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Chapter 1

Preface

1.1 Abstract

The primary subject of this dissertation is Hawkes processes with a focus
on stability and with neuroscience as a primary application. The Hawkes
process has received much attention in the last decade for modeling events
that exhibit self excitation - or inhibition. There are many examples of
phenomena of interest which exhibit such behavior, including finance that
propagate through a market giving rise to volatility clustering observations
[2], interactions on social media [42], and pattern dependencies in DNA
[39].

Hawkes processes are point processes where the intensity function is
stochastic and allowed to depend on the past history, introducing memory
in the temporal evolution of the stochastic process. We work with an
extension to the ordinary Hawkes model called an age dependent Hawkes
process, where the intensity of a unit may also depend on the time since
its last jump.

The classical results concerning stability for Hawkes processes found in
[5] assume bounds on the strength of the functional connectivity between
units in the system. However, by taking inhibition into account, we will
be able to produce new stability results for Hawkes processes. We shall
also discuss stability for Hawkes processes from a regeneration point of
view. We will give a constructive proof of a random time such that the
incremented Hawkes process is a Hawkes process in itself independent of
the past. Standard Markov chain techniques allow us to prove various
asymptotic results for the Hawkes process. Finally, we end by studying
the mean-field limit of age dependent Hawkes processes.



1 Preface

1.2 Dansk Resumé

Denne afhandling beskæftiger sig med Hawkes-processer med særligt fokus
p̊a stabilitet. Det primært tiltænkte anvendelsesomr̊ade for afhandlingens
resultater er neuroscience. Det sidste årti har Hawkes-processer f̊aet meget
videnskabelig opmærksomhed som model til at beskrive fænomener, hvori
der indg̊ar selv-excitering eller -inhibering. Finansielle kriser [2], inter-
aktion p̊a sociale medier [42] og DNA mønstre [39] er alle eksempler p̊a
fænomener med en s̊adan adfærd.

Hawkes-processer er punktprocesser, hvor intensiteten er stokastisk og
afhænger af fortiden. I denne afhandling arbejder vi med en udviddelse
af den ordinære Hawkes-proces, hvor intensiteten ogs̊a må afhænge af
tiden siden sidste spring. Denne udvidede klasse af processer kalder vi
Alders-afhængige Hawkes-processer.

De klassiske resultater om stabilitet af Hawkes-processer, først beskrevet
i [5], antager, at den exiterende eller inhiberende styrke p̊a tværs af en-
heder i netværket er begrænset. Ved at benytte inhiberingen i systemet
er det muligt for os at formulere nye resultater for stabilitet af Hawkes-
processer.

Deruover diskuteres regeneration af Hawkes-processer. Vi konstruerer
en stokastisk tid, s̊aledes at Hawkes-processen i tiden derefter er uafhængig
af fortiden. Dette muliggør benyttelse af standard Markov-kæde-teknikker
til at vise asymptotiske resultater for Hawkes-processer. Endeligt præsen-
terer vi mean-field-resultater for Alders-afhængige Hawkes-processer
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1 Preface

1.4 A Short Introduction

The age dependent Hawkes process (ADHP) is a class of processes in-
cluding the well known nonlinear Hawkes process. A Hawkes process Z
is defined by its conditional intensity. This object may be described in a
less formal way by
λt = P (Z jumps in [t, t+ dt) | Ft) . The defining property for a Hawkes
process is that its intensity is a function of the aggregating integral∫ t−

0 h (t− s) dZs for some fixed weight function h. The extension which
defines the ADHP is that the intensity is allowed to also depend on the
age of Z, which is the process measuring the time passed since the last
jump of Z. This makes it possible to directly model individual refrac-
tory periods in a system, such as neural networks on an individual level.
The Hawkes process may be extended to an N -dimensional version in a
natural way: The i’th unit has a conditional intensity that depends on a
sum of aggregating integrals

∑N
j=1

∫ t
0 hij (t− s) dZj

s . Often it is assumed
that the relation between the integral and the intensity of the i’th unit
is Li-Lipschitz. In this case, a classic result from [5] states that a one-
dimensional Hawkes process is stable if L ‖h‖L1 < 1. A similar result
exists for the multivariate process. An introduction to ADHPs are given
in chapter 2, along with natural prerequisites such as the underlying mea-
sure theory.

The first result, presented in chapter 3, treats a specific submodel
of ordinary multivariate Hawkes processes. The aim is to show that for
Hawkes processes where inhibition is present, stability is not necessarily
due to limited connectivity strength. Balance between exciting and in-
hibiting effects can also induce stability in the system. In the described
model, the units in the network are divided into two homogeneous popu-
lations. One population is exciting the system, while the other population
acts inhibiting on the system. Moreover, the specific choice of weight func-
tions makes the memory processes Markovian, which allows us to study
stability in the framework of Harris recurrence and invariant measures
from Markov process theory. The main result is proven using Foster-
Lyapunov theory, and gives a stability criteria which does not imply, nor
is implied by, the classic stability results

The next result, presented in chapter 4, is about ADHPs with a re-
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1.4 A Short Introduction

fractory period. That is, we impose a strong bound on the intensity in a
fixed window after each jump. Such behavior is seen in neurons, where the
biophysical process of inducing an electrical impulse (a so-called ”spike”)
forbids it from repeating such an impulse in the following ≈ 2ms. We are
able to obtain classic stability results without imposing a sub-criticality
bound on h. Indeed, there is a stationary and mixing version of the
Hawkes process, and other Hawkes processes with regular starting condi-
tions converge in variation towards it. The proof relies on constructing
a random measure defined on the entire real line with the same dynam-
ics as a Hawkes process. This has been done by [5] in the case where
λ is bounded using Picard iteration. However, when including the age
variables, it is no longer clear that the Picard-iterates exist. Moreover, a
bound on the Picard-iteration is needed in order to obtain convergence.
We use growth-bounds induced by the refractory period to produce a sta-
tionary process dominating the Picard-iterates.

In chapter 5 we study stability of Hawkes processes from another per-
spective, namely using regeneration. We study regeneration properties
under both the classic stability criteria and the ones in chapter 4. We
give a constructive proof of a regeneration time ρ for a Hawkes process,
satisfying that the increment process Zρ+ is independent of the past. This
work may be seen as an extension of the work done in [10] which treats
the case where the weight function h is of bounded support. However, the
problem changes qualitatively when h is of unbounded support since the
aggregating integral

∫ t
0 h (t− s) dZs may never regenerate. Instead, we

utilize the driving Poisson random measure of the Hawkes process, which
enjoys temporal and spatial independence. Using the Poisson measure,
we are able to construct a scheme similar in spirit to Nummelin splitting
constructions. Said in a colloquial way, we attempt to restart the Hawkes
process at random (stopping) times. At each attempt, the independence
properties of the Poisson measure allow us to flip a coin, deciding if the
attempt is successful. The constructed regeneration time turns out to be
a stopping time with respect to a filtration that is strictly larger than
the filtration induced by Z. We also provide criteria for the existence of
moments for the regeneration time. Finally, we use this to prove results
about the Hawkes process, such as various CLTs.

Finally, in chapter 6, we discuss mean-field limits in a multipopulation

9
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framework, similar to what has been done in [13]. We consider a large
Hawkes network and aim to take the N →∞ limit. We assume that there
is a fixed number of populations, and that all units within a population
are similar. We prove standard results such as propagation of chaos and
asymptotic independence of a fixed finite subset of neurons.

10



1.5 Thesis Structure

1.5 Thesis Structure

The dissertation consists of the following:

• Chapter 2, section 1 gives an introduction to probability theory on
measures, and is based on appendix material from [14] and [11].
Section 2-6 gives an introduction to the Hawkes process.

• Chapter 3 presents a class of Hawkes processes for which we present
stability results. The material is based on ongoing work by Löcherbach
and Raad.

• Chapter 4 is essentially the first half of [14] by Raad et al. concern-
ing stability of Age Dependent Hawkes processes. The material is
submitted for peer-review1.

• Chapter 5 is essentially the article [38] by Raad about regeneration
for Hawkes processes. The material is submitted for peer-review.

• Chapter 6 is essentially the second half of [14] by Raad et al. treating
mean-field limits for Hawkes processes. The material is submitted
for peer-review1.

• Chapter 7 is an appendix based on the appendices of the above
mentioned articles.

1Update November 2019: The material is to appear in the journal AIHP (B)
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Chapter 2

Notation and
Prerequisities

We denote the set of real numbers as R and the subset of strictly posi-
tive real numbers as R+. The set of strictly positive integers are denoted
N and we define N0 := N ∪ {0}, N := N ∪ {∞} . If v = (v1, . . . , vd) is

a d−dimensional Euclidian vector for some d ∈ N, then |v| =
∑d

i=1 |vi|
denotes the 1-distance. We introduce a background probability space
(Ω,F , P ) and assume that this measure space is completed. If (Y,Y) is
a measurable space then a measurable map X : Ω → Y is called a ran-
dom variable taking values in Y . For a closed interval I unbounded to
the right, we denote a family of increasing σ-algebras (Ft)i∈I as a filtra-
tion on the probabilty space. We shall always assume that a filtration
is satisfying the usual hypothesis meaning that for all t ∈ I P (A) = 0
implies A ∈ Ft and

⋂
s>tFs = Ft. Whenever a new filtration is defined,

it is implicitly assumed that we extend it to satisfy the usual conditions.
A random variable X taking values in R is said to have q’th moment for
some q ≥ 0 if E |Xq| < ∞, and it is said to have exponential moment
if E exp (cX) < ∞ for some c > 0. Likewise, we say that a function
f : R → R have q’th moment, respectively exponential moment, if∫
xqf (x) dx < ∞, respectively

∫
exp (cx) f (x) dx < ∞. We recall the

basic Stieltjes integration notation. Let g : R → R be a càdlàg function.
The variation of g on a bounded interval I is given by

Vg (I) = sup
(xi)∈I

∑
i

|g (xi)− g (xi−1)| <∞



2.1 Probability Theory on Measures

where I denotes the system of all finite sets of increasing indices (xi) ⊂ I.
The function g is said to be of finite variation, if the variation is finite
on all bounded intervals. For such g there exists two singular σ−finite
measures µ+

g , µ
−
g s.t. µg := µ+

g −µ−g which satisfies µg (a, b] = g (b)−g (a) .
The variation measure |dg| := µ+

g + µ−g satisfies |dg| (a, b] = Vg (a, b]. If

f : R → R is a measurable function such that
∫
|f | |dµg| < ∞ then we

define the Lebesgue-Stieltjes integral as∫
f (x) dg (x) =

∫
f (x) dµg (x) ,

see e.g. [22] or [26]. If ν is a measure on R2 we shall abbreviate the
integral over a semi-closed box∫

1 {(a, b]} (x)1 {(c, d]} (y) f (x, y) dν (x, y) ,

as either∫ b

a

∫ d

c

f (x, y) dν (x, y) or

∫ b

a

∫ d

c

f (x, y) ν (dx, dy) .

2.1 Probability Theory on Measures

2.1.1 Measure Theory Spaces of Measures

The purpose of this section is to provide a brief overview of measure the-
ory on the space ME of boundedly finite measures defined on a c.s.m.s
(Complete Separable Metric Space). Whenever a c.s.m.s. space (E, d) is
introduced, it is always assumed to be equipped with the topology and
borel-algebra induced by its metric, unless otherwise written.

First, assume that (E, d) is merely a metric space. Let M 0
E be the space

of totally finite measures on E, i.e. measures µ satisfying µ (E) <∞. Let
us equip M 0 with a metric d0. For a set A ⊂ E let Aε be the superset of
A in E defined by all points with < ε d-distance to a point in A. Define
the map d0 : M 0

E ×M 0
E → [0,∞) as

d0 (µ, ν) = inf {ε > 0 µ (A) ≤ ν (Aε) + ε and ν (A) ≤ µ (Aε + ε)} . (2.1)

13



2 Notation and Prerequisities

It may be verified that d0 is indeed a distance function, and it is charac-
terized by weak convergence:

µn
d0→ µ⇔ ∀f ∈ Cb (E) :

∫
fdµn →

∫
fdµ (2.2)

where Cb (E) denotes the set of continuous bounded E → R functions, see
[11] Prop. A2.5II. Next, A measure ν on E is said to be boundedly finite if
Diam (A) <∞ implies that ν(A) <∞ for A ∈ BE. Let ME be the space
of all boundedly-finite measures on (E,BE). Clearly M 0

E ⊂ME. We equip
this space with the metric of local d0 convergence in the standard way:
Choose an arbitrary origin point o ∈ E. For a measure µ ∈ME and r ≥ 0
denote µ(r) as the measure µ restricted to the ball Bd0 (o, r) . Define the

weak-hat metric d̂ as

d̂ (µ, ν) =

∫
exp (−r)

d0
(
µ(r), ν(r)

)
1 + d0

(
µ(r), ν(r)

)dr. (2.3)

It may be seen that this topology is characterized by

µn
d̂→ µ⇔:

∫
fdµn →

∫
fdµ ∀f ∈ Cb (E) with f ≡ 0 outside of a bounded set.

Assume now that E is a c.s.m.s. space. It may be shown that the metric
space (ME, d̂) is a c.s.m.s in its own right, and the topology is independent
of the choice of o. Moreover, the space

(
M 0

E, d
0
)

is a closed subspace of
ME. The Borel-algebra ME is easily characterized by the projections
ΠA : ME 3 ν 7→ ν (A) in the sense that

ME = σ (ΠA, A ∈ D) , (2.4)

where D ⊂ BE is a semi-ring of bounded sets. We will also need random
measures on subspaces of c.s.m.s. spaces. Indeed if E∗ is a c.s.m.s. and

E ⊂ E∗ is a subspace, then the topology of
(
ME, d̂

)
is equal to the

one induced by identification with elements in {µ ∈ME∗ : µ (Ec) = 0} as
a subspace of ME∗. Finally, we introduce the subspace of all counting
measures

M c
E = {µ ∈ME : ∀A ∈ BE : µ (A) ∈ N0 ∪ {∞}}1 . (2.5)

This space is seen to be a closed subspace, and therefore a c.s.m.s. in
itself. We end this subsection by presenting a measurability result. While

1NB: the c superscript in M c
E does not refer to the complement set, but to the word ”counting”.
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2.1 Probability Theory on Measures

we rarely refer explictly to this result, we mention it as it can be applied to
show measurability for a broad range of processes discussed in this thesis.

Lemma 2.1.1.
Let D,E be complete and separable metric spaces, and let
H : D × E → R+ be measurable. The section integral F : ME ×D → R

F (ν, d) =

∫
E

H (d, s) dν (s)

is ME × BD → BR measurable. ◦

Proof. We start by defining G : MD×E → R+ as

G : ρ 7→
∫
H (x, y) ρ(dx, dy).

It is easily seen that G is measurable. Consider the map
m : ME ×D → MD×E given by (ν, d) 7→ δd ⊗ ν. To prove measurability
of m it is sufficient to treat projections into bounded boxes A × B,A ∈
BD, B ∈ BE. Such projections are simply given as
ΠA×Bm : (ν, d) 7→ 1 {B} (d) ΠA (ν) and are therefore measurable. We
conclude that

G ◦m (ν, d) =

∫ ∫
H (u, s) dδd (u) dν (s) =

∫
H (d, s) dν (s) = F (ν, d) ,

proving that F is measurable.

2.1.2 Random Measures

Let E∗ be a c.s.m.s. space and let E ⊂ E∗ be a subspace. A measurable
map
σ : Ω → ME is called a random boundedly finite measure on E or just
a random measure on E for short. A particular interesting example is
when E = R × E0 where E0 is a c.s.m.s. as considered in this paper.
For such spaces, the first coordinate t ∈ R represents a time index. For
r ∈ R the shift operator θ∗r defined by θ∗r (t, e) = (t+ r, e) induces an
automorphism on MR×E0

given by

(θrν) (C) = ν (θ∗rC) .

15



2 Notation and Prerequisities

We also define the increment measure νt+ on [0,∞)× E0 as

νt+ (A) =
(
θtν
)

(R+ × E0 ∩ A) , A ∈ BR×E0
. (2.6)

We stress that we intersect with R+ × E0 and not [0,∞) × E0. For the
sake of clear notation, we shall agree that θrνt+ (C) := (θr (νt+)) (C) . A
random measure σ on R × E0 is said to be stationary if the distribution
is invariant under shift

σ
D
= θrσ

for all r ∈ R. Stationarity is equivalent to having invariance of the finite
dimensional distributions (fidi’s) (Proposition 6.2.III of [11])

P

(
n⋂
i=1

{σ (Ai) ∈ Bi}

)
= P

(
n⋂
i=1

{θrσ (Ai) ∈ Bi}

)

for all r ∈ R, n > 0, A1, . . . , An ∈ BR×E0
, B1, . . . , Bn ∈ BR+

. A stationary
random measure σ is mixing if

P (σ ∈ V, θrσ ∈ W )
|r|→∞→ P (σ ∈ V )P (σ ∈ W ) (2.7)

for all V,W ∈MR×E0
. We refer to Chapter 10.2-10.3 of [11] for a thorough

introduction to ergodic theory for random measures. As is the case for
processes, mixing implies that L(σ) is ergodic w.r.t. the shift operator θr

for all r ∈ R, meaning that all invariant events have probability 0/1.

2.1.3 Poisson Random Measure

A principal example of a random measure is the Poisson Random Measure.
These random measures shall serve as the randomness driving the Hawkes
Process, similar to the role of a Brownian Motion in an SDE. While we
define it on arbitrary spaces for completeness, we shall almost exclusively
work with euclidian subspaces.

Definition 2.1.2.
Let E be a c.s.m.s. space. The random measure Π : Ω→ME is a Poisson
Random Measure with mean measure ν ∈ME if

1. Π(A) ∼ Pois(ν(A)), ∀A ∈ BE, ν(A) <∞,

16



2.1 Probability Theory on Measures

2. A1, ..., Am ∈ BE disjoint ⇒ Π(A1) |= ... |= Π(Am).

Let E0 ⊂ E be a subspace. We define the PRM on E0 with mean measure
ν as the PRM on E with mean measure C 7→ ν (C ∩ E0) . ◦

If E is euclidian it is assumed that the mean measure of a given PRM is
the Lebesgue measure, unless otherwise mentioned. Let us state existence
of the PRM immediately. The result may be found in example 9.2 b) and
corollary 9.2 IV [11]

Theorem 2.1.3.
Let E be a c.s.m.s space, and let µ ∈ ME. There exists a unique PRM
distribution on ME. ◦

The following is a direct consequence of the definition.

Proposition 2.1.4.
Let E,K be c.s.m.s. spaces.

• If µ1, µ2 ∈ ME and π1, π2 are independent PRMs on E with mean
measure µ1, µ2, then π1 + π2 is a PRM on E with mean measure
µ1 + µ2.

• Take µ ∈ ME and let φ : E → K be a measurable bijection. If πE
is a PRM on E with mean measure µ then C 7→ π

(
φ−1 (C)

)
is a

PRM on K with mean measure C 7→ µ
(
φ−1 (C)

)
.

◦

Recall the previously defined shift operator θT on MR×E0
for T ∈ R.

The shift operator θ∗T on R is a bijection on R× E0 and it is easily seen
that it is preserves any measure m× ν where m is the Lebesgue measure
and ν ∈ ME0

. In particular this implies that such a PRM is stationary
and mixing.

Let now (Ft)t∈I be a filtration. A PRM on R×E0 with mean measure
µ ∈ MR×E0

is said to be a Ft−PRM if for all A ∈ BR×E0
, t ∈ I it holds

that

π ((−∞, t]× E0 ∩ A) is Ft measurable and π ((t,∞)× E0 ∩ A) |= Ft.
(2.8)
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2 Notation and Prerequisities

Therefore, if π is a Ft−PRM then it follows immediately that θTπ is a
Gt-PRM with Gt = Ft+T . Also, PRMs satisfy a strong Markov property,
which we present now. Notice that for any random time τ : ω → [0,∞]
and random measure Z the random variable Zτ+1 (τ <∞) is a random
measure as well. Also recall that If A,B ⊂ F are two sub-σ-algebras and
C ∈ F is an event, then we say that A is conditionally independent of B
given C if

P (A ∩B ∩ C)P (C) = P (A ∩ C)P (B ∩ C), ∀A ∈ A, B ∈ B, (2.9)

and we denote this by A |= B | C. Notice that this simplifies to usual
independence if P (C) = 1.

Theorem 2.1.5 (Strong Markov Property for PRMs).
Let (F)t∈[0,∞) be a filtration and let τ be an Ft-stopping time. Let π be an

Ft−PRM on [0,∞)×E0 with mean measure m×ν where m is the Lebesgue
measure and ν ∈ ME0

The conditional distribution πτ+1 (τ <∞) |τ <
∞ is also a PRM with mean measure m × µ. Moreover, it holds that
πτ+1 (τ <∞) |= Fτ |τ <∞. ◦

For a finite stopping time τ this reduces to the fact that πτ+ is a PRM
independent of Fτ .
Proof.
The theorem is straightforward if τ is discrete-valued. In the general case,
define
τn = inf {k2−n : k2−n > τ}. These random times satisfy the following

• for all n ∈ N, τn is a discrete-valued stopping time,

• ∞ > τn (ω) > τ (ω) if τ (ω) <∞ and τn (ω) = τ (ω) =∞ otherwise,

• τn ↓ τ.
From monotonicity we get Fτ ⊂ Fτn and (τn =∞) = (τ =∞) so the
discrete-case result applied to τn implies

πτn+1 (τ <∞) |= Fτ |τ <∞. (2.10)

Notice that D[0,∞)×E = {(a, b]× F : F ∈ BE is bounded and a, b ∈ R+} is
a semi-ring generating B[0,∞)×E. Therefore the cylinder sets

D = { {µ ∈M[0,∞)×E : (µ(V1), ..., µ(Vm)) ∈ B} :

m ∈ N, i ≤ m,B ∈ BRm, Vi ∈ D[0,∞)×E}
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2.1 Probability Theory on Measures

form an intersection-stable generator for M[0,∞)×E. It suffices now to
prove that

P (πτ+ ∈ D,A, τ <∞)P (τ <∞) = P (πτ+ ∈ D, τ <∞)P (A, τ <∞)
(2.11)

for all D ∈ D, A ∈ Fτ . Take now a fixed combination of such sets, D,A,
with
D = ((π(V1), ..., π(Vm)) ∈ B) , Vi = (ai, bi] × Fi ∈ D[0,∞)×E, B ∈ BRn.
There exists (random) n0 such that πτn(Vi) = πτ(Vi) for n ≥ n0,i ≤ m. In
particular

1{πτn ∈ D}
a.s.−→ 1{πτ ∈ D}.

From (2.10) we get that (2.11) holds with πτn+ in place of πτ+. By domi-
nated convergence we obtain (2.11).

As mentioned previously, we may induce new point processes from
PRMs. To do that, let us recall that the predictable algebra P of the
filtration (Ft)t≥0 is the algebra on Ω× [0,∞) generated by the sets

{A× {0} : A ∈ F0} ∪ {A× (s,∞) : A ∈ Fs, s ∈ [0,∞)} .

For a filtration (Ft)t∈R we define it as the algebra induced by the sets
{A× (s,∞) : A ∈ Fs, s ∈ R}. A process t, ω 7→ X (t, ω) is predictable if
it is measurable w.r.t. to P . A central result regarding stochastic integrals
is that any Ft-progressive process Z of finite variation and with Z0 = 0
may be compensated by a predictable process Λ, such that Z − Λ is a
local martingale. The process Λ is called the compensator of Z. A more
detailed explanation may be found in [29].

We now construct càdlàg finite variation processes by integrating a
possibly random function H w.r.t. π. As with usual stochastic integrals
w.r.t. progressive processes, it is important that the integrand field H is
predictable.

Lemma 2.1.6.
Let (Ft)t∈R be a filtration, and let P be the predictable algebra w.r.t (Ft).
Let π be an Ft−PRM and assume that the field H : Ω × R × R → R is
P ⊗ B → B measurable. Define

Z : t 7→
∫ t

0

∫ ∞
0

H (s, z) π (dz, ds) , t > 0,
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2 Notation and Prerequisities

and assume that it almost surely does not explode; that is, for all t > 0,∫ t

0

∫ ∞
0

|H (s, z) |π (dz, ds) <∞

almost surely.

1. If H is bounded, then the compensator Λ of Z is given by

Λ : t 7→
∫ t

0

∫ ∞
0

H (s, z) dz ds,

i.e. Z − Λ is a local (Ft)-martingale.

2. If moreover s 7→ E
∫
|H (s, z) |dz is locally integrable, then Z − Λ is

a martingale.

3. Fix T ≥ 0 and assume that Λ can be written as

Λt =

∫ t

0

λsds.

Assume also that λ (s) = F
(
Z|(−∞,s), s

)
+ ε (s) where F is

MR × BR 7→ BR measurable and t 7→ ε (t) is (Ft∧T )-predictable.
It holds that

P (Z (T,∞) = 0 |FT )
a.s.
= exp

(
−
∫ ∞
T

F
(
Z|(−∞,T ], s

)
+ ε (s) ds

)
.

◦
Proof. The first point follows from [29], Theorem 1.8 of Chapter II, by
using the localizing sequence

Tn = inf{t :

∫ t

0

∫ ∞
0

|H (s, z) |π (dz, ds) ≥ n}, n ≥ 1,

since ∫ Tn

0

∫ ∞
0

|H (s, z) |π (dz, ds) ≤ n+ ‖H‖∞.

For the second point, let Mt := Zt − Λt. It suffices to show that
E(sups≤t |Ms|) <∞ which follows from

E
(

sup
s≤t
|Ms∧Tn|

)
≤ 2E

∫ t

0

∫ ∞
0

|H(s, z)|dsdz <∞

by monotone convergence. The third point is Lemma 1 in [5].
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The most important application for this thesis is when H is the field
(s, z) 7→ 1

{
z ∈

(
λ1
s, λ

2
s

]}
for some predictable processes

0 ≤ λ1
s ≤ λ2

s < ∞, s ∈ I with E
(
λ2
s − λ1

s

)
< ∞. For this choice of

H, Z induces a random counting measure defined by

Z (a, b] =

∫ b

a

∫ ∞
0

z ∈ 1
{
z ∈

(
λ1
s, λ

2
s

]}
dπ (s, z) .

It is equal to π evaluated on the (random) subset of the plane, enclosed
by t = a, t = b and the intensities λ1, λ2 on the interval between a and b.

a b

λ2

λ1

Z

Figure 2.1: Illustration of the construction of Z, Z[a, b]. N denotes atoms
of π inside the λ1,λ2-band, while × are the atoms outside the band. Here
Z[a, b] = 4.

Lemma 2.1.6 1) states that for t0 ∈ I the (Ft+t0)t≥0-adapted process

t 7→ Z (t0, t0 + t]−
∫ t+t0

t0

λ2
s − λ1

sds

is a local martingale for all choices of t0.

2.2 Core Assumptions and Definitions

The purpose of this section is to present some core definitions of mathe-
matical objects. These may be seen as the building blocks of the Hawkes
process.
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2 Notation and Prerequisities

The following definitions and assumptions are valid throughout the
remaining of this dissertation

π | π and πi, i ∈ N, are i.i.d. Poisson Random Measures (PRMs) on
R+ × R with Lebesgue intensity measure.

(Ft) | We assume (Ft)t≥0 is a filtration such that π, πi is an Ft-PRM.

h | Weight functions: For all 1 ≤ i, j ≤ N, hij : R+ → R is a locally
integrable function.

Rt | Initial signals: For all 1 ≤ i ≤ N, (Ri
t)t≥0 is an F0 ⊗ B measurable

process on t ∈ R+ such that t 7→ ERi
t is locally bounded.

ψ | Rate functions: For all 1 ≤ i ≤ N, ψi : R×R+ → R+ is a measurable
function which is L-Lipschitz in x when the age variables agree, and
otherwise sub-linear in x, i.e.,

∣∣ψi (x, a)− ψi (x′, a′)
∣∣ ≤ {Li |x− x′| if a = a′

Li max (|x′| , |x|) + cpreψi if a 6= a′
,

(2.12)

for some L1, ..., LN , c
pre
ψi > 0.

A0 | Initial ages
(
Ai

0

)
i∈N are F0−measurable random variables with sup-

port in R+.

We observe that (2.12) implies that ψ is sublinear since

ψi (y, b) ≤
∣∣ψi (y, b)− ψi (0, 0)

∣∣+ ψi (0, 0) (2.13)

so with cψ :=
∑N

i=1

(
cpreψi + ψi (0, 0)

)
we have

ψi (y, b) ≤ cψ + Li |y| ∀y ∈ R, b ∈ R+. (2.14)

2.3 Age Dependent Hawkes Process

With the objects defined in the previous section, we are now able to
present the age dependent Hawkes process (abbreviated ADHP). The aim
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2.3 Age Dependent Hawkes Process

of this section is to do that, and also to give a light introduction to this
process. The emphasis will be on explaining the intuition behind different
parameters and initialization processes. The only result presented here is
proposition 2.3.2 stating that the ADHP in fact exists. First we define
the ADHP

Definition 2.3.1 (The age dependent Hawkes process).
Let N ∈ N and let (Z,X,A) = ((Z i)1≤i≤N , (X

i)1≤i≤N , (A
i)1≤i≤N) be a

triple consisting of an N−dimensional counting process Z, an N−dimensional
predictable process X, and an N−dimensional adapted càglàd process A.
The triple is an N−dimensional age dependent Hawkes process driven by
π1, ..., πN with weight functions (hij)i,j≤N , rate functions

(
ψi
)
i≤N , initial

ages
(
Ai

0

)
i≤N , and initial signals

(
Ri
)
i≤N if almost surely all sample paths

solve the system

Z i
t =

∫ t

0

∫ ∞
0

1
{
z ≤ ψi

(
X i
s, A

i
s

)}
πi (dz, ds) ,

X i
t =

N∑
j=1

∫ t−

0

hij (t− s)Zj(ds) +Ri
t, (2.15)

Ai
t − Ai

0 = t−
∫ t−

0

Ai
s Z

i(ds),

for t ≥ 0. The intensity of Z i is the predictable process λit = ψ
(
X i
t , A

i
t

)
.
◦

The intensity has the interpretation that P
(
Z i jumps in [t, t+ dt) |Ft

)
=

λit dt. The process has two parameters: A vector of rate functions
(
ψi
)

and a matrix of weight functions (hij). It is initialized with an initial age
A0 and an initial signal R both of which are known at time 0. Notice that
the compensator of Z i is given by

Λi
t =

∫ t

0

λisds (2.16)

meaning that Z−Λ is a local martingale. In fact, we shall see in a moment
that it is a true martingale. Also, for each fixed t0 ≥ 0 the process∫ t∧t0−

0

hij (t0 − s) dZj
s −

∫ t∧t0−

0

hij (t0 − s)λjsds (2.17)
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2 Notation and Prerequisities

is a martingale over t ≥ 0. We immediately state existence of the Hawkes
process

Proposition 2.3.2 (Existence of ADHP).
Almost surely, there is a unique sample path (Z,X,A) solving (2.15).
Moreover
Eλit <∞ and E

∣∣X i
t

∣∣ <∞ for all t ≥ 0. ◦

Proof.
Let h =

∑N
i,j=1 |hij| andR =

∑N
i=1

∣∣Ri
∣∣. Let L = max{L1, ..., LN , cψ1, ..., cψN}

and consider the linear Hawkes processes

Z̃ i
t =

∫ t

0

∫ ∞
0

1 {z ≤ L (1 + Ys)} πi (dz, ds) , 1 ≤ i ≤ N,

Yt =
N∑
j=1

∫ t−

0

h (t− s) Z̃j(ds) +Rt. (2.18)

It is well known that Z̃ i
t is well defined and EYt < ∞ (see e.g. proof of

theorem 6 in [12]). Notice that Z̃ is driven by the same PRMs as Z. By

induction over jump times of
∑N

j=1 Z̃
j it follows that (2.15) has a unique

solution satisfying Z i
t ≤ Z̃ i

t and λit ≤ LYt+L for all t ∈ R+, implying that
Z does not explode.

Below we explain some components of the ADHP.

The Rate Function (x, a) 7→ ψi (x, a) describes how the memory
and the age influence the intensity of the ith unit. The existence of a
non-exploding Hawkes process is generally ensured by assuming that ψi

is sub-linear in x. Often, stronger assumptions such as a uniform bound
on ψi are also imposed to prove basic properties. In this thesis we will
always assume some sort of Lipschitz- and linear-growth-conditions.

The Age Process Ai
t associated to the ith process Z i is the time

elapsed since the last jump time of Z i before time t, that is,

Ai
t =

{
Ai

0 + t, if Z i (0, t) = 0,

t− sup
{
s < t : ∆Z i

s > 0
}
, otherwise,

where ∆Z i
s = Z i

s − Z i
s− = Z i

s − limε→0+ Z
i
s−ε are the jumps.
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2.3 Age Dependent Hawkes Process

The Memory Process X i
t integrates the effects of previous jumps

in the network, where the influence from the past is a weighted average of
all previous jumps of all units that directly affect unit i (the pre-synaptic
neurons). Each unit has its own memory process, even if they all depend
on the same common history of all units, but they are affected in individual
ways.

The Weight Function hij (t) determines how much a jump of unit j
that occurred t time units ago contributes to the present memory of unit i.
Positive hij(t) means excitation of unit i when a jump of unit j occurred
t time units ago. Negative hij(t) means the analogous, with inhibition in
place of excitation.

The Initial Signal Ri
t is a process assumed to be known at time

t = 0. It should be thought of as a memory process which the process in-
herits from past time. Natural examples of R includes linear combination
of ”past” memory processes i.e. of the form

∫ t
0 h

past (t− s) dZpast.

When ψi (x, a) = ψi (x) i.e. the rate does not depend on the age, we
obtain the ordinary Hawkes process. If moreover ψ (x) = cψ + Lx+ for
some suitable L > 0 we obtain the Linear Hawkes process.

Example 2.3.3.
Consider the rate function given by

ψ(x, a) = l(x)ϕ (x, a) (2.19)

where l is increasing and L-Lipschitz and ϕ is bounded by 1. Moreover we
assume that x 7→ l (x)ϕ (x, a) is L-Lipschitz for all a ∈ R+. For ϕ ≡ 1 we
obtain the ordinary Hawkes process, so for general ϕ we may interpret the
ADHP as an ordinary Hawkes process with rate function l, but inhibited
by its own age process with a factor ϕ (x, a). To show that it satisfies
(2.12) take x ≤ y and a 6= b and see that

ψ(y, b)− ψ(x, a) = l (y)ϕ (y, b)− l (x)ϕ (x, a) (2.20)

= (l (y)− l (x))ϕ (y, b) + l (x) (ϕ (y, b)− ϕ (x, a)) .
(2.21)

If x ≥ 0 then l (x) ≤ l (0) +L (x− 0) while l (x) ≤ l (0) for x < 0. We use
this, and the fact that |ϕ (y, b)− ϕ (x, a)| ≤ 1 to conclude

|ψ(y, b)− ψ(x, a)| ≤ L (y − x) + (l (0) + L |x|) (2.22)
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2 Notation and Prerequisities

which fits into (2.12). The most principal example of ϕ is the simple
1 {A ≤ δ) corresponding to a hard refractory period of length δ. Although
this is a rather simple example, it is important due to its application for
modelling neural spike-trains. We could also give a more complicated
structure to the refractory period such as

ϕ (x, a) =


1− e−a

1 ∨ l (x)
a ≤ δ

1− e−a a > δ
. (2.23)

Notice that both of the above mentioned ϕ choices makes ψ increasing.
As mentioned previously, if ϕ ≡ 1 then

ψ(x, a) = l(x) (2.24)

and one obtains the ordinary Hawkes process. ◦

2.4 Linear Hawkes Process

The linear Hawkes process was the first Hawkes process to be studied,
originally by Alan G. Hawkes and David Oakes [24]. Here we assume that
h ≥ 0 and that the rate functions are independent of a and linear in x.
The intensity becomes

λit = ciψ + Li
N∑
j=1

∫ t−

0

hij (t− s) dZj
s +Ri

t. (2.25)

The linear Hawkes process with non-negative weight is more conve-
nient to study, mainly because it can be represented as a marked cluster
measure Z ∈M[0,∞)×K where K = {1, ..., N}

Z ([0, t]× {i}) =
N∑
j=1

∫ t

0

ZΠj
s,j ([0, t− s]× {i}) dΠj

s. (2.26)

Here Πj | F0 is a Poisson process of intensity cψj + Rj, implying that

the compensator is t 7→
∫ t

0 cψj + Rj
sds, and Z i,j D

= Z0,j are mutually
independent Hawkes clusters which we define below.
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2.4 Linear Hawkes Process

Figure 2.2: A simulation of a one dimensional linear Hawkes process. The
colored chunks corresponds to i.i.d. inhomogeneous Poisson processes
with intensity h.

Consider the Galton-Watson process (Gi) = (Gi,1, ..., Gi,N) on NN de-
fined through the following recursion started with Gi,0 = 1, Gj,0 = 0 for
i 6= j and

Gi,n =
N∑
m=1

Gi−1,m∑
j=1

P n,m
i,j . (2.27)

Here, P n,m
i,j are mutually independent and for each pair n,m all variables

P n,m
i,j are i.i.d. Poisson variables with mean Li ‖hn,m‖L1. Take mutu-

ally independent random variables (Xn,m
i,j,k), k ∈ N each with density

hn,m(t)/ ‖hn,m‖L1. Recall that the jump times of a Poisson process with
intensity hn,m are distributed as (Xn,m

i,j,k), k ≤ P n,m
i,j .

The jump times of Z0,n0 for a fixed n0 ≤ N may be constructed as
follows: Start with a jump T 0,n0

0 = 0 and inductively for i ∈ N do the
following:

• For each j ≤ Gi−1,m and n,m ≤ N, k ≤ P n,m
i,j define1 T ni,j,k = Xn,m

i,j,k +
Tmi−1,j.

1with the convention that Pn,mi,j = 0 means that no new Tni,j,k times are defined
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2 Notation and Prerequisities

• Re-index the jump times by concatenating over the indices j, k, into
a sequence

(
T ni,j
)
, j ≤ Gi,n of i’th generation jump times.

See also [41] and [24] for more details on the cluster representation.
We may use the Galton-Watson process to control the growth of the

clusters, due to the following well known result.

Proposition 2.4.1.
Let (Gi) be a Galton-Watson process with G0 = v. Let A ∈ RN×N be the
matrix Anm = Ln ‖hnm‖L1 and let % be its spectral radius.

• Assume % < 1 (Sub-critical case). Then extinction occurs almost
surely, i.e. Gi = 0 eventually. The extinction time has exponential
moment. Moreover, Let Si =

∑i
j=0Gj. The total progeny S :=

limi→∞ Si has exponential moment.

• Assume % = 1 (Critical case). Then extinction occurs almost surely.

• Assume % > 1 (Super-critical case). Then there is a positive proba-
bility of no extinction and EGi grows exponentially.

◦

For notational convenience we prove this is one dimension, meaning
N = 1 and % = L ‖h‖L1. The multivariate proof is similar.

Proof.
Define the filtration (Fi) = σ (Gj, Sj : j ≤ i). We show that the process
Mi = exp (pSi + qGi) is a supermartingale for appropriately chosen p, q ∈
R. Recall that the moment generating function of a Poisson variable with
mean c ∈ R is
R 3 t 7→ exp (c (et − 1)).

E (Mi+1 | Fi) = exp (pSi)E (exp ((p+ q)Gi+1) | Fi) (2.28)

= exp (pSi)E

(
exp

(
(p+ q)

Gi∑
j=1

Pi+1,j

)
| Fi

)
(2.29)

= exp (pSi) exp
(
Gi%

(
e(p+q) − 1

))
(2.30)

= exp (Mi) exp
(
Gi

(
%
(
e(p+q) − 1

)
− q
))

. (2.31)
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2.4 Linear Hawkes Process

Take now p, q > 0 s.t. q−1
(
e(p+q) − 1

)
< %−1. This is possible since

limq→0 limp→0 q
−1
(
e(p+q) − 1

)
= 1. For such p, q Mn is a strict super-

martingale. Consider the Markov chain (S∗i , G
∗
i ), defined with same Markov

kernel as (Si, Gi) except that it is modified so that
(
G∗i+1, S

∗
i+1

)
= (1, 0)

whenever (S∗i , G
∗
i ) ∈ N× {0}. The modified chain (S∗i , G

∗
i ) is clearly irre-

ducible and N×{0} is an accessible atom for it. Choose now the Lyapunov
function V (s, g) = exp(ps + qg). It follows from [34] theorem 15.0.1 that
the chain (S∗i , G

∗
i ) is positive recurrent and geometrically ergodic. The

remaining claims of the first part also follow from theorem 15.0.1 in [34].
To prove the 2nd part and 3rd part, we notice that M ′

i = %−iGi is a
martingale since

E (M ′
i+1 | Fi) = %−i−1E

(
Gi∑
j=1

Pi+1,j | Fi

)
= %−i−1 (%Gi) = M ′

i . (2.32)

The martingale convergence theorem gives that there is some random
variable M ′

∞ s.t. M ′
i
a.s.→ M ′

∞. Also, notice that P (Gk = j ∀k > i) = 0 for
all i, j ∈ N so if Gi converge it must be towards 0.

In the critical case this implies that almost surely, Gi = M ′
i = 0

eventually. In the super-critical case we conclude that EGi = v%i. To
see that there is a positive probability of no extinction, pick p = 0, q < 0
s.t. q−1 (eq − 1) > %−1. For these parameters, the derivations made in
the first part gives that Mi = 1 − exp (qGi) is a non-negative strict sub-
martingale. Consider the chain (G∗i ) given as Gi but modified so what
Gi+1 = v whenever Gi = 0. It follows from theorem 8.4.2. in [34] with
Lyapunov function V (x) = 1 − exp (qx) that the modified chain (G∗i ) is
transient. This implies that G∗i hits v only finitely many times, before
going to infinity. Thus, Gi has a positive probability of no extinction.

While our focus is not on producing results specifically for the spe-
cial case of linear Hawkes processes, we will present the stationary linear
Hawkes process nevertheless. Let Πj be a Poisson process on R and let
Zk,j, k ≤ N , j ∈ Z, be mutually independent Hawkes clusters. The
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random measure defined by

Z ((a, b]× {i}) =
N∑
j=1

∫
ZΠj

s,j ((a− s, b− s]× {i}) dΠj
s, a ≤ b ∈ R

(2.33)

is almost surely boundedly finite. Moreover it is stationary and ergodic.
As we shall see later, this is a stronger result than what can be obtained
for Nonlinear Hawkes processes, since we make no further assumptions
on the tail of hnm than integrability. In general, the tail of h is directly
connected to the length of clusters

Proposition 2.4.2.
If % < 1 and

∫∞
0 tphn,m(t)dt < ∞ for p ≥ 1 and all n,m ≤ N then the

extinction time has p-th moment. If also
∫∞

0 exp(ct)hn,m(t)dt < ∞ for
all n,m ≤ N and some c > 0, then the extinction time has exponential
moment. ◦

For a proof see [41]. We also implicitly prove this in the proof of the-
orem 5.3.6 using random exchange processes (see appendix).

The described decomposition into i.i.d clusters makes the linear Hawkes
process more convenient to analyse than the nonlinear Hawkes process
which does not enjoy such decomposition. It also makes it faster and eas-
ier to simulate the Hawkes process in practice, which often counterweights
its downside, being its simplicity compared to the more general Hawkes
processes.

As mentioned previously, there is a relation between a general Hawkes
process, and the linear Hawkes Process ensured by the fact that ψ is
sublinear i.e. ψ (x) ≤ cψ + Lx. If one removes all inhibition from the
system (i.e. replace h with h+) and replace ψ with the linear dominating
function x 7→ cψ+Lx, then the newly obtained linear Hawkes process Z lin

dominates Z in the sense that Z lin [t, t] ≥ Z [t, t] for all t ∈ R+.

2.5 Markovian Hawkes Processes

In general, Hawkes processes are not Markovian. However, specific choices
of weight functions will induce a Markovian system. An example of such
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2.6 A Brief Overview of Hawkes Process Results

weight functions are the scaled Erlang densities:

hij (x) =
cij
nij!

xnij exp (−νijx) (2.34)

for vij,≥ 0, cij ∈ R, nij ∈ N0. The Markovian system is discovered by
splitting up the memory processes X i into the contributions from each
unit in the network X ij = X ij

0 . Define in general

X ij
k (t) =

cij
(nij − k)!

∫ t−

0

tnij−k exp (−νijt) dZj
s (2.35)

for i, j ≤ N k ≤ nij. Using partial integration iteratively we obtain the
system

dX ij
k (t) = −νijX ij

k (t) dt+X ij
k+1 (t) dt k < nij (2.36)

dX ij
nij

(t) = −νijX ij
nij

(t) dt+
n∑
j=1

cijπ
j

([
0, ψj

(
N∑
l=1

Xjl
0 (t) , Aj

t

)]
, dt

)
(2.37)

dAi
t = Ai

tdt− Ai
tπ
i

([
0, ψi

(
N∑
j=1

X ij
0 (t) , Ai

t

)]
, dt

)
. (2.38)

If for all i, j1, j2 ≤ N , it holds that vij1 = vij2, nij1 = nij2 then the memory

process and its cascades X i
k =

∑N
j=1X

ij
k themselves are Markovian. For

nij = 0 the weight functions are exponential, which has been studied since
the original works by Hawkes. The general Erlang case is more recent.
In [13] it was studied how such systems in a large network are able to
produce oscillating intensities.

2.6 A Brief Overview of Hawkes Process
Results

Here we present a non-exhausting list of results relevant to Hawkes Pro-
cesses and work presented in this thesis.

Stability

A central result for this dissertation, originally developed by Brémaud and
Massoulié [5], states that ordinary Hawkes processes with limited connec-
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tivity strength are stable. More specifically, let Λ be the
(N × N)-matrix consisting of the L1-norms of the weight functions
Λi,j = Li ‖hi,j‖L1. Assume that the spectral radius of Λ is strictly less
than 1 and

∫∞
0 t|hij(t)|dt <∞. Then there exist a Hawkes process living

on the entire timeline and driven by π, meaning that

Z i (t1, t2] =

∫ t2

t1

∫ ∞
0

1
{
z ≤ ψi

(
X i
s

)}
πi (dz, ds) ,

X i
t =

N∑
j=1

∫ t−

−∞
hij (t− s)Zj(ds) (2.39)

for all t ∈ R and t1 ≤ t2 ∈ R. Moreover, the solution is compatible to π in
the sense that there is a map H satisfying H (θtπ) = θtZ . In particular
this implies that the stable process is stationary and ergodic. Moreover,
it is shown that if Z∗ is another ordinary Hawkes process initialized with
some R∗ satisfying E

∫∞
0 |R

∗
s| ds < ∞ and driven by same π, then Z and

Z∗ couples eventually i.e.

T := inf {t > 0 : (Z − Z∗) (t,∞) = 0} <∞.

In a later article by Bremaud et al. [6] distribution results were shown for

the coupling time T . In particular they showed that if
∫ t

0 t
p+1h (t) dt <

∞ for p ≥ 0 then T has p’th moment. Also it was shown that T has
exponential moment if h has an exponentially decaying tail.

CLT results

A FCLT result was found by Zhu [44] for a one-dimensional Hawkes pro-
cess, when h is positive and decreasing. Define for n ∈ N

Bn
t = n−1/2 (Z (0, nt]− EZ (0, nt]) . (2.40)

It was proven that when L ‖hi,j‖L1 ≤ 1 and
∫∞

0 th (t) dt < ∞ there is
0 < σ <∞ s.t.

Bn ⇒ σB, (2.41)

where B is a Brownian motion, and ” ⇒ ” denotes weak convergence in
the D-space.
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2.6 A Brief Overview of Hawkes Process Results

A time-average CLT result was found by Costa et al. in [10] in the case
where h has bounded support. Take A ≥ sup {t > 0 : h(t) > 0}. Their
approach is to study the Hawkes process as a Markov process. Because
of the bounded support assumption the Hawkes process regenerates at
ρ = inf{t > 0 : Z[t − A, t] = 0}. In the Markov construction ρ can be
seen as the return time to an atom. Here it was proven that the return
times have exponential moments with exact coefficients. Although the
results are stated for the linear Hawkes process, most results including
the renewal results transfer to any Hawkes process where h has bounded
support. From the Markov process the following CLT is established.

Assume that G : M c
(−A,0] → R is measurable and locally bounded, i.e.

uniformly bounded on {ν ∈M c
(−A,0] : ν(−A, 0] ≤ n} for all n. Now define

the probability measure µ and the variance σ2 by

µ =
1

Eρ
E
∫ ρ

0

G((θtZ)|(−A,0])dt, σ2 =
1

Eρ
E

[(∫ ρ

0

G((θtZ)|(−A,0])dt− µ
)2
]
.

(2.42)

If σ2 ∈ (0,∞) then the following holds

√
T

(
1

T

∫ T

0

G((θtZ)|(−A,0])dt− µ
)
⇒ N (0, σ2) when T →∞. (2.43)

More results, including a concentration inequality may be found in the
same paper.

Mean-field

Mean field limits have been studied for many types of multivariate dy-
namical systems, including Hawkes processes. The idea is to study the
asymptotics for a multivariate Hawkes process for large N. In the limit,
the dependence between two individual units should vanish in the overall
correlation structure of the entire system. In [12] a mean-field limit was
proven for Hawkes processes modelling a homogeneous population, where
each weight function is the same for all units for fixed N , and given by
N−1h. More precisely, let Z i,∞ be i.i.d. inhomogeneous Poisson processes
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with intensity λ∞t being the solution to

λ∞t = f

(∫ t

0

h (t− s) dΛt

)
(2.44)

and where Λt :=
∫ t

0 λ
∞
s ds is the compensator of Z∞. Let i1, ..., in ∈ N be

any finite set of indices. It holds that(
ZN,i1, . . . , ZN,in

)
⇒ Z∞,1⊗, . . . ,⊗Z∞,n. (2.45)

where ” ⇒ ” denotes weak convergence in the D-space. An analogous
mean-field limit was proven in [13] in a multi-class setup instead of a
homogeneous one. A mean-field limit was proven for a homogeneous pop-
ulation for ADHPs in [7].

34



Chapter 3

A Multiclass Hawkes
Process Stabilized by
Inhibition

3.1 Introduction

In this chapter we consider a multivariate linear Hawkes process in a
multi-class setup as in [13]. We consider two populations of possibly
different sizes, such that one of the populations acts excitatory on the
system, and the other population acts inhibitory on the system. The goal
of this chapter is to present a class of such Hawkes processes with stable
dynamics, but without assumptions on the spectral radius of the weight
function matrix. Thus it illustrates how inhibition in a Hawkes system
significantly affects the stability properties of the system.

3.2 Setup For This Chapter

We assume that we have a total ofN units, represented by anN -dimensional
Hawkes process. These units are divided into two populations marked
with ” + ” or ” − ” signaling that the population acts excitatory or in-
hibitory on the system, respectively. Let N+, N− ∈ N be the number
of units in each population with a total population of N = N+ + N−.
The weight function from a unit in one population to a unit in another is
assumed to be given by a decaying exponential and depends only on their



3 A Multiclass Hawkes Process Stabilized by Inhibition

respective populations. Thus, there are only 4 different weight functions,

h++ (t) =
c++

N+
exp (−ν+t) , h+− (t) =

c+−

N+
exp (−ν+t) ,

h−+ (t) =
c−+

N−
exp (−ν−t) , h−− (t) =

c−−
N−

exp (−ν−t) .

where for example h+− indicates the weight function from a unit in the
excitatory group ” + ” to a unit in the inhibitory group ” − ”1. The
coefficients of this system are the exponential leakage terms ν+ > 0, ν− > 0
and the synaptic weights c++, c+−, c−+, c−− satisfying that

c++ ≥ 0, c+− ≥ 0, c−− ≤ 0, c−+ ≤ 0. (3.1)

Put Ri+ = X i+
0 e−ν+t, Rj− = Xj−

0 e−ν−t for i ≤ N+, j ≤ N−. The multi-
variate linear Hawkes process with these parameters are given as

Z i+
t =

∫ t

0

∫ ∞
0

1{z≤ψi++ (X+
s−)}π

+i(ds, dz), i ≤ N+ (3.2)

Zj−
t =

∫ t

0

∫ ∞
0

1{z≤ψj−− (X−s−)}π
−j(ds, dz), j ≤ N− (3.3)

X+
t = e−ν+tX+

0 + c++

N+∑
i=1

∫ t

0

e−ν+(t−s)dZi+
s + c−+

N−∑
j=1

∫ t

0

e−ν+(t−s)dZj−
s , (3.4)

X−t = e−ν−tX−0 + c+−

N+∑
i=1

∫ t

0

e−ν−(t−s)dZi+
s + c−−

N−∑
j=1

∫ t

0

e−ν−(t−s)dZj−
s , (3.5)

and jump rate functions ψi+, ψ
j
− given by

ψ+(x) = a+i + max(x, 0), a+i > 0, (3.6)

ψ−(x) = a−j + max(x, 0), a−j > 0. (3.7)

As mentioned in the introduction (X+, X−) is a piecewise deterministic

1NB: This means that the indices of hij are opposite of the rest of the thesis, so that j is the recieving
unit and i is the sending one.
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Markov process. The generator of the Markov process is given by

Ag(x, y) =− ν+x∂xg(x, y)− ν−y∂yg(x, y) (3.8)

+
N+∑
i=1

ψi+(x)[g(x+
c++

N+
, y +

c+−

N+
)− g(x, y)] (3.9)

+
N−∑
j=1

ψj−(y)[g(x+
c−+

N−
, y +

c−−
N−

)− g(x, y)], (3.10)

for any test function g ∈ C1.
The classic stability results found in [5] for multivariate nonlinear

Hawkes processes are stated in terms of the weight function matrix Λ.
This is the N × N matrix with ij-th entry being Λij = Li ‖hij‖L1 . The
criteria is that the spectral radius of Λ should be strictly smaller than 1.
In our system, the weight function matrix is given by the block matrix

Λ =

 c++

ν+

|c−+|
ν+

c+−
ν−

|c−−|
ν−

 . (3.11)

Notice that in (3.11), negative synaptic weights do only appear through
their absolute values. This is due to the fact that using the Lipschitz
continuity of the rate functions leads automatically to considering abso-
lute values and does not enable us to make profit from the inhibitory
action of c−+ and c−−. Obviously, having sufficiently fast decay, that is,
min(ν+, ν−) >> 1, is a sufficient condition for subcriticality.

The purpose of this note is to show how the presence of sufficiently
strong negative synaptic weights helps stabilizing the process without im-
posing such a subcriticality condition, in particular, without imposing
ν+, ν− being large. To the best of our knowledge, no such study has
been proposed in the literature. [5] gives an attempt in this direction but
does only deal with the case when c+− and c−+ are of the same sign (see
Theorem 6 in [5]).

In the following, we shall write

c∗++ := c++ − ν+, c
∗
−− := c−− − ν−.

Notice that c∗++ could be interpreted as the net increase of X+ due to
self-interactions of X+ with itself. c∗−− is always negative.
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3 A Multiclass Hawkes Process Stabilized by Inhibition

Assumption 3.1.
We assume the following inequalities

c∗++ + c∗−− < 0, (3.12)

(c∗++ − c∗−−)2 < 4c+−|c−+|, (3.13)

c∗++ − c∗−− > 0. (3.14)

◦

Assumption 3.2.
We assume that ν+ = ν− and (c++, c+−) , (c−+, c−−) are linearly indepen-
dent. ◦

The main theorem in this chapter is that assumption 3.1 and assump-
tion 3.2 imply positive Harris recurrence together with a strong mixing
result. The important assumption is assumption 3.1, which makes sure
that the system is balanced. Notice that assumption 3.1 does not im-
ply - nor is implied by - that the spectral radius of Λ is strictly smaller
than 1. For example, if assumption 3.1 is satisfied for some parameters
(c++, c+−, c−+, c−−, ν, ν) such that c+++c−− < 0 then for all C > 1 the pa-
rameters (Cc++, Cc+−, Cc−+, Cc−−, ν, ν) satisfies assumption 3.1 as well.
But the associated offspring matrix ΛC of the scaled parameters is equal
to CΛ and thus the spectral radius is also scaled by C. Assumption 3.2
could be loosened or even removed, at the cost of more complicated proofs,
and more technical formulations for the results.

In order to state the main result, let

V̄ (z) := V (z) + 1 and ‖µ‖V̄ := sup
g:|g|≤V̄

|µ(g)|,

for any probability measure µ on BR2. Moreover, for t > 0 and z = (x, y) ∈
R2, we write Pt(z, ·) for the transition semigroup of the process, defined
through
Pt(z, A) = Ez(1A(Xt)).

Theorem 3.2.1.
Grant assumption 3.1 and assumption 3.2.

• Recurrence: The process Xt := (X+
t , X

−
t ) is positive recurrent in

the sense of Harris. In particular, it possesses a unique invariant
probability measure µ.
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Geometric Ergodicity: There exists a quadratic polynomial V and
constants
c1, c2 > 0 such that for all z ∈ R2,

‖Pt(z, ·)− µ‖V̄ ≤ c1V̄ (z)e−c2t. (3.15)

◦

3.3 Proof of Theorem 3.2.1

This section is devoted to the proof of the above theorem.

A Lyapunov Function for Xt

The first result shows that if the cross-interactions, that is, influence from
X+ to X− and vice versa, are sufficiently strong, then – under mild ad-
ditional assumptions – it is possible to construct a Lyapunov function for
the system that mainly profits from the inhibitory part of the jumps.

Proposition 3.3.1.
Assume assumption 3.1. Define the function V : R2 → R

V (x, y) :=
V++(x, y) := c+−x

2 − c−+y
2 − (c∗++ − c∗−−)xy x ∈ R+, y ∈ R+

V+−(x, y) := c+−x
2 + qy2 − (c∗++ − c∗−−)xy x ∈ R+, y ∈ R−

V−+(x, y) := px2 − c−+y
2 − (c∗++ − c∗−−)xy x ∈ R−, y ∈ R+

V−−(x, y) := px2 + qy2 − (c∗++ − c∗−−)xy x ∈ R−, y ∈ R−

with p so small such that

−(c∗++ − c∗−−)(c−− − ν+ − ν−) + 2pc−+ > 0

and q so large such that

(c∗++ − c∗−−)[ν+ + ν− − c++] + 2qc+− > 0 and 4pq > (c∗++ − c∗−−)2.

Then lim|x|+|y|→∞ V (x, y) =∞ and there exists positive constants κ, c,K >
0 such that

AV (x, y) ≤ −κV (x, y) + c1{|x|+|y|≥K}. (3.16)

◦
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3 A Multiclass Hawkes Process Stabilized by Inhibition

Proof. We calculate AV (x, y) = A1V (x, y) + A2V (x, y), with

A1V (x, y) = −ν+∂xV (x, y)− ν−∂yV (x, y)

and A2 the jump part of the generator.
Part 1.1 Suppose first that x ≥ |c−+|/N−, y ≥ |c−−|/N−. Then

AV (x, y) = A1V++(x, y)+A2V++(x, y) = a++x
2+b++xy+d++y

2+L++(x, y),

where L++ is a polynomial of degree 1. A straightforward calculus shows
that

a++ = c+−(c∗++ + c∗−−),

b++ = −(c∗++ − c∗−−)(c∗++ + c∗−−)

d++ = −c−+(c∗++ + c∗−−),

proving that

AV (x, y) = (c∗++ + c∗−−)V (x, y) + L++(x, y),

implying that there exists K,κ > 0 such that

AV (x, y) ≤ −κV (x, y)

for all x > K, y > K, since c∗++ + c∗−− < 0 by assumption.
Part 1.2 Suppose now that 0 ≤ x < |c−+|/N− and y ≥ |c−−|/N−.

Then a jump of any inhibitory neuron will lead to a change x 7→ x +
c−+/N

− < 0. In this case we obtain

AV (x, y)

=AV++(x, y) +
N−∑
j=1

(a−j + y)
[
V−+(x+

c−+

N−
, y +

c−−
N−

)− V++(x+
c−+

N−
, y +

c−+

N−
)
]
.

But ∣∣∣V−+(x+
c−+

N−
, y +

c−−
N−

)− V++(x+
c−+

N−
, y +

c−−
N−

)
∣∣∣ ≤ C,

and therefore
AV (x, y) ≤ AV++(x, y) + L(y),

where L(y) is a monomial in y.
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The other case 0 ≤ y < |c−−|/N− and x ≥ |c−+|/N− is treated analo-
gously.

Part 2.1 Suppose now that x ≥ |c−+|/N−, y ≤ −c+−/N
+. Then

AV (x, y) = A1V+−(x, y)+A2V+−(x, y) = a+−x
2+b+−xy+d+−y

2+L+−(x, y),

where L+− is a polynomial of degree 1. We obtain

a+− = c+−(c∗++ + c∗−−),

b+− = (c∗++ − c∗−−)(ν+ + ν− − c++) + 2qc+−

d+− = −2ν−q.

Since b+− > 0 by choice of q, this implies that for a suitable positive
constant κ > 0,

AV (x, y) ≤ −κV (x, y) + L+−(x, y),

which allows to conclude as before.
Part 2.2 The cases x ≥ |c−+|/N−, 0 ≥ y > −c+−/N

+ or
0 ≤ x < |c−+|/N−, y ≤ −c+−/N

+ are treated analogously to Part 1.2.
Part 3 Suppose now that x ≤ −c++/N

+, y ≥ −c−−/N−. Then

AV (x, y) = A1V−+(x, y)+A2V−+(x, y) = a−+x
2+b−+xy+d−+y

2+L−+(x, y),

where L−+ is a polynomial of degree 1 and where

a−+ = −2ν+p,

b−+ = (c∗++ − c∗−−)(ν+ + ν− − c−−) + 2pc−+

d−+ = −c−+(c∗++ + c∗−−).

Notice that by choice of p, b−+ > 0. The conclusion of this part follows
analogously to the previous parts 1.1 and 2.1.

Part 4 Suppose finally that x ≤ −c++/N
+, y ≤ −c+−/N

+. Then

AV (x, y) = A1V−−(x, y)+A2V−−(x, y) = a−−x
2+b−−xy+d−−y

2+L−−(x, y),

where L−− is a polynomial of degree 1 and where

a−− = −2ν+p,

b−− = (c∗++ − c∗−−)(ν+ + ν−)

d−− = −2ν−q,

leading to the same conclusion as in the previous parts.
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3 A Multiclass Hawkes Process Stabilized by Inhibition

As a consequence of Proposition 3.3.1, the process Xt is stable in the
sense that it necessarily possesses invariant probability measures, maybe
several of them.

Next we prove the following useful property.

Proposition 3.3.2.
The process X is a Feller process, that is, for any f : R2 → R which is
bounded and continuous, we have that the map given by

R2 3 (x, y) 7→ E(x,y)f(Xt) = Ptf(x, y)

is continuous. ◦

The proof of this result follows from classical arguments, see e.g. the
proof of Proposition 4.8 in [27], or [28]. Next, recall that a set C ∈ R2

is petite for X if there is a probability measure µ on R+ and a positive
measure ν on R2 such that∫

P t
x(A)dµ(t) ≥ ν(A) ∀x ∈ C, A ∈ B2. (3.17)

When the probability measure µ is the dirac measure the criteria becomes
existence of ν and t ≥ 0 such that

P t
x(A) ≥ ν(A) ∀x ∈ C, A ∈ B2. (3.18)

Proposition 3.3.3.
Grant assumption 3.2. It holds that all compact sets in R2 are petite for
the Markov process X. In particular X is a ϕ-irreducible T -chain. ◦

At the cost of a more complicated proof, it is possible to remove as-
sumption 3.2 and still obtain a T−chain. See [9] lemma 6.3 for details.

Proof. We prove it for N+ = N− = 1 for notational convenience. It will
suffice to prove that any fixed box H =

{
x, y ∈ R2 : |x| ≤M+, |y| ≤M−}

is petite. We do so by proving that there is some time T > 0 s.t.

P T
x (A) ≥ βm2 (A ∩ AT,H)

where AT,H is some subset of R2 depending on H and T . To do so, set
E ∈ F as the event

• π+ (0, T ]× [a+,M
+ + a+ + c++] = 0
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3.3 Proof of Theorem 3.2.1

• π+ (0, T ]× [0, a+] = 1

• π− (0, T ]× [a−,M
− + a− + c+−] = 0

• π− (0, T ]× [0, a−] = 1

Define the substochastic kernel for x ∈ R2

QT
x (A) =P (E ∩ (XT ∈ A) |X0 = x)

=P (E)P ((XT ∈ A) |1 {E} = 1, X0 = x) .

It is seen that the conditional law of XT |E,X0 is equal to the law of

Y x
T = xe−νT + e−νU+

(
c++

c+−

)
+ e−νU−

(
c−+

c−−.

)
(3.19)

where the two jump-times U+, U− are independent uniform variables on

[0, T ] . Since C =

(
c++ c−+

c+− c−−

)
is invertible and the law of

(
e−νU+, e−νU−

)
is equivalent with the Lebesgue measure on

[
e−νT , 1

]2
the Jacobi trans-

formation theorem gives that the law of Y x
T has density

fx : u 7→ |det C|−1 f ◦ C−1
(
u− xe−νT

)
,

where f is the density of
(
e−νU+, e−νU−

)
. The density is positive on the

interior of its support

supp (Y x
T ) = e−νTx+ C

([
e−νT , 1

]2)
.

Since C is a homeomorphism, it is an open mapping. Thus we can find
balls
B (v0, r) ⊂ B (v0, 2r) contained in C

([
e−νT , 1

]2)
for all T > 1. Take

now T so large that e−νT supv∈H ‖Cv‖ < r. For such T and x ∈ H we
have

B (v0, r) ⊂ e−νTCx+B (v0, 2r) ⊂ supp (Y x
T ) .

Note now that H ×B (v0, r) 3 x, v 7→ fx (v) is continuous so positivity of
the density gives infx∈H,v∈B(v0,r)

fx (v) := α > 0.
We therefore conclude that

QT
x (A) ≥ P (E)αm2 (A ∩B (v0, r)) (3.20)

for all x ∈ H. This proves the desired.
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We do now dispose of all ingredients to conclude the proof of Theorem
3.2.1.

Proof of Theorem 3.2.1. The combination of our two results and theorem
4.2 [33] gives that X is positive Harris. Theorem 6.1 from same reference
gives the geometric ergodicity.

3.4 Discussion And Further Research Top-
ics

There are two natural ways to generalize this work. Either one could
increase the number of populations or one could consider the more general
Erlang weight functions instead of the exponential weight functions. Both
generalizations lead to generators of a specific structure. Fix d ∈ N and
let a ∈ Rd

+, Ac, AJ ∈ Rd×d. Define x+ as the componentwise rectifier
(x+)i = max (0, xi) . Let ∆J be the functional which maps a function
V : Rd → R to a function Rd → Rd and is given by

∆J
j V (x) = V

(
AJej + x

)
− V (x) ,

where ej is the j’th unit vector. The generator corresponding to either of
the above mentioned generalizations can be shown to be on the form

AV (x) = ∇V (x)Acx+ ∆JV (x) (x+ + a) . (3.21)

Below we will study the Erlang generalization further. We keep two pop-
ulations consisting of a single neuron each for notational convenience. We
consider weight functions

h++ (t) =
c++

η+!
exp (−ν+t) , h+− (t) =

c+−

η+!
exp (−ν+t) ,

h−+ (t) =
c−+

η−!
exp (−ν−t) , h−− (t) =

c−−
η−!

exp (−ν−t) ,

where η+, η− ∈ N. The rate functions are kept unchanged. As men-
tioned in the introduction this induces a Markovian system of dimension
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d := η+ + η− + 2 given by

dX+
k (t) = −ν+X

+
k (t) dt+X+

k+1 (t) dt k < η+, (3.22)

dX+
η+

(t) = −ν+X
+
η+

(t) dt+ Z+c++ + Z−c−+, (3.23)

dX−k (t) = −ν−X−k (t) dt+X−k+1 (t) dt k < η−, (3.24)

dX−η− (t) = −ν−X−η− (t) dt+ Z+c+− + Z−c−−. (3.25)

Let us study the Lyapunov functions for this system among the quadratic
forms

V : z 7→ zTPz, z ∈ Rd, P ∈ Rd×d, P > 0. (3.26)

Direct calculations as in the previous chapter shows that the generator of
V is given by

GV (z) = zT ((Ac)T P + PAc)z + zT+(
(
AJ
)T
P + PAJ)z+ + L (x, y) ,

(3.27)

where L (x, y) is polynomial of first degree and

Ac
ij =


−ν+ i = j ≤ η+ + 1

−ν− i = j > η+ + 1

1 i+ 1 = j and i 6= η+ + 1

0 otherwise

and

AJ
ij =



c++ j = 1 and i = η+ + 1

c−+ j = η+ + 2 and i = η+ + 1

c+− j = 1 and i = η+ + η− + 2

c−− j = η+ + 2 and i = η+ + η− + 2

0 otherwise

.

45



3 A Multiclass Hawkes Process Stabilized by Inhibition

Let us restrict our attention to the case ν := ν+ = ν− and η := η+ = η−.
For (z1, zη+2) ∈ [0,∞)2 the resulting matrix A = Ac + AJ is given by

A =



−ν 1 0 · · · · · · · · · · · · · · · · · · 0

0 . . . . . . ...
... . . . . . . ...
0 · · · 0 −ν 1 0 · · · · · · · · · 0
c++ 0 · · · 0 −ν c−+ 0 · · · · · · 0

0 −ν 1
...

... . . . . . . ...

... −ν . . . 0

0 . . . 1︸ ︷︷ ︸
η + 1

c+− 0 · · · · · · 0 c−− 0 · · · 0 −ν




η + 1


η + 1

The sparse structure of A makes it possible to analyze the dynamics in
this region. Define

ξi =
1

2
(c++ + c−− + ωi) , i = 1, 2 (3.28)

where ωi are the complex square roots of (c++− c−−)2 + 4c+−c−+. Under
assumption 3.1 ωi is truly complex and the eigenvalues of A are given by

λi,k = −ν + ζi,k, i = 1, 2, k = 1, ..., η + 1 (3.29)

where ζi,k are the kth complex (η + 1)-th root of ξi. With ξi = |ξi|eiθi the

largest real part of λi,k may be written as −ν + |ξi|
1
η+1 cos

(
θi
η+1

)
. Thus A

is Hurwitz if and only if

|ξi|
1
η+1 cos

(
θi

η + 1

)
< ν. (3.30)

This proves that X cannot exhibit transient behavior in a way where
X+, X− stays in the first quadrant eventually. However, unlike the expo-
nential case we do not have a simple expression for the Lyapunov function,
making it a difficult task to extend the Lyapunov function from z ∈ Rd

s.t. (z1, zη+2) ∈ R2
+ to the entire space Rd.
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3.4 Discussion And Further Research Topics

It would be of interest to investigate whether assumption 3.1 and (3.30)
are sufficient to establish positive Harris recurrence for the Erlang system.
Also, it would be of interest to relate Erlang systems which are recurrent
due to balancing criteria, with the systems that are known to produce
oscillatory behavior, see [13].

We end this discussion by mentioning that it is possible to produce an
algebraic expression of a Lyapunov function for A when (z1, zη+2) ∈ R2

+.
It is well known that

P :=

∫ ∞
0

exp(AT t) exp(At)dt (3.31)

is a positive definite matrix inducing a valid Lyapunov function for X
given by V (z) = zTPz. To find exp(At), define B := (A + νI) and

C =

(
c++ c−+

c+− c−−

)
, and note that exp(At) = exp(Bt) exp(−νt). For a pair

i, j define i∗ = 1 if i ≤ η + 1 and 2 otherwise, and j∗ is defined likewise.
Looking at the structure of Bn for n ∈ N it may be shown that the (i, j)th
entry of exp(Bt) may be written as the (i∗, j∗)th entry of

Cr1

∞∑
l=1

C l

(lη + r2)!
tlη+r2, (3.32)

where r1, r2 < η are appropriately chosen depending on i, j. The power
series corresponds to analytic functions2 fij which may be inserted into
Sylvester’s formula to derive an expression for exp(Bt). One may insert
such an expression back into (3.31) to obtain the Lyapunov function.

2More precisely the functions are roots composed with generalized hyperbolic functions.
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Chapter 4

Stability for ADHP’s
With a Refractory
Period

4.1 Introduction

In this chapter we discuss stability of the age dependent Hawkes process.
The main assumption is a post-jump bound on the intensity, correspond-
ing to a strong self-inhibition for a short time interval after a spike. This
models the refractory period. We do not impose any a priori bounds on
the intensities. Within this sub-model, we are able to prove stability prop-
erties for the N−dimensional Hawkes process. The results we obtain are
similar to what has been shown for ordinary nonlinear Hawkes processes
in [5] and recently in [10]. This last paper is however entirely devoted to
the study of weight functions which are of compact support giving rise
to explicit regeneration points when the process comes back to the all
zero measure. Compared to these studies, it turns out that the natural
self-inhibition by the age processes eliminates the need of controlling the
Lipschitz constant of ψ, and we do not need any restriction on the sup-
port of the weight functions. We also discuss which starting conditions
(that is, which form of an initial process) will ensure coupling to the in-
variant process. These results are collected within our first main theorem,
Theorem 4.3.1.

During the proof of the stability properties, other interesting proper-
ties of the model are discussed, such as a nice-behaving domination of the



4.2 Setup For This Chapter

intensities (Lemma 4.4.1).

4.2 Setup For This Chapter

Throughout this chapter, the processes are defined on the entire real line
R unless otherwise mentioned. We do this for the following reason. When
studying stability and thus the existence of stationary versions of infinite
memory processes such as (age dependent) Hawkes processes, a widely
used approach is to construct the process starting from t = −∞. If such a
construction is feasible, this implicitly implies that the state of the process
at time t = 0 must be in a stationary regime. Therefore, throughout this
chapter we will work with random measures Z defined on the entire real
line, with the usual identification of processes and random measures given
by Zt = Z((0, t]), for all t ≥ 0, and Zt = −Z((t, 0]), for all t < 0. We shall
also use the shift operator θr which is defined for any r ∈ R by

θrZ(C) := Z(r + C) := Z({r + x : x ∈ C}), (4.1)

for any C ∈ BR.
We consider a system with a fixed number of units N . Introduce the

functions

hij(t) = sup
s≥t
|hij|(s), h (t) =

N∑
i,j=1

|hij| .

Moreover, for simplicity, we may and will take a constant
L ≥ max(L1, ..., Ln, cψ1, ..., cψn) large enough so that L ≥ 1. Then (2.12)
and (5.5) imply the simpler inequalities for ψi,

ψi (y, b) ≤ L(1 + |y|) ∀y ∈ R, b ∈ R+. (4.2)

∣∣ψi (x, a)− ψi (x′, a′)
∣∣ ≤ {L |x− x′| , if a = a′

L (max (|x′| , |x|) + 1) , if a 6= a′
. (4.3)

In addition to the fundamental assumptions we add the following set of
assumptions.

Assumption 4.1.
1. There exists K and δ > 0 such that

ψi (x, a) ≤ K for all 1 ≤ i ≤ N, a ∈ [0, δ], x ∈ R. (4.4)
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4 Stability for ADHP’s With a Refractory Period

2. There exists x∗, a∗, c > 0 such that for all |x| ≤ x∗, a ≥ a∗ and for all
1 ≤ i ≤ N,

ψi(x, a) ≥ c > 0. (4.5)

3. We suppose that

[0,∞[3 t 7→ hij(t) ∈ L1 ∩ L2 and [0,∞[3 t 7→ thij(t) ∈ L1. (4.6)

◦

Notice that (4.6) implies that

h :=
N∑

i,j=1

hij ∈ L1 ∩ L2 (4.7)

is a decreasing function that dominates hij for all i, j ≤ N.

Remark 4.2.1.
The existence of K, δ in (4.4) excludes instantaneous bursting by imposing
a bound on the immediate post-jump intensity. Moreover, the existence of
x∗, a∗, c in (4.5) ensures that no unit will eventually stop spiking. A main
example of rate functions that satisfy this assumption are those inducing
absolute refractory periods as given in example 2.3.3.

The assumption h ∈ L1 is natural, at least in the context of model-
ing interacting neurons. To obtain stability, it is usually assumed that
the weight functions are integrable. Here we impose the slightly stronger
assumption that h̄ij ∈ L1; that is, there exists a decreasing integrable func-
tion dominating hij. ◦

Throughout this chapter we use the following notation. For K > 0 as
in (4.4) above, we denote the PRMs

πK(ds) := π(ds, [0, K]), πiK(ds) := πi(ds, [0, K]) and πNK :=
N∑
i=1

πiK .

(4.8)

Example 4.2.2 (Hawkes processes with Erlang weight functions).
Weight functions given by Erlang kernels are widely used in the modeling
literature to describe delay in the information transmission. They are
given by

hij(t) = cijt
nije−νijt, t ≥ 0,
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4.2 Setup For This Chapter

where cij ∈ R, νij > 0 and nij ∈ N∪ {0} are fixed constants. The order of
the delay is given by nij. The delay of the influence of particle j on particle
i is distributed and taking its maximum absolute value at nij/νij time
units back in time. The sign of cij indicates if the influence is inhibitory
or excitatory, and the absolute value of cij scales how strong the influence
is. All hij clearly satisfy (4.6). ◦

The main result of this chapter shows existence of a unique stationary
N−dimensional age dependent Hawkes process following the dynamics
of (2.15). In order to state the result, we first introduce the notion of
compatibility (see e.g. [5]). Let MR− be the set of all bounded measures
defined on R− equipped with the weak-hat metric and the associated
Borel σ−algebra MR− (see Appendix for details). We shall say that Z is
compatible (to π1, . . . , πN) if there is a measurable map H : MN

R− →MR−
such that for all t ∈ R,(

θtZ
)
|R−

= H
((
θtπ1, . . . , θtπN

)
|R−

)
. (4.9)

Likewise, we say that a stochastic process X is compatible, if

Xt = H
((
θtπ1, . . . , θtπN

)
|R−

)
for an appropriate measurable mapping

H.

Remark 4.2.3.
Note that if Z1, . . . Zn are compatible random measures, then

(
Z1, . . . Zn

)
is a stationary and ergodic n-tuple of random measures. ◦

Let Z =
(
Z i
)
, 1 ≤ i ≤ N, be compatible random measures on R. Let

X =
(
X i
)
i≤N , A =

(
Ai
)
i≤N be compatible processes defined on t ∈ R such

that Ai
t is adapted and càglàd and X i

t is predictable for all 1 ≤ i ≤ N . We
say that Z is an N-dimensional age dependent Hawkes process on t ∈ R,
if almost surely

Z i(t1, t2] =

∫ t2

t1

∫ ∞
0

1
{
z ≤ ψi

(
X i
s, A

i
s

)}
πi (ds, dz) ,

X i
t =

N∑
j=1

∫ t−

−∞
hij (t− s)Zj(ds) t ∈ R, (4.10)

Ai
t2
− Ai

t1
= t2 − t1 −

∫ t2−

t1

Ai
t Z

i(dt),

for all −∞ < t1 ≤ t2.
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4 Stability for ADHP’s With a Refractory Period

4.3 Main Result

The main result of this chapter is

Theorem 4.3.1.
Grant Assumption 4.1.

1. There exists an N-dimensional age dependent Hawkes process Z on
R, compatible to

(
π1, . . . , πN

)
.

2. Let Ž be another N−dimensional age dependent Hawkes process with
the same weight functions (hij)i,j≤N and driven by the same PRMs(
π1, . . . , πN

)
, following the dynamics (2.15), that is; starting at time

0 with arbitrary initial ages (Ǎi
0)i≤N and initial signals

(
Ri
)
i≤N such

that

E
∫ ∞

0

∣∣Ri
s

∣∣ ds <∞ (4.11)

for all 1 ≤ i ≤ N. Then almost surely, Ž and Z couple eventually,
i.e.,

∃ t0 ∈ R+ : Ž|[t0,∞) = Z|[t0,∞).

3. If Z ′ is another N-dimensional age dependent Hawkes process on R,
compatible to

(
π1, . . . , πN

)
, then Z = Z ′ almost surely.

◦

The proof of the above theorem will be given in the next subsection.
An immediate corollary of it is an ergodic theorem for additive function-
als of age dependent Hawkes processes depending only on a finite time
horizon. More precisely, let T > 0 be a fixed time horizon and let MT

be the set of all bounded measures defined on (−T, 0], equipped with its
Borel σ−algebra MT (see Appendix).

Corollary 4.3.2.
Grant Assumption 4.1. Let (Z,X,A) be the stationary age dependent
Hawkes process and let Ž be as in Item 2. of Theorem 4.3.1. Let moreover
f : MT → R be any measurable function such that

µ(f) := Ef((Z| (−T,0])) <∞. (4.12)
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4.4 Proof of Main Result

Then

1

t

∫ t

0

f((θsŽ| (−T,0]))ds =
1

t

∫ t

0

f((Ž| (s−T,s]))ds→ µ(f) (4.13)

almost surely, as t→∞. ◦

Proof. By ergodicity of (Z,X,A), it holds that

1

t

∫ t

0

f((θsZ| (−T,0]))ds =
1

t

∫ t

0

f((Z| (s−T,s]))ds→ µ(f).

Since Ž|[t0,∞) = Z|[t0,∞), we have that

f((θsŽ| (−T,0])) = f((θsZ| (−T,0])) for all s ≥ t0 + T,

which implies (4.13).

4.4 Proof of Main Result

This section is devoted to the proof of Theorem 4.3.1, and we will thus
work under Assumption 4.1. The proof follows the ideas of Theorem 4 in
[5]. The proof of the existence part relies on the Picard iteration

Xn,i
t =

N∑
j=1

∫ t−

−∞
hij (t− s)Zn−1,j(ds),

Zn,i (t1, t2] =

∫ t2

t1

∫ ∞
0

1
{
z ≤ ψi

(
Xn,i
s , An,i

s

)}
πi (ds, dz) , t1 < t2 ∈ R,

(4.14)

where An,j is the age process of Zn,j. We initialize the iteration with
Z0,i ≡ πiK , X

0 ≡ 0. Before we can prove convergence of this iteration we
need to address the following issues.

• We need to produce an integrable intensity λ̂ that a priori dominates
the intensities ψi(Xn,i

t , An,i
t ). This is done in Proposition 4.4.3.

• Using the Lipschitz part of (4.3), we will construct events Et ∈ Ft
for all t ∈ R such that An,i

t = An+1,i
t on Et, for all n ∈ N, i ≤ N .

This is done in Lemma 4.4.4.
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4 Stability for ADHP’s With a Refractory Period

• We need to ensure that the i−th iteration is well defined, i.e. for a
given Xn,i there exist Zn,i, An,i such that (4.14) is satisfied. This is
done in Lemma 4.4.5.

Finally we combine these results to complete the proof of Theorem 4.3.1.
We start with the following useful result which provides bounds on the
intensities.

Lemma 4.4.1.
Let K, δ be the constants from (4.4). Let X be a predictable stochastic
process and assume that (Z,A) solves the system

Z (t1, t2] =

∫ t2

t1

∫ ∞
0

1 {z ≤ ψ (Xs, As)} π (ds, dz) , t1 ≤ t2 ∈ R,

where A is the age process of Z and where ψ satisfies (4.3) and (4.4).
Suppose moreover that (4.6) is satisfied. Then almost surely, for any
1 ≤ i, j ≤ N , t1 ≤ t2,

Yij (t1, t2) =

∫ t1−

−∞
hij (t2 − s)Z(ds)

is well-defined and

|Yij (t1, t2)| ≤
∞∑
k=0

hij (t2 − t1 + At1 + kδ) +

∫ t1−At1

−∞
hij (t2 − s) πK (ds) .

(4.15)

Moreover,

E
∫ t

−∞
hij (t− s) πK (ds) <∞

for all t. ◦

Corollary 4.4.2.
If we suppose in addition that h̄(0) <∞, then

EYij (t, t) ≤ K

∫ ∞
0

h̄(u)du+
∑
k≥0

h̄(kδ) <∞. (4.16)

◦
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Proof of Lemma 4.4.1. For any i, j ≤ N , t ≤ t2 we have

|Yij (t, t2)|

≤
∫ t−

−∞
hij (t2 − s)1 {As ≥ δ}Z(ds) +

∫ t−

−∞
hij (t2 − s)1 {As < δ}Z(ds)

=

∫ t−At

−∞
hij (t2 − s)1 {As ≥ δ}Z(ds) +

∫ t−At

−∞
hij (t2 − s)1 {As < δ}Z(ds)

≤
∫ t−At

−∞
hij (t2 − s)G(ds) +

∫ t−At

−∞
hij (t2 − s) πK (ds)

:=Ŷij (t, t2) + Ỹij (t, t2) ,

where G(dt) = 1 {At ≥ δ}Z(dt). Define now for fixed t ∈ R and for
all l ∈ N, τl(t) := sup{s < τl−1(t) : ∆Gs = 1}, where we have put
τ0(t) := t−At. Thus, τl(t) is the lth jump-time of G before t−At – which
is itself the last jump-time of Z strictly before time t.

We may upper bound Ŷij by

Ŷij (t, t2) ≤
G(−∞,t)∑
l=0

hij (t2 − τl (t)) .

Since τl (t)− τl−1 (t) ≥ δ by construction of G and since hij is decreasing,
we get the bound

Ŷij (t, t2) ≤
∞∑
l=0

hij (t2 − t+ At + lδ) .

Note that almost surely, At never attains the value 0 for any t ∈ R, and
in that event, each term in the above sum is finite for all t ≤ t2 ∈ R.
Moreover, since hij is L1 and decreasing the sum is finite as well. The

expectation t 7→ EỸ (t, t) is given by

EỸij (t, t) = lim
T→∞

E
∫ t−At

−T
hij (t− s) πK (ds)

≤ lim
T→∞

E
∫ t

−T
hij (t− s) πK (ds) = K

∫ ∞
0

hij (u) du <∞.
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4 Stability for ADHP’s With a Refractory Period

We now construct the dominating intensity, as mentioned in the start
of the section. Recall that L ≥ 1 is the Lipschitz constant appearing in
(4.3) and let K, δ be the constants from (4.4), we suppose w.l.o.g. that
K ≥ c, where c is the lower bound from (4.5).

Proposition 4.4.3.
Let C ≥ max

{
1 +

∑
k≥1 h̄(kδ), K

}
. There exists a compatible process

(Ẑ, Â, λ̂) which is defined for any t ∈ R by

λ̂t = L

(
C +

∫ t−

−∞
h̄(t− s)πNK(ds) + h̄(Ât)

)
, (4.17)

where

Ẑ(t1, t2] =
N∑
i=1

∫ t2

t1

∫ ∞
0

1{z ≤ λ̂s}πi(ds, dz) (4.18)

for all t1 ≤ t2, together with its age process Ât. Moreover, we have that

E(λ̂t) <∞. (4.19)

◦

Proof. By construction, λ̂t ≥ K for all t, and therefore, any jump time
τ of πiK is also a jump of Ẑ. Hence, at τ, the age process Ât is reset
to 0. It is therefore possible to construct a unique solution to (4.17) on
t ∈ (τ,∞). This solution is non-exploding since the process is stochasti-
cally dominated by a classical linear Hawkes process Z ′ having intensity

L
(
C +

∫ τ−
−∞ h̄(t− s)πNK(ds) + 2

∫ t−
τ h̄(t− s)Z ′(ds)

)
which is non-exploding

by Proposition 2.3.2 since h̄ ∈ L1. A solution on the entire real line may
be constructed by pasting together the solutions constructed in between
the successive jump times of πNK . It is unique and compatible by con-
struction.

It remains to prove that E(λ̂t) <∞. Due to stationarity, it is sufficient

to prove that Eh̄(Â0) <∞. Also from stationarity, writing T1 for the first

jump time of Ẑ after time 0, it follows that L(T1) = L(Â0). It follows
from Lemma 2.1.6 in the Appendix that

P (T1 > t) = P (Z[0, t] = 0) = E
(

exp

(
−
∫ t

0

(LC + Lξs + Lh̄(Â0 + s))ds

))
,
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4.4 Proof of Main Result

where ξs :=
∫ 0−
−∞ h(s − u)πNK(du), implying that, since Â0 ≥ 0 and h̄ is

decreasing,

E(h̄(Â0)) =

∫ ∞
0

E
(
h̄(t)e−

∫ t
0
(LC+Lξs+Lh̄(Â0+s))ds(LC + Lξt + Lh̄(Â0 + t))

)
dt

≤ L

∫ ∞
0

(
h̄(t)2 + h̄(t)E(ξ0) + h̄(t)C

)
dt <∞,

since h̄ ∈ L1 ∩ L2.

We now proceed to the construction of events Et which a priori will
serve by coupling the age processes in the Picard iteration. Indeed, As-
sumption (4.5) will enable us to construct common jumps for any two
point processes Z1, Z2 having intensity ψ(X̃1

t , A
1
t ) and ψ(X̃2

t , A
2
t ), where

Ai
t is the age process of Z i, and X̃ i

t is a predictable process such that

ψ(X i
t , A

i
t) ≤ λ̂t,

for i = 1, 2.
Fix some p > a∗ such that∑

k≥1

Lh̄(p+ kδ) <
x∗

3N
, (4.20)

where a∗ and x∗ are given in (4.5), and fix some M > LC where L and
C are as in (4.17). Then necessarily M ≥ K ≥ c. Introduce for all t ∈ R
the events

E1
t :=

{π1(ds, [0, c]) has a unique jump τ 1 in (t− 2Np+ p, t− 2Np+ 2p])}

∩
N⋂
j=1

{∫ τ1−

t−2Np

∫
R+

1{z ≤M}πj(ds, dz) = 0

}

∩
N⋂
j=1

{∫ t−2Np+2p

τ1

∫
R+

1{z ≤M + 2Lh̄(s− τ 1)}πj(ds, dz) = 0

}
(4.21)
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4 Stability for ADHP’s With a Refractory Period

and for all i = 2, . . . , N,

Ei
t :=

{πi(ds, [0, c]) has a unique jump τ i in (t− 2Np+ 2(i− 1)p+ p, t− 2Np+ 2ip])}

∩
N⋂
j=1

{∫ τ i−

t−2Np+2(i−1)p

∫
R+

1{z ≤M + 2Lh̄(s− (t− 2Np+ 2(i− 1)p))}πj(ds, dz) = 0

}

∩
N⋂
j=1

{∫ t−2Np+2ip

τ i

∫
R+

1{z ≤M + 2Lh̄(s− τ i)}πj(ds, dz) = 0

}
, (4.22)

where the constant c is given in (4.5). This event splits the interval
(t − 2Np, t) up in intervals of length 2p, where the ith truncated PRM
has exactly one jump in the second part, and no other events (of truncated
PRMs) occur.

To control the past up to time t− 2Np, we also introduce the event

E0
t :=

{
λ̂t−2Np + x∗ ≤M

}
∩
{∫ t−2Np

−∞
h̄(t− 2Np− s)πNK(ds) ≤ x∗

3N

}
and put

Et :=
N⋂
i=0

Ei
t . (4.23)

The event E2Np is illustrated in Figure 4.1, for N = 2 and h (t) ≈ t−0.4.
The grey area is the relevant part for the truncated PRMs.
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4.4 Proof of Main Result

Figure 4.1: An illustration of the event E2Np with N = 2 and h (t) ≈ t−0.4. The

figure shows a superposition of π1 (•) , π2 (N), including the jump times τ 1 and τ 2, and

three curves: The dotted curve is the constant c. The dashed curve is the intensity

process λ̂. The solid curve is enclosing the area (in grey) of the plane that is relevant

to the event E2Np, and it is given by M for 0 < s ≤ τ 1,M + 2Lh(s − τ 1) for τ 1 < s ≤
2p, M + 2Lh(s− 2p) for 2p < s ≤ τ 2 and M + 2Lh(s− τ 2) for τ 2 < s ≤ 4p.

The main feature of the event E2Np with N = 2 is the fact that the
process is forced to have some regeneration events during the intervals
]p, 2p] and ]3p, 4p]. Indeed, on these intervals, the corresponding age pro-
cesses will have values larger than p > a∗, and the associated memory
processes will be bounded by x∗, such that we can use (4.5).

Let us return to the general definition of the events Et. Using induction
and the strong Markov property, it follows from integrability of h̄ that

P
(⋂j

i=0E
i
t

)
> 0 for all t ∈ R, j ≤ N . In particular P (Et) > 0. Let us

define

Yt :=

∫ t−Ât

−∞
h(t− s)πNK(ds) +

∞∑
k=0

h̄(Ât + kδ). (4.24)

We summarize the most important features of the event Et in the next
lemma.

Lemma 4.4.4.
On Et, for all 1 ≤ i ≤ N, each measure πi(ds, [0, c]) has a jump at time
τ i ∈ (t− 2Np, t) such that∫ t

t−2Np

∫
R+

1{s 6= τ i, z ≤ λ̂s}πi(ds, dz) = 0, (4.25)
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4 Stability for ADHP’s With a Refractory Period

λ̂τ i ≤ λ̂t−2Np +
2i

3N
x∗, (4.26)

Yτ i ≤
2i

3N
x∗. (4.27)

Moreover, |τ i− τ i−1| ≥ a∗, where we put τ 0 = t− 2Np. In particular, take
any two point processes Z1, Z2 having intensity ψ(X̃1

t , A
1
t ) and ψ(X̃2

t , A
2
t ),

where Ai
t is the age process of Z i, and X̃ i

t is a predictable process such that

ψ(X i
t , A

i
t) ≤ λ̂t,

for i = 1, 2. It holds that A1
t = A2

t under the event Et. ◦

Proof. Let
(
τ i
)
i≤N be the jump times as given in the definition of Et. By

construction, the inter-distances are at least equal to p and thus strictly
larger than a∗, since we chose p > a∗. We shall prove by induction over j
that ∫ t−2Np+2jp

t−2Np

∫
R+

1{s 6= τ i, z ≤ λ̂s}πi(ds, dz) = 0 ∀i ≤ N

as well as (4.26) and (4.27) hold for i ∈ {0, . . . , j} in the event Et. The
induction start is trivial, so assume that the assertion is true up to j − 1.
Notice that by the induction assumption

λ̂s ≤ λ̂t−2Np +
2(j − 1)

3N
x∗ + 2Lh

(
s− τ j−1

)
,

for s ≥ τ j−1 and until the next jump of Ẑ. It follows from the construction
of Ej ∩ Ej−1 that Ẑ

(
τ j−1, τ j

)
= 0. This proves the first claim. It also

shows that Âτ j > p so the properties of p gives 2Lh
(
τ j − τ j−1

)
≤ 2x∗

3N
which implies the remaining claims.

The next result ensures that for a well-behaving process X i there exist
couples

(
Z i, Ai

)
such that Z i has intensity ψi

(
X i, Ai

)
and Ai is the age

of Z i. The proof relies on a Picard iteration of (4.10) that alternately
updates

(
X i
)
i≤N and

(
Z i, Ai

)
i≤N .

Lemma 4.4.5.
Let (Ẑ, Â, λ̂) be as in Proposition 4.4.3 and let

(
X i
t

)
t∈R , 1 ≤ i ≤ N,
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4.4 Proof of Main Result

be compatible and predictable stochastic processes satisfying that almost
surely,

|X i
t | ≤ Yt, (4.28)

for all 1 ≤ i ≤ N, t ∈ R.
Then there exist random counting measures Z i, 1 ≤ i ≤ N, on R

which are compatible, and compatible càglàd processes Ai, 1 ≤ i ≤ N,
which almost surely satisfy

Z i (B) =

∫
B

∫ ∞
0

1
{
z ≤ ψi

(
X i
s, A

i
s

)}
πi (ds, dz) , ∀B ∈ B (R) , (4.29)

for all 1 ≤ i ≤ N, where Ai is the age process of Z i. ◦

Proof. The proof relies on Picard iteration. For that sake, define recur-
sively for all n ≥ 1, for all 1 ≤ i ≤ N,

Zn,i (t1, t2] =

∫ t2

t1

∫ ∞
0

1
{
z ≤ ψi

(
X i
s, A

n−1,i
s

)}
πi (ds, dz) , t1 < t2 ∈ R,

(4.30)

where An−1,i is the age process corresponding to Zn−1,i. We initialize the
iteration with Z0,i ≡ πiK .

We start by proving inductively over n that the Picard iteration is
well-posed, and Zn is non-exploding and compatible.

The induction start is trivial. We assume that the hypothesis holds for
n − 1. Clearly Zn is compatible. Moreover, Zn,i has intensity
ψi(X i

t , A
n−1,i
t ) ≤ L(1 + Yt), and EYt < ∞ implying that Zni does not

explode.
We will now prove the convergence of the above scheme. To do so,

define measures Z i and Z
i

by

Z i[t] = lim inf
n

Zni[t], Z
i
[t] = lim sup

n
Zni[t]

for any t ∈ R, and

Z̃ =
N∑
i=1

(Z
i − Z i).
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4 Stability for ADHP’s With a Refractory Period

That is, Z̃ counts the sum of the differences of the superior and inferior
limit processes. We claim that Z̃ is almost surely the trivial measure. It
will follow that Zn,i, and thus also An,i converge.

To prove this claim, consider the event

Gt =
{
Z̃ (t,∞) = 0

}
.

Notice that {Z̃ (t,∞) = 0} = {θt(πi)Ni=1 ∈ V } for some V ∈ M and thus
{Z̃ (t,∞) = 0 infinitely often} is an invariant set, and thus also a 0/1

event. It follows by standard arguments that P
(
Z̃ (R) = 0

)
= 1 if

P (G0) > 0.
We now prove that P (G0) > 0 by showing that E0 ⊂ G0, where E0

was defined in (4.23) above (that is, we choose t = 0).

The assumption |X i
t | ≤ Yt implies that λn,it ≤ λ̂t for all i, n and t.

Lemma 4.4.4 implies that on Et we have Âτ i ≥ a∗, and therefore also
An,i
τ i ≥ a∗. Moreover, (4.27) implies that |X i

τ i| ≤ x∗. Therefore, (4.5)
implies

λn,iτ i ≥ c (4.31)

for all n, i. As a consequence, at time τ i, all Zni have a common jump.
From (4.25) it follows that Zni(τ i, 0) = 0, and therefore, An,i

0 = −τ i. In

particular, they are all equal. We may now conclude that on E0, Z
n,i
|R+

is

a constant sequence over n, for all i. In particular, we have Z̃(0,∞) = 0.
To conclude the proof, we have proven that E0 ⊂ G0, and thus

P (G0 ∩ E0) = P (E0) > 0,

implying the result.

We are now ready to prove Theorem 4.3.1.

Proof of Theorem 4.3.1. The proof follows the ideas of the proof of
Theorem 4 in [5]. First we construct a stationary solution to (4.10). For
this sake we consider the Picard iteration

Xn,i
t =

N∑
j=1

∫ t−

−∞
hij (t− s)Zn−1,j(ds),

Zn,i (t1, t2] =

∫ t2

t1

∫ ∞
0

1
{
z ≤ ψi

(
Xn,i
s , An,i

s

)}
πi (ds, dz) , t1 < t2 ∈ R,
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4.4 Proof of Main Result

where An,j is the age process of Zn,j. We initialize the iteration with
Z0,i ≡ πiK , X

0 ≡ 0.
We start by proving inductively over n that the Picard iteration is

well-posed, Zn,i is non-exploding and compatible, and almost surely

L(1 + |Xn,i
t |) ≤ λ̂t ∀t ∈ R, (4.32)

for all n, i, where λ̂ is defined in (4.17) above. The induction start is
trivial. Suppose now that the assertion holds for n− 1. We apply Lemma
4.4.5 with X i = Xn,i, and show that the conditions of this Lemma are
met, then well-posedness, ergodicity and stationarity of Zn,i, An,i follow.

So we prove the upper bound on Xn,i. By construction,

Xn,i
t =

N∑
j=1

∫ t−

−∞
hij(t− s)Zn−1,j(ds) =

N∑
j=1

∫ t−An−1,jt

−∞
hij(t− s)Zn−1,j(ds).

We apply Lemma 4.4.1 to each of the N terms within the above sum and
obtain∫ t−An−1,jt

−∞
hij(t−s)Zn−1,j(ds) ≤

∑
k≥0

h̄ij(A
n−1,j
t +kδ)+

∫ t−An−1,jt

−∞
h̄ij(t−s)πjK(ds).

(4.33)

Since λ̂t ≥ ψi(Xn−1,i
t , An−1,i

t ) for all i, it follows that Ât ≤ An−1,i
t for all i,

implying that

|Xn,i
t | ≤

∫ t−Ât

−∞
h̄(t− s)πNK(ds) +

∑
k≥0

h̄(Ât + kδ),

which is (4.28). Finally, since An−1, Zn−1 are compatible, it is straight-
forward to show that Zn is compatible as well.

Define now

λit = lim inf
n→∞

ψi
(
Xn,i
t , An,i

t

)
, λ

i

t = lim sup
n→∞

ψi
(
Xn,i
t , An,i

t

)
, 1 ≤ i ≤ N.

Note that by (4.2) and (4.32), λit ≤ λ
i

t ≤ lim supn→∞ L(1 + |Xn,i
t |) ≤ λ̂t.

So almost surely, λi, λ
i

have finite sample paths. Note also that they are
limits of predictable processes (see Lemma 2.1.1 in Appendix), and thus
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4 Stability for ADHP’s With a Refractory Period

they are predictable as well. Define also

Z̃ i[t] = lim sup
n

Zn,i[t]− lim inf
n

Zn,i[t] = πi
(
{t} × (λit, λ

i

t]
)
,

for i ≤ N, t ∈ R. That is, Z̃ i counts the difference of the superior and
inferior limit process. We claim that

Z̃ =
N∑
j=1

Z̃j (4.34)

is almost surely the trivial measure. It will follow that Zn,j, and thus
also Xn,i, An,i converge. Moreover, it is straight forward to check that the
limit variables solve (4.10).

To prove this claim, note that we may also find measurable H i :
MR×R+

→ R2 such that almost surely

H i
(
θt(πi)Ni=1

)
=
(
λit, λ

i

t

)
, ∀t ∈ R.

Consider the events Et defined in (4.23) above as well as

Gt =
(
Z̃ (t,∞) = 0

)
.

Using the functionals obtained previously, it follows that

{Z̃ (t,∞) = 0} = {θt(πi)Ni=1 ∈ V }

for some V ∈ M and thus {Z̃ (t,∞) = 0 infinitely often} is an invariant
set, and thus also a 0/1 event. As before this implies that

P
(
Z̃ (R) = 0

)
= 1 if P (G0 ∩ E0) > 0.

To prove that P (G0 ∩ E0) > 0, note that we have

λn,it = ψ(Xn,i
t , An,i

t ) ≤ λ̂t and |Xn,i
t | ≤ Yt. Therefore, the same argu-

ments as those exposed in the proof of Lemma 4.4.5, show that on E0, we
have An,i

0 = Am,i
0 ; for all n,m and i, that is, the age variables are all equal

at time 0. Moreover, on G0, either no jumps happen any more, or they
happen conjointly, and so the Lipschitz criterion (4.3) ensures the bound∣∣∣λit − λit∣∣∣ ≤ L lim

n→∞
sup
m,k≥n

∣∣Xm
t −Xk

t

∣∣ ≤ L

∫ 0−

−∞
h (t− s) Z̃(ds) := X̄t,
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4.4 Proof of Main Result

for all t ≥ 0, which holds on G0 ∩ E0. Therefore we may write

P (G0 ∩ E0)

≥P

(
E0 ∩

{
N∑
j=1

∫ ∞
0

∫ ∞
0

1
{
z ∈

(
λjs, λ

j
s + X̄s

]}
πj (ds, dz) = 0

})
.

Note that Lemma 2.1.6 in Appendix reveals that the compensator of the
integral-sum above is

t 7→ N

∫ t

0

X̄sds = NL

∫ t

0

∫ 0−

−∞
h (s− u) Z̃(du)ds.

The same lemma gives an expression for P (Z̄(0,∞) = 0|F0), and so im-
plies the lower bound

P (G0 ∩ E0) ≥ E1 {E0} exp

(
−NL

∫ ∞
0

∫ 0−

−∞
h (s− u) Z̃(du)ds

)
.

To prove that the right hand side is positive, it suffices to show that
the double integral inside the exponential is almost surely finite. Notice
that by construction, Z̃t ≤ Ẑt, and recall from Proposition 4.4.3 that λ̂ is
stationary with Eλ̂0 <∞. After taking expectation,

E
∫ ∞

0

∫ 0−

−∞
h (s− u) Z̃(du)ds ≤ E

∫ ∞
0

∫ 0−

−∞
h (s− u) Ẑ(du)ds

= E
∫ ∞

0

∫ 0−

−∞
h (s− u) λ̂ududs

= E(λ̂0)

∫ ∞
0

∫ 0−

−∞
h (s− u) duds

= E(λ̂0)

∫ ∞
0

th(t)dt <∞.

This proves the desired result.
We now prove the coupling part. This will be done in two steps. First

suppose that |Rt| is bounded by a constant CR. We suppose w.l.o.g. that

λ̂ defined in (4.17) is such that also C ≥ CR.

Let
((
Ž i
)
i≤N ,

(
X̌ i
)
,
(
Ǎi
)
i≤N

)
be the N -dimensional age dependent

Hawkes process with initial conditions
(
Ǎi

0

)
,
(
Ri
)

and define the process
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4 Stability for ADHP’s With a Refractory Period

λ̌it := ψ(X̌ i
t , Ǎ

i
t). Then we clearly have that

λ̌i0 ≤ λ̂0

for all i, and it can be shown inductively over the successive jumps of Ẑ,
using Lemma 4.4.1, that this inequality is preserved over time, that is,

λ̌it ≤ λ̂t (4.35)

for all t ≥ 0. Now introduce

Ě0
t :=

{
N∑
i=1

∫ t

t−2Np

1

{
z ≤ 3Nc

x∗
|Rs|

}
πi(ds, dz) = 0

}

and put
E ′t := Et ∩ Ě0

t . (4.36)

Let
(
τ i
)
i≤N be the jump times from Lemma 4.4.4. We necessarily have

that on E ′t,

|Rτ i| ≤
x∗

3N
,

for all 1 ≤ i ≤ N. As a consequence, (4.27) implies that

|X̌τ i| ≤ Yτ i + |Rτ i| ≤ x∗.

Due to (4.35), we have Ǎi
τ i ≥ Âτ i ≥ a∗. Therefore, using (4.5), we conclude

that
λ̌iτ i ≥ c,

implying that τ i is also a jump of Ž i. Thus, on E ′t, at time t, all (Ǎi, Ai),
1 ≤ i ≤ N, are coupled. Therefore, we have a Lipschitz bound under the
event E ′t; so with Z =

∑N
j=1 Z

j, Ž =
∑N

j=1 Ž
j, we may write

N∑
i=1

∣∣ψi (X i
t , A

i
t

)
− ψi

(
X̌ i
t , Ǎ

i
t

)∣∣ ≤ L
N∑
i=1

∣∣X i
t − X̌ i

t

∣∣
≤ L

(∫ 0−

−∞
h (t− s)Z(ds) + |Rt|+

∫ t−

0

h (t− s) Z̃(ds)

)
,

which holds on E ′t.
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As before Z̃ := |Z − Ž| and Gt := {Z̃(t,∞) = 0}. Equivalent consid-
erations as in the first part of the proof yield

P (Gt ∩ E ′t | Ft)

≥1 {E ′t} exp

(
−L

∫ ∞
t

[∫ 0

−∞
h (s− u)Z(du) + |Rs|+

∫ t−

0

h (s− u) Z̃(du)

]
ds

)
≥1 {E ′t} exp

(
−L

∫ ∞
t

[∫ t−

−∞
h (s− u)Z(du) + |Rs|+

∫ t−

0

h (s− u) Ž(du)

]
ds

)
.

Since λ̌t ≤ λ̂t for all t ≥ 0,∫ t−

0

h (s− u) Ž(du) ≤
∫ t−

−∞
h (s− u) Ẑ(du).

As a consequence,∫ ∞
t

[∫ t−

−∞
h (s− u)Z(du) + |Rs|+

∫ t−

0

h (s− u) Ž(du)

]
ds

≤ 2

∫ ∞
t

[∫ t−

−∞
h (s− u) Ẑ(du)

]
ds+

∫ ∞
t

|Rs|ds = Ct +Dt,

where

Ct := 2

∫ ∞
t

[∫ t−

−∞
h (s− u) Ẑ(du)

]
ds

is stationary and ergodic, and where

Dt :=

∫ ∞
t

|Rs|ds.

Clearly, Dt → 0 as t → ∞ almost surely. Now apply Lemma 7.1.1 in
Appendix with Ut := 1Ete

−LCt, rt := 1Ete
−LCt − 1E ′te

−LCt−LDt. Clearly,
Ut is ergodic and satisfies P (Ut > 0) > 0. To see that rt → 0 almost
surely as t→∞, it suffices to prove that 1E ′t−1Et → 0 almost surely, as
t → ∞, which is equivalent to proving that 1Ě0

t → 1 almost surely. But
this follows from

N∑
i=1

E
∫ ∞

0

∫
R+

1

{
z ≤ 3N

x∗
|Rs|

}
πi(ds, dz) <∞,

which follows from (4.11).
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4 Stability for ADHP’s With a Refractory Period

This finishes the first part of the proof of the coupling result. Finally,
suppose that the initial process only satisfies (4.11). Take then a sequence
(Žm, X̌m, Ǎm) of N−dimensional age dependent Hawkes processes with
starting condition (Ǎi

0)i≤n and initial processes

(−m ∨ Ri ∧ m)i≤N . Write λ̌m,it = ψi(X̌m,i
t , Ǎm,i

t ) for the associated in-

tensity and define λ̌m∧m+1,i
t := λ̌m,it ∧ λ̌

m+1,i
t . Denote Rm,i

t := −m∨Ri
t∧m.

As in the proof of Proposition 2.3.2, we have that

P (Žm 6= Žm+1) ≤ L
N∑
i=1

E
∫ ∞

0

|Rm,i
t −R

m+1,i
t |dt.

Since E
∫∞

0 |R
i
t|dt <∞, we conclude that∑

m

P (Žm 6= Žm+1) <∞,

implying that almost surely, Žm = Ž on R+ for sufficiently large m. Since
Žm and Z couple eventually almost surely, this proves the coupling part. It
remains to prove uniqueness of the stationary solution. Let (Z ′, X ′, A′) be
another age dependent Hawkes process on t ∈ R compatible to π1, . . . , πN .
Lemma 4.4.1 gives the inequality∣∣∣X ′i

t

∣∣∣ ≤ N∑
j=1

(∑
k≥0

h̄ij(A
′j
t + kδ) +

∫ t−A
′j
t

−∞
h̄ij(t− s)πjK(ds)

)
.

Let τ be a jump of Ẑ. Using the above inequality, it is shown inductively
over future jumps of Ẑ that λ̂t ≥

∣∣λ′i∣∣ for all t ∈]τ,∞[. Thus it follows that

λ̂t ≥
∣∣λ′i∣∣ for all t ∈ R. Note that the (Z ′, X ′, A′) system may be written in

terms of Definition 2.3.1 with initial signalsR
′i
t :=

∑N
j=1

∫ 0

∞ hij (t− s) dZ ′js .
The same arguments as in (4.35) give

E
∫ ∞

0

∣∣∣R′is ∣∣∣ ds ≤ E
∫ ∞

0

∫ 0−

−∞
h (s− u) Ẑ (du) ds <∞.

Therefore it follows from the 2nd point of this theorem that

P
(
∃ t0 ∈ R : Z ′|[t0,∞) = Z|[t0,∞)

)
= P

∞⋃
n=−∞

(
Z ′|[n,∞) = Z|[n,∞)

)
= 1.

(4.37)
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Since Z and Z ′ are both compatible, it follows that (Z,Z ′) is compat-

ible and therefore also stationary. Thus, the events
{
Z ′|[n,∞) = Z|[n,∞)

}
have the same probability for all n ∈ Z, and from (4.37) it follows that
the probability is equal to 1. This proves that Z = Z ′ almost surely.

4.5 Age Dependent Hawkes Processes With
Erlang Weight Functions

Here we show how the above results can be applied for weight func-
tions given by Erlang kernels as in Example 4.2.2, and consider a one-
dimensional (N = 1) age dependent Hawkes process (Z,X,A), solution
of

Zt =

∫ t

0

∫ ∞
0

1 {z ≤ ψ (Xs, As)} π (ds, dz) ,

Xt =

∫ t−

0

h (t− s)Z(ds) +Rt, (4.38)

At = A0 + t−
∫ t−

0

AsZ(ds),

where

h(t) = b
tn

n!
e−νt, (4.39)

for some b ∈ R, ν > 0 and n ≥ 0, and where the initial signal is given by

Rt =

∫ 0

−∞
h(t− s)z(ds),

for some fixed discrete point measure z defined on (−∞, 0) such that∫ 0

−∞ h(t− s)z(ds) is well defined.
The process (Xt, At) is not Markov, but it is well-known (see e.g. [13])

that it can be completed to a Markovian system

(X
(0)
t := Xt, X

(1)
t , . . . , X

(n)
t , At), by introducing the auxiliary processes

X
(k)
t :=

∫ t−

0

b
(t− s)n−k

(n− k)!
e−ν(t−s)Z(ds) +

∫ 0

−∞
b
(t− s)n−k

(n− k)!
e−ν(t−s)z(ds),
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4 Stability for ADHP’s With a Refractory Period

for all 0 ≤ k ≤ n. By [13], these satisfy the system of coupled differential
equations, driven by the PRM π, given by

dX
(k)
t+ = −νX(k)

t+ dt+X
(k+1)
t+ dt, 0 ≤ k < n, (4.40)

dX
(n)
t+ = −νX(n)

t+ dt+ b

∫ ∞
0

1{z ≤ ψ(X
(0)
t , At)}π (dt, dz) , (4.41)

and

At−A0 = t−
∫ t−

0

∫ ∞
0

As1 {z ≤ ψ (Xs, As)} π (ds, dz) = t−
∫ t−

0

AsZ(ds),

for t ≥ 0. Evidently, h satisfies (4.6). We suppose that ψ(x, a) satisfies
(4.3) and we strengthen (4.5) to the following assumption.

Assumption 4.2.
ψ(x, a) is continuous in x and a; and ψ(x, a) ≥ c > 0 for all x, a with
a ≥ a∗. ◦

Then the following result strengthens Theorem 4.3.1 in this Markovian
setting.

Theorem 4.5.1.
Grant Assumptions 4.1 and 4.2. Then the process (X

(0)
t , X

(1)
t , . . . , X

(n)
t , At)

is positively recurrent in the sense of Harris having unique invariant prob-
ability measure µ. ◦

Proof. Step 1. By Lemma 4.4.1 and Corollary 4.4.2, t 7→ E(λt) = E(ψ(Xt, At))

and t 7→ E(|Xt|) = E(|X(0)
t |) are bounded on R. By the same argument,

also t 7→ E(|X(k)
t |) is bounded for 1 ≤ k ≤ n. Therefore, (X

(0)
t , X

(1)
t , . . . , X

(n)
t )

is a 1−ultimately bounded Feller process (the Feller property follows from
the continuity of ψ), see e.g. [35].

We write x = (x0, . . . , xn) ∈ Rn+1 for the elements of Rn+1 and

denote by Pt((x, a), ·) the transition semigroup of (X
(0)
t , . . . , X

(n)
t , At).

Let Bk = {(x, a) : |x|+ |a| ≤ k}. Then for any x0 ∈ Rn+1, a0 ≥ 0,

Pt

(
(x0, a0), B

c
k

)
≤ P(x0,a0)

(
|Xt| ≥

k

2

)
+ P(x0,a0)

(
At ≥

k

2

)
,

where

P(x0,a0)

(
|Xt| ≥

k

2

)
≤

2 supt E(x0,a0)(|Xt|)
k

,
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and

P(x0,a0)

(
At ≥

k

2

)
≤ e−c(

k
2−a

∗)+,

implying inequality (6) of [35]. Thus, by Theorem 1 of [35], the Markov

processes (X
(0)
t , . . . , X

(n)
t , At)t≥0 possesses invariant probability measures

µ (not necessarily unique ones).1

Step 2. We shall now use the coupling property proved in Theorem
4.3.1 to prove uniqueness of the invariant measure µ. In what follows we
write (Z,X,A) for the stationary version of (4.38), which exists according
to Theorem 4.3.1. Moreover, we write (Z̃, X̃, Ã) for a version of (4.38)
starting at time t = 0 from an arbitrary initial age a0 and an initial con-

figuration x0 = (x
(0)
0 , . . . , x

(n)
0 ) with x

(k)
0 = b

∫ 0

−∞
(−s)n−k
(n−k)! e

−νsz(ds). Write

τc := inf{t > 0 : Z and Z̃ couple at time t} ∨ 1.

Note that
|h(s+ u)| ≤ C|h(s)||h(u)|

for all s, u ≥ 1, where C is an appropriate constant. It follows that almost
surely, for all t ≥ τc + 1

|Xt−X̃t| ≤ h(t−τc)(Z([0, τc])+Z̃([0, τc]))Z̃([0, τc]))+C|h(t−τc)|(|Xτc|+|X̃τc|),

showing that
lim
t→∞
|Xt − X̃t| = 0 (4.42)

almost surely, since |h(t− τc)| → 0 as t→∞. In the same way one proves
that also

lim
t→∞
|X(k)

t − X̃
(k)
t | = 0 (4.43)

almost surely, for all 1 ≤ k ≤ n. Moreover, we obviously have that Ã = A
on [T1 ◦ θτc,∞), where T1 ◦ θτc = inf{t > τc : Z([t]) = Z̃([t]) = 1}. Since
ψ(x, a) ≥ c > 0 for all a ≥ a∗, T1 ◦ θτc < ∞ almost surely. This implies
the uniqueness of the invariant measure.

Step 3. Finally, to prove the Harris recurrence of the process

(X
(0)
t , . . . , X

(n)
t , At), we rely on the following local Doeblin lower bound.

1As a matter of fact, this provides a different approach to prove the existence of a stationary version
of the age dependent Hawkes process.

71



4 Stability for ADHP’s With a Refractory Period

It states that for all (x∗∗, a∗∗) ∈ Rn+1×R+, there exist R > 0, an open set
I ⊂ Rn+1×R+ and a constant β ∈ (0, 1), such that for any T > (n+2)a∗,

PT ((x0, a0), ·) ≥ β1C(x0, a0)U(·), (4.44)

where C = BR((x∗∗, a∗∗)) is the (open) ball of radius R centered at
(x∗∗, a∗∗), and where U is the uniform measure on I. This lower bound
follows easily adapting the proof of Theorem 3 in [15] to our framework.

We may apply the above result with (x∗∗, a∗∗) ∈ supp(µ) where µ is the
(unique) invariant measure of the process. Then for the stationary version

of the process, (X
(0)
t , . . . , X

(n)
t , At) ∈ BR/2((x

∗∗, a∗∗) infinitely often. Then

(4.42) and (4.43) imply that also (X̃
(0)
t , . . . , X̃

(n)
t , Ãt) ∈ BR(x∗∗, a∗∗) = C

infinitely often, almost surely. The classical regeneration technique, see
e.g. [36], allows to conclude that indeed the process is positively recurrent
in the sense of Harris.
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Chapter 5

Renewal Time Points For
Hawkes Processes

5.1 Introduction, Purpose, and Results

In this chapter we consider a one-dimensional Hawkes process. It may
be an ordinary nonlinear type as in [5], or an age dependent one as in
the previous chapter. The aim is to discuss stability of Hawkes pro-
cesses from a renewal perspective. When h is of compact support and
Z is an ergodic linear Hawkes process, it will happen infinitely often that
Z [t− supp (h) , t] = 0, at which point a renewal occurs. It was shown in
[19] that these renewal times have exponential moment under certain reg-
ularity assumptions. However, when the weight function h does not have
compact support, it is no longer straightforward to find timepoints where
the past can be eliminated. In this chapter we show how to construct such
renewal times. The procedure is not unlike the Athreya-Ney technique for
Markov Chains in the sense that we wait for some stopping-time α0 to
occur, which may be interpreted as a minorization criteria. Here we let
random variables independent of Z decide whether we obtain a renewal
α0 at this point, or we jump to a new state of Z by moving time forward
to a stopping time τ1. This procedure is repeated, until a renewal has
occured after a random number of iterations η. The renewal time αη will
be a stopping time w.r.t. the enlarged filtration induced by Z and the
independent decisions.

The renewal approach to discussing stability of Hawkes processes turn
out to be beneficial for establishing a number of key results for Hawkes
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processes. Here we give a brief overview of the results:

• It is well known from [5] that two ordinary Hawkes processes driven
by the same Poisson random measure with sufficiently fast decaying
initial signals couple eventually. The coupling time is bounded by
the renewal time αη. We use this to formulate moment results for
the coupling time in terms of the distribution h dt. These results are
in agreement with known results about coupling times for ordinary
Hawkes processes found in [6]. Moreover, αη is constructed explicitly
so that it can be simulated.

• We prove a CLT for processes of the time average type:

t−1/2

∫ t

0

H(Z|[s−D,s])ds⇒ N
(
µ, σ2

)
(5.1)

for appropiate µ ∈ R, σ > 0. This was done for the linear Hawkes
processes in [19] assuming compact support of h, and for such h our
results coincide.

• We prove a functional CLT for Hawkes processes. This was done for
ordinary Hawkes processes in [44] with slightly weaker integrability
assumptions on h compared to what we impose. However, we do
not need positivity of h, nor do we need that h itself is decreasing.

5.2 Setup In This Chapter

For convenience in proofs we extend the definition of Hawkes processes to
the D-delayed ADHP for D ≥ 0, which is essentially an ADHP where the
intensity is killed until time D.

Definition 5.2.1.
Let D ≥ 0. We shall say that Z∗ is a D-delayed ADHP with weight func-
tion h, rate function ψ, initial signal R∗ and initial age A∗0 if
Z∗ [t, t] = 0 for t ∈ [0, D] and Z∗D+ is an ADHP (driven by πD+) with
parameters (h, ψ), initial age A∗0 +D and signal t 7→ R∗t+D. ◦

When D = 0 we obtain the regular ADHP. If it also holds that ψ (x, a)
does not depend on a, then it is the ordinary nonlinear Hawkes process. If
moreover
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5.2 Setup In This Chapter

ψ (x) = ψ (0) + Lx+ is linear, then we obtain the linear Hawkes process.
We shall submit to the following restriction on ψ.

Assumption 5.1.

• ψ is increasing in x, a.

• We strengthen the Lipschitz assumption of ψ to the following: For
all x ≤ y ∈ R and a, b ∈ R+ it holds that

ψ (y, b)− ψ (x, a) ≤

{
L (y − x) a = b

L (y − x) +
(
cpreψ + Lx+

)
g (a ∧ b) a 6= b

(5.2)

where g is a decreasing function bounded by 1, and L, cpreψ > 0.

◦

The first point is very natural. Indeed, the intuitive interpretation that
the sign of h implies excitation/inhibition requires that ψ is increasing in
x. For our purpose, age acts as an inhibitory effect throught the refractory
period, so it makes sense to have ψ increasing, g decreasing as well. The
second point prevents that initial disyncrony of two hawkes processes i.e.
A1

0 6= A2
0 will induce a large and persisting difference of their intensities,

no matter the similarity of their histories. We observe that (5.2) implies
that ψ is sublinear since

ψ (y, b) ≤ ψ (0, b)± ψ (0, 0) ≤ cpreψ g (0) + ψ (0, 0) if y < 0, b ∈ R+ (5.3)

ψ (y, b) = ψ (y, b)± ψ (0, 0) ≤ Ly + cpreψ g (0) + ψ (0, 0) if y ≥ 0, b ∈ R+

(5.4)

so with cψ := cpreψi + ψ (0, 0) we have

ψ (y, b) ≤ cψ + Ly+ ∀y ∈ R, b ∈ R+. (5.5)

Let now Z∗ be the ADHP that we wish to obtain a regeneration point
for. It is well known that depending on the parameters h, ψ, Hawkes pro-
cesses can either be in the subcritical regime where lim supt→∞ Z

∗ (0, t] /t <
∞ or in the supercritical regime where the limit is∞. To succeed we must
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5 Renewal Time Points For Hawkes Processes

ensure that Z∗ is in the subcritical regime. We shall treat two different se-
tups that will ensure this. The first setup assumes that∫
R+
h+ (s) ds < L−1. For the Linear Hawkes process with

ψL (x) := cψ + Lx+ (5.6)

this has the interpretation that each direct child of a parent jump induces
< 1 new child on average. The second setup assumes that the ADHP has
a refractory period, i.e. the intensity is bounded for a period after each
jump (this includes the case where ψ is uniformly bounded).

Setup (Ordinary Hawkes Process).
We assume that

∫
R+
h+ (s) ds < L−1 where h+ (t) = max (h (t) , 0). ◦

Setup (Age Dependent Hawkes Process).
There exists K ≥ 0, δ ∈ {1/n : n ∈ N} s.t.1

ψ (x, a) ≤ K for a ∈ [0, δ] , x ∈ R. (5.7)

◦

We shall establish a renewal time for each of these setups. While some
variables will vary slightly in their definitions for each setup, the approach
is similar so the renewal time will be constructed simultaneously. We shall
refer to the two setups above as setup (O) or (AD) respectively.

Example 5.2.2.
Consider the rate function given by

ψ(x, a) = l(x)ϕ (x, a) (5.8)

where l is increasing and L-Lipschitz and ϕ is bounded by 1 for all x ∈ R,
a ∈ R+.Moreover, we assume that x 7→ l (x)ϕ (x, a) is L-lipschitz and that
ϕ converges to 1 in the sense that there is a function g : R+ → [0, 1] de-
creasing towards 0 and satisfying 1−ϕ (x, a) ≤ g (a) for all x ∈ R, a ∈ R+.
For ϕ ≡ 1 we obtain the ordinary Hawkes process, so for general ϕ we may
interpret the ADHP as an ordinary Hawkes process with rate function l,
but inhibited by its own age process with a factor ϕ (x, a).

1It is merely for mathematical convenience that we restrict δ to reciprocal integers instead of arbitrary
δ ∈ R+ in setup (AD).
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To show that it satisfies (5.2) we take arbitrary x ≤ y and a 6= b and
obtain

ψ(y, b)− ψ(x, a) = l (y)ϕ (y, b)− l (x)ϕ (x, a) (5.9)

= (l (y)− l (x))ϕ (y, b) + l (x) (ϕ (y, b)− ϕ (x, a))
(5.10)

If x ≥ 0 then l (x) ≤ l (0) +L (x− 0) while l (x) ≤ l (0) for x < 0. We use
this and the fact that |ϕ (y, b)− ϕ (x, a)| ≤ 1− ϕ (x, a ∧ b) ≤ g (a ∧ b) to
conclude

ψ(y, b)− ψ(x, a) ≤ L (y − x) + (l (0) + Lx+) g (a ∧ b) (5.11)

which fits into (5.2). The most principal example of ϕ is the simple
1 {A ≤ δ) corresponding to a hard refractory period, and in this case Z∗

is in setup (AD). Although this is a rather simple example, it is important
due to its application for modelling neural spike-trains. We could also give
a more complicated structure to the refractory period such as

ϕ (x, a) =

{
1−e−a
1∨l(x) a ≤ δ

1− e−a a > δ
. (5.12)

Notice that both of the above mentioned ϕ choices makes ψ increasing.
As mentioned previously, if ϕ ≡ 1 then

ψ(x, a) = l(x) (5.13)

and one obtains the ordinary Hawkes process. We may assume that
‖h+‖L1 < L−1 in which case the parameters fit under setup (O), or we can
assume ψ is bounded in which case it fits under setup (AD). ◦

For each setup, we impose two assumptions. The first one restricts the
randomness in the initial signal.

Assumption 5.2.
There is an a.s. finite Ft-stopping time α0 and a deterministic decreasing
function r : R+ → [0,∞) such that for all t > α0∣∣∣∣∫ α0

0

h (t− s) dZ∗s +R∗t

∣∣∣∣ ≤ r(t− α0). (5.14)

◦

77
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The next assumption puts integrability assumptions on r, h, g. It will
be split in two. One where h, r have power tails, and one where they have
exponential tails.

Assumption 5.3.
Let γ : [0,∞)→ [0,∞) be an increasing and right continuous function and
define
h(t) := sups≥t |h(s)| . We assume that h ∈ L1

loc and either (A) or (B)
below holds.

Assumption 3 (A):
There exists p ≥ 0 s.t.

• t 7→ tpr (t) ∈ L1, t 7→ tpg (t) ∈ L1, and t 7→ tp+1γ (t+ 1)h (t) ∈ L1.

• Under setup (O) we assume

lim inf
t→∞

γ (t)

c−1
h (p+ 1) ln+ t

> 1 (5.15)

where ch = L ‖h+‖L1 − ln (L ‖h+‖L1) − 1. Under (AD) we merely
assume

lim inf
t→∞

γ (t)

ln+ t
> 0. (5.16)

Assumption 3 (B):

• The functions r, g and t 7→ γ (t+ 1)h (t) have exponential moments.

• We assume that

lim inf
t→∞

γ (t)

t
> 0.

◦

Remark 5.2.3.
A few remarks on the introduced variables and assumptions:
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1. For all results to come in this article we shall implicitly assume as-
sumption 5.1, assumption 5.2 and assumption 5.3 (A), unless oth-
erwise stated. We will state explicitly which setup we work under.
Assumption 5.3 (B) is clearly stronger than the (A) version for any
choice of p, and we state explicitly when we work under assumption
(B) instead of (A).

2. The map h is the smallest decreasing function dominating h. As in
the previous chapter, we put integrability assumptions on h which
is slightly more restrictive than if they were put on h. It turns out
to be advantagous to work with a decreasing weight function and the
restriction is, at least in the belief of the author, of small consequence
for practical applications.

3. If
∫∞

0 tp+1 ln+ t h (t) dt < ∞ then the choice γ (t) = C ln+ (t) for

large C satisfies the parts of assumption 5.3 (A) relevant to h, γ.
Likewise, if h has exponential moment, then the choice γ (t) = Ct
for any C > 0 satisfies assumption 5.3 (B).We allow γ to be cho-
sen freely because it may change the speed of computation in an
actual simulation of the renewal-times. Recall that since γ is right
continuous, the generalized inverse γ−1 (t) := inf {s ≥ 0 : γ (s) ≥ t}
satisfies

y ≤ γ (t)⇔ γ−1 (y) ≤ t. (5.17)

◦

We now define some key functions to be used in the construction of
a regeneration time, and with assumption 5.3 we immediately determine
their integrability properties. Define

f (t1, t2) =
(
1 + δ−1 + γ (0)

)
h (t1)

+

∫ t2

0

(
1 + δ−1 + γ (s+ 1)

)
h (t1 + s) ds+ r (t1) (5.18)

(with convention δ = ∞ in the (O)-system). For convenience we write
f (t) instead of f (t,∞). Define also

F pre (t) = 2Lf (t) + cψg (t) (5.19)

F (t) = 1{t ≤ D} (cψ + Lf (t)) + 1{t > D}F pre(t) (5.20)
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Proposition 5.2.4.
Consider the maps t 7→ f (t) , F pre (t) , F (t) defined above. Under either
setup and assumption 5.3(A) these functions have p’th moment, and under
assumption 5.3(B) these functions have exponential moments. ◦

An important example for which assumption 5.2 is satisfied is the
stationary ADHP:

Example 5.2.5.
The classical method of studying stability of Hawkes processes, due to
Brémaud and Massoulié [5], has been to find a solution

ZI(a, b] =

∫ b

a

∫ ∞
0

1{z ≤ λIs}dπ(s, z)

XI
t =

∫ t−

−∞
h (t− s) dZI

s

λIs = ψ (Xt, At)

such that θtZI = HI (θtπ) for some suitable map HI : M c
R×R+

→ M c
R

. Note that ZI is an ADHP with RI
t =

∫ 0−
−∞ h (t− s) dZI

s . See [5] and
the previous chapter for criterias of existence. In both of the cited pa-
pers, it is proven that when ZI exists, it is stationary and ergodic, and
if Z∗ is another Hawkes process driven by π, with a signal R∗ satisfy-
ing E

∫∞
0 |R

∗
s| ds < ∞, then Z∗ couples with ZI eventually. We shall

see in theorem 5.3.3 that there is a suitable choice of α0,r such that as-
sumption 5.2 is satisfied for ZI . In proposition 5.5.1 we prove that the
coupling time has p’th moment and even exponential moment under as-
sumption 5.3(B). ◦

5.3 Constructing a Renewal Time Point for
a Hawkes Process

In this section we are given an ADHP Z∗. The goal is to prove the
main result theorem 5.3.2 which gives a random time ρ satisfying that
Z∗ρ+ |= Z|(0,ρ]. This is done by introducing a point process Z which regen-
erates at stopping times αn. Then, by using the specific construction of
αn and Z, we are able to throw a biased coin deciding whether αn should
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be the renewal time point for Z∗ or not.

The first step is to construct Z. Given either of the two setups, we
shall simultaneously define Z, the sequences of stopping times (τn) , (αn),
and intensities λ, λ as a system. While the system is defined slightly dif-
ferent for each of the two setups, they are very similar. Only the α’s
differs in the definition, depending on whether we discuss the (O) system
or the (AD) system. Recall the split PRMs π↑, π↓ defined in the first sec-
tion of the appendix. We also note that we make use of the convention
inf{∅} =∞.

The system is defined as follows: Fix D ≥ 0 and define λt = λt = 0 for
t ∈ (0, α0] and Z (0, α0] = 0. For n ∈ N s.t. αn−1 <∞ we define Z as the
D-delayed ADHP driven by π, with parameters h, ψ and initial conditions
Aαn−1+ = 0, Rt = −f (t− αn−1). Let λ be its intensity. We set λt, λt = 0
if t ∈ (τn, αn] and

λt = λt (5.21)

λt = λt + F (t− αn−1) (5.22)

when t ∈ (αn−1, τn]. Moreover, we set

τn = inf

{
t > αn−1 :

∫ t

αn−1

∫ ∞
0

1
{
z ∈

(
λs, λs

]}
dπ (s, z) ≥ 1

}
(5.23)

= inf

{
t > αn−1 :

∫ t

αn−1

∫ ∞
0

1 {z ≤ F (t− αn−1)} dπ↑λ,λ (s, z) ≥ 1

}
.

(5.24)

If τn = ∞ we set αn = ∞ in either setup. Otherwise, under setup (AD)
we choose

αn = αn−1 + inf{i > dτn − αn−1e : θi−jNαn−1+ (−1, 0] ≤ γ (j) , j = 0, . . . , i− 1}, (5.25)

where N is the K-Poisson process driven by π↓λ,λ. For setup (O), let
ςτn−αn−1 be the Dirac-measure on τn − αn−1 and let Zn,pre be the linear

Hawkes process driven by π↓λ,λαn−1+ with weight function h+, rate function
ψL and initial signal Rt = f (t) + h+ (t− (τn − αn−1))1 {t > τn − αn−1}.
Define Zn = ςτn−αn−1 + Zn,pre and put
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αn = αn−1+ inf

{
i > dτn − αn−1e :

∫ i

0

h+ (t− s) dZn
s ≤ f(t− i, i− 1)− r(t− i) ∀t > i and Zn (0, i] ≤

∫ i

0

γ (s+ 1) ds

}
.

Remark 5.3.1.
We notice some properties of the system above.

1. Z is a well-defined Ft-progressive process on R+ and λ, λ, λ are Ft-
predictable.

2. The system remains unchanged for any choice of initial conditions
R∗, A∗0 as long as α0 from assumption 5.2 remains unchanged.

3. By theorem 7.3.1 π↓λ,λ, π↑λ,λ are Ft − PRMs. In particular

(αn − αn−1, τn − αn−1) |= Fαn−1 | (αn−1 <∞).

4. The process is reversible in the sense that λαn+s, λαn+s may be com-
puted from(
π↓λ,λαn+

)
|(0,s]

,
(
π↑λ,λαn+

)
|(0,s]

.

That is, there is a map H : M c
R2

+
×M c

R2
+
× R+ →M c

R2
+

satisfying

H

((
π↓λ,λαn+

)
|(0,s]

,
(
π↑λ,λαn+

)
|(0,s]

, s

)
= (παn+)|(0,s] , (5.26)

for all n ∈ N0 s.t. αn <∞.

◦

The rest of this section is dedicated to presenting our main result
theorem 5.3.2, and its related results 5.3.3 - 5.3.6. Before we state it, we
colloquially explain the essence of the result. The purpose of the α’s is to
have points in time, where the intensity contribution from the past of Z∗

may be replaced by something deterministic. More preciesly αn should
satisfy∣∣∣∣∫ αn

0

h (t− s) dZ∗s +R∗t

∣∣∣∣ ≤ f(t− αn), t > αn, n ∈ N : αn <∞. (5.27)
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We prove that this property holds for both setups in theorem 5.3.3. The
inequality (5.27) combined with the properties of ψ gives that λ ≤ λ∗,
at least locally in time after αn. We will also be able to control the
difference λ∗ − λ locally after αn, and establish that Z mimics Z∗ in that
same interval. In fact, the purpose of τn+1 is to act as a conservative
right end of an interval starting at αn on which Z and Z∗ are equal. All
this will be proved in proposition 5.3.4. We then proceed to study the
distributions of τn, αn. In theorem 5.3.5 we study τn+1 − αn|αn < ∞ and
prove P (τn+1 = ∞, αn < ∞) > 0 along with moment properties of the
distribution τn+1 − αn|τn+1 <∞. In theorem 5.3.6 we investigate the law
of αn− τn|τn <∞. Here we prove that P (αn − τn <∞|τn <∞) = 1, and
we characterize its moments. Combining these results implies that

η := inf {n ∈ N0 : τn+1 =∞} (5.28)

is finite almost surely, and we will be able to show that

ρ := αη +D (5.29)

is a point of regeneration for Z∗. In fact, we have Z∗ (ρ−D, ρ] = 0 so
Z∗|(0,ρ] |= Z∗αη+, i.e. there is an overlap of length D. We characterize the

integrability properties of ρ by applying the previously mentioned results
concerning αn, τn.

λ∗

α0

λ

λ+ F (t− α0)

τ1 α1

λ+ F (t− α1)

Figure 5.1: An illustration of the system with D = 0. The points of the
PRM π are depicted by (N), and the three intensities λ, λ∗, λ are colored
in blue, black and red respectively. By definition of the stopping times
τ1, τ2, the red bands contain no π-jumps.

83



5 Renewal Time Points For Hawkes Processes

The precise result is as follows: Define F∗t = σ
(
Ft, π↑λ,λ

)
. It is clear

that (F∗t ) defines a filtration and without changing notation, we extend
it to satisfy the usual hypothesis.

Theorem 5.3.2.
Grant either setup (AD) or (O).

1. The random time ρ = αη +D is an a.s. finite F∗t -stopping time.

2. The random measure π↓λ,λ is an F∗t -PRM and hence π↓λ,λ |= F∗ρ .
Moreover, we have Z∗ρ+ = Zρ+ and independent of Z∗|(0,ρ]. In partic-

ular, Z∗ρ+ is distributed as an ADHP with weight h, rate ψ, initial
age D and signal t 7→ −f (t+D).

3. It holds that E (ρ− α0)
p < ∞. Under assumption 5.3(B) it holds

that ρ− α0 has exponential moment.

◦

To prove Theorem 5.3.2 we establish the results below and combine
them in the end. The proofs of these results, and the main result, may be
found in the proof section.

Theorem 5.3.3.
h

1. Consider setup (AD). It holds that αn, n ∈ N satisfies (5.27). More-
over, assume ZI from example 5.2.5 exists, and assume only that
assumption 5.1 and assumption 5.3 (A) holds with r = f . Then
assumption 5.2 is satisfied for Z∗ = ZI and

αI0 = inf
{
i > 0 : θi−jN (−1, 0] ≤ γ (j) , j ≥ 0

}
. (5.30)

2. Consider setup (O) and recall ψL from (5.6). It holds that αn, n ∈ N
satisfies (5.27). Moreover, assume ZI from example 5.2.5 exists,
and assume only that assumption 5.1 and assumption 5.3 (A) holds
with r = f . Define Z0 as the stationary linear Hawkes process driven
by π with weight/rate h+, ψL (see [5] theorem 1 and remark 8). Then
assumption 5.2 is satisfied with

αI0 = inf{i > 0 :

∫ i

−∞
h+ (t− s) dZ0

s ≤ f(t− i)− r(t− i) ∀t > i}. (5.31)
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◦

Proposition 5.3.4.
Under either setup it holds a.s. for all n ∈ N0 such that αn < ∞ and
t ∈ (αn, τn+1] that

Z|(αn,τn+1) = Z∗|(αn,τn+1) (5.32)

and

0 ≤ λ∗t − λt ≤ F (t− αn). (5.33)

◦

Theorem 5.3.5.
Under either setup it holds that

P (τn − αn−1 =∞|αn−1 <∞) = exp (−‖F‖L1) (5.34)

P (τn − αn−1 ≤ t|τn <∞) =
1− exp

(
−
∫ t

0 F (s) ds
)

1− exp (−‖F‖L1)
. (5.35)

In particular the conditional distribution τn − αn−1|τn < ∞ has p’th mo-
ment. Under assumption 5.3 (B) it has exponential moment. ◦

It turns out that the αn’s defined above may be analyzed using a
discrete Markov chain. In fact one may rewrite αI0 and αn − τn as return
times to state 0 for a specific Random Exchange process (see Appendix).
This yields precise distribution results as given in the next proposition.

Theorem 5.3.6.
Under either setup it holds that αI0 and (αn − τn) | (τn < ∞) have p’th
moment. If also assumption 5.3 (B) holds then these laws have exponential
moment.

◦

5.4 Hawkes Processes In a Markov Chain
Framework

In this section we first apply theorem 5.3.2 iteratively to obtain consec-
utive renewal time points ρi, which partition Z∗ into independent bits.
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5 Renewal Time Points For Hawkes Processes

Afterwards, we construct a Markov chain that contains the information
of Z∗, and where the ρi’s acts as the return times to an atom. The pur-
pose is to use Markov chain theory to obtain results for Z∗, which we do
in the next section.

Choose D > 0 and set ρ0 := ρ, π0 := π, π0 := π and π1 = π↓λ,λρ0+ . We
also introduce another auxiliary PRM π1 independent of π0, π0, π1. Note
that π1, π1 are F1

t -PRMs where F1
t = σ(F∗ρ , π1

|(0,t], π
1
|(0,t]). It holds that Z∗ρ+

is an ADHP driven by π1 with R : t 7→ −f (t+D), A0 = D. In particular
α1

0 = 0 satisfies (5.27) already. Thus, π1, π1 and α1
0 induces a new renewal

system as in section 3. From there we obtain sequences
(
α1
i

)
,
(
τ 1
i

)
and

two new PRMs which we denote π↓1, π↑1. Applying theorem 5.3.2 on this
system gives a new renewal time ρ1.

Continuing this way gives sequences
(
πi
)
,
(
πi
)
,
(
π↑i
)
,
(
π↓i
)
, (ρi). If we

set %i =
∑i

j=0 ρj, we have that

B 7→ Z∗ ((%i−1 −D, %i] ∩ (B + %i−1)) , B ∈ B(−D,∞) (5.36)

are i.i.d. for i ∈ N, each being the Hawkes process initialized with A0 = D,
R : t 7→ −f (t+D) and driven by πi.

In fact, we can study Z∗ from a Markov chain perspective. Define

ρ− (t) = sup {s < t : ∃i ∈ N0 : s = %i} , (5.37)

J (n) = |{j ∈ N0 : %j < n}| , (5.38)

and Aρ
t = t− ρ− (t). Consider the stochastic processes on the state-space

M c
R2

+
×M c

R2
+
× N,

Φpre
n =

(
π
↓J(n)

|(0,Aρn]
, π↑J(n), Ap

n

)
(5.39)

Φn = θρ0Φpre
n (5.40)

for n ∈ N. In this framework, Theorem 5.3.2 states that Φn |= Φpre
0 , . . . ,Φpre

ρ0
.

Using (5.26) we may construct a map H∗ : M c
R2

+
×M c

R2
+
× N → M c

(−D,0]

satisfying H∗ (Φn) = (θρ0+nZ∗)|(−D,0]. Also, by construction of ρi, the in-

dicator function J (n+ ρ0 + 1)− J (n+ ρ0) may be written as some map
HJ (Φn). It follows that Φ is a Markov chain with an atom

Ξ = {µ, ν, n : HJ (µ, ν, n) = 1} . (5.41)
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Consider the subspace

X =
{
µ, ν, n : µ, ν are simple , PΦ

µ,ν,n (Φ hits Ξ eventually) = 1
}

(5.42)

and let PΦ be the kernel of Φ. By definition of X, any chain with kernel
PΦ started in X eventually hits Ξ, and by theorem 5.3.2 Φ almost surely
returns to Ξ once hitting it. Thus X is an absorbing state for chain Φ, and
we shall from now on always refer to Φ, PΦ as the restricted kernel to X
(see proposition 4.2.4. [34]). Since Ξ is an accesible atom for this chain,
it is irreducible (Prop. 5.1.1 [34]) and aperiodic. The return time to Ξ is
distributed as ρ1, so by Kac’s theorem it follows that PΦ is positive with
invariant law P̃ for p ≥ 1. Not surprisingly it turns out that P̃ agrees
with ZI from example 5.2.5 with parameters h, ψ, whenever they both
exist.

Proposition 5.4.1.
Assume that p ≥ 1 and ZI from example 5.2.5 exist with coupling proper-

ties as given in the example. It holds that H∗
(
P̃
)

D
= ZI

|(−D,0]. ◦

5.5 Applications

In this section we apply the Markov chain construction from section 5.4
to establish asymptotic results for Z∗. We show distribution results of the
coupling time. Then we present a functional CLT, a time-average CLT,
and a LIL for Z∗.

5.5.1 Bound On The Coupling Time

In [5] it was shown that two ordinary Hawkes processes, started with differ-
ent initial conditions couple under regularity conditions. In the previous
chapter we showed a similar statement for ADHPs. Our construction of
ρ confirms these results and provide moment results for these coupling
times. More preciesly, we have the following proposition.

Proposition 5.5.1.
Let Z∗1, Z∗2 be two π-driven ADHPs initialized with A∗10 , A

∗2
0 and signals

R∗1t , R
∗2
t . Assume that α0 satisifies assumption 5.2 for both measures si-

multaneously.
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5 Renewal Time Points For Hawkes Processes

Define the coupling time T = inf
{
t > 0 :

∣∣Z∗1 − Z∗2∣∣ (t,∞) = 0
}

. It
holds that T ≤ ρ and in particular that (T − α0)+ has p’th moment. Under
assumption 5.3 (B), (T − α0)+ has exponential moment. ◦

Proof.
By theorem 5.3.2 2) we have Z∗1ρ+ = Z∗2ρ+ = Zρ+. The moment results
follows from theorem 5.3.5 and theorem 5.3.6.

5.5.2 Asymptotics

The Markov chain Φn from (5.39) can be used to establish various asymp-
totic results for Z∗ in a general setting. Let G : M c

R2
+
×M c

R2
+
×N→ R be

a measurable function which we normalize with G = G− P̃G where P̃ is
the invariant measure from proposition 5.4.1. We shall discuss asymptotic
results of the sum

Sn
(
G
)

=
n∑
k=1

G (Φpre
k ) (5.43)

provided of course that G is a function s.t. G (Φpre
n ) is a well-defined

variable for all n ∈ N. Define

S̃n
(
G
)

= Sn+ρ0 − Sρ0. (5.44)

Theorem 5.5.2.
Assume that p ≥ 2. Define µρ = Eρ1 and

σ2 = µ−1
ρ ES̃ρ1

(
G
)2
. (5.45)

Assume that σ2 is finite and nonzero.

1. The following CLT holds

n−1/2Sn
(
G
)
⇒ N

(
0, σ2

)
. (5.46)

2. The following LIL holds: Almost surely,

lim inf
n→∞

Sn
(
G
)

√
2σ2n ln lnn

= −1, lim sup
n→∞

Sn
(
G
)

√
2σ2n ln lnn

= 1. (5.47)
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Define St
(
G
)

for t ∈ (n, n+ 1) as the linear interpolation between Sn
(
G
)

and Sn+1

(
G
)
, and put

Bn
t =

1√
nσ2

Snt
(
G
)
. (5.48)

The following functional CLT holds

Bn
(·) ⇒ B(·) (5.49)

where B is the 1-dim Brownian motion, and the convergence (⇒) is in
distribution in the D space on [0,∞). See [4] chapter 3. ◦

Proof.
A direct application of theorem 17.2.2, theorem 17.4.4, and section 17.4.3
[34] on Φn gives the desired results for S̃n in place of Sn. Standard argu-
ments extend these results to hold for Sn as well.

Example 5.5.3.
We give two applications of theorem 5.5.2.

1. Take G (µ) =
∫ 0

−D φ (s) dH∗ (µ) (s) where φ : (−D, 0] → R is a
bounded map. In particular, when φ ≡ 1, D = 1, we obtain

Sn
(
G
)

= Z∗ (0, n]− EZI (0, n] . (5.50)

It is straightforward to show a sufficient criteria for σ2 <∞ is that either
p > 2 in the (O) setup or p ≥ 2 in the (AD) setup. Also it is easy to see
that for non-degenerate choices of h, ψ we have σ2 > 0.

2. Fix m ∈ N, and let T : M c
|(−m,0] → R be a measurable map. Take

D = m+ 1 and G (µ) =
∫ 1

0 T
(

(θsH∗ (µ))|(−m,0]

)
ds. These choices lead to

Sn
(
G
)

=

∫ n

0

T
(
θsZ∗|(s−m,s]

)
ds− nET

(
ZI
|(−m,0]

)
. (5.51)

To obtain σ2 <∞ we need a growth condition depending on the setup:
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(AD) ∃c, C > 0 : |T (µ)| ≤ C exp (cµ (−m, 0]) (5.52)

(O) ∃C > 0 : |T (µ)| ≤ C

∣∣∣∣ µ (−m, 0]

1 + ln (µ (−m, 0])

∣∣∣∣p/2−1

. (5.53)

Consider first setup (AD). Recall that

Z∗ρ0+ (n−D,n] = Zρ0+ (n−D,n] ≤ Dδ−1 + π↓λ,λρ0+ (n−D,n]× [0, K] .

(5.54)

It follows that

sup
s∈(n−1,n]

∣∣T (θ−sZ∗|(s−m,s])∣∣ ≤ C exp
(
cDδ−1

)
exp

(
cπ↓λ,λρ0+ (n−D,n]× [0, K]

)
:= Yn

For j = 1 . . . D, n ∈ N define Ỹ j
n = Yn if n ≡ j mod D, and otherwise

set Ỹ j
n as an i.i.d. copy of Y1. Indeed by the Cp-inequality there is some

possibly larger C > 0 s.t.

S̃ρ1 (G)2 ≤ C

D∑
j=1

(
ρ1∑
n=1

Ỹ j
n

)2

(5.55)

Notice that for each fixed j = 1, . . . , D, the sequence Ỹ j
n , n ∈ N is i.i.d. It

follows from theorem 5.2, chapter 1 in [21] that σ2 <∞.

Consider now setup (O), and take γ (t) = C ln+ t for C so large that
(5.15) is satisfied. Note that x 7→ x/ ln (x+ 1) is increasing for x > 0 so

sup
s∈(%0,%1]

∣∣∣T (θ−sZ∗|(s−m,s])∣∣∣ ≤ C

∣∣∣∣ Z∗ (%0, %1]

ln (1 + Z∗ (%0, %1])

∣∣∣∣p/2−1

. (5.56)

Notice that for our choice of γ, we have the inequality∫ x

0

γ (t+ 1) dt ≤ Cx ln (x+ 1)

for a possibly larger constant C > 0. From the definition of αn it follows
that
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sup
s∈(%0,%1]

∣∣∣T (θ−sZ∗|(s−m,s])∣∣∣ ≤ CT

∣∣∣∣ Cρ1 ln (ρ1 + 1)

ln (1 + Cρ1 ln (ρ1 + 1))

∣∣∣∣p/2−1

≤ CTCρ
p/2−1
1

(5.57)

again for a possibly larger constant C > 0. From here it follows that
σ2 < ∞. One would have to check σ2 > 0 for the given T , but for most
practical applications, this is a triviality. ◦

5.6 Discussion and Outlook

In the following, we shall discuss generalizations and limitations of the
presented results, and suggest further research topics.

Multivariate Hawkes Processes

It is straight forward to generalize the regeneration procedure to a mul-
tivariate Hawkes Process with N units (see [12],[13] or chapter 2 for an
introduction to these). One should split each πi , i ≤ N into π↑i, π↓i for
i = 1, ..., N - analogous to what was done in the start of section 3.1. The
τ in’s should be generalized in the obvious way, while αn should be mod-

ified so that it ensures that
∑N

i=1

∣∣∫ αn
0 hij (t− s) dZi

s +Ri
t

∣∣ ≤ f (t− αn) .
In setup (AD) this is achieved by substituting π↓λ,λ in (5.25),(5.31) with∑N

i=1 π
↓i which will be a PRM with mean intensity N dzds. In setup

(O), the clusters Z i should be dominating linear N -dimensional Hawkes
processes. While the total progeny distribution of Z i is no longer Borel
distributed, it is well known that it has exponential moment, which is
sufficient to complete the proof.

Stability For More General Setups

A significant observation is that the setups (AD) and (O), essentially only
affect the construction of ρ through the choice of α’s and f . For other
and more general setups in the univariate or multivariate case, one may
adapt this procedure to establish stability regimes. For example it might
be a method to explore other multivariate systems where inhibition from
either the weight or the age have a potential effect on the stability regime.
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Optimizing the Regeneration Scheme And Improving Results

These results establish a regeneration scheme for weight functions h s.t.∫∞
0 |h (t)| tp+1 ln+ tdt <∞. However, invariant solutions to Z exist already

for h with first moment i.e.
∫∞

0 t |h (t)| dt < ∞. Also, the CLT result for
ordinary Hawkes processes by Zhu [44], assuming that h decreasing and
positive, only requires that t 7→ th (t) is integrable. This corresponds
to p = 0, instead of p ≥ 2 which we require in theorem 5.5.2. These
facts indicate that there may exist renewal times with better moment
properties, than those discussed in this chapter.

Also, the main result in [19], developed simultaneously with the results
presented in this paper, proves existence of a regeneration point with
improved integrability properties, in the case where the Hawkes process is
linear with positive weight functions. Moreover, the exponential moment
results in [19] are more refined, primarily due to the use of renewal times
of a certain M/G/∞ queue with a deterministic service time instead of
random exchange processes.

Implementation and Practical Computation

While this chapter focuses on the theoretical development of regeneration
times, the method is constructive and ρ may be simulated in either setup.
It would be of interest to study the efficiency of this algorithm.

5.7 Proofs

5.7.1 Proofs of Section 2 Results

123
Proof of Proposition 5.2.4
To show the claimed result for f under assumption 5.3 (A), substitute the
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inner variable with u = s+ t and apply Tonelli to obtain∫ ∞
0

∫ ∞
0

tpγ (s+ 1)h (t+ s) dsdt =

∫ ∞
0

∫ ∞
t

tpγ (u− t+ 1)h (u) dudt

(5.58)

=

∫ ∞
0

∫ u

0

tpγ (u− t+ 1)h (u) dtdu

(5.59)

≤ (p+ 1)−1

∫ ∞
0

up+1γ (u+ 1)h (u) du

(5.60)

which proves the desired. Under assumption 5.3 (B) it is straightforward
to show that f has exponential moment. The claimed result for F p, F
follows immediately.

5.7.2 Proofs of Section 3.1 Results

123
Proof of Theorem 5.3.3
1. We claim for n ∈ N that∣∣∣∣∫ αn

0

h (t− s) dZ∗s +R∗t

∣∣∣∣ ≤ f (t− αn) ∀t > αn (5.61)

if αn <∞. We prove this by induction over n ∈ N0. The induction start
n = 0 is per assumption 5.2. To prove the induction step, we split the
integral of interest∣∣∣∣∫ αn

0

h (t− s) dZ∗s +R∗t

∣∣∣∣ ≤ ∣∣∣∣∫ αn

αn−1

h (t− s) dZ∗s
∣∣∣∣+

∣∣∣∣∫ αn−1

0

h (t− s) dZ∗s +R∗t

∣∣∣∣ .
(5.62)

By the induction assumption, the 2nd term is bounded by f (t− αn−1)
for all t > αn−1. The first term above can be split up to whether jumps
of Z∗ happen when A∗t ≤ δ or not∫ αn

αn−1

1 {As ≤ δ}h (t− s) dZ∗s +

∫ αn

αn−1

1 {As > δ}h (t− s) dZ∗s . (5.63)
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Consider the first term. By the (AD) criteria we have∫ b

a

1 {As ≤ δ} dZ∗s ≤ πK (a, b] :=

∫
(a,b}×[0,K]

dπ (s, z) . (5.64)

On the interval t ∈ (αn−1, τn), we have per definition of τn that
N [t, t] ≥ πK [t, t] while for t ∈ (τn, αn] we have πK [t, t] = N [t, t]. It
follows that for t > αn, we have∫ αn

αn−1

1 {As ≤ δ}h (t− s) dZ∗s (5.65)

≤
∫ αn

αn−1

h (t− s) dπKs (5.66)

≤h (t− τn) +

∫ αn

αn−1

h (t− s) dNs (5.67)

≤h (t− αn) +

αn−αn−1−1∑
i=0

γ (i)h (t− αn + i) (5.68)

≤
∫ αn−αn−1−1

0

γ (s+ 1)h (t− αn + s) ds+ (1 + γ (0))h (t− αn) . (5.69)

For the second integral in (5.63), recall that δ−1 ∈ N and notice that the
interdistance between jumps of Z∗ with As > δ is at least δ per definition.
We obtain the bound∫ αn

αn−1

1 {As > δ}h (t− s) dZ∗s (5.70)

≤
(αn−αn−1)δ−1−1∑

i=0

h (t− αn + iδ) (5.71)

≤
(αn−αn−1)−1∑

j=0

δ−1h (t− αn + j) (5.72)

≤
∫ αn−αn−1−1

0

δ−1h (t− αn + s) ds+ δ−1h (t− αn) . (5.73)

The sum of the two right-hand sides of (5.69) and (5.73) are less than
f (t− αn, αn − αn−1 − 1)− r(t−αn). The induction claim now follows by
inserting this back into (5.62).
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To prove that αI0 satisfies assumption 5.2, repeat the proof above with
−∞ in place of αn−1 and αI0 in place of αn. We omit the details.

2. Consider now the (O) setup. We claim again for n ∈ N that∣∣∣∣∫ αn

0

h (t− s) dZ∗s +R∗t

∣∣∣∣ ≤ f (t− αn) ∀t > αn. (5.74)

As before we proceed by induction over n ∈ N0. The induction start
follows from assumption 5.2. Assume now the claim holds for n − 1. By
the induction assumption and the definition of f we have

∣∣∣∣∫ αn

0

h (t− s) dZ∗s +R∗t

∣∣∣∣ ≤ ∣∣∣∣∫ αn

αn−1

h (t− s) dZ∗s
∣∣∣∣+ f (t− αn−1) . (5.75)

It is seen per induction over jumps of Zn, that

Zn [s, s] ≥ Z∗ [αn−1 + s, αn−1 + s]

for all s ∈ (αn−1, αn]. Hence

∣∣∣∣∫ αn

αn−1

h (t− s) dZ∗s
∣∣∣∣

≤
∣∣∣∣∫ αn−αn−1

0

h (t− s) dZn
s

∣∣∣∣
≤f(t− αn, αn − αn−1 − 1)− r (t− αn) (5.76)

inserting back into (5.75), and using the definition of f gives the desired
result.

The statement about αI0 is a direct implication of the claim that
ZI [t, t] ≤ Z0 [t, t] for all t ∈ R almost surely. To prove this claim, let
Z1, Z2 be Hawkes processes with weight h+, h and rate functions ψL, ψ
respectively, with common intialization R ≡ 0, A0 = 0. By the coupling
property from example 5.2.5 We have almost surely that
Z0
|[t,∞) = Z1

|[t,∞), Z
I
|[t,∞) = Z2

|[t,∞) for t large enough. On the other hand, per
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induction over jumps of Z1 it is straightforward to prove that
Z1 [t, t] ≥ Z2 [t, t] for all t ∈ R+ so it follows that almost surely
Z0 [t, t] ≥ ZI [t, t] eventually. The claim now follows from the fact that(
Z0, ZI

)
is stationary and ergodic.

Proof of Proposition 5.3.4

Define Z̃ = |d (Z∗ − Z)| and let Ã be its age process. We have for
t ∈ (αn−1, τn]

X∗t −Xt =

∫ t−

αn−1

h (t− s) d(Z∗s − Zs) +

∫ αn−1

0

h (t− s) dZ∗s +R∗ (t)− f (t− αn−1) .

(5.77)

Applying (5.27) gives∣∣∣∣∫ αn−1

0

h (t− s) dZ∗s +R∗ (t)− f (t− αn−1)

∣∣∣∣ ≤ 2f (t− αn−1) . (5.78)

Define for n ∈ N

τ ∗n = inf
{
t > αn−1 : Z̃ [t, t] = 1

}
. (5.79)

We claim that τ ∗n ≥ τn almost surely. Notice that A∗t ≥ At for
t ∈ (αn−1, τ

∗
n]. For all t ∈ (αn−1, (αn−1 +D) ∧ τ ∗n] we combine (5.27)

and (5.5) to see that

0 = λt ≤ λ∗t ≤ cψ + Lf(t− αn−1) ≤ F (t− αn−1) (5.80)

which shows that τ ∗n ≥ τn ∧ (αn−1 +D) . For all t in the (possibly empty)
interval (αn−1 +D, τ ∗n] we have

X∗t =

∫ t−

αn−1

h (t− s) dZ∗s +

∫ αn−1

0

h (t− s) dZ∗s +R∗t (5.81)

≥
∫ t−

αn−1

h (t− s) dZ∗s − f (t− αn−1) (5.82)

= Xt. (5.83)

Since ψ is increasing we get the following inequality

ψ (Xt, At) ≤ ψ (X∗t , A
∗
t ) for all t ∈ (αn−1 +D, τ ∗n]. (5.84)
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If A∗t > At the definition of τ ∗n gives that A∗t , At ≥ t − αn−1. Therefore
(5.77) and (5.78) give

ψ (X∗t , A
∗
t )− ψ (Xt, At) ≤ L (X∗t −Xt) + cψg (t− αn−1) (5.85)

≤ 2Lf (t− αn−1) + cψg (t− αn−1) (5.86)

≤ F (t− αn−1) . (5.87)

Likewise, if A∗t = At we have

ψ (X∗t , A
∗
t )− ψ (Xt, At) ≤ L (X∗t −Xt) . (5.88)

By definition of τn, this implies τ ∗n ≥ τn. Thus, in between two consecutive
τ stopping times, the two Hawkes processes agree.

Proof of Theorem 5.3.5
The results (5.34),(5.35) are straightforward consequences of the strong
Markov Property and [5] lemma 1. The density of the conditional distri-
bution τn − αn−1|τn <∞ is proportional to

F (t) exp

(
−
∫ t

0

F (s) ds

)
≤ F (t) (5.89)

which shows the desired moment results for the distribution .

Proof of Theorem 5.3.6
To structure the proof, we discuss the following four variables, in written
order

1. αI0 in the (AD) setup

2. αn in the (AD) setup

3. αI0 in the (O) setup

4. αn in the (O) setup

1. To study αI0, we introduce the process Mi for i ≥ 0 given by

Mi = inf
{
m ≥ 0 : θi−jN (−1, 0] ≤ γ (j +m) , j ≥ 0

}
(5.90)

= inf
{
m ≥ 0 : θkN (−1, 0] ≤ γ (i+m− k) , k ≤ i

}
. (5.91)
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5 Renewal Time Points For Hawkes Processes

In words, the value Mi is the minimum number of units the function
j 7→ γ (i+ j) must be shifted before it bounds πK on all intervals
(i− j − 1, i− j], j ∈ N0, see fig. 5.2.

ii− 1i− 2i− 3i− 4
Mi

s 7→ γ (i+Mi − s)

πK(i− j − 1, i− j]

Figure 5.2: An illustration of Mi.

We see that α0 = inf {i > 0 : Mi = 0} i.e α0 is the first time Mi hits
0. Notice that M0 is a well-defined random variable by a Borel-Cantelli
argument. Observe also that M is in fact an RE-process with update
scheme

Mi = (Mi−1 − 1) ∨ dγ−1 (N (i− 1, i])e. (5.92)

By corollary 7.4.3 M has a unique invariant distribution µ and since

N
d
= θ1N it follows that M0

d
= M1 ∼ µ. The result follows from corol-

lary 7.4.3 part 2.

2. Notice that αn−τn has p’th-moment / exponential moment iff αn−dτne
has as well. For any realization such that τn <∞ we may write

αn − dτne = inf
{
i > 0 : θi−j+dτn−αn−1eNαn−1+ (−1, 0] ≤ γ (j) , j = 0, . . . , i+ dτn − αn−1e − 1

}
.

(5.93)

We now proceed as previously. Define M ′
i for i ≥ 0 as the process

M ′
i = inf

{
m ≥ 0 : θi−j+dτn−αn−1eNαn−1+ (−1, 0] ≤ γ (j +m) , j = 0, . . . , i+ dτn − αn−1e − 1

}
.

(5.94)

Notice that αn − dτne is the first time M ′
i hits 0. From theorem 7.3.1 we

have π↑λ,λαn−1+ |= π↓λ,λαn−1+ and thus τn−αn−1 is independent of Nαn−1+. Observe
also that M ′ is an RE-process defined by

M ′
i = (M ′

i−1 − 1) ∨ dγ−1
(
Ndτne+ (i− 1, i]

)
e. (5.95)
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To study the distribution of M ′
0 note that it may be described as M ′′

αn−dτne
where M ′′ is another RE-process defined by M ′′

0 = 0 and

M ′′
i = (M ′′

i−1 − 1) ∨ dγ−1
(
Nαn−1+ (i− 1, i]

)
e. (5.96)

Let P ∗ be the conditional distribution of dτn − αn−1e given τn <∞. If φ
is a positive increasing function and

(
P k
x

)
is the k-step Markov kernel for

M ′′ then

E (φ (M ′
0) |τn <∞) =

∫ ∫
φ (y) dP k

0 (y) dP ∗ (k) (5.97)

≤
∫
φ (y)µ (y) +

∫ ∫
φ (y) d

∣∣P k
0 − µ

∣∣ (y) dP ∗ (k) .

(5.98)

From theorem 14.1.4 [34] it follows that if µ (φ) < ∞, then the second
term above is finite. The desired result now follows from theorem 5.3.5
and corollary 7.4.3.

3. We now analyze αI0 under setup (O). Here we utilize that the law
of the stationary Linear Hawkes process Z0 has a cluster process repre-
sentation which we now describe; Let N be a Poisson process on R with
intensity cψ and for i ∈ Z let (Zi) be independent Hawkes processes with
weight/rate h+, x 7→ Lx and initialized with a single jump at t = 0 (i.e.
Zi [0, 0] = 1 and Ri

t = h+ (t)). Define now

Z(A) =
∑
i∈Z

Ci (A) (5.99)

where Ci is a random measure given by Ci (A) = Zi (A− si) and si is the
i’th jump of N for i ∈ Z (with convention s1, s2, ... being the first jumps
after t = 0, and s0, s−1, ... being the most recent jumps before t = 0). Then
Z is distributed as the stationary linear Hawkes process with weight/rate
h+/ψL. See [11],[41] for more details on this construction. It follows that

αI0
D
= α̃0 where

α̃0 = inf{i > 0 :

∣∣∣∣∫ i

−∞
h+ (t− s) dZs

∣∣∣∣ ≤ f(t− i)− r(t− i),∀t > i}.

(5.100)
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5 Renewal Time Points For Hawkes Processes

We shall use the following fact, coming from section 1.1 in [41] and
the proof of proposition 1.2 in same refrence: We may assume that the
clusters Z i are constructed s.t. there is i.i.d. (Wi, Xi,j), also independent

of N such that Wi |= Xi,j, Xi,j ∼ ‖h+‖−1
L1 h+(t) dt and

Zi(R) = Zi(−∞, Yi] = Wi, (5.101)

where Yi =
∑Wi

j=1Xi,j and W1 is distributed as the total progeny of a Pois-

son branching process, with mean offspring ‖h+‖−1
L1 .

By the Otter-Dwass formula (see [16]) The p.m.f. of W1 is

pW (n) =
nn−1

‖h+‖L1 n!
en(−‖h+‖L1+ln‖h+‖L1). (5.102)

The stirling approximation for n! gives that

E exp (cW ) <∞⇐⇒ c ≤ ch = ‖h+‖L1 − ln+ ‖h+‖L1 − 1 (5.103)

If assumption 5.3 (B) holds, take any c0 > 1. Otherwise, let c0 > 1 be a
constant satisfying γ (t) ≥ c0 (p+ 1) c−1

h ln+ t for t sufficiently large. De-
fine γ∗ (t) = c−1

0 γ
(
c−1

0 t− 1
)

when c−1
0 t ≥ 1 and γ∗ (t) = 0 otherwise.

With Nt := N [0, t] for t > 0 and −N(t, 0) otherwise we define

Y i =
Ni

max
l=Ni−1+1

{Yl}, W i =

Ni∑
l=Ni−1+1

Wl, (5.104)

α0 = inf{i > 0 : Y i−j ≤
(
1− c−1

0

)
j, W i−j ≤ γ∗ (j) , j ≥ 0}. (5.105)

We claim that α̃0 ≤ α0. This follows from the calculations for t > α0∫ α0

−∞
h+(t− s)dZs =

∞∑
j=0

∫ α0−j

α0−j−1

∫ t

s

h+(t− u)dCNs(u)dNs (5.106)

Note that (5.101) implies that for all clusters CNs with s ∈ (α0 − j − 1, α0 − j]
we have Supp (CNs) ⊂

[
s, s+ Y α0−j

]
. By the inequalities obtained from

the definition of α0 we have
[
s, s+ Y α0−j

]
⊂
[
s, α0 − c−1

0 j
]
. Since h+ ≤ h

and h is decreasing we conclude that h (t− u) ≤ h
(
t− α0 + c−1

0 j
)

for
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all u ∈ Supp (CNs) , s ∈ (α0 − j − 1, α0 − j] , t > α0. Inserting this into
(5.106) gives∫ α0

−∞
h+(t− s)dZs ≤

∞∑
j=0

h(t− α0 + c−1
0 j)

∫ α0−j

α0−j−1

CNs[s, α0 − c−1
0 j]dNs.

(5.107)

≤
∞∑
j=0

h(t− α0 + c−1
0 j)W α0−j (5.108)

Again, by the inequalities defining α0 we get∫ α0

−∞
h+(t− s)dZs ≤

∫ ∞
0

h(t− α0 + c−1
0 s)γ∗(s+ 1)ds+ h(t− α0)γ

∗(0)

(5.109)

≤
∫ ∞

0

h(t− α0 + s)γ(s+ 1)ds+ h(t− α0)γ(0)

(5.110)

≤ f(t− α0)− r(t− α0) (5.111)

which proves the claim.
To describe the moment of α0 define

Mi = inf
{
m ≥ 0 : Y i−j ≤

(
1− c−1

0

)
(j +m) , W i−j ≤ γ∗ (j +m) , j ≥ 0

}
.

(5.112)

Indeed, M0 <∞ by a Borel-Cantelli argument. As before α0 is the return
time to 0 for the RE-process Mi with update-variables

d
((

1− c−1
0

)−1
Y i

)
∨ (γ∗)−1 (W i

)
e

and started at M0, carrying the invariant distribution of M . Under as-

sumption 5.3 (A) we have (γ∗)−1 (t) ≤ exp
(
ch (p+ 1)−1 t

)
for t large. It

follows that the update variables have (p+ 1)th moment and the starting
distribution has p’th moment, so it follows from corollary 7.4.3 that α0 has
p’th moment. Likewise, under assumption 5.3 (B) the update variables
have exponential moment and the starting distribution has exponential
moment as well. It follows from corollary 7.4.3 that α0 has exponential
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5 Renewal Time Points For Hawkes Processes

moment.

4. We now analyze αn under setup (O). To outline the similarity we
shall re-use some of the notation from the previous proof, but for slightly
modified random variables.

Notice that Zn[t, t] is dominated by the Hawkes process Z ′ with the
same weight function h+, rate function ψL and initial signal
R′t = f(t−btc) +h+(t− (τn − αn−1)). The law of Z ′ has a cluster process
representation given as follows:
Let N be an inhomogeneous Poisson process with intensity cψ+Lf(t−btc),
and let ξ ∼ (τn−αn−1) | (τn <∞). Define Zi as before, and let Ci, C

ξ be
the mutually independent clusters given by Ci(A) = Zi(A − si) where si
is the ith jump of N for i ∈ N, and Cξ(A) = Z−1(A− ξ). Define

Z(A) =
∞∑
i=0

Ci(A) + Cξ(A), A ∈ BR+
. (5.113)

Then Z
D
= Z ′ and hence also

(αn − αn−1 | τn <∞) (5.114)

D

≤ inf

{
i > dξe :

∣∣∣∣∫ i

0

h+ (t− s) dZs

∣∣∣∣ ≤ f (t− i, i− 1)− r(t− i),∀t > i, Z [0, i] ≤
∫ i

0

γ (s+ 1) ds

}
(5.115)

where
D
≤ denotes inequality in the usual stochastic order(see [3] chap-

ter 2). As before, we have i.i.d. variables (Wi, Xi,j), (W
ξ, Xξ

j ) and also

independent of N, ξ such that Xi,j ∼ ‖h+‖−1
L1 h(t) dt, Wi ∼ Z0(R) and

Zi(R) = Zi(−∞, Yi] = Wi, ∀i ∈ N (5.116)

Z−1(R) = Z−1(−∞, Y ξ] = W ξ (5.117)

where Yi =
∑Wi

j=1Xi,j and Y ξ =
∑W ξ

j=1X
ξ
j . Define now

Y i =
Ni

max
l=Ni−1+1

{Yl}, W i =

Ni∑
l=Ni−1+1

Wl (5.118)
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and notice that (Y i,W i) for i ∈ N is an i.i.d. sequence. Define now c0, γ
∗

as previously and set

ζ = inf{i > 0 : Y i+dξe−j ≤
(
1− c−10

)
j, W i+dξe−j ≤ γ∗ (j) ∀j ∈ {0, ..., i+ dξe − 1} \ {i},

(5.119)

Y dξe ∨ Y ξ ≤
(
1− c−10

)
i, W dξe +W ξ ≤ γ∗ (i)}. (5.120)

Define now the random time ζ s.t. ζ + dξe is equal to (5.115). We claim
that ζ ≤ ζ. To prove this, we apply similar arguments as in the part of
3) where we showed that
α̃0 ≤ α0. By construction of Y i’s and ζ, it holds for all
s ∈

(
ζ + [ξ]− j − 1, ζ + dξe − j

)
that Supp (CNs) ⊂

(
−∞, ζ + dξe − c−1

0 j
]

and this implies∫ dξe+ζ
0

h+(t− s)dZs (5.121)

≤
dξe+ζ−1∑
j=0,j 6=ζ

h(t−
(
dξe+ ζ

)
+ c−1

0 j)W dξe+ζ−j (5.122)

+h(t−
(
dξe+ ζ

)
+ c−1

0 ζ)
(
W dξe +W ξ

)
≤
∫ dξe+ζ−1

0

h(t−
(
dξe+ ζ

)
+ c−1

0 s)γ∗(s+ 1)ds+ h(t−
(
dξe+ ζ

)
)γ∗(0)

(5.123)

≤f(t−
(
dξe+ ζ

)
, dξe+ ζ − 1)− r(t− (ζ + dξe)). (5.124)

Likewise, the support constraint on CNs mentioned above must imply that

Z
(
0, ζ + dξe

]
=

ζ+[ξ]−1∑
j=0

Wj ≤
ζ+dξe−1∑
j=0

γ∗ (j) ≤
∫ ζ+dξe−1

0

γ (s+ 1) ds.

(5.125)

This proves our claim. To analyze ζ define

Mi = inf
{
m ≥ 0 : Y i−j ≤

(
1− c−10

)
(j +m) , W i−j ≤ γ∗ (j +m) , j = 0, ..., i− 1

}
.

(5.126)

This is an RE-process started at M0 = 0 and with update variables
dmax{(γ∗)−1(W i), (1 − c−1

0 )−1Y i}e. As in the proof of 2) it follows that
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5 Renewal Time Points For Hawkes Processes

M[ξ]−1 has p’th moment, and under assumption 5.3(B) it has exponential
moment. The same therefore holds for the variable

M ′
0 := (M[ξ]−1 − 1) ∨ dmax{(γ∗)−1(W [ξ] +W ξ), (1− c−1

0 )−1Y [ξ] ∨ Y ξ}e.
(5.127)

Now realize that ζ is the return time to 0 for the RE-process with update
variables

d
((

1− c−1
0

)−1
Y i

)
∨ (γ∗)−1(W i)e (5.128)

and started at M ′
0. The desired result now follows from corollary 7.4.3

Proof of Theorem 5.3.2

1. To prove that ρ is a F∗ stopping time, we notice that

(ρ ≤ t) = (αη ≤ t−D) =

bt−Dc⋃
i=0

(αη = i). (5.129)

So it suffices to show (αη = i) ∈ F∗i . Indeed, this is true since

(αη = i) =
∞⋃
k=0

(αk = i) ∩
(∫ ∞

i

1{z ≤ F (s)}dπ↑λ,λ
)
. (5.130)

2. By applying theorem 7.3.1 for each fixed t we see that π↓λ,λ is

an F∗t -PRM. The Strong Markov Property gives that π↓λ,λρ+ is a PRM in-
dependent of F∗ρ . Notice now that Z+, λ+t := λρ+t is exactly the point

process and intensity of the ADHP driven by π↓λ,λρ+ with initial age D and

signal R : t 7→ −f (t+D). That is, Zρ+ is entirely generated by π↓λ,λρ+ and
hence Zρ+ |= F∗ρ . Notice that Zρ+ = Z∗ρ+ by proposition 5.3.4 and that
Z∗|(0,ρ] ⊂ F∗ρ . It now follows that Z∗ρ+ |= Z∗|(0,ρ].

3. We introduce an i.i.d. sequence of random variables (βi) with
distribution β1 ∼ α1 − α0|τ1 − α0 < ∞. We then introduce another
sequence of random variables given by

β̃i =

{
αi − αi−1 i ≤ η

βi i > η.
(5.131)
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Recall that (αj − αj−1)1≤j≤i are conditionally i.i.d. given τi < ∞. From

this we see that β̃ is an i.i.d. sequence of variables distributed as β1, and
which is also independent of η. We may now write

αη − α0 =

η∑
i=1

αi − αi−1 (5.132)

=

η∑
i=1

β̃i. (5.133)

From theorem 5.3.5 1) it follows that η is distributed as a negative bino-
mial, and in particular it has exponential moment. To study the distri-
bution of β̃1, we use that

α1 − α0 = (α1 − τ1) + (τ1 − α0) . (5.134)

Theorem 5.3.5 and theorem 5.3.6 give that β has p’th moment so the
desired result follows from theorem 5.2, chapter 1 [21]. Under assump-
tion 5.3(B), one may conclude the proof by writing for small c > 0

E exp(cαη) = E exp(cα0) E
η∏
i=0

exp(cβ̃i) (5.135)

= E exp(cα0) E

[
E

(
η∏
i=0

exp(cβ̃i)
∣∣ η)] (5.136)

= E exp(cα0) E
(
E exp(cβ̃1)

)η
. (5.137)

Since η has exponential moment, the above expression is finite for small
c.

5.7.3 Proofs of Section 3.2 Results

123
Proof of Proposition 5.4.1
The proof is a coupling argument. Consider the Hawkes process Z∗ driven
by a fixed PRM π and started with R : t 7→ f (t+D) , A0 = D. Then
assumption 5.2 is satisfied with α0 = 0, r = −f. Thus, defining Φ as in
(5.39) we have a coupling in the sense that (θnZ∗)|(−D,0] = H∗ (Φn) for
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5 Renewal Time Points For Hawkes Processes

all n > ρ0. Since P̃ is the invariant distribution of Φ the markov chain

converges in total variation and hence also H∗ (Φn) ⇒ H∗
(
P̃
)
. On the

other hand, we have by the coupling property of ZI that almost surely,
there is a random integer n0 s.t.
(θnZ∗)|(−D,0] =

(
θnZI

)
|(−D,0]

for all n ≥ n0. It follows that

H∗ (Φn) = (θnZ∗)(−D,0] ⇒ ZI
(−D,0] and the desired result follows from

uniqueness of limits.
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Chapter 6

Mean-field Limit and
Propagation of Chaos

In this chapter, we study a mean-field setup and associated mean-field lim-
its. More precisely, we consider N interacting units which are organized
within K classes of populations. Each unit belongs to one of these classes,
and any two units within the same class k are assumed to be similar,
k = 1, . . . ,K. This means that they have the same rate function ψk,
memory process Xk and initial signal Rk, and the weight function de-
scribing the influence of any unit belonging to another class l is given by
N−1hkl. However, each unit still has its own age process.

In this setup we establish a limiting distribution for a large scale net-
work,
N → ∞. Let Nk be the number of units in class k with proportion
Nk/N , and assume limN→∞Nk/N = pk > 0. We index the jth unit
within class k by Zkj, k = 1, . . . ,K, j = 1, . . . , Nk. It is sensible to
assume that small contributions from unit Z lj to the memory process
Xk of the kth class disappear in the large-scale dynamics, meaning that
N−1

∑Nl
j=1

∫ t−
0 hkl(t− s)Z lj(ds) ≈ pl

∫ t
0 hkl(t− s)dEZ

l1(s) for large N , for

any 1 ≤ l ≤ K. Therefore, if a limiting point process
(
Zkj
)
j∈N exists, we

expect that any Zkj, k ≤ K, j ≥ 1 should have intensity

λkjt = ψk
(
xkt , A

kj
t

)
,

where Akj is the age process of Zkj, and where the process xkt is deter-



6 Mean-field Limit and Propagation of Chaos

ministic, given by

xkt =
K∑
l=1

pl

∫ t

0

hkl (t− s) dEZ l1(s) + rkt ,

where rkt is a suitable limit of the initial processes in population k. In
theorem 6.2.2, we discuss criteria under which such a system exists. Our
second main theorem, theorem 6.3.1, shows that this system will indeed
be a limit process for the generalized Hawkes processes for N → ∞.
We also discuss in lemma 6.3.2 how robust the system is to adjusting
the weight functions. Not only is this robustness a good model feature
in itself, but it also allows approximation of an arbitrary age dependent
Hawkes process, using weight functions with better features. Examples
are weight functions given by Erlang densities or exponential polynomials
which induce Markovian systems, see [13].

6.1 Setup in This Chapter

In addition to the fundamental assumptions, we introduce the following
specifications for the mean-field setup, which will be used throughout this
section. We partition the indices of individual units into K ∈ N different
populations, where K > 0. More precisely, for each fixed total population
size N ∈ N,

Nk := Nk (N) := # {i ≤ N : i in population k}

will denote the number of units belonging to population k, 1 ≤ k ≤ K,
and

N = N1 + . . .+NK.

We assume that each population represents an asymptotic part of all units,
i.e., there exists pk > 0 such that

Nk

N

N→∞→ pk.

For a fixed N ∈ N, we re-index the N -dimensional age dependent Hawkes
process of (2.15) as (

Zkj
)
k≤K,j≤Nk

,
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where the superscript kj denotes the jth unit in population k. The weight
function from the ith unit of population l to the jth unit of population k
is given by N−1hkl. Moreover, all units within the same population have
the same spiking rate ψk. By taking L, cψ larger, we can and will assume
that (4.2) and (4.3) hold in the chapter as well. Finally, we assume that
all units in population k have the same initial signal Rk, and that the
initial ages are interchangeable in groups and mutually independent in
and between groups. With this set of parameters, the age dependent
Hawkes process (Z,X,A) from (2.15) defined on t ∈ R+ becomes

Zkj
t =

∫ t

0

∫ ∞
0

1
{
z ≤ ψk

(
Xk
s , A

kj
s

)}
dπkj (ds, dz) , j ≤ Nk, k ≤ K, (6.1)

Xk
t =

1

N

K∑
l=1

Nl∑
j=1

∫ t−

0

hkl (t− s)Z lj(ds) +Rk
t , k ≤ K,

where Akj is the age process of Zkj, starting from Akj
0 at time t = 0.

Sometimes, to explicitly indicate the dependency on N, we add N to the
superscript and write ZNki

t , XNk and ANki.

Model Observations

1. Suppose that the initial ages (Ai
0)i∈N are exchangeable. Then the

symmetry of the system gives interchangeability between units within

the same population, i.e., Zkj L= Zki for i, j ≤ Nk, k ≤ K.

2. In the mean-field setup, all units within a population k share the
same memory process Xk.

6.2 The Limit System

We propose a limit system for N → ∞. To pursue this goal, take finite
variation functions t 7→ αkt , locally bounded functions t 7→ βkt , and PRMs
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πk for k ≤ K, and consider the stochastic convolution equation

φkt =

∫ t

0

Eψk
(
xks , A

k
s

)
ds,

xkt =
K∑
l=1

pl

∫ t

0

hkl (t− s) dαls + βkt , (6.2)

Ak
t − Ak

0 = t−
∫ t−

0

∫ ∞
0

Ak
s1
{
z ≤ ψk

(
xks , A

k
s

)}
πk (ds, dz) ,

with unknown (φ, x,A) =
(
φk, xk, Ak

)
k≤K. Notice that only A is stochas-

tic. Introducing

Zk
t =

∫ t

0

∫ ∞
0

1
{
z ≤ ψk

(
xks , A

k
s

)}
πk (ds, dz) ,

we can interpret Ak as age process of Zk. Hence, in the limit, the network
activity can be resumed via the deterministic quantities xk, 1 ≤ k ≤ K,
the only remaining randomness is in the individual age processes. Finally,
notice that φ depends on the law of A.

We are motivated by what for the moment is a heuristic.

N−1
Nk∑
j=1

ZNkj ≈ pkEZk

for large N, where (Z1, . . . , ZK) denotes the limit process such that each
Zk describes the jump activity of a typical unit belonging to population
k. This relation invites the idea that the memory process for N → ∞,
t 7→ xt should satisfy the integral system (6.2) with φkt = αkt = EZk

t and
βkt = ERk1

t . This motivates the following result.

Lemma 6.2.1.
Let βt =

(
βkt
)
k≤K be measurable and locally bounded. There is a unique

function α such that α = φ, where (φ, x,A) is the solution to (6.2). More-
over, φ is continuous and x is bounded on [0, T ] by a constant C which
depends on h :=

∑
k,j |hkj|, ‖β‖T , T and L. ◦

The proof is given in the proof section succeeding this one. Once this
lemma is established, we can ensure existence of the limit process.
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Theorem 6.2.2.
Let βt =

(
βkt
)
k≤K be measurable and locally bounded. There is a unique

solution (Z,A) to the integral equation

Zk
t =

∫ t

0

∫ ∞
0

1

{
z ≤ ψk

(
K∑
l=1

pl

∫ s

0

hkl (s− u) dEZ l
u + βks , A

k
s

)}
πk (ds, dz) , 1 ≤ k ≤ K,

where Ak is the age process corresponding to Zk, initialized at Ak
0.

◦

Proof. Let (φ, x,A)k≤K be the tuple given in Lemma 6.2.1. Define the
counting process

Zk
t :=

∫ t

0

∫ ∞
0

1
{
z ≤ ψk

(
xks , A

k
s

)}
πk (ds, dz) .

It is clear thatAk is the age process of Zk, and since dEZk
t = Eψk

(
xkt , A

k
t

)
dt,

Zk will satisfy the desired identity. For uniqueness, consider another so-

lution
(
Z̃k, Ãk

)
k≤K

, which satisfies the same identity :

Z̃k
t =

∫ t

0

∫ ∞
0

1

{
z ≤ ψk

( K∑
l=1

pl

∫ s

0

hkl (s− u) dEZ̃ l
u + βks , Ã

k
s

)}
πk (ds, dz) .

Defining x̃kt =
∑K

l=1 pl
∫ t

0 hkl (t− s) dEZ̃
l
u+β

k
t and φ̃kt =

∫ t
0 Eψ

k
(
x̃ks , Ã

k
s

)
ds,

we note that EZ̃k
t = φ̃kt . Thus, if we insert α = φ̃ in (6.2),

(
φ̃, x̃, Ã

)
is a solution, and hence the uniqueness part of Lemma 6.2.1 gives that(
φ̃, x̃, Ã

)
= (φ, x,A) and thus also Z = Z̃.

6.3 Large Network Asymptotics and Weight
Approximations

In this section we couple the N -dimensional Hawkes process with the limit
system proposed in the previous section. This coupling implies that the
finite-dimensional system converges to the limit system. The result is
traditionally named Propagation of Chaos, a typical result within mean-
field theory. Specifically for Hawkes processes, there are several variants
of this result. Some of the recent results may be found in [7], [12] and in
[13].
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6 Mean-field Limit and Propagation of Chaos

Framework for Propagation of Chaos

We will first introduce a set of assumptions.

Assumption 6.1.
123• We are given, for each 1 ≤ k ≤ K, a sequence

(
RNk

)
N∈N of initial

signals with supk≤K,N∈N
∥∥ERNk

∥∥
t
< ∞, such that there is a locally

bounded function t 7→ rkt with∫ t

0

E
∣∣RNk

s − rks
∣∣ ds→ 0 as N →∞, (6.3)

for all t ≥ 0.

• The initial ages Aki
0 , 1 ≤ k ≤ K, 1 ≤ i <∞ are i.i.d.

• The weight functions hNkl : R+ → R satisfy hNkl → hkl as N → ∞
locally in L1, where hkl ∈ L2

loc for all 1 ≤ k, l ≤ K.

◦

Consider an i.i.d. sequence of driving PRMs πkj, 1 ≤ k ≤ K, j ≥ 1.
Define for each N ∈ N, the N -dimensional Hawkes process(

ZN , XN , AN
)

=
(
ZNki, XNk, ANki

)
k≤K,i≤Nk

,

given by (6.1), driven by (πkj), with weight functions
(
N−1hNkl

)
, spiking

rate
(
ψk
)

and initial processes
(
RNk

)
.

Applying theorem 6.2.2 with weight functions (hkl) and initial func-
tions βk = rk, we obtain, for any 1 ≤ k ≤ K and for all i ∈ N, a solution
(Zki, Xk, Aki) to the equation

Zki
t =

∫ t

0

∫ ∞
0

1

{
z ≤ ψk

(
K∑
l=1

pl

∫ s

0

hkl (s− u) dEZ lj
u + rks , A

ki
s

)}
πki (ds, dz) ,

1 ≤ k ≤ K, i ∈ N, driven by the same sequence of PRMs.

Theorem 6.3.1 (Propagation of Chaos).
Consider the framework described above and grant Assumptions 6.1. Then
for all t ≥ 0,

E
∣∣d (ZNki

t − Zki
t

)∣∣→ 0, for N →∞, (6.4)
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6.4 The Mean-Field Limit In the Case of a Hard Refractory Period

for all k ≤ K, i ∈ N. In particular, for any finite set of indices
(k1, i1, . . . , kn, in) , we have weak convergence(

ZNk1i1, . . . , ZNknin
)
t≥0

wk→
(
Zk1i1, . . . , Zknin

)
t≥0

as N → ∞ (in D(R+,Rn
+), endowed with the topology of locally-uniform

convergence). ◦

To prove this theorem we shall need the following lemma.

Lemma 6.3.2.
Let (hkl)1≤k,l≤K, (h̃kl)1≤k,l≤K be sets included in a family E of real-valued
functions defined on R+ which is uniformly integrable on [0, T ]. Define
(Z,X,A), (Z̃, X̃, Ã) as the N−dimensional age dependent Hawkes pro-
cess with weight functions (N−1hkl)1≤k,l≤K, (N−1h̃kl)1≤k,l≤K, rate functions(
ψk
)
k≤K, and with initial conditions A0, Rk. There exists C > 0 depend-

ing on the family E, on T, L,K and on supk≤K
∥∥ERk

∥∥
T

(but not on N)
such that

K∑
k=1

E
∣∣∣d(Zk1

t − Z̃k1
t

)∣∣∣ ≤ CT

K∑
k,l=1

∫ t

0

∣∣∣hkl − h̃kl∣∣∣ (s) ds,
for all t ≤ T. ◦

The proofs of theorem 6.3.1 and lemma 6.3.2 may be found in the next
section.

Remark 6.3.3.
The result shows that finitely many units will be asymptotically indepen-
dent for N →∞. ◦

6.4 The Mean-Field Limit In the Case of a
Hard Refractory Period

In this section we consider the mean-field limit of age dependent Hawkes
processes with one single population (K = 1) and a weight function given
by an Erlang kernel as in Example 4.2.2, that is,

h(t) = be−νt
tn

n!
,
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6 Mean-field Limit and Propagation of Chaos

for some fixed constants b ∈ R, ν > 0, n ∈ N. Throughout this section we
suppose a hard refractory period of length δ after a jump where no new
jumps can occur as given in the following assumption.

Assumption 6.2.

ψ(x, a) = f(x)1{a ≥ δ}.
◦

We start by rewriting the limit system in this frame. Recall that

φt =

∫ t

0

E(ψ(xs, As))ds =

∫ t

0

λ̄sds, (6.5)

where
λ̄t = E(ψ(x

(0)
t , At))

denotes the expected number of jumps up to time t of a typical unit in
the limit system. As in Section 4.5 above, we write x(0) := x, and we add
auxiliary variables x(i), 1 ≤ i ≤ n to obtain the system

At = A0 + t−
∫ t

0

∫
R+

As1{z ≤ ψ(x0
s, As)}π(ds, dz)

together with

dx
(0)
t = −νx(0)

t dt+ x
(1)
t dt, (6.6)

...

dx
(n−1)
t = −νx(n−1)

t dt+ x
(n)
t dt,

dx
(n)
t = −νx(n)

t dt+ bdφt = −νx(n)
t dt+ bλ̄tdt.

Let us now study the age process of this limit system:
Write τt = sup{0 ≤ s ≤ t : ∆As 6= 0} for the last jump time of the process
before time t, where by convention, sup ∅ := 0. Then obviously,

At+ = (t− τt)1{τt > 0}+ (A0 + t)1{τt = 0}.

Due to Assumption 6.2, we have the following
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Proposition 6.4.1.

L(τt)(dz) = E(e−
∫ t
0 f(x

(0)
s )1{A0+s≥δ}ds)δ0(dz) + f(x(0)z )pze

−
∫ t
z+δ f(x

(0)
s )ds

1{0 < z < t}dz,

where pt = P (At ≥ δ) is given by

pt = E
(
1{A0 ≥ δ − t}e−

∫ t
(δ−A0)∨0

f(x
(0)
s )ds

)
+

∫ t−δ

0

f(x(0)
s )pse

−
∫ t
s+δ

f(x
(0)
u )duds

=

∫ ∞
(δ−t)∨0

µ0(da)e−
∫ t
(δ−a)∨0 f(x

(0)
s )ds +

∫ t−δ

0

f(x(0)
s )pse

−
∫ t
s+δ

f(x
(0)
u )duds,

where A0 ∼ µ0(da). ◦

In particular, the above representation shows that, even starting from
a non-smooth initial trajectory, pt is eventually smooth.

Corollary 6.4.2.
For any starting law µ0(da), t 7→ pt is continuous on (δ,∞], and thus,
taking into account (6.6), C1((2δ,∞[,R), solving

dpt = −f(x
(0)
t )ptdt+ f(x

(0)
t−δ)pt−δdt, for all t > 2δ.

◦

If the starting law is smooth, we can say more.

Corollary 6.4.3.
If µ0(da) = µ0(a)da, with µ0 ∈ C(R,R+), then for all t < δ,

pt =

∫ ∞
δ−t

µ0(a)e−
∫ t
(δ−a)∨0 f(x

(0)
s )dsda

is continuous and thus, taking into account (6.6), C1([0, δ),R). In partic-
ular, on [0, δ), t 7→ pt solves

dpt = µ0(δ − t)− f(x
(0)
t )ptdt.

By induction, this implies that t 7→ pt is continuous on R+ and C1 on
(δ,∞), with

dpt = −f(x
(0)
t )ptdt+ f(x

(0)
t−δ)pt−δdt, for all t > δ.
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6 Mean-field Limit and Propagation of Chaos

Moreover, at t = δ, writing ṗ := d
dtpt,

ṗδ− = µ0(0)− f(x
(0)
δ )pδ and ṗδ+ = −f(x

(0)
δ )pδ + f(x

(0)
0 )p0.

◦

Let us now look for possible stationary solutions of (6.6). At equilib-
rium, we necessarily have that

x(0) ≡ x∗∗

for a given value x∗∗ ∈ R. It follows that At is a renewal process with
dynamics

dAt+ = dt− At

∫
R+

1{z≤ψ(x∗∗,At)}π(dt, dz). (6.7)

A is recurrent in the sense of Harris if it comes back to 0 infinitely often
almost surely. This happens if

∫∞
0 ψ(x∗∗, At)dt =∞ almost surely, which

is granted by the following condition.

Assumption 6.3.
For all x, there exists r(x) ≥ 0 such that ψ(x, a) is lower bounded for all
a ≥ r(x). ◦

The stationary distribution of (6.7) is absolutely continuous with re-
spect to the Lebesgue measure on R+, having the density (see Proposition
21 of [17])

gx∗∗(a) = κe−
∫ a
0
ψ(x∗∗,z)dz

on R+, where κ is chosen such that
∫∞

0 gx∗∗(a)da = 1. Recall that λ̄t = dφt
dt

denotes the (expected) jump rate of the limit system at time t. Then at
equilibrium, the total jump rate is constant and given by λ̄t = λ̄. From
(6.5) we get that

λ̄ = κ

∫ ∞
0

ψ(x∗∗, a)e−
∫ a
0
ψ(x∗∗,z)dzda = κ,

where we have used the change of variables

y =

∫ a

0

ψ(x∗∗, z)dz, dy = ψ(x∗∗, a)da.
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As a consequence,
λ̄ = κ

implying that at equilibrium, the jump rate of the system is solution of

1

λ̄
=

∫ ∞
0

exp

(
−
∫ a

0

ψ

(
b

νn+1
λ̄, z

)
dz

)
da. (6.8)

Here we have used that at equilibrium

x∗∗ = x(0) =
1

ν
x(1) = . . . =

b

νn+1
λ̄,

which follows from (6.6).

Proposition 6.4.4.
Suppose that x 7→ ψ(x, a) is strictly increasing for any fixed a ≥ 0 and
that b < 0. There exists a unique solution λ∗ to (6.8). ◦

Recall that we suppose that ψ(x, a) = f(x)1{a ≥ δ}, for some
δ > 0. We calculate the right hand side of (6.8) and obtain the fixed
point equation∫ ∞

0

exp

(
−
∫ a

0

ψ

(
b

νn+1
λ̄, z

)
dz

)
da = δ +

1

f( b
νn+1 λ̄)

=
1

λ̄
. (6.9)

More generally, for any Hawkes process with mean-field interactions,
rate function ψ(x, a) given by ψ(x, a) = f(x)1{a ≥ δ} and general weight
function h ∈ L1(R+), we obtain the fixed point equation

1

λ̄
= δ +

1

f(λ̄
∫∞

0 h(t)dt)
(6.10)

for the limit intensity. This limit intensity depends on the length of the
refractory period, we write λ̄ = λ̄(δ) to indicate this dependence.

It is then natural to study the influence of the length of the refractory
period δ on the limit intensity. If f is increasing and the system inhibitory,
that is,

∫∞
0 h(t)dt < 0, then clearly

δ 7→ λ̄(δ)

is decreasing: increasing the length of the refractory period “calms down
the system”.
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6 Mean-field Limit and Propagation of Chaos

In the excitatory case when
∫∞

0 h(t)dt > 0, to ensure that the fixed
point equation (6.8) has a solution, suppose that f is strictly increasing
and bounded from above and below, away from zero. Then the function

λ̄ 7→ 1

f(λ̄
∫∞

0 h(t)dt)

is a strictly decreasing function mapping [0,∞] onto [ 1
f(0) ,

1
f(∞) ]. Therefore,

there is exactly one fixed point solution of (6.8), and δ 7→ λ̄(δ) is again
decreasing.

6.5 Proofs of Section 6 Results

The purpose of this section is to prove lemma 6.2.1, theorem 6.3.1 and
lemma 6.3.2. To do so, we shall often make use of the convolution version
of Gronwall’s lemma, see lemma 7.2.1 in the appendix.

Proof of Lemma 6.2.1. It suffices to show that a unique solution exists on
[0, T ], for arbitrary T ≥ 0. In the following proof, C := CT will denote a
dynamic constant depending on the parameters described in the lemma. It
need not represent the same constant from line to line, nor from equation
to equation.

First we prove existence of a solution to (6.2) with φt = αt using
Picard-iteration. For n ∈ N define (φn, xn, An) =

(
φn,k, xn,k, An,k

)
k≤K as

follows. Initialize the system for n = 0 by putting(
φ0,k, x0,k, A0,k

)
≡ (0, 0, A0). For general n ∈ N, n ≥ 1, the triple (φn, xn, An)

is defined as the solution to (6.2) with α = φn−1 . Inductively it is seen

that these processes are well-defined. Recall that h =
∑K

k,l=1 |hkl| . Using
(4.2) we bound xn by

|xnt | ≤
K∑
l=1

∫ t

0

|h (t− s)| dφn−1,l
s + |βt|

≤ C

∫ t

0

|h (s)| ds+ C

∫ t

0

|h (t− s)|
∣∣xn−1
s

∣∣ ds+ |βt|.

It follows from lemma 7.2.1 that there exists a constant C > 0 which
bounds all ‖xn‖T , n ∈ N. Using this upper bound on xn, we also bound
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the difference of two consecutive solutions. Define

δnt =
K∑
k=1

∫ t

0

E
∣∣ψk (xn,ks , An,k

s

)
− ψk

(
xn−1,k
s , An−1,k

s

)∣∣ ds.
The Lipschitz property of ψ and the bound on xn yield

δn+1
t ≤ C

∫ t

0

(∣∣xn+1
s − xns

∣∣+
K∑
k=1

P
(∥∥An+1,k − An,k

∥∥
s
> 0
))

ds.

For the probability term, we note that a necessity for the age processes to
differ, is that one of their corresponding intensities catches a π-singularity
which the other one does not catch. This leads to the inequality

K∑
k=1

P
(∥∥An+1,k − An,k

∥∥
t
> 0
)

(6.11)

≤
K∑
k=1

P

(∫ t

0

∫ ∞
0

∣∣1{z ≤ ψk
(
xn+1,k
s , An+1,k

s

)}
− 1

{
z ≤ ψk

(
xn,ks , An,ks

)}∣∣ πk (ds, dz) ≥ 1

)
≤ δn+1

t , (6.12)

where the latter inequality follows by the Markov inequality. By Gron-
wall’s inequality we obtain

δn+1
t ≤ C

∫ t

0

∣∣xn+1
s − xns

∣∣ ds. (6.13)

Moreover, lemma 22 of [12] gives∫ t

0

∣∣xn+1
s − xns

∣∣ ds ≤ K∑
l=1

∫ t

0

∫ s

0

h(s− u)
∣∣d (φn,lu − φn−1,l

u

)∣∣ ds
≤
∫ t

0

h(t− s)δns ds. (6.14)

It therefore follows from lemma 7.2.1 that for all 1 ≤ k ≤ K,

∞∑
n=1

sup
t≤T
|φn+1,k
t − φn,kt | ≤

∞∑
n=1

δnT <∞.
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Thus, φn and therefore also xn converge locally-uniformly to some φ, x,
respectively. Moreover,

P
(
An
s≤T 6= An+1

s≤T i.o.
)

= P

(⋂
m∈N

⋃
n≥m

{∥∥An − An+1
∥∥
T
> 0
})

≤ lim
m→∞

∞∑
n≥m

δn+1
T = 0.

It follows that almost surely, An converges to some limit A after finitely
many iterations.

We need to show that the limit triple (φ, x,A) satisfies (6.2) with
φt = αt. Recall that x 7→ ψk (x, a) is continuous for fixed a ∈ R+. Since
An reaches its limit in finitely many iterations, and ψ is continuous in x for
fixed a, we obtain limn→∞ ψ

k
(
xnks , A

nk
s

)
exists for all s ≤ T almost surely.

By dominated convergence and (4.2), it follows that Eψk
(
xn,ks , An,k

s

)
con-

verges as well. Therefore, once again by dominated convergence,

φkt = lim
n→∞

φn,kt = lim
n→∞

∫ t

0

Eψk
(
xn,ks , An,k

s

)
ds =

∫ t

0

Eψk
(
xks , A

k
s

)
ds,

that is, φ satisfies (6.2). One shows similarly that

xkt =
K∑
l=1

lim
n→∞

∫ t

0

hkl(t− s)dφn,ls + βkt

=
K∑
l=1

lim
n→∞

∫ t

0

hkl(t− s)Eψl(xnl,s , An,l
s )ds+ βkt

=
K∑
l=1

∫ t

0

hkl(t− s)Eψl(xls, Al
s)ds+ βkt

=
K∑
l=1

∫ t

0

hkl(t− s)dφls + βkt ,

and x satisfies (6.2) as well. For the age process, notice that the càglàd
process

ε (t) =
K∑
k=1

∫ t−

0

∫ ∞
0

1
{
z = ψk

(
xks , A

k
s

)}
πk (ds, dz)
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has a compensator which is equal to zero for all t ≥ 0, almost surely,
by lemma 2.1.6. Therefore, εt = 0 for all t ≥ 0 almost surely. This
implies that with probability 1, 1

{
z ≤ ψk

(
xnks , A

k
s

)}
converges πk−a.e.

to 1
{
z ≤ ψk

(
xks , A

k
s

)}
for all k ≤ K. As a consequence,

Ak
t − Ak

0 = t− lim
n→∞

∫ t−

0

Ank
s 1

{
z ≤ ψk

(
xn,ks , Annk

s

)}
πk (ds, dz)

= t− lim
n→∞

∫ t−

0

Ak
s1
{
z ≤ ψk

(
xn,ks , Ak

s

)}
πk (ds, dz)

= t−
∫ t−

0

∫ ∞
0

Ak
s1
{
z ≤ ψk

(
xks , A

k
s

)}
πk (ds, dz) ,

where we have used dominated convergence. Since x is locally bounded,
it follows that φ is C0.

To prove uniqueness, we assume that
(
φ̃, x̃, Ã

)
also solves (6.2) with

x̃kt =
K∑
l=1

pl

∫ t

0

hkl (t− s) dφ̃ls + βkt .

Define

δt =
K∑
k=1

∫ t

0

E
∣∣∣ψk (xks , Ak

s

)
− ψk

(
x̃ks , Ã

k
s

)∣∣∣ ds.
Considerations analogous to the ones given in the proof of existence, give
that

|xt − x̃t| ≤ δt ≤ C

∫ t

0

h (t− s) δsds.

From Gronwall it follows that δ ≡ 0, and therefore also that x = x̃
on [0, T ] . From (6.2) it follows immediately φ = φ̃ and A = Ã almost
surely.

Proof of Lemma 6.3.2. Throughout this proof, C is a dynamic constant
with dependencies as declared in the theorem. Define the functions

h =
∑

k,l |hkl| , h̃ =
∑

k,l

∣∣∣h̃kl∣∣∣. First we prove that the memory processes
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E|Xt|,E|X̃t| are bounded on [0, T ] by a suitable constant C. Note that

E |Xt| ≤
K∑
l=1

(∫ t

0

h (t− s)Eψl
(
X l
s, A

l
s

)
ds+ E|Rl

t|
)

≤ C

∫ t

0

h (t− s)E |Xs| ds+ C

∫ t

0

h (s) ds+ E|Rt|.

Since E is uniformly integrable, the direct sum
{∑K

k,l=1 |fkl| , fkl ∈ E
}

is

uniformly integrable as well. Thus, there exists b > 0 satisfying

∫ T

0

K∑
k,l=1

|fkl| (s)1


K∑

k,l=1

|fkl| (s) > b

 ds < 2−1 (6.15)

for all choices of (fkl) ⊂ E . It follows from lemma 7.2.1 that E‖X‖T ≤ C
for a suitable C. The same argument shows that also E‖X̃‖T ≤ C. Define

the total variation measure δt =
∑K

k=1 E
∣∣∣d(Zk1

t − Z̃k1
t

)∣∣∣. We may write

δt ≤ E
K∑
k=1

∫ t

0

∣∣∣ψk (X̃k
s , Ã

k1
s

)
− ψk

(
Xk
s , A

k1
s

)∣∣∣ ds
≤ C

K∑
k=1

∫ t

0

E
∣∣∣X̃k

s −Xk
s

∣∣∣+ P
(∥∥∥Ãk1 − Ak1

∥∥∥
s
> 0
)
ds.

As in the proof of lemma 6.2.1 we apply Markov’s inequality to achieve

K∑
k=1

P
(∥∥∥Ãk1 − Ak1

∥∥∥
t
> 0
)
≤ δnt .

We insert this inequality into (6.16) to get

δt ≤ C

(∫ t

0

E
∣∣∣X̃s −Xs

∣∣∣ ds+

∫ t

0

δsds

)
. (6.16)

We now wish to bound the difference of the memory processes. First,

define γ =
∑K

k,l=1

∣∣∣hkl − h̃kl∣∣∣, and note that for any fixed k, l, j we have

for any s ≥ 0
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∣∣∣∣∫ s−

0

hkl (s− u) dZ lj
u −

∫ s−

0

h̃kl (s− u) dZ̃ lj
u

∣∣∣∣
≤
∫ s−

0

∣∣∣hkl − h̃kl∣∣∣ (s− u) dZ lj
u +

∫ s−

0

∣∣∣h̃kl∣∣∣ (s− u)
∣∣∣d(Z lj

u − Z̃ lj
u

)∣∣∣
≤
∫ s−

0

γ (s− u) d
K∑
l=1

Z lj
u +

∫ s−

0

h̃ (s− u)

∣∣∣∣∣d
K∑
l=1

(
Z lj
u − Z̃ lj

u

)∣∣∣∣∣ .(6.17)

We take expectation and apply Lemma 22 of [12] to obtain

E
∫ t

0

∣∣∣∣∫ s−

0

hkl (s− u) dZ lj
u −

∫ s−

0

h̃kl (s− u) dZ̃ lj
u

∣∣∣∣ ds ≤∫ t

0

γ (t− s)L (1 + E ‖XT‖) ds+

∫ t

0

h̃ (t− s) δsds.

Note that this expression does not depend on k, l nor j. Thus we get

K∑
k=1

∫ t

0

E
∣∣∣X̃k

s −Xk
s

∣∣∣ ds
≤

K∑
k=1

∫ t

0

N−1
K∑
l=1

Nl∑
j=1

E
∣∣∣∣∫ s−

0

hkl (s− u) dZ lj
u −

∫ s−

0

h̃kl (s− u) dZ̃ lj
u

∣∣∣∣ ds
≤ C

(∫ t

0

γ (s) ds+

∫ t

0

∣∣∣h̃ (t− s)
∣∣∣ δsds) . (6.18)

Inserting inequality (6.18) into (6.16), we obtain

δt ≤ C

(∫ t

0

γ (s) ds+

∫ t

0

(
h̃ |(t− s)|+ 1

)
δsds

)
.

The proof will be complete, after repeating the argument for bounded
E |X| , but with δ in place of E |X|.

Proof of Theorem 6.3.1. Let (Z̃N , X̃N , ÃN) be the N−dimensional age
dependent Hawkes process induced by the same parameters as (ZN , XN , AN),
except the weight functions hkl instead of hNkl.
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6 Mean-field Limit and Propagation of Chaos

Fix T > 0 and consider t ∈ [0, T ]. We have

K∑
k=1

∣∣d (ZNk1
t − Zk1

t

)∣∣ ≤ K∑
k=1

E
∣∣∣d(ZNk1

t − Z̃Nk1
t

)∣∣∣+
K∑
k=1

E
∣∣∣d(Z̃Nk1

t − Zk1
t

)∣∣∣
:= δ̃Nkt + δNkt .

The first term converges by lemma 6.3.2, and so it remains to prove con-
vergence of δNt . This part of the proof follows closely the proof given by
Chevallier in [7], but we include it here for completeness. Let C be a
dynamic constant depending on pk, L, T,K, ‖r‖T and (hkl). We use the
symbol ε (N) for any function depending on the same parameters as C,

and N such that ε (N)
N→∞→ 0. Recall that ‖x‖T is bounded by C suffi-

ciently large by lemma 6.2.1.
As in the proof of lemma 6.2.1 we obtain

δNt ≤ C

(∫ t

0

E
∣∣∣X̃N

s − xs
∣∣∣ ds+

∫ t

0

δNs ds

)
. (6.19)

This inequality prepares for an application of Gronwall’s inequality, but

first we bound
∫ t

0 E
∣∣∣X̃s − xs

∣∣∣ ds using δNt as well. Indeed, set

Λkj
t :=

∫ t−
0 ψ

(
xks , A

kj
s

)
ds, which is the compensator of Zkj. We write

pk = Nk/N + ε (N) and obtain

xkt = N−1
K∑
l=1

Nl∑
j=1

∫ t−

0

hkl (t− s) dφls + rkt + ε (N)
K∑
l=1

∫ t

0

hkl (t− s) dφls.

Since dφls = Eψ
(
xls, A

lj
s

)
ds and Eψ

(
xls, A

lj
s

)
are locally bounded, the

entire right term may be replaced by an ε-function. For fixed k ≤ K, we
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6.5 Proofs of Section 6 Results

apply the triangle inequality∫ t

0

(
E
∣∣∣X̃Nk

s − xks
∣∣∣− E

∣∣RNk
s − rks

∣∣) ds ≤ ε (N)

+

∫ t

0

N−1
K∑
l=1

E

∣∣∣∣∣
Nl∑
j=1

∫ s−

0

hkl (s− u) d
(
φlu − Λlj

u

)∣∣∣∣∣ ds (6.20)

+

∫ t

0

N−1
K∑
l=1

E

∣∣∣∣∣
Nl∑
j=1

∫ s−

0

hkl (s− u) d
(
Λlj
u − Z lj

u

)∣∣∣∣∣ ds (6.21)

+

∫ t

0

N−1
K∑
l=1

E

∣∣∣∣∣
Nl∑
j=1

∫ s−

0

hkl (s− u) d
(
Z lj
u − Z̃Nlj

u

)∣∣∣∣∣ ds (6.22)

:= ε (N) +B1k
t +B2k

t +B3k
t .

We now proceed to bound Bi :=
∑K

k=1B
ik, i ≤ 3. Define h =

∑K
k,l=1 |hkl|.

Rewrite φ and Λ in terms of their densities, and thereby obtain a bound
for the inner-most sum in (6.20) for s ∈ [0, t] , l ≤ K, which is given by

E
∫ s

0

Nl∑
j=1

h (s− u) |d(φlu − Λlj
u )| ≤

∫ s

0

h (s− u)E
Nl∑
j=1

∣∣ψl (xlu, Alju )− Eψl
(
xlu, A

lj
u

)∣∣ du.
Notice that the sum consists of i.i.d. terms, so we may apply Cauchy-

Schwarz to bound it by

√
Nl Var(ψ(xlu, A

lj
u )), which is bounded for

u ∈ [0, T ] by
√
NlC

(
1 +

∥∥rl∥∥
T

)
using (4.2). Insert this into (6.20) to

see that

B1
t =

K∑
k=1

B1k
t ≤ ε (N) .

For B2
t , recall that (Z lj − Λlj)j are i.i.d. for fixed l. By Cauchy-Schwarz,

we obtain a bound for the inner-most sum of (6.21)

N
1/2
l

√
Var

∫ s

0

hkl (s− u) d (Z l1
u − Λl1

u ) . (6.23)

To treat the process inside the root, fix s ≥ 0, l ≤ K and consider the
process

I : r 7→
∫ r∧s

0

hkl (s− u) d
(
Z l1
u − Λl1

u

)
.
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6 Mean-field Limit and Propagation of Chaos

Then I is a martingale, and

Var Is = E[I]s = E
∫ s

0

h2
kl (s− u) dΛl1

u =

∫ s

0

h2
kl (s− u)Eψl

(
xlu, A

l1
u

)
du.

Since hkl ∈ L2
loc it follows that Var Is is bounded on s ∈ [0, T ], and so

B2
t ≤ ε (N)

for all t ≤ T. For B3 the triangle inequality, and lemma 22 [12] gives

B3
t ≤ C

∫ t

0

h (t− s) δNs ds.

We plug the bounds for B1, B2 and B3 into (6.19) to obtain

δNt ≤ C

(∫ t

0

h (t− s) δNs + ε (N) +
K∑
k=1

E
∣∣RNk

s − rks
∣∣ ds) .

Applying lemma 7.2.1

δNt ≤ ε (N) + C

∫ T

0

E
∣∣RN

s − rs
∣∣ ds = ε (N) (6.24)

for all t ≤ T , which implies the desired result.
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Chapter 7

Appendix

7.1 Point Process Results

The following result from [5] gives a sufficient criteria for two processes to
couples.

Lemma 7.1.1 (Lemma 5 of [5]).
Assume that X, Y are (Ft)t∈R+

-progressive and that for all s ≥ 0

P (Xt = Yt ∀t > s |Fs) ≥ Us − r (s) ,

where U is ergodic, P (Us > 0) > 0 and r (t)
a.s.→ 0 for t→∞. Then almost

surely, X and Y couple in finite time. ◦

7.2 Analysis results

We shall need the following version of Gronwall’s lemma which has been
proven in [12]. Recall that for any function g : R+ → R and any T > 0,
we have introduced ‖g‖T = supt≤T |g(t)|.

Lemma 7.2.1 (Lemma 23 of [12]).
Let h : R+ → R+ be locally integrable and g : R+ → R+ be locally bounded.
Let T ≥ 0.
1. Let u be a locally bounded nonnegative function satisfying
ut ≤ gt +

∫ t
0 h (t− s)usds for all t ∈ [0, T ]. If b > 0 satisfies that∫ T

0

h (s)1 {h (s) ≥ b} ds < 1

2
, (7.1)



7 Appendix

then ‖u‖T ≤ 2e2bT ‖g‖T =: CT ‖g‖T .
2. Let (un) be a sequence of locally bounded nonnegative functions such

that un+1
t ≤ gt +

∫ t
0 h (t− s)unsds for all t ∈ [0, T ]. Then

sup
n
‖un‖T ≤ CT

(
‖g‖T +

∥∥u0
∥∥
T

)
.

Moreover, if the inequality is satisfied with g ≡ 0, then
∑

n u
n converges

uniformly on [0, T ]. ◦

7.3 Splitting Two PRMs

Let π, π be two independent PRMs on R2
+. For any two functions

f1 : R→ [0,∞) , f2 : R→ [0,∞], such that f1 ≤ f2 we define for B ∈ BR2
+

π↓f1,f2 (B) =

∫
B

1 {z 6∈ [f1, f2)} dπ (s, z) +

∫
B

1 {z ∈ [f1, f2)} dπ (s, z) .

(7.2)

π↑f1,f2 (B) =

∫
1 {(s, z) : (s, z − f1 (s)) ∈ B, z ≤ f2(s)} dπ (s, z) (7.3)

+

∫
1 {(s, z) : (s, z − f1 (s)) ∈ B, z > f2(s)} dπ (s, z) .

(7.4)

It may be shown directly that both of the above set functions are PRMs
with π↓f1,f2 |= π↑f1,f2.

Theorem 7.3.1 shows that these independence properties generalize to
when f1, f2 are predictable, but random, intensities.
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7.3 Splitting Two PRMs

π

f2

f1

π
f2

f1

π↑f1,f2

f2 − f1

π↓f1,f2

f2

f1

Figure 7.1: A figure illustrating how π↑f1,f2 and π↓f1,f2 are created from
π, π. Notice that π↓f1,f2 contains the part of π below f1 while π↑f1,f2 con-
tains an area part immediately above it.

Theorem 7.3.1.
Let (Ft)t∈[0,∞) be a filtration and π, π be two independent Ft-PRMs on R+.
For
t ∈ [0,∞), let λt ≤ λ′t be Ft-predictable processes taking values in
[0,∞) , [0,∞], respectively. Define F∗t = σ

(
Ft, π↑λ,λ

′)
. It holds that

π↑λ,λ
′
, π↓λ,λ

′
are PRMs such that π↑λ,λ

′

|= π↓λ,λ
′

|= F0. ◦

Proof.
The proof will be done in several steps.

Step 1.

Let (ti)i∈N0
be a fixed partition where 0 < ti−1 < ti. ti

i→∞→ ∞. Assume

Y 1
i , Y

2
i is Fti−1−measurable, taking values in a finite state space Y ⊂ R,

and assume that
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λt =
∞∑
i=1

Y 1
i 1]ti−1,ti](t). λ′t =

∞∑
i=1

Y 2
i 1]ti−1,ti](t). (7.5)

Fix m ∈ N and take kij, l
i
j ∈ N and mutually disjoint, bounded

Bi
j, C

i
j ∈ B(ti−1,ti×R+] for i = 1, . . . , n j = 1, . . . ,m. Define

Fi =
m⋂
j=1

(
π↓λ,λ

′ (
Bi
j

)
= kij

)
, (7.6)

Gi =
m⋂
j=1

(
π↑λ,λ

′ (
C i
j

)
= lij

)
. (7.7)

Take E ∈ F0. and set Ei = Fi ∩ Gi, E =
⋂n
i=0Ei. It is sufficient to show

that the projection E has the correct distribution, i.e.:

P (E) = P (E0)
n∏
i=1

m∏
j=1

P

(∫
Bij

ds, kij

)
P

(∫
Cij

ds, lij

)
(7.8)

where P (c, ·) is the Poisson density with mean c. This will be proved
using induction. The induction claim over N = 0, ..., n is that

P (E0) = E1 {E0 ∩ E1 ∩ · · · ∩ En−N}
n∏

i=n−N+1

m∏
j=1

P

(∫
Bij

ds, kij

)
P

(∫
Cij

ds, lij

)
.

(7.9)

The induction start N = 0 is clear (where the empty product is 1 per con-
vention). Assume that the claim holds for some N − 1.
Since EN |= FtN−1|λtN , λ′tN , we may write P

(
EN |FtN−1

)
= P

(
EN |λtN , λ′tN

)
and for c ≤ d ∈ Y

P
(
EN |

(
λtN , λ

′
tN

)
= (c, d)

)
(7.10)

= P
m⋂
j=1

(∫
BNj

1 {z 6∈ [c, d)} dπ (s, z) +

∫
BNj

1 {z ∈ [c, d)} dπ (s, z) = kij

)
(7.11)

· P
m⋂
j=1

(∫
c+CNj

1 {z ∈ [c, d)} dπ (s, z) +

∫
c+CNj

1 {z 6∈ [c, d)} dπ (s, z) = lij

)
.

(7.12)
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Straightforward calculations show that indeed

P
(
EN |

(
λtN , λ

′
tn

)
= (c, d)

)
=

m∏
j=1

P

(∫
BNj

ds, kNj

)
P

(∫
CNj

ds, lNj

)
.

(7.13)

Notice that the right side does not depend on c, d implying that EN |= FtN−1.
Thus, by conditioning (7.9) w.r.t. FtN−1 and inserting this result, the in-
duction step follows and the proof is completed.

Step 2.
Assume now that λ, λ′ is bounded and continuous in t for all discrete
measures. We use some dyadic approximation by putting

bxcn := sup
k
{k2−n : k2−n < x}

λnt = bλbtcncn, λ
′n
t = bλ′btcncn.

Then as n→∞,

λnt → λt, λ
′n
t → λ′t (7.14)

for all t ∈ [0, T ] . Almost surely, the graphs of λ, λ′ are π, π null-sets. It
follows that almost surely

∀A ∈ B2, Leb (A) <∞ : π↑λ
n,λ
′n

(A)→ π↑λ,λ
′

(A) , π↓λ
n,λ
′n

(A)→ π↓λ,λ
′

(A) .
(7.15)

It is now straightforward to prove the claim by applying step 1 for each
n.

Step 3.
Assume the same set up as before, except for continuity in t. Define for
n ∈ N

λnt = n

∫ t

t− 1
n

λsds, λ′nt = n

∫ t

t− 1
n

λ′sds. (7.16)
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Note that the processes

t 7→
∫ t

0

λsds, t 7→
∫ t

0

λ′sds (7.17)

is Lipschitz continuous since λ, λ′ is bounded. By Rademacher’s theorem
there is a Lebesque-full set on which the above map is differentiable. It
follows that almost surely, λn, λ′n converges almost everywhere in t to
λ, λ′. The remaining part of step 2 is similar to step 3.

Step 4.
Assume now that λ, λ′ are given as in the assumptions. One may define
λn = λ∧n, λ′n = λ′∧n, and repeat the procedure from the previous steps
to complete the proof, which we leave to the reader.

7.4 The Random Exchange Process

The purpose of this section is to study the Markov Chain given by

Mi = (Mi−1 − 1) ∨Xi (7.18)

where M0, Xi are non-negative and mutually independent variables such
that (Xi) are i.i.d. This process is going under the name Random Ex-
change Process with constant decrements. RE-processes have been treated
in [25] where it was shown that M is positive recurrent when X has finite
expectation. See also [43] for a null-recurrence characterization. We are
interested in moments of the return time σ = inf {n > 0 : Mn ≤ 0}, and
moments of the invariant distribution µ. To the best knowledge of this
author, there has been no published result about such.

Let F, S be the distribution function and survival function of X1. Let
q ≥ 0 be a real number. Clearly the transition kernel of Mi is given by

Px ((a, b]) = P (X ∈ (a, b]) ∀b > a > x− 1

Px ({x− 1}) = F (x− 1) .

Let φ : [0,∞) → [0,∞) denote an increasing and differentiable function.
Valid choices of φ include φ (x) = xq+1 and φ (x) = exp (cx) .
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Theorem 7.4.1.
Assume that φ is convex and Eφ (X) <∞. Then Mi is positive recurrent
with stationary distribution µ and

∫
φ′ (y − 1) dµ (y) <∞. ◦

Proof.
We use a Lyapunov argument.

Exφ (M1)− φ (x) (7.19)

=

∫
(x−1,∞)

φ (y) dF (y) + φ (x− 1)F (x− 1)− φ (x)

=

∫
(x−1,∞)

φ (y) dF (y) + (φ (x− 1)− φ (x))F (x− 1)− S (x− 1)φ (x) .

(7.20)

Notice that the first term above converges to 0 for x → ∞. The second
term can be controlled using the mean value theorem. Indeed, for x so
large that F (x− 1) ≥ 2−1 we have

(φ (x− 1)− φ (x))F (x− 1) ≤ −1

2
φ′ (x− 1) (7.21)

We may apply proposition 14.1.1 and theroem 14.2.3 from [34] with

f (m) =
1

2
φ′ (x− 1) to conclude the desired result.

Note that µ must satisfy µ [0, x] = F (x)µ [0, x+ 1], and in turn it satisfies

µ ([0, x]) =
∞∏
k=0

F (x+ k) (7.22)

whenever it exists. In particular when X has support on N0 we have

µ ([0, n]) =
∞∏
k=n

F (k) . (7.23)

We now discuss the hitting time σ. We need an intermediate result that
gives a peculiar relation between the return time to 0, and the hitting time
given general distributions for a RE-process, when the update variables
have support on N0.
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Theorem 7.4.2.
Assume that X has support on N0. Define for i, j ∈ N0 ei,j = Eiφ (σ + j).
Assume that ei,j <∞ for all i, j. For any probability measure ν on N0 it
holds that

Eνφ (σ) = φ (0) + ν (0) (E0φ (σ)− φ (0)) +
∞∑
i=0

(E1φ(σ + i)− φ(i))Sν(i)
µ (0)

µ [0, i]

(7.24)

where Sν is the survival function of ν. ◦
Proof.
note that

Eνφ (σ) =
∞∑
i=1

ν (i) ei0. (7.25)

We claim that

ei,j − ei−1,j = F (i− 2) (ei−1,j+1 − ei−2,j+1) , i ≥ 2. (7.26)

This follows from coupling two Markov chains M i
k,M

i−1
k started at i, i−1

respectively, and sharing the same i.i.d. update sequence (Xk). The two
processes are equal for all k ≥ 1 if X1 ≥ i−1 while M i

1 = i−1,M i−1
1 = i−2

if X1 ≤ i− 2, implying eq. (7.26). For all i ≥ 1 we obtain

eij = ei−1,j + (e1,j+i−1 − φ (j + l − 1))
i−2∏
k=0

F (k) (7.27)

= φ (j) +
i∑
l=1

(e1,j+l−1 − φ (j + l − 1))
l−2∏
k=0

F (k) (7.28)

= φ (j) +
i∑
l=1

(e1,j+l−1 − φ (j + l − 1))
µ (0)

µ [0, l − 1]
(7.29)

with convention
∏−1

i=0 = 1. Inserting this into (7.25) gives

Eνφ (σ) = Sν (0)φ (0) + ν (0)E0φ (σ) +
∞∑
i=1

ν (i)
i∑
l=1

(E1φ (σ + l − 1)− φ (l − 1))
µ (0)

µ [0, l − 1]
.

(7.30)

The result follows from adding ±ν (0)φ (0) and interchanging the two
sums.
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Corollary 7.4.3.
123• If EXq+1 < ∞ then an invariant distribution µ of M exists and∫

xqdµ (x) < ∞. Also, if there is cX > 0 such that exp (cXX) < ∞
then

∫
exp (cx) dµ (x) for all c < cX and M is geometrically ergodic.

• Assume still that EXq+1 <∞. It holds that Eνσq
∗∧(q+1) <∞ for all

q∗ ≥ 0 and all initial measures ν with q∗’th moment. Moreover, if ν
and X have exponential moment then so has σ.

◦

Proof.
The first point follows directly from theorem 7.4.1.

To prove the second point notice that we can without loss of gener-
alization assume X,M0 has support on N0 by replacing X and M0 with
dXe and dM0e.

We start with the power-moment case. For z ∈ R write ezi,j for the
variable ei,j with φ (x) = xz. Write q = r + n, r ∈ [0, 1). We show by
induction over m = 0, . . . , n+ 1 that Eνσqm∧q

∗
<∞ with qm = r+m, and

for all q∗ ≥ 0 and measures ν with q∗’th moment.

The induction start n = 0; if r = 0 or q∗ = 0 the claim is trivial. Oth-
erwise, note that er0,0 ≤ e1

0,0 < ∞ by Kac’s theorem. We can apply
theorem 7.4.2 and the mean value theorem to obtain

Eνσq
∗∧r ≤ C + C

∞∑
i=0

iq
∗∧r−1Sν (i) <∞ (7.31)

where C > 0 is sufficiently large.
Assume now that the induction claim holds for some m ≤ n. Since qm ≤ q,
and π have q’th moment, we can use the induction assumption to see that
Eπσqm < ∞. It is well known that Pπ (σ = i) = P0 (σ ≥ i) for i ≥ 0 (see
section 10.3.1 [34]). It follows that eqm+1

0,0 <∞ and hence also eqm+1
i,j <∞.

We may now apply theorem 7.4.2 and the mean value theorem to obtain

Eνσ(qm+1)∧q∗ ≤ C + C
∞∑
i=0

i(qm+1)∧q∗−1Sν (i) <∞ (7.32)

where C > 0 is sufficiently large.
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7 Appendix

Consider now the case where
∫

exp (cνy) dν (y) < ∞. For c < cν we
consider the function φ (x) = exp (cx). Combining theorem 7.4.1 above
and theorem 15.0.1 ii) in [34] we get that E0φ (inf {j > 0 : Mj ≤ K}) <∞
for some K > 0 large and small c > 0. It follows that e0,0 <∞ for a pos-
sibly smaller c and hence also ei,j < ∞ for i, j ∈ N0. By dominated
convergence, we can choose C large so that

∀i ∈ N0 : E1σφ
′ (σ + i) ≤ C exp (c′i) (7.33)

for all c′ > c. Choose now c′ ∈ (c, cν), and combine theorem 7.4.2 with the
above inequality to obtain

Eν exp(cσ) ≤ C + C
∞∑
i=0

Sν(i) exp(c′i), (7.34)

again for a possibly larger C. An application of Markovs inequality gives
the desired result.
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