b was made to guarantee b <, A/b. Note
that 77 € A/b if and only if 7i ¢ b and letting 7 | [ be the longest common initial

segment of 77 with some element of b, then there is no m € b with @ [ [ & m
and 71(l) < m(l).

Following the same strategy as in previous sections, our main pursuit will
be a generalization of the Main Proposition [3.2.6

Remark 3.3.10. Recall that in order to meaningfully talk about x-Suslin sets
in P(M®), we identify M* with w (via some fixed arbitrary bijection), sets
with their characteristic functions, and in effect, P(M®) with 2¢.

Assumption 3.3.11. For the remainder of this article, let J = Fin® where
o = 2 (or more generally, J = Fin(¢)). Suppose A € P(M®) is a J-almost
disjoint family which is x-Suslin. Moreover, fix a tree 7" on 2 x k such that

7[T] = A. Finally, let Z be the ideal generated by A u J.
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-

Although the proofs in this section work for Fin(¢) as above we will of
notational concern only consider the case where ¢g is the counting measure
for 0 < 8 < a, i.e., where J = Fin®. Whenever relevant, we either make

-,

an explicit comment or the reader can substitute Fin® by Fin(¢) (perhaps
needless to mention at this point, do not substitute for the word finite).
Main Proposition 3.3.12. |kyz (Vy € 7[T]) y Nz € Fin®.

The Main Proposition will be proved in Section below. All our results
about Fin® from Theorem follow from the Main Proposition [3.3.12] as a
corollary:

Corollary 3.3.13. Assuming the Main Proposition Theorem |1.0.
holds.

Proof. Tt suffices to replace M by MZ in the proofs of Corollaries
and (just as we did in Corollary in the two-dimensional case). [

Properties of the general higher-dimensional forcing

Before we prove the Main Proposition [3.3.12| we collect the necessary facts
about MZ.

Lemma 3.3.14.
1. For anyy€Z, -z x5 0 g € Fin®.

2. Letk € w. The partial order ML, is isomorphic to the product MZ (<
(7, A) x (My)k, where A = {ii € M® | @(0) > k}, and by (My)F
we mean k-fold (side-by-side) product of c-dimensional Mathias forcing
M,. If a is a limit ordinal, MZ is isomorphic to ML(< (&, A)) x
(Hl<kMal)

3. vz 2 € (Fin®)* .

Proof. Since Dy, = {p e MZ | A(p) ny = &} is dense for any y € Z.

(2) First we consider the successor case. Define a map

b: 1\/—[g+1(< (F,A)) x (Ma)k - Mgﬂ

(6 B), (eis Cicr) = (b0 [t} x e B U (i} % C).

i<k i<k
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For a limit ordinal o the map can be defined in exactly the same way. Both
of these maps are easily seen to be bijective and order preserving.

This is shown easily by induction, slightly adapting the general case of
the proof of [3.2.8((3). We leave this to the reader. O

We shall need a more sophisticated way of decomposing the forcing as a
product.

Towards this, let (a, A) € MZ. Let us regard M® and a as trees, ordered by
the initial segment relation =. Given 77 € A, let us see how we can characterize
the “type” of 7 in relation to a with respect to <je,.

First note that since 77 € A and a <, A it is enough to characterize the
type of 71 | (Ih(77) — 1) relative to the following set of domain sequences

o ={i' | (Ih(@')—1) |7 € a}

(for if 71 extends 7i* € a*, i’ <je, 7 for every 7’ € a which extends 77*).

Let #ig,...,7; enumerate a* in lexicographically increasing order, and
momentarily fix ¢ such that 7; is the lexicographically maximal in a* with
7; <iex 1. We then know by a <, A that 7 must have a longer initial segment
in common with 77; than it does with 73,41, provided i < k.

Let therefore 1, be the shortest initial segment of 7; such that m; <je,
fij+1 for j < k, and let 7y, = . We have just seen that m; = 7@ (for ¢ and
7 as above). Moreover if j < 4, m; & @ (for M <jez Mj11 <iex M and so
My <jex T).

We have thus shown the following lemma:

Lemma 3.3.15. Suppose (a, A) € MZ. Let fig, ..., iy enumerate

a* ={ii ! (Ih(7)—1)|7ica}

in lexicographically ascending order, let My = & and for i < k let m; be the
shortest initial segment of n; such that M; <jex Mi+1 (just as above).
Then for each i € A there is precisely one i such that m; & 7 and 1l; <jep 7

(namely the mazimal i such that 7; <jep 7).

Technical as the previous lemma may be, it allows us to decompose the
forcing as a product in a very useful manner.

Lemma 3.3.16. Suppose (a, A) € MZ, and mo,. ..,y and T, ..., 7} are
defined as in the previous lemma. Then Mg( < (a,A)) 18 isomorphic to

(HMJW( < (ai<m¢>,Ai<mz~)))) x ME( < (o, A1) (3.3.1)

i<k
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where we let

Aj = A (it | W S ATy <geq 71},

aizaﬁ{ﬁ|ﬁigﬁ},
for each i < k.

Proof. The crucial observation is that by Lemma[3.3.15] a U A may be written
as a disjoint union
auA= U a; U A; (3.3.2)

i<k

Define a map ¢ from Mg( < (a,A)) to the forcing in (3.3.1)) as follows:
For (b, B) < (a, A) define

Using the partition from (3.3.2)), it is straightforward to verify that this map
is an isomorphism of partial orders. ]

Of course we also have a diagonalization lemma for MZ (compare Lem-

mas [3.1.10 resp. [3.2.9)). Just as these two lemmas, Lemma |3.3.17| holds ver-

-,

batim with Sf; o and not just with % even for J = Fin(¢) .

Lemma 3.3.17. Let (Ag)kew be a sequence from It satisfying Api1 S Ag
for every k € w. Then there is Ax, € Tt such that Ay S o Ay for every
kew.

Proof. The proof of Lemma [3.2.9 can be transcribed completely mechanically
by replacing Fin ® Fin by Fin® everywhere; we leave this to the reader. O

The Branch Lemma for general higher dimensions

The reader will find that our line of argumentation in this section is remarkably
close to that of the previous section; of course this is only true since the proofs
there were written with the general case in mind.

Yet again, the crucial definition is that of an invariant tree, analogous to

Definitions [3.1.12] and [3.2.10l

Definition 3.3.18. For x € M*“, let

T"={teT|(Fwen[Tjy]) wnz¢Fin"}
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As in Sections and it is easy to see that whenever xAz’ € Fin®,

T% = T% . Moreover Facts f hold here as well.

We are now ready to state the main lemma of this section.
The Branch Lemma 3.3.19. |z [7[T7¢]| < 1.

In keeping with the pattern established in previous sections, we postpone
the proof of the Branch Lemma and first give the proof of the Main Propo-
sition [3.3.19] assuming the lemma. The proof is verbatim the proof of Main

Proposition except that we use Lemma [3.3.14)(2)to decompose the forc-
ing; we repeat it for the incredulous reader.

Proof of Main Proposition[3.3.13 Suppose towards a contradiction that some
po € MZ forces that there is A € W[T]V[G] with A nzp ¢ Fin,. The Branch
Lemma @l lets us choose a name A so that py - 7[T%¢] = {A}.

We show the following generalization of Claim [3.2.12

Claim 3.3.20. There is g € M% and A’ € n[T] such that q |- A = A’.

Proof of Claim. By the generalized diagonalization lemma (Lemma, it
suffices to show that if p < po and p decides 7@ € A then in fact (a(po), A(p))
decides 7 € A.

So let us assume p |+ 77 € A (ifpl-1i¢ A the proof is similar). We must
show that for an arbitrary MZ-generic G with (a(po), A(p)) € G, it holds that
it e AC,

Fix k large enough so that dom(a(p)) € k. By Lemma we can
decompose G as Gy x Gy where Gy is generic for [[,_, Mgin“i and G is
MZ_generic. As zgAzg, € Fin®, T%¢ = T%¢1 € V[Gy].

By absoluteness, AS € V[G1] and n[T*¢] = {A%} holds in both V[G] and
V[G1].

Since a(p) < [ [;ox{t} x M* we can find G{, which is ([ [;_;, Ma,, V[G1])-
generic over V[G] so that letting G’ = G|, x G1, p € G'. Again by Fin®-
invariance of 7% and by absoluteness, AS" € V[G1] and 7[T*¢1] = {A"} and
so A¢" = A% and i1 € AC, Claim O

Just as in the proof of Main Proposition we conclude that A’ € 7

by absoluteness while g I+ x5 N A’ ¢ Fin,, contradicting Lemma 3.3.14.
Main Proposition D

Gradually working towards a proof of the Branch Lemma [3.3.19] we start
by introducing some notation. Set

U={(a,t) e P(M*) x T | a is finite}.
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For 4 € U, we will often write @ = (a(u),t(w@)). Define an ordering <y on U
by

Assume for a moment that G is MZ-generic over V and work in V[G]. For
a fixed x € P(M®), define a set U* < U consisting of those pairs (a,t) € U
such that there is w € [T}y] with

1. m(w) N zg ¢ Fin®;
2. domy(a) € domy (z N w(w));
3. (Vi € domgy(a)) a(it) < z(7) N 7(w) (7).

Note that U® is closed under initial segments with respect to <y, and that
an infinite chain through U” will give a set A € w[T'] with a large intersection
with z, and a (Fin, )" T-subset of this intersection to witness its largeness in
a useful manner.

In analogy to trees, when 4y € U* we again write

Uggy = {ti e U | 1o <u u}-
Finally working in V' again, we note the following about U%¢:
Lemma 3.3.21. Suppose (a, A) |- @ € U*c.
1. It holds that a(@) < a. Moreover if ' < a(u) also
(a, A) I (d', t(@)) € U"c.
2. If A’ <% A such that (a, A’) € MZ, then also (a, A') I i € U%c.
3. The set A’ < M® defined by
Al ={it| (3 < (a,A)3T <y @) Teal@) Ap I+u e U}
is not in L.

4. For a non-empty domain sequence ii € domg (a(@0)), the set Az < MO ()

defined by
An = {m | (3 < (a,A))3 <y @) m e a(@)(7T) Ap' |- @ € UG}

is in (Fin®(M)+
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Proof. Immediate from the definition of U*¢.

Suppose that (a, A") ¢ @ € U"¢. Then there is some (b, B) < (a, A)
such that (b, B) I+ @ ¢ U%¢. Since A"\A € Z, there is some B’ € B n A such
that B’ € Z+*. However, (b,B’) < (b,B) and (b, B') < (a, A), which is a
contradiction.

Although the proof is practically identical to that of Lemma ,
we give the details for the reader’s convenience. Assume to the contrary that

A" € I. Then A\A’ € %, so take B < A\A’ such that B € Z** and set
p = (a,B) e MZ. Since p |- @ € U*¢ we can find a name w such that

pl-we W[T[t(,j)]] AW N T ¢ Fin® .

(As in Lemma[3.2.13|2) it would suffice if p |- T%¢ # ¢F). Thus we can extend
p to p to force some terminal sequence 7 into w N x\a(p). But it has to be

the case that 7 € a(p’). Whence 7 € A’ by definition of A’, contradicting that
also 77 € B which is disjoint from A’.

(4) The proof is identical to that of Lemma 3.2.13 in essence, but differs

substantially in notation. Assume to the contrary that A; € Fin®™. Then we

can find p < (a, A) such that A(p)(7) is disjoint from Az. Since p |- @ € U%¢
we can find a name w such that
plwe F[T[t(ﬁ)]] AW N Ty € (Fino‘)+
and
p Ik domy(a()) S domy (b N zp).

Therefore 7 € domy (w N z) and we can extend p to p’ to force a terminal
sequence 77 — 7’ into w N x;\a(p). But as in the proof of the previous item,
it has to be the case that @ ~ 7’ € a(p’), whence 7’ € Az by definition of Az,
contradicting that also 7' € A(p’)(7) which is disjoint from Aj. O

Define a set I' as follows:
I = {(p,a° a') e ML | (Vie {0,1})p I @' € U%c}.
Define two orderings on I':
L

-0 -1 -0 -1 — ]
(plvulvul) <r (p07u07u0) < p1 < po A Uy <y Ugp

for i € {0,1}, and
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Note that I' is well-founded with respect to the second ordering, <p. Indeed,
suppose towards a contradiction that there is an infinite sequence (po, i), ug) <r
(p1, @}, ul) <p ---. Set

' =)
for i € {0,1}, and

A= a@®) na(ah).

new

The sequence is <p-decreasing and from T', hence A € (Fin®)*™" and A <
7(y°) N w(y'), contradicting Fin*-almost disjointness of 7[T7].

The following lemmas are analogues of Lemma and Lemma |3.2.15
giving us some freedom in tampering with the both the infinite and the finite
parts of conditions while maintaining that something is forced about U%¢.

Lemma 3.3.22. For each iy € U the set D(ily) is dense and open in MZ,
where we define D(ig) to be the set of p € MZ such that for all p' < p and
any U <y U € U,

|V @ Ug) | = (@), Aw)/a®)) I (Bt € T)(a(@), ) € UfE).

Proof. The proof from the two-dimensional case, i.e., of Lemma [3.2.14] applies
exactly as written once we make the following adaptations: Firstly replace
Fin® Fin by Fin®. Secondly, replace =5 by =,. Thirdly, adapt the definition
of BY as follows:

B) = {iie B){ | (3 € domy (b)) it < i} u By }\ | J{Ci | i <n}.

Then (b2, BY) e MZ, and B n C; € Fin® for each i < n. With these changes,
the remainder of the argument for Lemma [3.2.14] applies verbatim. ]

Lemma 3.3.23. Suppose we are given i€ U, (a, A) €e MZ, and a’ < a so that
(a',A/a') e ML

2, and so that the lexicographically mazimal element of a’ is also

the lexicographically mazimal element of a. Suppose further (a,A) | @ € U%¢.
Then
(a',AJd) I+ (d' t(@)) e Uc.

We remark that the lemma is true without the assumption that o’ and a
have the same lexicographic maximum. But this is easy to arrange when we
apply the lemma, and simplifies notation in its proof.
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Proof. We will decompose the forcing as a product. Let 7y, . .., 7, and Mg, . . ., My
be defined as in Lemma [3.3.15] Then by Lemma [3.3.16

MZ (< = [ M (= (aalm), AiG) ) <

i<k

M§< < (ak,Ak)) (3.3.3)

with A; and a; defined as in the lemma.
Let D consist of those i < k such that some element of a’ extends 73;. Then
writing A" = A/a’, Lemma [3.3.16| also gives us an isomorphism

ME( < (2, 4) = [ ] Mg (< (ai(7), 4i(72) ) x

€D
Mg( < (a;,A;g)) (3.3.4)

with A} and a] defined analogously as in the lemma. We have A, = A; for
each i € D u {k} and so it is easy to see—e.g., using Lemma 3.3.14, a finite
induction, and Lemma [3.1.93)—that

M) (< (ai(), Ai (7)) = M) (< (ai(m), Aj(m;)))
for i € D and
Write

Py = [ Moy ( < (aitiie), 4i(2) ).
¢ D

_ = H M(g(,ﬁi)< < (ai(m@'), Az(ml)))a

€D
© = [T My (< (), 4107)) ),
€D
Poo :M:§< < (CLk, z‘lk))7
Pl =ME( < (af, A7) ).
noting that we have established

MZ(<(d/,A)) =P x P, =P_ x Py (3.3.5)

and
MZ (< (a,A)) =Py x P_ x Py (3.3.6)
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Now finally, let G’ be MZ-generic over V with (a/, 4’) € G’. We must
show (d/,t(w0)) € U*c’. Using transform G’ into a P_ x P, generic
H_ x Hy. Find a P,-generic Hy over V[H_][Hy] and let G be the MZ-
generic given by Hy x H_ x Hy using (3.3.6). By construction (a, A) € G,
whence (a(i),t(@)) € U*G.

By definition of U*¢ this means that in V[G] we can find w € 7[Tjyg)] so
that
(Fu e (Fin")*") o' E0 u € 7(w) N 2. (3.3.7)

Since zgAzg € Fin® we may replace zg by x¢ in (3.3.7)), and thus
(3z € [Tiyayl) Bu e (Fin®*)* ") o c u = w(z) nzg. (3.3.8)

Just as in the two-dimensional case (i.e., the proof of Lemma|3.2.15) an abso-
luteness argument easily shows that (3.3.8]) and hence (o, t(%@)) € U¥¢’ must
hold in V[G’], proving (a’, A/d’) I+ (¢, t(@)) € U"c. O

After all these preparations, we are finally ready to prove our last and
most general instance of the Branch Lemmaﬂ

Proof of the Branch Lemmal3.3.19 Suppose towards a contradiction we have
peE Mg and a pair of Mg—names w°, w' such that

p I (Vie {0,1}) W' € 7[T] A 2 ' ¢ Fin®

and p I @’ # w'. By definition of ' we may find (po, @), @j) € I’ such that
m(t(d@g)) # m(t(d))-

Claim 3.3.24. There is (p1, a5, 1) <r (po, @y, Uy), a terminal sequence ii* €
a(i@d) n a(i}), and numbers I < 1h(ii*) and and k* € w such that for any

(p2, 9, u3) <r (p1,4},d7) and any

i € a(iiy) N a(iy)

such that * 'l E 71, we have 7i(l) < k*.

Proof of Claim. We show that if the claim fails, there is a <p-descending
sequence in I'. Tt suffices to show that any (p1, 43, d}) <r (po, ), i) has a
<r-extension. So let (py, @Y, @) <r (po, @), @3) be given.

2We point out that the previous series of lemmas can also be used to show that every
sequence of ordinals in an MZ-generic extension of V which is definable by a ¥; formula
with parameters from V U {[zg]s} is already in V, where [z]s denotes {z’ | zAz" € J}.
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Since the claim fails, given any terminal sequence 7i € a(uf) n a(u}), any

k < Ih(#), and
(pau , U ) <r (plvﬁ(l)aﬁ%)

we can form an extension

such that there is 7’ € a(v1) N a(v1) with @' | k =7 | k and @' (k) > 7i(k).
In finitely many steps, construct a (finite) descending sequence

(pl,ﬁ?,ﬁ%) 27 (pg,ﬁg,ﬂ%) 2T ... 2T (pmaagwﬁin)v

at each step taking an extension of the previous element as just described. We
can deal with each 7 € a(i) N a(@}) and each k < 1h(7), so that at the end

0 1 0 1 .
Thus we have found (pp,, @,,, 4,,) <r (p1, 43, U7)- Claim 3324 []

Let (p1, @Y, 1) <r (po, @), id}), i* € a(i@d) na(it), I < Ih(7*) and k* € w be
as in the claim. By Lemma [3.3.22| and by replacing p; by a stronger condition
if necessary, we may assume that p; € D(@)) n D(i}).

Case 1: Assume first that [ = 0. Let A’ < M% be defined as in
Lemma 3.3.21, namely

A ={it| B <p)(B@ <y @) iiea(@) Ap I+ €U}

By Lemma[3.3.21|(3), A’ € Z*. Find A € A(p1) such that A € Z+* and letting
E** = max(dom(a(p1))) we have

Ap1)(i) = A(2),

for i < k** while
An (| iy x M0y c A
1>k
Letting p* = (a(p1), A) we obtain a condition in MZ such that p* < p;. Since
p* |- @l € U%, and we can find p < p*, @, and 7@ with 7(0) > k*, k** such
that

i € a() ApIFT@eUS,
[u1]

it follows that 7 € A’. Hence by definition of A’ we can find p’ < p; and o’
such that

iea(@)np I-d e U[D;%].
1
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By extending p,p’ if necessary, we can assume that a(p) and a(p’) have the
same lexicographically maximal element. As p; € D(@))nD(i}) and p,p’ < p1,
we can find @° and @' such that

ii € a(@) A (alp), Alp1)/a(p) - @ € UG,

and

i € a(@') A (a(p'), A(p1)/a(p)) I- @' e U[xﬁ%.
Let a = a(p) na(p’) (whose lexicographically maximal element is also that of
a(p) as well as that of a(p’)). For each i € {0,1} we have

a(@y) v {it} < a < a(p), a(p’)
and so by Lemma (3.3.23
(0, Alpr)/a)) - (alil}) (i}, 1)) € UTE,
for each i € {0, 1}. Letting

p2 = (G,A(Pl)/a)
and
uy = (a(uy) v {7}, t(a"))
for i € {0,1} we obtain (p2, @3, @s) <r (p1, 4", 4}) with 7 € a(@9) N a(@}) and
(0) > k*, which contradicts the choice of (p1, !, i}), ¥, and k*.

Case 2: In casel > 0, let 7 = 7™ | | and consider the set A; defined as in

Lemma 3.3.21, namely

An = {m | Gp < p1) (3@ <y @) 11 € a(@) (@) A p - G e UG}

Lemma ensures Ay € (Finda (M)t
Let k** = max({7i(l) | @ € a(p1)}). Find A < A(p1) such that A €
(Fil’la(ﬁ))++7
Alp)(@) n{mew= | m(0) <k*™}c A
and
A(R) n{m e w=* | m(0) > k**} < Az.

By choice of k**, letting p* = (a(p1), A) we obtain a condition in MZ, p* < py.

Since p* |- @ € U% we can find p < p* and @ <y i such that there
exists a terminal sequence m € a(@) with ni(l) > k*, k** and such that

—_
pl-ue TW}]'
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By definition of A we infer m = 7 — m/ for some M’ € A;, and so we can find

p' < pp and @' <y @) such that
mea(@)Ap i e TEZ%.

1

Using that p; € D(@) n D(i}) and Lemma [3.3.23] argue verbatim as in
the previous case to construct (ps,u3,tsl) <p with m € a(@9) n a(iz2l).
Since m(l) > k*, this contradicts the choice of (p1,dy, 1), @*, I, and k*.
Branch Lemma l:‘



Chapter 4

Related questions

There are several questions related to the non-existence results from Chapter
that could be interesting to investigate further. We will discuss some of
them in this section, and start with a question that was asked in [5].

The results of this thesis show that for J in a rather vast class of Borel
ideals in w, one can prove that there are no definable J-MAD families, under
suitable assumptions on either what definable means, or what background
theory is adopted.

It is worth noting that it is mot the case that such a theorem is true for
every Borel ideal on w. Indeed, the ideal on w x w, defined by

J={rCwxw: (Vnew){m: (n,m) e x} is finite}

clearly admits the J-MAD family, namely {{i} x w: i€ w}.

It remains an interesting open problem if it is possible to characterize the
Borel ideals for which an analogue of Theorem is true, and for which
that type of theorem fails. In other words:

Question 4.0.1. Is there a dichotomy for Borel ideals on w which charac-
terizes when there are/are no definable MAD families with respect to a given
Borel ideal?

Secondly, we could ask the following question, which is related to Térnquist’s
result that there are no infinite MAD families in Solovay’s model:

Question 4.0.2. For which Borel ideals J are there no infinite J-MAD fam-
ilies in Solovay’s model?

Tornquist’s proof was based on his new proof that there are no analytic
MAD families [21]. In this proof, an ordinal analysis of a tree representation

71
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of the MAD families is used to, for an analytic family A of subsets of w,
construct a sequence (Ay)ne, Of subsets of w such that any = € A is almost
contained in the union of finitely many A,,, and w without any finite union of
A,, is always infinite. If such a sequence exists, it is not hard to construct an
element which can be added to A without affecting the almost disjointness.
In other words, A is not maximal. The sequence is constructed by defining a
subtree of the tree representation of A called a diagonal sequence and proving
that the tree representation admits an infinite such diagonal sequence. The
leaves of this diagonal sequence give rise to a sequence (A%),c,. Then a tree
derivative argument allows us to only consider the nodes with some extension
that is not almost covered by a finite union of this sequence, and repeat the
procedure at most countably many times. The proof that there are no infinite
MAD families in Solovay’s model mimics this, replacing the tree with a poset
P and the real with a P-name.

It would be interesting to investigate whether there is a corresponding
sequence (A, )new Of subsets of w x w in the case Z = Fin®Fin, and if so,
whether this sequence can be produced by ordinal analysis of the tree repre-
sentation in a similar way. If this is the case, then we could hope that the
proof could be mimicked in a similar way replacing the tree with a poset, in
order to answer Question positively when Z = Fin ® Fin.

In the case of Fin, it is not so hard to see that everytime the tree splits, it is
possible to extend the nodes so that their extensions are almost disjoint. This
ensures that the sets arising from the diagonal sequence are in fact almost
disjoint. This does not happen in the more complex case of a Fin® Fin-
AD family. In the earlier mentioned recent proof that there are no analytic
Fin®Fin-MAD families (which was a proof by forcing) a countably infinite
process was needed in order to approximate the extended tree in the ground
model, and this could pose a challenge with respect to finding a tree derivative
proof. However, we might be able to reuse the idea of considering pairs (s,t)
of nodes and add information about the intersection of extensions x and y of
s and t respectively, and perform a tree derivative argument on this expanded
tree instead.

If we succeed in performing this kind of tree analysis for some Borel ideal
J, for instance J = Fin® Fin, then there is also another direction in which
this result could be generalized. In order to look into this, we need to know a
little bit about Martin’s axiom.

Martin’s axiom is an axiom introduced by Martin and Solovay in 1970 [14].
It is independent of ZFC, consistent with the negation of CH, and implied by
CH. It has many interesting comsequences, but is by many mathematicians
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considered less intuitive than many other possible axioms. First we define the
following statement:

MA(k): If (P,<,1) is a non-empty poset which is c.c.c., and D is a family
of dense subsets of P such that |D| < &, then there is a filter G in P such that
(VDeD)Gn D # .

Now Martins’ axiom says: (Vk < 2¥) MA(k).

In the case of Fin, the tree analysis allowed Toérnquist to, with small
alterations, conclude that if MA(x) holds for x < 280, then there are no
infinite x-Suslin MAD families. A natural question to ask is therefore the
following:

Question 4.0.3. Suppose MA (k) holds for some x < 2%0. For which Borel
ideals Z can we conclude that there are no infinite x-Suslin Z-MAD families?
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