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Preface

English abstract

This thesis consists of two main parts: Part I on relative Cuntz–Pimsner algebras,

and part II on operator algebras and nonlocal games in quantum information.

Part I centers around the classification of relative Cuntz–Pimsner algebras from preprint A:

More precisely, the attached preprint gives a systematic classification of gauge-equivariant

representations (and whence in turn also of gauge-invariant invariant ideals) and further unravels

Katsura’s construction as a canonical dilation given by the maximal covariance.

We give a short summary on its main results in the first section.

As a first application we then classify pullbacks for relative Cuntz–Pimsner algebras and use these

to provide examples for the failure of pullbacks for absolute Cuntz–Pimsner algebras. This section

constitutes a summary of upcoming work with Piotr M. Hajac and Mariusz Tobolski.

The second application concerns Morita equivalence for relative Cuntz–Pimsner algebras:

Using our classification we swiftly recover a classical result by Fowler–Muhly–Raeburn and reveal

the failure for short exact sequences by relative Cuntz–Pimsner algebras. We then outline

Morita equivalences arising from higher tensor powers of correspondences and those Morita

equivalences for relative Cuntz–Pimsner algebras not arising by any finite tensor power at all.

This section serves as an outlook on upcoming work by the author.

Part II centers around operator algebras and nonlocal games:

The first section constitutes a summary on “Connes implies Tsirelson” from preprint B.

The following sections concentrate on computing quantum values using operator algebraic

techniques and the classification of optimal states and their correlations. We begin for this with a

summary on uniqueness of optimal states from preprint C.

We then elaborate on genuine self-testing for their correlations based on order-two moments and

follow with an outlook on robust self-testing for optimal states in the quantum commuting model.

Both of these constitute ongoing joint work with Azin Shahiri.

We finish the second part with a representation–theoretic classification of optimal states and their

quantum value for the tilted CHSH games based on an upcoming preprint with Azin Shahiri

(currently under preparation).

This further serves as a primer on ongoing work around the I3322 inequality (from a new

perspective) as well as on nonlocal games exhibiting a separation between finite dimensional and

quantum spatial correlations using operator algebraic techniques.



Danish resumé

Denne afhandling best̊ar af to hoveddele: Del I om relative Cuntz-Pimsner-algebraer

og del II om operatoralgebraer og ikke-lokale spil i kvanteinformation.

Del I er centreret omkring klassifikationen af relative Cuntz-Pimsner-algebraer fra preprint A:

Mere præcist giver det vedlagte preprint en systematisk klassifikation af gauge-ækvivariante

repræsentationer (og dermed ogs̊a af gauge-invariante idealer) og yderligere optrævler Katsuras

konstruktion som en kanonisk dilatation givet af den maksimale kovarians.

Vi giver et kort resumé af de vigtigste resultater i det første afsnit.

Som en første anvendelse klassificerer vi derefter pullbacks for relative Cuntz-Pimsner-algebraer og

bruger dette til at opstille eksempler p̊a, at pullbacks for absolutte Cuntz-Pimsner-algebraer ikke

virker. Dette afsnit er et resumé af et kommende arbejde med Piotr M. Hajac og Mariusz Tobolski.

Den anden anvendelse vedrører Morita-ækvivalens for relative Cuntz-Pimsner-algebraer:

Ved hjælp af vores klassifikation kan vi hurtigt genfinde et klassisk resultat af Fowler–Muhly–

Raeburn og afsløre, at kort-eksakte følger ikke er mulige ved relative Cuntz–Pimsner-algebraer.

Derefter skitserer vi Morita-ækvivalenser, der opst̊ar ved højere tensor-potenser af korrespondancer,

og de Morita-ækvivalenser for relative Cuntz-Pimsner-algebraer, der ikke opst̊ar ved nogen endelig

tensor-potenser overhovedet. Dette afsnit tjener som en oversigt over forfatterens kommende

arbejde.

Del II er centreret om operatoralgebraer og ikke-lokale spil:

Det første afsnit er et resumé af “Connes implies Tsirelson” fra preprint B.

De følgende afsnit koncentrerer sig om beregning af kvanteværdier ved hjælp af operatoralgebraiske

teknikker og klassificering af optimale tilstande og deres korrelationer. Vi begynder med et resumé

om entydighed af optimale tilstande fra preprint C.

Derefter uddyber vi ægte selvtestning af deres korrelationer baseret p̊a ordre to-momenter og følger

op med en oversigt over robust selvtestning af optimale tilstande i kvantekommuteringsmodellen.

Begge dele udgør et igangværende fælles arbejde med Azin Shahiri.

Vi afslutter anden del med en repræsentationsteoretisk klassifikation af optimale tilstande og

deres kvanteværdi for de vippede CHSH-spil baseret p̊a et kommende preprint med Azin Shahiri

(under forberedelse).

Dette tjener desuden som en grundbog om igangværende arbejde omkring I3322-uligheden (fra et

nyt perspektiv) samt om ikke-lokale spil, der udviser en adskillelse mellem endelig-dimensionale og

kvante rumlige korrelationer ved hjælp af operatoralgebraiske teknikker.

Disclaimer

The main results of this thesis are given by preprint A, preprint B and preprint C.

The preceding sections serve as an overview and summary of these results,

together with an outlook on upcoming and ongoing work.

Each of the attached preprints is singly authored by the PhD student.
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Part 1

Relative Cuntz–Pimsner algebras:

Classification and Applications

1.1 Classification

We begin with an overview on the main results from preprint A:

The main investigation on the classification begins with the characterisation of kernel and cokernel

morphisms. We find that each of such are determined precisely by invariant ideals whence every

short exact sequence reads

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0.

Based on those we suggest a parametrisation by kernel–covariance pairs describing relative Cuntz-

Pimsner algebras given by 1) some generic invariant ideal (as possible kernel ideal) and 2) another

bounded ideal (as possible covariance)

⇣
X

⇤
KX ✓ K

��� I ✓ max(X)
⌘
.

As such we obtain an entire lattice of kernel–covariance pairs of the form

X
X

XK
. . .

X

XL
. . . . . .

. . . . . . X = 0

 

T (K) = O(K, 0) O(K, I) . . .

O(K, J) . . . . . .

. . . . . . O(K,max) = O(K).

We then exploit these in the following sections to narrow down the question of representations to

those correspondences faithfully embedded within ambient operator algebras. As a first instance

we derive the general version for the gauge-invariant uniqueness theorem:

Theorem 1.1.1 (Gauge-invariant uniqueness theorem: The general version):

Every gauge-equivariant representation arises as a relative Cuntz–Pimsner algebra

(K, I) =
⇣

ker(A! B)
��� cov

�
X

XK
! B

� ⌘
: (X,A) O(K, I) C

⇤(X [A) ✓ B

and as such arises as the range of kernel–covariance pairs.

We then move on to the realisation of relative Cuntz–Pimsner algebras. This arises as a classical

construction using the Fock representation and its quotients. We then seek to recover kernel–

covariance pairs using their concrete representation which culminates in the following result:

Theorem (Relative Cuntz–Pimsner algebras: Kernel and Covariance):



1.1. Classification

For relative Cuntz–Pimsner algebra it holds

ker
⇣

A! T ! O(X; I)
⌘
= 0

cov
⇣

X ! T ! O(X; I)
⌘
= I

As a consequence the kernel–covariance pairs are classifying.

As such we found as desired the parametrisation in terms of kernel–covariance for the entire class

of gauge-equivariant representations (and so also of gauge-invariant ideals). We then verify in

the following section that our parametrisation by kernel–covariance pairs further defines an order

isomorphism with the lattice of gauge-equivariant representations with its natural order:

Theorem (Kernel–covariance pairs: Order isomorphism):

The lattice kernel–covariance pairs defines an order isomorphism

⇣
K ✓ L

��� I +K ✓ J + L

⌘
() O(K, I)  O(L, J)

and as such the lattice of kernel–covariance pairs with its natural order by inclusion describes

the entire lattice of gauge-equivariant representations (and so also of gauge-invariant ideals).

Meanwhile we discuss the urging question of possible connecting morphisms between relative

Cuntz–Pimsner algebras from di↵erent kernel strands (using our found parametrisation):

(X,A)
⇣

X

XK1
,

A

K1

⌘ ⇣
X

XK2
,

A

K2

⌘ �
X

XK
,
A

K

�

. . . O(K1, I1) O(K2, I2) O(K, I)

. . . . . . . . . . . .

⇥

⇥

In particular we investigate the question on the minimal quotient

T
�

X

XK

�
= O(K, 0) . . . O(K, I =?) . . .

T
�

X

XL

�
= O(L, 0) O(L, J) O(L,max)

X X X ⇥

as well as the more interesting one on the existence

O(K, 0) O(K, I) O(K,max)

O(L =?, 0) O(L =?, J =?) O(L =?,max).

We round o↵ this section with plenty of examples describing various scenarios on possible lattices

arising in nature and the existence and non-existence of connecting morphisms between gauge-

10



1.1. Classification

equivariant representations using our found parametrisation such as for instance

T

⇣
X = `

2(a! b)
⌘

T

⇣
X = `

2(b)
⌘

T (X = 0)

O

⇣
X = `

2(a! b)
⌘

O

⇣
X = `

2(b)
⌘

O(X = 0).⇥

All of these examples serve to illustrate the ease of working with kernel–covariance pairs.

In particular this work on kernel–covariance pairs forms the basis on upcoming work.

We then move on to the final section as an application on Pimsner dilations:

We showcase here the ease with which we obtain various technical constructions as trivial

consequences using kernel–covariance pairs. As a first such we verify the maximal dilation:

Theorem (Maximal dilation: absolute Cuntz–Pimsner algebra):

The maximal dilation realises relative Cuntz–Pimsner algebras as an absolute one

O(K, I) = O

⇣
Y = O(K, I)(1)

��� B = O(K, I)(0)
⌘
.

and further defines the maximal Hilbert bimodule.

Following from the maximal dilation (as an object by abstract existence) we move on to seek

dilations as an object small enough to allow for some combinatorial description based on the

original correspondence. We provide for this an algorithm to generally produce combinatorial

dilations (which may however never halt). As a positive example we apply this procedure on

the maximal covariance for which the algorithm halts after its first cycle. As such the algorithm

produces a suitable dilation (which we term Katsura dilation for reason further below):

Theorem (Katsura dilation: absolute Cuntz–Pimsner algebra):

The canonical dilation given by the maximal covariance realises a relative Cuntz–Pimsner algebra

as an absolute Cuntz–Pimsner algebra

O(K = 0, I) = O

✓
Y = X +X

⇣
max(X,A)

0

⌘ ��� B = A+
⇣
max(X,A)

0

⌘ ◆

and the analogous dilation for kernel–covariance pairs with kernel ideal.

This dilation may well fail to define a minimal dilation (detecting covariance) and even if minimal,

it generally fails to be the only minimal dilation.

We then provide an intrinsic description for above dilation which further reveals Katsura’s

construction as nothing but above dilation given by the maximal covariance in disguise:

Corollary (Katsura dilation: intrinsic description):

The canonical dilation given by the maximal covariance allows the intrinsic description as the

operator algebra freely generated by their abstract copies

✓
A = A

⇣
1
1

⌘ ◆
[

✓
max(X,A)/I =

⇣
max(X,A)

0

⌘ ◆

11



1.1. Classification

with multiplication given by

A

⇣
1
1

⌘
·

⇣
max(X,A)

0

⌘
✓

⇣
Amax(X,A)

0

⌘
✓

⇣
max(X,A)

0

⌘

and similarly for the correspondence itself.

The analogous expression holds for kernel–covariance pairs with kernel ideal.

This further recovers the particular description from [Kat07, definition 6.1].

We then identify our dilation given by the maximal covariance as a familiar construction realising

any gauge-equivariant quotient as a graph algebra itself (by outsplitting):

Corollary (Katsura dilation: graph correspondences):

The canonical dilation given by the maximal covariance arises as the canonical graph:

Its coe�cient algebra arises as the orthogonal sum of vertices

W = singular
⇣
1
1

⌘
[

⇣
0
regular

⌘
[

⇣
regular \R

0

⌘

together with the correspondence given by the graph

EW = E

✓
singular

⇣
1
1

⌘
[

⇣
0
regular

⌘
[

⇣
regular \R

0

⌘ ◆

and its left action given by (whence defining the range of edges)

⇣
a

a

⌘
EW = (aE)W and

⇣
0
b

⌘
EW =

⇣
b

b

⌘
EW = (bE)W

while trivially acting for the left over last summand. As such this recovers the familiar construction

for graph algebras: Any gauge-equivariant quotient arises as a graph algebra itself.

As an example we find the following realisation for the Toeplitz algebra

T

0

@
•

1

A = O

0

@
• •

1

A

which recovers a familiar realisation from algebra theory. In particular, our realisation for the

canonical dilation defines a systematic procedure for the realisation of graph algebras.

We finish the entire preprint with the question of minimal dilations:

For this we begin with a positive result for graph algebras which leads to the following

characterisation for correspondences over spaces:

Corollary (Katsura dilation: correspondences over spaces):

It holds for correspondences over spaces: The canonical dilation given by the maximal covariance

defines a minimal dilation if and only if the maximal covariance arises as a discrete subspace.

In particular maximal covariances with totally disconnected spectra are not su�cient.

We use the found characterisation to produce a plethora of examples for relative Cuntz–Pimsner

algebras whose canonical dilation given by the maximal covariance do not define minimal dilations.

More intriguingly, these examples infer that the axiom of choice fails to apply.

12



1.2. Pullbacks

1.2 Pullbacks

As a first application of our classification we derive the general pullback result for arbitrary

relative Cuntz–Pimsner algebras: More precisely one has the following pullback for relative

Cuntz–Pimsner algebras (over some given correspondence):

O

⇣
(K|I) ^ (L, J)

⌘
= O(K|I)�

O

�
(K|I)_(L,J)

� O(L|J)

We will explain later below precisely to what extend these define every possible pullback.

This is upcoming joint work with Piotr M. Hajac and Mariusz Tobolski.

Our work arises from a special pullback result by Robertson and Szymanski from [RS11]:

Their special pullback result however concerns absolute Cuntz–Pimsner algebras only and runs as

a verification by hand using the following concrete description for pullbacks of operator algebras

(basically a special instance for constructing categorical limits as equalizers):

A1 �A A2 =
�
a1 � a2

�� (A1 ! A)a1 = (A1 ! A)a1
 
✓ A1 �A2.

For this Robertson and Szymanski require additional technical assumptions in order to verify

that the desired morphism into the given pullback above defines an isomorphism (basically proving

injectivity and surjectivity by hand).

Instead the author notes that the pullback problem defines an entirely categorical task:

As such we may solve the entire pullback problem in an entirely abstract fashion by means of our

classification using the following key principles for pullbacks:

For this we note first that every operator algebra defines a commutative diagram by short exact

sequences (where we skipped the zeroes at each row and column) and as a special instance those

that describe each pullback:

I \ J J ( . . . )

I A A/I

( . . . ) A/J
A

I + J

 

�
I \ J = 0

�
J J

I A A/I

I A/J
A

I + J

pullback

That is the desired pullback defines the optimal solution within both quotients:

A

✓
Pullback =

A

I \ J

◆ ✓
A

I
and

A

J

◆
.

Note that a given quotient representation is gauge-equivariant precisely for gauge-invariant ideals.

13



1.2. Pullbacks

The optimal quotient however arises as their intersection and thus remains gauge-equivariant:

⇣
T y I

⌘
✓ I and

⇣
T y J

⌘
✓ J =)

⇣
T y (I \ J)

⌘
✓ (I \ J).

As such the pullback problem boils down to the optimal gauge-equivariant quotient.

In the same vein their common quotient remains gauge-equivariant since

⇣
T y I

⌘
✓ I and

⇣
T y J

⌘
✓ J =)

⇣
T y (I + J)

⌘
✓ (I + J).

and as such one may express the latter as the optimal gauge-equivariant quotient:

✓
T y A

I

◆ ✓
T y A

I + J

◆
and

✓
T y A

J

◆ ✓
T y A

I + J

◆
.

Since our classification induces a lattice isomorphism between each gauge-equivariant quotient

(beginning at the Toeplitz algebra) and our kernel–covariance pairs we obtain as desired

O

⇣
(K|I) ^ (L, J)

⌘
= O(K|I)�

O

�
(K|I)_(L,J)

� O(L|J).

This simple arguments already define the entire proof for our pullback result above. Note also

how the entire result followed using categorical considerations (no hard analysis required).

We now address precisely to what extend these define every possible pullback:

Consider for this those pullbacks for possibly non-optimal quotients

�
A/I1

�
�A/J

�
A/I2

�
: (I1 + I2) ✓ J.

By some abstract catorical argument our previous pullbacks embed as a subalgebra

A

.⇣
I1 \ I2

⌘ �
A/I1

�
�A/J

�
A/I2

�
:

�
a+ I1 \ I2

�
7!

�
a+ I1

�
�

�
a+ I2

�
.

The abstract categorical argument may be also written out as

(a/I1)� (a/I2) = 0 =) a 2 I1 \ I2 =) a/(I1 \ I2) = 0.

On the other hand, these pullbacks cannot agree entirely since otherwise their defining diagram as

above coincide except the very right-hand bottom corner and so also in that corner, whence

A

.⇣
I1 \ I2

⌘
=
�
A/I1

�
�A/J

�
A/I2

�
=) J = (I1 + I2).

As such any other pullback does not arise as a relative Cuntz–Pimsner algebra:

(K1|I1) _ (K2|I2) < (K|I) : O

⇣
(K1|I1) ^ (K2|I2)

⌘
( O(K1|I1)�O(K|I) O(K2|I2).

We have therefore found every pullback possibly arising as a relative Cuntz–Pimsner algebra:

14



1.2. Pullbacks

Summarising these are precisely the pullbacks within the lattice of kernel–covariance pairs.

We finish with a negative result on pullbacks for absolute Cuntz–Pimsner algebras:

For this it su�ces to give a pair of quotient correspondences such that either of

O(K|max) ^O(L|max) 6= O

�
K \ L

�� max
�
,

O(K|max) _O(L|max) 6= O

�
. . .

�� max
�
.

For the former we may consider the following scenario

T (X) T ( X

XL
) = O( X

XL
)

O(X) T (. . .) = O(. . .) . . .

from which we obtain as pullback of absolute Cuntz–Pimsner algebras

T

�
K \ L = 0

�
= O(K = 0)�O(...) O(L) 6= O

�
K \ L = 0

�
.

The minimal example for such is given by the following graph algebras:

0

BBBB@

T (a! b) T ( b ) = O( b )

O(a! b) T (?) = O(?)

1

CCCCA
=

0

BBBB@

M2 � C C

M2 0

1

CCCCA
.

So their pullback fails to arise as an absolute Cuntz–Pimsner algebra.

For the latter we may consider the following degenerate scenario

T (K \ L) = O(K \ L) T (K) = O(K)

T (L) = O(L) T (K + L) . . . O(K + L)

from which the only pullback possibly arising as a relative Cuntz–Pimsner algebra reads

⇣
T (K \ L) = O(K \ L)

⌘
=
⇣
T (K) = O(K)

⌘
�T (K+L)

⇣
T (L) = O(L)

⌘

✓

⇣
T (K) = O(K)

⌘
�O(K+L)

⇣
T (L) = O(L)

⌘
6= O

⇣
any pair

⌘
.

So the pullback of absolute Cuntz–Pimsner algebras does not even arise as any relative one!

15



1.3. Morita equivalence

The simplest such is given by the following graph with gauge-equivariant quotient lattice:

T

✓

• • •

◆
= O

✓

• • •

◆
T

✓

• •

◆
= O

✓

• •

◆

T

✓

• •

◆
= O

✓

• •

◆
T

✓

•

◆
O

✓

•

◆  
T (?) = 0 = O(?)

!

Indeed each of those is singular except the last one which is fully regular. So far about pullbacks

for relative Cuntz–Pimsner algebras as an application of our classification.

1.3 Morita equivalence

The following arose as joint work with Menevse Eryuzlu, Steven Kaliszewski and John Quigg:

Recall that we began the classification preprint with the characterisation of short exact sequences

in the correspondence category which we found all as (confer [Fre23, theorem 3.3])

0 XK X
X

XK
0.

For quotient correspondence we then basically constructed each relative Cuntz–Pimsner algebras

as a gauge-equivariant quotient for the original correspondence

0 XK X
X

XK
0

O

�
X

�� J \max
�

O

�
X

XK

�� J
�

0.

As such the question arose to what extend these complete as a short exact sequence by their

corresponding relative Cuntz–Pimsner algebras (if possible at all !!)

0 O

�
XK

�� some?
�

O

�
X

�� J \max
�

O

�
X

XK

�� J
�

0 ??

For this we began with the observation that such necessarily arise as the operator algebra generated

by the kernel correspondence within the relative Cuntz–Pimsner algebra. Indeed for any a

commuting square (with any covariance!) possibly completing above diagram

0 XK X
X

XK
0

O

�
XK

�� any
�

O

�
X

�� I = J \max
�

16



1.3. Morita equivalence

its relative Cuntz–Pimsner algebra cannot contain additional kernel

XK X O

�
X

�� I
�

=) XK O

�
XK

�� any
�
.

The commuting square further infers that the operator algebra generated by the kernel correspon-

dence (within the original Cuntz–Pimsner algebra) defines a quotient for any of those

T (XK) O

�
XK

�� any
�

C
⇤
�
XK [K

�
✓ O

�
X

�� J \max
�
.

As such the optimal solution defines the only possible relative Cuntz–Pimsner algebra arising as

an embedded subalgebra and as such we ruled out any other relative Cuntz–Pimsner algebra.

Using our classification it su�ces now to compute its covariance (as its kernel vanishes anyways)

to fully determine this optimal solution (as our only possible candidate) for which we find:

0 O

�
XK

�� I \K

�
O

�
X

�� I = J \max
�
.

On the other hand, we found each kernel correspondence as an invariant ideal in our classification

of kernel and cokernel morphisms [Fre23, theorem 3.3]. As such the operator algebra generated by

the kernel correspondence defines a hereditary subalgebra with ideal given by the kernel:

C
⇤(XK [K) = C

⇤(XK [K)C⇤(X [A)C⇤(XK [K),

C
⇤(XK [K)KC

⇤(XK [K) = C
⇤(X [A)C⇤(XK [K)C⇤(X [A).

The latter defines the kernel for the desired short exact sequence above,

0 O(X|I)KO(X|I) O(X|I) O( X

XK
|J) 0.

As such we recovered a classical result by Fowler–Muhly–Raeburn as in [FMR03, theorem 3.1]:

The optimal solution resides as an embedded Morita equivalence within the kernel:

0

✓
O(XK|I \K) ⇠ . . .

◆
O(X|I) O( X

XK
|J) 0.

As such we have narrowed down our question to the problem whether the only choice as relative

Cuntz–Pimsner algebra for the kernel correspondence (as a hereditary subalgebra) coincides with

the desired ideal. We provide for this the following negative example: For this it su�ces to

provide some invariant ideal with the particular property

X
⇤
KX ✓ K : KX = 0 whereas XXK 6= 0.

As such the relative Cuntz–Pimsner algebra for the kernel correspondence reads

C
⇤(XK [K) = K +XK +KX

⇤ +XKX
⇤ = O(XK|I \K)

17



1.3. Morita equivalence

which is missing above component and whence also the desired ideal

O(XK|I \K) 6= O(X|I)KO(X|I) : XXK * O(XK|I \K).

As an example one may consider the following sequence of graph algebras

0
⇣
O

�
a =) b

�
6= . . .

⌘
O

�
a =) b =) c

�
O

�
b =) c

�
0.

We chose this example as it provides one entirely made of absolute Cuntz–Pimsner algebras.

The minimal example when allowing also for relative ones is the same as above with single edges.

Concluding that short exact sequences generally do not induce one by Cuntz–Pimsner algebras.

Moving on the author further examined Morita equivalences based on higher tensor powers:

More precisely the author expands a result on Morita equivalence for graph algebras by

Crisp and Gow from [CG06] and further uses those to construct examples (as a correspondence)

with embedded Morita equivalence not arising by any of its finite tensor powers.

This constitutes upcoming work under preparation.

18



Part 2

Operator algebras and quantum information:

Quantum values and optimal states

2.1 Connes implies Tsirelson: a simple proof

In its most simple formulation, the Connes embedding problem (in short the CEP) asks

whether every tracial state arises via the induced trace given on the tracial ultrapower for the

hyperfinite II1-factor as a factorisation over some representation (which would then hold the entire

information):

A R
! C.repr tr!

The representation will be automatically unital as the induced trace is faithful by construction.

On the other hand, the synchronous Tsirelson conjecture asks whether every synchronous

quantum commuting correlation given by some tracial state

C
⇤(Z/m ⇤ . . . ⇤ Z/m) C :⌧

p(ab|xy) = ⌧

⇣
E(a|x)E(b|y)

⌘

arises approximately via traces on finite dimensional quotients

C
⇤(Z/m ⇤ . . . ⇤ Z/m) Q = M(d1)� . . .�M(dr) C.some trace

The contribution of the preprint is to simplify the obtained

The main contribution from our preprint [Fre22a] is the observation that the central lifting

result by Kim–Paulsen–Schafhauser from [KPS18] (more precisely an improved version from our

preprint) directly entails the CEP implies the synchronous Tsirelson conjecture. More precisely

their lifting result states that any representation, which admits an approximation by ucp-maps via

matrix algebras, arises as an honest approximation by representations:

Q
n
Mn

C
⇤

⇣
E(1) + . . .+ E(A) = 1

⌘
R

!
repr

ucp

=)

Q
n
Mn

C
⇤

⇣
E(1) + . . .+ E(A) = 1

⌘
R

!
.

repr

repr

Kim–Paulsen–Schafhauser then combine this with the local lifting property (as a blackbox existence

result) applied on the finite dimensional operator subsystem

Q
n
Mn

CE(1) + . . .+ CE(A) C
⇤

⇣
E(1) + . . .+ E(A) = 1

⌘
R

!
.

ucp

repr



2.1. Connes implies Tsirelson: a simple proof

Our contribution in [Fre22a] is the simplified and improved version of their lifting result with

some fairly elementary lifting (as an existence result) suitable for quantum information:

Q
n

⇣
M2 ⌦ . . .⌦M2

⌘
d(n)-times

C
⇤

⇣
E(1) + . . .+ E(A) = 1

⌘ Q
n
M(21)

��
tr! = limn trn

�
= R

!
repr

repr

This result involves (1) a simplified version of the tracial ultrapower in the lower right

and (2) an elementary lifting based on the construction from Kim–Paulsen–Schafhauser.

More importantly however, the author realized that the proof of Connes implies the synchronous

Tsirelson conjecture is already entirely contained (as our humble contribution):

Theorem 2.1.1 ([Fre22a]). The CEP implies the synchronous Tsirelson conjecture:

More precisely, suppose every tracial state on operator algebras arises as the induced trace on the

tracial ultrapower for the hyperfinite II1-factor,

A R
! C.repr tr!

Then every synchronous quantum commuting correlation arises as a limit of finite dimensional

synchronous correlations using the lifting result (as above)

Q
n

⇣
M2 ⌦ . . .⌦M2

⌘

C
⇤

⇣
Z/m ⇤ . . . ⇤ Z/m

⌘ Q
n
M(21)

��
tr! = limn trn

�
= R

! Crepr

repr

from which the synchronous quantum commuting correlation may be read o↵ as

⌧

⇣
E(a|x)E(b|y)

⌘
= lim

n!!

tr
⇣
En(a|x)En(b|y)

⌘

for their corresponding projections within the sequence algebra En(�|�) ✓M2 ⌦ . . .⌦M2

and their image within the tracial ultrapower E(a|x) 2
Q

n
M(21)

��
tr! = limn trn

�
.

This simple lifting diagram already defines the entire proof. Furthermore this bypasses each

of the Kirchberg conjectures as well as every reformulation using microstates and the like.

On the other hand this implication entails the full version of the general Tsirelson conjecture

following from the synchronous version (which contains the hard technical core): This equivalence

arises as a culmination of results from [Rus20] together with [DPP19] and [KPS18].

We give some additional details about our technical contributions from above:

For this we first clarify (special thanks goes here to Mikkel Munkholm) that tracial ultrapowers do

not require completion to von Neumann algebras beforehand and as such we obtain a simplified

version for the tracial ultrapower of the hyperfinite II1-factor which is more manageable (and easier

to comprehend) for quantum information purposes:
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2.1. Connes implies Tsirelson: a simple proof

Lemma 2.1.2 ([Fre22a], details unpublished). For tracial ultrapowers it holds (A, ⌧)! = vN(A, ⌧)!.

In particular for the tracial ultrapower of the hyperfinite II1-factor

R
! =

⇣
M(21) = M2 ⌦M2 ⌦ . . .

��� tr(21) = tr⌦ tr⌦ . . .

⌘!

where the right–hand side is more manageable for quantum information purpose.

The analogous statement does not hold for ultrapowers along states merely.

This result goes hand in hand with the following observation (verbatim from some familiar version)

with the crux that tracial ultrapowers do not require von Neumann algebras:

Lemma 2.1.3 (proof verbatim from [BO08, Lemma A.9]). Tracial ultrapowers are complete in

their trace 2-norm and so already define tracial von Neumann algebras

A
! =

Y

n

An

.n
lim
n!!

⌧n(a
⇤

n
an)
o
:

⇣
A

!
, lim
n!!

⌧n

⌘
= vN

⇣
A

!
, lim
n!!

⌧n

⌘

for any sequence of possibly non-separable operator algebras An.

The second part is our elementary lifting result from above (details unpublished) based

on the construction from Kim–Paulsen–Schafhauser. More precisely the lifting goes as follows:

One begins with a single projection which may be lifted as a positive contraction:

q 2

Y
n

M(21)
.⇣

tr! = lim
n

trn
⌘
: q

2 = q = q
⇤

=) (q1, q2, . . .) 2
Y

n

M(21) : 0  (q1, q2, . . .)  1.

One may then further approximate those by finite dimensional matrices as one has:

M(21) =
⇣
M2 ✓M2 ⌦M2 ✓ . . .

⌘
: qn ⇡ an 2

⇣
M2 ⌦ . . .⌦M2

⌘
✓M(21).

At this point we invoke the construction by Kim–Paulsen–Schafhauser: That is one may cut

those by their spectral projection without a↵ecting their outcome in the tracial ultrapower:

an ⇡ 1[0.5,1]an 2
⇣
M2 ⌦ . . .⌦M2

⌘
: 1[0.5,1]a = a = q 2

Y
n

M(21)
.⇣

tr! = lim
n

trn
⌘
.

This is cutting procedure is legitimate due the following dimension–uniform trace bound due to

Kim–Paulsen–Schafhauser (for which we provide a systematic proof and its optimal bound):

Lemma 2.1.4 ([Fre22a] optimised from [KPS18]). Consider for any normal matrix n 2M(d) its

spectral projection 1S(n) 2 M(d) onto some complex region S ✓ C. Then it holds the dimension–

independent optimal trace 2-bound

rkn� 1S(n)k2  kn
2
� nk2 where r := d

�
S \ �(n), 0

�
^ d
�
S
c
\ �(n), 1

�
.

In particular it holds for positive contractions a 2M(d)

ka� 1[0.5,1]ak2  2ka2 � ak2

�
< 2
p
2ka2 � ak2

�

with improved optimal bound as indicated from [KPS18].
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2.1. Connes implies Tsirelson: a simple proof

The following projections may be lifted the same way employing a simple cutting procedure (also

due to Kim–Paulsen–Schafhauser!) and as such our lifting result reads altogether:

Lemma 2.1.5 ([Fre22a] based on [KPS18]). Any unital representation into the tracial ultrapower

of the hyperfinite II1-factor admits a unital lift into matrices (of possibly increasing size):

Q
n

⇣
M2 ⌦ . . .⌦M2

⌘

C
⇤

⇣
E(1) + . . .+ E(A) = 1

⌘ Q
n
M(21)

��
tr! = limn trn

�
= R

!
unital repr

unital repr

That is every unital representation into the tracial ultrapower arises as a representation

factorising by the sequence algebra (for some certain growth in dimension).

We finally note that variations of this lifting result are partially known (as folklore).
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2.2. Quantum commuting model: states vs. correlations

2.2 The quantum commuting model:

States vs. correlations

In order to handle the problem of robust self-testing we advocate the systematic distinction between

uniqueness of states vs. correlations. Indeed we note that most of the traditional nonlocal games

come with uniqueness of the entire optimal state (as opposed to uniqueness of only its correlation).

More precisely, any quantum commuting correlation arises as an operator algebraic state restricted

on order–two moments of the form

' : C⇤(Alice)⌦ C
⇤(Bob) C : p(ab|xy) = '

⇣
E(a|x)⌦ E(b|y)

⌘

where each players algebra arises as the free product of cyclic groups

C
⇤

⇣
n = #questions

��� m = #answers
⌘
= C

⇤

⇣
Z/m ⇤ . . . ⇤ Z/m — n-many

⌘
.

Further most of our investigations focus on binary nonlocal games (that is each player answers

with classical bits) for which the operator algebra reads for instance

C
⇤(3|2)⌦ C

⇤(3|2) = C
⇤

⇣
Z/2 ⇤ Z/2 ⇤ Z/2

⌘
⌦ C

⇤

⇣
Z/2 ⇤ Z/2 ⇤ Z/2

⌘
.

In this case the information of order 2-moments in projection-valued measures is already entirely

contained in order 2-moments by their generating unitaries (for each cyclic group)

D
E(a 2 Z/2|x)⌦ E(b 2 Z/2|y)

E
=
D
u(x)⌦ 1, u(x)⌦ u(y), 1⌦ u(y)

E

with translation given by (due to Pontryagin duality)

u(x) = E(a = 1|x)� E(a = �1|x) and 2E(a|x) = au(x) + 1.

As such we consider the equivalent correlation table given by

'

⇣
u(x)⌦ 1

⌘
, '

⇣
u(x)⌦ u(y)

⌘
, '

⇣
1⌦ u(y)

⌘
, (1  x, y  m).

This restriction on order-two moments as above defines the di↵erence between uniqueness of

optimal states vs. self-testing of correlations merely, which plays a pivotal role in upcoming

joint work with Azin Shahiri on genuine self-testing vs. uniqueness of optimal states.

We get to elaborate this problem further below in section 2.4.

2.3 Optimal states: uniqueness

(including all higher moments)

As a first part we however elaborate uniqueness of entire optimal states, that is most traditional

nonlocal games admit unique optimal states as opposed to uniqueness up to self-testing merely:

For this we note in our work that the quantum value (more precisely the quantum commuting
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2.3. Optimal states: uniqueness (including all higher moments)

value) arises as the operator norm

!(game) = sup
'

'(game) = kgamek

with nonlocal game given as a positive polynomial

game =
1

|X ⇥ Y |

X
E
�
winning pairs

�
2 C

⇤(Alice)⌦ C
⇤(Bob).

where we invoke the suggestive notation E(ab|xy) = E(a|x)⌦ E(b|y).

As such we generally structure our problem into the subproblem: (1) compute the operator

norm for the polynomial and (2) determine the region of state space realising the operator norm:

(1) kgamek = ? =) (2) '(game) = kgamek : ' = ?

Generally these are hard subproblems (from a complexity point of view) and they are in some

sense not independent either: Indeed we note that it is known that the quantum approximate

value may be e�ciently approximated from below as observed in

[FNT14]: Can you compute the operator norm?

while the quantum commuting value may be approximated using the NPA hierarchy [NPA08].

However by the recent breakthough article [JNVWY21] the class of recursively enumerable

languages embeds into the class of nonlocal games in such a way that the quantum value has

constant gap and gives a mean to decide the runtime for each algorithm in the sense:

algorithm halts () !
⇤(game) � 2/3

algorithm does not halt () !
⇤(game)  1/3

As such if the quantum and quantum commuting value would coincide, this would entail an

(e�cient) algorithm for deciding the runtime. The class of recursively enumerable languages

however includes the Halting problem and as such the quantum and quantum commuting

value cannot coincide for the entire class of nonlocal games.

On the other hand, the maximal tensor product of full group algebras incorperates the operator

norm in each of its representations and equivalently also the value along the entire state space.

As such the above subproblems are, in some sense, not independent either.

For particular nonlocal games one may however still hope to solve either of the subproblems:

Indeed one may hope to solve the first subproblem by means of algebraic constraints such as

for instance Landau’s trick for the CHSH game:

CHSH = u⌦ u+ u⌦ v + v ⌦ u� v ⌦ v :

CHSH⇤CHSH = 4� [u, v]⌦ [u, v]  4 + 2⌦ 2 = 8.

Note that Landau’s trick from [Lan87] is sometimes mistakenly attributed to Tsirelson.

For the second subproblem we first note that the description of correlations in terms of states on
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2.3. Optimal states: uniqueness (including all higher moments)

the maximal tensor product defines a representation–free and algebraic description

C
⇤(Alice)⌦ C

⇤(Bob)
�

�
�H

H
H

B(H) C : '
�
E ⌦ F

�
or '

�
u⌦ v

�
.

As such a pair of correlations given as seemingly di↵erent representations (think of reference frames)

may define simply one and the same state after all (just from di↵erent perspectives):

B(H)

C
⇤(Alice)⌦ C

⇤(Bob) C

B(H 0)

And indeed, most of the traditional self-testing results arise simply from this perspective as a

unique optimal state (but seen from di↵erent reference frames as above)

C
⇤(Alice)⌦ C

⇤(Bob) C :
'(�)

'(game) = kgamek =) '(�) unique!

The problem is now to determine this region of state space maximising the quantum value:

For this we employ an additional technique which allows us to further decompose the

problem into quotient representations and the eigenspace/trace space on the other hand.

For this we note that the minimal Stinespring dilation gives a unique decomposition of states

into a minimal quotient representation followed by its vector state

A Q ✓ B

⇣
A |'i

⌘
Cquotient h'|�|'i

while any non-minimal Stinespring dilation arises simply as a dilation

A

 
B(A |'i) 0

0 B(rem)

!
C.

( h'| 0 )�
✓

|'i

0

◆

As such the bottom right-hand corner defines entirely artificial data that does not represent any

information of the original state. Indeed most ambiguity encountered in known self-testing results

have their origin precisely here (which summarises the issue of reference frames above).

More importantly however, the minimal Stinespring dilations defines the minimal quotient

algebra for the original state (and so the quotient on which the state naturally lives):

C
⇤(Alice)⌦ C

⇤(Bob) Q . . . Q(') C'(�)

As such the task to determine the region of state space (maximising the quantum value) becomes

(2a) determine the operator algebraic relations the nonlocal game enforces on all optimal states

C
⇤(Alice)⌦ C

⇤(Bob) Q(game) =
C

⇤(Alice)⌦ C
⇤(Bob)

I(game)
C :

'(�)

I(game) =
\

I

�
'

��'(game) = kgamek
�
✓ C

⇤(Alice)⌦ C
⇤(Bob)
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2.3. Optimal states: uniqueness (including all higher moments)

with maximal ideal for each state given by (for more details see the second preprint [Fre22b])

I(') =
n
aA |'i = 0

o
=
n
h'|Aa

⇤
aA |'i = 0

o
✓ ker(')

which equivalently resembles the kernel of its representation in the minimal Stinespring dilation,

and (2b) determine the maximal eigenspace/trace space within minimal quotient algebras

ES
⇣
max(game)

⌘
=
n
game |'i = max |'i

o

T

⇣
Q(game)

⌘
=
n
⌧ : Q(game)! C : ⌧(ab) = ⌧(ba)

o

where the latter denotes the game algebra as introduced in [OP16] and [HMPS19].

We note that in general the majority of nonlocal games however enforces no relation at all:

This is the main content of upcoming work which we elaborate in more detail in section 2.4.

But before we get to explain this we give some examples with unique optimal states:

Theorem 2.3.1 ([Fre22b]). The CHSH game given as an abstract polynomial

CHSH 2 C
⇤(Alice)⌦ C

⇤(Bob) : C
⇤(Alice) = C

⇤(u2 = 1 = v
2) = C

⇤(Bob)

has not only a unique correlation but in fact a unique optimal state:

More precisely, any optimal state maximising the CHSH polynomial

C
⇤(Alice)⌦ C

⇤(Bob) C :
'(�)

'(CHSH) = kCHSHk

necessarily arises as a state on the simple quotient algebra

C
⇤(Alice)⌦ C

⇤(Bob)

✓
Q(CHSH) =

C
⇤(Alice)

{u, v} = 0
⌦

C
⇤(Bob)

{u, v} = 0

◆
C

with braces denoting the anticommutation {u, v} = uv + vu = 0 for each player,

and is uniquely determined on all moments such as for (using the anticommutation)

'

⇣
uvuvu⌦ vuv = �u⌦ u

⌘
= �

1
p
2

which follows entirely from its values:

'(�) �⌦ 1 �⌦ u �⌦ v �⌦ uv

1⌦� 1 0 0 0

u⌦� 0 1
p
2

1
p
2

0

v ⌦� 0 1
p
2

�
1
p
2

0

uv ⌦� 0 0 0 �1

Note that the entire result is in abstract algebraic form and in particular representation–free.

Also as the state is uniquely determined there is absolutely no ambiguity left anymore.

In the preprint [Fre22b] we further note the following examples (which are partially known):
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The Mermin–Peres magic square and magic pentagram games have as game algebra

Q

⇣
magic square

⌘
= C

⇤
(X

2
=1=Z

2
)

{X,Z}=0
⌦

C
⇤
(X

2
=1=Z

2
)

{X,Z}=0
= M2 ⌦M2

Q

⇣
magic pentagram

⌘
= C

⇤
(X

2
=1=Z

2
)

{X,Z}=0
⌦

C
⇤
(X

2
=1=Z

2
)

{X,Z}=0
⌦

C
⇤
(X

2
=1=Z

2
)

{X,Z}=0
= M2 ⌦M2 ⌦M2

which solves problem (2a) and so also problem (2b): Both come with a unique tracial state and as

such both of the Mermin–Peres games come with a unique optimal state given by

'

⇣
E(a|x)⌦ E(b|y)

⌘
= ⌧

⇣
E(a|x)E(b|y)

⌘
.

Note that the above result is representation-free and further involves no transpose operators!

Instead the latter is merely an artefact of rendering the optimal tracial state as vector state using

a concrete representation for the opposite group algebra (within the right regular representation).

In the same vein one has for sums of projections as in [KRS02] which inspired [MPS21]:

The universal algebra is a simple matrix algebra and as such already comes with a unique optimal

state given by the tracial state (which already entails the entire self-testing result)

C
⇤

⇣
p1 + . . .+ pn = a

b

⌘
= M(b) : ⌧(�) = tr(�)/b

with irreducible expression from the continued fraction a/b 2 {0, 1 + 1

n�1
, . . .} as in [KRS02].

In ongoing joint work with Azin Shahiri we further provide an operator algebraic approach

on robust self-testing in the quantum commuting model which applies on above examples.

2.4 Correlations: genuine self-testing

(accounting order–two moments)

Up until now the previous section merely gave a prelude to highlight how most traditional

games and their self-testing results merely stem from the arbitraryness of non-minimal Stinespring

dilations along with the ambiguity of the chosen concrete representation (as a reference frame)

while the underlying optimal state had been entirely unique (including all moments).

With this being said, we now get to address their induced correlations on order-two moments and

the procedure with which we establish an abundancy of genuine self-testing results that do

not arise as a simple dilation for any unique underlying optimal state.

This is were proper operator algebraic techniques kick-in in order to navigate also along exotic

representations (think of interesting reference frames). For this we recall that synchronous

correlations arise as tracial states on the full group algebra

⌧ : C⇤

⇣
Z/m ⇤ . . . ⇤ Z/m

⌘
! C : p(ab|xy) = ⌧

⇣
E(a|x)E(b|y)

⌘
.

Apart from the low-degree degenerate cases, these groups are generally far from amenable as they

even contain free groups (which includes for instance the I3322 inequality)

F (n� 1) =
⇣
Z ⇤ . . . ⇤ Z

⌘ ⇣
Z/m ⇤ . . . ⇤ Z/m

⌘
⇤ Z/m
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2.5. Optimal states: robustness behavior

while for binary games they even feature free groups as a quotient

⇣
Z/2 ⇤ . . . ⇤ Z/2

⌘
⇤ Z/2 F (n� 1)o Z/2.

As such we obtain an abundance of inequivalent tracial states when accounting all moments.

In fact these are hard to handle entirely from a complexity point of view as these incorparate

(before taking a semidirect product) every finitely generated operator algebra as a quotient and

as such also their tracial states. On the other hand, there exists a large body of research on

discrete groups and their quotients from an operator algebraic perspective including the intriguing

simplicity question for discrete groups and its accompanying unique trace property.

In order to handle the problem we now plan to first exploit a particular class of fairly well-

understood quotient algebras (up to the free factor problem): For this we view the underlying

group algebra as a right-angled Coxeter group whose full group algebra admits the class of Hecke

algebras as concrete quotient algebras (as a particular instance of quantum deformations).

For those however the simplicity question as well as the unique trace property has been answered

to an extend well enough for our purposes. As such we exploit their simplicity and unique trace

property to rule out the existence of any dilations between their tracial states.

At the same time each Hecke algebra comes with a concrete canonical tracial state (parametrising

a family of tracial states for the full group algebra) whose moments have a very simple form:

C
⇤

⇣
W = Z/2 ⇤ . . . ⇤ Z/2

⌘
B

⇣
`
2
W

⌘
C :Hecke he|�|ei

he|word |ei = (�1  s  1)|word|

As such we obtain a pool of inequivalent traces which may be handled su�ciently well.

On the other hand, a recent remarkable observation by Travis Russell however recovers their

correlations by finite dimensional tracial states. As such we aim to establish in ongoing joint work

a genuine self-testing result for their induced correlation based on these two observations.

This is ongoing joint work with Azin Shahiri after a key remark by Vern Paulsen.

2.5 Optimal states: robustness behavior

In recent work from 2021 [MPS21], Mancinska, Prakash and Schafhauser provide a robust self-

testing result based on the algebra underlying an optimal state. Their method applies to finite

dimensional measurements using a suitable version of Gowers–Hatami.

In ongoing joint work we pick up the approach by Mancinska–Prakash–Schafhauser at the level

of optimal states and complete this as an entire robust self-testing result including the quantum

commuting model using purely operator algebraic methods altogether:

More precisely, our result relies on the optimal state arising as some maximally entangled state

on some finite dimensional quotient from which we derive the robust self-testing result using

methods from the previous section on optimal states together with a few additional tricks.

In particular this entails the result by Mancinska–Prakash–Schafhauser as a special instance.

Our method however does not apply for optimal states arising on infinite dimensional quotients.

For such we would instead require the use of Hilbert–Schmidt stability which currently arises

as a hot topic in operator algebras of independent interest.
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2.6 The tilted CHSH games:

a representation–theoretic classification

In an upcoming preprint [FS23] we take a closer look on the tilted CHSH games:

More precisely, we give a systematic representation–theoretic approach on the their quantum

value and corresponding unique optimal states as these appear in the separation between finite

dimensional and spatial strategies as recently obtained by Coladangelo and Stark in [CS20].

The longterm purpose is then to derive an operator algebraic argument for their separation and in

turn to construct nonlocal games exhibiting the separation for which we first seek a better

understanding (and simpler description) on optimal states for the tilted CHSH games.

We focus on this separation of correlations as their better understanding may become relevant for

self-testing in practice since near-term realisations of practical quantum computing usually involves

infinite dimensional systems which reduce to finite dimensional ones only in first order.

For this we first provide a systematic approach on the representation theory of binary–input

binary–output games and in particular give a canonical description for its full group algebra.

The resulting description gives an algebraic characterisation of basic building blocks appearing in

a variety of articles such as for instance on the I3322-inequality as in [PV10].

Proposition 2.6.1 ([FS23] under preparation; see also [RS89]). The group algebra for binary–

input binary–output games has the canonical representation as matrix valued functions

C
⇤

⇣
Z/2 ⇤ Z/2

⌘
= C

⇤

⇣
u
2 = 1 = v

2

��� {u(z), v(z)} = 2Re
�
z 2 T

� ⌘
✓ C

⇣
T!M2

⌘

with the value for the anticommutator running over the torus z 2 T.
As such its minimal quotients arise by anticommutation {u, v} = 2s running over �1  s  1.

In particular any finite dimensional representation arises as direct sum over such.

We use this canonical representation to systematically compute quantum values for nonlocal games:

More precisely, the canonical representation defines a parametrisation of quantum values along

minimal quotients (given by the range of anticommutation) that resemble the operator norm

game 2 C

⇣
[�2, 2]⇥ [�2, 2]!M2 ⌦M2

⌘
: kgamek = sup

s,t

kgame(s, t)k

and as such we may systematically compute quantum values for binary–input binary–output games

as an optimisation problem along matrix algebras. We further note that the quantum value

may not decrease within the quotient for some given optimal state since

C
⇤(Alice)⌦ C

⇤(Bob) Q(') C⇡(�) '(�)

'(game)  k⇡(game)k  kgamek

and as such the above optimisation problem further returns a range of anticommutations (as a
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2.6. Tilted CHSH games: a representation–theoretic classification

quotient by restriction) that carries each optimal state

best(game) :=
n
kgame(s, t)k = kgamek

o
✓ [�2, 2]⇥ [�2, 2] :

C

⇣
[�2, 2]⇥ [�2, 2]!M2 ⌦M2

⌘
C

⇣
best(game)!M2 ⌦M2

⌘
.

As a note asides, this additionally gives another proof that optimal states for binary–input

binary–output games may be always realised by some alternative finite dimensional state.

We use this technique in the upcoming preprint for the tilted CHSH games:

Theorem 2.6.2 ([FS23] under preparation). The tilted CHSH games as a polynomial

CHSH
⇣
↵ 2 R,� 2 R

⌘
2 C

⇤

⇣
Z/2 ⇤ Z/2

⌘
⌦ C

⇤

⇣
Z/2 ⇤ Z/2

⌘

admit a quantum advantage precisely some region specified in the preprint,

and which further uniquely determines the anticommutation for both players as

Q

⇣
CHSH(↵,�)

⌘
=

C
⇤(Alice)

{u, v} = 2s(↵,�)
⌦

C
⇤(Bob)

{u, v} = 2t(↵,�)
.

For the precise anticommutation we also refer to the upcoming preprint [FS23].

In particular we derive a much simpler description for these parameters.

The quotient for the tilted CHSH games allows us then to further derive uniqueness for the entire

optimal state (including all higher moments): For this one may use a random choice of Pauli

matrices to compute the maximal eigenspace. We however invoke instead a simple algebraic

argument to derive the entire table of moments in a representation–free form:

Theorem 2.6.3 ([FS23] under preparation). The tilted CHSH games admit a unique optimal state

'(�) = h'|� |'i given by the one dimensional subspace (as a projection)

|'ih'| = �+(↵,�)E
⇣
u = +1

⌘
⌦ E

✓
w

|w|
= +1

◆
+ ��(↵,�)E

⇣
u = �1

⌘
⌦ E

✓
w

|w|
= �1

◆

for 1⌦ w = 1⌦ (u+ v) and corresponding spectral projections E(. . . = ±1).

For the precise form of its Schmidt coe�cients we refer to the upcoming preprint.

In particular the optimal state is maximally entangled along the horizontal axis:

�+(↵,�) = ��(↵,�) () (↵ 6= 0,� = 0).

Similarly we refer to its resulting table of moments to the upcoming preprint.

Note that the entire result is in abstract algebraic form and in particular representation–free.

Also as the state is uniquely determined there is absolutely no ambiguity left anymore.

We finish this section with a simplified translation for real polynomials as binary games:

More precisely we note that the previous tilted CHSH games are given as a polynomial

CHSH(↵,�) = ↵u⌦ (u+ v) + v ⌦ (u� v) + 2�u⌦ 1 2 C
⇤
�
u
2 = 1 = v

2
�
⌦ C

⇤
�
u
2 = 1 = v

2
�

which we have silently viewen as a bias polynomial mimicking those for XOR-games.
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2.6. Tilted CHSH games: a representation–theoretic classification

Indeed beginning from any XOR-game one may describe its game polynomial (as in section 2.3)

equivalently also in terms of its bias polynomial (as for instance in [CHTW04, section 5.3])

game =
1

|X ⇥ Y |

X
E(winning) =) bias =

X
(�1)V (x,y)

u(x)⌦ u(y).

While this defines a pretty much standard procedure, we now describe a simplified procedure

for associating nonlocal games to any real bias polynomial (without increasing any question sets):

For this we begin with the observation that tensor products of order-two unitaries remain order-two

and whose spectral decomposition may be easily read o↵ as

u⌦ v =
⇣
E(+1)⌦ F (+1) + E(�1)⌦ F (�1)

⌘
�

⇣
E(+1)⌦ F (�1) + E(�1)⌦ F (+1)

⌘

from which the relations for recoving its spectral projections read

1⌦ 1 + u⌦ v = 2
⇣
E(+1)⌦ F (+1) + E(�1)⌦ F (�1)

⌘
,

1⌦ 1� u⌦ v = 2
⇣
E(+1)⌦ F (�1) + E(�1)⌦ F (+1)

⌘
.

On the other hand the spectrum satisfies the obvious relations

�(a+ 1) = �(a) + 1 and �(�a) = �(a).

We may thus combine these two observations to relate any real bias polynomial to some game

polynomial (with however possibly non-uniform distribution over questions) such as for instance

bias = 1/3 u(x = 1)⌦ u(y = 2)�
p
2 u(x = 3)⌦ 1  

bias +

✓
1

3
+
p
2

◆
= 1/3

✓
E(a = 1|x = 1)⌦ E(b = 1|y = 2) + E(a = �1|x = 1)⌦ E(b = �1|y = 2)

◆

+
p
2

✓
E(a = 1|x = 1) + E(a = �1|x = 1)

◆
⌦

✓
E(b = 1|any) + E(b = �1|any)

◆
= game

with game polynomial up to some normalizing scalar.

As such any real bias polynomial defines a binary game whence also above tilted CHSH games.

As another example we have any signed game as for example those exhibiting a separation between

the quantum and quantum commuting value from [DPP19].
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2.7 The I3322 inequality:

an operator–algebraic approach

In ongoing work with Azin Shahiri we use the representation-theoretic classification from the

previous section to approach the prominent I3322 inequality from an operator algebraic perspective:

We begin for this on the norm and spectrum for the underlying bias polynomial:

Using a culmination of operator algebraic relations in combination with a systematic description

for the a�ne space of non-signalling correlations we first derive its precise operator norm and thus

an antisymmetry for the spectrum.

We then exploit our found description for its finite dimensional representations (together with an

additional reduction) to bound its maximal quantum violation as an optimisation problem within

the numerical range for a particular 16-dimensional representation.

On the other hand we invoke an algorithmic description for the operator norm in group algebras

using random walks. Embedding the I3322 inequality in the spatial tensor product we use this

description to derive lower bounds for the quantum spatial value.

We ultimately wish to derive a strict bound for finite dimensional correlations,

and hope to derive this way a separation from their quantum spatial counterpart.

On the other hand we attempt to flip perspectives:

More precisely, beginning from a given spatial correlation we wish to find systematic methods for

constructing nonlocal games (as a polynomial in the operator algebra for the underlying group)

exhibiting a separation from finite dimensional correlations and the given state.

This idea is based on discussions with Tobias Fritz and Remigiusz Augusiak.

The importance of this question stems from device independent certification in the context of real-

world quantum computing: More precisely, while current models for quantum computing rest on

finite dimensional spaces (up to first order) their physical realisations involve infinite dimensional

spaces nonetheless. As such the separation between finite dimensional and quantum spatial

correlations may become utmost important in the near-term era of quantum computing.
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Preprint A

Relative Cuntz–Pimsner algebras:

Classification of gauge-equivariant

representations:

a simple and complete picture

We give a simple and complete picture on the classification of relative

Cuntz–Pimsner algebras (and so also of gauge–equivariant representations) using

their intuitive parametrisation by kernel–covariance pairs.

For this we first present a classification of kernel and cokernel morphisms (in

the general category of correspondences) which builds on the concept of invariant

ideals as originating from work by Pimsner and as coined and further investigated

by Kajiwara–Pinzari–Watatani. The existence of all such kernel and cokernel

morphisms then enable us to reduce the general classification problem to the

faithful case of correspondences within ambient operator algebras.

The second component arises from an observation made by Katsura:

We unravel Katsura’s observation as an obstruction on the range of covariance

ideals for correspondences embedded in ambient operator algebras, which comprises

the second component of kernel–covariance pairs: As such our parametrisation runs

over invariant ideals (as a discrete range of kernel ideals) and on the other hand

over bounded ideals below some maximal covariance (as an upper bound on the

range of covariance ideals).

We then illustrate the lattice of relative Cuntz–Pimsner algebras (and so also

of every gauge–equivariant representation) along the range of kernel–covariance

pairs. Following, we provide the general version of the gauge-invariant uniqueness

theorem by its reduction to the faithful case,

for which we further recall a simplified proof by Evgenios Kakariadis.

This establishes the first half in our classification: Every gauge–equivariant

representation arises as a relative Cuntz–Pimsner algebra (for its own kernel–

covariance pair) and whence the class of gauge–equivariant representations

coincides with the class of relative Cuntz–Pimsner algebras. As such the kernel–

covariance pairs exhaust the gauge–equivariant representations.

For the second half in our classification we aim to uniquely determine the relative
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Cuntz–Pimsner algebras by their parametrising kernel–covariance pairs: More

precisely, we will recover every abstract kernel–covariance pair as the actual kernel

and covariance from its relative Cuntz–Pimsner algebra, and as such our kernel–

covariance pairs are also classifying.

With our found classification by kernel–covariance pairs we then further investigate

the lattice structure of gauge–equivariant representations.

In particular, we elaborate the existence of connecting morphisms between

cokernel strands (given by the kernel component of kernel–covariance pairs) and

illustrate our results on examples of graph algebras.

Along this discussion we further clarify Katsura’s description (using T-pairs) as

a simple translation of kernel–covariance pairs (which had been already covered

by Katsura himself) with the second component however not taken and further

pursued as describing the range of covariance ideals.

Altogether our classification is a simple reduction of the gauge–invariant

uniqueness theorem (along cokernel morphisms) together with the identification of

kernel and covariance for relative Cuntz–Pimsner algebras.

Finally we provide a realisation of relative Cuntz–Pimsner algebras as absolute

Cuntz–Pimsner algebra by the process of maximal dilation and reveal Katsura’s

construction as the canonical dilation given by the maximal covariance.

We further reveal the canonical dilation as a familiar construction from graph

algebras and provide an example to illustrate the lack of minimal dilations.

As an application we provide a systematic approach for an earlier pullback result

by Robertson–Szymanski which we extend to the general context in upcoming work

with Piotr M. Hajac and Mariusz Tobolski.

A.1 Correspondences

We begin with an introduction to correspondences and their representations. In

particular, we provide a less formal and more abstract angle. This seeks to help to

understand their gauge-equivariant representations from an abstract perpsective

— and so also to classify the entire lattice of gauge-invariant ideals. Further, this

allows one to better understand dilations and in further work the shift equivalence

problem from an abstract angle. A Hilbert module is a right module over an

operator algebra (seen as coe�cient algebra) that comes equipped with a pairing

(compatible with the coe�cient algebra) which renders the right module complete
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with respect to the induced norm:

h�|�i : X ⇥X ! A : kxk
2 := k hx|xi k.

Given a pair of Hilbert modules over a common coe�cient algebra one may

introduce the notion of adjointable operators as those which admit an adjoint:

T : X ! Y, T
⇤ : Y ! X : hT�|�i = h�|T ⇤

�i .

We note that such adjointable operators are automatically continuous which may

be seen most easily via the closed graph theorem. Moreover the class of adjointable

operators over pairs of Hilbert modules defines a “consistent system” of Banach

spaces with composition and involution

L(Y |Z) � L(X|Y ) ✓ L(X|Z), L(X|Y )⇤ = L(Y |X)

satisfying the generalized C
⇤-identity

T 2 L(X|Y ) : kTk
2 = kT ⇤

Tk.

The vertical separators hereby seek to convey the so-called Dirac braket notation,

that is we have the following identification which we term Dirac calculus:

Proposition A.1.1. The identification (and its conjugate)

X = |Xi ✓ L(A|X), X
⇤ = hX| ✓ L(X|A) :

|xi a := |xai , hx| y := hx|yi : hx|
⇤ = |xi

define an isometric embedding (and its conjugate),

which renders the pairing as

hx|yi = hx| � |yi 2 L(X|A) � L(A|X).

This further renders the notion of compact operators as

K(X,Y ) := span |Y i hX| ✓ L(X|Y )

and the notion of adjointable operators as

Tx = T � |xi , hTx|yi = hx| � T ⇤
� |yi = hx|T ⇤

yi .

All of the above enables one to split expressions as composition of operators.
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Proof. We first note that the coe�cient algebra itself defines a Hilbert module:

h�|�i : A⇥A! A : hx|yi = x
⇤
y.

One may now verify that the assignments define mutual adjoints

hx|
⇤ = |xi 2 L(A|X) :

⌦
hx|yi

��a
↵
= . . . =

⌦
y
��xa
↵
=
⌦
y
�� |xi a

↵

and that the identification defines an isometric embedding

X = |Xi ✓ L(A|X) : k |xi k
2 = k hx| � |xi k = . . . = k hx|xi k.

We leave these as an instructive exercise for the reader.

With this identification at hand, a Hilbert module conveniently reads as nothing

but a right module together with an abstract pairing given by involution

(X x A) XA ✓ X, (X ⇥X ! A) X
⇤
X ✓ A

which we from now on simply indicate as such formal inclusions.

We may now turn our attention to the notion of C
⇤-correspondence: Formally

these are given as Hilbert modules together with a representation of the coe�cient

algebra as adjointable operators. With the viewpoint from above we however obtain

the alternative description as a bimodule over the coe�cient algebra together with

some compatible inner product pairing

AX ✓ X, XA ✓ X, X
⇤
X ✓ A (A.1)

satisfying some relations such as (now evident in Dirac formalism)

(ax)⇤y = x
⇤(a⇤y), x

⇤(ya) = (x⇤
y)a, etc.

We meanwhile note that the notion of correspondences has an intrinsic asymmetry

by the pairing. More precisely, the more traditional notion of Hilbert modules

comes equipped with a dual pairing which renders the notion symmetric:

X
⇤
X ✓ A, XA ✓ X,

XX
⇤
✓ A, AX ✓ X.

In fact, this covers the main objective of covariant representations. We return

to this aspect in the following section. We continue with a swift introduction to

the (internal) tensor product of correspondences. Using our Dirac formalism from
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above we may now simply introduce those as formal powers such as

A(XY . . . Z) ✓ (AX)Y . . . Z, (XY . . . Z)A ✓ XY . . . (ZA)

and where the inner product pairing now simply reads

(XY . . . Z)⇤(XY . . . Z) = Z
⇤
. . . Y

⇤

⇣
X

⇤
X ✓ A

⌘
Y . . . Z

✓ Z
⇤
. . .

⇣
Y

⇤
Y ✓ B

⌘
. . . Z ✓ . . . ✓

⇣
Z

⇤
Z ✓ A

⌘
.

Moreover, this automatically entails the balanced relation as for example

⇣
(xa)y � x(ay)

⌘⇤⇣
(xa)y � x(ay)

⌘
=

= y
⇤(a⇤x⇤)(xa)y � . . .+ (y⇤a⇤)(x⇤

x)(ay) = 0.

Let us give an illustrative example for such tensor products:

Example A.1.2 (Graph correspondences: Tensor powers):

Consider a directed graph and regard its graph correspondence

X = `
2

⇣
E = edges

⌘
, A = c0

⇣
V = vertices

⌘

with action and pairing given by range and source say

a b
z

w

:
z
⇤
z = a, za = z = bz,

w
⇤
w = b, wb = w = bw.

On the other hand we know by [KPQ12] that every nondegenerate correspondence

over a “direct sum over a discrete set as vertices” arises as a graph correspondence:

A = c0

⇣
vertices = some set

⌘
=) X = `

2(edges).

Indeed this follows by some simple counting argument:

a, b 2 vertices : bXa = `
2

⇣
edges : b a

⌘
= `

2(bEa).

From this argument it furthermore follows that degenerate correspondences arise

the same way when allowing for edges with heads pointing into the void such as

a b
z

w
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and furthermore also any power of a graph correspondence arises as a graph corres-

pondence itself and indeed is given by its paths of according length:

XX . . .X = `
2(EE . . . E), A = c0(vertices).

In other words, that is by concatenation of edges.

As such the tensor product may be seen as nothing but a formal power in words

and one may equivalently consider also mixed powers with the dual space and its

dual pairing (though formally only in the context of operator spaces).

We finish this section with an intrinsic characterization of Hilbert bimodules.

For this we first require the following well-known observation:

Proposition A.1.3 (based on [Kat04, definition 3.2]):

Consider a correspondence (in Dirac braket notation)

hX|Xi ✓ A, XA ✓ X, AX ✓ A

and regard the orthogonal complement for the kernel

ker(A y X) = {aX = 0} ✓ A :

ker(A y X)? = {a ker(A y X) = 0} ✓ A.

This defines the largest ideal that renders the left action faithful.

In particular we may in the following result simultaneously identify the orthogonal

complement with its isometric image within the space of adjointable operators.

Proof. Before we begin with the actual argument let us make the useful observation

that the kernel defines an ideal (closed and two-sided) since

A ker(A y X)X = 0, ker(A y X)AX = 0,

ker(A y X)X ✓ ker(A y X)X = 0

and so also a selfadjoint one (which one may also easily observe by hand)

D
X

��� ker(A y X)⇤X
E
=
D
ker(A y X)X

���X
E
= 0 =) ker(A y X)⇤X = 0.

This kernel determines now precisely those ideals that render the action faitfhul:

K ker(A y X) = K \ ker(A y X) = 0 () K � X = 0.
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As such its orthogonal complement defines the largest such ideal:

K ker(A y X) = 0 () K ✓ ker(A y X)?.

Note that the orthogonal complement (as we have defined from the left only) defines

itself an ideal (closed and two-sided) and so also a selfadjoint one.

Building on this, we may now recover an intrinsic characterization of Hilbert

bimodules (the author would thereby like to thank Adam Skalski and Bartosz

Kwasniewski for unraveling the key detail for this result):

Proposition A.1.4 (see also [Kak13, lemma 2.1]). Consider a correspondence as

seen in (A.1) and regard the orthogonal complement from Proposition A.1.3

ker(A y X)? = {a ker(A y X) = 0} ✓ A

and simultaneously identified as in that proposition by their action

A ◆ ker(A y X)? =
⇣
ker(A y X)? y X

⌘
✓ L(X|X).

Then the correspondence defines a Hilbert bimodule if and only if the compact

operators (see Proposition A.1.1) all lie within the orthogonal complement

|XihX| ✓ ker(A y X)? ✓ L(X|X)

while the dual pairing is always given by

|�ih�| : X ⇥X ! A : |XihX| ✓ ker(A y X)? ✓ A

whence there is no ambiguity left anymore. As such the notion of a Hilbert bimodule

defines a pure property without any additional structure.

Before we begin with the proof, we note that the situation above may be easiest

pictured in mind (and remembered) by the following illustration:
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A.1. Correspondences

A

ker(A y X)?

L(X|X)

|Xi hX|

As such a correspondence in general may be seen as a Hilbert bimodule with a

partial dual pairing. With this picture in mind let us get to the proof.

Proof. Instead of Hilbert bimodules, it su�ces to consider the case of Hilbert

modules (meaning the case of a single action and pairing) say given by

hX|Xi ✓ A, XA ✓ X.

The kernel for the single action (in this case from the right) agrees with the

orthgonal complement for the pairing (and so its support ideal):

ker(X x A) = hX|Xi
?
�
= supp(X)?

�
.

Indeed using Blanchard factorization [Bla96, Lemma 1.3] this immediately follows

from

hX|Xi a = 0 ()
⇣
|Xi = |Xi hX|Xi

⌘
a = 0.

In turn this observation tells us where to search for the pairing:

hX|Xi ✓ hX|Xi
?? = ker(X x A)?

Replacing the right action from our consideration above by the left action from the

proposition we thus just revealed the condition from the proposition. Conversely,

given the condition from the proposition we may simply retrieve the dual pairing

using the isometric image of the orthogonal complement. Using Dirac calculus

from Proposition A.1.1 we finally obtain (simply as composition)

|xi �

⇣
hy| � |zi

⌘
=
⇣
|xi � hy|

⌘
� |zi

and so the traditional compatibility (between pairings) holds trivially.
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A.2. Representations

A.2 Representations

Consider an abstract correspondence as introduced in the first section:

X
⇤
X ✓ A, XA ✓ X, AX ✓ X.

This structure is in some sense freely floating, and so we wish to embed this

structure as a whole into an ambient operator algebra as illustrated:

X

A

X
⇤

B

X

A

X
⇤

A good analogy here is the embedding of Fell bundles into any crossed product.

This is what we understand as a representation. More precisely, that is a

representation of both the correspondence and the coe�cient algebra into some

ambient operator algebra say

(X,A) B : ⌧ : X ! B, ' : A! B

so the former being a morphism of vector spaces and the latter a morphism of

operator algebras and such that the pair is coherent with the structure in between,

which now reads in Dirac formalism (see Proposition A.1.1):

'(x⇤
y) = ⌧(x)⇤⌧(y), ⌧(xa) = ⌧(x)'(a), ⌧(ax) = '(a)⌧(x).

It is well-known that the latter follows automatically from the former two: Indeed

using the C
⇤-identity we find (written in Dirac formalism)

h
'(a)⌧(x)� ⌧(ax)

i⇤h
'(a)⌧(x)� ⌧(ax)

i
=

= '(a)⇤⌧(x)⇤⌧(x)'(a)� '(a)⇤⌧(x)⇤⌧(ax)� ⌧(ax)'(a)⌧(x) + ⌧(ax)⇤⌧(ax)

= '(x⇤
a
⇤
ax)� '(x⇤

a
⇤
ax)� '(x⇤

a
⇤
ax) + '(x⇤

a
⇤
ax) = 0.
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A.2. Representations

Consider now the structure as embedded within the ambient operator algebra

X = ⌧(X) ✓ B and A = '(A) ✓ B.

In particular, viewing them as a subspace and a subalgebra render the abstract

inclusions from the previous section into actual corresponding inclusions

X
⇤
X ✓ A ✓ B, XA ✓ X ✓ B, AX ✓ X ✓ B.

We note that while these representations are evidently not faitful in general, one

may always pass to its quotient correspondence which renders the representation

faithful. This will define the first parameter for the classification.

We now wish to extend a representation to higher and mixed tensor powers.

For this we recall the following result by Kajiwara–Pinzari–Watatani:

Proposition A.2.1 ([KPW98, Lemma 2.1]). Representations canonically extend

to the tensor product and compact operators (denoted in Dirac formalism):

 
⌧ : X ! Y

' : A! B

!
=)

 
XX ! B :

XX
⇤
! B :

⌧(xy) := ⌧(x)⌧(y)

⌧(xy⇤) := ⌧(x)⌧(y)⇤

!

The latter further satisfies the relations

KL 2 (XX
⇤)(XX

⇤) ✓ (XX
⇤) :

aKb 2 A(XX
⇤)A ✓ (XX

⇤) :

⌧(K)⌧(L) = ⌧(KL)

'(a)⌧(K)'(b) = ⌧(aKb)

and so defines in particular a morphism of operator algebras.

Furthermore, suppose the morphism is isometric on the coe�cient algebra.

Then it is so also on the correspondence and on compact operators:

k(A! B)�k = k�k =) k(X ! B)�k = k�k,

k(A! B)�k = k�k =) k(XX
⇤
! B)�k = k�k.

By iteration the proposition includes all higher and any other mixed powers.

Proof. We provide the extension to compact operators since it demonstrates the

use of Dirac calculus with a neat trick by Kajiwara–Pinzari–Watatani: We

need to verify that the formal linear assignment on elementary compact operators

remains bounded

�����⌧
 
X

n

xny
⇤

n

!����� 

�����
X

n

xny
⇤

n

�����, 8xn, yn 2 X,
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A.2. Representations

whence the assignment allows an (a posteriori well-defined) extension to the

completion of all compact operators. For this we invoke matrix calculus to

reformulate the linear sum as a product of matrices

(x)(y⇤) :=
X

n

xny
⇤

n
=
⇣

x1 · · · xN

⌘
0

BB@

y
⇤
1

...

y
⇤

N

1

CCA.

Reformulated, the quite clever trick by Kajiwara Pinzari and Watatani is now to

use the C
⇤-identity (generalized to matrices of adjointable operators):

kxy
⇤
k
2 =

���x(y⇤y)x⇤

��� =
���x
p
y⇤y

��� =
���
p
y⇤y(x⇤

x)
p
y⇤y

��� =
���
p
x⇤x
p
y⇤y

���.

Note this automatically invokes matrix inflations since for example

x
⇤
x =

0

BB@

hx1|

...

hxN |

1

CCA
⇣

|x1i · · · |xN i

⌘
=

0

BB@

hx1|x1i · · · hx1|xN i

...
. . .

...

hxN |x1i · · · hxN |xN i

1

CCA.

On the other hand, this equally applies when invoking the representation and so

we obtain the desired bound

k⌧(xy⇤)k =
���'
⇣p

x⇤x
p
y⇤y

⌘��� 
���
p
x⇤x
p
y⇤y

��� = kxy⇤k.

In turn this trick also applies for the correspondence and tensor product

X ! B : k⌧(x)k = k'(x⇤
x)k  kx⇤

xk = kxk,

XX ! B : k⌧(xy)k = k'(y⇤x⇤
xy)k  ky⇤x⇤

xyk = kxy⇤k

as well as on every other type of tensor product such as of operator algebras.

Meanwhile, this moreover infers that isometricity passes from the coe�cient algebra

to the correspondence (and tensor product) and to compact operators. Moreover,

the morphism satisfies the relations on compact operators since one easily verifies

on elementary compact operators:

'(a)⌧(xy⇤)'(b) = '(a)⌧(x)⌧(y⇤)'(b) = ⌧(axy⇤b),

⌧(xy⇤)⌧(zw⇤) = ⌧(x)'(y⇤z)⌧(w⇤) = ⌧(xy⇤zw⇤).

We therefore found the desired relations and the proof is complete.

With this at hand we may now introduce the notion of covariances. We begin for
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A.2. Representations

this with the observation that (as in the previous proposition) we could have also

defined the morphism (somewhat senseless)

A ◆ hX|Xi ! B : ⌧(x⇤
y) := ⌧(x)⇤⌧(y)

which agrees with the oringal one on the coe�cient algebra (somewhat trivially):

hX|Xi B

A B.

⌧(�) = '(�)

Suppose on the other hand that some elements also act as compact operators:

A \ |XihX| :=
n

a 2 A

��� a 2 |XihX|

o
✓ A.

Then there is no evidence to believe that the induced morphism from the previous

proposition would agree with the morphism for the algebra:

A \ |XihX| B

|XihX| B.

⌧(�) 6= '(�)

Nevertheless the di↵erence of morphisms surprisingly defines a morphism of

operator algebras since (using the property from Proposition A.2.1)

('� ⌧)a('� ⌧)b = '(a)'(b)� '(a)⌧(b)� ⌧(a)'(b) + ⌧(a)⌧(b)

= '(ab)� ⌧(ab)� ⌧(ab) + ⌧(ab) = '(ab)� ⌧(ab).

and so our representation decomposes into the sum of morphisms

⇣
A \ |XihX| B

⌘
= (A.2)

=

0

BB@
A \ |XihX|

|XihX| B

1

CCA +

0

BB@
A \ |XihX| B

B

�

A \ |XihX|

|XihX| B

1

CCA.

As such we may capture the domain of equality by the covariance ideal:

cov
⇣

(X,A)! B

⌘
:= ker

✓
00

◆
E A. (A.3)
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We will often drop the dependency on the coe�cient algebra for simplicity.

The covariance and kernel will classify the gauge-equivariant representations. Let

us thus take a closer look at kernel morphisms and possible covariances:

A.3 Kernel and Covariance

We begin this section with a characterization of kernel morphisms in the category of

correspondences. For this let us introduce the general notion of morphisms between

correspondences. As for representations, these are given by a pair of morphisms

on the correspondence and the coe�cient algebra

(X,A) (Y,B) : ⌧ : X ! Y, ' : A! B

where the former defines a linear morphism and the latter a morphism of operator

algebras and such that the pair is coherent with the structure in between, which

conveniently reads in Dirac formalism:

'(x⇤
y) = ⌧(x)⇤⌧(y), ⌧(ax) = '(a)⌧(x), ⌧(xa) = ⌧(x)'(a).

While the resulting category fails to be abelian (basically due to the algebraic

morphism on the coe�cient algebra) it still possesses all kernels and cokernels. As

the notion of kernels and cokernels is nonstandard however in categories beyond

abelian ones, let us give a quick introduction. Our category of correspondences

and their morphisms has zero morphisms in the sense:

(X,A) (Y,B) (Z,C)0 = (X,A) (Z,C),0

(X,A) (Y,B) (Z,C)0 = (X,A) (Z,C).0

A kernel for a morphism is the universal annihilating morphism:

(?, ?) (X,A) (Y,B)ker = 0

That is any other annihilating morphism factors uniquely over the kernel:

(X 0
, A

0) (X,A) (Y,B) = 0

=) (X 0
, A

0) (?, ?) (X,A).9! ker
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A.3. Kernel and Covariance

Dually one may define the cokernel of morphisms. Moreover, we define a short

exact sequence denoted by

0 (?, ?) (X,A) (?, ?) 0

whenever each side is the kernel (respectively cokernel) of the other:

(?, ?) (X,A) = ker
⇣

(X,A) (?, ?)
⌘

(X,A) (?, ?) = coker
⇣

(?, ?) (X,A)
⌘

We will fill the question marks in the proposition below.

But before, we note the following equivalent notions of invariant and hereditary

ideals which date all the way back to Pimsner and as explicitely coined by

Kajiwara–Pinzari–Watatani (we refrain from the notion of negatively invariant

ideals as we will find those from a di↵erent perspective later on):

Lemma A.3.1 ([Pim97, Lemma 3.5 following] and [KPW98, section 4];

see further also [FMR03, section 2] and similarly also [Kat07, section 1]):

The notion of invariant and hereditary ideals coincide. More precisely, one has the

characterization for ideals in the coe�cient algebra K E A,

XK = {x 2 X | X
⇤
x 2 K} = {x 2 X | x

⇤
x 2 K}, (A.4)

and so it furthermore holds the equivalence

X
⇤
KX ✓ K () KX ✓ XK. (A.5)

The former is generally referred to as invariant and the latter as hereditary ideal.

Proof. Katsura gives a neat proof based on some factorization result by Lance,

more precisely [Lan95, Lemma 4.4], which itself however still requires some rather

technical approximation. Instead we may verify the equivalence with the following

fairly elementary observations: Let us first note that both of the right-hand spaces

are automatically linear and closed by Cohen–Hewitt factorisation:

KX = spanKX ✓ X, XK = spanXK ✓ X.

Now we clearly have the forward inclusions since

X
⇤(XK) = (X⇤

X)K ✓ AK ✓ K.
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Conversely we have using any approximate identity for the ideal

x
⇤
x 2 K =) (1� e)x⇤

x(1� e)! 0 =) x = lim
e

(xe) 2 XK.

With the characterization at hand we further obtain the forward direction

X
⇤
KX ✓ K =) KX ✓ XK : (X⇤

K
⇤)(KX) = X

⇤
KX ✓ K.

Alternatively, one may verify the forward direction using Blanchard factorization

(whose original proof is very neat and elementary, see [Bla96, Lemma 1.3]):

KX = (KX)(KX)⇤(KX) = (KX)(X⇤
KX) ✓ (KX)K ✓ XK

This however yet implicitely invokes the rather technical Cohen–Hewitt factorisation.

If one wishes to refrain from using Cohen–Hewitt altogether, one may also argue

in the following elementwise way (formulated in Dirac notation):

K |Xi 3 k |xi = |yi hy|yi =) hy|yi
3 = hx| k⇤k |xi 2 K

=) hy|yi = 3
p
hx| k⇤k |xi 2 K =) k |xi = |yi hy|yi 2 XK.

All of these variants for the forward direction have their advantage.

For the converse direction we may simply argue

KX ✓ XK =) X
⇤
KX ✓ X

⇤
XK ✓ AK ✓ K.

So the notion of invariant and hereditary ideals coincide.

Let us give an example to illuminate the notion of hereditary ideals:

Example A.3.2 (Graph correspondences: hereditary ideals):

Consider a graph correspondence as in Example A.1.2:

X = `
2

⇣
E = edges

⌘
, A = c0

⇣
V = vertices

⌘
.

Then every ideal corresponds to some collection of vertices

K = c0

⇣
S = some vertices

⌘
E c0(V ) = A

and hereditary ideals become the hereditary collection of vertices

c0(S)`
2(E) ✓ `

2(E)c0(S) () SE ✓ ES
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which reads written out in words

range(given edge) 2 S =) source(given edge) 2 S

and whence their name: hereditary ideals.

In order to understand kernel morphisms (and so in turn also cokernel morphisms)

we make the following observation: Suppose a morphism vanishes on the coe�cient

algebra, then it does so also on the entire correspondence:

( A B ) = 0 =) ( X Y ) = 0 (A.6)

Indeed one easily verifies (in a way using the C
⇤-identity)

⌧(x) = 0 =) '(x⇤
x) = ⌧(x)⇤⌧(x) = 0 =) x

⇤
x = 0 =) x = 0

which is equivalently the commutative diagram (see the previous section)

hX|Xi 0

A 0 ✓ B.

⌧(�) = '(�)

As such one may already expect the kernel of morphisms to involve the kernel on

the coe�cient algebra in some crucial way. With this in mind, we may now give a

new intrinsic characterization of kernel and cokernel morphism.

Meanwhile the author would like to note that the idea to consider concrete kernel

correspondences (by invariant ideals) dates back to [Pim97] and their quotient

correspondence to [KPW98] with their representations already appearing in the

proof of [KPW98, theorem 4.3] and as explicitely in [FMR03].

The author identified those as partial results on the intrinsic characterisation

of categorical kernel and cokernel morphisms, which further expanded and

completed provide the following entire classification of kernel and cokernel

morphisms in the category of correspondences, which we promote as theorem due

to its usefulness (also in upcoming work).

Theorem A.3.3 (Classification: kernel and cokernel morphisms):

The category of correspondences has all kernel and all cokernel morphisms.

More precisely, they are all of the special form

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0
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precisely for the invariant (and equivalently hereditary) ideals

K E A : X
⇤
KX ✓ K (() KX ✓ XK).

Conversely, given a morphism its kernel is given by

(XK,K) (X,A) (Y,B)ker : K = ker(A! B) E A.

As a consequence, its cokernel is given as (within the image)

(X,A) (Y,B)
�

Y

Y L
,
B

L

�
coker : L =

X
n�0

hY
n
|BAB |Y

n
i E B.

Furthermore, the cokernel morphisms are precisely the surjective morphisms.

Before we begin with the proof for the above proposition let us give a quick

clarification on the quotient norm (and a rather quite simplified proof thereof):

Lemma A.3.4 (compare with [FMR03, Lemma 2.1] and [Kat07, Lemma 1.5]):

The norm for a quotient correspondence seen as a Hilbert module agrees with the

norm for the quotient seen as a Banach space,

kx+XKk
2

Hilbert
= inf k hx|xi+Kk = inf kx+XKk

2 = kx+XKk
2

Banach
.

In particular, the quotient correspondence is complete (by Cohen–Hewitt).

Proof. We give a simplified proof as compared to both references:

On the one hand we have the obvious inclusion

kx+XKk
2
✓ k hx+XK|x+XKi k ✓ k hx|xi+Kk

and as such the bound (when applying infima)

kx+XKk
2

Banach
= inf k hx|xi+Kk  inf kx+XKk

2 = kx+XKk
2

Hilbert
.

For the converse implication we may invoke the well-known identification for the

quotient norm in case of an operator algebra and ideal (the simplifying trick)

k hx|xi+Kk = lim
e!1

k(1� e) hx|xi (1� e)k = lim
e!1

kx� xek

where the limit runs over some or any approximate identity for the ideal.

As such we obtain in particular the converse inclusion

n
kx� xek

2

��� e! 1
o
✓ kx+XKk

2
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and so also the desired converse bound

kx+XKk
2

Hilbert
= inf kx+XKk

2
 lim

e!1

k(1� e) hx|xi (1� e)k = kx+XKk
2

Banach
.

So the Hilbert module norm and the Banach space norm coincide.

Having clarified the completeness for the quotient correspondence, we may now

savely get to the desired kernel and cokernel morphisms.

Proof of theorem A.3.3. We begin with the statements about kernel morphisms.

We first verify that each morphism admits a (categorical) kernel given by

(XK,K) = ker( (X,A) (Y,B) ) : K = ker(A! B).

Clearly the kernel annihilates the morphism due to our observation (A.6):

⇣
ker(A! B)! A! B

⌘
= 0 =)

⇣
X ker(A! B)! X ! Y

⌘
= 0

Meanwhile, let us also note that any such ideal is invariant:

hX| ker(A! B) |Xi ✓ ker(A! B) : (A! B)
⇣
hX| ker(A! B) |Xi

⌘
=

= (Y  X) hX| · (A! B) ker(A! B) · (Y  X) |Xi = 0.

Conversely, suppose another morphism annihilates from the left

(W,D) (X,A) : (W ! X ! Y ) = 0, (D ! A! B) = 0.

(The annihilation su�ces on coe�cient algebras due to our observation above.)

Trivially, we have the desired inclusion at the level of coe�cient algebras:

(D ! A! B) = 0 =) D ! ker(A! B)

On the other hand, recall that the induced morphism on the support ideal coincides

with the morphism at the level of coe�cient algebras. As such we necessarily also

have an inclusion into the kernel,

hW |W i ker(A! B) A

D ker(A! B) A.
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We however have the equivalance (using the characterization (A.4)):

W ! X ker(A! B) () hW |W i ! ker(A! B).

As such we obtain also the desired inclusion at the level of correspondences,

D ! ker(A! B) =) W ! X ker(A! B).

So there exists also a unique factorization over the kernel correspondence above.

Every morphism thus admits a kernel given by the above kernel morphism.

We next verify that each such morphism is indeed some kernel, namely the kernel

from the short exact sequence in the proposition:

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0 :

ker
⇣

(X,A)
�

X

XK
,
A

K

� ⌘
= (XK,K) (X,A).

For this let us first verify that the quotient gives a well-defined correspondence

�
X

XK

�⇤� X

XK

�
✓
�
A

K

�
,
�

X

XK

��
A

K

�
✓
�

X

XK

�
,
�
A

K

��
X

XK

�
✓
�

X

XK

�
.

In other words we need to verify the relations

(XK)⇤X ✓ K, X
⇤(XK) ✓ K, . . . , (K ✓ A)X ✓ (XK).

The only nontrivial one here (which is not guaranteed automatically) is the last

one which precisely calls for hereditary ideals (equivalently invariant ideals)

(K ✓ A)X = KX ✓ XK (() KX ✓ XK)

and so the quotient gives a well-defined correspondence.

Let us now get to its kernel. We already found the unique (categorical) kernel of

morphisms above. As such the desired equality now easily follows from

ker
⇣

(X,A)
�

X

XK
,
A

K

� ⌘
=
⇣
X ker

�
A!

A

K

�
, ker

�
A!

A

K

�⌘
= (XK,K).

So far about kernel morphisms for correspondences. Let us now get to cokernel

morphisms. We first verify that each cokernel is also of the special form as above

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0 :

coker
⇣

(XK,K) (X,A)
⌘
= (X,A)

�
X

XK
,
A

K

�
.
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Clearly the quotient annihilates the kernel (using our obersation (A.6)):

�
K ! A!

A

K

�
= 0 =) (XK ! X !

X

XK
) = 0

Conversely, given any other annihilating morphism say

(X,A) (Y,B)
(⌧,')

: (XK ! X ! Y ) = 0, (K ! A! B) = 0.

Then both morphisms factor uniquely over the quotient (as linear maps):

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0

0 0 (Y,B) (Y,B) 0.

(⌧,')

So it remains to verify that the factorization defines a morphism of correspondences.

That however basically follows from the original morphism (using congruence

classes):

'

⇣
(x+XK)⇤(y +XK)

⌘
= '(x⇤

y) = ⌧(x)⇤⌧(y) = ⌧(x+XK)⇤⌧(y +XK),

⌧

⇣
(x+XK)(a+K)

⌘
= ⌧(xa) = ⌧(x)'(a) = ⌧(x+XK)'(a+K).

Recall here that the coherence with the left action follows automatically,

=) ⌧

⇣
(a+K)(x+XK)

⌘
= '(a+K)⌧(x+XK).

So we have found the desired cokernel:

coker
⇣

(XK,K) (X,A)
⌘
=
�

X

XK
,
A

K

�
.

We now wish to find the cokernel for general morphisms:

coker( (X,A) (Y,B) ) = (?, ?)

For this we may now make use of the following relation to our advantage:

The kernel and cokernel operator satisfy the Galois connection (verbatim from

[Lan78, section VIII.1] and confer further [Fre64, chapter 1 and 2]):

ker coker ker = ker, ker ker = 0 = coker coker, coker ker coker = coker .
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On the other hand, we have already found the form of kernel morphisms:

ker
⇣
(Y,B)! (?, ?)

⌘
= (Y L,L)! (Y,B).

as well as the cokernel for kernel morphisms

coker( (Y L,L) (Y,B) ) = (Y,B)
�

Y

Y L
,
B

L

�
.

We may thus combine these with the Galois connection between the kernel and

cokernel operator to find the necessary shape of cokernel morphisms:

(?, ?) = coker( (X,A) (Y,B) ) =

= coker ker coker( (X,A) (Y,B) ) =
�

Y

Y L
,
B

L

�
.

So we are left with finding the invariant ideal which determines the quotient.

Consider for this the factorization over the image (kernel of cokernel)

0 (X,A) (X,A) 0 0

0 (Y L,L) (Y,B)
�

Y

Y L
,
B

L

�
0.

As such the invariant ideal (which determines the kernel) necessarily contains the

image of the coe�cient algebra

(X,A) (Y L,L) =) (A! L! B)

and is necessarily also the smallest such ideal (generated by the image)

L = BAB + hY |BAB |Y i+ . . . =
X

n�0

hY
n
|BAB |Y

n
i E B.

Indeed any larger invariant ideal defines nothing but a quotient beyond:

0 (Y L,L) (Y,B)
�

Y

Y L
,
B

L

�
0

0 (Y L
0
, L

0) (Y,B)
�

Y

Y L0 ,
B

L0

�
0

So we have also found the cokernel for general morphisms. For the final assertion

we note that every cokernel is onto as easily seen from their special form

⇣
X

X

XK
0
⌘

and
⇣

A
A

K
0
⌘
.
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For the converse consider a surjective morphism (X,A)! (Y,B) :

⇣
X Y 0

⌘
and

⇣
A B 0

⌘
.

Recall from above that the kernel and cokernel operator define a Galois connection

and so there is no choice for our morphism (to define a cokernel) than to arise as

its own coimage (cokernel of kernel)

(X,A)! (Y,B) = coker
⇣
some morphism

⌘

= coker ker coker
⇣
some morphism

⌘
= coker ker

⇣
(X,A)! (Y,B)

⌘
.

Recall for this the factorisation over its coimage (as outlined before):

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0

0 0 (Y,B) (Y,B) 0

ker coker ker

So we need to verify that the factorisation defines an isomorphism.

For this we obtain as our morphism is onto (on the coe�cient algebra):

0 K A A/K 0

0 K A B 0

So the factorisation defines an isomorphism on the level of coe�cient algebras.

As a consequence, the factorisation is also faithful on the correspondence (recall

for instance proposition A.2.1):

ker
⇣

A

K
B

⌘
= 0 =) ker

⇣
X

XK
Y

⌘
= 0.

On the other hand, the factorisation is also onto (for the correspondence)

im
⇣

X

XK
Y

⌘
= im

⇣
X

X

XK
Y

⌘
= im

⇣
X Y

⌘
= Y

and as such the factorisation defines an isomrphism as desired.

That is every surjective morphism defines a cokernel morphism as well.

Let us identify such quotients in the context of directed graphs:

Example A.3.5 (Graph correspondences: quotient graphs):
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Consider a graph correspondence as in Example A.1.2

X = `
2

⇣
E = edges

⌘
, A = c0

⇣
ver = vertices

⌘

and its hereditary ideals given by hereditary collections (as in Example A.3.2)

K = c0

⇣
S ✓ vertices

⌘
E A : SE ✓ ES.

It is already clear that its quotients themselves arise as a graph, simply since their

coe�cient algebras define discrete direct sums of vertices as in A.1.2:

0 K = c0(S) A = c0(V ) A

K
= c0

⇣
T := V \ S

⌘
0.

And indeed we may now simply reveal the quotient as

0 XK = `
2(ES) X = `

2(E) X

XK
= `

2(TE) 0.

Thus its quotients simply arise as the complementary graphs.

We have now found everything about kernel and cokernel morphisms.

With this in our toolbox, we now proceed to covariances. For this we note that

we may render any representation faithful: Indeed we may simply factor any

representation over the quotient correspondence

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0

0 0 (B,B) (B,B) 0.

ker

The resulting factorization is faithful (isometric) on the coe�cient algebra and as

such also on the entire correspondence (see proposition A.2.1):

K = ker(A! B) : ker
�
A

K
! B

�
= 0 =) ker

�
X

XK
! Y

�
= 0.

So we may always first pass to the (unique) quotient correspondence to render

any representation faithful. This is the first step in the classification of

gauge-equivariant representations. The second step is to understand the possibly

occuring covariances in nature. This is captured as an important observation by

Katsura below. For this let us recall Katsura’s ideal

max(X,A) = ker(A y X)? \XX
⇤ E A (A.7)
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which we denoted as maximal ideal for reasons which will become clear in the

result below, and we will often drop the dependence on the coe�cient algebra

for simplicity. Note also that we have already encountered this ideal in di↵erent

context on Hilbert bimodules (see Proposition A.1.3 and A.1.4). With this ideal

in mind let us get to Katsura’s observation (which we split as a result on faithful

representations and further as one on faithful morphisms in general):

Proposition A.3.6 (First part of [Kat04, Proposition 3.3]):

Consider an embedding into some ambient operator algebra

(X,A) ✓ B : A ✓ B ( =) X ✓ B).

Then its covariance (A.3) lies perpendicular to the kernel

cov( (X,A) ✓ B ) ? ker(A y X).

In particular it holds for general representations (and factored as above)

(X,A)
�

X

XK
,
A

K

�
B :

0 ✓ cov
⇣ �

X

XK
,
A

K

�
B

⌘
✓ max

�
X

XK
,
A

K

�
.

So the range of possible covariances is bounded from above by Katsura’s ideal,

whence its name and notation as maximal ideal in (A.7).

Proof. We recast the arguments from Katsura in our language. For this let us first

recall the commutative diagram for the covariance ideal,

cov(X ! B) ✓ A B

|XihX| B.

In our case the representation is also faithful (all the horizontal paths):

A ✓ B, X ✓ B, XX
⇤
✓ B, . . .

On the other hand, the covariance ideal defines an ideal in the coe�cient algebra

(as we have observed in the previous section). As such we also have

ker(A y X) cov(X ! B) ✓ cov(X ! B).
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So one may place this expression in the commutative diagram above to obtain

ker(A y X) cov(X ! B) B

ker(A y X)|XihX| = 0 B

and simply trace back the desired orthogonality (using the top path).

The remaining points follow from the discussion preceeding the proposition.

Let us reveal the maximal covariance in the case of graph algebras:

Example A.3.7 (Graph correspondences: maximal covariance):

Consider a graph correspondence as in Example A.1.2:

X = `
2

⇣
E = edges

⌘
, A = c0(vertices).

For these the trivially acting portion (the kernel for the left action) and the

compactly acting portion correspond to sources and finite receivers:

ker(A y X) = c0

⇣
a : |a edges | = 0

⌘
= c0(sources),

A \XX
⇤ = c0

⇣
a : |a edges | <1

⌘
= c0(fin receivers).

As such the orthogonal complement reads together

max(X,A) = ker(A y X)? \XX
⇤ =

= c0

⇣
a : 0 < |a edges | <1

⌘
= c0(regular).

That is the maximal covariance corresponds to the regular vertices and as such

any other covariance ideal corresponds to simply some collection of such.

We finish this section with an investigation of covariances for morphisms between

correspondences (as opposed to representations into operator algebras). We begin

with faithful morphisms between correspondences. As for representations we have

(compare Proposition A.2.1): Being faithful passes from the coe�cient algebra to

the correspondence (and to any other power):

(X,A)! (Y,B) : A ✓ B =) X ✓ Y.

So the faithful morphisms may be seen as nothing but a subcorrespondence: That

is those whose inner product already lies in the subalgebra and similar for the
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action from either side,

hY |Y i ✓ B, BY ✓ Y, Y B ✓ Y :

X ✓ Y, A ✓ B : hX|Xi ✓ A, AX ✓ X, XA ✓ X

(A.8)

while for comparison mixed expressions only satisfy

hX|Y i ✓ B, BX ✓ Y, XB ✓ Y.

Schematically the inclusions for subcorrespondences may look like

hX|XiA

B

AX X = XA

Y

which compare to mixed expressions as possibly only

hX|Y i

hY |Xi

A

B

BX

X 6= XB

Y
.

So one may think of a subcorrespondence as some sort of coherent restriction:

Think of global actions and their restrictions to possibly partial actions only.

The action of compact operators on the ambient correspondence further reads

(XX
⇤)Y ✓ X(Y ⇤

Y ) ✓ XB ✓ Y

Altogher, we may thus really think of a subcorrespondence simply as a

subspace and subalgebra, which will be quite convenient also further on.

In particular one has (for rather trivial reason)

(T � T
0)Y = 0 =) (T � T

0)X = 0

and as such also for a 2 A and k 2 XX
⇤,

(a� k)Y = 0 =) (a� k)X = 0. (A.9)

This basically trivial implication already verifies Katsura’s second observation, and
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note how thinking in terms of subspaces and subalgebras paid o↵:

Proposition A.3.8 (Second part of [Kat04, Proposition 3.3]):

For a subcorrespondence as in (A.8) the covariance arises as pullback

cov
⇣

X ✓ Y

⌘
=
n

a 2 A

��� im(a y Y ) 2 im(XX
⇤ y Y )

o

= (A y Y )�1

⇣
im(A y Y ) \ im(XX

⇤ y Y )
⌘

which we usually abbreviate simply as their common intersection.

As a consequence it follows the characterization for trivial covariance

cov
⇣

(X,A) ✓ B

⌘
= 0 () im(A! B) \ im

⇣
XX

⇤
! B

⌘
= 0

which reveals the familiar slogan for the Toeplitz representation:

Those whose coe�cient algebra has trivial intersection with compact operators.

Proof. This is nothing but the trivial implication (A.9).

We continue with the covariance for kernel and cokernel morphisms.

We begin for this with the following fairly standard result due to Kajiwara–Pinzari–

Watatani which will become particularly useful in later context:

Proposition A.3.9 (see [KPW98, Proposition 4.2]):

A short exact sequence of correspondences (see theorem A.3.3)

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0

induces a morphism (of operator algebras)

L(X) L
�

X

XK

�
: T (x+XK) := Tx+XK

whose kernel admits the equivalent characterization

X
�1(K) :=

n
X

⇤
TX ✓ K

o
=
n
TX ✓ XK

o
= ker

⇣
L(X)! L

�
X

XK

�⌘
. (A.10)

Further the morphism commutes with the left action by the coe�cient algebra,

0 K A
A

AK
0

L(X) L
�

X

XK

�
.

Proof. In order to verify the induced morphism let us first note the following:
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Adjointable operators restrict to kernel correspondences:

T 2 L(X) =) T 2 L(XK) : T (XK) ✓ (TX)K ✓ XK.

As such we obtain a commutative diagram and whence the adjointable operator

descends also to the quotient,

0 XK X
X

XK
0

0 XK X
X

XK
0.

T

The resulting operator is adjointable as one easily verifies

hT (x+XK) | y +XKi = hTX | yi = hx | T
⇤
yi = hx+XK | T

⇤(y +XK)i .

As such we got the desired morphism (of operator algebras)

L(X) L
�

X

XK
,
A

K

�
: T (x+XK) := Tx+XK.

We meanwhile note that the morphism is generally not onto!

Moreover, the morphism clearly commutes with the left action by the coe�cient

algebra as one easily verifies (think in terms of subspaces)

(a+K)(x+XK) = ax+XK = a(x+XK).

The remaining claim about the kernel immediately follows from (A.4).

We continue with the analogous result for compact operators as for example in

Fowler–Muhly–Raeburn (for which we provide a slightly simplified proof):

Proposition A.3.10 (see [FMR03, Lemma 2.6]):

A short exact sequence of correspondences (see theorem A.3.3)

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0

induces a short exact sequence at the level of compact operators

0 (XK)(XK)⇤ = XKX
⇤

XX
⇤

�
X

XK

��
X

XK

�⇤
0

L(X) L
�

X

XK

�
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which restricts from the morphism of adjointable operators as indicated.

Proof. Clearly, the induced morphism on compact operators commutes with the

morphism of adjointable operators since (think in terms of subspaces)

(x+XK)(y +XK)⇤(z +XK) = xy
⇤
z +XK = xy

⇤(z +XK).

Next we already know that the kernel correspondence (as a subcorrespondence)

defines an embedding at the level of compact operators:

(XK,K) ✓ (X,A) =) (XK)(XK)⇤ ✓ XX
⇤
.

For kernel correspondences these now further define an ideal as for example

⇣
(XK)(XK)⇤ = XKX

⇤

⌘
XX

⇤ = XK(X⇤
XX

⇤) = XKX
⇤
.

On the other hand, the right-hand morphism is also clearly onto since

X
X

XK
0 =) XX

⇤
�

X

XK

��
X

XK

�⇤
0.

Regarding exactness in the middle, we may now invoke the characterization of the

kernel from the previous proposition, which reads for compact operators

X
�1(K) \XX

⇤ = ker
⇣

XX
⇤

�
X

XK

��
X

XK

�⇤ ⌘
.

While the ideal clearly lies inside the kernel (left as an exercise for the reader) the

converse inclusion now easily follows from the above description:

X
�1(K) \XX

⇤ = XX
⇤

⇣
X

�1(K) \XX
⇤

⌘
XX

⇤

✓ X

⇣
X

⇤
X

�1(K)X
⌘
X

⇤
✓ XKX

⇤
.

So we have found the desired exactness for compact operators.

We may now easily derive the desired covariance for kernel and cokernel morphisms

(with the previous results in mind)

Proposition A.3.11. Kernel and cokernel morphisms have full covariance,

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0 :

cov
⇣

(XK,K)! (X,A)
⌘
= K \XKX

⇤
,

cov
⇣

(X,A)!
�

X

XK
,
A

K

� ⌘
= A \XX

⇤
.
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This stands in contrast to the covariance for representations:

The covariance for representations is bounded by Katsura’s ideal (A.7).

Proof. Note that kernel morphisms define a particular type of subcorres-

pondences and so we find ourselves in the situation of proposition A.3.8:

The nontrivial converse of implication (A.9) holds for kernel correspondences,

a 2 K, k 2 XKX
⇤ : (a� k)XKX

⇤ = 0 =) (a� k)X = 0.

Note that we may equivalently verify the implication

KX
⇤(a� k)X⇤

K = 0 =) X
⇤(a� k)X = 0.

For this we note the inclusion (due to invariance):

X
⇤(a� k)X ✓ X

⇤(K +XKX
⇤)X = (X⇤

KX) + (X⇤
X)K(X⇤

X) ✓ K.

As such the above implication holds true since for

K

⇣
X

⇤(a� k)X ✓ K

⌘
K = 0 =) X

⇤(a� k)X = 0

so kernel morphisms have full covariance as desired.

Regarding the cokernel morphism, we may combine proposition A.3.9 and A.3.10

to obtain the desired full covariance

A \XX
⇤ A

K

L(X) L
�

X

XK

�

XX
⇤

�
X

XK

��
X

XK

�⇤
.

Concluding that kernel and cokernel morphisms have full covariance.

Recall next that we may always render representations faithful by passing to the
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induced representation on the quotient

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0

0 0 (B,B) (B,B) 0.

ker

The previous result allows us now to further clarify the relation between the

covariance on the quotient correspondence (the relevant one) and the covariance

for the original representation (the author would like to note that he found this

special instance as an observation made by Katsura in [Kat07]):

Proposition A.3.12. Consider a cokernel morphism (simply some onto morphism

as observed in proposition A.3.3) followed by an arbitrary morphism

(X,A) (Y,B) 0 and (Y,B) (Z,C).

Then the covariance for the composition arises as a pullback

cov(X ! Y ! Z) = (A! B)�1 cov(Y ! Z) \XX
⇤
.

In particular the covariance for a representation may be recovered from the induced

representation on the quotient correspondence

(X,A)
�

X

XK
,
A

K

�
B :

cov
�
X ! B

�
=
�
A!

A

K

��1

cov
�

X

XK
! B

�
\XX

⇤

which resembles Katsura’s observation [Kat07, lemma 5.10 statement (v)].

Proof. The result now easily follows from our previous proposition: Indeed as

cokernel morphisms have full covariance we obtain a covariance diagram for our

cokernel and one for the arbitrary morphism

0

BBB@

A \XX
⇤

B \ Y Y
⇤

XX
⇤

Y Y
⇤

1

CCCA
and

0

BBB@

cov(Y ! Z) C \ ZZ
⇤

Y Y
⇤

ZZ
⇤

1

CCCA
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and so also a commuting diagram for their composition

(A! B)�1
�
. . .
�
\XX

⇤ cov(Y ! Z) C \ Y Y
⇤

XX
⇤

Y Y
⇤

ZZ
⇤
.

That is the pullback lies within the covariance

(A! B)�1 cov(Y ! Z) \XX
⇤
✓ cov(X ! Z).

For the converse inclusion it su�ces to establish

cov(X ! Z) ✓ (A! B)�1 cov(Y ! Z)

() (A! B) cov(X ! Z) ✓ cov(Y ! Z)

which is to verify the covariance diagram:

cov(X ! Z) (A! B) cov(X ! Z) C \ ZZ
⇤

Y Y
⇤

ZZ
⇤

?

Indeed this may be easily seen by following the covariance diagram

cov(X ! Z)
�
. . .

�
C \ ZZ

⇤

XX
⇤

Y Y
⇤

ZZ
⇤

and the full covariance for our cokernel morphisms (once more)

A \XX
⇤

B \ Y Y
⇤

XX
⇤

Y Y
⇤

ZZ
⇤
.

So the covariance for the composition arises from the pullback as desired.

The remaining statement arises now as special instance from above.

We finish this section with the following negative result about the covariance for

subcorrespondences: While we have found that kernel and cokernel morphisms

have full covariance, this is not the case for subcorrespondences in general. That
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is simply the converse of implication (A.9) fails in general:

a 2 A, k 2 XX
⇤ : (a� k)X = 0 6=) (a� k)Y = 0.

For this we consider the following somewhat minimal example:

Example A.3.13 (Subcorrespondence with zero covariance):

Consider the direct sum of an operator algebra as both the coe�cient algebra and

the Hilbert module (which we depict as diagonal operators)

Y =
⇣
D

D

⌘
= B =) Y

⇤
Y ✓ B, Y B ✓ Y

but with left action given by the flip automorphism on B = D �D:

⇣
d1

d2

⌘
y
⇣
y1

y2

⌘
=
h⇣

1
1

⌘⇣
d1

d2

⌘⇣
1

1

⌘i⇣
y1

y2

⌘
.

Regard the subcorrespondence given by the subalgebra (non-invariant ideal!)

⇣
X =

⇣
D

0

⌘
= A

⌘
✓

⇣
Y =

⇣
D

D

⌘
= B

⌘
.

Then its left action vanishes identically (and in particular by compact operators):

A y X =
h⇣

1
1

⌘⇣
D

0

⌘⇣
1

1

⌘i⇣
D

0

⌘
=
⇣
0
D

⌘⇣
D

0

⌘
= 0

On the other hand it never vanishes on the ambient correspondence

A y Y =
h⇣

1
1

⌘⇣
D

0

⌘⇣
1

1

⌘i⇣
D

D

⌘
=
⇣
0
D

⌘⇣
D

D

⌘
=
⇣
0
D

⌘
.

As such the covariance diagram is maximally noncommuting:

A = A \XX
⇤

B

XX
⇤

Y Y
⇤

6= :

ker
⇣
A ✓ B ✓ Y Y

⇤

⌘
= 0,

ker
⇣
A! XX

⇤
✓ Y Y

⇤

⌘
= A.

So one needs to stay cautious about the covariance for subcorrespondences:

In worst case one needs to verify a particular covariance by hand.

This finishes our section on kernel and cokernel morphisms on one hand, and

the possible covariances on the other hand. With this at hand we may

now proceed to the gauge-equivariant representations and their classification

— in other words the classification of relative Cuntz–Pimsner algebras.
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A.4 Relative Cuntz–Pimsner algebras

We introduce in this section the relative Cuntz–Pimsner algebras and elaborate

why and how these serve to classify the gauge-equivariant representations.

We begin with the Toeplitz algebra: That is the universal representation (more

precisely the initial representation) as such that any other representation uniquely

factors via the universal one,

(X,A) (X,A)

T (X,A) (B,B).

Next recall from the previous section that we may render any representation faithful

by passing to the quotient correspondence

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0

0 0 (B,B) (B,B) 0

ker

and recall from theorem A.3.3 that any such quotient arises precisely for some

invariant ideal (equivalently hereditary ideal)

K = ker(A! B) E A : X
⇤
KX ✓ K (() KX ✓ XK).

On the other hand, we found in proposition A.3.6 that faithful representations have

their covariance bounded from above by the maximal covariance,

0 ✓ cov
⇣ �

X

XK
,
A

K

�
B

⌘
✓ max

�
X

XK
,
A

K

�
.

As such we may aim to classify representations by pairs of some invariant ideal (as

possible covariance) and another bounded ideal (as possible covariance):

⇣
K E A : X

⇤
KX ✓ K

��� I E A

K
: I ✓ max

�
X

XK

� ⌘
(A.11)

To handle this task, we may consider the class of representations with kernel and

covariance at least a given pair of invariant and bounded ideal,

(X,A) (B,B) : K ✓ ker(A! B), I ✓ cov
�

X

XK
! B

�
.
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A.4. Relative Cuntz–Pimsner algebras

Note that any such class contains at least the trivial representations and

furthermore that representations may well have larger kernel and covariance

only (which we cannot exclude at this moment as we will explain below).

The universal such representation defines now the relative Cuntz–Pimsner algebra

for a given kernel–covariance pair as in (A.11):

(X,A)
�

X

XK
,
A

K

� �
X

XK
,
A

K

�

O(K, I) (B,B).

K✓ker(A!B)

I✓cov

⇣
X

XK
!B

⌘

As such we obtain an entire “2-dimensional lattice” of relative Cuntz–Pimsner

algebras (as class of universal representations) by first following along the lattice

of cokernel morphisms (given by invariant ideals)

(X,A) . . . . . . . . .

. . .
�

X

X(K\L)
,

A

K\L

� �
X

XK
,
A

K

�
. . .

. . .
�

X

XL
,
A

L

� �
X

X(K+L)
,

A

K+L

�
. . .

. . . . . . . . . (0, 0)
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A.4. Relative Cuntz–Pimsner algebras

followed by the lattice of covariance ideals (on the chosen cokernel)

. . .
�

X

XK
,
A

K

�
. . .

T
�

X

XK
,
A

K

�
= O(K, 0) . . . . . . . . .

. . . O(K, I \ J) O(K, I) . . .

. . . O(K, J) O(K, I + J) . . .

. . . . . . . . . O(K,max) = O
�

X

XK
,
A

K

�

with Toeplitz algebras and absolute Cuntz–Pimsner algebras as extreme points.

We now explain the precise goal for our classification: We first note for this that

a relative Cuntz–Pimsner algebra comes equipped with gauge-action rendering

the representation gauge-equivariant (which we explain in the following section).

As such the possible range of relative Cuntz–Pimsner algebras are at most the

gauge-equivariant representations. The surprising first goal of their classification

then states that every gauge-equivariant representation indeed arises itself as

a relative Cuntz-Pimsner algebra. More precisely, consider first the induced

representation rendering the representation faithful

(X,A)
�

X

XK
,
A

K

�
(B,B) : K = ker(A! B)

followed by the covariance for the resulting representation

�
X

XK
,
A

K

�
(B,B) : I := cov

⇣ �
X

XK
,
A

K

�
✓ B

⌘
.

To better illuminate the problem let us restrict the representation to its range,

that is the operator algebra generated by (the image of) the correspondence,

(X,A)
�

X

XK
,
A

K

�
C

⇤(X [A) ✓ B.

With this description the first problem states that

(X,A)
�

X

XK
,
A

K

�
O(K, I) = C

⇤(X [A).
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A.4. Relative Cuntz–Pimsner algebras

Or put in other words, the pairs of invariant ideals as kernel and bounded ideals

covariance exhaust the gauge-equivariant representations. We will solve this

problem via the familiar gauge-invariant uniqueness theorem.

The second goal is to determine that in fact every possible kernel and covariance

arises itself as an actual kernel and covariance. More precisely, consider any pair

of invariant ideal as kernel and bounded ideal as covariance:

 
K E A :

I E A/K :

X
⇤
KX ✓ K

I ✓ max(X/XK)

!

Then there simply may be no such representation with precisely the given kernel

and covariance ideal (so that not every such pair would actually arise):

(X,A)
�

X

XK
,
A

K

�
(B,B) :

⇣
ker(A! B), cov

�
X

XK
! B

� ⌘
= (K, I) ?

Or put in other words, two possibly di↵erent pairs of kernel and covariance ideal

could in principle lead to one and the same relative Cuntz–Pimsner algebra:

O(K, I) = O(K 0
, I

0) =) (K, I) = (K 0
, I

0) ?

We will however find the following relations (which are both nontrivial):

(X,A)
�

X

XK
,
A

K

�
O(K, I) :

⇣
ker
�
A

K
! O(K, I)

�
= 0

��� cov
�

X

XK
! O(K, I)

�
= I

⌘

and as such also the desired kernel–covariance pair

⇣
ker(A! O(K, I)) = K

��� cov
�

X

XK
! O(K, I)

�
= I

⌘
. (A.12)

For this the Fock representation will come into play: Its concrete representation

allows us to actually compute its kernel and covariance and so to verify the desired

relations. As such each possible pair of invariant ideal (as kernel) and bounded

ideal (as covariance) arises itself as actual kernel and covariance. Summarizing

these goals, the kernel–covariance pairs completely parametrize the entire lattice

of gauge-equivariant representations. In other words, the lattice of relative Cuntz–

Pimsner algebras (as schematically given above) classifies the entire lattice of

gauge-equivariant representations.

With this at hand, we then further investigate the connecting morphisms
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A.4. Relative Cuntz–Pimsner algebras

between relative Cuntz–Pimsner algebras. More precisely, we will find that our

parametrisation given by kernel–covariance pairs defines a lattice isomorphism in

the sense that

( K ✓ L | “I ✓ J” ) () O(K, I)  O(L, J)

where the latter denotes the factorization (as common notation):

(X,A) (X,A)

O(K, I) O(L, J).

In [Kat07] this has been already observed using however so-called T-pairs instead:

We will unravel these as nothing but transformed versions of our kernel–covariance

pairs and as such give a natural interpretation for such pairs in general.

Following, we further give a precise description for when connecting morphisms

exist between cokernel strands (as from where and to where)

O(K, I = ??) O(L, J) and O(K, I) O(L,max) ??

which generalizes the results from Katsura’s work [Kat07]. Together we thus obtain

a plethora of connecting morphisms between cokernel strands such as

�
X

XK
,
A

K

� �
X

XL
,
A

L

�

T
�

X

XK
,
A

K

�
T
�

X

XL
,
A

L

�

O(K, I) O(L, J)

O
�

X

XK
,
A

K

�
O
�

X

XL
,
A

L

�

and note that plenty of connecting morphisms also will be missing.

For this we will give some further examples from graph algebras to illuminate the

lack of connecting morphism. With this in mind and without further ado, we now

get to the class of equivariant representations.
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A.5. Gauge actions: Fourier spaces

A.5 Gauge actions: Fourier spaces

We begin with the following observation to motivate gauge-equivariant representations:

For every fixed complex number on the torus we may consider the automorphism

which rotates the correspondence

z 2 T : (X,A) (X,A) : z y x = zx, z y a = a

which together define a circle action T y (X,A).

Clearly these do not a↵ect the kernel of representations as for

(X,A) B : ker( A A B
1 ) = ker( A B ).

Similarly they do not a↵ect the covariance as they act trivially on compacts,

zz
⇤ = 1 : XX

⇤
XX

⇤ : x(zz⇤)y⇤ = xy
⇤ :

A \XX
⇤

A \XX
⇤
✓ A B

XX
⇤

XX
⇤

B.

= =?

As such every relative Cuntz–Pimsner algebra (as a universal representation for

some relation) admits a unique gauge action which renders its representation gauge-

equivariant (think in terms of generators and relations):

9T y O(K, J) :
⇣
T y (X,A)

⌘ ⇣
T y O(K, I))

⌘
.

We may thus hope at best to classify the relative Cuntz–Pimsner algebras amongst

those representations which come along with some gauge-action rendering the

representation equivariant. More precisely, that is written out

(', ⌧) :
⇣
T y (X,A)

⌘ ⇣
T y B

⌘
:

z y ⌧(x) = ⌧(z y x) = ⌧(zx),

z y '(a) = '(z y a) = '(a).
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A.5. Gauge actions: Fourier spaces

Equivalently these are the conventional gauge-equivariant representations of

operator algebras (from any of the preceeding relative Cuntz–Pimsner algebras)

⇡ :
⇣
T y O(K, I)

⌘ ⇣
T y B

⌘
: z y ⇡(�) = ⇡(z y �).

Consider now the relative Cuntz–Pimsner algebras (as universal representations)

which allow factorizations for our gauge-equivariant representation:

(X,A) O(K, I) B

()

⇣
K ✓ ker(A! B)

��� I ✓ cov
�

X

XK
! B

� ⌘

As such — if the gauge-equivariant representation has a chance of being a universal

representation for some kernel–covariance pair — then certainly the best chance is

given by the kernel–covariance pair for the representation itself:

(K, I) =
⇣

ker(A! B)
��� cov

�
X

XK
! B

� ⌘
:

(X,A) O(K, I) C
⇤(X [A) ✓ B ?

This is what the gauge-equivariant uniqueness theorem will establish in the next

section and so also the first goal in the classification of relative Cuntz–Pimsner

algebras. So let us prepare ourselves a bit more for this by taking a closer look at

gauge-equivariant representations and their Fourier spaces.

It is well known that every operator algebra equipped with a circle action (such as

our gauge-equivariant representations) comes along with Fourier spaces

B(n 2 Z) =
n
b

���
⇣
b(z) := z y b

⌘
= z

n
b

o
✓ B

and in particular its fixed point algebra

B(n = 0) =
n
b

���
⇣
b(z) := z y b

⌘
⌘ b

o
✓ B

which define a Fell bundle over the integers

B(m)B(n) ✓ B(m+ n), B(n)⇤ = B(�n)

together with a conditional expectation onto its fixed point algebra

E : B B(0) : E(b) =

Z

T
b(z)dz
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A.5. Gauge actions: Fourier spaces

and more generally with projections onto any of its Fourier spaces

En : B B(n) : En(b) =

Z

T
z
�n

b(z)dz.

Recall that conditional expectations given by averaging are automatically faithful

since the state space separates the positive elements (and since averaging runs as

Bochner integral):

b � 0 =)
⇣
b(z) = z y b

⌘
� 0 =) SB

⇣
b(z) = z y b

⌘
� 0 :

E(b � 0) = 0 =) SB(E(b)) = SB

✓Z
b(z)dz

◆
=

Z
SB(b(z))dz = 0

=) SB

⇣
b(z) = z y b

⌘
⌘ 0 =) SB

⇣
b = 1 y b

⌘
= 0 =) b = 0.

We meanwhile note that the Fourier spaces densely span the operator algebra by

[Exe94, proposition 2.5] (which seems a rather intuitive yet nontrivial relation)

B =
⇣
. . .+B(�1) +B(0) +B(1) + . . .

⌘
=
X

n

B(n)

and we encourage the reader to have a look into the beautiful proof by Exel: It does

not require any Cesaro approximations and instead only invokes the elementary

isomorphism (as the basic version of Coburn)

C
⇤(Z) = C

⇤(u⇤
u = 1 = uu

⇤) = C( �u | u
⇤
u = 1 = uu

⇤) = C(T)

=) C
⇤(Z) =

⇣
. . .+ Cu⇤ + Ce+ Cu+ . . .

⌘
= C(T).

A short digression: One may meanwhile wonder how it may be possible that

any element may be approximated by Fourier sums while the series of its Fourier

coe�cients only converges in Cesaro mean (and generally diverges in norm).

The answer to this question becomes evident when replacing for instance the torus

with an open disk and the trigonometric by polynomial approximations:

{. . . , 1/z, 1, z, z2, . . .} ✓ C(T)  {1, z, z2, . . .} ✓ C(D)

It is well-known here that any continuous function may be approximated in norm

by polynomials (by Stone–Weierstrass). On the other hand, the convergent power

series correspond to the class of Taylor analytic functions:

f(z) =
X

n

anz
n
() f 2 C

1(D)
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The di↵erence lies in the fact that a polynomial approximation of continuous

functions generally changes each of the coe�cient in the sequence — also the

previously already set coe�cients! As such one may think of the convergent Fourier

series as a generalization of analytic functions.

We now further restrict our attention on the range of the representation (also since

the ambient rest does not reflect the correspondence): More precisely, that is the

operator algebra generated by (the image of) the correspondence,

(X,A) C
⇤(X [A) ✓ B  B = C

⇤(X [A).

Recall that a correspondence (and so its image under the representation) satisfies

its defining inclusions as explained in more detail in section A.1:

X
⇤
X ✓ A, XA ✓ X, AX ✓ X.

As such the range (as a generated operator algebra) admits “a fine structure”

C
⇤(X [A) = span

⇣
. . .+ (X⇤ +XX

⇤
X

⇤ + . . .)+

+(A+XX
⇤ +XXX

⇤
X

⇤ + . . .) + (X +XXX
⇤ + . . .) + . . .

⌘

which we organised in groups according to the Fourier spaces they belong to.

As such we also obtain “a fine structure” for the fixed point algebra

B(n = 0) = E

⇣
B = C

⇤(X [A)
⌘
= span

⇣
A+XX

⇤ +XXX
⇤
X

⇤ + . . .

⌘

which allows us to deduce the gauge-invariant uniqueness theorem by induction.

Note further that for any correspondence (including possibly degenerate ones!)

X
⇤
X ✓ A, XA ✓ X, AX ✓ X

=) XA = X, XXA = XX, . . .

As such the Fourier spaces further satisfy

B(n � 1) = En

⇣
B = C

⇤(X [A)
⌘
= span

⇣
X

n +X
n
XX

⇤ + . . .

⌘

= X
n

⇣
A+XX

⇤ +XXX
⇤
X

⇤ + . . .

⌘
= X

n
B(0)

where we left the linear spans and closures implicit for more pointy statements,

and by involution also for negative Fourier spaces and as such altogether

B(n � 1) = X
n
B(0), B(n  �1) = B(0)X�n

.
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As a consequence, the Fell bundle (restricted on the range) further satisfies

B(n � 1) = B(1)n : B(n) = X
n
B(0) ✓ B(1)nB(0) ✓ B(1)n ✓ B(n)

and similarly for its negative Fourier spaces, and as such defines altogether a semi-

saturated Fell bundle (see for instance [Exe94, proposition 4.8]):

B(m � 0)B(n � 0) = B(m+ n),

B(m  0)B(n  0) = B(m+ n).

These relations are quite useful for bipartite inflations as introduced in [MPT08].

With the knowledge about Fourier spaces at hand, we may now get back to the

classification problem from above:

(K, I) =
⇣

ker(A! B)
��� cov

�
X

XK
! B

� ⌘
:

(X,A) O(K, I) C
⇤(X [A) ✓ B ?

At first we may pass to the quotient correspondence

(X,A)
�

X

XK
,
A

K

�
O(K, I) B

to obtain an honest embedding since

K = ker(A! B) =) A/K ✓ B =) X/XK ✓ B.

As such we may assume that our correspondence lies faithfully in the ambient

operator algebra (upon replacing the original with the quotient correspondence)

�
X

XK
,
A

K

�
 (X,A) =) O(K, I) O(0, I) =) X ✓ B, A ✓ B (A.13)

and at the same time restrict our attention to its range:

C
⇤(X [A) ✓ B  C

⇤(X [A) = B.

We may thus think of both ambient algebras as each some faithful completion for

the correspondence, but under a priori possibly di↵erent norm topologies:

O(X; I) = C
⇤(X [A) X [A C

⇤(X [A) = B

As another valuable perspective, one may also think of the above problem as

gauge-equivariant envelopes (comparable to the maximal and minimal C⇤-cover
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for non-selfadjoint operator algebras):

T (X) . . . O(X; I) Q . . . : (X,A) ✓ (T y Q).

The author would like to thank Elias Katsoulis for bringing closer this idea.

Next as our representation is gauge-equivariant it restricts in particular to fixed

point algebras and further commutes with conditional expectations:

O(X; I) B

O(X; I)(0) B(0)

O(X; I) B

O(X; I)(0) B(0)

As such it su�ces to verify the above equality on fixed point algebras:

⇡ : O(X; I)(0) B(0) =) ⇡ : O(X; I) B (A.14)

Indeed this follows as standard argument from the faithful conditional expectation

(su�ciently for the relative Cuntz–Pimsner algebra):

⇡(a) = 0 =) ⇡(a⇤a) = 0 =) ⇡(E(a⇤a)) = E(⇡(a⇤a)) = 0

=) E(a⇤a) = 0 =) a
⇤
a = 0 =) a = 0.

Another interesting less commonly known argument due to Exel basically

exploits that continuous functions, whose Fourier coe�cients all vanish, already

vanish identically themselves (see [Exe94, proposition 2.5 and 2.9]):

En(a)
⇤
En(a) 2 O(X; I)

⇣
n� n = 0

⌘
:

⇡(a) = 0 =) ⇡

⇣
En(a)

⇤
En(a)

⌘
= En(⇡(a))

⇤
En(⇡(a)) ⌘ 0

=) En(a)
⇤
En(a) ⌘ 0 =) En(a) ⌘ 0 =) a = 0.

For the fixed point algebra we however found the “fine structure”

O(X; I)(n = 0) = span
⇣
A+XX

⇤ +XXX
⇤
X

⇤ + . . .

⌘

so the fixed point algebras arises as an increasing union (inductive limit)

O(X; I)(n = 0) = closure

 
[

N

span
⇣
A+XX

⇤ + . . .+X
N
X

�N

⌘!
.
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As such we may verify the faithfulness by induction along n 2 N:

O(X; I) ◆ span(A+XX
⇤ + . . .+X

n
X

�n) B ? (A.15)

The point here is not that each summand embeds separately (which is trivial)

A B, XX
⇤

B, XXX
⇤
X

⇤
B, . . .

but instead that the summands will have plenty of correlation among each other

(namely precisely the amount of covariance) which causes lots of sums to collapse

within the representation such as the covariance itself,

cov(X ! B) = ker

2

664

0

BB@
cov(X ! B) B

B

1

CCA�

0

BB@
cov(X ! B)

XX
⇤

B

1

CCA

3

775

=)

⇢
(a) + (�a) 2 A+XX

⇤

���� a 2 cov(X ! B)

�
✓ ker

⇣
A+XX

⇤
B

⌘
.

In fact, proposition A.3.8 tells us that the covariance precisely captures this kernel.

As an interesting question to the encouraged reader: can you figure out why?

Before we proceed, we would like to note that the idea for the above induction

and its proof are due to Evgenios Kakariadis as in [Kak16] and note that

this simplifies the original proof by Katsura substantially! We will not go

further into how these approaches compare (since this would not benefit our

current work) but we would like to note that Katsura’s approach analysing

cores may be quite valuable after all in the more general context of product

systems and so we refer the curious reader to [Kat04, section 5] for comparison.

With this we may now proceed to the gauge-invariant uniqueness theorem.

A.6 Uniqueness theorem

We may now state and proof our version of the gauge-invariant uniqueness theorem

for arbitrary gauge-equivariant representations which arise as relative Cuntz–

Pimsner algebra along kernel–covariance pairs:

Theorem A.6.1 (Gauge-invariant uniqueness theorem: The general version).

Consider a gauge-equivariant representation (as in the previous section)

⇣
T y (X,A)

⌘ ⇣
T y B

⌘
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A.6. Uniqueness theorem

and choose the kernel–covariance pair for the representation

(K, I) =
⇣

ker(A! B)
��� cov

�
X

XK
! B

� ⌘
.

Then the quotient from the relative Cuntz–Pimsner algebra is faithful:

(X,A) O(K, I) C
⇤(X [A) ✓ B.

Thus each gauge-equivariant defines a relative Cuntz–Pimsner algebra.

On the other hand, each relative Cuntz–Pimsner algebra defines itself a gauge-

equivariant representations. As such the gauge-equivariant representations agree

with relative Cuntz–Pimsner algebras (the range of kernel–covariance pairs).

We have basically already proven the theorem: Indeed we have already reduced the

general version to the case of faithful representations

(see the previous section) and the faithful case is a classical result due to

Katsura from [Kat04] resp. the simplified version due to Kakariadis in [Kak16].

For convenience of the reader we review the simplified version:

We begin for this with a couple of observations and useful relations.

At first consider the increasing subalgebras from the induction problem (A.15)

(which exhaust the fixed point algebra):

span(A+XX
⇤ + . . .+X

n
X

�n) ✓ O(X; I)

In order to simplify their induction we need to address a technical detail: Note

that while the sum of ideals is already closed, this fails in general for the sum of

subalgebras,

A ✓ B, A
0
✓ B : (A+A

0) ✓ (A+A0).

However the sum of an ideal and a subalgebra is closed nevertheless:

A ✓ B, J E B : (A+ J) = (A+ J).

Quick proof for an algebra and ideal (as for pairs of ideals):

Consider the short exact sequences of possibly incomplete algebras,

0 J (A+ J) (A+ J)/J 0

0 J (A+ J) (A+ J)/J 0.

⇡
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Note that the morphism between quotients defines an embedding since

J \ (A+ J) = J =) (A+ J)/J ✓ (A+ J)/J.

Since the range of ⇤-homomorphisms is always closed we obtain also

⇡(A+ J) = ⇡(A) = ⇡(A) = ⇡(A+ J) = ⇡

⇣
A+ J

⌘
.

As such the quotients agree and so (by basic homological algebra)

(A+ J)/J = (A+ J)/J =) (A+ J) = (A+ J). (A.16)

So the sum of an algebra and ideal defines a closed subalgebra.

With this at hand we find in our case (using the obvious inclusion)

AXX
⇤
✓ XX

⇤ =) span(A+XX
⇤) = A+ span(XX

⇤)

and similarly on larger sums

span
⇣
A+XX

⇤ + . . .+X
n
X

�n

⌘
= A+ span

⇣
XX

⇤ + . . .+X
n
X

�n

⌘
.

This finishes our discussion on the technical detail.

With this the induction problem asks for the kernel

ker

✓
O(X; I) ◆ A+ span

⇣
XX

⇤ + . . .+X
n
X

�n

⌘
B

◆

and so for the coe�cient algebra that intersects compact operators

A \

⇣
XX

⇤ + . . .+X
n
X

�n

⌘
✓ B

where we drop from now on the closed linear span for more pointy statements.

We would like to better understand this intersection. For this we first discuss

the following result, which gives an interesting algebraic description for non-

commutative Cartan subalgebras from [Exe11] as the nondegenerate ones:

Lemma A.6.2. A subalgebra contains some approximate identity for the ambient

algebra if and only if the subalgebra is nondegenerate:

A ✓ B : AB = B () (1� e)B ! 0 for A 3 e! 1.

On the other hand, the nondegeneracy holds equivalently if the subalgebra reaches
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the entire ambient algebra hereditarily (with implicit Cohen–Hewitt)

AB = B () her(A) = ABA = B.

Further, the subalgebra remains nondegenerate on intermediate subalgebras:

A ✓ B0 ✓ B : AB = B =) AB0 = B0.

The analogous statements also hold when replacing the subalgebra and the ambient

algebra by any pair of operator algebras (after suitable modifications).

Proof. The forward direction is obvious since for any approximate unit

A 3 e! 1 : (1� e)B = (1� e)AB ! 0

where we implicitly use Cohen–Hewitt as usual.

The converse is also obvious as evidentily

(1� e)B ! 0 =) B ✓ AB.

Regarding the hereditary subalgebra we have:

AB = B ( =) B = B
⇤ = (AB)⇤ = B

⇤
A

⇤ = BA)

=) B = (AB) = A(BA) = ABA =) B = ABA ✓ AB

Regarding intermediate algebras we have:

AB = B (1� e)B ! 0 for A 3 e! 1

AB0 = B0 (1� e)B0 ! 0 for A 3 e! 1

For arbitrary pairs of operator algebras (instead of a subalgebra):

One needs to replace the equality by an inclusion and an additional closure.

With the nondegeneracy in mind we may now unravel the intersection above: For

this we first note that the compact operators are nondegenerate in the sum of

higher order compact operators,

⇣
XX

⇤ + . . .+X
n
X

�n

⌘
= XX

⇤

⇣
XX

⇤ + . . .+X
n
X

�n

⌘
.
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Indeed we may simply pull out a rabbit from each summand (using Blanchard):

XX
⇤ = (XX

⇤)XX
⇤
, XXX

⇤
X

⇤ = (XX
⇤)XXX

⇤
X

⇤
, . . .

As a consequence we obtain the inclusion (similarly as in lemma A.6.2):

A \

⇣
XX

⇤ + . . .+X
n
X

�n

⌘
✓

⇣
A \ (XX

⇤ + . . .+X
n
X

�n)
⌘
XX

⇤
.

The latter however lies inside the algebra of compact operators since

⇣
A \ (XX

⇤ + . . .+X
n
X

�n)
⌘
XX

⇤
✓ AXX

⇤
✓ XX

⇤

and as such inside the covariance for the representation (see proposition A.3.8).

As the covariance cannot decrease we obtain the combined relation:

A \

⇣
XX

⇤ + . . .+X
n
X

�n

⌘
= cov(X ! B) = cov

⇣
X ! O(X; I)

⌘
.

In particular the kernel arises as sum of compact operators:

ker

✓
A+

⇣
XX

⇤ + . . .+XX
n
X

�n
X

⇤

⌘
B

◆

✓ XX
⇤ +

⇣
XX

⇤ + . . .+XX
n
X

�n
X

⇤

⌘
✓ O(X; I).

Havin these introductory observations in mind, we may now get to the proof of

the gauge-invariant uniqueness theorem.

Proof of theorem A.6.1 (Gauge-invariant uniqueness theorem): We have already

reduced the general version to the case of faithful representations in (A.13):

�
X

XK
,
A

K

�
 (X,A) =) O(K, I) O(0, I) =) X ✓ B, A ✓ B

Furthermore the problem reduces to fixed point algebras as in (A.14)

O(X; I)(0) B(0) =) O(X; I) B

which may be solved as an induction along its fine structure as in (A.15):

O(X; I) ◆ A+
⇣
XX

⇤ + . . .+X
n
X

�n

⌘
B ?

With this at hand we may now begin the proof by induction from [Kak16]:

The base case simply states the inclusion that we are already well aware of,

O(X; I) = C
⇤(X [A) A C

⇤(X [A) = B.
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Consider now the induction step (while assuming the induction hypothesis):

ker

✓
A+

⇣
XX

⇤ + . . .+X
n+1

X
�n�1

⌘
B

◆
= 0 ?

We may reduce this problem to the induction hypothesis via compression

X
⇤ ker

✓
A+

⇣
XX

⇤ + . . .+X
n+1

X
�n�1

⌘
B

◆
X

✓ ker

✓
X

⇤
X +X

⇤

⇣
XX

⇤ + . . .+X
n+1

X
�n�1

⌘
X B

◆

✓ ker

✓
A+

⇣
XX

⇤ + . . .+X
n
X

�n

⌘
B

◆
= 0

from which we infer that the kernel vanishes for the compression

XX
⇤ ker

✓
A+

⇣
XX

⇤ + . . .+X(Xn
X

�n)X⇤

⌘
B

◆
XX

⇤ = 0.

We however found that the kernel lies inside the sum of compact operators:

ker

✓
A+

⇣
XX

⇤ + . . .+XX
n
X

�n
X

⇤

⌘
B

◆

✓ XX
⇤ +

⇣
XX

⇤ + . . .+XX
n
X

�n
X

⇤

⌘
✓ O(X; I).

At the same time, the compact operators define a nondegenerate subalgebra within

higher order compact operators and as such have trivial annihilator:

⇣
XX

⇤ + . . .+XX
n
X

�n
X

⇤

⌘
= XX

⇤

⇣
XX

⇤ + . . .+XX
n
X

�n
X

⇤

⌘

=) (XX
⇤)? \

⇣
XX

⇤ + . . .+XX
n
X

�n
X

⇤

⌘
= 0.

So the kernel above necessarily also vanishes without compression.

Concluding the current and previous section, we have achieved the first half in the

classification of relative Cuntz–Pimsner algebras: that is we have found that every

gauge-equivariant representation arises itself as relative Cuntz–Pimsner algebra for

some kernel–covariance pair. In short, that is the kernel–covariance pairs exhaust

the gauge-equivariant representations.

We may now proceed with the second half on the classification of relative Cuntz–

Pimsner algebras: The kernel–covariance pairs classify the relative Cuntz–Pimsner

algebra and equivalently every possible kernel–covariance pair arises itself in nature.

As such we need to construct su�ciently many representations (as well as any
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A.7. Fock representation

nontrivial one whatsoever). This is where the Fock representation and the quotients

thereof will come into play.

A.7 Fock representation

We begin with the following problem: Note that up until now we have not come

across any representation whatsoever (put aside su�ciently many) except the

trivial representation

B = 0 : X 0, A 0

and as such it could be in principle that the relative Cuntz–Pimsner algebras

(for some correspondences) all coincide as the only trivial representation

(X,A) T (X,A) = . . . = O(K, I) = O(K 0
, I

0) = . . . = 0 ??

As such the question arises whether a correspondence admits always a nontrivial

representation (and further also su�ciently many faithful ones).

For this we consider a failing attempt which leads us in turn to the Fock

representation: As a first guess we may consider the linking algebra associated

to our correspondence (seen as Hilbert module only)

B =

 
A

X

!⇣
A

⇤
X

⇤

⌘
=

 
A X

⇤

X XX
⇤

!
✓ L

" 
A

X

!#

together with the representation given by the canonical embedding

 
A

0

!
✓

 
A X

⇤

X XX
⇤

!
= B,

 
0

X

!
✓

 
A X

⇤

X XX
⇤

!
= B.

Now while this representation respects the Hilbert module structure (basically by

construction) it does not respect the left module structure:

⇣
x
⇤

0

⌘⇣
0

y

⌘
=
⇣
x
⇤
y

0

⌘
,

⇣
0

x

⌘⇣
a

0

⌘
=
⇣

0
xa

⌘
,

⇣
a

0

⌘⇣
0

x

⌘
=
⇣

0
0

⌘
6=
⇣

0
ax

⌘
.

The solution is to simply extend these down the diagonal to infinity which brings

us straight to the Fock space representation: More precisely, the Fock space is the
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A.7. Fock representation

infinite direct sum of increasing tensor powers (as in section A.1)

F(X) := A�X �XX �XXX � . . . =

0

BBBB@

A

X

XX

...

1

CCCCA

and the representation as diagonal action and as right shift respectively:

A! L(FX) : a

⇣
A�X �XX � . . .

⌘
:= aA� aX � aXX � . . .

X ! L(FX) : x

⇣
A�X �XX � . . .

⌘
:= 0� xA� xX � xXX � . . .

We visualize them in matrix notation (using a formal left and right shift):

X⌦R = X

0

@
0
1 0
1 0

. . .

1

A, A⌦1 = A

0

@
1
1
1
. . .

1

A, X
⇤
⌦L = X

⇤

0

@
0 1
0 1
0
. . .

1

A.

Further the Fock representation comes with the (inner) circle action

T y L(FX) : (z y �) :=

0

@
1
z

z
2

. . .

1

A �

0

@
1
z

z
2

. . .

1

A
⇤

which renders the representation gauge-equivariant:

0

@
1
z

z
2

. . .

1

AA

0

@
1
1
1
. . .

1

A

0

@
1
z

z
2

. . .

1

A
⇤

= 1A

0

@
1
1
1
. . .

1

A,

0

@
1
z

z
2

. . .

1

AX

0

@
0
1 0
1 0

. . .

1

A

0

@
1
z

z
2

. . .

1

A
⇤

= zX

0

@
0
1 0
1 0

. . .

1

A.

Furthermore the representation of compact operators reads

XX
⇤
7! X

0

@
0
1 0
1 0

. . .

1

A

0

@
0 1
0 1
0
. . .

1

AX
⇤ = XX

⇤

0

@
0
1
1
. . .

1

A

With these preliminary computations ready we may now reveal the Fock

representation as the universal representation (i.e. the Toeplitz algebra):

Proposition A.7.1 (Fock representation = Toeplitz algebra):
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The Fock representation has trivial kernel and covariance

ker
⇣

A L(FX)
⌘
= 0, cov

⇣
X L(FX)

⌘
= 0

and as such defines the universal representation (by theorem A.6.1).

Proof. Clearly the representation is faithful (and so has trivial kernel) as

 
a

a

. . .

! 
A

. . .

. . .

!
=

 
aA

. . .

. . .

!
=

 
0
0
. . .

!
=) a = 0.

As a consequence, we may further compute the covariance as the intersection within

the representation (as the special instance from proposition A.3.8)

cov
⇣

X L(FX)
⌘
= A

 
1
1
. . .

!
\XX

⇤

 
0
1
. . .

!
= 0.

So the covariance is trivial as well and the proposition follows.

Note that more importantly we established the existence of any nontrivial

representation whatsoever (equivalently the universal representation is di↵erent

from the trivial representation) and further also the existence of faithful

representations (equivalently the universal representation is faithful).

Put in other words, we may now distinguish Toeplitz algebras along the lattice

of quotient correspondences (the first dimension of kernel–covariance pairs):

T
�

X

XK

�
= O(K, 0) = O(K 0

, 0) = T
�

X

XK0

�
=) K = K

0

Indeed we have even found the stronger kernel relation from (A.12):

ker
⇣

A T (X)
⌘
= 0 =) ker

⇣
A

A

K
T
�

X

XK

� ⌘
= K

We are still left with the question (which we get to next)

O(K, I) = O(K 0
, I

0) =) ( K = K
0
| I = I

0 ) ?

For this we may now consider the Fock representation as a concrete realization for

the Toeplitz algebra and as such further construct every relative Cuntz–Pimsner

algebra (along kernel–covariance pairs) as a concrete quotient thereof: For example

given first a quotient correspondence (for some invariant ideal)

K E A : X
⇤
KX ✓ K : (X,A)

�
X

XK
,
A

K

�
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we may construct the corresponding Toeplitz algebra as quotient by the kernel

(more precisely its ideal generated within the original Toeplitz representation)

0 (XK,K) (X,A)
�

X

XK
,
A

K

�
0

0 T X(K ✓ A)T X T X T
�

X

XK

�
0

where we omit as usual the closed linear span for more pointy statements.

Before continuing we replace for convenience the original correspondence by the

quotient correspondence,

�
X

XK
,
A

K

�
 (X,A) =) T

�
X

XK

�
 T (X).

Consider next an ideal (as possible covariance) bounded from above by the maximal

covariance (as in proposition A.3.6),

I E A : I ✓ max(X,A).

The bound from above is necessary as larger covariances force an additional kernel

and as such would factor over some further quotient correspondence. Similarly as

for relative Toeplitz algebras, the relative Cuntz–Pimsner algebra arises now as

coequalizer for the chosen covariance

O(K, I) = coeq

0

BB@
I ✓ A \XX

⇤
T X

XX
⇤

T X

1

CCA

and as such also as quotient by their di↵erence as in (A.2):

0 T X

⇣
('� ⌧)I

⌘
T X T X O(X; I) 0 :

('� ⌧) =

0

B@
A \XX

⇤
T X

T X

1

CA�

0

B@
A \XX

⇤

XX
⇤

T X

1

CA.

We now invoke the Fock representation as Toeplitz algebra: Recall that we have

already found here the concrete embedding for the coe�cient algebra as well as
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the concrete embedding of compact operators (see above)

T X ✓ L

" 
A

X

. . .

!#
: A 7! A

 
1
1
. . .

!
, XX

⇤
7! XX

⇤

 
0
1
. . .

!

and as such their di↵erence reads

A \XX
⇤
7! A \XX

⇤

 
1
0
. . .

!
.

We therefore found the relative Cuntz–Pimsner algebra as quotient

0 T X

 
I

0
. . .

!
T X T X O(X; I) 0. (A.17)

This was originally established by Muhly and Solel in [MS98, theorem 2.19].

We now wish to verify that the induced quotient representation remains faithful:

That is we note that the quotient could in principle introduce new kernel,

I ✓ A \XX
⇤ : ker

⇣
A T X O(X; I)

⌘
= 0 ?

Indeed we note that the quotient does introduce new kernel as soon as the

covariance exceeds the maximal covariance (as we have noted also above). As

such we have to make sure this does not happen as long as the covariance lies below

the maximal covariance from proposition A.3.6. For this we note that the trivial

kernel above may be equivalently verified now as the trivial intersection

I ✓ max(X,A) : A

 
1
1
. . .

!
\ T X

 
I

0
. . .

!
T X = 0 ? (A.18)

On the other hand, we wish to also verify the covariance relation from (A.12):

cov
⇣

A T X O(X; I)
⌘
= I ?

The problem here is that the covariance could in principle increase as well.

Indeed the construction (and even our very definition) of relative Cuntz–Pimsner

algebras guarantees just a least covariance for the provided covariance ideal. This

becomes more evident as follows: Consider for this the di↵erence morphism which
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factors by the universal property via the Toeplitz algebra:

A \XX
⇤

A \XX
⇤

0 T X

 
I

0
. . .

!
T X T X O(X; I) 0.

'� ⌧

As such the covariance may be read o↵ from the common intersection as

 
A \XX

⇤

0
. . .

!
\ T X

 
I

0
. . .

!
T X =

 
I

0
. . .

!
? (A.19)

This meanwhile also highlights how the covariance could in principle increase.

Let us begin to verify that the representation remains faithful along the quotient.

For this we begin with the following well-known relation (which goes all the way

back to an observation by Joachim Cuntz made in [Cun77]):

Proposition A.7.2. The ideal generated by the covariance as in (A.17) coincides

with the ideal of compact operators of the form

T X

 
I

0
. . .

!
T X =

 
A

X

. . .

!
I(A X

⇤
. . . ) = K

" 
A

X

. . .

!
I

#

with implicit closed linear spans for more pointy statements.

Sketch of proof: The result follows most easily using the formal right and left shift

operators (as further above) from which the covariance ideal reads

 
I

0
. . .

!
= I

" 
1
1
. . .

!
�

 
0
1
. . .

!#
= I ⌦ (1�RL).

Recall however that these satisfy the well-known relation

LR = 1 =) L(1�RL) = 0 = (1�RL)R.

As such we obtain as the only contributions for the ideal

T X

 
I

0
. . .

!
T X =

X

mn

 
X

 
0
1 0

. . .

!!m 
I

0
. . .

! 
X

⇤

 
0 1
0
. . .

!!n

.

88



A.7. Fock representation

On the other hand they generate the system of matrix units such as

 
0
1 0

. . .

!m 
1
0
. . .

! 
0 1
0
. . .

!n

=

 
0

0 1 0
0

!
=

 
0
1
0

!
( 0 1 0 ).

As such we obtain for the above ideal

T X

 
I

0
. . .

!
T X = . . . =

X

mn

 
0
X

n

0

!
I( 0 X

�n 0 ) = F(X)F(X)⇤

which is the desired relation for the covariance ideal.

In order to handle the kernel for the induced representation on the quotient

we need to take a closer look into the ideal of compact operators from A.7.2:

We begin for this with the well-known approximation by “finite rank matrices”.

More precisely, recall that compact operators on Fock space may be approximated

by their finite matrix blocks (along finite S ✓ N)

 
0

K[. . .]
0

!
3

 
0

k(S)
0

!  
k00 k01
k10 k11

. . .

!
2 K

" 
A

X

. . .

!#
.

S!N

Indeed one easily verifies this (using Dirac calculus from A.1.1):

 
. . .

0
1

! 
A

X

. . .

!
(A⇤

X
⇤
. . .) 0

 
A

X

. . .

!
(A⇤

X
⇤
. . .)

 
. . .

0
1

!

In particular we obtain for the diagonal compact operators as in A.7.2:

K
" 

A

X

. . .

!
I

#
\

 
L(A)

L(X)
. . .

!
=

 
I

XIX
⇤

! 0

!
.

Meanwhile the author would like to take a moment to thank his previous tutor

Dominic Enders for highlighting this perspective during personal discussions.

The idea is now to use the previous relation in contrast to the following

observation by Katsura which we reformulate in our language: Consider for

this the diagonal operators on Fock space

 
L(A)

L(X)
. . .

!
✓ L

"
FX =

 
A

X

. . .

!#
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and the representation between such diagonal operators:

0

@
0

L(Xn)
0

0

1

A

0

@
0

0
L(Xn)⌦ 1

0

1

A ✓

0

@
0

0
L(Xn

⌦X)
0

1

A

This generally fails to define a faithful representation: one may for instance consider

the graph correspondence for any finite acyclic graph such as

X = `
2

⇣
E = • •

⌘
=) XX = `

2

⇣
EE = ?

⌘
= 0.

Katsura’s crucial obervation tells us now that this becomes faithful when restricted

to the subspace of compact operators by our covariance ideal:

Proposition A.7.3 ([Kat04, Lemma 4.7]). The representation above defines an

embedding when restricted to the maximal covariance as in proposition A.7.2,

0

@
0
|X

n
imax(X,A) hXn

|

0
0

1

A ✓

0

@
0
0
|X

n
imax(X,A) hXn

|⌦ 1
0

1

A.

As such the representation defines also an embedding for any covariance ideal below

the maximal covariance.

Proof from [Kat04]: We note for the kernel (in Dirac braket notation)

hX
n
| ker


|X

n
imax(X,A) hXn

| y |X
n
i ⌦ |Xi

�
|X

n
i

✓ ker


hX

n
|X

n
imax(X,A) hXn

|X
n
iy |Xi

�

✓ ker(A y X) \ ker(A y X)? = 0

where we have used the obvious inclusion

hX
n
|X

n
imax(X,A) hXn

|X
n
i ✓ max(X,A) ✓ ker(A y X)?.

(Note the intersection reflects also the first level as in proposition A.1.3.)

For an ideal such as the kernel above it holds however

hX
n
|

✓
ker[. . .] = ker[. . .]⇤ ker[. . .]

◆
|X

n
i = 0 =) ker[. . .] |Xn

i = 0.

As such we found the inclusion

ker


|X

n
imax(X,A) hXn

| y |X
n
i ⌦ |Xi

�
✓ ker


|X

n
ihX

n
| y |X

n
i

�
= 0.
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In particular, the same holds true for any covariance below the maximal.

With Katsura’s observation at hand we may now verify the desired kernel

and covariance relation as in (A.12) which will resolve the second half of our

classification of relative Cuntz–Pimsner algebras. We note here that the kernel

relation is already due to Katsura as established in [Kat04]:

Theorem A.7.4 (Relative Cuntz–Pimsner algebras: Kernel and Covariance):

For the relative Cuntz–Pimsner algebra as above it holds

ker
⇣

A! T ! O(X; I)
⌘
= 0

cov
⇣

X ! T ! O(X; I)
⌘
= I

As a consequence, the kernel–covariance pairs are also classifying.

Proof. We begin with the kernel relation due to Katsura from [Kat04]:

As in the beginning discussion we need to verify the relation (A.18):

I ✓ max(X,A) : A

 
1
1
. . .

!
\ T X

 
I

0
. . .

!
T X = 0 ?

For this we first revealed in proposition A.7.2 that the ideal generated by

our covariance (within the Toeplitz algebra) agrees with compact operators.

As such the intersection with the coe�cient algebra reads

A

 
1
1
. . .

!
\ T X

 
I

0
. . .

!
T X = A

 
1
1
. . .

!
\

 
I

|Xi I hX|

! 0

!
.

In contrast, Katsura’s observation from proposition A.7.3 tells us that these embed

along the diagonal and as such the norm remains also constant throughout,

 
a

a

. . .

!
2

 
I

|Xi I hX|

. . .

!
: kak = ka y Xk = . . . = ka y X

n
k.

Both the vanishing of compact operators along the diagonal and the constant norm

are only possible for the trivial intersection and as such the trivial kernel.

We continue with the covariance relation from (A.12): For this we may now
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simply verify the common intersection as in (A.19) also using proposition A.7.2:

 
A \XX

⇤

0
. . .

!
\ T X

 
I

0
. . .

!
T X =

=

 
A \XX

⇤

0
. . .

!
\

 
I IX

⇤

XI XIX
⇤

. . .

!
=

 
I

0
. . .

!
.

As such the covariance does not increase and the theorem is proven.

We have thus established also the second half in our classification:

More precisely, we have first found that the class of relative Cuntz–Pimsner

algebras exhausts the gauge-equivariant representations (which was the content

of the gauge-invariant uniqueness theorem). On the other hand we now found that

the parametrisation via kernel–covariance pairs is also classifying:

O(K, I) = O(K 0
, I

0) =) (K, I) = (K 0
, I

0)

Altogether we have thus found: the lattice of kernel–covariance pairs

parametrises the entire lattice of gauge-equivariant representations (as points).

A.8 Lattice structure

While our discussion (so far) captured the lattice of gauge-equivariant representations

as individual points along the lattice, this still leaves open how the

lattice structure of kernel–covariance pairs reflects the lattice structure of

gauge-equivariant representations (among each other) to which we now get:

Recall for this that our kernel–covariance pairs encode the covariance for the

quotient correspondence (which rendered the representation faithful)

(X,A) B : K = ker
⇣
A! B

⌘
=) I = cov

⇣
X

XK
! B

⌘

and its intrinsic characterisation on the quotient (as bounded ideal)

⇣
K E A

��� X⇤
KX ✓ K

⌘
=)

⇣
I E A/K

��� I ✓ max
�

X

XK

� ⌘
.

We therefore begin with a translation of our kernel–covariance pairs which

lives on the original correspondence. This allows us to give an intrinsic order

on kernel–covariance pairs reflecting the lattice structure of representations.

Along this translation we further reveal Katsura’s T-pair version as nothing but our

formulation using kernel–covariance pairs (with maximal covariance in disguise).
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For our translation we first recall that the covariance for an embedding (faithful

representation) may be simply read o↵ as common intersection within the ambient

algebra (as in proposition A.3.8)

(X,A) ✓ B : cov(X ! B) = im(A! B) \ im(XX
⇤
! B).

More precisely, one may take the portion of the coe�cient algebra

cov(X ! B) =
n
a 2 A

��� a 2 im(XX
⇤
! B)

o
= A \ im(XX

⇤).

That is however the same amount of information as the actual intersection,

as long as one keeps track of the embedding for the coe�cient algebra:

B

XX
⇤

A

im(XX⇤)

im(XX⇤)

im(A)

With this picture in mind, we continue on some general representation

(X,A)
�

X

XK
,
A

K

�
B : K = ker(A! B).

We first note that for a quotient (i.e. surjective mapping) there is absolutely no

loss of generality when pulling back any ideal along the quotient since for

I E A/K  
�
A!

A

K

��1

I E A : I =
�
A!

A

K

��
A!

A

K

��1

I

and so we may use the equivalent intrinsic definition of kernel–covariance pairs as

those with covariance below the maximal covariance within the quotient:

(I +K) E A : I/K ✓ max
�

X

XK

�
(A.20)

We wrote the covariance ideal (here and below) as sum with the kernel ideal simply

to guarantee that the ideal arises indeed as pullback from the quotient.

On the other hand, note that the amount of covariance (as described above) does

not change either in the sense of how much common intersection the coe�cient
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algebra has with compact operators since (see also proposition A.3.10):

im
⇣

A
A

K
B

⌘
= im

⇣
A

K
B

⌘
,

im
⇣

XX
⇤

�
X

XK

��
X

XK

�⇤
B

⌘
= im

⇣ �
X

XK

��
X

XK

�⇤
B

⌘
.

So there is really no loss of generality from this perspective either.

As such we obtain another equivalent extrinsic definition of kernel–covariance

pairs as those with covariance ideal describing the amount of common intersection

between the coe�cient algebra and compact operators:

(X,A) B : (I +K) = im(A! B) \ im(XX
⇤
! B).

For comparison between kernel–covariance pairs we however take from now on the

portion within the coe�cient algebra as above, that is

(I +K) =
n
a 2 A

��� a 2 im(XX
⇤
! B)

o
= A \ im(XX

⇤
! B)

and we note this agrees with our intrinsic definition (somewhat obvious now).

Meanwhile we also keep in mind the viewpoint on the covariance as amount of

common intersection as it provides an interesting perspective on representations.

With both these definitions at hand (the intrinsic and the extrinsic) we may now get

to the lattice of gauge-equivariant representations. Given a pair of representations

we define the usual order of representations as

⇣
(X,A)! B

⌘


⇣
(X,A)! B

0

⌘
: (X,A) B B

0
.

More precisely, that is the representation factors over the other and note that the

sole existence of such a factorisation entails a unique such as the representations

are all generated as an operator algebra by (the image of) the correspondence:

B = C
⇤(A [X) =) B B

0 uniquely

Given a factorisation we now easily infer for their kernel and covariance

ker(A! B) ✓ ker(A! B ! B
0),

A \ im(XX
⇤
! B) ✓ A \ im(XX

⇤
! B ! B

0).

Indeed the latter may be easily seen as (somewhat trivially)

im(a! B) 2 im(XX
⇤
! B) =) im(a! B ! B

0) 2 im(XX
⇤
! B ! B

0).
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Schematically the amount of intersection could look something like:

B B
0

So we have found the following converse direction (using theorem A.7.4):

⇣
K ✓ L

��� I +K ✓ J + L

⌘
(= O(K, I)  O(L, J)

What about the forward direction? That is assume we have an inclusion of kernel–

covariance pairs as above. As we have an inclusion of kernel ideals we obtain in

particular for their quotient correspondence

(X,A)
�

X

XK
,
A

K

� �
X

XL
,
A

L

�

O(K, I) O(L, J)

and so we may replace our correspondence as usual by the quotient

�
X

XK
,
A

K

�
 (X,A) =) O(K, I) O(0, I).

Recall that the relative Cuntz–Pimsner algebra satisfies (by definition)

(X,A) O(X; I) B () I ✓ cov( X ! B )

and as such we need to verify the least amount of covariance

I ✓ cov
⇣

(X,A)
�

X

XL
,
A

L

�
O(L, J)

⌘
?

This basically follows now from our study of kernel morphisms and covariance

ideals from section A.3, which we recall now for more clarity in our context:

At first we found that kernel and cokernel morphisms have full covariance. That

is in our context the fully commutative diagram for the quotient morphism and on
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the other hand the covariance diagram for the quotient representation:

A \XX
⇤

A/L

XX
⇤

�
X

XL

��
X

XL

�⇤

and

J/L O(L, J)

�
X

XL

��
X

XL

�⇤
O(L, J).

Combing these with our assumption on covariance ideals we obtain

(I + 0) J/L O(L, J)

XX
⇤

�
X

XL

��
X

XL

�⇤
O(L, J)

and as such the desired amount of covariance,

(I + 0) ✓ (J + L) =) I ✓ cov
⇣
(X,A)! O(L, J)

⌘
.

As such we also found the forward direction and so the order isomorphism,

which is the main conclusion of this article:

Theorem A.8.1 (Kernel–covariance pairs: Order isomorphism):

The kernel–covariance pairs as in (A.20) define the order isomorphism

⇣
K ✓ L

��� I +K ✓ J + L

⌘
() O(K, I)  O(L, J) (A.21)

and as such the lattice of kernel–covariance pairs with its natural order by

inclusion describes the entire lattice of gauge-equivariant representations,

equivalently the entire lattice of gauge-invariant ideals.

Let us give an example of our result for some graph algebra,

also to illustrate the ease of working with such kernel–covariance pairs:

Example A.8.2 (Graph correspondences: gauge-invariant ideals):

Consider a graph correspondence as in example A.1.2,

X = `
2

⇣
E = edges

⌘
, A = c0(vertices)

and recall its quotient graphs as in A.3.5 (given by hereditary ideals as in A.3.2)

as well as their covariance ideals given by their sets of regular vertices as in A.3.7.
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As an example consider the following graph and its quotient graphs

K = 0 :
0

BB@
a b

1

CCA

K = (a) :
0

BB@
b

1

CCA

K = (a [ b) :
⇣

?
⌘
.

Then its lattice of gauge-equivariant representations reads (as Hasse diagram)

K = 0 : K = (a) : K = (a [ b) :

I = 0 I = (a)

I = (a) I = (b) I = (a [ b)

I = (a [ b) I = (a [ b)

and so equivalently also the lattice of gauge-invariant ideals.

Note how we now easily read o↵ the order via kernel–covariance pairs.

Before we continue let us make a few remarks on the order isomorphism:

In particular the following discussion on connecting morphisms will basically cover

the notion of suprema and infima as addressed in the following remark:

Remark A.8.3 (Lattice isomorphism: suprema and infima):

Note that as both lattices are order isomorphic they will be also lattice isomorphic

as unions and intersections (finite or arbitrary) as well as top and bottom elements

are determined as suprema and infima respectively

order iso

✓
sup
s

as

◆
= sup

s

⇣
order isoas

⌘

which aside their existence depend only on the given order.

Put in other words the notion of a lattice is really just a pure property and defines

no additional structure so there is really no di↵erence between the lattice of gauge-

equivariant representations and the lattice of kernel–covariance pairs. We will

however later discover that arbitrary suprema and infima of kernel–covariance

pairs do not necessarily always arise as intersections and sums of their kernel
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and covariance ideals, that is we only have

inf
s

(Ks|Is) 

 
\

s

Ks

����
\

s

Is

!
and sup

s

(Ks|Is) �

 
X

s

Ks

����
X

s

Is

!
.

Indeed while the intersection und sum of invariant ideals remain invariant

hX|

⇣\
Ks

⌘
|Xi ✓

\
Ks and hX|

⇣X
Ks

⌘
|Xi ✓

X
Ks

the intersection and sum of covariance ideals may not always end up below the

maximal covariance,

\
Is ✓ max

✓
X

X(
T
Ks)

◆
and

X
Is ✓ max

✓
X

X(
P

Ks)

◆
?

Schematically that is the next possible kernel–covariance pair may lie just further

beyond (as seen within the lattice of any pairs of ideals) such as

⇣
K : . . .

��� I ✓ max( X

XK
)
⌘

⇣
(K1 +K2) : . . .

��� (I1 + I2) * max
⇣

X

X(K1+K2)

⌘ ⌘

⇣
Ks : . . .

��� Is ✓ max
⇣

X

XKs

⌘ ⌘
.

For example the requirement to have at least as much covariance as all the given

covariance ideals can force larger kernel than just the sum of given kernel ideals,

or put more drastically there may exist no connecting morphism from each relative

Cuntz–Pimsner algebra to the cokernel strand over the sum of kernel ideals.

We will find such an example in A.8.5 between already even just a pair of

kernel–covariance pairs of the form:

(X,A)
⇣

X

XK1
,

A

K1

⌘ ⇣
X

XK2
,

A

K2

⌘ �
X

XK
,
A

K

�

. . . O(K1, I1) O(K2, I2) O(K, I)

. . . . . . . . . . . .

⇥

⇥

Furthermore we note that from either description the order defines a partial order
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(as opposed to just a preorder) as easily seen from

⇣
(X,A) C

⇤(X [A) = B

⌘
and

⇣
(X,A) C

⇤(X [A) = B
0

⌘
:

0

BB@
(X,A) (X,A) (X,A)

B B
0

B

1

CCA =

0

BB@
(X,A) (X,A)

B B

1

CCA

so one is a retract of the other and similarly the other way around, or one may

equivalently also argue using their kernel from the Toeplitz algebra

⇣
T X B B

0

⌘
=) ker

⇣
T X ! B

⌘
✓ ker

⇣
T X ! B

0

⌘

from which they had been already the same quotient

ker
⇣
T X ! B

⌘
= ker

⇣
T X ! B

0

⌘
=)

⇣
T X B = B

0

⌘
.

Alternatively one may now also argue using kernel–covariance pairs,

⇣
K ✓ L ✓ K

��� I ✓ J ✓ I

⌘
=)

⇣
K = L

��� I = J

⌘
.

Altogether we remark that the lattice of gauge-equivariant representations coincides

entirely with the lattice of kernel–covariance pairs, while suprema and infima of

kernel–covariance pairs may lay only beyond of just the intersection and sum of

their kernel and covariance ideals.

With this in mind we continue on the remaining questions from section A.4: More

precisely, we wish to find suitable characterisations when morphisms exists between

di↵erent quotient strands (based on kernel–covariance pairs)

�
X

XK
,
A

K

�
O(K, 0) O(K, I) O(K,max)

�
X

XL
,
A

L

�
O(L, 0) O(L, J) O(L,max)

and we warn ahead that these won’t always exist. Now at first we note that

clearly the existence infers the inclusion of kernel ideals and we may for simplicity

replace the original correspondence with the quotient

(X,A) :=
�

X

XK
,
A

K

�
O(K = 0, 0) O(K = 0, I) . . .

In particular there always exist connecting morphism from at least the Toeplitz
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algebra and so also some further relative Cuntz-Pimsner algebras

T
�

X

XK

�
= O(K, 0) . . . O(K, I =?) . . .

T
�

X

XL

�
= O(L, 0) O(L, J) O(L,max).

X X X ⇥

As such the first question is to find the smallest relative Cuntz–Pimsner algebra

from which connecting morphisms exist. This may be now easily solved as

O(K, I) O(L, J) () (I +K) ✓ (J + L)

and as such the largest covariance ideal (i.e. within the maximal covariance) simply

arises as intersection with the given covariance from the quotient,

I = max
�

X

XK

�
\
�
A/K ! A/L

��1

J = max
�

X

XK

�
\ (J +K).

Schematically the intersection can look something like this:

A/K

J \ max

max
�

X
XK

�

A/L

J

max
�

X
XL

�

The reader may easily find some examples with (using graph algebras as above):

max
�

X

XK

�
6= 0 : (J \max) = 0 / 0 6= (J \max) 6= max / (J \max) = max ?

Moreover one may now easily guess the meet of kernel–covariance pairs:

^

s

( Ks | Is ) =

✓
K =

\
Ks

���� I =
\

Is \max
�

X

XK

� ◆

So far about connecting morphisms from preceeding cokernel strands.

The other direction however is more interesting: That is a relative Cuntz–Pimsner

does not necessarily connect to every following quotient correspondence and in
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there not even beginning at every relative Cuntz-Pimsner algebra either,

O(K, 0) O(K, I) O(K,max)

O(L =?, 0) O(L =?, J =?) O(L =?,max).

Note this also describes the lattice of gauge-invariant ideals for the given

relative Cuntz–Pimsner algebra (simply as each such defines a quotient).

We note however that as soon as it connects to another relative Cuntz–Pimsner

algebra (in some following quotient correspondence) then it certainly also does

so to the absolute Cuntz–Pimsner algebra for that quotient correspondence.

As such this introduces an obstruction which may be now handle using (A.21):

O(K, I)  O(L,max) () Jmin :=
⇣
A/K ! A/L

⌘
I ✓ max

�
X

XL

�

This condition fails from time to time (we provide a simple example below).

In case this condition is met we obtain as smallest solution

O(K, 0) O(K, I) . . .

O(L, 0) . . . O(L, Jmin) . . . O(L,max)

⇥ X X X

while in case the condition fails then there simply is no connecting morphism.

As such we also obtain the lattice for any relative Cuntz-Pimsner algebra which is

really just our main result restated (while this also generalizes O-pairs):

Corollary A.8.4 (Relative Cuntz-Pimsner algebra: gauge-invariant ideals):

Consider a relative Cuntz-Pimsner algebra (as described in section A.4)

(X,A)
�

X

XK
,
A

K

�
O(K, 0) O(K, I)

for some kernel–covariance pair as in (A.20) above.

Then its lattice of gauge-invariant ideals simply runs over pairs as in (A.21)

⇣
K ✓ L

��� I +K ✓ J + L

⌘
()

⇣
K ✓ L

��� Jmin ✓ J ✓ max
�

X

XL

� ⌘

that is in words simply over all kernel–covariance pairs above.

Let us give an example for when there is no connecting morphism:

Example A.8.5 (Graph correspondences: no connecting morphism):

101



A.8. Lattice structure

Consider as an example the following graph and its quotient graphs

K = 0 :
⇣

a! b

⌘
K = (a) :
⇣

b

⌘
K = (a [ b) :
⇣

?
⌘
.

Then there is no connecting morphism for the absolute Cuntz-Pimsner algebras

between the first and second quotient (by simply reading o↵ covariance ideals):

T

⇣
X = `

2(a! b)
⌘

T

⇣
X = `

2(b)
⌘

T (X = 0)

O

⇣
X = `

2(a! b)
⌘

O

⇣
X = `

2(b)
⌘

O(X = 0).⇥

Indeed the obstruction fails for the covariance ideal:

I1 = (b) = reg
�
a! b

�
and K2 = (a) ✓ her(a! b) :

(A! A/K2)I1 = (b) * reg
�
quotient graph = b

�
.

The issue here is that the hereditary ideal is simply not saturated. Alternatively

one may note that the first defines the simple algebra of 2⇥2 matrices.

In particular, we obtain for the join of kernel–covariance pairs

⇣
K1 = 0

��� I1 = (b)
⌘
_

⇣
K2 = (a)

��� I2 = (a)
⌘
=
⇣
K = (a [ b)

��� . . .

⌘
.

In other words, the join as next possible kernel–covariance pair lies only

beyond of just the sum of kernel and covariance ideals. So we found an example

for the issue (mentioned further above) that suprema and infima will be generally

beyond just intersections and sums of ideals.

We finish this section with a widely missed identification of Katsura’s work:

That is we clarify how Katsura’s T-pairs (and O-pairs) are nothing but the

pullback version of our kernel–covariance pairs from above. More precisely we

expand on the requirement given in [Kat07, definition 5.1]

J(K) :=
n
a 2 A

��� . . . and aX
�1(K) ✓ K

o
: K ✓ I ✓ J(K)

and how this defines a translation of the constraint from proposition A.3.6:

That is any covariance for an embedding into an operator algebra is necessarily
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orthogonal to the kernel (for its left action) which read in our case

cov
�

X

XK
! B

�
? ker

�
A

K
y X

XK

�

and as such these cannot exceed the maximal covariance (a.k.a. Katsura’s ideal)

cov
�

X

XK
! B

�
✓

h�
X

XK

��
X

XK

�⇤
\ ker

�
A

K
y X

XK

�?i
= max

�
X

XK

�
.

As such we found instead our kernel–covariance pairs as given by invariant ideals

as kernel (which defines some sort of discrete range for kernel ideals)

K E A : X
⇤
KX ✓ K

together with ideals bounded from above as covariance (which defines an upper

bound on the range of covariance ideals)

I E A/K : 0 ✓ I ✓ max
�

X

XK

�

while we found in the second half of our classification that each such

kernel–covariance pair indeed arises itself (more precisely theorem A.7.4).

In order to establish Katsura’s requirement we first note the obvious

I =
⇣
A! A/K

⌘�1

J () K ✓ I

and one the other hand the inclusion (for quotient maps)

J ✓ max
�

X

XK

�
()

⇣
A! A/K

⌘�1

J ✓

⇣
A! A/K

⌘�1

max
�

X

XK

�
.

As such Katsura’s condition simply states (see [Kat07, lemma 5.2])

J(K) = (A! A/K)�1 max
�

X

XK

�

for which it further su�ces to verify (see also [Kat07, lemma 5.2])

n
aX

�1(K) ✓ K

o
=
⇣
A! A/K

⌘�1

ker
�
A

K
y X

XK

�?

since the dotted condition represents nothing but compactly acting coe�cients.

This is however now easily verified: Consider for this the pullback (which contains
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the same information)

ker
�
A y X

XK

�
=
⇣
A! A/K

⌘�1

ker
�
A

K
y X

XK

�
:

⇣
A! A/K

⌘⇣
A! A/K

⌘�1

( . . . ) = ( . . . )

and which further reads (as in proposition A.3.9)

ker
�
A y X

XK

�
=
�
a

X

XK
= 0

 
= {aX ✓ XK} = {X

⇤
aX ✓ K} = X

�1(K).

Put together we obtain the desired relation for the orthogonal complement.

We note that the relation has been worked out by Katsura in [Kat07, lemma 5.2]

which however has been not continued further on: Katsura chose to work with

the cryptic requirement instead of pursuing their kernel–covariance counterpart.

Possibly because they got only partially recognized as covariance ideals.

Finally the author notes that the results here arose from a more detailed study

of [Kat07] which builds on [FMR03] and further [KPW98] and [Pim97]. More

precisely, the author realized the relations drawn in [Kat07, lemma 5.10] (which

extend [FMR03, lemma 2.9]) as a partial result on categorical kernel and cokernel

morphisms which led to their intrinsic characterization (in theorem A.3.3) and

so also on the range of possible kernel ideals.

On the other hand the author realized the first observation made in [Kat04,

proposition 3.3] as an intrinsic characterisation on the range of possible

covariance ideals for the induced representation on the quotient.

These let the author to systematically employ such kernel–covariance pairs,

which allowed on one hand to handle the general version of the gauge-invariant

uniqueness-theorem by reduction to the faithful case which follows from the

sleek and simplifying proof by Evgenios Kakariadis in [Kak16] (which draws

from the second observation made in [Kat04, proposition 3.3]) and on the other

hand the critical observation made by Takeshi Katsura in [Kat04, lemma 4.7] in

his seminal paper from 2004, which led the author to retrieve kernel–covariance

pairs from their relative Cuntz-Pimsner algebra (in theorem A.7.4). The main

di↵erence however is that we didn’t need to build any ad-hoc semi-kind-of

categorical pushout for correspondences as was handled in [Kat07]. Instead it

is all based on the simple idea of reduction to faithful representations using

kernel and cokernel morphisms.
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A.9 Pimsner dilations

This final section introduces the notion of dilations and verifies the existence

of the maximal dilation as Hilbert bimodule. We further reveal Katsura’s

construction as a particular nonmaximal dilation and illustrate the lack of

minimal dilations. Meanwhile, the author would like to take this opportunity

to thank Ralf Meyer for sharing his enlightening perspective on the Pimsner

dilation as maximal dilation.

We begin with the concept of dilations: More precisely that is any gauge-

equivariant factorisation over some intermediate correspondence such as

(Y,B)

(X,A) O(K, I)

where the gauge-equivariance boils down to simply

Y O(K, I)(1) and B O(K, I)(0).

As the original correspondence generates the relative Cuntz–Pimsner algebra, so

does also the intermediate one

C
⇤(X [A) = O(K, I) =) C

⇤(Y [B) = O(K, I)

whence the factorisation defines a relative Cuntz–Pimsner algebra itself:

(Y,B) O(K, I) = O

⇣
Y,B

��� L =? J =?
⌘

As such the task is now to find dilations which generate the relative Cuntz–Pimsner

algebra as an absolute Cuntz–Pimsner algebra:

(X,A)
⇣
Y =?, B =?

⌘
O(K, I) = O

⇣
Y,B

��� L = 0, J = max
⌘
?

As the kernel should be trivial we have no choice than to look within the relative

Cuntz–Pimsner algebra itself. Also we may as usual assume that our original

correspondence embeds itself (simply by replacing our original correspondence by

its quotient correspondence). As such our intermediate correspondence necessarily
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arises as an intermediate subspace

X ✓ Y ✓ O(K = 0, I)(1) and A ✓ B ✓ O(K = 0, I)(0).

On the other hand we found (as a well-known description) that the absolute Cuntz–

Pimsner algebra arises as the smallest gauge-equivariant quotient for which the

coe�cient algebra faithfully embeds into (and so also the correspondence) or in

other words the coe�cient algebra detects the gauge-invariant ideals within the

absolute Cuntz–Pimsner algebra. So we aim to find an intermediate subspace

which detects the remaining gauge-invariant ideals

J E O(K = 0, I) : B \ J = 0 =) J = 0 ?

By our main result (theorem A.7.4) we found a parametrisation for the entire

lattice of gauge-equivariant representations

O(K = 0, I = 0) O(K 6= 0, I = 0) . . .

O(K = 0, I = some) . . . . . .

O(K = 0, I = max) . . . . . .

given by kernel–covariance pairs

⇣
K E A : X

⇤
KX ✓ K

��� I E A

K
: I ✓ max

�
X

XK

� ⌘
.

and so also of gauge-invariant ideals (within the Toeplitz algebra) whence also

for the relative Cuntz-Pimsner algebra. Our original coe�cient algebra however

already detects the kernel component:

A \ T (X,A)
�
K ✓ A

�
T (X,A) = 0 =) K = 0

As such the only gauge-invariant ideals which our original coe�cient algebra cannot

detect are precisely the covariance ideals (with trivial kernel component)

I ✓ max(X,A) : A \ T (X,A)
⇣
I

0

⌘
T (X,A) = 0.

Furthermore we have already taken a quotient for some covariance (which brought

us to our relative Cuntz–Pimsner algebra) and so the remaining gauge-invariant
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ideals arise as remaining quotients

O(K = 0; I = 0) O(K = 0, I) . . . O(K = 0,max).

As such we need to find an intermediate coe�cient algebra which detects all of the

remaining covariance ideals beyond the given one I ✓ J ✓ max(X,A):

A ✓ B ✓ O(K, I)(0) : B \O(K, I)
⇣
J

0

⌘
O(K, I) 6= 0 (A.22)

with an intermediate subspace as correspondence (as described in section A.1)

X ✓ Y ✓ O(K, I)(1) : Y
⇤
Y ✓ B, BY ✓ Y, Y B ✓ Y.

As such one may first choose an intermediate subalgebra which detects the

remaining covariance ideals (and if desired also a chosen subspace) and from there

simply enlarge the chosen subalgebra to form a correspondence, for instance as the

smallest correspondence above:

\n �
Y0 ✓ Y

��B0 ✓ B
� ��� Y ⇤

Y ✓ B, BY ✓ Y, Y B ✓ Y

o
.

Indeed the intersection of any class of correspondences forms a correspondence:

⇣
Y =

\
Yn

��� B =
\

Bn

⌘
: Y

⇤

n
Yn ✓ Bn, . . . =) Y

⇤
Y ✓ B, . . .

We meanwhile need to verify that there always exists one above: For this we simply

consider the maximal dilation (also known as Pimsner dilation)

⇣
Y = O(K, I)(1)

��� B = O(K, I)(0)
⌘
.

Indeed the maximal dilation defines even a Hilbert bimodule and so also a

correspondence simply as Fourier spaces define Fell bundles (confer section A.5):

O(K, I)(�1)O(K, I)(1) ✓ O(K, I)(�1 + 1 = 0),

O(K, I)(0)O(K, I)(1) ✓ O(K, I)(0 + 1 = 1), . . .

On the other hand the maximal dilation is also easily seen to detect all of the

remaining covariance simply as each is generated from the fixed point algebra:

⇣
J

0

⌘
✓ A

⇣
1
1

⌘
+XX

⇤

⇣
0
1

⌘
✓ O(K, I)(0)

=)
⇣
J

0

⌘
✓ O(K, I)(0) \


O(K, I)

⇣
J

0

⌘
O(K, I)

� (A.23)
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In fact one may argue more generally: Given any operator algebra with a

given circle action and consider its fixed point algebra (as in section A.5)

T y B : B(n = 0) =
n
b

���
�
b(z) := z y b

�
⌘ b

o
.

Then its fixed point algebra detects every gauge-invariant subalgebra:

⇣
A = T y A

⌘
✓ B : A \B(0) = 0 =) A = 0.

Indeed this follows using the conditional expectation (confer section A.5)

T y B : E(b) =

Z

T

⇣
b(z) = z y b

⌘
dz.

As the subalgebra is gauge-invariant the conditional expectation does not leave the

subalgebra (using its construction as Bochner integral)

⇣
A = T y A

⌘
=) E(A) =

Z

T

⇣
z y A ✓ A

⌘
dz ✓ A.

On the other hand, every operator algebra is spanned by its positive portion,

A = pos(A)� pos(A) + i pos(A)� i pos(A), pos(A) := {0  a 2 A}.

The conditional expectation (given by averaging) is however faithful on the positive

portion and as such we have have found the detection

E(posA) ✓ A \B(0) = 0 =) pos(A) = 0 =) A = 0.

This well-known technique is quite worthwhile in other context.

As such we have found the following familiar result with ease (and in fact there

was basically nothing left to prove anymore):

Theorem A.9.1 (Maximal dilation: absolute Cuntz–Pimsner algebra):

The maximal dilation realises relative Cuntz–Pimsner algebras as absolute one

O(K, I) = O

⇣
Y = O(K, I)(1)

��� B = O(K, I)(0)
⌘
.

and further defines the maximal Hilbert bimodule.

Proof. This is now an immediate consequence from (A.23) satisfying (A.22).

This dilation however is rather large in the sense that there is not much control

over its behavior (besides its universal description). For instance one may think
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of the maximal dilation similar to maximal Furstenberg boundary. Instead we

therefore seek for some dilation small enough to be tractable combinatorially

while large enough to detect covariance. As explained above, one may for this

simply begin with a small subalgebra which detects covariance and simply enlarge

the chosen subalgebra to form a correspondence. In practice one may for instance

attempt to run the algorithm

Y = BX +X +XB +BXB =) B
0 = B + Y

⇤
Y

=) Y
0 = B

0
Y + Y + Y B

0 =) . . .

(A.24)

with implicit closed linear span as usual.

While there always exist a smallest correspondence above (as we found above)

this process may never halt and whence leave us clueless about its combinatorial

behavior. In good cases however, the algorithm halts and thus allows for its

combinatorial description. This happens in particular for the canonical subalgebra

given by the maximal covariance itself:

A ✓


B = A+

⇣
max(X,A)

0

⌘ �
✓ O(K, I)(0) (A.25)

whose sum defines a subalgebra since

⇣
max(X,A)

0

⌘
A

⇣
1
1

⌘
✓

⇣
max(X,A)A

0

⌘
✓

⇣
max(X,A)

0

⌘

which is nothin but the relation (from proposition A.2.1)

('� ⌧)max(X,A) · '(A) = ('� ⌧)
⇣
max(X,A)A

⌘
✓ ('� ⌧)max(X,A).

On the other hand its left action keeps the space invariant

⇣
max(X,A)

0

⌘
X ✓ (A+XX

⇤)X ✓ X (A.26)

and as such the algorithm halts right after the first round,

Y = X +X

⇣
max(X,A)

0

⌘
= XB : Y

⇤
Y = BX

⇤
XB ✓ B

and as such we got the canonical dilation as a combinatorial object.

Using the left and right shift (as in section A.7) we further even note

⇣
max(X,A)

0

⌘
y X = max(X,A)(1�RL) ·XR = 0 (A.27)
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which is nothing but the obvious relation (see also proposition A.2.1)

⌧(XX
⇤)⌧(X) = ⌧(XX

⇤
X) =) ('� ⌧)

⇣
A \XX

⇤

⌘
⌧(X) = 0.

This resembles Katsura’s construction from [Kat04] and so we refer to the canonical

dilation given by the maximal covariance as Katsura dilation (and note also here

that there was basically nothing left to prove anymore):

Theorem A.9.2 (Katsura dilation: absolute Cuntz–Pimsner algebra):

The canonical dilation given by the maximal covariance realises a relative Cuntz–

Pimsner algebra as an absolute Cuntz–Pimsner algebra

O(K = 0, I) = O

✓
Y = X +X

⇣
max(X,A)

0

⌘ ��� B = A+
⇣
max(X,A)

0

⌘ ◆

and the analogous dilation for kernel–covariance pairs with kernel ideal.

Proof. This is now an immediate consequence from (A.25) satisfying (A.22).

We meanwhile note that this dilation (given by the maximal covariance) may

well fail to define a minimal dilation (detecting covariance) while even if minimal

it may possibly also fail to be the only minimal dilation (which is yet open).

We will provide a class of examples for the first failure in A.9.8.

Corollary A.9.3 (Katsura dilation: intrinsic description):

The canonical dilation given by the maximal covariance allows the intrinsic

description as the operator algebra freely generated by their abstract copies

✓
A = A

⇣
1
1

⌘ ◆
[

✓
max(X,A)/I =

⇣
max(X,A)

0

⌘ ◆

with multiplication given by

A

⇣
1
1

⌘
·

⇣
max(X,A)

0

⌘
✓

⇣
Amax(X,A)

0

⌘
✓

⇣
max(X,A)

0

⌘

and similarly for the correspondence itself.

The analogous expression holds for kernel–covariance pairs with kernel ideal.

This further recovers the particular description from [Kat07, definition 6.1].

Proof. By part of our main result (the nontrivial part of theorem A.7.4) we found

that the relative Cuntz–Pimsner algebra does not introduce additional kernel which

is the faithful copy of the coe�cient algebra (as a familiar result):

(X,A) O(K = 0, I) : A = A

⇣
1
1

⌘
.
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On the other hand the relative Cuntz–Pimsner algebra also does not introduce

additional covariance (asides the already given covariance) which reads

⇣
A \XX

⇤

0

⌘
\ T (X,A)

⇣
I

0

⌘
T (X,A) =

⇣
I

0

⌘
.

and as such the added maximal covariance defines a faithful copy up to

max(X,A)/I =
⇣
max(X,A)

0

⌘
✓ O(K = 0, I).

Note that the maximal covariance absorbs the coe�cient algebra and as such their

sum already defines a closed and thus complete operator algebra (see the quick

proof (A.16) on the sum of an algebra and ideal from section A.6):

A

⇣
1
1

⌘
+
⇣
max(X,A)

0

⌘
= A

⇣
1
1

⌘
+
⇣
max(X,A)

0

⌘
✓ O(K = 0, I).

In fact this holds in any representation as also their universal:

C
⇤

⇣
A [max(X,A)/I

��� Amax(X,A)/I ✓ max(X,A)/I
⌘

= A+max(X,A)/I = A+max(X,A)/I.

As such any concrete representation which provides faithful disjoint copies for the

coe�cient algebra and the maximal covariance (mod covariance ideal) defines a

faithful representation for their freely generated operator algebra:

A \max(X,A)/I = 0 ✓ B =) C
⇤(A [max(X,A)/I) ✓ B

Indeed this simply follows by some basic linear algebra. This holds in particular

for their copy in the relative Cuntz–Pimsner algebra

A

⇣
1
1

⌘
\

⇣
max(X,A)

0

⌘
=
⇣
ker(A y X)

0

⌘
\

⇣
max(X,A)

0

⌘
= 0

where we have used their trivial intersection

ker(A y X) \max(X,A) ✓ ker(A y X) \ ker(A y X)? = 0

and as such the dilation arises as universal representation

C
⇤

⇣
A [max(X,A)/I

��� Amax(X,A)/I ✓ max(X,A)/I
⌘

= A

⇣
1
1

⌘
+
⇣
max(X,A)

0

⌘
✓ O(K = 0, I).

Note this defines a quite general argument which applies also in other context.
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Finally Katsura’s description is nothing but the isomorphism

C
⇤

⇣
A [M

��� AM ✓M

⌘
=
n
a� (im a+m) 2 A� (imA+M ✓ B)

o

which simply enforces faithful disjoint copies for any A! B:

A = A(1� 1), A(1� 1) \ (0�M) = 0, M = 0� (M ✓ B).

There is however nothing special about this choice of formal description.

Instead it is the universal description as freely generated copies with one absorbing

which captures its properties:

C
⇤

⇣
A [max(X,A)/I

��� Amax(X,A)/I ✓ max(X,A)/I
⌘

= A

⇣
1
1

⌘
+
⇣
max(X,A)

0

⌘
✓ O(K = 0, I).

The reader may now similarly argue for the correspondence.

We may now easily recover the classical result that any gauge-equivariant

quotient for some (possibly relative) graph algebra remains a graph algebra.

For this we first recall that any quotient correspondence (as kernel component)

arises as a quotient graph (confer example A.3.5)

A/K = c0(V )/c0
⇣
H = hereditary

⌘
= c0

⇣
W = V \H

⌘

X/XK = `
2(E)/`2(EH) = `

2

⇣
F := WE

⌘

and as such we may replace the original graph by the quotient graph

X = `
2(E := F ), A = c0(V := W ) =) O(K = 0, I).

On the other hand recall that any covariance ideal for a graph (in our case the

quotient graph) arises simply as a regular set of vertices (confer example A.3.7):

max(X,A) = c0

⇣
regular

⌘
=) I = c0

⇣
R ✓ regular

⌘
.

With this notation in mind we may now find the canonical dilation as a graph.

We note for this that as it was given by the algorithm above we may

recover the canonical dilation as a combinatorial object from the original data,

which boils down in our case to the canonical dilation arising as a graph:

Corollary A.9.4 (Katsura dilation: graph correspondences):
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The canonical dilation given by the maximal covariance as in (A.25)

✓
XB = X +X

⇣
max(X,A)

0

⌘ ��� B = A+
⇣
max(X,A)

0

⌘ ◆

arises as the following canonical graph (with notation from above):

Its coe�cient algebra arises as the orthogonal sum of vertices

W = singular
⇣
1
1

⌘
[

⇣
0
regular

⌘
[

⇣
regular \R

0

⌘

together with the correspondence given by the graph

EW = E

✓
singular

⇣
1
1

⌘
[

⇣
0
regular

⌘
[

⇣
regular \R

0

⌘ ◆

and its left action given by (whence defining the range of edges)

⇣
a

a

⌘
EW = (aE)W and

⇣
0
b

⌘
EW =

⇣
b

b

⌘
EW = (bE)W

while trivially acting for the left over last summand.

As such the graph reads in more classical terms

W =
⇣
all vertices = singular [ regular

⌘
q

⇣
regular \R

⌘

EW = E

⇣
all vertices

⌘
q E

⇣
regular \R

⌘

with range and source map given by

s(�q?) = s(�)q? and s(?q�) = ?q s(�),

r(�q?) = r(�)q? = r(?q�).

Note that the combined summands basically recover the original graph whereas

the last provides an additional copy to make up for the maximal covariance.

On the other hand the edges all point into the original copy of vertices.

As such this recovers the familiar construction for graph algebras: Any gauge-

equivariant quotient arises as a graph algebra itself.

Proof. In order to find the canonical dilation as a graph it su�ces to recover

its coe�cient algebra as an orthogonal sum of vertices (see example A.1.2).

In our case the coe�cient algebra already reads as a sum of vertices

A

⇣
1
1

⌘
+
⇣
max(X,A)

0

⌘
= c0

�
vertices

�⇣ 1
1

⌘
+

✓
c0

�
regular

�

0

◆
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which we may decompose now further into an orthogonal sum:

First the singular vertices (that is the nonregular ones) are trivially disjoint from

the regular ones and as such define an orthogonal summand,

vertices = singular [ regular : singular
⇣
1
1

⌘
?

⇣
regular

regular

⌘
.

On the other hand the sum on regular vertices may be also taken as

regular
⇣
1
1

⌘
+
⇣
regular

0

⌘
=
⇣
0
regular

⌘
+
⇣
regular

0

⌘

whose summands belong to the relative Cuntz–Pimsner algebra since

⌧(XX
⇤) =

⇣
0
XX

⇤

⌘
and ('� ⌧)

�
A \XX

⇤
�
=
⇣
A \XX

⇤

0

⌘

which is available only for the compactly acting portion! The latter summand

vanishes precisely for the given covariance (see theorem A.7.4 or corollary A.9.3)

⇣
regular \R

0

⌘
6= 0 and

⇣
R

0

⌘
= 0

and as such the sum reduces to the non-zero vertices

⇣
0
regular

⌘
+
⇣
regular

0

⌘
=
⇣
0
regular

⌘
+
⇣
regular \R

0

⌘
.

As such the coe�cient algebra for our dilation decomposes into

vertices
⇣
1
1

⌘
+
⇣
regular

0

⌘
= singular

⇣
1
1

⌘
+
⇣
0
regular

⌘
+
⇣
regular \R

0

⌘

and so we have found the vertices for our graph correspondence.

We may now simply read o↵ the edges from our correspondence as

X +X

⇣
max(X,A)

0

⌘
= `

2(E)

✓
singular

⇣
1
1

⌘
+
⇣
0
regular

⌘
+
⇣
regular \R

0

⌘ ◆

with the source of edges as evident. On the other hand its left action reads (using

the induced morphism on compact operators from A.2.1)

⇣
a

a

⌘
EW = '(a)⌧(E)W = ⌧(aE)W = (aE)W

⇣
0
b

⌘
EW = ⌧(b)⌧(E)W = ⌧(bE)W = (bE)W

⇣
c

0

⌘
EW = ('� ⌧)c⌧(E)W = 0

and so we have found the desired graph.
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We illustrate the canonical dilation for the following prominent graph:

Example A.9.5 (Katsura dilation: Toeplitz graph):

Consider the correspondence given by the single loop

 
X = `

2

 

a

x
!

= Cx
����� A = c0

⇣
vertices

⌘
= Ca

!
.

Its Toeplitz algebra recovers the traditional Toeplitz algebra since

T (X,A) = C
⇤

⇣
x [ a

��� x⇤
x = a, ax = x

⌘
= C

⇤

⇣
x
⇤
x = 1

⌘
= T

and as such its suggestive name as Toeplitz graph. On the other hand its

absolute Cuntz–Pimsner algebra recovers the traditional circle algebra

O(X,A) = C
⇤

⇣
x [ a

��� x⇤
x = a = xx

⇤

⌘
= C

⇤

⇣
x
⇤
x = 1 = xx

⇤

⌘
= C(T).

These already define all its gauge-equivariant representations:

Indeed there is only a single covariance ideal given by the single vertex

max(X,A) = c0

⇣
regular = a = vertices

⌘
= A

and no further quotient graph (except the trivial one).

As such we found the entire lattice of gauge-equivariant representations.

Further we may now compute the graph for the canonical dilation:

For this we may now simply read o↵ the graph as (confer corollary A.9.4)

⇣
W = (a)q (a \?) = aq a

��� EW = (xa)q (xa) = xq x

⌘
:

0

@
s(xq?) = aq?, s(?q x) = ?q a

r(xq?) = aq? = s(?q x)

1

A =)

0

BB@
aq?

xq?

?q a
?q x

1

CCA.

Put together we found the realisation for the Toeplitz algebra:

T

0

@
•

1

A = O

0

@
• •

1

A

The latter appears sometimes as well under the name Toeplitz graph.

We now continue with the issue about the existence of minimal dilations. For this

we begin with the following positive result for relative graph algebras:

Corollary A.9.6 (Katsura dilation: minimal dilation). For graph correspondences
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the canonical dilation is minimal. That is roughly speaking, there is no smaller

graph which realises the relative graph algebra as an absolute one.

Proof. Consider a subalgebra detecting each covariance B ✓ c0(regular):

B \ c0

⇣
S ✓ regular

⌘
= 0 =) c0

⇣
S ✓ regular

⌘
= 0.

Then the subalgebra necessarily contains each summand and so also

c0

⇣
S = {r}

⌘
= C(r) ✓ B =) B =

M
r

C(r) = c0

⇣
regular

⌘
.

As such the maximal covariance defines a minimal dilation.

The previous observation suggests now the following result for correspondences

over spaces (as coe�cient algebra) and in particular for integer actions:

Corollary A.9.7 (Katsura dilation: correspondences over spaces):

It holds for correspondences with abelian maximal covariance (and so also for

correspondences over spaces): The canonical dilation given by the maximal

covariance defines a minimal dilation if and only if the maximal covariance has

discrete spectrum (resp. the maximal covariance defines a discrete subspace).

Maximal covariances with totally disconnected spectra are not su�cient.

Proof. Note that the entire problem deals with an abelian operator algebra.

By Stone–Weierstrass it thus su�ces to focus on any ideal over some point in

the spectrum and any subalgebra over some pair of points of the form

ker
⇣
! : B ! C

⌘
=
n
b(!) = 0

o
and eq

⇣
!i : B ◆ C

⌘
=
n
b(!1) = b(!2)

o
.

For the ideal we first observe for a pair of closed subspaces E,F ✓ X = �B:

ker(E) \ ker(F ) = ker(E [ F ) = 0 () E [ F = X.

As such the only ideals some non-isolated point cannot detect are

ker(!) \ ker(F ) = 0 : ker
⇣
F = X � ! = X

⌘
= 0

whence the non-isolated point would already detect every ideal.

Suppose on the other hand that the spectrum defines a discrete space.

Then every subalgebra as above fails detect even two ideals:

eq
�
!1,!2

�
\ ker(X � !i) =

n
b(X � !i) = 0 = b(!i)

o
= 0
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The corollary now follows from combining these two observations.

We leave the final statement about totally disconnected spaces to the reader.

With the previous corollary in mind, we may now illustrate some negative examples

on the existence of minimal dilations altogether:

Example A.9.8 (Minimal dilations: failures of existence). For this we may now

simply consider any integer action as our correspondence,

Z y C0(space) =) X = C0(space) = A.

Note that any integer action defines a regular correspondence and as such the

coe�cient algebra defines the maximal covariance. Consider now some continuous

space such as for instance the real line for which we thus obtain:

a) The canonical dilation fails to be minimal as for instance the following ideals

already detect each covariance

C0(R� r) = ker(r) ✓ C0(R) : C0(R� r) \ I = 0 =) I = 0.

b) On the other hand none of those is minimal either since furthermore detection

of covariance already happens for those with discrete complement such as for

C0

⇣
R� {r1, . . . , rn}

⌘
= ker

⇣
r1 [ . . . [ rn

⌘
✓ C0(R).

Consider now some enumeration of rational numbers {q1, q2, . . .} = Q.

As such we obtain some decreasing sequence of ideals with detection:

ker(q1) ◆ ker(q1 [ q2) ◆ . . . ◆ ker(q1 [ . . . [ qn) ◆ . . .

Their intersection however fails to detect any covariance since

ker
⇣
Q = {q1, q2, . . .}

⌘
= ker

⇣
{q1, q2, . . .} = R

⌘
= 0.

As such the given sequence of ideals admits no minimal dilation.

In fact we have even found that the axiom of choice fails to apply!
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Preprint B

Connes implies Tsirelson:

a simple proof

More precisely, we give a quick and very simple proof of “the Connes

embedding problem implies the synchronous Tsirelson conjecture” that relies on

only two elementary ingredients: 1) the well-known description of synchronous

correlations as traces on the algebra per player C
⇤(player) = C

⇤(in|out)

and 2) an elementary lifting result by Kim, Paulsen and Schafhauser.

Moreover, this bypasses every of the deep results by Kirchberg as well as any other

implicit reformulation as the microstates conjecture and the like.

Meanwhile, we also give a di↵erent construction of Connes’ algebra R
! appearing

in the Connes embedding problem, which is more suitable for the purposes of

quantum information theory and much easier to comprehend for the reader without

any prior knowledge in operator algebras.

Most importantly, however, we present this proof for the following reason: Since

the recent refutation of the synchronous Tsirelson conjecture by MIP*=RE, there

exists a nonlocal game which violates the synchronous Tsirelson conjecture, and

by the proof of MIP*=RE even a synchronous such game. The approach however

is based on contradiction with the undecidability of the Halting problem, and so

remains implicit. As such the quest now has started to give an explicit example of a

synchronous game violating the synchronous Tsirelson conjecture together with a

direct argument for the failure, and the current article serves as a direct translation

to the corresponding operator algebra and its tracial state violating the Connes

embedding problem.

Meanwhile the author would like to stress that he does not take any credit for

any of the results as already available. Our only contribution lies in combining

the well-known results from quantum information theory with the lifting result as

established by Kim Paulsen and Schafhauser in [KPS18].

B.1 Algebra per player: C⇤(in|out)

Let us swiftly introduce the algebra per player, which defines one of the two relevant

algebras appearing in our main result below. It is well-known (by Gelfand and
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Pontryagin duality) that the universal C⇤-algebra generated by a projection valued

measure agrees with the full group C
⇤-algebra

C
⇤(Z/A) = C

⇤(e1, . . . , eA 2 proj |e1 + . . .+ eA = 1)

and as such we obtain as the algebra per player their amalgamated free product

C
⇤
�
X = in

��A = out
�
:=

X-manyz }| {
C

⇤(Z/A) ⇤1 . . . ⇤1 C
⇤(Z/A) = C

⇤(Z/A ⇤ . . . ⇤ Z/A)

for some finite sets of questions and answers as cardinal numbers A,X 2 N.
Their labeling as input and output thereby serve to assist the reader to identify

their respective question set and answer set, while we will later on omit their actual

answer and question sets for more pointy statements.

From here one may (we won’t be needing it though) define the algebra for

two-player games as the maximal tensor product of each player’s algebra (with

corresponding question and answer sets)

C
⇤(two player) = C

⇤(Alice)⌦ C
⇤(Bob) = C

⇤(X|A)⌦ C
⇤(Y |B)

and any quantum commuting strategy arises simply as a state

' : C⇤(two player)! C : p(ab|xy) = '

⇣
e(a|x)⌦ e(b|y)

⌘
.

For more details on its relevance we refer the reader to [Fre22b, section 2].

For us the above algebra per player however will be su�cient since we will be

dealing with synchronous strategies exclusively, and whence tracial states on the

algebra per player. Having intoduced the first algebra relevant for our main result,

let us proceed to the second one.

B.2 Connes’ algebra: R
!

We introduce in this section the tracial ultrapower of the hyperfinite II1-factor,

in short also referred to as Connes’ algebra, which defines the main player in the

Connes embedding problem. For this we will pursue another construction for the

Connes algebra, which defines a more suitable approach when working in quantum

information theory (and which may be also much easier to comprehend for the

reader without any prior knowledge in operator algebras).

But before we do so, let us first describe how the usual construction of the

hyperfinite II1-factor goes along, just for having both constructions available. Pick
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your favorite UHF-algebra of infinite-type like

UHF = M2 ⌦M2 ⌦ . . . =
1O

M2, or UHF =

 
1O

M3

!
⌦

 
1O

M7

!
,

or UHF =

 
1O

M2

!
⌦

 
1O

M3

!
⌦ . . . =

O

p: all primes

 
1O

Mp

!
.

and consider its unique tracial state, for example

tr : UHF =
1O

M2 ! C : tr(a1 ⌦ a2 ⌦ 1⌦ . . .) = tr(a1) tr(a2).

Just as an intermediate result — which may however also be omitted!1 — one

may embed the chosen UHF-algebra in the GNS-representation for the tracial

state. Taking the von-Neumann algebraic completion of the UHF-algebra within

the GNS-representation produces then the hyperfinite II1-factor:

R = UHF
w?

✓ B(UHF
2

)

The story however wouldn’t be over here: From here we would still need to proceed

to the ultrapower of the hyperfinite II1-factor as follows: Take the infinite repeated

power of either the UHF-algebra from above (or alternatively the hyperfinite II1-

factor that arose from the completion), which we denote for shorthand by

`
1(UHF) :=

(
a 2

1Y

n

UHF

����� supn
kank <1

)
=

1Y

n

UHF.

The resulting operator algebra comes together with the induced trace

tr! : `1(UHF)! C : tr!(a) = lim
n!!

tr(an)

where the limit is taken along any free ultrafilter. In order to render the trace

faithful one passes, together with the trace, to the following quotient which defines

the so-called tracial ultrapower

UHF! :=
`
1(UHF)

c!(UHF; tr) := {a 2 `1(UHF)| tr!(a⇤a) = 0}
.

This would be the final object appearing in the Connes embedding problem:

R
! =

`
1(R)

c!(R; tr)
=

`
1(UHF)

c!(UHF; tr)
= UHF!

1Due to [BO08, lemma A.9], which following the proof also works for C⇤-algebras,
and a Kaplansky density argument.
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Now, while this construction has its merits in the classification of factors due to the

hyperfinite II1-factor appearing in the intermediate construction, it would be way

too overloaded for applications in quantum information theory, and in particular for

the relation between the Connes embedding problem and the Tsirelson conjecture.

So we refrain from this construction!

Instead we introduce now a di↵erent construction which, as promised above, defines

a more convenient approach when working in quantum information theory. For

this we shortcut the construction above and basically start at its very end. More

precisely, we take the infinite product on matrices of arbitrary sizes, which we

denote suggestively as above by

`
1(M) :=

(
a 2

1Y

n

Mn

����� supn
kank <1

)
=

1Y

n

Mn.

As above, this comes together with the induced trace (along any free ultrafilter)

tr! : `1(M)! C : tr!(a) = lim
n!!

trn(an)

which we render faithful as above by passing to the quotient by

c!(M ; tr) :=

(
a 2

Y

n

Mn| tr!(a
⇤
a) = lim

n

trn(a
⇤

n
an) = 0

)
.

Summarizing the construction: considering sequences of matrices of arbitrary

sizes allows us to pickup all finite-dimensional representations, and passing to the

quotient allows us to also do so approximately.

On the other hand, the surprising feature (surprising just to some extend) is that

this defines also the same tracial ultrapower as before,

M
! =

`
1(M)

c!(M ; tr)
=

`
1(R)

c!(R; tr)
= R

!
.

This follows basically by some Kaplansky density type argument and a careful

diagonal reindexing — just with many more steps (see also the footnote above).

Since this would however escape the scope of the current article, we refrain from

presenting a proof in here and instead leave it to the experienced reader.

Now the left-hand side construction we have just provided is much closer to

correlations, and so we will from now on use our construction in what follows.

So far on the operator algebra appearing in the Connes embedding problem.
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B.3 Two ingredients

In this section we prepare two simple ingredients, proposition B.3.1 and proposition

B.3.2 below, which are all what is needed for “the Connes embedding problem

implies the synchronuous Tsirelson conjecture”. We recall for this the trace space

for an operator algebra A as those states which possess the trace property

TA =
�
⌧ : A! C

�� ⌧(ab) = ⌧(ba)
 
.

With this notation in mind let us begin with the first ingredient:

Proposition B.3.1 ([PSSTW16, corollary 5.6]). The set of synchronous quantum-

commuting correlations is realized by the trace space restricted on two-moments:

⌧ 2 TC
⇤(X = in|A = out) : p(ab|xy) = ⌧

⇣
e(a|x)e(b|y)

⌘
.

Similarly the set of finite dimensional synchronous correlations is realized by those

of such traces which live on finite dimensional quotients thereof

C
⇤(X = in|A = out) some fin dim quotient Csome trace

and then restricted on two-moments as above.

We skip the proof since it is fairly elementary and well-known. The second

ingredient is the following lifting result found by Kim, Paulsen and Schafhauser,

which we recall together with its proof for convenience of the reader.

Proposition B.3.2 ([KPS18, lemma 3.5]). The following lifting problem has a

solution: Every representation into the hyperfinite II1-factor lifts to matrices

`
1(M)

C
⇤(Z/m) =

m-manyz }| {
C� . . .� C `

1(M)/c(M, tr) = R
!

and unital representations may be lifted unitally. As a consequence, the lifting

problem also has a solution for any number of inputs and outputs

C
⇤(Z/m ⇤ . . . ⇤ Z/m| {z }

n-many

) = C
⇤(n = in|m = out).

Before we begin with the proof itself, let us note that the lifting problem easily
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admits a solution by positive maps: Any such representation is determined by some

tuple of mutually orthogonal projections in the quotient

C� . . .� C! `
1(M)/c(M, tr) : e1 7! q1, . . . em 7! qm

and so in particular by some tuple of positive elements. Any single positive element

in a quotient may however be easily lifted itself

⇡ : A! B ! 0 : 8b 2 pos(B) 9a 2 pos(A) : ⇡(a) = b

and so also an entire tuple of positive elements — each element one-by-one.

Put together this defines a solution by some positive map

C� . . .� C! `
1(M) : e1 7! a1, . . . em 7! am.

At the same time one may always arrange for such a lift without increasing the

norm of each lift and so arrange for contractions

ka1k = kq1k  1, . . . , kamk = kqmk  1.

On the other hand, in case of some unital representation one may moreover arrange

for a unital lift by adding the remainder on the last,

rem = 1� (a1 + . . .+ am) : a
0

m
:= am + rem.

The gist is now to also arrange for some projection valued lift: this is one of

the main accomplishments by Kim, Paulsen and Schafhauser in their article on

synchronous games. At the heart of this problem lies the following technical result,

which we formulate in its slightly improved, optimal version.

Either such bound (be it optimal or just some upper bound) then allows us to

deform the tuple of positive elements into an actual set of projections.

Lemma B.3.3 (compare [KPS18, lemma 3.4]). Consider for any positive matrix

contraction a 2Mn the spectral projection onto the interval [1/2, 1] ✓ R:

p(a) := 1[1/2,1](a) 2Mn : p(a)2 = p(a) = p(a)⇤.

Then it holds the upper bound for the distance

ka� p(a)k'  2ka2 � ak'
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uniformly in every positive matrix contraction and any state 2-norm

kxk
2

'
= hx|xi

'
= '(x⇤

x) = '(|x|2)

and the bound above is optimal for faithful states.

Proof. We give a slightly di↵erent proof than in [KPS18]: Instead the optimal

bound can be easily read o↵ from the spectrum as follows. For this denote for

shorthand the left-hand and right-hand side as

f(x) := x� h(x), g(x) := x
2
� x = x(1� x).

Since states are positive, we have as a su�cient condition

f(a)2  g(a)2 =) '

⇣
f(a)2

⌘
 '

⇣
g(a)2

⌘
.

This however can be now read o↵ from the spectrum as

8x 2 �(a) : |f(x)|  |g(x)|

which in our case boils down to the condition

8
<

:
|x|  2|x| · |1� x| for x 2 [0, 1/2] \ �(a),

|1� x|  2|x| · |1� x| for x 2 [1/2, 1] \ �(a).

Finally note that the bound is optimal for faithful states: simply use some matrix

whos spectrum contains the eigenvalue 1/2 — for instance half the identity.

With the previous bound at hand one may now derive the desired solution to the

lifing problem, which we sketch for completeness.

Sketch of proposition B.3.2 (based on the construction by [KPS18]): Say we have

already found a lift to some tuple of positive contractions

a1, . . . , am 2 `
1(M) =

Y

n

Mn.

While each element of the tuple is a matrix sequence itself like

a = (a1, a2, . . .) 2 `
1(M)

we will keep viewing each matrix sequence as a single element. The reader new to

operator-algebraic techniques may however also savely run the following procedure
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indexwise for each sequence in the tuple. Replace the first one in the tuple by the

spectral projection from lemma B.3.3, then cut-o↵ the resulting projection from

the next one and apply the lemma again to that,

p1 := p(a1), a
0

2
:= (1� p1)a2(1� p1), p2 := p(a0

2
).

Continuing this way one needs to cut-o↵ all the previous projections, for example

a
0

3
= (1� p1 � p2)a3(1� p1 � p2).

This way we guarantee their orthogonality since for each next step

1  k + 1  m : a
0

k+1
? p1, . . . , pk =) p(a0

k+1
) ? p1, . . . , pk.

The upper bound in lemma B.3.3 now guarantees that the deformation procedure

remains a lift for the original tuple in the quotient: Indeed recall that the quotient

is given by the ideal

c(M, tr) = {a 2 `
1(M) | kak2 = 0}

which reads when written out as a sequence a = (a1, . . .) 2
Q

n
Mn:

kak
2

2
= tr!(a

⇤
a) = lim

n!!

tr
⇣
a
⇤

n
an

⌘
= 0.

The original tuple in the quotient however consists of mutually orthogonal

projections and so the deformation procedure remains a lift since: Taking the

spectral projection does not alter the equivalence class since by lemma B.3.3

kp(a)� ak2  2ka2 � ak2 = 0

(it helps to view them as a sequence of matrices and one as a sequence of

projection matrices, which indexwise get closer and closer in trace 2-norm),

nor does the cutting-o↵ procedure since this cannot be seen by any orthogonal

pair in a quotient anyways:

⇡ : A! B ! 0 : ⇡(a) ? ⇡(a0) =) ⇡(1� a)⇡(a0)⇡(1� a) = ⇡(a0).

This completes the sketch of the construction for proposition B.3.2.

We have now successfully established our ingredients,

and so we may now proceed to the main result of the article:
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B.4 Connes =) Tsirelson

With our two simple ingredients at hand, namely proposition B.3.1 and B.3.2, we

may now verify that “Connes implies the synchronous Tsirelson conjecture”.

Theorem B.4.1. The Connes embedding problem implies the synchronous

Tsirelson conjecture (and so further also the general Tsirelson conjecture).

More precisely, suppose the Connes embedding problem was to hold true:

That is every tracial state arises as a factorisation by some representation

A R
! Crepr tr!

with unique tracial state on the hyperfinite II1-factor tr : R! C.
Then the synchronous Tsirelson conjecture would also hold true:

C
s

qc
(n|m) ✓ Cq(n|m) \ Cs(n|m)

⇣
✓ C

s

qa
(n|m) ✓ C

s

qc
(n|m)

⌘
.

As consequence, the recent refutation of the synchronous version of the Tsirelson

conjecture by [JNVWY21] implies the failure of the Connes embedding problem.

Before we begin with the proof we need to make the following remark:

For comparison it still holds true by [KPS18] (regardless of [JNVWY21])

Cq(n|m) \ Cs(n|m) = C
s

qa
(n|m)

which requires yet a di�cult result by Kirchberg on amenable traces.

With this remark in mind, let us us begin with the proof for above main result:

Proof. The result now basically follows from the previous ingredients:

Step 1: Consider a synchronous quantum-commuting strategy, which by proposition

B.3.1 is given by some trace restricted on two-moments,

⌧ 2 TC
⇤(in|out) : p(ab|xy) = ⌧(eaxeby).

Step 2: Assuming the Connes embedding problem, all traces would approximately

arise as the unique trace on the hyperfinite II1-factor and so also our trace:

C
⇤(in|out) `

1(M)/c!(M, tr) = R
! C.tr!
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Step 3: By proposition B.3.2 any such representation admits a lift

`
1(M)

C
⇤(in|out) `

1(M)/c!(M, tr) = R
!
.

Putting all together, any such resulting lift however gives a desired approximation

by finite dimensional synchronous correlations:

`
1(M)

C
⇤(in|out) `

1(M)/c!(M, tr) = R
! C.

tr!

More precisely, simply recall the trace as it was originally defined:

Y

n

Mn = `
1(M) 3 a = (a1, a2, . . .) : tr!(a) = lim

n!!

trn(an).

This completes the proof and so we conclude as desired: the Connes embedding

problem implies the synchronous Tsirelson conjecture.
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Preprint C

The quantum commuting model (Ia):

Uniqueness of optimal states:

The CHSH game and other examples

We present in this paper that the CHSH game admits one and only one optimal

state and so remove all ambiguity of representations. More precisely, we use the

well-known universal description of quantum commuting correlations as state space

on the universal algebra for two player games, and so allows us to unambigiously

compare quantum strategies as states an this common algebra. As such we find

that the CHSH game leaves a single optimal state on this common algebra.

In turn passing to any non-minimal Stinespring dilation for this unique optimal

state is the only source of ambiguity (including self-testing):

More precisely, any state on some operator algebra may be uniquely broken up

into its minimal Stinespring dilation as an honest representation for the operator

algebra followed by its vector state. Any other Stinespring dilation however arises

simply as an extension of the minimal Stinespring dilation (i.e. as an embedding of

the minimal Hilbert space into some random ambient one). As such this manifests

the only source of ambiguity appearing in most (but not all!) traditional self-testing

results such as for the CHSH game as well as in plenty of similar examples.

We then further demonstrate the simplicity of our arguments on the Mermin–Peres

magic square and magic pentagram game.

Most importantly however, we present this article as an illustration of operator

algebraic techniques on optimal states and their quotients,

and we further pick up the results of the current article in another following

one (currently under preparation) to derive a first robust self-testing result in the

quantum commuting model.

C.1 Stinespring dilation

The Stinespring dilation for states on operator algebras will play the major role

of the current article — more precisely it provides a convenient approach for

verifying uniqueness of optimal states. As such we begin with an introduction
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for convenience of the reader new to operator algebras.

Meanwhile we moreover explain the issue of randomly chosen non-minimal

Stinespring dilations (in random ambient spaces) which do not reflect any of the

properties of the original state. As such this accounts for all of the ambiguity

arising in most (but not all!) self-testing results in literature.

Consider a state on a unital operator algebra

' : A! C : ' � 0, '(1) = 1.

From this we may define an inner product pairing

A⇥A! C : hx|yi := '(x⇤
y)

which defines a Hilbert space. We formally denote the Hilbert space in braket

notation such that the inner product conveniently reads as composition,

H = “A |'i ” : '(x⇤
y) = h'|x⇤

y |'i .

This allows us to later split such expressions to our desire.1 Based on the Hilbert

space we obtain an induced representation by left multiplication

A! B

⇣
A |'i

⌘
: a

�
x |'i

�
:= ax |'i

together with an induced vector state by |'i = 1 |'i:

B

⇣
A |'i

⌘
! C : T 7! h'|T |'i .

Both combined however retrieve the original state h'| a |'i = '(a).

As such our state allows for a dilation to the vector state:

A C :

B

⇣
A |'i = minimal space

⌘

'(�)

h'|�|'i

This defines the (so-called) minimal Stinespring dilation in the following sense:

Each dilation arises simply as an embedding of this minimal dilation into some

1This can be made rigorous in the setting of Hilbert modules.
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random ambient space. More precisely, consider another dilation say

A C.

B( H = some space )

'(�)

h'
0
|�|'

0
i

Then the space defines an ambient space for the minimal one above:

More precisely, the embedding is formally given by the isometry

A |'i ✓ A |'
0
i ✓ H : x |'i = x |'

0
i , |'i = |'

0
i .

Indeed one easily verifies using the above dilation

h'|x
⇤
y |'i = '(x⇤

y) = h'0
|x

⇤
y |'

0
i .

Using the orthogonal decomposition we may invoke matrix formalism

B

⇣
H = A |'i � other

⌘
=

0

@
B

⇣
A |'i

⌘
B

⇣
other! A |'i

⌘

B

⇣
A |'i ! other

⌘
B

⇣
other

⌘

1

A

and so the representation into the random ambient dilation reads:

A! B

⇣
A |'i � other

⌘
: a 7! ( a ⇤

⇤ ⇤ ),

B

⇣
A |'i � other

⌘
! C : ( a ⇤

⇤ ⇤ ) 7! ( h'| 0 )( a ⇤
⇤ ⇤ )

�
|'i

0

�
.

As such we have found that each dilation simply arises as an embedding into some

random ambient space, and the description in matrix formalism illustrates how

these ambient spaces do not reflect any properties of the original state.

On the other hand, the Stinespring dilation defines also the minimal quotient to

which the original state descends. More precisely, the minimal quotient is given

by the kernel (see [Kwa17, subsection 2.1] and [KM21, subsection 3.1])

0 I(') A B

⇣
A |'i

⌘
:

A A/I(') ✓ B

⇣
A |'i

⌘
C'(�)
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while any other quotient lies in between:

I E A : I ✓ ker(') =) I ✓ I(') :

A A/I A/I(') C.'(�)

Summarizing, every state decomposes uniquely as a representation onto its minimal

quotient followed by its dilation as vector state (a good mnemonic here is the

analogous decomposition of morphisms into epi plus mono):

A A/I(') C : ' = “mono � epi ”
quotient “h'|�|'i”

In turn, one may use the unique decomposition for comparison of states as we will

illustrate in this article for the CHSH and the Mermin–Peres games.

Finally let us make another remark regarding the canonical decomposition:

Suppose one chooses some factorization via some unital completely positive map

(in short ucp-map) instead of an honest representation (which accounts for a choice

of POVM instead of some honest PVM):

A C

B

⇣
S = small space

⌘

'(�)

ucp h'|�|'i

Using a minimal Stinespring dilation for the ucp-map we obtain an embedding into

another ambient space

A B

⇣
H = ambient space

⌘

A B

⇣
S = small space

⌘
C.

S✓H

h'|�|'i

ucp h'|�|'i

In other words, this may be understood as a mistaken decomposition:

' = (mono �mono) � epi = mono �(mono � epi) = h'|� |'i � ucp .

Moreover, our previous discussion reveals this also as an ambient space for the
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original state, and as such reveals our “small space” as an incompatible cut:

H = small space� remainder

A |'i |'i

S = small spaceremainder

That is any choice of POVM (instead of an honest PVM) simply arises as

the minimal Stinespring dilation embedded in some ambient space and then

cut incompatibly onto some small portion. As such this accounts for an

additional, much worse source of ambiguity for self-testing.

This concludes our introduction and discussion on the Stinespring dilation from

an operator algebraic perspective. With this at hand, we may now proceed to

nonlocal games and their optimal states — and their uniqueness.

C.2 The two-player algebra

We continue with an introduction on the two-player algebra, which provides the

universal setting for describing quantum correlations all as states on this common

algebra — and so allows us to compare them on a common ground.

It is well-known that the universal C⇤-algebra generated by a single projection

valued measure agrees with the full group C
⇤-algebra

C
⇤(Z/A) = C

⇤

⇣
e1, . . . , eA 2 proj

���e1 + . . .+ eA = 1
⌘

and as such we obtain as the universal C⇤-algebra per player for a given number

of questions and answers the free product of groups

C
⇤(X = in|A = out) := C

⇤

⇣
Z/A ⇤ . . . ⇤ Z/A : X-many

⌘
.

Finally a commuting pair of families of observables may be gathered algebraically

by the maximal tensor product of their operator algebras and as such the algebra

for two-player games has the universal description (with corresponding question
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and answer sets)

C
⇤(two player) := C

⇤(Alice)⌦ C
⇤(Bob) = C

⇤(X|A)⌦ C
⇤(Y |B)

and any quantum commuting strategy arises simply as a state

' : C⇤(two player)! C : p(ab|xy) = '

⇣
e(a|x)⌦ e(b|y)

⌘
.

Indeed, applying any Stinespring dilation (see section C.1) one obtains the classical

description of correlations as a commuting representation of projection valued

measures together with a vector state,

C
⇤(Alice)⌦ C

⇤(Bob) C.

B

⇣
C⇤(two player) |'i ✓ H

⌘

'(�)

⇡=↵⌦� h'|�|'i

This classical description however has the disadvantage that a Stinespring dilation

introduces a level of ambiguity due to the chosen representation, which is basically

the cause for the usual self-testing results.

Instead the description in terms of states on the two-player algebra allows now for

a direct comparison of such on a common universal algebra, and so with this at

hand we may now approach uniqueness of optimal states as follows.

C.3 CHSH game: single optimal state

We proof in this section that the CHSH game has one and only one optimal state

(compared to merely unique optimal correlation). For this we begin with a quick

review on the CHSH game phrased in the language of operator algebras.

Recall from [CHSH69] that the CHSH game is a binary-input binary-output game,

and as such the two-player algebra is generated by a pair of order-2 unitaries for

every player (compare section C.2):

C
⇤(two player) = C

⇤(Alice)⌦ C
⇤(Bob) :

C
⇤(Alice) = C

⇤(u2 = 1 = v
2) = C

⇤(Bob).

Note that the CHSH game is an XOR-game as introduced in [CHTW04].
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C.3. CHSH game

As such we may equivalently describe the CHSH game by its bias polynomial

win = {a� b = xy} : CHSH := u⌦ u+ u⌦ v + v ⌦ u� v ⌦ v

and an optimal state for the corresponding nonlocal game translates to maximizing

the bias (see appendix C.6 for a summary on XOR games):

' : C⇤(two player)! C : '(CHSH) = kCHSHk.

This concludes our quick review on the CHSH game. With this at hand, we may

now proof the desired uniqueness of the optimal state for the CHSH game.

Theorem C.3.1. The CHSH game has one and only one optimal state.

More precisely, consider the bias polynomial for the CHSH game

CHSH = u⌦ u+ u⌦ v + v ⌦ u� v ⌦ v

and suppose a state realises the maximal bias (see proposition C.6.1)

' : C⇤(two player)! C : '(CHSH) = kCHSHk.

Then the state necessarily factors over the matrix algebra

C
⇤(Alice)⌦ C

⇤(Bob) C

M(2)⌦M(2)

�⌦�

'(�)

given by the canonical quotient (see proposition C.5.1)

M(2) = C
⇤(u2 = 1 = v

2
|{u, v} = 0).

Note that the collection of words in generators reduces, by the anticommutation in

the quotient, to the finite list of words (up to linear span)

words(u, v) = {1, u, v, uv = �vu, uvu = �v, . . .} =) {1, u, v, uv}

whence every state is already linearly determined on those:

' : M(2)⌦M(2)! C : '

⇣
{1, u, v, uv}⌦ {1, u, v, uv}

⌘
= ?

With this observation in mind, the optimal state is uniquely and entirely determined

134



C.3. CHSH game

(including all higher and mixed moments) by the correlation table

'(. . .) = �⌦ 1 �⌦ u �⌦ v �⌦ uv

1⌦� 1 0 0 0

u⌦� 0 1
p
2

1
p
2

0

v ⌦� 0 1
p
2

�
1
p
2

0

uv ⌦� 0 0 0 �1

from which there is no ambiguity left anymore! (Recall section C.1.)

In short, there is one and only one optimal state for the CHSH game.

Before we begin with the proof, let us note how our notion of uniqueness on states

compares with the traditional uniqueness on correlations:

Remark C.3.2. The entire correlation table for the optimal state above entails all

quantum commuting correlations, since these are given by the state space restricted

on two-moments of the form

'(1⌦ 1), '(1⌦ u), '(1⌦ v),
⇠⇠⇠⇠⇠
'(1⌦ uv),

⇠⇠⇠⇠⇠
'(1⌦ vu),

⇠⇠⇠⇠⇠⇠
'(1⌦ uvu)

��
. . .

'(u⌦ 1), '(u⌦ u), '(u⌦ v),
⇠⇠⇠⇠⇠
'(u⌦ uv),

⇠⇠⇠⇠⇠
'(u⌦ vu),

⇠⇠⇠⇠⇠⇠
'(u⌦ uvu)

��
. . .

'(v ⌦ 1), '(v ⌦ u), '(v ⌦ v),
⇠⇠⇠⇠⇠
'(v ⌦ uv),

⇠⇠⇠⇠⇠
'(v ⌦ vu),

⇠⇠⇠⇠⇠⇠
'(v ⌦ uvu)

��
. . .

⇠⇠⇠⇠⇠
'(uv ⌦ 1),

⇠⇠⇠⇠⇠
'(uv ⌦ u),

⇠⇠⇠⇠⇠
'(uv ⌦ v),

��
. . .

These values are equivalently determined by the traditional correlation table

p

⇣
a, b = 0, 1

���x, y = 0, 1
⌘
= '

⇣
E(a|x)⌦ E(b|y)

⌘

given by the corresponding spectral projections

u = E(0|0)� E(1|0), v = E(0|1)� E(1|1)

which reduces to the familiar values for the CHSH game

p

⇣
a� b = xy

⌘
=

1 + 1/
p
2

4
, p

⇣
a� b 6= xy

⌘
=

1� 1/
p
2

4
.

In particular, the traditional uniqueness of correlations — given for example by

self-testing — excludes all higher and mixed moments of order-2 unitaries.

Proof. Our approach follows the original one by Landau from [?] and its sequel [?],

which we however extend to uniqueness of states using some additional arguments

from operator algebras. We begin with the following observation: Suppose a state
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is optimal for the bias polynomial, then it is necessarily also optimal for the squared

bias

'(CHSH) = kCHSHk =) '
�
CHSH2

�
= kCHSHk2

which indeed follows by Cauchy–Schwarz:2

kCHSHk2 = h'|CHSH⇤
|'i h'|CHSH |'i

 h'|CHSH⇤CHSH |'i  kCHSHk2

In our case the squared bias however reduces to

CHSH2 = 4� [u, v]⌦ [u, v] : kCHSHk2 = 8

and so an optimal state necessarily satisfies

'
�
CHSH2

�
= 8 =) '

⇣
[u, v]⌦ [u, v]

⌘
= �4.

We note that this defines only a necessary condition.

Arguing once more by Cauchy–Schwarz we obtain as above

'

⇣
[u, v]⇤ ⌦ [u, v]⇤[u, v]⌦ [u, v]

⌘
= 16

and this once more is only a necessary but not su�cient condition.

Noting that u2 = 1 = v
2, this expression reads written out

16 = '

⇣
(2� uvuv � vuvu)⌦ (2� uvuv � vuvu)

⌘

= '(2⌦ 2)� '(2⌦ uvuv)� . . .+ '(vuvu⌦ vuvu).

Note that each summand involves a unitary:

1⌦ 1, 1⌦ uvuv, . . . , vuvu⌦ vuvu.

Thus by a simple counting argument this is only possible if the state achieves the

value plus/minus one with correct sign on each of the unitaries. In particular

'(uvuv ⌦ 1) = �1 = '(1⌦ uvuv).

2One may either use the bound |'i h'|  k'k2 together with a  b =) c⇤ac  c⇤bc,
or equivalently the general Cauchy–Schwarz for ucp-maps '(a)⇤'(a)  '(a⇤a) as originally
proven by Choi in [Cho74]. For a neat proof of the latter see also [Pau03, proposition 3.2].
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C.3. CHSH game

Within the Stinespring dilation we may however cut such relations into

hx|yi := h'|uv ⌦ 1|uv ⌦ 1 |'i = '(uvuv ⌦ 1) = �1

with both pieces of norm-one

hx|xi = h'|uv ⌦ 1|vu⌦ 1 |'i = 1

hy|yi = h'| vu⌦ 1|uv ⌦ 1 |'i = 1

and similarly for the second tensor factor '(1⌦ uvuv).

That is however only possible if these are colinear with

uv ⌦ 1 |'i = �vu⌦ 1 |'i , 1⌦ uv |'i = �1⌦ vu |'i

and so we have the anticommutation

{u, v}⌦ 1 |'i = 0 = 1⌦ {u, v} |'i .

Finally note that these anticommutators lie in the center

{u, v}⌦ 1, 1⌦ {u, v} 2 ZC
⇤(two player)

as one easily verifies on generators:

u{u, v} = v + uvu = {u, v}u, v{u, v} = vuv + v = {u, v}v.

The anticommutator therefore also vanishes on the entire subspace

H := C⇤(two player) |'i = C⇤(Alice)⌦ C⇤(Bob) |'i :

{u, v}⌦ 1 C
⇤(Alice)⌦ C

⇤(Bob) |'i = 0

1⌦ {u, v} C
⇤(Alice)⌦ C

⇤(Bob) |'i = 0.

that is within the minimal Stinespring dilation (see section C.1)

C
⇤(two player)! B(H = min) : {u, v}⌦ 1 = 0 = 1⌦ {u, v}.

In other words, the state factors as desired via (see proposition C.5.1)

M(2)⌦M(2) = C
⇤
�
u
2 = 1 = v

2
��{u, v} = 0

�
⌦ C

⇤
�
u
2 = 1 = v

2
��{u, v} = 0

�

137



C.3. CHSH game

which gives us the diagram for the optimal state:

C
⇤(Alice)⌦ C

⇤(Bob) C.

M(2)⌦M(2) B(H = min)

�⌦� h'|�|'i

This finishes the first part of the proposition and so we may freely restrict our

attention from now on to the optimal state already acting on the quotient

C
⇤(Alice)⌦ C

⇤(Bob) M(2)⌦M(2) C'(�)

and so also the bias polynomial for the CHSH game

CHSH = u⌦ (u+ v) + v ⌦ (u� v) 2 M(2)⌦M(2).

From here the rest of the theorem basically follows from traditional results on

the CHSH game. We however present a new more algebraic approach below.

But at first we untwist the CHSH polynomial. For this we note that the combined

expressions (in brackets above) are easily seen to anticommute

{u+ v, u� v} = 1� {u, v}+ {u, v}� 1 = 0.

Due to the anticommutation of our generators, these define also unitaries of order-2

(up to normalization)

(u± v)2 = u
2
± (uv + vu) + v

2 = 1± {u, v}+ 1 = 2.

In other words, these define just another abstract pair of Pauli matrices and so

they give rise to the automorphism (see proposition C.5.1)

M(2)!M(2) : u 7!
u+ v
p
2

, v 7!
u� v
p
2

which is at the same time its own inverse. Using this automorphism we obtain the

untwisted bias polynomial (basically in the new basis)

CHSH/

p
2 = u⌦ u+ v ⌦ v.

From here we give a new algebraic approach by verifying the trace property from

which we deduce the final uniqueness, and from which we may moreover easily read

o↵ the values for the correlation table: Suppose our state maximises the untwisted
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C.4. Mermin–Peres games

bias polynomial and so also the unitary summands

'(u⌦ u+ v ⌦ v) = 2 =) '(u⌦ u) = 1 = '(v ⌦ v).

From this it follows within the Stinespring dilation (similar as above):

u⌦ 1 |'i = 1⌦ u |'i , v ⌦ 1 |'i = 1⌦ v |'i .

Indeed one easily verifies (and similarly for the other generator)

h'| (u⌦ 1� 1⌦ u)⇤(u⌦ 1� 1⌦ u) |'i = h'| 2(1⌦ 1� u⌦ u) |'i = 0.

The entire trace property follows now by iteration on words of generators

(u1 . . . unu)⌦ 1 |'i = (u1 . . . un)⌦ u |'i = . . . = 1⌦ (uun . . . u1) |'i

and we note that the order gets flipped (which is a cause for the transpose).

Full matrix algebras however carry a unique tracial state and so we obtain as

desired the unique optimal state for the CHSH game:

'

⇣
u1 . . . um ⌦ v1 . . . vn

⌘
= ⌧

⇣
u1 . . . umvn . . . v1

⌘
.

The particular values for the correlation table may now be easily derived from this

relation: Indeed we obtain for example

'(u⌦ v) = ⌧

⇣
u ·

u+ v
p
2

⌘
=

1
p
2
⌧(1) +

1
p
2
⌧(uv) =

1
p
2
.

This concludes the proof whence the optimal state is unique.

C.4 Mermin–Peres games: single perfect state

We continue in this section with another example of nonlocal games:

the Mermin–Peres magic square and magic pentagram games. Both admit

a unique winning state for rather obvious reasons (see the theorem below).

In order to understand this uniqueness argument, we will however need a more

thorough introduction first to linear constraint system games and their game

algebra (and we note that the following arguments also apply to nonlinear

constraint system games with any complex variables).

As such we begin with an overview on linear constraint system games summarising

the considerations from [CM14] and [CLS17], as well as [KPS18] and [Gol21]:

More precisely, a linear constraint system game is a nonlocal game given by a
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C.4. Mermin–Peres games

system of linear equations (which we formulate in multiplicative form) such as

u, v, . . . 2 exp{2⇡i Z/2} : uvw = 1, vz = �1, . . .

The referee asks each player an equation (

X = {uvw = 1, vz = �1, . . .} = Y

and each player is asked to fill out the variables of their equation say

x = (vz = �1) =) a = (v = �1, z = 1).

As a first rule the players are asked to answer in a synchronous way:

x = some equation = y =) a = b.

As such a winning state (being synchronous) defines a tracial state on the algebra

for a single player (see [PSSTW16, corollary 5.6]). More precisely, consider the

two-player algebra (from section C.2) for identical algebras per player

C
⇤(two player) = C

⇤(player)⌦ C
⇤(player)

and consider a winning state

' : C⇤(player)⌦ C
⇤(player)! C : '

⇣
E(losing)

⌘
= 0.

Then the synchronicity rule enforces on the Stinespring dilation:

'

⇣
E(a 6= b|x = y)

⌘
= 0 =) E(a|x)⌦ 1 |'i = 1⌦ E(a|x) |'i .

By iteration such states enjoy the special property (note the flip in order)

'

⇣
E(a1|x1) . . . E(am|xm)⌦ E(b1|y1) . . . E(bn|yn)

⌘

= '

⇣
E(a1|x1) . . . E(am|xm)E(bn|yn) . . . E(b1|y1)⌦ 1

⌘

and similar for flipping words in other ways from left to right.

Thus such states define a tracial state on either algebra per player

'(�⌦ 1) : C⇤(player)⌦ 1! C

'(1⌦�) : 1⌦ C
⇤(player)! C

which both allow us to recover the original state from above relation.
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So we may from now on restrict our attention to a tracial state

⌧ : C⇤(player)! C : ⌧(ab) = ⌧(ba).

For tracial states however every additional rule enforces the corresponding

2-moments of losing pairs to vanish in the minimal Stinespring dilation (see [OP16]

and [HMPS19]). As such we are left to determine the game algebra for our

synchronous game

C
⇤(sync game) := C

⇤

⇣
player

���E(losing) = 0
⌘

(C.1)

where we denote for shorthand (similar as in appendix C.6)

E(ab|xy) := E(a|x)E(b|y) : E(S) = {E(s)|s 2 S}

and any tracial state on the quotient defines a winning correlation:

⌧ : C⇤(sync game)! C : p(ab|xy) = ⌧

⇣
E(a|x)E(b|y)

⌘
. (C.2)

With this at hand we now get to the first particular rule for linear constraint system

games. For this we first note that for each equation as input we obtain a projection

valued measure whence commuting projections for each variable. For the equation

x = (uvw = 1) we obtain for example the triple

E

�
u 2 Z/2

��x
�
, E

�
v 2 Z/2

��x
�
, E

�
w 2 Z/2

��x
�

which we retrieve from the projection valued measure as a disjoint union like

E(v = �1|x) :=
X

E

⇣
u 2 Z/2, v = �1, w 2 Z/2

��� x
⌘

and we recover the projection valued measure simply as intersection

E(u, v, w|x) = E(u|x)E(v|x)E(w|x).

This is all easiest remembered as a Venn diagram (for commuting projections):
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u = 1

u = �1

v = 1

v = �1

w = 1

w = �1
E(u = 1, v = �1, w = 1)

The first particular rule for linear constraint system games asks now the players

to answer consistently for shared variables, for example

x = (uvw = 1), y = (vz = �1) =) “a(v) = b(v)”

which boils down to the equality for our projections (inside the game algebra).

E

⇣
v

���x = (uvw = 1)
⌘
= E

⇣
v

���y = (vz = �1)
⌘
.

Indeed this follows very quickly from (think in terms of Venn-diagrams!)

E(v = 1|x)E(v = �1|y) = 0 = E(v = �1|x)E(v = 1|y).

That is the projections are all independent of the chosen equation (cf. [CM14]).

With this at hand we may now get to the second particular rule for linear constraint

system games. For this we first pass to their generating unitaries

U := E(u = 1)� E(u = �1), V := E(v = 1)� E(v = �1), . . .

We now ask these unitaries to satisfy each equation, for example

f(u, v, w) = uvw = 1 =) f(U, V,W ) = UVW = 1.

Note that the unitaries appearing in a common equation arose as commuting
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projections. As such they (isomorphically) generate the abelian subalgebra

C(�U)⌦ C(�V )⌦ C(�W ) ✓ C
⇤(player)

and we may have instead also asked for any continuous function such as

g(U, V,W ) = cos(UV
3) +W

2
� 1 = 0.

The generated subalgebra however agrees with the isomorphic copy

C
⇤(g) = C(supp g)E(supp g) ✓ C

⇤(player)

and so modding out (the ideal generated) by either side results in the same quotient,

that is the requirement above reduces to its support projection:

g(U, V,W ) = 0 () E(supp g) = 0.

That is we obtain for our example (read backwards)

E(u, v, w) = E(u)E(v)E(w) = 0, 8uvw 6= 1 () UVW = 1.

This is nothing but our second particular rule for linear constraint system games:

The players need to respond with variables satisfying their equation like

x = (uvw = 1) =) a = (u, v, w = ±1) : a(u)a(v)a(w) = 1.

Thus the game algebra (C.1) for linear constraint systems reads (see also [CM14]):

C
⇤

⇣
“uvw = 1, vz = �1, . . . ”

⌘

= C
⇤

⇣
U

2 = 1, V 2 = 1, . . .
���UVW = 1 : [U, V ] = 0, . . . ;V Z = �1 : . . .

⌘
.

While allowing also for continuous functions, note that there was also nothing

special about unitaries of order–two. Instead all the above also holds perfectly fine

for variables with values in any (possibly di↵erent) list of complex numbers

u 2 {↵1, . . . ,↵u}, v 2 {�1, . . . ,�v}, . . .

upon replacing the generators with

U = ↵1E(u = ↵1) + . . .+ ↵uE(u = ↵u).

This concludes the introduction to linear constraint system games.

For the following statement let us denote the trace space for an operator algebra
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A as those states which possess the trace property

TA =
�
⌧ : A! C

�� ⌧(ab) = ⌧(ba)
 
.

With this in mind one may now easily settle uniqueness of winning states:

Theorem C.4.1. The game algebra (C.1) for the Mermin–Peres magic square

and magic pentagram game read respectively

C
⇤(magic square) = M2 ⌦M2

C
⇤(magic pentagram) = M2 ⌦M2 ⌦M2

and as such both admit one and only one winning state given by the unique tracial

state on either matrix algebra:

T (M2 ⌦M2) = {tr /2⌦ tr /2}

T (M2 ⌦M2 ⌦M2) = {tr /2⌦ tr /2⌦ tr /2}

As for the CHSH game, this entails all quantum commuting strategies.

Proof. The algebra for the Mermin–Peres magic square is generated by

u⌦ 1 North 1⌦ u

West Center East

1⌦ v South v ⌦ 1

where we have commuting rows and columns automatically built in as tensor

product while using abstract copies of order two unitaries:

u
2 = 1 = v

2 : u⌦ 1, v ⌦ 1, 1⌦ u, 1⌦ v.

Also all the boxes on outer outer edges are already determined:

North = u⌦ u, West = u⌦ v, East = v ⌦ u, South = v ⌦ v.
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Using the center box one now easily derives their anticommutation:

West · East = Center = � North · South =) 1⌦ {u, v} = 0,

West · East = Center = � South · North =) {u, v}⌦ 1 = 0.

But the universal algebra generated by a pair of anticommuting order-2 unitaries

is nothing but the abstract Pauli algebra from proposition C.5.1 and so we found

C
⇤(magic square) = M2 ⌦M2.

Similarly one argues for the magic pentagram and the proof is complete.
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C.5 Pauli algebra

Proposition C.5.1. The algebra of 2x2-matrices (equivalently the algebra

generated by its system of matrix units) has the equivalent description as the

universal algebra generated by anticommuting order-2 unitaries

M(2) = C
⇤

⇣
u
2 = 1 = v

2

���{u, v} = 0
⌘

which identifies the generating order-2 unitaries as Pauli matrices

u =
�
1

�1

�
= Z, v = ( 1

1
) = X

or any other (possibly rotated) pair of anticommuting Pauli matrices.

We thus suggestively denote this as the abstract algebra of Pauli matrices.

Proof. Note that the system of matrix units is equivalently generated by the partial

isometry with the orthogonality relation for its range and source:

w = ( 0

1
) : ( 1

0
) = ( 1

0
)( 0

1
) ? ( 0

1
)( 0

1
) = ( 0

1
).

The algebra generated by such a partial isometry is now easily seen to be equivalent
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to the algebra generated by anticommuting order-2 unitaries. Indeed with the

suggested identification from the proposition one has

2w := v(1 + u) = ( 1

1
)
�
( 1

1
) +

�
1

�1

��
= ( 0

2
)

with inverse translation given by

u := w
⇤
w � ww

⇤ = ( 1

0
)( 0

1
)� ( 0

1
)( 1

0
) =

�
1

�1

�

v := w + w
⇤ = ( 0

1
) + ( 1

0
) = ( 1

1
)

and one easily verifies the orthogonality relation for the range and source,

as well as the anticommutation relation, respectively.

C.6 Overview on XOR-games

We provide an overview of XOR-games for convenience of the reader, and we

do so from an abstract, operator algebraic perspective. Meanwhile, the author

would like to acknowledge that the considerations of the current section arose as

joint work with Azin Shahiri from a forthcoming work on the systematic (operator

algebraic and representation-theoretic) classification of optimal states for the tilted

CHSH games from [LLP10] and further [AMP12] with longterm goal for a better

understanding of the I3322-inequality from [Fro81] and [CG04].

An XOR-game is a binary game (that is each player answers with classical bits)

whose winning condition depends only on the resulting parity for their answers.

More precisely, that is the winning pairs arise as

parity ✓ {0, 1}⇥X ⇥ Y : winning =
n
(a� b|x, y) 2 parity

o

which equivalently reads written out

(a, b|x, y) 2 winning () (a� b|x, y) 2 parity.

The most prominent example is of course the CHSH game as in section C.3.

To give another less obvious example however one may also consider the graph

2-coloring game, whose winning condition may be equivalently formulated as

x ⇠ y =) a� b = 1,

x = y =) a� b = 0.
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For convenience we consider bits from now on as ±1-valued:

A = {1,�1} = B : a� b = 0, 1  ab = ±1.

The point of such games is that they allow to verify the winning probability based

on the bias instead, at which we take a closer look now. Recall for this the two-

player algebra with generators (see section C.2):

C
⇤(two player) = C

⇤(X|A = 2)⌦ C
⇤(Y |B = 2) :

u(x) = E(a = 0|x)� E(a = 1|x).

Now for nonlocal games in general the winning probability may be described by

the operator norm for the game polynomial (which we take unnormalized)

game :=
X

E(win) : !qc(game) =
kgamek

|X ⇥ Y |

and where we used the shorthand notation

E(ab|xy) := E(a|x)⌦ E(b|y) : E(S) = {E(s)|s 2 S}.

For XOR-games we may now introduce the bias polynomial (also unnormalized)

bias :=
X

xy

�(x, y)u(x)⌦ u(y)

with bias function given by the sum over the possible winning parities

�(x, y) :=
Xn

par = ±1
���(par|xy) 2 win

o
= 1, 0,�1.

For the 2-coloring example above this reads for example

�(x ⇠ y) = �1, �(x = y) = 1, �(x ⌧ y, x 6= y) = 0.

The point is now that the bias polynomial satisfies

2game = |win|+ bias.

Recall that we take here the winning set as win ✓ {0, 1}⇥X ⇥ Y .

Since the game polynomial is positive we obtain for the spectrum

0  �(game)  kgamek : max�(game) = kgamek
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and by the relation above

2max�(game) = max�(bias) + |win|.

We may therefore relate the winning probability to the maximal upper bound for

the bias. We remark that the above procedure — that is passing from the norm

to the spectrum — may be seen as a linearization process since

ka+ 1k 6= kak+ 1  �(a+ 1) = �(a) + 1, �(�a) = ��(a).

The goal is now to undo the linearization process — that is passing from the

spectrum for the bias polynomial back to its norm. We achieve this with the

following observation:

Proposition C.6.1. Bias polynomials for XOR-games have symmetric spectrum,

from which the maximal bias agrees with the operator norm:

�(bias) = ��(bias) : max�(bias) = kbiask.

As a consequence for any XOR-game

2kgamek = |win|+ kbiask

whence the winning probability relates to the problem (see [FNT14]):

“Can you compute the operator norm” for the bias polynomial?

Proof. The automorphism which swaps the measurement outcomes for Alice and

leaves the measurements for Bob untouched (or vice versa)

� : C⇤(X|2)⌦ C
⇤(Y |2)! C

⇤(X|2)⌦ C
⇤(Y |2) :

u(x)⌦ 1 7! �u(x)⌦ 1, 1⌦ u(y) 7! 1⌦ u(y)

sends any bias polynomial to its negative

�(bias) = �
X

�(xy)u(x)⌦ u(y) = �bias.

The spectrum however is invariant under automorphism whence

�(bias) = �(�bias) = �(�bias) = ��(bias).

The remaining statements follow now from the symmetic spectrum.

Remark C.6.2. One needs to stay cautious since polynomials (which do not

strictly arise as bias polynomial) generally fail to have symmetric spectrum:
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for example the I3322 inequality from [Fro81] and as reinvented in [CG04] might

even have distinct values for the minimal and maximal bias.

We finish this overview with an interesting negative result from [CHTW04], and for

which we note that it easily extends to include also quantum commuting strategies

simply by using a Stinespring dilation as discussed in section C.1:

Theorem C.6.3 ([CHTW04, theorem 3]). Nonlocal games with binary outputs

are never pseudo–telepathy games — neither for quantum commuting strategies.
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