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Abstract

This thesis considers matrix methods in multi-state life insurance, with an empha-

sis on techniques related to inhomogeneous phase-type distributions (IPH) and

product integrals. We start out with developing an expectation-maximization (EM)

algorithm for statistical estimation of general IPHs. Then we introduce a new

class of multi-state models, the so-called aggregate Markov model, which allows

for non-Markovian modeling with most of the analytical tractability of Markov

chains preserved. Using techniques related to IPHs, we derive distributional proper-

ties, computational schemes for life insurance valuations with duration-dependent

payments, and statistical estimation procedures based on the EM algorithm for

general IPHs. Special attention is given to a case with a reset property, where

the aggregate Markov model is semi-Markovian. We then move on and consider

Markov chain interest rate models and show that bond prices are survival functions

of IPHs. This allows for calibration via EM algorithms for phase-type distributions.

Then we consider a multivariate payment process and derive higher order moments

of its present value. Finally, we consider computation of market values of bonus

payments in multi-state with-profit life insurance, where numerical procedures based

on simulation of financial scenarios and classic analytical methods for insurance

risk are developed.
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Preface

This thesis has been prepared in fulfillment of the requirements for the PhD degree

at the Department of Mathematical Sciences, Faculty of Science, University of

Copenhagen. The work has been carried out under the supervision of Professor

Mogens Bladt (University of Copenhagen), while Professor Mogens Steffensen

(University of Copenhagen) has acted as co-supervisor.

The main part of the thesis consists of an introduction followed by six chapters

that are based on manuscripts written throughout the study period. Although the

topics between the manuscripts are related, they appear as independent scientific

contributions and should therefore also be read with this in mind. In particular, the

notation slightly varies between chapters, and overviews of existing literature and

concepts are sometimes repeated. The introduction serves the purpose of providing

the relations between the chapters and their main contributions, thereby giving the

reader an overall story behind the studies undertaken in the thesis.

This is it. After almost all of my adulthood so far has been spent at the H.C.

Ørsted Institute on or around the Department of Mathematical Sciences at the

University of Copenhagen, it now comes to an end with this thesis. I have grown

as a person through these years, and the last years spent on matrix methods in life

insurance could not have been a better way to end this immense journey of learning.

It is my hope that the reader will enjoy this culmination at least as much as I have.
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Summary

This thesis is mainly about matrix methods in multi-state life insurance. We start out

with giving an introductory background and overview of the main contributions in

Chapter 1, which then is followed by Chapters 2–7 where we present the manuscripts

forming the main part of the thesis. A principal focus of the thesis, which constitutes

the Chapters 2–5, is the application of inhomogeneous phase-type distributions in

multi-state life insurance.

We begin the journey in Chapter 2 with the manuscript Ahmad, Bladt, and

Bladt (2022) where we develop EM algorithms for statistical fitting of general IPHs.

The EM algorithm is obtained using techniques known from statistical inference of

time-inhomogeneous Markov jump processes based on their multivariate counting

processes. We implement the algorithm and apply it to data in the case of piecewise

constant transition rates, allowing for simplified estimation procedures based on

Poisson regressions on a set of occurrences and exposures.

In Chapters 3–4, we then introduce a class of multi-state life insurance models we

refer to as aggregate Markov models. They are constructed by adding unobservable

sub-states, so-called microstates, to each biometric or behavioral state, thereby

referring to the latter as macrostates. The idea is to obtain conditional sojourn

time distributions that are IPH of general dimension; the classic Markov chain

models have one-dimensional IPHs as conditional sojourn time distributions. In

Chapter 3, which is based on the manuscript Ahmad, Bladt, and Furrer (2022), we

derive distributional properties as well as computational schemes for life insurance

valuations of duration-dependent payments. The results reveal that aggregate

Markov models can be highly non-Markovian. Throughout, we give special attention

to a case, which we refer to as the reset property, where the aggregate Markov

process is a time-inhomogeneous semi-Markov process.

Then, in Chapter 4, which is based on the manuscript Ahmad and Bladt (2022a),

we consider statistical estimation in the aggregate Markov model based on data of

trajectories of the macrostate process. Using similar techniques as in Chapter 2,

combined with the many distributional results derived in Chapter 3, we develop

EM algorithms for the estimation of transition rates on the micro level. Also here,
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viii Summary

we give special attention to the reset property case, especially since it allows us

to use the EM algorithms of Chapter 2 as input. We implement the latter in the

case of piecewise constant transition rates and apply it to data simulated from

a time-inhomogeneous semi-Markovian disability model. The resulting estimated

transition rates are also used in a numerical example in Chapter 3 to carry out life

insurance valuations of a disability coverage with a waiting period.

In Chapter 5, which is based on the manuscript Ahmad and Bladt (2022b), we

consider stochastic interest rates following a time-inhomogeneous Markov jump

process, the so-called Markov chain market. By deriving suitable product integral

representations of the bond prices, we show that these are survival functions of

IPHs. This allows us to fit (calibrate) the transition rates of the underlying Markov

chain from observed bond prices using EM algorithms for phase-type distributions.

We provide some numerical examples to illustrate this. Furthermore, we show how

the model naturally integrates into existing matrix frameworks in multi-state life

insurance, by providing product integral representations of reserves and higher

order moments with stochastic interest rates on this form.

In Chapter 6, which is based on the paper Ahmad (2022), we consider a multi-

variate payment process with components defined in terms of the same underlying

time-inhomogeneous Markov jump process. We derive differential equations and

product integral representations of higher order moments of the multivariate present

value. This allows us to analyze joint effects between different product types in a

general multi-state Markovian framework. Special attention is given to pairwise

covariances and correlations between two product types, where results related to

Hattendorff type of results for the variance are derived.

The thesis then ends with Chapter 7, which is based on the paper Ahmad,

Buchardt, and Furrer (2022). Here, the problem of computing the market value of

bonus payments in multi-state with-profit life insurance is attended. We consider

the bonus scheme known as additional benefits, where dividends are used to buy

extra benefits to the insured. By assuming that dividends are affine in the number of

additional benefits held, we derive differential equations that allows for computation

of market values of bonus payments using a combination of simulating financial

scenarios and classic analytical methods for insurance risk. We give special attention

to the case where the number of additional benefits only depends on financial risk,

which allows for simplified numerical procedures.



Resumé

Denne afhandling handler hovedsageligt om matrix metoder i flertilstandslivs-

forsikring. Vi starter ud med at give relevant baggrundsstof og en oversigt over

hovedbidragene i Kapitel 1, som efterfølges af Kapitel 2–7, hvor vi præsenterer

de manuskripter, der udgør kernen af afhandlingen. Et hovedfokus i afhandlingen,

som udgør Kapitel 2–5, er anvendelsen af inhomogene fasetypefordelinger (IPH) i

flertilstandslivsforsikring.

Vi begynder rejsen i Kapitel 2 med manuskriptet Ahmad, Bladt og Bladt (2022),

hvor vi udvikler EM algoritmer til statistisk estimation af generelle IPH’er. EM

algoritmerne opn̊as ved hjælp af teknikker kendt fra statistisk inferens for tidsinho-

mogene Markov springprocesser baseret p̊a deres flerdimensionelle tælleprocesser.

Vi implementerer algoritmen og anvender den p̊a data i tilfældet med stykkevis

konstante intensiteter, hvilket giver mulighed for simplere estimations metoder

baseret p̊a Poisson regressioner p̊a et sæt af antal hændelser og eksponeringer.

I Kapitel 3–4 introducerer vi derefter en klasse af flertilstandsmodeller vi omtaler

som aggregerede Markov modeller. De er konstrueret ved at tilføje underliggende uob-

serverbare tilstande, s̊akaldte mikrotilstande, til hver biometrisk eller adfærdsmæssig

tilstand, hvorved disse derfor omtales som makrotilstande. Ideen er at opn̊a betinge-

de fordelinger for opholdstider der er IPH af generel dimension; de klassiske Markov

modeller har en-dimensionelle IPH’er som betingede fordelinger for opholdstider. I

Kapitel 3, som er baseret p̊a manuskriptet Ahmad, Bladt og Furrer (2022), udleder

vi fordelingsmæssige egenskaber samt beregningsmetoder for værdiansættelse af

livsforsikringsforpligtelser med varighedsafhængige betalinger. Resultaterne afslører,

at aggregerede Markov modeller kan være særdeles ikke-Markovianske. Vi lægger

særligt vægt p̊a et specialtilfælde, som vi omtaler som nulstillings egenskaben, hvor

den aggregerede Markov proces er en tidsinhomogen semi-Markov proces.

Derefter, i Kapitel 4, som er baseret p̊a manuskriptet Ahmad og Bladt (2022a),

behandler vi statistisk estimation i den aggregerede Markov model baseret p̊a

data af stier for makro tilstandsprocessen. Ved at bruge lignende teknikker som

i Kapitel 2, kombineret med de mange fordelingsresultater udledt i Kapitel 3,

udvikler vi EM algoritmer til estimation af intensiteter p̊a mikroniveau. Ogs̊a her
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lægger vi særligt vægt p̊a tilfældet med nulstillings egenskaben, især da det giver os

mulighed for at bruge EM algoritmerne fra Kapitel 2 som input. Vi implementerer

sidstnævnte i tilfældet med stykkevis konstante intensiteter og anvender den p̊a data

simuleret fra en tidsinhomogen semi-Markoviansk invalidemodel. De estimerede

intensiteter vi opn̊ar her bruges ogs̊a i et numerisk eksempel i Kapitel 3 til at udføre

værdiansættelse af en invalidedækning med karenstid.

I Kapitel 5, som er baseret p̊a manuskriptet Ahmad og Bladt (2022b), betrag-

ter vi stokastiske renter modelleret som tidsinhomogene Markov springprocesser,

det s̊akaldte Markov-kæde marked. Ved at udlede passende produkt integral re-

præsentationer for obligationspriser, viser vi, at disse er overlevelsesfunktioner for

IPH’er. Dette giver os mulighed for at estimere (kalibrere) intensiteterne for den

underliggende Markov kæde fra observerede obligationspriser ved hjælp af EM

algoritmer for fasetypefordelinger. Vi illustrerer dette gennem en række numeriske

eksempler. Ydermere viser vi hvordan modellen naturligt integreres i eksisteren-

de matrix-baserede modeller i flertilstandslivsforsikring, hvor vi udleder produkt

integral repræsentationer for reserver og højere ordens momenter med stokastiske

renter p̊a denne form.

I Kapitel 6, som er baseret p̊a artiklen Ahmad (2022), betragter vi en flerdimensio-

nel betalingsproces med komponenter defineret i termer af den samme underliggende

tidsinhomogene Markov springproces. Vi udleder differentialligninger og produkt

integral repræsentationer for højere ordens momenter af den flerdimensionelle nu-

tidsværdi. Dette giver os mulighed for at analysere afhængigheder mellem forskellige

produkttyper i en generel flertilstands Markoviansk ramme. Der lægges særlig vægt

p̊a kovariansen og korrelationen mellem to produkttyper, hvor resultater relateret

til Hattendorff’s resultater for variansen udledes.

Afhandlingen afsluttes derefter med Kapitel 7, som er baseret p̊a artiklen Ahmad,

Buchardt og Furrer (2022). Her behandles problemet med at beregne markedsvær-

dien af bonusbetalinger, bonuspotentialet, for gennemsnitsrente i flertilstandslivs-

forsikring. Vi betragter bonusordningen ydelsesopskrivning, hvor dividender bruges

til at købe ekstra ydelser til den forsikrede. Ved at antage, at dividenderne er affine

i antallet af ydelser tilkøbt, udleder vi differentialligninger der giver mulighed for

beregning af markedsværdien af bonusbetalinger ved hjælp af en kombination af

simulering af finansielle scenarier og klassiske analytiske metoder for forsikringsrisiko.

Vi lægger særligt vægt p̊a det tilfælde, hvor antallet af tilkøbte ydelser kun afhænger

af finansiel risiko, hvilket giver mulighed for forenklede numeriske procedurer.
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Chapter 1

Introduction

This thesis is mainly about matrix methods in multi-state life insurance, with an

emphasis on techniques related to inhomogeneous phase-type distributions and

product integrals. This introduction sets the scene for the studies undertaken. We

start out with giving some background on existing models and methods in the

literature on multi-state life insurance that are relevant for the present thesis. Based

on this, we end the chapter by motivating the studies carried out in the subsequent

chapters along with an overview of the main contributions.

1.1 Background

We now provide some background on multi-state modeling in life insurance. In

Subsection 1.1.1, we present the classic Markov chain models, where special attention

is paid to recent developments on matrix representations within this framework.

Subsection 1.1.2 then considers semi-Markov models including a discussion on its

added complexities relative to the Markov models. Finally, in Subsection 1.1.3, we

consider the notion of inhomogeneous phase-type distributions and discuss modeling

potentials in relation to the previous subsections when having these as building

blocks.

1.1.1 Markov chain models

Markov chain models dates back to at least Hoem (1969a) and Norberg (1991), and

are the most classic and popular approaches to multi-state life insurance modeling.

It provides a unifying framework to model insurance contracts related to different

kinds of life and health events in a tractable and computationally simple way.

The model therefore naturally plays a predominant role throughout the thesis as

a baseline model we extend in various directions. We give an overview of the

framework in this subsection.

1



2 Chapter 1. Introduction

The states of the insured is governed by a time-inhomogeneous Markov jump

process Z = {Z(t)}t≥0 taking values on a finite state space J = {1, . . . , J},
J ∈ N, indicating biometric or behavioral states of the insured. It is assumed to

admit suitably regular transition rates t 7→ µij(t), i, j ∈ J , j ̸= i, with µi•(t) =∑
j∈J
j ̸=i

µij(t), implying that the transition probabilities

pij(t, s) = P(Z(s) = j |Z(t) = i)

satisfy Kolmogorov’s forward and backward differential equations:

∂

∂s
pij(t, s) =

∑
k:k ̸=j

pik(t, s)µkj(s)− pij(t, s)µj•(s), pij(t, t) = 1(i=j),

∂

∂t
pij(t, s) = −

∑
k:k ̸=i

µik(t)pkj(t, s) + µi•(t)pij(t, s), pij(s, s) = 1(i=j).

(1.1.1)

The life insurance contract is then modeled by a payment process B = {B(t)}t≥0

giving accumulated benefits less premiums. It is assumed to consist of payment

rates during sojourn states and payments upon transition between states, thus

taking the form

dB(t) =
∑
j∈J

(
1(Z(t)=j)bj(t) dt+

∑
k∈J
k ̸=j

bjk(t) dNjk(t)

)
,

B(0) ∈ R,

(1.1.2)

where bj(t) and bjk(t) are suitably regular deterministic payment functions, and

N is the multivariate counting process associated to Z, with components Njk =

{Njk(t)}t≥0, j, k ∈ J , k ̸= j, given by

Njk(t) = #{s ∈ (0, t] : Z(s−) = j, Z(s) = k}.

For simplicity, we may assume a maximal contract time T > 0 such that bj(t) =

bjk(t) = 0 for all t > T ; this could e.g. be a maximal living age of the insured.

For valuation of the life insurance liabilities, the prospective reserve is the key.

It is given as the expected present value of future payments given the available

information. Assuming a deterministic and suitably regular interest rate r(t), it

then reads

V (t) = E

[∫ T

t

e−
∫ s
t
r(v) dv dB(s)

∣∣∣∣∣F(t)

]
,

where F = {F(t)}t≥0 denotes the natural filtration generated by Z, representing

the available information.

The Markov assumption on Z together with the assumption that the payments

at some time only depends on Z through its value at that time, that is, that the
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payment functions bj and bjk are deterministic, gives the state-wise counterparts

V (t) = VZ(t)(t), where

Vi(t) = E

[∫ T

t

e−
∫ s
t
r(v) dv dB(s)

∣∣∣∣∣Z(t) = i

]
, i ∈ J ,

are state-wise prospective reserves. They satisfy the celebrated Thiele’s differential

equations

d

dt
Vi(t) = r(t)Vi(t)− bi(t)−

∑
j∈J
j ̸=i

µij(t)(bij(t) + Vj(t)− Vi(t)),

Vi(T ) = 0.

(1.1.3)

Computation of the state-wise prospective reserves can then be carried out by

solving the backward system of differential equations (1.1.3), which then provides

the reserves at all time points between an initial time and the maximal contract

time.

Several extensions of the classic multi-state version of Thiele’s differential equation

(1.1.3) has been considered in the literature. Within Markov chain models, this, e.g.,

includes higher order moments of present values in Norberg (1995b) and inclusion

of stochastic interest following a Markov jump process in Norberg (1995a, 2003),

but also Hattendorff type of differential equations for the variance of present values

have been considered in Ramlau-Hansen (1988).

In recent years, there has been an increased interest towards representing the

prospective reserve in terms of so-called expected accumulated cash flows. Following

Buchardt, Furrer, and Steffensen (2019, Definition 2.2), they are given by, for a

valuation time t ≥ 0,

A(t, s) = E[B(s)−B(t) | F(t)], s ≥ t, (1.1.4)

which then gives the following integral expression for the prospective reserve:

V (t) =

∫ T

t

e−
∫ s
t
r(v) dvA(t, ds).

In the Markov chain model, it was already carried out by Buchardt and Møller (2015).

Here, the expected accumulated cash flow takes the form A(t, s) = AZ(t)(t, s), with

the state-wise counterparts satisfying

Vi(t) =

∫ T

t

e−
∫ s
t
r(v) dvAi(t, ds),

Ai(t, ds) =
∑
j∈J

pij(t, s)

(
bj(s) +

∑
k∈J
k ̸=j

bjk(s)µjk(s)

)
ds.

(1.1.5)
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Computation of the prospective reserve via the expected accumulated cash flow

thus requires a computation of the transition probabilities pij(t, ·) via Kolmogorov’s

forward differential equations. This gives the reserve at a single time t, as opposed

to Thiele’s differential equation (1.1.3) which gives the reserve at all time points.

However, if one is interested in computing the reserve for different interest rate

levels to asses sensitivities, e.g. in the context of hedging interest rate risk when it

is stochastic, the cash flow method (1.1.5) provides an efficient alternative.

Matrix representations and product integrals

In the context of survival and event history analysis, and thus also Markov processes,

there has been occasional use of so-called product integrals as a tool to describe

solutions to differential equations of Kolmogorov type, see, e.g., Johansen (1986)

and Gill and Johansen (1990) for a survey. It was recently put into the multi-state

Markovian life insurance context by Bladt, Asmussen, and Steffensen (2020), where

they derive product integral representations of reserves using the close relations

between Thiele’s and Kolmogorov’s differential equations. This allows for a more

compact and direct treatment of Markov chain models, especially in relation to

numerical implementation.

We outline the concept in the following. Consider the transition intensities

µij(t) of the Markov jump process Z on matrix form as M(t) = {µij(t)}i,j∈J ,

where µii(t) = −µi•(t), and likewise for the corresponding transition probabilities

P (t, s) = {pij(t, s)}i,j∈J . Then Kolmogorov’s forward and backward differential

equations can be written compactly on the form

∂

∂s
P (t, s) = P (t, s)M(s), P (t, t) = I,

∂

∂t
P (t, s) = −M(t)P (t, s), P (s, s) = I.

(1.1.6)

The solution to such a system of differential equations is referred to as the product

integral of M from t to s, and we write

P (t, s) =
s

R
t

(I +M(x) dx). (1.1.7)

Here, the concept is not restricted to intensity matrices but instead holds for all

matrix functions satisfying (1.1.6) (whenever a solution exist). Treating the solution

as an object of its own allows us to draw upon its many properties for further

derivations and manipulations.

It is then shown in Bladt, Asmussen, and Steffensen (2020) that the Thiele type of

differential equations closely resembles (1.1.6)–(1.1.7). The key is the introduction
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of so-called partial state-wise prospective reserves

Vij(t) = E

[
1(Z(T )=j)

∫ T

t

e−
∫ s
t
r(v) dv dB(s)

∣∣∣∣∣Z(t) = i

]
,

V (t) = {Vij(t)}i,j∈J ,

(1.1.8)

which generalizes the transition probabilities in the sense that if we take the 0’th

moment of the present value, we arrive at the transition probabilities; the reserves

are first order moments. Then, by introducing the reward matrix function R(t),

given by

R(t) = M(t) •B(t) +∆(bbb(t)),

B(t) = {bij(t)}i,j∈J ,

bbb(t) = (b1(t), . . . , bJ(t))
′,

where • denotes the Schur product, that is (A • B)ij = AijBij , and ∆(bbb) is

a diagonal matrix with the vector bbb as diagonal, the following product integral

representation is achieved

T

R
t

(
I +

(
M(x)− r(x)I R(x)

0 M(x)

)
dx

)
=

(
e−

∫ T
t

r(v) dvP (t, T ) V (t)

0 P (t, T )

)
.

This follows from extending results in Van Loan (1978) from matrix exponentials

to product integrals, see also Bladt, Asmussen, and Steffensen (2020, Lemma 2).

The block structure of the matrix put up on the left hand side gives a compact

and unifying treatment of transition probabilities and reserves in a single notion.

Further results for higher order moments are derived in similar fashion; one simply

adds a suitable block row for each moment. We refer to Bladt, Asmussen, and

Steffensen (2020, Theorem 5) for the details.

Although matrix representations of the expected accumulated cash flow (1.1.4)

is not directly mentioned in Bladt, Asmussen, and Steffensen (2020), they are

readily obtained via the reward matrix function R(t) as follows. Defining the vector

containing the state-wise counterparts,

A(t, s) = (A1(t, s), . . . , AJ(t, s))
′
,

we get by (1.1.5),

A(t, ds) = P (t, s)R(s)111J ds.

In the following subsections, we consider a number of alternatives to the classic

Markov chain models that allows for added flexibility, and discuss their relations to

the properties of Markov models considered in this subsection.
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1.1.2 Semi-Markov models

The Markov chain model enjoys a number of technical and computational advantages,

which play a fundamental role in its popularity. However, it suffers from not being

able to capture duration effects, which evidently appear in the context of multi-state

life insurance. This has motivated the need for more sophisticated models, and the

time-inhomogeneous semi-Markov model has seen considerable attention over the

years, see, e.g., Hoem (1972), Helwich (2008), Christiansen (2012), and Buchardt,

Møller, and Schmidt (2015).

In the semi-Markov model one instead assumes that (Z,U) is Markovian, where

U is the process giving the duration since the last jump in Z:

U(t) = sup
{
s ∈ [0, t] : Z(u) = Z(t) for all u ∈ [t− s, t]

}
. (1.1.9)

The model is then described by transition rates µij(t, u) depending on both the

absolute time t and the duration u since the last jump. In addition to this, the

payments also depend on the duration process U , such that it takes the form

dB(t) =
∑
j∈J

(
1(Z(t)=j)bj(t, U(t)) dt+

∑
k∈J
k ̸=j

bjk(t, U(t−)) dNjk(t)

)
,

B(0) ∈ R,

(1.1.10)

where bj(t, u) and bjk(t, u) are suitably regular deterministic payment functions

depending on both time and duration.

The expected accumulated cash flow now takes the form A(t, s) = AZ(t),U(t)(t, s),

and similarly for the prospective reserve, V (t) = VZ(t),U(t)(t), with

Vi,u(t) =

∫ T

t

e−
∫ s
t
r(v) dvAi,u(t, ds),

Ai,u(t, ds) =
∑
j∈J

∫ u+s−t

0

pij(t, u, s, dz)

(
bj(s, z) +

∑
k∈J
k ̸=j

bjk(s, z)µjk(s, z)

)
ds,

where the transition probabilities p are given by

pij(t, u, s, z) = P(Z(s) = j, U(s) ≤ z |Z(t) = i, U(t) = u).

The transition probabilities can be calculated by solving the forward integro-

differential equations of Buchardt, Møller, and Schmidt (2015, Theorem 3.1), which

corresponds to Kolmogorov’s forward differential equations for the semi-Markovian

case. Similarly, there exist partial differential equations for the prospective reserve

itself, cf., e.g., Helwich (2008, Theorem 4.11) or Christiansen (2012, (3.9)), which

suitably extends Thiele’s differential equation to the semi-Markovian case.

The inclusion of duration effects from the semi-Markov model adds a significant

layer to the computational complexity compared to the Markovian case of Subsection
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1.1.1. Indeed, it now requires computations on a two-dimensional grid of time and

duration, while a one-dimensional grid of time suffices for Markov chain models.

In particular, the aforementioned matrix representations and product integral

representations of Bladt, Asmussen, and Steffensen (2020) are, unfortunately,

not applicable for semi-Markov models, since these techniques relies on ordinary

differential equations.

In the following subsection, we consider a class of distributions that plays an

important role throughout the thesis, which in particular aims at carrying over

tools from Markovian modeling to semi-Markov models.

1.1.3 Inhomogeneous phase-type distributions

Phase-type distributions (PH), which are defined as absorption times of time-

homogeneous Markov jump processes, have a long history of extensive use in

applied probability. They are dense in the class of distributions on the positive reals,

in the sense of weak convergence as the number of phases tends to infinity, and

often lead to explicit solutions to complex problems due to their inherit tractability

from Markov chains. For a comprehensive survey on PH distributions, see Bladt

and Nielsen (2017).

In this subsection, we focus on the more recent developments made by Albrecher

and Bladt (2019), where they introduce the class of inhomogeneous phase-type

distributions (IPH). It is defined as follows. Consider a time-inhomogeneous

Markov jump process X = {X(t)}t≥0 taking values on the finite state space

J = {1, . . . , J−1, J}, where the states {1, . . . , J−1} are transient and J is absorbing.

Denote with (πππ, 0) the initial distribution of X, and M(t) = {µij(t)}i,j∈J the

transition intensity matrix function of X. It is then on the form

M(t) =

(
T (t) t(t)

0 0

)
, (1.1.11)

where T (t) is a sub-intensity matrix function consisting of transition rates between

the transient states and t(t) = −T (t)111J is a column vector of transition rates to the

absorbing state, the so-called exit rate vector function. The time until absorption,

given by

τ = inf{t ≥ 0 : X(t) = J},

is then said to be an inhomogeneous phase-type distribution with representation

(πππ,TTT ), and we write τ ∼ IPH(πππ,TTT ).
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The density f(x) and distribution function F (x) of τ are then obtained via

product integrals of the sub-intensity matrix function T (t):

f(x) = πππ
x

R
0

(I + T (u) du)ttt(x),

F (x) = 1− πππ
x

R
0

(I + T (u) du)111J .

(1.1.12)

An important feature of IPH distributions is that the overshoot of an IPH distribu-

tion is again IPH-distributed. This follows from (1.1.12), since then

P(τ > s+ t | τ > s) =

πππ
s

R
0

(I + T (x) dx)

πππ
s

R
0

(I + T (x) dx)111J

t

R
s

(I + T (x) dx)111J , (1.1.13)

which shows that

τ − s | τ > s ∼ IPH(ααα(s),TTT (s+ •)),

where ααα(s) is given by

ααα(s) =

πππ
s

R
0

(I + T (x) dx)

πππ
s

R
0

(I + T (x) dx)111J

.

This property plays an important role throughout the thesis, as it implies a non

memory-less property of IPH distributions. In other words, it reveals that they

may be used to model duration effects even though they are defined in terms of

Markov processes.

1.2 Overview of the thesis and main contributions

We end the introduction by giving an overview of the remaining chapters, which

constitute the main part of the thesis and thus also contains the main contributions.

Each chapter is based on independent manuscripts and should therefore also be

read with this in mind. In particular, notation slightly varies between chapters,

and since most of the manuscripts are related, overviews of existing literature

and concepts are sometimes repeated between the chapters. While the following

subsections intend to highlight the main contents of each chapter, the focal point of

the exposition is to provide the necessary relations between the chapters, thereby

giving the reader an overall story of the thesis. These relations are related to the

background given in Section 1.1.
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1.2.1 Inhomogeneous phase-type distributions in multi-state life

insurance

Phase-type distributions (PH) have not seen substantial use in the context of

multi-state life insurance so far. This is perhaps due to the time-homogeneity

of the underlying Markov chain, which is not suitable in setups with strong age

dependencies. However, with the recent introduction of inhomogeneous phase-type

distributions (IPH) in Albrecher and Bladt (2019), as absorption times of time-

inhomogeneous Markov jump processes, it now makes it very natural to consider

applications within multi-state life insurance. This is a principal focus of the thesis

and the overall theme of Chapters 2-5.

Estimation of general IPHs

To start of using IPHs in multi-state life insurance, we first develop tools for

fitting them to data. This is the content of Chapter 2, where we present the

manuscript Ahmad, Bladt, and Bladt (2022). This will later on allow us to estimate

parameters in models where we use IPHs as building blocks. We tackle it as

an incomplete data problem where only absorption times of time-inhomogeneous

Markov jump processes are observed. An expectation-maximization (EM) algorithm

is then employed to estimate parameters of the underlying Markov chain.

Fitting IPHs to data has earlier on been carried out by Albrecher, Bladt, and

Yslas (2022), but only within a sub-class where the sub-intensity matrix function

T (t) in (1.1.11) is of the form T (t) = λ(t)T , for a scalar function λ and sub-intensity

matrix T . This implies commuting sub-intensity matrix functions across time, and

links to the conventional PH distributions (see Theorem 2.8 in Albrecher and Bladt,

2019) can then be used to develop EM algorithms where the classic EM algorithm

of Asmussen, Nerman, and Olsson (1996) can be used as input.

In the multi-state life insurance context, however, we do not wish to restrict

ourselves to this sub-class, as it limits the time-inhomogeneity needed to fully

capture age dependencies. We therefore extend Albrecher, Bladt, and Yslas (2022)

to general IPHs. Instead of taking PH distributions as starting point, which no

longer is possible, we take as starting point Andersen et al. (1993), where general

methods for statistical inference of time-inhomogeneous Markov jump processes

based on their multivariate counting processes are available.

While we develop an EM algorithm for the general case, we propose a reduction

to the case where the sub-intensity matrix function T (t) is piecewise constant on

the form

T (t) = Tk =
{
µk
ij

}
i,j∈J , t ∈ (sk−1, sk], k = 1, . . . ,K,
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for a suitable grid s0 = 0 < s1 < · · · < sK−1 <∞ = sK , and where we emphasize

that the sub-intensity matrices T1, . . . ,TK in general do not commute.

Piecewise constant transition rates allows us to carry out simplified estimation

procedures based on aggregated occurrences and exposures in the different time

intervals, where Poisson regressions akin to those of Aalen, Borgan, and Gjessing

(2008, Section 5) become available. Furthermore, general considerations via product

integrals reduce to products of matrix exponentials, which computationally are

more viable. We implement the EM algorithm in the piecewise constant case and

show some numerical examples of mortality modeling of Danish lifetimes as well

as fitting to theoretical distributions, illustrating the strength of our approach in

these kinds of problems.

The example of mortality modeling, where we fit IPHs to lifetimes, can be seen

as a prelude to their application in multi-state models, which is the theme of the

following two chapters.

Aggregate Markov models

In Chapters 3-4, we introduce a class of multi-state models which we refer to as

aggregate Markov models. The idea behind this class of models is as follows. Going

back to the Markov chain models of Subsection 1.1.1, introduce the jump times

(Tn)n∈N0 of Z, where T0 = 0. It then holds

P(Tn+1 > t |T0, Z(T0), T1, Z(T1), . . . , Tn, Z(Tn) = j) = e
∫ t
Tn

µjj(x) dx, t ≥ Tn,

which means that

Tn+1 − Tn

∣∣∣ (Ti, Z(Ti))ni=0
∼ IPH

(
1, µZ(Tn)Z(Tn)(Tn + •)

)
.

In other words, sojourn time distributions in the Markov chain model follow one-

dimensional IPH distributions independent of past sojourn times and transitions.

Aggregate Markov models then extend to sojourn times admitting conditional IPH

distributions of general dimension. This allows for added flexibility, such as duration

dependence, while still retaining the analytical tractability from Markov chains.

The desired structure is obtained by adding so-calledmicrostates to each biometric

or behavioral state, which we then refer to as macrostates. This results in a two-

dimensional state space

E = {j= (j, j̃) : j ∈ J , j̃ ∈ {1, 2, ..., dj}},

where dj ≥ 1, j ∈ J , is the number of microstates assigned macrostate j.

The aggregate Markov model for the states of the insured Z is then given as

follows. Introduce a time-inhomogeneous Markov jump process X = {X(t)}t≥0 =

{(X1(t), X2(t))}t≥0 taking values on E with transition intensity matrix function
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M(t). Then Z(t) = X1(t) keeps track of the macrostate, while X2(t) identifies the

current microstate contingent on the state of X1(t).

The transition intensity matrix function M(t) can be written on the following

block form:

M(t) =


M11(t) M12(t) · · · M1J(t)

M21(t) M22(t) · · · M2J(t)
...

...
. . .

...

MJ1(t) MJ2(t) · · · MJJ(t)

, (1.2.1)

where Mjj(t) are sub-intensity matrix functions of dimension dj × dj providing

transition rates within macrostates, and Mjk(t) are non-negative matrix functions

of dimension dj × dk providing transition rates between macrostates. Computations

in aggregate Markov models are then, to a large extent, carried out using the block

matrix functions Mjk(t) as building blocks, so to speak. This is in contrast to

Markov chain models, where computations are based on transition rates, which can

be viewed as 1× 1 block matrices in (1.2.1).

In Chapter 3, which is based on the manuscript Ahmad, Bladt, and Furrer

(2022), we derive distributional properties of the macrostate process Z as well as

computational schemes for life insurance valuation elements (prospective reserves

and expected accumulated cash flows) with duration-dependent payments on the

form (1.1.10). The distributional results reveal that aggregate Markov models can

be highly non-Markovian. Throughout, we pay special attention to a case, which

we refer to as the reset property, where the block matrix functions Mjk, j ̸= k, are

rank one matrices of the following form

Mjk(t) = βββjk(t)πππk(t), (1.2.2)

where βββjk(t) is a dj-dimensional non-negative column vector function and πππk(t)

is a dk-dimensional non-negative row vector function with πππk(t)111dk
= 1. Here we

show that Z admits a specific time-inhomogeneous semi-Markovian structure. Our

main example is the disability model depicted in Figure 1.1 below, where we obtain

duration effects regarding transitions out of the disabled state.

(2,1) · · · (2, d2)active (1,1)

dead (3,1)

disabled

Figure 1.1: Disability model with d2 unobservable disability microstates.
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In Chapter 4, which is based on the manuscript Ahmad and Bladt (2022a),

we then consider statistical estimation in the aggregate Markov model based on

independent observations of paths of the macrostate process. Like in Chapter 2, this

is tackled as an incomplete data problem with respect to the underlying macro-micro

state process X, and EM algorithms are developed to estimate transition rates

on the micro level. Here, the many distributional results derived in Chapter 3 are

drawn upon. While we develop an EM algorithm for the general aggregate Markov

model, we focus on the case where the reset property (1.2.2) is satisfied, since this

case allows us to, more or less, use EM algorithms developed in Chapter 2 as input.

We implement the EM algorithm in the case where the reset property is satisfied

along with piecewise constant transition rates, thereby being able to draw upon the

implemented algorithm in Chapter 2. We provide a numerical example where we fit

the model of Figure 1.1 to macro data simulated from a time-inhomogeneous semi-

Markovian disability model employed by a large Danish life insurance company; the

model is reported to and published by the Danish Financial Supervisory Authority.

The resulting estimates are also used in a numerical example in Chapter 3 to

calculate expected accumulated cash flows and prospective reserves for a disability

coverage with a waiting period. Thus, the numerical examples of the two chapters

intend to show how the aggregate Markov model with the reset property suitably

approximates semi-Markov models in multi-state life insurance, both regarding the

transition rates as well as corresponding valuation elements.

The Markov chain interest rate model

In Chapter 5, which is based on the manuscript Ahmad and Bladt (2022b), we

consider a somewhat different application of IPHs in multi-state life insurance.

Going back to the classic Markov chain models of Subsection 1.1.1, we consider

stochastic interest rates following the Markov chain itself, i.e.

r(u) = rZ(u)(u), (1.2.3)

for suitably regular deterministic functions ri(u), i ∈ J . These type of models

are introduced in Norberg (1995a, 2003) as the Markov chain market. Though

well-studied there, a key result in our work is that if all ri(u) ≥ 0, then the bond

price

B(t, T ) = E
[
e−

∫ T
t

rZ(u)(u) du
∣∣∣F(t)

]
, 0 ≤ t ≤ T, (1.2.4)

is the survival function of an IPH distribution (for fixed t). We also provide a

similar (but scaled) relation in the presence of negative interest rates, with the only

requirement that they are bounded from below.

While the functional form of the bond price (1.2.4) was noted already in Norberg

(2003, (3.17)), its relation to phase–type theory was not mentioned, and its potential

was not further explored. By doing so, it enables us to use the extensive toolbox
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provided by this class of distributions. In particular, we are able to fit (calibrate) the

transition rates of {Z(u)}u≥0 from the observed bond prices by using a maximum

likelihood approach based on EM algorithms of Asmussen, Nerman, and Olsson

(1996), Albrecher, Bladt, and Yslas (2022), and Ahmad, Bladt, and Bladt (2022).

We provide a series of numerical examples to illustrate this.

In the context of multi-state life insurance, the main advantage of the model

(1.2.3) is that it can be wholly incorporated into Thiele and Hattendorff type of

differential equations for reserves and higher order moments; see Norberg (1995a,b,

2003). Following the partial state-wise reserves of (1.1.8), we introduce partial

state-wise bond prices, given by

dij(t, T ) = E
[
1(Z(T )=j)e

−
∫ T
t

rZ(u)(u) du
∣∣∣Z(t) = i

]
,

D(t, T ) = {dij(t, T )}i,j∈J .

(1.2.5)

Providing suitable product integral representations of D(t, T ), we then show how it

naturally integrates into the matrix framework of Bladt, Asmussen, and Steffensen

(2020). Essentially, one simply uses the vector rrr(t) = (r1(t), . . . , rJ(t))
′ of the

different interest rate levels, and computes

T

R
t

(
I +

(
M(x)−∆(rrr(x)) R(x)

0 M(x)

)
dx

)
=

(
D(t, T ) V (t)

0 P (t, T )

)

to obtain relevant prospective reserves. This is closely related to the product integral

representation in Subsection 1.1.1 for deterministic interest rates. Analogous results

are obtained for higher order moments; we show a numerical example where we

use these to approximate the density and distribution function of the present value

using Gram-Charlier expansions.

1.2.2 Multivariate higher order moments

In Chapter 6, which is based on the paper Ahmad (2022), we derive matrix

representations of higher order moments in a setup where we consider a multivariate

payment process. The components of the payment process are defined in terms

of the same underlying Markov process Z. This allows us to analyze joint effects

between different product types in a general multi-state Markovian framework,

and it extends the differential equations of Norberg (1995b) as well as the matrix

framework of Bladt, Asmussen, and Steffensen (2020) to multivariate payment

processes.

The main example we think of is the computation of covariances and correlations

between two product types, whereby the product moment between two present

values is needed. Here, the product integral representation of Subsection 1.1.1
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naturally extends, so that now it is the matrix

F
(1,1)
U (x) =


M(x)− 2r(x)I R2(x) R1(x) C(1,1)(x)

0 M(x)− r(x)I 0 R1(x)

0 0 M(x)− r(x)I R2(x)

0 0 0 M(x)


that needs to be product integrated. Here, R1(x) and R2(x) are reward matrix

functions for the two product types in question, and C(1,1)(x) = M(x) •B1(x) •
B2(x), where B1(x) and B2(x) contains transition payments for the two product

types. The resulting product integral,

T

R
t

(
I + F

(1,1)
U (x) dx

)
=


∗ ∗ ∗ V (1,1)(t)

∗ ∗ ∗ V (1,0)(t)

∗ ∗ ∗ V (0,1)(t)

∗ ∗ ∗ P (t, T )

 ,

then gives the required product moment V (1,1)(t), as well as the reserve for the

individual product types, V (1,0)(t) and V (0,1)(t). From this, further results for the

covariance are derived, which naturally relates to Hattendorff type of results for

the variance.

1.2.3 Computing the market value of bonus

In Chapter 7, which is based on the paper Ahmad, Buchardt, and Furrer (2022),

we consider the problem of computing market values of bonus payments in multi-

state with-profit life insurance. We consider the bonus scheme known as additional

benefits, where dividends are used to buy extra benefits to the insured. The payment

process in question takes the form

dB(t) = dB◦(t) +Q(t) dB†(t),

where B◦ contains predetermined guaranteed payments and B† contains unit bonus

benefits, while Q = {Q(t)}t≥0 is the process giving the number of units of additional

benefits held. The focal point of the chapter is then to compute the market value

of bonus payments, given by

V b(0) = E

[∫ T

0

e−
∫ s
0
r(v) dvQ(s) dB†(s)

]
,

where also the short rate r = {r(t)}t≥0 is assumed to be stochastic of diffusion

type, and where we have an underlying financial market S = (S0, S1) consisting of

a bank account S0 (driven by r), and a risky asset S1.

In full generality, Q(t) will depend on the whole history on the financial market

(S) and the states of the insured (Z) up to time t; it is FS(t) ∨ FZ(t)–measurable.
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This implies that the classic analytical methods encountered in Subsection 1.1.1

are not applicable for the computation of V b(0). We therefore take on a simulation

approach, but where we only simulate financial risk and then use analytical methods

for the outstanding insurance risk. Everything else being equal, this approach

should be superior to a full blown Monte Carlo approach.

The key throughout the chapter is the so-called Q-modified transition probabili-

ties, introduced as

pQz0j(0, t) = E
[
1(Z(t)=j)Q(t)

∣∣FS(t)
]
. (1.2.6)

From these, the market value of bonus can be calculated via simulations of financial

scenarios using the representation, with Z(0) ≡ z0 ∈ J ,

V b(0) = E

[∫ T

0

e−
∫ s
0
r(v) dvAb(0, ds)

]
,

Ab(0,ds) =
∑
j∈J

pQz0j(0, s)
(
b†j(s) +

∑
k∈J
k ̸=j

b†jk(s)µjk(s)
)
ds.

Under suitable affinity assumptions on the dynamics of Q, we derive ordinary

differential equations of Kolmogorov type for the Q-modified transition probabilities

pQz0j(0, t). The type of differential equations obtained, as well as the very definition

(1.2.6), bear a close resemblance to so-called retrospective reserves in single states

considered in Norberg (1991, Subsection 5.B).

We then use the differential equation to formulate a numerical procedure for

computation of V b(0). Throughout the chapter, we give special attention to a

case where Q actually becomes FS-adapted. Here, pQz0j(0, t) = Q(t)pz0j(0, t) and

numerical procedures thus significantly simplifies into a direct computation of Q.

In many cases, we think of this simplified procedure as an approximation to the

more general procedure. We show a numerical example exactly illustrating this

perspective, with the aim of comparing results between the two different procedures.

Although not mentioned in the chapter, the aforementioned relations between

pQz0j and the retrospective reserves of Norberg (1991) further entails that it is

possible to derive product integral representations akin to those of Bladt, Asmussen,

and Steffensen (2020) for the Q-modified transition probabilities. This is also seen

from the definition (1.2.6), which is closely related to the definition of the partial

state-wise reserves (1.1.8). By a close inspection of the differential equation as well

as the definitions, the representations should follow.





Chapter 2

Estimating absorption time distributions

of general Markov jump processes

This chapter is based on the manuscript Ahmad, Bladt, and Bladt (2022).

Abstract

The estimation of absorption time distributions of Markov jump pro-

cesses is an important task in various branches of statistics and ap-

plied probability. While the time-homogeneous case is classic, the time-

inhomogeneous case has recently received increased attention due to

its added flexibility and advances in computational power. However,

commuting sub-intensity matrices are assumed, which in various cases

limits the parsimonious properties of the resulting representation. This

paper develops the theory required to solve the general case through

maximum likelihood estimation, and in particular, using the expectation-

maximization algorithm. A reduction to a piecewise constant intensity

matrix function is proposed in order to provide succinct representations,

where a parametric linear model binds the intensities together. Practical

aspects are discussed and illustrated through the estimation of notoriously

demanding theoretical distributions and real data, from the perspective

of matrix analytic methods.

Keywords: Time-inhomogeneous Markov jump process; Inhomogeneous phase-type

distribution; Parametric inference; EM algorithm; Poisson regression

2.1 Introduction

In this paper, we consider statistical estimation of distributions which are absorption

times of general Markov jump processes, also known as inhomogeneous phase-type

17
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distributions (IPH). The data are the absorption times generated by independent

samples of Markov jump processes until absorption, though the path is not observed.

Thus, the incompleteness of the data is attended by an expectation-maximization

(EM) algorithm, which allows for an effective maximum likelihood estimation. For

practical purposes, we consider and implement the important special case where

the underlying transition rates are piecewise constant.

Though time-inhomogeneous Markov jump processes have been classically used

in many contexts, IPHs were only formally introduced in Albrecher and Bladt (2019)

as the distribution of the absorption times in a time-inhomogeneous Markov jump

process taking values on a finite state space where one state is absorbing and the

remaining transient. They are a generalization of the classic phase-type distributions

(PH), where the underlying Markov jump process is time-homogeneous (see, e.g.,

Bladt and Nielsen (2017) for an overview of the latter). These distributions may

be used in situations where modeling tail behaviors different from the exponential,

like e.g. heavy tails, is a concern, cf. the examples in Albrecher and Bladt (2019),

where a subclass consisting of IPHs generated by intensity matrices which are

given in terms of a single matrix scaled by some real non–negative function is

considered. Within this subclass, the intensity matrices commute over time and

thereby provide a link to the corresponding time-homogeneous PH distributions in

terms of a parameter-dependent transformation. In this special case, the theory

significantly simplifies and allows for more direct analysis. This is, for example,

the case regarding statistical estimation, where Albrecher, Bladt, and Yslas (2022)

develops an EM algorithm based on the parameter-dependent transformation so

that the main engine basically uses the conventional EM algorithm known from PH

fitting in Asmussen, Nerman, and Olsson (1996).

Since IPHs are absorption times of time-inhomogeneous Markov jump processes,

they may naturally also be used for modeling processes that conceptually can be

represented as evolving through states, e.g. in multi-state Markovian life insurance

models (see, e.g., Hoem, 1969a; Norberg, 1991) where states (phases) relate to

the different conditions of a policyholder in a time-dependent manner. This time-

dependence would in general require non-commutative intensity matrices to provide

meaningful models. Somewhat related, Albrecher et al. (2022) considers mortality

modeling using IPHs, including age and time effects, though only the subclass of

commuting matrices is examined here.

For time-inhomogeneous Markov jump processes, parametric modeling and maxi-

mum likelihood estimation of its transition rates based on the associated multivariate

counting process is well-established in the literature; see, e.g., Andersen et al. (1993)

for an overview. By assuming piecewise constant transition rates on a time grid

(as an approximation), these methods are known to reduce to Poisson regressions

based on aggregated occurrences and exposures in the different time intervals, cf.,
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e.g., Aalen, Borgan, and Gjessing (2008, Section 5). This connection is particularly

important in situations with aggregated data pooled into periodic intervals, like

yearly observations. For example Poisson regression based on yearly observations is

used in the Danish FSA’s benchmark model for mortality risk, considered in Jarner

and Møller (2015, Appendix 1), which is implemented in Danish life insurance and

pension companies.

In this paper we extend the statistical fitting of IPHs from Albrecher, Bladt, and

Yslas (2022) to the general class of IPHs, using these well-established techniques

for parametric inference of time-inhomogeneous Markov jump processes as starting

point; they constitute our (unobserved) complete data framework that generates

the observations of IPHs and for which an EM algorithm is developed. This is in

contrast to the approach in Albrecher, Bladt, and Yslas (2022), where the underlying

homogeneous PH observations are seen as the building blocks. The general setting

is, consequently, not reducible to the homogeneous case, and a non-trivial extension

of the algorithm is required. In particular, the E-step is abstractly stated in terms of

solutions of some differential equations, referred to as product integrals (see Gill and

Johansen, 1990; Johansen, 1986), and the M-step involves numerical optimization.

Similarly to the completely observed data case, we identify the simplifications

that arise in our EM algorithm from assuming piecewise constant transition rates

on a time grid, whereby the E-step can be stated in terms of products of matrix

exponentials to calculate a set of expected occurrences and exposures, and the

M-step can be stated as performing maximum likelihood estimation in Poisson

regressions akin to those of Aalen, Borgan, and Gjessing (2008, Section 5). This fully

explicit algorithm allows for computational simplifications similar to those obtained

in the complete data case and incurs increased computational performance while

retaining flexibility. We also implement this algorithm and show some numerical

examples of mortality modeling of Danish lifetimes as well as examples of fitting to

theoretical distributions, confirming that the class of models does not suffer from

some of the drawbacks that usual matrix analytic methods have. Another reason

for allowing for different intensity matrices in different regions of the support is

more pragmatic since it allows for fitting data that traditionally requires higher

order IPHs. This could, e.g., be multi-modal data or skewed data. In such cases,

we may obtain adequate fits in a discretized model of a much lower dimension.

One additional extension of our model appears during the M-step since the classic

EM algorithm of Asmussen, Nerman, and Olsson (1996) has an explicit solution

(number of jumps divided by total time spent in states; the so-called occurrence/ex-

posure rates), while in our case we require parametrization of the transition rates to

perform the required Poisson regressions. The canonical parametrization consisting

of an intercept agrees with the simpler explicit solution. Fortunately, the added

computational burden is low since standard software deals with generalized linear
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models in a stable and effective manner.

The remainder of the paper is structured as follows. In Section 2.2, we recall the

inhomogeneous phase-type distribution (IPH). Then, in Section 2.3, we start out

with an exposition of parametric inference of time-inhomogeneous Markov jump

process, which will constitute the complete data case. Subsequently, we tackle

the incomplete data problem and develop EM algorithms for general IPHs and

those with piecewise constant transition rates. In Section 2.4, we consider an

approach to a strong approximation of IPHs with piecewise constant transition

using PH distributions, which may be useful for when a homogeneous representation

is required. Section 2.5 is then devoted to numerical examples of our results. Finally,

in Section 2.6, we present some possible extensions of our model, including a case

where a pre-specified tail behavior is required.

2.2 Inhomogeneous phase-type distributions

Let X = {X(t)}t≥0 be a time-inhomogeneous Markov jump process taking values

on the finite state space E = {1, . . . , p, p+ 1}, p ∈ N, where the states {1, . . . , p}
are transient and state p+ 1 is absorbing. Denote by α = (π, 0) = (π1, . . . , πp, 0)

the initial distribution of X, and Λ(t) = {µij(t)}i,j∈E the intensity matrix of X.

The intensity matrix Λ(t) is then on the form

Λ(t) =

(
T (t) t(t)

0 0

)
,

where T (t) is the sub-intensity matrix function describing transitions between the

transient states, and t(t) = −T (t)e consists of the transition rates to the absorbing

state. Let τ denote the time until absorption of X, i.e.

τ = inf{t ≥ 0 : X(t) = p+ 1}.

Following Albrecher and Bladt (2019), we then say that τ is inhomogeneous phase-

type distributed (IPH) with representation (π,T (·)), and we write τ ∼ IPH(π,T (·)).

The transition probability matrix P (s, t) = {pij(s, t)}i,j∈E of X, with elements

pij(s, t) = P(X(t) = j |X(s) = i),

is given in terms of the product integral of the transition intensity matrix (see Gill

and Johansen, 1990; Johansen, 1986):

P (s, t) =
t

R
s

(I +Λ(u) du) =

(
P̄ (s, t) eee− P̄ (s, t)eee

000 1

)
,
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where P̄ (s, t) = {pij(s, t)}i,j∈{1,...,p} is the transition (sub-)probability matrix

between the transient states,

P̄ (s, t) =
t

R
s

(I + T (u) du), (2.2.1)

and e = (1, 1, . . . , 1)′.

Together with the initial distribution π, this gives the density and survival

function of τ (see Theorem 2.2 in Albrecher and Bladt, 2019) as

fτ (x) = πP̄ (0, x)t(x), (2.2.2)

F̄τ (x) = πP̄ (0, x)e. (2.2.3)

In this paper, we consider the statistical fitting of IPHs based on independent

observations. Although in Albrecher, Bladt, and Yslas (2022) an expectation-

maximization (EM) algorithm was devised for the case where T (t) = λ(t)T (for

parametric λ(t) intensity functions), which implies that T (t) commute for different

t, no statistical model where T (·) are non-commutative has been considered in the

literature. This is a drawback of significant concern for certain applications, which

we seek to remedy in this paper as our main contribution; we provide a general EM

algorithm and implement it in the case of a piecewise constant intensity matrix

function.

2.2.1 IPHs with piecewise constant intensity matrices

We now consider a discretization of the time axis, where in each sub-interval, a

different constant intensity matrix is defined. The purpose of this specification is two-

fold. First, we seek to provide a statistical methodology for the non-commutative

case, which will ease the fitting of heterogeneous data with lower matrix dimensions

than previously considered. Second, and perhaps less obvious, is the generalization

of discretized non-matrix versions of our model, which require a large number of

intervals to provide a satisfactory approximation to the behavior of real data. In

this context, the introduction of matrix parameters will allow for more flexible

interpolation within sub-intervals, reducing the mesh size of the discretization.

Construct a grid s0 = 0 < s1 < · · · < sK−1 <∞ = sK , so that τ ∼ IPH(πππ,T (·)),
where

T (s) = Tk =
{
µk
ij

}
i,j=1,...,p

, s ∈ (sk−1, sk], k = 1, . . . ,K, (2.2.4)

and introducing k(x) as the unique k ∈ {1, . . . ,K} satisfying that x ∈ (sk−1, sk],

then the product integral formula (2.2.1) for the (sub-)probability matrix between
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the transient states reduces to a product of matrix exponentials:

P̄ (s, t) = eTk(s)(sk(s)−s)

 k(t)−1∏
ℓ=k(s)+1

eTℓ(sℓ−sℓ−1)

 eTk(t)(t−sk(t)−1),

with the convention that the empty product equals the identity matrix. The density

(2.2.2) and survival function (2.2.3) then in particular reduces to:

F̄τ (x) = πππ

k(x)−1∏
ℓ=1

eTℓ(sℓ−sℓ−1)

 eTk(x)(x−sk(x)−1)eee,

fτ (x) = πππ

k(x)−1∏
ℓ=1

eTℓ(sℓ−sℓ−1)

 eTk(x)(x−sk(x)−1)tttk(x).

These expressions may be regarded as discrete approximations to their corresponding

product integral expressions of the general case but have the advantage of being

computationally much lighter to evaluate. Indeed, algorithms for computing the

exponential of a matrix are varied and efficient, while product integration must be

computed by numerically solving differential equations of increased complexity.

The density of τ may be discontinuous at the interval endpoints, which define

the constant matrices. Indeed, consider e.g. fτ (s1−) and fτ (s1+). Since the matrix

exponential is continuous, we have that

fτ (s1−) = lim
ϵ↓0

πππeT1(s1−ϵ)ttt0 = πππeT0s1ttt0

while

fτ (s1+) = lim
ϵ↓0

πππeT0s1eT1ϵttt1 = πππeT0s1ttt1.

Hence fτ (s1−) and fτ (s1+) may differ if ttt0 ̸= ttt1, and similarly for all the other

grid points. On the other hand, if all tttk = ttt then the density for τ is continuous.

Similarly, a sufficient condition for differentiability at all points is that −T 2
keee does

not depend on k.

2.3 Estimation

This section introduces the main contribution of the paper, namely the maximum-

likelihood estimation of general IPHs through the expectation-maximization (EM)

algorithm, with a special emphasis on the case of piecewise constant transition

rates.

We proceed sequentially: first, the completely observed case is reviewed; second,

the incomplete data setting is built using the estimators from the previous case;

finally, a simplified algorithm with piecewise constant transition rates is presented.
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2.3.1 The complete data case

We now review some methods known from the inference of time-inhomogeneous

Markov jump processes on finite state spaces based on complete observations of its

trajectories. We refer to Andersen et al. (1993) for a detailed exposition on this.

Suppose that we observe N ∈ N i.i.d. realizations of the time-inhomogeneous

Markov jump process X on some time interval [0, T ], where T > 0 is a given

and fixed time horizon; represent the data by XXX = (X(1), . . . , X(N)). Denote by

N = (N (1), . . . , N (N)) the corresponding data of the multivariate counting process,

where N (n), n = 1, . . . , N , have components

N
(n)
ij (t) = #

{
s ∈ (0, t] : X(n)(s−) = i, X(n)(s) = j

}
.

Parametrizing the transition rates with a parameter vector θ ∈ Θ, where Θ is some

finite-dimensional, parameter space with non-empty interior, such that,

T (s) = T (s;θ),

we have that the likelihood function for the joint parameter (πππ,θ) is given by

LXXX(πππ,θ) = LXXX
0 (πππ)

∏
i,j∈E
j ̸=i

LXXX
ij (θ),

LXXX
0 (πππ) =

p∏
i=1

πBi
i , (2.3.1)

LXXX
ij (θ) =

N∏
n=1

exp

(∫
(0,T ]

log(µij(s;θ)) dN
(n)
ij (s)−

∫ T

0

I
(n)
i (s)µij(s;θ) ds

)
,

where, for i ∈ E and n ∈ {1, . . . , N},

I
(n)
i (s) = 1(X(n)(s)=i) and Bi =

N∑
n=1

I
(n)
i (0). (2.3.2)

Here, I
(n)
i (s) indicates if the n’th observation has a sojourn in state i at time s,

and Bi denotes the total number of observations with initial state i; only the latter

can be aggregated over observations due to the initial distribution not having a

time-dependency.

The corresponding log-likelihood LXXX(πππ,θ) = logLXXX(πππ,θ) then takes form

LXXX(πππ,θ) = LXXX
0 (πππ) +

∑
i,j∈E
j ̸=i

LXXX
ij (θ), (2.3.3)

LXXX
0 (πππ) =

p∑
i=1

Bi log(πi), (2.3.4)
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LXXX
ij (θ) =

N∑
n=1

(∫
(0,T ]

log(µij(s;θ)) dN
(n)
ij (s)−

∫ T

0

I
(n)
i (s)µij(s;θ) ds

)
, (2.3.5)

from which we obtain the MLE of (πππ,θ):

(π̂ππ, θ̂) = argmax
(πππ,θ)

LXXX(πππ,θ).

The product structure of the likelihood (2.3.1) (equivalently the additive structure

of the log-likelihood) in πππ and θ via LXXX
0 respectively LXXX

ij , i, j ∈ E, j ̸= i, enables

us to estimate these separately. Regarding πππ, we may note (or confirm by direct

calculation) that the likelihood LXXX
0 is proportional to the likelihood obtained from

viewing (B1, . . . , Bp) as an observation from the Multinomial(N,πππ)-distribution,

where N is considered fixed. This gives a closed-form expression for the MLE:

π̂i =
Bi

N
.

For θ, a closed form expression for the MLE is not available in general, and numerical

methods for the optimization

θ̂ = argmax
θ

∑
i,j∈E
j ̸=i

LXXX
ij (θ)

are required.

2.3.2 The complete data case with piecewise constant transition

rates

We now assume that the transition rates µij(·;θ) are piecewise constant on the

form (2.2.4). The likelihood (2.3.1) then simplifies to

LXXX(πππ,θ) =

p∏
i=1

πBi
i

K∏
k=1

∏
i,j∈E
j ̸=i

µk
ij(θ)

Oij(k) exp
(
−Ei(k)µ

k
ij(θ)

)
, (2.3.6)

where Oij(k) is the total number of occurrences of transitions from state i to j in

the time interval (sk−1, sk], and Ei(k) is the total time spent in state i in the time

interval (sk−1, sk], the so-called local exposure:

Oij(k) =

N∑
n=1

∫
(sk−1,sk]

dN
(n)
ij (t),

Ei(k) =

N∑
n=1

∫ sk

sk−1

I
(n)
i (t) dt.

(2.3.7)

Remark 2.3.1. The likelihood (2.3.6) can be seen to reduce to the likelihood consid-

ered in Asmussen, Nerman, and Olsson (1996) by having K = 1 (corresponding to

homogeneity) and no parametrization of the transition rates. △
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Thus, in the case of piecewise constant transition rates, the occurrences and

exposures in the different time intervals, along with the number of initiations in

the different states,

{(Bi, Oij(k), Ei(k)), k = 1, . . . ,K, i, j ∈ E, j ̸= i}

are sufficient statistics. In fact, the resulting likelihood (2.3.6) is proportional to

the likelihood obtained from independent observations

(B1, . . . , Bp),

(Oij(k), k = 1, . . . ,K, i, j ∈ E, j ̸= i),
(2.3.8)

where

(B1, . . . , Bp) is Multinomial(N,π)− distributed,

Oij(k) is Poisson
(
Ei(k)µ

k
ij(θ)

)
− distributed,

(2.3.9)

with N and Ei(k) considered fixed. Consequently, the MLE of πππ is (still) given by

π̂i =
Bi

N
,

while the MLE of θ is obtained from Poisson regressions of the occurrences against

the different times on the grid, which can be carried out using standard software

packages. For example, if µk
ij(θ) is an exponential function in θ, a Poisson regression

with log-link function and log-exposure as offsets can be carried out, corresponding

to the fitting of the models:

log(µij(s;θ)) = log(Ei) + θ
(1)
ij + θ

(2)
ij · f (2)(s), (2.3.10)

for some suitable known function f (2), with a common choice being the identity.

The predictions at sk and at unit exposure are then the estimates of the transition

rates, µk
ij(θ̂).

In the case where the parameters in θ act as the (unknown) piecewise constant

transition rates themselves, i.e. θ = (θkij)k=1,...,K, i,j∈E, j ̸=i so that

µk
ij(θ) = θkij ,

the MLE of θ simplifies to so-called occurrence–exposure rates:

θ̂kij =
Oij(k)

Ei(k)
.

This is a special case where transition rates are estimated directly in a “non-

parametric” way and can be retrieved by considering the sk as a categorical (instead

of numeric) variable in (2.3.10). The assumption of piecewise constant transition

rates is often seen as an approximation to the general continuous versions obtained

when the number of grid points tends to infinity. However, the resulting estimated

models may be favorable even for coarser grid mesh sizes.
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2.3.3 EM algorithm for IPHs

Suppose that we observe N i.i.d. realizations of IPHs with representation (πππ,T (·;θ))
and represent the data by the vector τ = (τ (1), . . . , τ (N)). The data τ is then

considered as incomplete data of the whole Markov jump process X on [0, T ], where

T = maxn=1,...,N τ (n), and we employ an EM algorithm to estimate the parameter

(πππ,θ) based on the complete data likelihood considered in the previous subsections.

Let E(πππ,θ) denote the expectation under which the Markov jump process X

has sub-intensity matrices T (·;θ) and initial distribution πππ. The EM algorithm

for estimation of (πππ,θ) then consists of initializing with some value (πππ(0),θ(0)) ∈
[0, 1]p+1 ×Θ, and then iteratively compute the conditional expected log-likelihood

given the incomplete data τττ under the current parameter values (πππ(m),θ(m)), known

as the E-step,

(πππ,θ) 7→ L̄(m)(πππ,θ) = E(πππ(m),θ(m))

[
LXXX(πππ,θ)

∣∣τττ] , m ∈ N0, (2.3.11)

and then update the parameters to (πππ(m+1),θ(m+1)) by maximizing L̄(m), known

as the M-step. For notational convenience, we write, under some parameter (πππ,θ),

P̄ (s, t;θ) =
t

R
s

(
I + T

(
u;θ

)
du
)

(2.3.12)

for the transition (sub-)probability matrix in the transient states, and

f(x;πππ,θ) = πππP̄ (0, x;θ)ttt(x;θ),

ttt(x;θ) = −T
(
x;θ

)
eee,

(2.3.13)

for the corresponding density. To derive the conditional expected log-likelihood

(2.3.11), we essentially need the distribution of the Markov jump process conditional

on its absorption time. This is obtained in the following lemma.

Lemma 2.3.2. Let X = {X(s)}s≥0 be a time-inhomogeneous Markov jump process

taking values on E with sub-intensity matrix function T (· ;θ) and initial distribution

πππ. Let τ ∼ IPH(πππ,T (· ;θ)) be its corresponding absorption time. The conditional

process

Y (s)
d
= X(s)

∣∣τ, s ∈ [0, τ),

is then a time-inhomogeneous Markov jump process taking values on {1, . . . , p} with

initial distribution

π̃i(τ ;πππ,θ) =
πieee

′
iP̄ (0, τ ;θ)ttt(τ ;θ)

πππP̄ (0, τ ;θ)ttt(τ ;θ)
,

transition probabilities

p̃ij(t, s|τ ;θ) =
eee′iP̄ (t, s;θ)eeejeee

′
jP̄ (s, τ ;θ)ttt(τ ;θ)

eee′iP̄ (t, τ ;θ)ttt(τ ;θ)
,
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and transition intensities

µ̃ij(t|τ ;θ) = µij(t;θ)
eee′jP̄ (t, τ ;θ)ttt(τ ;θ)

eee′iP̄ (t, τ ;θ)ttt(τ ;θ)
.

Proof. Let j ∈ {1, . . . , p} and t, s ≥ 0 such that 0 ≤ t ≤ s < τ be given. Then it

follows from the law of iterated expectations and the Markov property of X that,

for y > s, we get the conditional survival probability

E(πππ,θ)

[
1(X(s)=j)1(τ>y)

∣∣FX(t)
]
= E(πππ,θ)

[
1(X(s)=j)E(πππ,θ)

[
1(τ>y)

∣∣FX(s)
] ∣∣FX(t)

]
= E(πππ,θ)

[
1(X(s)=j)eee

′
X(s)P̄ (s, y;θ)eee

∣∣∣FX(t)
]

= eee′X(t)P̄ (t, s;θ)eeejeee
′
jP̄ (s, y;θ)eee,

from which obtain the transition probabilities for Y :

E(πππ,θ)

[
1(Y (s)=j)

∣∣FY (t)
]
= E(πππ,θ)

[
1(X(s)=j)

∣∣FX(t) ∨ σ(τ)
]

=
− ∂

∂y

(
eee′X(t)P̄ (t, s;θ)eeejeee

′
jP̄ (s, y;θ)eee

)∣∣∣
y=τ

f(τ ;eee′X(t),θ)

=
eee′X(t)P̄ (t, s;θ)eeejeee

′
jP̄ (s, τ ;θ)ttt(τ ;θ)

eee′X(t)P̄ (t, τ ;θ)ttt(τ ;θ)

= p̃X(t)j(t, s|τ ;θ),

which by conditioning on Y (t) = i, i ∈ {1, . . . , p}, (which implies X(t) = i) yields

the desired result. For the corresponding transition intensities, we get by definition

of these,

µ̃ij(t|τ ;θ) = lim
h↓0

p̃ij(t, t+ h|τ ;θ)
h

=
1

eee′iP̄ (t, τ ;θ)ttt(τ ;θ)
lim
h↓0

eee′iP̄ (t, t+ h;θ)eeej
h

eee′jP̄ (t+ h, τ ;θ)ttt(τ ;θ)

=
1

eee′iP̄ (t, τ ;θ)ttt(τ ;θ)
µij(t;θ)eee

′
jP̄ (t, τ ;θ)ttt(τ ;θ),

where we use the continuity of the transition (sub-)probability matrix (that is,

continuity of product integrals) in the last equality. Finally, the initial distribution

follows from similar techniques on

E(πππ,θ)

[
1(X(0)=i)1(τ>y)

]
= E(πππ,θ)

[
1(X(0)=i)eee

′
X(0)P̄ (0, y)eee

]
= πieee

′
iP̄ (0, y)eee
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which gives

π̃i(τ ;πππ,θ) = E
[
1(X(0)=i)

∣∣σ(τ)] = − ∂
∂y

(
πieee

′
iP̄ (0, y)eee

)∣∣∣
y=τ

f(τ ;πππ,θ)
=
πieee

′
iP̄ (0, τ ;θ)ttt(τ ;θ)

πππP̄ (0, τ ;θ)ttt(τ ;θ)
,

the desired initial distribution.

Remark 2.3.3. In Hoem (1969b) and Norberg (1991), similar conditional distri-

butions as those of Lemma 2.3.2 are derived. While they consider conditional

distributions given future states, we consider conditional distributions given the

time of absorption, which is a slight extension in which we include (particularly

simple) future jump times in the conditioning. △

For n ∈ {1, . . . , N}, s ∈ (0, τ (n)] and i, j ∈ E, j ̸= i, define the conditional

expected statistics under the parameters (πππ(m),θ(m)), m ∈ N0,

B̄
(m)
i = E(πππ(m), θ(m))[Bi |τττ ],

Ī
(n,m)
i (s) = E(πππ(m), θ(m))

[
I
(n)
i (s)

∣∣∣τττ],
N̄

(n,m)
ij (s) = E(πππ(m), θ(m))

[
N

(n)
ij (s)

∣∣∣τττ].
(2.3.14)

We then obtain the conditional expected log-likelihood in the following result.

Theorem 2.3.4. The conditional expected log-likelihood given the data τττ under the

parameters (πππ(m),θ(m)), m ∈ N0, is given by

L̄(m)(πππ,θ) = L̄
(m)
0 (πππ) +

∑
i,j∈E
j ̸=i

L̄
(m)
ij (θ),

L̄
(m)
0 (πππ) =

p∑
i=1

B̄
(m)
i log(πi),

L̄
(m)
ij (θ) =

N∑
n=1

(∫ τ(n)

0

log(µij(s;θ)) dN̄
(n,m)
ij (s)−

∫ τ(n)

0

Ī
(n,m)
i (s)µij(s;θ) ds

)
,

with all the non-zero conditional expected statistics given by, for i, j ∈ {1, . . . , p},
j ̸= i, and s ∈ (0, τ (n)], n ∈ {1, . . . , N},

B̄
(m)
i =

N∑
n=1

π
(m)
i eee′iP̄

(
0, τ (n);θ(m)

)
t
(
τ (n);θ(m)

)
f
(
τ (n);πππ(m),θ(m)

) ,

Ī
(n,m)
i (s) =

πππ(m)P̄
(
0, s;θ(m)

)
eie

′
i P̄
(
s, τ (n);θ(m)

)
t
(
τ (n);θ(m)

)
f
(
τ (n);πππ(m),θ(m)

) ,
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dN̄
(n,m)
ij (s) =

πππ(m)P̄
(
0, s;θ(m)) eiµij(s;θ

(m))e′j P̄
(
s, τ (n);θ(m)

)
t
(
τ (n);θ(m)

)
f
(
τ (n);πππ(m),θ(m)

) ds,

and, for j = p+ 1,

dN̄
(n,m)
i,p+1 (s) =

πππ(m)P̄
(
0, s;θ(m)

)
eeeiti
(
s;θ(m)

)
f
(
τ (n);πππ(m),θ(m)

) dετ(n)(s),

where ετ(n) is the Dirac measure in τ (n).

Proof. It follows from the complete data log-likelihood (2.3.3)–(2.3.5), that the

conditional expected log-likelihood (2.3.11) is given by

L̄(m)(πππ,θ) = L̄
(m)
0 (πππ) +

p∑
i,j∈E
j ̸=i

L̄
(m)
ij (θ),

where, for i, j ∈ E, j ̸= i,

L̄
(m)
0 (πππ) = E(πππ(m), θ(m))[L0(πππ) |τττ ] =

p∑
i=1

B̄
(m)
i log(πi),

L̄
(m)
ij (θ) = E(πππ(m), θ(m))[Lij(θ) |τττ ] (2.3.15)

=

N∑
n=1

(∫
(0,τ(n)]

log(µij(s;θ)) dN̄
(n,m)
ij (s)−

∫ τ(n)

0

Ī
(n,m)
i (s)µij(s;θ) ds

)
,

where we have used Fubini’s theorem in the last equality. To compute the conditional

expectations appearing in (2.3.15), we get, by independence of the elements in τττ

and Lemma 2.3.2, that for i ∈ {1, . . . , p},

B̄
(m)
i =

N∑
n=1

E(πππ(m), θ(m))

[
1(X(0)(s)=i)

∣∣ τ (n)] = N∑
n=1

π̃i(τ
(n);πππ(m),θ(m)),

which by insertion provides the desired expression. For Ī
(n,m)
i , we get

Ī
(n,m)
i (s) = E(πππ(m), θ(m))

[
1(X(n)(s)=i)

∣∣ τ (n)]
=

p∑
ℓ=1

π̃ℓ(τ
(n);πππ(m),θ(m))p̃ℓi(0, s|τ (n);θ(m))

=

p∑
ℓ=1

π
(m)
ℓ eee′ℓP̄ (0, s;θ(m))eeeieee

′
iP̄ (s, τ (n);θ(m))ttt(τ (n);θ(m))

πππ(m)P̄ (0, τ (n);θ(m))ttt(τ (n);θ(m))

=
πππ(m)P̄ (0, s;θ(m))eeeieee

′
iP̄ (s, τ (n);θ(m))ttt(τ (n);θ(m))

πππ(m)P̄ (0, τ (n);θ(m))ttt(τ (n);θ(m))
.
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For N̄
(n,m)
ij , j ∈ {1, . . . , p}, j ̸= i, we proceed similarly, using the intensity process

of {X(n)(s)}s<τ(n) |τ (n) from Lemma 2.3.2, to get

N̄
(n,m)
ij (s) = E(πππ(m), θ(m))

[∫
(0,s]

dN
(n)
ij (u)

∣∣∣∣∣ τ (n)
]

= E(πππ(m), θ(m))

[∫ s

0

1(X(n)(u)=i)µ̃ij(u|τ (n);θ(m)) du

∣∣∣∣ τ (n)]

=

∫ s

0

p∑
ℓ=1

π̃ℓ(τ
(n);πππ(m),θ(m))p̃ℓi(0, u|τ (n);θ(m))µ̃ij(u|τ (n);θ(m)) du

=

∫ s

0

πππ(m)P̄ (0, u;θ(m))eeeiµij(u;θ
(m))eee′jP̄ (u, τ (n);θ(m))ttt(τ (n);θ(m))

πππ(m)P̄ (0, τ (n);θ(m))ttt(τ (n);θ(m))
du,

for which we take the dynamics in s to arrive at the desired result. Finally, for

j = p+ 1, we may note that N
(n)
i,p+1 can be written as

N
(n)
i,p+1(s) = 1(s≥τ(n))1(X(n)(τ(n)−)=i),

and so, using the same techniques as for the above quantities,

N̄
(n,m)
i,p+1 (s)

= E(πππ(m),θ(m))

[
1(s≥τ(n))1(X(n)(τ(n)−)=i)

∣∣ τ (n)]
= 1(s≥τ(n))

p∑
ℓ=1

π̃ℓ
(
τ (n);πππ(m),θ(m)

)
p̃ℓi
(
0, τ (n)|τ (n);θ(m)

)
= 1(s≥τ(n))

p∑
ℓ=1

π
(m)
ℓ eee′ℓP̄

(
0, τ (n);θ(m)

)
eeeieee

′
iP̄
(
τ (n), τ (n);θ(m)

)
ttt
(
τ (n);θ(m)

)
πππ(m)P̄ (0, τ (n);θ(m))ttt(τ (n);θ(m))

= 1(s≥τ(n))

πππ(m)P̄
(
0, τ (n);θ(m)

)
eeeiti
(
τ (n);θ(m)

)
πππ(m)P̄ (0, τ (n);θ(m))ttt(τ (n);θ(m))

,

where we use the continuity of product integrals in the second equality. Taking the

dynamics in s now yields the desired result.

The result shows that developing an EM algorithm for general IPH distributions

significantly increases the computational complexity compared with the homo-

geneous case Asmussen, Nerman, and Olsson (1996) as well as the commuting

inhomogeneous cases Albrecher, Bladt, and Yslas (2022). Indeed, since we no

longer have a set of sufficient statistics for the different states and transitions, we

must in the E-step compute the conditional expected log-likelihood L̄
(m)
ij directly.

Evaluating this in a parameter θ ∈ Θ involves a collection of product integral

calculations, as opposed to matrix exponential calculations known from the two

existing algorithms. Also, the subsequent M-step is no longer explicit with simple
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expressions, which is inherited from the fact that the complete data MLE is not

explicit in general, and numerical optimization methods are therefore required to

carry out the M-step.

As one may note from Subsection 2.2.1 and 2.3.2, the above mentioned computa-

tional complexities can be remedied by assuming piecewise constant transition rates

on the form (2.2.4). We shall therefore assume this in the following to obtain our

main algorithm and corresponding numerical examples; for completeness, we still

provide the general EM algorithm in Appendix 2.A, since different simplifications

may be drawn from the general case in the future.

Consider the complete data likelihood (2.3.6) in the case of piecewise constant

transition rates, and recall the sufficient statistics (2.3.7) for the different states

and transitions. Since the corresponding log-likelihood is linear in these sufficient

statistics,

logLXXX(πππ,θ) =

p∑
i=1

Bi log(πi) +

K∑
k=1

∑
i,j∈E
j ̸=i

(
Oij(k) log(µ

k
ij(θ))− Ei(k)µ

k
ij(θ)

)
,

the E-step for the transitions simplifies so that it now suffices to compute the

following conditional expected sufficient statistics, for k = 1, . . . ,K,

B̄
(m)
i = E(πππ(m),θ(m))[Bi | τ ],

Ē
(m)
i (k) = E(πππ(m),θ(m))[Ei(k) | τ ],

Ō
(m)
ij (k) = E(πππ(m),θ(m))[Oij(k) | τ ],

(2.3.16)

and then the M-step for updating θ simplifies to the Poisson regression mentioned

in Subsection 2.3.2, but where the occurrences and exposures are replaced by their

conditional expectations computed in the E-step.

Based on Theorem 2.3.4 for the general cases, we immediately obtain these

conditional expectations in Corollary 2.3.5 below. For notational convenience, we

let k(n) = k(τ (n)) denote the place on the grid that the n’th observation lies in,

and, for k1, k2 ∈ {1, . . . ,K}, k2 ≥ k1, we define

A(k1, k2;θ) =

k2∏
ℓ=k1

eTℓ(θ)(sℓ−sℓ−1). (2.3.17)

Then the (sub-)probability matrix in the transient states (2.3.12) under some

parameter (πππ,θ) as well as the corresponding density (2.3.13) can be written as

P̄ (s, t;θ) = eTk(s)(θ)(sk(s)−s)A(k(s) + 1, k(t)− 1;θ) eTk(t)(θ)(t−sk(t)−1),

f(x;πππ,θ) = πππA(1, k(x)− 1;θ)tttk(x)(θ).

(2.3.18)
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Corollary 2.3.5. Suppose that the sub-intensity matrix function T is piecewise

constant of the form (2.2.4). Then the conditional expected sufficient statistics

(2.3.16) are given by, for i, j ∈ {1, . . . , p}, j ̸= i,

B̄
(m)
i =

N∑
n=1

π
(m)
i eee′iP̄ (0, τ (n);θ(m))tk(n)

(
θ(m)

)
f
(
τ (n);πππ(m),θ(m)

)

Ē
(m)
i (k) =

N∑
n=1

∫ sk∧τ(n)

sk−1∧τ(n)

πππP̄ (0, u;θ(m))eie
′
iP̄ (u, τ (n);θ(m))tk(n)

(
θ(m)

)
du

f
(
τ (n);πππ(m),θ(m)

)

Ō
(m)
ij (k) =

N∑
n=1

∫ sk∧τ(n)

sk−1∧τ(n)

πππP̄ (0, u;θ(m))eeeiµ
k
ij(θ

(m))eee′jP̄ (u, τ (n);θ(m))tk(n)

(
θ(m)

)
du

f
(
τ (n);πππ(m),θ(m)

) ,

Ō
(m)
i,p+1(k) =

N∑
n=1

1(τ(n)∈(sk−1,sk])

πP̄ (0, τ (n);θ(m))eeeieee
′
itttk(n)(θ(m))

f
(
τ (n);πππ(m),θ(m)

) ,

with P̄ and f given as in (2.3.18).

Proof. By inserting the expressions for Oij(k) and Ei(k) from (2.3.7) into (2.3.16)

and using Theorem (2.3.4), we obtain the results for Ō
(m)
ij (k) and Ē

(m)
i (k). For

B̄
(m)
i , it follows from a direct application of Theorem (2.3.4).

By writing out the exact expressions for P̄ and f given as in (2.3.18), we end up

with Algorithm 2.1, which by Corollary 2.3.5 produces the required MLE estimation

for IPHs with piecewise constant transition rates.

Remark 2.3.6. To compute the matrix C
(n,m)
k , for fixed n ∈ {1, . . . , N}, k ∈

{1, . . . ,K}, and m ∈ N0, this involves integrals of matrix exponentials, which may

be computationally heavy. However, we can observe that by defining the block

matrix

G
(n,m)
k :=

Tk(θ
(m)) b(n,m)

(
k(n) ∧ k + 1

)
a
(m)
s

(
k(n) ∧ k − 1

)
0 Tk(θ

(m))

 ,

we obtain from Van Loan (1978) that

e
G

(n,m)
k

(
τ
(n)

|k −τ
(n)

|k−1

)
=

e
Tk(θ(m))

(
τ
(n)

|k −τ
(n)

|k−1

)
C

(n,m)
k

0 e
Tk(θ(m))

(
τ
(n)

|k −τ
(n)

|k−1

)
 ,

which reduces to a single matrix exponential calculation. Similar type of simplifica-

tions were noted in Albrecher, Bladt, and Yslas (2022, Remark 2). △
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Algorithm 2.1 EM algorithm for IPHs with piecewise constant transition rates

Input: Data points τ = (τ (1), . . . , τ (N)) and initial parameters (πππ(0),θ(0)).

0) Set m := 0.

1) E-step: Compute statistics for states i, j ∈ {1, . . . , p}, j ≠ i, and grid points
k = 1, . . . ,K,

B̄
(m)
i =

N∑
n=1

π
(m)
i b

(n,m)
i (1)

πππ(m)b(n,m)(1)
,

Ē
(m)
i (k) =

N∑
n=1

eee′iC
(n,m)
k eeei

πππ(m)b(n,m)(1)
,

Ō
(m)
ij (k) =

N∑
n=1

µk
ij

(
θ(m)) eee′jC

(n,m)
k eeei

πππ(m)b(n,m)(1)
,

Ō
(m)
i,p+1(k) =

N∑
n=1

1(k(n)=k)

a
(n,m)
i eee′itttk(θ

(m))

πππ(m)b(n,m)(1)
,

where

a(n,m) = a(m)
s (k(n) − 1)e

T
k(n)(θ(m))

(
τ(n)−s

k(n)−1

)
,

a(m)
s (ℓ) = πππ(m)A(1, ℓ;θ(m)),

b(n,m)(ℓ) =


A
(
ℓ, k(n) − 1;θ(m)

)
e
T
k(n)(θ(m))

(
τ(n)−s

k(n)−1

)
tk(n)

(
θ(m)

)
ℓ ≤ k(n)

tk(n)

(
θ(m)

)
ℓ > k(n)

C
(n,m)
k =

∫ τ
(n)
|k

τ
(n)
|k−1

c
(n,m)
k (u) du,

c
(n,m)
k (u) = e

Tk(θ
(m))

(
τ
(n)
|k −u

)
b(n,m)(k|n + 1

)
a(m)
s

(
k|n − 1

)
e
Tk(θ

(m))
(
u−τ

(n)
|k−1

)
,

k|n = k(n) ∧ k,

τ
(n)

|k = sk ∧ τ (n).

2) M-step: Update the parameters:

π̂
(m+1)
i =

B̄
(m)
i

N
,

θ̂(m+1) : MLE of the regressions

Ō
(m)
ij (k) ∼ Pois

(
µk
ij(θ)Ē

(m)
i (k)

)
, k = 1, . . . ,K.

3) Set m := m+ 1 and GOTO 1), until a stopping rule is satisfied.

Output: Fitted parameters (π̂ππ, θ̂).
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2.4 An approximate homogeneous representation

In full generality, a phase-type approximation for any distribution is possible through

the construction of Johnson and Taaffe (1988), where Erlang weights are constructed

according to the increments of the target cumulative distribution function. However,

when the target distribution arises as an absorption time of an inhomogeneous

Markov jump process, recent developments in Bladt and Peralta (2022) provide

an alternative pathwise approximation yielding strong approximants which are

directly parametrized by the intensity matrix Λ. Since phase-type distributions

enjoy explicit formulas which their inhomogeneous counterparts may lack, such an

approximation is practically relevant, and thus we outline it below. Section 2.5

presents some numerical examples of such an approximation.

Combining Theorem 4.2 and Proposition 4.3 in Bladt and Peralta (2022) yields,

after some calculations, the following result:

Theorem 2.4.1 (Phase-type approximation). Let τ ∼ IPH(ααα,T (s)) where T (s)

is given as in (2.2.4). Define ααα(m) = (ααα,000, . . . ,000), and the mp×mp sub-intensity

matrix

T (n,m) =


−nI nQ

(n)
1 0 ... 0

0 −nI nQ
(n)
2 ... 0

0 0 −nI ... 0
...

...
...

. . .
...

0 0 0 ... −nI

 , (2.4.1)

where, for ℓ = 1, . . . ,m−1, and ωk(ℓ, n) = E(sk; ℓ, n)−E(sk−1; ℓ, n) (here, E(·; a, b)
is the Erlang cdf with a stages and rate b),

Q
(n)
ℓ =

K∑
k=1

ωk(ℓ, n)Tk/n+ I. (2.4.2)

Then there exist τ (n,m) ∼ PH(ααα(m),T (n,m)) such that

lim
n→∞

lim
m→∞

P(|τ − τ (n,m)| > ϵ) = 0.

Moreover, the density of the resulting approximation reduces to

fτ(n,m)(t) =

m−1∑
ℓ=1

[
αααQ

(n)
1 · · ·Q(n)

ℓ−1(I −Q
(n)
ℓ )eee

] tℓ−1

(ℓ− 1)!
nℓ exp(−nt) (2.4.3)

+
[
αααQ

(n)
1 · · ·Q(n)

m−1eee
] tm−1

(m− 1)!
nm exp(−nt). (2.4.4)

Remark 2.4.2. The above approximation is very computationally efficient. Indeed,

the Q
(n)
ℓ only vary across ℓ and n through the scalar Erlang weights ωk(ℓ, n). In

particular, fast calculation of the Erlang density weights is possible.
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One implicit assumption which is relevant when applying the approximation is

that n must be large enough to make T (n,m) a proper sub-intensity matrix, which

depends on the maximal absolute value of the diagonal elements of the Tk matrices.

Additionally, the choice of m should be such that m ≥ n ·maxi=1,...,N{τ i}. △

2.5 Numerical examples

This section presents some numerical illustrations of our above model on theoretical

distributions as well as real data. In both cases, we require a straightforward

extension of Algorithm 2.1 to when each data point has a weight associated with it.

Practically speaking, this is straightforwardly dealt with by providing a weight in

each contribution for the conditional expectations of the E-step and replacing N

with the sum of weights in the E-step. This extension allows for the estimation of

histograms, known distributions (considering a discrete version of the theoretical

density), or more efficient calculations for when we have repeated values. We

provide examples of the two latter uses. In all cases, we consider piecewise IPH

distributions with continuous densities.

2.5.1 Fitting to a given distribution

It is well known that phase-type distributions struggle to fit peaked distributions

where the peak does not happen close to the origin; that is, a large number of phases

are required for adequate estimation. Thus, we first consider the estimation of

the N (2, 1/2) theoretical distribution (left truncated at 0, as to have only positive

values) by:

1. A piecewise IPH with large K and small p.

2. A PH approximation to the piecewise IPH fit, as per Theorem 2.4.1.

3. A small and large homogeneous PH, for comparison.

By “small” and “large,” we have used subjective judgment, but we are somewhat

limited by computational power for any dimensions far exceeding the ones presented

here.

The idea is thus to use the density height as weights for a given grid (here, we take

the mesh size to be ∆t = 0.05), which is used as the observations in Algorithm 2.4.1.

Applying this procedure can be appreciated in the left panel of Figure 2.1. We see

that a very small phase-type dimension (p = 2) is required to provide a good fit if

we allow for piecewise constant rates at a small grid, in this case considering 41 sub-

intervals on the interval [0, 4]. Since all matrices in each sub-intervals are intrinsically

linked through Equation (2.3.10), the number of parameters is kept low. We also
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see how an effective phase-type approximation is possible using the construction

of Theorem 2.4.1, providing a visually indistinguishable representation from the

piecewise counterpart and which enjoys a pathwise convergence interpretation.

Figure 2.1: Piecewise IPH (left) and PH (right) estimated densities to the theoretical
N (2, 1/2) distribution.

Note that the maximal absolute value of all diagonal matrices in each sub-interval

for the piecewise IPH fit is 1056.8, which from the expression (2.4.1) implies that n

should be at least above the latter value to obtain a proper phase-type sub-intensity

matrix. We have thus chosen n = 1500, and then m = n ·4.01, so the approximation

is expected to be faithful up to the value 4.01. Thus the resulting phase-type

approximation has state space dimension p×m = 12, 030, though the distribution

is easy to manipulate, since formula (2.4.3) involves matrix calculus in terms of the

original state space dimension p. In contrast, the right panel of Figure 2.1 shows

that a 30-dimensional phase-type distribution cannot provide a similar quality of fit

(let alone the 2-dimensional case). The EM algorithm which is required in this case

(implemented as in Asmussen, Nerman, and Olsson (1996)) is comparatively slow

for growing dimensions (and prohibitively slow for around p = 50, 150, depending

on the language of implementation).

We now consider a more challenging setting with the aim of further showcasing

the capabilities of our algorithm. Thus, we focus our attention on the mixture of

N (2, 1/2) and N (4, 1/2) distributions, with a mixture weight of 0.55 (left truncated

at 0, as to have only positive values), and we estimate two models:

1. A piecewise IPH with small K and medium p.

2. A homogeneous PH, for comparison.
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For this multimodal density, we chose the breakpoints around valleys and summits

of the theoretical density. An interesting comment is that choosing the breakpoints

directly in the low point of a valley or exactly at the summit does not seems to be

as effective. Given the chosen sub-intervals, we will use p = 10 since it seems to

be the first dimension to capture both modes correctly. A PH approximation to

the piecewise IPH fit, as per Theorem 2.4.1, is not possible in this setting since the

estimated sub-intensity matrices for all sub-intervals have an overall largest absolute

value in the diagonal equal to about 7.5 · 1011, which implies that m is in the order

of magnitude of 1012, which is too large to make the computation of (2.4.3) feasible.

As a general warning, we have found that for the most challenging density shapes,

Theorem 2.4.1 will hold only theoretically, since practically it requires too many

phases. This also confirms that sensible phase-type distributions do not suffice

(including using the EM algorithm) in these cases.

The result of the estimation for this second case is provided in Figure 2.2, which

shows the full strength of using piecewise IPH for heterogeneous data. We would

like to comment that the dimension p and the number of subintervals K work

together to provide an adequate fit and that a large K with small p does not work

in this setting as it did for the previous unimodal distribution since the linear

specification of f (2) in Equation (2.3.10) is no longer sufficient here. An alternative

would be to consider spline specifications or higher polynomial terms. Here, we

chose to increase the degrees of freedom by directly increasing p (in this case, to

10).

Figure 2.2: Piecewise IPH and PH estimated densities to the theoretical mixture of
N (2, 1/2) and N (4, 1/2) distributions, with mixing weight 0.55.
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Another feature that arises for estimated piecewise IPH distributions is the

possible kink of the density at the endpoints of each sub-interval. These are not

discontinuities and usually happen when the decreasing nature of a curve is not

exponential, which is the case for gaussian decay. When examining the cumulative

distribution function, the joining of the density of sub-intervals is differentiable;

thus, the effect is not observable at that scale. These kinks also appear in the

application to mortality modeling in the next section.

2.5.2 Mortality Modeling

The Human Mortality Database (https://www.mortality.org/) provides, among

other things, mortality rates in a yearly resolution for several countries. We presently

analyze the case of Danish males and females, from 2000 up to 2020. As before, we

use as log-likelihood weights the implied density from the mortality rates (which is

calculated as death to exposure ratio) and use the midpoints between ages as the

observed ages (corresponding to the data τττ). We divided for numerical purposes all

data by 100 when estimating it. However, in the empirical versus fitted plotting, we

have used the original scale (in any case, piecewise IPH are closed under scaling).

We have chosen the sub-intervals to provide more divisions for rapidly changing

regions in the lifetime density, resulting in K = 9. We see from Figure 2.3 that,

despite some possible kinks at the endpoints of intervals, the fit is remarkably

well behaved, especially given the specific features that make modeling the entire

lifetime distribution challenging: the sharp decrease after birth and the disruptions

happening at around age 20 for both males and females. The increased mortality at

the right endpoint also poses a challenge. The Gompertz-like behavior from around

30 to 100 is not in line with exponential decay; thus, regular sub-interval splits were

required in this period. Finally, the resulting piecewise constant transition rates (in

the log scale) are provided in Figure 2.4 for females and in Figure 2.5 for males,

which are of interest for some disciplines that require mortality rate estimates, such

as life insurance and pension applications.

https://www.mortality.org/
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Figure 2.3: Fitted versus empirical mortality curves using piecewise IPH distributions
for Danish male and female populations from 2000 to 2020.
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Figure 2.4: Danish females: transition rates through time, for the fitted time-dependent
sub-intensity matrix.
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Figure 2.5: Danish males: transition rates through time, for the fitted time-dependent
sub-intensity matrix.
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2.6 Extensions

In this section, we discuss some possible extensions of theoretical and practical

relevance that may be incorporated into our work but which is outside the scope of

the present paper.

2.6.1 EM for IPHs with a pre-specified tail behavior

The focal point of the paper is to handle general IPHs with non-commutative

sub-intensity matrix functions using piecewise constant transition rates as an

approximation when the grid becomes finer. For a finite number of grid points, this

construction implicitly implies an exponential tail behavior on the IPH distribution

from the last grid point, which may not be suitable for applications on heavy-tailed

data, e.g., non-life insurance data. However, it is straightforward to adapt our

framework to an intrinsic possibility of obtaining a non-exponential tail behavior,

using methods from Albrecher and Bladt (2019). The procedure goes as follows.

Define a function λ by

λ(u) =

{
1 if u ≤ sK
h(u) if u > sK ,

for some non–negative function h, and a function g given in terms of its inverse

by g−1(x) =
∫ x

0
λ(u)du. Then τ̃ = g(τ), where τ ∼ IPH(πππ,T (·)) with T piecewise

constant on the form (2.2.4), has a distribution with survival function

F̄ τ̃ (y) =


πππ

k(y)−1∏
ℓ=1

eTℓ(sℓ−sℓ−1)

 eTK(y−sK−1)eee if y ≤ sK−1

πππ

(
K−1∏
ℓ=1

eTℓ(sℓ−sℓ−1)

)
e
TK

∫ y
sK−1

h(u)du
eee if y > sK−1.

(2.6.1)

Hence, an extension of Algorithm 2.1 is possible for the model (2.6.1) with a pre-

specified tail behavior according to the function h. Indeed, it suffices to apply the

transformation g−1(x) of the data at the beginning of each step to reduce to the

piecewise constant case, apply one EM step of Algorithm 2.1, and then optimize

the parameter of the h function.

2.6.2 Censoring and truncation

In survival and event history analysis, one must take into account censoring and

truncation mechanisms in the statistical estimation, see, e.g., Andersen et al. (1988)

for a survey. This naturally also applies to the estimation of IPHs and PHs, as

these are absorption times of Markov jump processes.
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Incorporation of censoring mechanisms has long been established for estimation of

PHs, cf. Olsson (1996), while the case of commuting matrices for IPHs is considered

in Albrecher, Bladt, and Yslas (2022). As we have adapted Asmussen, Nerman,

and Olsson (1996) to the inhomogeneous case by taking methods from Andersen

et al. (1993) as onset, we believe that it is straightforward to incorporate the

censoring mechanisms of Olsson (1996) to our model by adapting said paper to the

inhomogeneous case taking methods from Andersen et al. (1988) as the onset.

To the best of our knowledge, the incorporation of truncation mechanisms has

not yet been established for the estimation PHs or IPHs. We do not believe that

this extension is straightforward in either framework, as one would need to consider

conditional distributions of PHs and IPHs in developing the EM algorithm. These

conditional distributions do not simplify to path-independent distributions as seen

for fully observed Markov processes.

2.6.3 Covariate information

It is straightforward to include time-independent covariate information in our sta-

tistical model. Indeed, in the Poisson regressions in the EM algorithms presented

for the piecewise-constant transition rate case, one may incorporate any (possibly

transformed) covariate vector linearly, though each individual would have their own

intensity matrices (which the other parts of the algorithm need to keep track of).

The mortality modeling of Danish lifetimes in Subsection 2.5.2 is an example where

sex could be used as a covariate.
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2.A The general EM algorithm

Algorithm 2.2 EM algorithm for general IPHs

Input : Data points τ = (τ (1), . . . , τ (N)) and initial parameters (πππ(0),θ(0)).

0) Set m := 0.

1) E-step: For i ∈ {1, . . . , p}, compute the conditional statistics for the initial
state,

B̄
(m)
i =

N∑
n=1

π
(m)
i eee′iP̄

(
0, τ (n);θ(m)

)
t
(
τ (n);θ(m)

)
f
(
τ (n);πππ(m),θ(m)

) ,

and, for j ∈ E, j ̸= i, and θ ∈ Θ (on a suitable grid), compute the conditional
expected log-likelihood for the transitions:

L̄
(m)
ij (θ) =

N∑
n=1

(∫
(0,τ(n)]

log(µij(s;θ))dN̄
(n,m)
ij (s)−

∫ τ(n)

0

Ī
(n,m)
i (s)µij(s;θ)ds

)
,

where, for j ̸= p+ 1,

Ī
(n,m)
i (s) =

πππ(m)P̄
(
0, s;θ(m)

)
eeeieee

′
iP̄

(
s, τ (n);θ(m)

)
ttt
(
τ (n);θ(m)

)
f
(
τ (n);πππ(m),θ(m)

) ,

dN̄
(n,m)
ij (s) =

πππ(m)P̄
(
0, s;θ(m))eeeiµij(s;θ

(m))eee′jP̄
(
s, τ (n);θ(m)

)
ttt
(
τ (n);θ(m)

)
f
(
τ (n);πππ(m),θ(m)

) ds,

and, for j = p+ 1,

dN̄
(n,m)
i,p+1 (s) =

πππ(m)P̄
(
0, s;θ(m)

)
eeeiti

(
s;θ(m)

)
f
(
τ (n);πππ(m),θ(m)

) dετ(n)(s).

2) M-step: Update the parameters:

π̂
(m+1)
i =

B̄
(m)
i

N
,

θ̂(m+1) = argmax
θ

∑
i,j∈E
j ̸=i

L̄
(m)
ij (θ).

3) Set m := m+ 1 and GOTO 1) until a stopping rule is satisfied.

Output: Fitted parameters (π̂ππ, θ̂).



Chapter 3

Aggregate Markov models in life

insurance: properties and valuation

This chapter is based on the manuscript Ahmad, Bladt, and Furrer (2022).

Abstract

In multi-state life insurance, an adequate balance between analytic

tractability, computational efficiency, and statistical flexibility is of great

importance. This might explain the popularity of Markov chain model-

ing, where matrix analytic methods allow for a comprehensive treatment.

Unfortunately, Markov chain modeling is unable to capture duration

effects, so this paper presents aggregate Markov models as an alternative.

Aggregate Markov models retain most of the analytical tractability of

Markov chains, yet are non-Markovian and thus more flexible. Based

on an explicit characterization of the fundamental martingales, matrix

representations of the expected accumulated cash flows and correspond-

ing prospective reserves are derived for duration-dependent payments

with and without incidental policyholder behavior. Throughout, special

attention is given to a semi-Markovian case. Finally, the methods and

results are illustrated in a numerical example.

Keywords: Multi-state modeling; semi-Markovianity; product integrals; expected

cash flows; phase-type distributions

3.1 Introduction

In this paper, we propose a new class of multi-state models, the so-called aggregate

Markov models, and study the valuation of life insurance liabilities for this class of

models. The results established range from a characterization of the fundamental

45
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martingales to genuine computational schemes for the quantities of interest, including

prospective reserves. In contrast, the companion paper Ahmad and Bladt (2022a)

deals with the statistical aspects.

The classic approach to multi-state modeling consists of Markov chain modeling,

where the process governing the state of the insured Z is taken to be a time-

inhomogeneous Markov chain and the payments between the insured and the

insurer are required to consist of deterministic sojourn and transition payments.

This approach dates back to at least Hoem (1969a), but has recently been given new

life via matrix analytic methods, see Bladt, Asmussen, and Steffensen (2020) and

Ahmad (2022). Although Markov chain modeling is attractive due to its inherent

simplicity, it suffers from a number of defects, not at least its inability to properly

capture duration effects. In recent years, semi-Markov modeling has therefore

gained considerable attention. In semi-Markov modeling, see Hoem (1972), Helwich

(2008), Christiansen (2012), and Buchardt, Møller, and Schmidt (2015), only the

joint process (Z,U), where U denotes the time spent in the current state, is assumed

to be Markovian, and the sojourn and transition payments are allowed to depend

on U . Unfortunately, semi-Markov modeling entails less analytical tractability and

increased computational load.

In an aggregate Markov model, each observable state is assumed to consist of

multiple unobservable sub-states, and only the full model consisting of all sub-states

is assumed to be Markovian. Different to the classic Markov chains, which require

the Markov property already for the observable states, aggregate Markov models are

non-Markovian and thus flexible, yet they retain most of the analytical tractability

of Markov chains. In particular, matrix analytic methods related to inhomogeneous

phase-type distributions, confer with Albrecher and Bladt (2019), are applicable

and lead to a unifying and transparent treatment.

Phase-type distributions have a long history of extensive use in applied probability.

They have been employed in areas such as queueing theory Asmussen (2003), Neuts

(1981, 1989), and Latouche and Ramaswami (1999), actuarial science Asmussen and

Albrecher (2010) and Bladt and Nielsen (2017), and telecommunications Asmussen

(2003) and Latouche and Ramaswami (1999), where the phase-type assumption

leads to exact and in many cases explicit formulas for properties such as waiting

time distributions, queue length, ruin probabilities, and buffer overflows.

Both homogeneous as well as inhomogeneous phase-type distributions are dense

in the class of distributions on the positive reals, confer with Bladt and Nielsen

(2017), and therefore able to approximate any non-negative distribution arbitrarily

close – in the sense of weak convergence as the number of phases increases to infinity.

Hence the class of phase-type distributions has been considered as striking a balance

between tractability and generality. Inhomogeneous phase-type distributions may

be used instead of homogeneous ones, and this might be particularly relevant if the
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tail behavior is known to be different from exponential, see Albrecher and Bladt

(2019).

In the area of queuing theory, so-called quasi-birth-and-death (QBD) processes

have been extensively studied, confer with Latouche and Ramaswami (1999), as

a model for the number of customers in a queue. They constitute the time-

homogeneous analogue to the aggregate Markov models considered here.

The first main contribution of the paper is an explicit characterization of the

martingales for the associated counting processes N , which reveals that aggregate

Markov models may be highly non-Markovian. For many practical purposes, less

might suffice. To this end, we provide a sort of reset property under which the

aggregate Markov model is actually semi-Markovian. The second main contribution

of the paper are matrix representations for the expected accumulated cash flows, and

hereby the prospective reserves, for duration-dependent payments with and without

incidental policyholder behavior. Special attention is given to the case where the

payments are duration independent; here our results indicate that aggregate Markov

modeling may hold a competitive advantage over semi-Markov modeling.

The remainder of the paper is structured as follows. Section 3.2 provides some

background, with Subsection 3.2.1 devoted to the basics of inhomogeneous phase-

type distributions and Subsection 3.2.2 to the basics of multi-state modeling in

life insurance. These subsections might be passed over by readers who are familiar

with the subject matter. In Section 3.3, we introduce the aggregate Markov models

and state the aforementioned reset property. The main contributions take place in

Section 3.4 and Section 3.5. The former is devoted to the distributional properties

of Z, including the characterization of the fundamental martingales, while the

latter deals with the valuation of life insurance liabilities and contains, in particular,

matrix representations of the expected accumulated cash flows. To showcase the

practical potential of aggregate Markov modeling, Section 3.6 concludes with a

numerical example. Proofs may be found in Appendix 3.A.

3.2 Preliminaries

Before introducing the setting of the paper, we provide some background. Subsec-

tion 3.2.1 contains a short review on inhomogeneous phase-type distributions, which

play a critical role later. This review is followed by Subsection 3.2.2, which collects

some insights on multi-state modeling in life insurance, in particular in relation to

Markov chain and semi-Markov modeling, hereby motivating our aggregate setup.

The actual presentation of our setup is postponed to Section 3.3.

In what follows and throughout the paper, we denote the product integral of a
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square matrix function A(x) as

F (t, s) =
s

R
t

(I +A(x) dx),

where I is the identity matrix. Under suitable regularity conditions, it may equiva-

lently be cast as the solution to Kolmogorov’s forward and backward differential

equations:

∂

∂s
F (t, s) = F (t, s)A(s), F (t, t) = I,

∂

∂t
F (t, s) = −A(t)F (t, s), F (s, s) = I.

For a survey on product integration, we refer to Gill and Johansen (1990) and,

concerning applications to life insurance, also Milbrodt and Stracke (1997) and

Bladt, Asmussen, and Steffensen (2020).

3.2.1 Inhomogeneous phase-type distributions

In this subsection, we review the notion of inhomogeneous phase-type (IPH) distri-

butions introduced in Albrecher and Bladt (2019). Consider a smooth and suitably

regular time-inhomogeneous Markov jump process X = {X(t)}t≥0 on the finite

state space J = {1, . . . , J − 1, J}, where the states {1, . . . , J − 1} are transient

while J is absorbing. The transition intensity matrix function M(t) = {µij(t)}i,j∈J

of X is then on the form

M(t) =

(
T (t) t(t)

0 0

)
,

where T (t) is a sub-intensity matrix function consisting of transition rates between

the transient states and t(t) = −T (t)111J is a column vector of transition rates to

the absorbing state, the so-called exit rate vector function. Further, assume that

P(X(0) = J) = 0 and denote by π = (π1, . . . , πJ−1) the remaining vector of initial

probabilities πj = P(X(0) = j). The time until absorption, given by

τ = inf{t ≥ 0 : X(t) = J},

is then said to be an inhomogeneous phase-type distribution with representation

(πππ,TTT ), and we write τ ∼ IPH(πππ,TTT ).

The transition probability matrix function P (t, s) = {pij(t, s)}i,j∈J with ele-

ments

pij(t, s) = P(X(s) = j |X(t) = i)
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is given as the product integral of the transition intensity matrix function:

P (t, s) =
s

R
t

(I +M(x) dx).

The probability density function f(x) and distribution function F (x) of τ may then

be obtained through product integrals of the sub-intensity matrix function T (t):

f(x) = πππ
x

R
0

(I + T (u) du)ttt(x),

F (x) = 1− πππ
x

R
0

(I + T (u) du)111J .

From these, one finds the following conditional distribution:

P(τ > s+ t | τ > s) =

πππ
s

R
0

(I + T (x) dx)

πππ
s

R
0

(I + T (x) dx)111J

t

R
s

(I + T (x) dx)111J , (3.2.1)

which entails that

τ − s | τ > s ∼ IPH(ααα(s),TTT (s+ •)),

where ααα(s) is given by

ααα(s) =

πππ
s

R
0

(I + T (x) dx)

πππ
s

R
0

(I + T (x) dx)111J

.

In other words, for IPH distributions, the overshoot is again IPH-distributed.

Example 3.2.1. In the case of a single phase, that is J = 2, we have

s

R
t

(I + T (x) dx) = e−
∫ s
t
µ12(x) dx,

giving the density and distribution functions

f(x) = e−
∫ x
0

µ12(v) dvµ12(x),

F (x) = 1− e−
∫ x
0

µ12(v) dv,

while the conditional distribution (3.2.1) takes the form

P(τ > s+ t | τ > s) =
e−

∫ s
0
µ12(v) dv

e−
∫ s
0
µ12(v) dv

e−
∫ t
s
µ12(v) dv = e−

∫ t
s
µ12(v) dv. ◦
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3.2.2 Multi-state modeling

Insurance contracts may be modeled as a stream of payments B = {B(t)}t≥0,

benefits less premiums, between the insured and the insurer. In life insurance,

including health and disability insurance and pensions, the payments depend on

the state of the insured, leading to so-called multi-state modeling. In general, the

state of the insured Z = {Z(t)}t≥0 is a non-explosive jump process on a typically

finite state space J = {1, 2, . . . , J}, J ∈ N, while the payments are typically finite

variation processes adapted to the information generated by Z.

Markov chain models

The most classic approach to multi-state modeling is (smooth) Markov chain models,

where Z is taken to be a time-inhomogeneous Markov jump process (Markov chain)

with suitably regular transition rates νjk(t), so that

νjk(t) = lim
h↓0

P(Z(t+ h) = k |Z(t) = j)

h
.

Using the standard convention νjj(t) = −
∑

k∈J
k ̸=j

νjk(t), the square matrix function

with indices νjk(t) is then the transition intensity matrix function of Z. In addition

to the Markov assumption, the payments are assumed to take the form

dB(t) =
∑
j∈J

(
1(Z(t)=j)bj(t) dt+

∑
k∈J
k ̸=j

bjk(t) dNjk(t)

)
, B(0) ∈ R,

for suitably regular deterministic sojourn payment rates bj(t) and transition pay-

ments bjk(t) depending only on time. Here N is the multivariate counting process

associated to Z with components Njk = {Njk(t)}t≥0 given by

Njk(t) = #{s ∈ (0, t] : Z(s−) = j, Z(s) = k}.

Markov chain modeling dates back to at least Hoem (1969a) and was popularized

in Norberg (1991).

Regarding the valuation of life insurance liabilities, calculating the so-called

expected accumulated cash flow A(t, s) is key. For Markov chain models, the

expected accumulated cash flow A(t, s) is given by A(t, s) =
∑

i∈J 1(Z(t)=i)Ai(t, s),

where

Ai(t, s) = E[B(s)−B(t) |Z(t) = i]

=
∑
j∈J

∫ s

t

P(Z(u) = j |Z(t) = i)

(
bj(u) +

∑
k∈J
k ̸=j

νjk(u)bjk(u)

)
du.

The transition probabilities, considered as a square matrix function, are given as

the product integral of the transition rates, also considered as a square matrix
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function. In other words, the transition probabilities may be found simply by

solving Kolmogorov’s forward differential equations.

It is, of course, possible, and of interest, to relax both the Markov assumption

as well as the structure of the payments. In doing so, it is critical to strike

an adequate balance between analytic tractability, computational efficiency, and

statistical flexibility.

Semi-Markov models

A more modern approach is semi-Markov modeling, see for instance Helwich (2008),

Christiansen (2012), and Buchardt, Møller, and Schmidt (2015). There are two

major differences between (smooth) semi-Markov modeling and (smooth) Markov

chain modeling. First, the jump process Z describing the state of the insured is

no longer required to be Markovian; rather, (Z,U) is assumed Markovian, where

U = {U(t)}t≥0 is the duration since the last transition given by

U(t) = sup
{
s ∈ [0, t] : Z(u) = Z(t) for all u ∈ [t− s, t]

}
. (3.2.2)

Therefore, the model can no longer be described by transition rates that solely

depend on time. Instead, the transition rates are now functions of both time and

duration, written νjk(t, u).

Second, the payments take the more general form

dB(t) =
∑
j∈J

(
1(Z(t)=j)bj(t, U(t)) dt+

∑
k∈J
k ̸=j

bjk(t, U(t−)) dNjk(t)

)
,

B(0) ∈ R,

(3.2.3)

for suitably regular deterministic sojourn payment rates bj(t, u) and transition

payments bjk(t, u) depending on time and duration.

For semi-Markov models, the expected accumulated cash flow A(t, s) depends

on both the current state and current duration. To clarify, it may actually be

decomposed according to A(t, s) =
∑

i∈J 1(Z(t)=i)Ai,U(t)(t, s), where

Ai,u(t, s) = E[B(s)−B(t) |Z(t) = i, U(t) = u]

=
∑
j∈J

∫ s

t

∫ u+v−t

0

(
bj(v, z) +

∑
k∈J
k ̸=j

νjk(v, z)bjk(v, z)

)
pij(t, u, v, dz)dv,

pij(t, u, s, z) = P(Z(s) = j, U(s) ≤ z |Z(t) = i, U(t) = u).

The transition probabilities may be calculated by solving a system of integro-

differential equations, confer with Buchardt, Møller, and Schmidt (2015, Section 3).

Numerical methods for integro-differential equations can, generally speaking, be

rather intricate. The implementation of semi-Markov models is, therefore, non-

trivial and may carry some operational risk.
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Aggregate Markov models

In this paper, we introduce a class of aggregate models that, similar to semi-Markov

models, allow for added flexibility, such as duration dependence, but avoid some of

the aforementioned numerical challenges posed by semi-Markov modeling.

Denote by (Tn)n∈N0 the jump times of Z, where we employ the convention T0 = 0.

Returning to the case where Z is Markovian with transition rates νjk(t), recall that

P(Tn+1 > t |T0, Z(T0), T1, Z(T1), . . . , Tn, Z(Tn) = j) = e
∫ t
Tn

νjj(x) dx, t ≥ Tn.

We conclude that

Tn+1 − Tn

∣∣∣ (Ti, Z(Ti))ni=0
∼ IPH

(
1, νZ(Tn)Z(Tn)(Tn + •)

)
.

In other words, the sojourn times follow one-dimensional IPH distributions that are

mostly independent of the past history of the jump process. This paper considers

instead jump processes with sojourn times admitting conditional IPH distributions

of general dimension. Hereby we shall be able to capture, for instance, duration

dependence while avoiding the need for intricate numerical methods.

3.3 Setup

In this section, we present the general setup of the paper. Subsection 3.3.1 introduces

the probabilistic model for the state of the insured, while Subsection 3.3.2 introduces

the payments between the insured and the insurer.

3.3.1 Probabilistic model

Similar to Subsection 3.2.2, let Z be a jump process governing the state of the

insured, thus taking values in the finite set of (macrostates) J = {1, 2, ..., J}, J ∈ N.
This set consists of biometric or behavioral states that are actually observed, for

example active, disabled, free-policy, and dead. To allow for added flexibility, to

each macrostate we may introduce additional sub-states (microstates) that are not

observable.

To be specific, to each macrostate j, a number dj ≥ 1 of microstates are assigned.

The resulting state space is therefore

E = {j= (j, j̃) : j ∈ J , j̃ ∈ {1, 2, ..., dj}},

and the total number of microstates is d̄ =
∑

j∈J dj . Elements of E are generally

denoted by bold letters such as j ∈ E. Now introduce a time-inhomogeneous

Markov jump process X = {X(t)}t≥0 = {(X1(t), X2(t))}t≥0 on the state space

E with transition intensity matrix function M(t). Then X1(t) keeps track of the
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macrostate, that is Z(t) = X1(t), while X2(t) identifies the current microstate

contingent on the state of X1(t).

The transition intensity matrix function M(t) can be written on the following

block form:

M(t) =


M11(t) M12(t) · · · M1J(t)

M21(t) M22(t) · · · M2J(t)
...

...
. . .

...

MJ1(t) MJ2(t) · · · MJJ(t)

, (3.3.1)

where Mjj(t) are sub-intensity matrix functions of dimension dj × dj providing

transition rates between the microstates of macrostate j, and Mjk(t) are non-

negative matrix functions of dimension dj × dk providing transition rates from

microstates within macrostate j to microstates within macrostate k.

We denote an element ofM(t) by µjk(t),j,k ∈ E. The off-diagonal elements are

non-negative, providing the jump rates between different states, while the diagonal

equals the negative of the row sums of the off-diagonal elements. Consequently,

rows all sum to zero, so M(t) is a proper transition intensity matrix function.

For simplicity, we assume that Z(0) = X1(0) ≡ 1. For a full model identifica-

tion, it then suffices to specify the initial distribution π1(0) of X2(0) among the

microstates 1, 2, . . . , d1. In other words, denoting the initial distribution of X by πππ,

we have that

πππ = (πππ1(0),0).

The column vector function

mmmj(t) = −Mjj(t)111dj
=
∑
k∈J
k ̸=j

Mjk(t)111dk
(3.3.2)

contains the exit rate function out of macrostate j. This function is non-negative

due to Mjj(t) being a sub-intensity matrix function. The last equality follows from

the row sums of M(t) being zero.

In this paper, we give special attention to the case where Mjk, j, k ∈ J , j ̸= k,

is a matrix of rank one on the form

Mjk(t) = βββjk(t)πππk(t), (3.3.3)

where βββjk(t) is a dj-dimensional non-negative column vector function and πππk(t)

is a dk-dimensional non-negative row vector function with πππk(t)111dk
= 1. Here

βββjk(t) provides the vector of jump rates from the microstates of macrostate j to the

macrostate k, and πππk(t) denotes the initial distribution of X2(t) on {1, 2, . . . , dk}
just after a transition of X1(t) to k. In this case,

mmmj(t) =
∑
k∈J
k ̸=j

βββjk(t). (3.3.4)
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Another way of writing (3.3.3) is

µ(j,̃j)(k,k̃)(t) = β(j,̃j)k(s)π(k,k̃)(s), k ̸= j.

We say that k has the reset property from state j. If all states k have the reset

property from all states j ̸= k, we simply say the reset property is satisfied.

Remark 3.3.1. Focusing only on the transition from macrostate j to macrostate k,

we look at the following elements of M(t):

...
...

· · · Mjj(t) · · · βββjk(t)πππk(t) · · ·
...

. . .
...

· · · · · · · · · Mkk(t) · · ·
...

...


.

Here βββjk(t) is a column vector of exit rates from states (j, j̃) in {(j, 1), ..., (j, dj)}.
Therefore it seems natural to pair j and j̃, which explains the seemingly awkward

indexation of elements of βββjk(t). Since a new microstate is picked independently of

(j, j̃) from {(k, 1), ..., (k, dk)}, records of where the process transitioned from are

lost upon transition, which explains the term reset property. △

Let FZ = {FZ(t)}t≥0 denote the natural filtration generated by the macrostate

process Z. Since only Z is observed, the filtration FZ represents the available

information. We may, as previously, associate to Z a multivariate counting process

N with components Njk = {Njk(t)}t≥0 given by

Njk(t) = # {s ∈ (0, t] : Z(s−) = j, Z(s) = k}

as well as a marked point process (Tn, Yn)
∞
n=0 with Tn the n’th jump time of Z and

Yn = Z(Tn); we use the convention T0 = 0. Disregarding null-sets, the jump process

Z, the multivariate counting process N , and the marked point process (Tn, Yn)
∞
n=0

generate the same information.

Although the microstate process X is Markovian, this is generally not the case

for the macrostate process Z. In this paper, we derive distributional properties of

Z by deriving distributional properties of the multivariate counting process N and

the marked point process (Tn, Yn)
∞
n=0. We are especially interested in the special

case where the reset property (3.3.3) holds across all states. Here it turns out that

(Z,U) becomes Markovian, where U is the duration process defined in (3.2.2).

3.3.2 Payments

Having specified the probabilistic model, we now turn our attention to the insurance

contract itself. Again, we denote by B = {B(t)}t≥0 the payments, benefits less
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premiums, between the insured and the insurer. We suppose that B takes the form

prescribed in (3.2.3). Furthermore, throughout the paper, we assume a maximal

contract time η > 0 such that all sojourn payment rates and transition payments

are zero after time η.

In the later stages of the paper, we add another layer of complications by turning

to so-called scaled payments that appear in connection with policyholder behavior

such as free-policy conversion and stochastic retirement. To be precise, here we

furthermore consider payments Bρ = {Bρ(t)}t≥0 given by

dBρ(t) = ρ
(
τ, Z(τ−), Z(τ)

)1(τ≤t) dB(t), Bρ(0) = B(0),

where τ is the exercise time of some policyholder option (modeled incidentally) and

0 < ρ(t, j, k) ≤ 1 is a suitable regular deterministic scaling factor.

The remainder of the paper now focuses on deriving distributional properties of

the macrostate process Z, establishing computational schemes for relevant expected

accumulated cash flows and prospective reserves, and finally relating these findings

to existing models and methods in the life insurance literature.

3.4 Properties of Z

In this section, we derive some distributional properties of Z. In Subsection 3.4.1,

we consider the general setup and derive the conditional finite-dimensional distri-

butions of the marked point process (Tn, Yn)n∈N0 associated to Z as well as the

predictable compensators of the multivariate counting processes N associated to Z.

In Subsection 3.4.2, we impose the reset property, which we show, by applying the

results of Subsection 3.4.1, leads to (Z,U) being Markovian.

3.4.1 General results

Since Z is generally not Markovian, we introduce

Sn = (T0, Y0, T1, Y1, . . . , Tn, Yn)

to keep track of the history of Z. Write

sn = (0, 1, t1, y1, . . . , tn, yn), yi ∈ J , 0 < t1 < t2 < . . . < tn <∞,

for a generic realization of Sn whenever Tn <∞. Let

F̄ (n+1)(t | sn) = P(Tn+1 > t |Sn = sn)

denote the conditional survival function of Tn+1 given Sn, and let

G(n+1)(k | sn, tn+1) = P(Yn+1 = k |Sn = sn, Tn+1 = tn+1)
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denote the conditional probability mass function of Yn+1 given (Sn, Tn+1). These

quantities determine the distribution of Z. The following result provides a charac-

terization of them within our setup.

Proposition 3.4.1. The conditional finite-dimensional distributions of the marked

point process (Tn, Yn)
∞
n=1 are given by

F̄ (n+1)(t|sn) =
ααα(sn)

ααα(sn)111dyn

t

R
tn

(I +Mynyn
(x) dx)111dyn

, t ≥ tn,

G(n+1)(k|sn, tn+1) =

ααα(sn)

tn+1

R
tn

(I +Mynyn(x) dx)Mynk(tn+1)111dk

ααα(sn)

tn+1

R
tn

(I +Mynyn(x) dx)myn(tn+1)

, k ̸= yn,

where the dyn
-dimensional row vector ααα(sn) is given by

ααα(sn) = πππ1(0)

n−1∏
ℓ=0

tℓ+1

R
tℓ

(I +Myℓyℓ
(x) dx)Myℓyℓ+1

(tℓ+1).

Proof. Please refer to Appendix 3.A.

Remark 3.4.2. The first statement of Proposition 3.4.1 corresponds to

Tn+1 − Tn
∣∣Sn ∼ IPH

(
ααα(Sn)

ααα(Sn)111dYn

, MMMYnYn
(Tn + •)

)
. △

The compensators of the multivariate counting process associated to Z, which

also determine the distribution of Z, are key quantities in the context of estimation

and valuation. In our setup, they take the following form.

Theorem 3.4.3. The counting process Njk has (FZ ,P)-compensator given by

dΛjk(t) = λjk(t) dt with

λjk(t) =
∑
n∈N0

1(Tn, Tn+1](t)1(Yn=j)

ααα(Sn−1, Tn, j)
t

R
Tn

(I +Mjj(x)dx)

ααα(Sn−1, Tn, j)
t

R
Tn

(I +Mjj(x)dx)111dj

Mjk(t)111dk
.

Proof. Please refer to Appendix 3.A.
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3.4.2 Reset property and semi-Markovianity

Suppose now that the reset property holds, that is Mjk(t) satisfies (3.3.3) for all

j ̸= k. We now make the following observations. From (3.3.3), we see that for

k ̸= j,

πj(t)
s

R
t

(I +Mjj(x) dx)βjk(s)

is a 1×1-dimensional matrix, implying it cancels if appearing in both the numerator

and denominator of a fraction. In particular,

ααα(sn)

ααα(sn)111dyn

=
πyn

(tn)

πyn
(tn)111dyn

= πyn
(tn). (3.4.1)

Combined with the results of Subsection 3.4.1, this yields the following corollaries.

Corollary 3.4.4. Assume that (3.3.3) holds. Then the conditional finite-dimen-

sional distributions of the marked point process (Tn, Yn)
∞
n=1 are given by

F̄ (n+1)(t|sn) = πππyn(tn)
t

R
tn

(I +Mynyn(x) dx)111dyn
, t ≥ tn,

G(n+1)(k|sn, tn+1) =

πππyn
(tn)

tn+1

R
tn

(I +Mynyn
(x) dx)βynyn+1

(tn+1)

πππyn
(tn)

tn+1

R
tn

(I +Mynyn
(x) dx)myn

(tn+1)

, k ̸= yn,

where mmmyn(tn+1) is obtained from (3.3.4).

Remark 3.4.5. The first statement of Corollary 3.4.4 corresponds to

Tn+1 − Tn
∣∣Sn ∼ IPH

(
πππYn

(Tn), MMMYnYn
(Tn + •)

)
. △

Corollary 3.4.6. Assume that (3.3.3) holds. Then the counting process Njk has

(FZ ,P)-compensator given by dΛjk(t) = λjk(t) dt with

λjk(t) =
∑
n∈N0

1(Tn, Tn+1](t)1(Yn=j)

πππj(Tn)
t

R
Tn

(I +Mjj(x) dx)

πππj(Tn)
t

R
Tn

(I +Mjj(x) dx)111dj

βββjk(t).
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The results show that the general path dependence of Z through ααα(Sn) is

significantly reduced whenever (3.3.3) is imposed. We may actually write

λjk(t) = 1(Z(t−)=j)

πππj(t− U(t−))
t

R
t−U(t−)

(I +Mjj(x) dx)

πππj(t− U(t−))
t

R
t−U(t−)

(I +Mjj(x) dx)111dj

βββjk(t),

which shows that the macrostate process Z is a time-inhomogeneous semi-Markov

process with transition rates νjk(t, u), j ̸= k, which are functions of both time and

duration, given by

νjk(t, u) =

πππj(t− u)
t

R
t−u

(I +Mjj(x) dx)

πππj(t− u)
t

R
t−u

(I +Mjj(x) dx)111dj

βββjk(t).

Conversely, the class of aggregate Markov models is quite flexible. In light also

of the many prized denseness results for phase type distributions, we therefore

conjecture that the class of aggregate Markov models with the reset property is

dense in the class of all (smooth) semi-Markovian models. That is, any (smooth)

semi-Markovian model can be approximated arbitrarily well by an aggregate Markov

model with the reset property simply by letting the number of microstates increase

to infinity. The clarification of this conjecture is outside the scope of this paper,

but it nevertheless constitutes an interesting research direction.

3.5 Valuation

In this section, we consider the valuation of the life insurance liabilities corresponding

to the payment process B. In Subsection 3.5.1, we provide expressions for the

expected accumulated cash flows and, hereby, the prospective reserves. In particular,

we provide matrix representations that are useful in implementing the models.

The expected accumulated cash flows are composed of conditional occupation

probabilities, for which we derive formulas in Subsection 3.5.2. Special emphasis is

given to the semi-Markovian case of Subsection 3.4.2. Finally, in Subsection 3.5.3

and Subsection 3.5.4, we investigate the impact of duration-independent payments

and the inclusion of policyholder options, respectively.

Throughout the section, the time value of money is described by a deterministic

and suitably regular interest rate r(t). As long as financial and insurance risks are

assumed independent, the extension to stochastic interest rates is straightforward.
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3.5.1 General results

The expected accumulated cash flow A(t, s) valued at time t is given by,

A(t, s) = E
[
B(s)−B(t)

∣∣FZ(t)
]
, s ≥ t,

confer with Definition 2.2 in Buchardt, Furrer, and Steffensen (2019), so that the

prospective reserve reads

V (t) = E
[ ∫ η

t

e−
∫ s
t
r(v) dv dB(s)

∣∣∣∣FZ(t)

]
=

∫ η

t

e−
∫ s
t
r(v) dvA(t,ds). (3.5.1)

If the payments are on the form (3.2.3), then

A(t, ds) =
∑
j∈E

∫ U(t)+s−t

0

pj(t, s,dz)

(
bj(s, z) +

∑
k∈E
k ̸=j

bjk(s, z)µjk(s)

)
ds,

where the conditional occupation probabilities are given by

pj(t, s, z) = P
(
X(s) =j, U(s) ≤ z

∣∣FZ(t)
)
. (3.5.2)

If the reset property (3.3.3) is also satisfied, then Z is a time-inhomogeneous

semi-Markovian process and thus A(t, s) =
∑

i∈J 1(Z(t)=i)Ai,U(t)(t, s), where

Ai,u(t, s) = E
[
B(s)−B(t)

∣∣Z(t) = i, U(t) = u
]
.

Furthermore, it holds that

Ai,u(t,ds) =
∑
j∈E

∫ u+s−t

0

pij(t, u, s, dz)

(
bj(s, z) +

∑
k∈J
k ̸=j

bjk(s, z)βjk(s)

)
ds,

where the transition probabilities are given by

pij(t, u, s, z) = P
(
X(s) =j, U(s) ≤ z

∣∣Z(t) = i, U(t) = u). (3.5.3)

For implementation purposes, it may be beneficial to use matrix representations

of the expected accumulated cash flow A(t, s) following along the lines of Bladt,

Asmussen, and Steffensen (2020), since it allows for more compact and direct

computations.

In the general case where the aforementioned reset property is not satisfied, the

process Z is non-Markovian, so it is not sensible to form a transition probability

matrix function in the usual way. Instead, we form a d̄-dimensional vector function

according to

p(t, s,dz) =
{
pj(t, s,dz)

}
j∈E

. (3.5.4)
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In regards to payments and transition rates, however, the fact that X is assumed

to be Markovian allows us to follow more closely the approach of Bladt, Asmussen,

and Steffensen (2020). In the present setup, we have a set of sojourn payment

rates and transition payments that are all identical across microstates (of the same

macrostate). Hence, the d̄-dimensional vector of sojourn payment rates on the

micro level is given by

bbb(t, u) = (bbb1(t, u), ..., bbbJ(t, u)), (3.5.5)

where bbbj(t, u) = bj(t, u)111dj . The matrices of transition payments must, in a similar

fashion, be identical across microstates (of the same macrostate), so that the

transition payment matrix function on the micro level is given by

B(t, u) =


B11(t, u) B12(t, u) · · · B1J(t, u)

B21(t, u) B22(t, u) · · · B2J(t, u)
...

...
. . .

...

BJ1(t, u) BJ2(t, u) · · · BJJ(t, u)

, (3.5.6)

where Bij(t, u), i, j ∈ J , j ̸= i, is a di × dj-dimensional matrix with bij(t, u) in all

entries, and Bii(t, u) = 0 is a di × di-dimensional matrix of zeroes. Based hereon,

we define the reward matrix function as

R(t, u) = ∆(bbb(t, u)) +M(t) •B(t, u), (3.5.7)

where • denotes the Schur product, that is (A • B)ij = AijBij , and ∆(bbb) is

a diagonal matrix with the vector bbb as diagonal. This is similar to equations

(3.8)–(3.11) in Bladt, Asmussen, and Steffensen (2020).

The expected accumulated cash flow A(t, s) may then be seen to have the

following matrix representation:

A(t, ds) =

∫ U(t)+s−t

0

p(t, s,dz)R(s, z)111d̄ ds, (3.5.8)

where the original sums over the state space E are reduced to matrix multiplications.

In the case of the reset property (3.3.3), the semi-Markovianity of Z implies that

it suffices to consider the transition probabilities of (3.5.3). Thus, it is sensible to

form a J × d̄-dimensional matrix function according to

p(t, u, s, dz) = {pij(t, u, s, dz)}i∈J ,j∈E .

Similarly, we may form the J-dimensional vector

Au(t, s) = (A1,u(t, s), . . . , AJ,u(t, s))
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of state-wise expected accumulated cash flows, which then can be calculated as

follows:

Au(t, ds) =

∫ u+s−t

0

p(t, u, s, dz)R(s, z)111d̄ ds, (3.5.9)

where the reward matricesR(t, u) of (3.5.7) are modified according to (3.3.3)–(3.3.4).

We can also cast (3.5.9) as Au(t, ds) = aaau(t, s) ds, where then

aaau(t, s) =

∫ u+s−t

0

p(t, u, s, dz)R(s, z)111d̄

is a vector of state-wise expected cash flows.

3.5.2 Conditional occupation and transition probabilities

We now provide calculation schemes for the conditional occupation and transition

probabilities. Rather than working directly with these quantities, it turns out to be

fruitful to focus instead on

p̄j(t, s, z) = P
(
X(s) =j, U(s) > z

∣∣FZ(t)
)
,

p̄ij(t, u, s, z) = P
(
X(s) =j, U(s) > z

∣∣Z(t) = i, U(t) = u),

which suffices since

p̄j(t, s,dz) = −pj(t, s,dz),
p̄ij(t, u, s, dz) = −pij(t, u, s, dz).

In the following, we require the d̄× dj-dimensional matrices

Ej =

dj∑
j̃=1

eeejeee
′
j̃
,

where eeej̃ is a dj-dimensional column with a one in entry j̃ and otherwise zeroes,

and eeej is a d̄-dimensional column vector with a one in entry d1 + · · ·+ dj−1 + j̃ and

otherwise zeroes. Here and in the following, primes denotes matrix transposition.

The entries of Ej are zero, except in the j’th block row, where they consist of

the dj-dimensional identity matrix. Roughly speaking, they allow us to extend a

distribution on microstates in a single macrostate to the whole state space E (and

vice versa).

Theorem 3.5.1. It holds that

p̄j(t, s, z) =
∑
n∈N0

1[Tn, Tn+1)(t)p̃j(t, s, z;Sn),
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where the auxiliary quantities p̃j(t, s, z; sn) are zero for tn ≥ s− z and

p̃j(t, s, z; sn)

=

ααα(sn)
t

R
tn

(I +Mynyn
(x)dx)E′

yn

ααα(sn)
t

R
tn

(I +Mynyn
(x)dx)111dyn

(s−z)∨t

R
t

(I +M(x)dx)Ej

s

R
(s−z)∨t

(I +Mjj(x)dx)eeej̃

for tn < s− z.

Note that

1(tn<s−z≤t)p̃j(t, s, z; sn) = 1(yn=j)

ααα(sn)
s

R
tn

(I +Mynyn
(x)dx)eeej̃

ααα(sn)
t

R
tn

(I +Mynyn
(x)dx)111dyn

. (3.5.10)

Proof. Please refer to Appendix 3.A.

If the reset property (3.3.3) is satisfied, in which case Z is a time-inhomogeneous

semi-Markovian process, we can use (3.4.1) to immediately obtain the following

corollary.

Corollary 3.5.2. Assume (3.3.3) holds. Then p̄ij(t, u, s, z) is zero for t−u ≥ s−z
and

p̄ij(t, u, s, z)

=

πππi(t− u)
t

R
t−u

(I +Mii(x)dx)E
′
i

πππi(t− u)
t

R
t−u

(I +Mii(x)dx)111di

(s−z)∨t

R
t

(I +M(x)dx)Ej

s

R
(s−z)∨t

(I +Mjj(x)dx)eeej̃

for t− u < s− z.

We note that z 7→ p̄ij(t, u, s, z) is continuous on [0, u+s−t) and actually constant

on [s− t, u+ s− t). If i ̸= j, then the continuity extends to [0, u+ s− t], while

∆p̄ii(t, u, s, u+ s− t) = − lim
h↓0

p̄ii(t, u, s, s− t− h).

The fact that z 7→ p̄ij(t, u, s, z) is constant on [s− t, u+ s− t) may be utilized to

reduce the computational load when calculating the expected accumulated cash

flows.
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Algorithm 3.1 Computation of expected cash flows in an aggregate Markov model
with the reset property.

Input : Current time t ∈ [0, η), current duration u ∈ [0, t], and a grid T : t =
t0 < t1 < · · · < tn = η on the interval [t, η].

1) Calculate initial conditional distributions at time t:

γγγi(t, u) =

πππi(t− u)
t

R
t−u

(I +Mii(x)dx)E
′
i

πππi(t− u)
t

R
t−u

(I +Mii(x)dx)111di

, i ∈ J ,

γγγ(t, u) = (γγγ1(t, u), . . . , γγγJ(t, u))
′
.

2) Compute transition probabilities for the Markovian state process X,

P (t, tℓ) =

tℓ

R
t

(I +M(x)dx) , ℓ ∈ {1, . . . , n},

by solving Kolmogorov’s forward differential equation on T .

3) For ℓ ∈ {1, . . . , n}:
i) Compute state-wise stay probabilities until time tℓ:

P̄jj(tℓ′ , tℓ) =

tℓ

R
tℓ′

(I +Mjj(x)dx) , tℓ′ ∈ T , ℓ′ ≤ ℓ, j ∈ J ,

P̄ (tℓ′ , tℓ) = ∆
(
(P̄11(tℓ′ , tℓ), . . . , P̄JJ(tℓ′ , tℓ)

)
,

by solving Kolmogorov’s backward differential equation on T starting
at tℓ.

ii) Calculate the vector of state-wise expected cash flows for time tℓ:

aaau(t, tℓ) = γγγ(t, u)

(∫ tℓ

t

P (t, v)M̃(v)P̄ (v, tℓ)R(tℓ, tℓ − v)111d̄ dv

− P̄ (t, tℓ)R(tℓ, u+ tℓ − t)111d̄

)
,

using numerical integration methods on the grid T for the integral, and
where

M̃j(v) = M(v)Ej −EjMjj(v), j ∈ J ,

M̃(v) =
(
M̃1(v), . . . ,M̃J(v)

)
.

Output: For each ℓ ∈ {1, . . . , n}, a vector of state-wise expected cash flows aaau(t, tℓ).
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We conclude this subsection by presenting the above algorithm for the computa-

tion of expected cash flows in models with the reset property. The computational

scheme is similar to the algorithm for general semi-Markov models based on Kol-

mogorov’s forward integro-differential equation proposed in Buchardt, Møller, and

Schmidt (2015, Section 3). Both algorithms employ a two-dimensional time and

duration grid, and one would therefore expect the computational loads to be

comparable.

3.5.3 Duration-independent payments

We now consider the simplifications arising from duration-independent payments,

that is, when

bj(t, u) = bj(t) and bjk(t, u) = bjk(t), (3.5.11)

or, equivalently,

bbb(t, u) = bbb(t) and B(t, u) = B(t).

In this case,

A(t, ds) =
∑
j∈E

p̄j(t, s, 0)

(
bj(s) +

∑
k∈E
k ̸=j

bjk(s)µjk(s)

)
ds

= p̄(t, s, 0)R(s)111d̄ ds,

where

p̄(t, s, 0) =
{
p̄j(t, s, 0)

}
j∈E

,

R(t) = ∆(bbb(t)) +M(t) •B(t).

According to Theorem 3.5.1,

p̄j(t, s, 0) =
∑
n∈N0

1[Tn, Tn+1)(t)p̃j(t, s, 0;Sn),

p̃j(t, s, 0; sn) =

ααα(sn)
t

R
tn

(I +Mynyn
(x)dx)E′

yn

ααα(sn)
t

R
tn

(I +Mynyn
(x)dx)111dyn

s

R
t

(I +M(x)dx)eeej.

If the reset property (3.3.3) is satisfied, then we are rather interested in AAAu(t, s),

which subject to (3.5.11) reads

Au(t, ds) = p̄(t, u, s, 0)R(s)111d̄ ds,
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where

p̄(t, u, s, 0) =
{
p̄ij(t, u, s, 0)

}
i∈J ,j∈E

.

Furthermore,

p̄ij(t, u, s, 0) =

πππi(t− u)
t

R
t−u

(I +Mii(x)dx)E
′
i

πππi(t− u)
t

R
t−u

(I +Mii(x)dx)111di

s

R
t

(I +M(x)dx)eeej.

This should lead to a significant reduction in computational load since the above

simplification allows one to adapt Algorithm 3.1 to employ only a one-dimensional

time grid. For general semi-Markov models, where the computation of transition

probabilities relies on Kolmogorov’s forward integro-differential equation, such a

simplification is not possible. It should be noted, however, that the computation of

the term

s

R
t

(I +M(x)dx)

might still be rather burdensome if d̄ is large. To conclude, if the number of

microstates per macrostates is not too large, aggregate Markov models might hold a

competitive advantage over general semi-Markov models if the payments of interest

are duration-independent.

The above discussion relates to duration-independent payments. However, it

is also applicable to certain crude duration-dependent payments. This is partly

illustrated by the numerical example in Section 3.6, where we consider a contract

stipulating a waiting period.

3.5.4 Policyholder behavior

We now extend the results of Subsections 3.5.1–3.5.2 to include incidental pol-

icyholder behavior such as free-policy conversion and expedited or postponed

retirement. The inclusion of policyholder options is quite popular in the life insur-

ance literature, confer with Henriksen et al. (2014), Buchardt and Møller (2015),

Buchardt, Møller, and Schmidt (2015), and Gad and Nielsen (2016), especially

for Markov chains. General insights based on change of measure techniques were

recently provided in Furrer (2022). In the following, we adapt the general methods

and results of Furrer (2022) to our setting.

Suppose that the macrostates J can be decomposed as

J = J0 ∪ J1 ∪ {∇} ,
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with 1 ∈ J0 and where the transition intensity matrix function M(t) of the

microstate process X is composed of block matrix functions satisfying

Mjk(t) = 0, j ∈ J1, k ∈ J0,

Mj∇(t) = 0, j ∈ J .

In that case, the macrostate process Z almost surely never hits ∇, and, upon

entering the states J1, the process never returns to J0. Recall that Z(0) ≡ 1, so

the process starts in J0. We may thus interpret J0 as the states of the insured

prior to exercising their policyholder option and J1 as the states of the insured

after exercising the option. (The role of the ‘dummy’ state ∇ will be clear later.)

The first hitting time of J1, given by

τ = inf{t > 0 : Z(t) ∈ J1},

then constitutes the exercise time of the option. Since Z almost surely never hits ∇,

we may as well take b∇(s, u) = 0, bj∇(s, u) = 0, and b∇k(s, u) = 0. At exercise, the

original contractual payments are scaled with the factor ρ(τ, Z(τ−), Z(τ)), where

0 < ρ(t, j, k) ≤ 1 is some suitably regular deterministic function. The payment

process of interest Bρ = {Bρ(t)}t≥0 thus takes the form

dBρ(t) = ρ
(
τ, Z(τ−), Z(τ)

)1(τ≤t) dB(t), Bρ(0) = B(0).

The scaling factor is typically selected as to maintain actuarial equivalence with

respect to a safe-side valuation basis, the so-called technical basis; we just consider

it given. The corresponding expected accumulated cash flow Aρ(t, s) valued at time

t is

Aρ(t, s) = E[Bρ(s)−Bρ(t)|FZ(t)] = E
[ ∫ s

t

ρ
(
τ, Z(τ−), Z(τ)

)1(τ≤u)dB(u)

∣∣∣∣FZ(t)

]
.

The following result is a consequence of Furrer (2022, Theorem 3.6 and Proposi-

tion 3.10).

Proposition 3.5.3. It holds that

Aρ(t, s) = Ê[B(s)−B(t) | FZ(t)]ρ
(
τ, Z(τ−), Z(τ)

)1(τ≤t) ,

where Ê denotes expectation with respect to another probability measure P̂. Further-

more, the (FZ , P̂)-compensators of the counting processes are given by

dΛ̂jk(t) = ρ(t, j, k) dΛjk(t), j ∈ J0, k ∈ J1,

dΛ̂j∇(t) =
∑
k∈J1

(1− ρ(t, j, k)) dΛjk(t), j ∈ J0,

dΛ̂∇k(t) = 0, k ∈ J , k ̸= ∇,

dΛ̂jk(t) = dΛjk(t), otherwise.
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Recall that the compensators determine the distribution of Z. Thus from

the expressions for the compensators obtained in Theorem 3.4.3 and the above

proposition, we find that Z under P̂ follows an aggregate Markov model with

transition intensity matrix function M̂(t) composed of block matrix functions

M̂jk(t) = ρ(t, j, k)Mjk(t), j ∈ J0, k ∈ J1,

M̂j∇(t) =
∑
k∈J1

(1− ρ(t, j, k))Mjk(t)111dk
, j ∈ J0,

M̂∇k(t) = 0, k ∈ J , k ̸= ∇,

M̂jk(t) = Mjk(t), otherwise.

Furthermore, if the reset property (3.3.3) is satisfied under P, this is also the case

under P̂. All in all, according to Proposition 3.5.3 the expected accumulated cash

flow

Â(t, s) = Ê[B(s)−B(t) | FZ(t)],

and thus also the expected accumulated cash flow Aρ(t, s), can be calculated using

the formulas of Subsections 3.5.1–3.5.2, but with M(t) replaced by M̂(t).

3.6 Numerical example

We conclude the paper by presenting a numerical example that serves to illustrate

the methods presented in Section 3.5. The probabilistic models, described by

transition rates on the micro level, are taken from the numerical example in Ahmad

and Bladt (2022a), where aggregate Markov models corresponding to Figure 3.1

with the reset property are fitted to simulated data on a macro level for different

numbers of disability microstates, d2. The simulations are based on a (smooth)

semi-Markovian disability model employed by a large Danish life insurance company

that has been reported to and published by the Danish Financial Supervisory

Authority. The only duration effects present in this model concern the rates from

the disability state, which also explains why we do not add extra microstates to

the active macrostate. The rates from the disability state are, at least after some

months, decreasing as functions of duration. We refer to the numerical example

in Ahmad and Bladt (2022a) for further details.

In the following, the analysis of Ahmad and Bladt (2022a) is extended with

calculations and comparisons of state-wise expected cash flows and prospective

reserves. We focus on a coverage which admits duration-dependent payments,

namely a disability coverage with a waiting period. To be specific, we consider a

male of age t = 40 years with a disability annuity of rate 1 per year, starting 3

months after the onset of disability, but only until retirement at age 65. The only
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(2,1) · · · (2, d2)active (1,1)

dead (3,1)

disabled

Figure 3.1: Disability model with d2 unobservable disability microstates.

non-zero payments function is thus b2(s, z), which reads

b2(s, z) = 1(s<65)1(z>1/4),

and we may therefore set η = 65.

We emphasize that this particular simple type of duration dependence allows

for simplifications in the computation schemes similar to those from the duration-

independent case of Subsection 3.5.3. Indeed, the vector of state-wise expected cash

flows now reads

aaau(40, s) = 1(u+s−40>1/4)p̄(40, s, u, 1/4)E2111d2
,

where the elements of p̄(40, s, u, 1/4) can be calculated using Corollary 3.5.2, confer

also with Algorithm 3.1. Since we only need the transition probabilities at a

single (and rather small) end duration z = 1/4, the computational complexity is

comparable with that of the duration-independent case, where only z = 0 is needed.

The corresponding vector of state-wise prospective reserves is obtained by dis-

counting and accumulating the vector of state-wise expected cash flows:

Vu(40) =

∫ 65

40

e−
∫ s
40

r(v) dvaaau(40, s) ds.

For the interest rate, we use the forward rate curve published on the 3rd of November,

2022, by the Danish Financial Supervisory Authority. We are implicitly assuming

that the financial market is independent of the state process of the insured.

We calculate the vectors of state-wise expected cash flows and corresponding

prospective reserves across initial states and durations and for the various fits. We

also calculate these quantities for the underlying true semi-Markov model, where

we need to use Kolmogorov’s forward integro-differential equation of Buchardt,

Møller, and Schmidt (2015, Section 3), since this model is not an aggregate Markov

model. Figure 3.2 shows the resulting expected cash flows in the disability state for

initial durations u = 0 and u = 1, while Figure 3.3 shows the prospective disability

reserves as functions of the duration since the onset of disability.
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Figure 3.2: Expected cash flow s 7→ a2,u(40, s) in the disability state with initial durations
u = 0 (left) and u = 1 (right) for different numbers of disability microstates, d2, along
with the true expected accumulated cash flows. The case d2 = 1 corresponds to a Markov
chain.
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Figure 3.3: Prospective disability reserve as a function of duration since onset of disability,
u 7→ V2,u(40), for different numbers of disability microstates, d2, along with true prospective
reserve. The case d2 = 1 corresponds to a Markov chain.

Since it is unable to capture the duration effects that are present, the Markov

chain corresponding to d2 = 1 performs, as anticipated, very badly. Maybe

more surprisingly, the addition of just a single additional disability microstate

corresponding to d2 = 2 leads to significant improvements; this model may already

be competitive, depending also on the trade-off between accuracy and computational
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load. Furthermore, and consistent with our expectations, the accuracy appears to

further improve as the number of disability microstates, d2, increases. Actually,

any differences between the true and the aggregate model with d2 = 10 might just

be an expression of statistical noise.

3.A Proofs

This appendix contains the proofs of the results from Sections 3.4–3.5. In the

following, we denote by eeej̃ the dj-dimensional vector with a one in entry j̃ and

otherwise zeroes. To prove Proposition 3.4.1 and Theorem 3.4.3, we need the next

lemma.

Lemma 3.A.1. For t ≥ tn and k ̸= yn it holds that

P
(
t < Tn+1 ≤ t+ h,X(Tn+1) = k

∣∣Sn = sn
)
=
ααα(sn, t, k)eeek̃
ααα(sn)111dyn

h+ o(h), h→ 0,

where the dyn-dimensional row vector ααα(sn) is given by

ααα(sn) = πππ1(0)

n−1∏
ℓ=0

tℓ+1

R
tℓ

(I +Myℓyℓ
(x) dx)Myℓyℓ+1

(tℓ+1).

Proof. We give a proof by induction. First, we verify the identity for n = 0. Note

that ααα(0, 1)111d1
= 1 and that

P
(
t < T1 ≤ t+ h,X(T1) = k

)
=
∑
ỹ0

P
(
t < T1 ≤ t+ h,X(T1) = k,X(t) = (1, ỹ0)

)
=
∑
ỹ0

([
o(h) + P

(
T1 ≤ t+ h,X(t+ h) = k

∣∣ t < T1,X(t) = (1, ỹ0)
)]

P
(
t < T1,X(t) = (1, ỹ0)

))
= o(h) + h

∑
ỹ0

µ(1,ỹ0)k(t)πππ1(0)
t

R
0

(I +M11(x) dx)eeeỹ0

= o(h) + hπππ1(0)
t

R
0

(I +M11(x) dx)M1k(t)eeek̃

= o(h) + hααα(s1)eeek̃.

Collecting results confirms the identity for n = 0. Now suppose the identity holds

for n ∈ N0. We want to establish the identity also for n+ 1. By assumption,

P
(
tn+1 < Tn+1 ≤ tn+1 + h̃,X(Tn+1) = (yn+1, y̌n+1)

∣∣Sn = sn
)
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=
ααα(sn, tn+1, yn+1)eeey̌n+1

ααα(sn)111dyn

h̃+ o(h̃).

In particular,

P
(
tn+1 < Tn+1 ≤ tn+1 + h̃, Yn+1 = yn+1

∣∣Sn = sn
)

=
ααα(sn, tn+1, yn+1)111dyn+1

ααα(sn)111dyn

h̃+ o(h̃).
(3.A.1)

Furthermore,

P
(
t < Tn+2,X(t) = yn+1

∣∣Tn+1 = tn+1,X(tn+1) = (yn+1, y̌n+1)
)

= eee′y̌n+1

t

R
tn+1

(
I +Myn+1yn+1(x) dx

)
eeeỹn+1

,

so that

P
(
t < Tn+2,X(t) = yn+1, tn+1 < Tn+1 ≤ tn+1 + h̃, Yn+1 = yn+1

∣∣Sn = sn
)

=
ααα(sn, tn+1, yn+1)

ααα(sn)111dyn

t

R
tn+1

(
I +Myn+1yn+1

(x) dx
)
eeeỹn+1

h̃+ o(h̃).

Using this result, we find that

P
(
t < Tn+2 ≤ t+ h,X(Tn+2) = k, tn+1 < Tn+1 ≤ tn+1 + h̃,

Yn+1 = yn+1

∣∣Sn = sn
)

=
∑
ỹn+1

([
o(h) + P

(
Tn+2 ≤ t+ h,X(t+ h) = k

∣∣ t < Tn+2,X(t) = yn+1

)]
P
(
t < Tn+2,X(t) = yn+1, tn+1 < Tn+1 ≤ tn+1 + h̃, Yn+1 = yn+1

∣∣Sn = sn
))

=
∑
ỹn+1

([
o(h) + µyn+1k(t)h

]
[ααα(sn, tn+1, yn+1)

ααα(sn)111dyn

t

R
tn+1

(
I +Myn+1yn+1

(x) dx
)
eeeỹn+1

h̃+ o(h̃)
])
,

Combining this result with (3.A.1) allows us to conclude that

P
(
t < Tn+2 ≤ t+ h,X(Tn+2) = k

∣∣Sn+1 = sn+1

)
= o(h) +

h
∑

ỹn+1

ααα(sn,tn+1,yn+1)
ααα(sn)111dyn R

t

tn+1

(
I +Myn+1yn+1

(x) dx
)
eeeỹn+1

µyn+1k(t)

ααα(sn,tn+1,yn+1)111dyn+1

ααα(sn)111dyn

= o(h) + h
ααα(sn+1)

ααα(sn+1)111dyn+1

t

R
tn+1

(
I +Myn+1yn+1(x) dx

)
Myn+1k(t)eeek̃
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= o(h) +
ααα(sn+1, t, k)eeek̃
ααα(sn+1)111dyn+1

h.

This establishes the identity for n+ 1 and thus completes the proof.

Proof of Proposition 3.4.1. From Lemma 3.A.1 we immediately get that P(Tn+1 ≤
t, Yn+1 = k |Sn = sn) is absolutely continuous with respect to the Lebesgue measure

with density

f (n+1)(t, k|sn) =
ααα(sn, t, k)111dk

ααα(sn)111dyn

=
ααα(sn)

ααα(sn)111dyn

t

R
tn

(I +Mynyn
(x) dx)Mynk(t)111dk

for t > tn and k ̸= yn. In particular, 1− F̄ (n+1)(t|sn) is absolutely continuous with

respect to the Lebesgue measure with density

f (n+1)(t|sn) =
∑
k ̸=yn

ααα(sn)

ααα(sn)111dyn

t

R
tn

(I +Mynyn
(x) dx)Mynk(t)111dk

=
ααα(sn)

ααα(sn)111dyn

t

R
tn

(I +Mynyn(x) dx)myn(t)

(3.A.2)

for t > tn; confer also with (3.3.2). Based on for instance the forward equations for

product integrals, see Gill and Johansen (1990, Proposition 5 and 6), we may then

argue that

F̄ (n+1)(t|sn) =
ααα(sn)

ααα(sn)111dyn

t

R
tn

(I +Mynyn(x) dx)111dyn
, t ≥ tn,

which proves the first assertion of the proposition. For the second part, we let

k ̸= yn and find that

G(n+1)(k|sn, tn+1) =
f (n+1)(tn+1, k|sn)
f (n+1)(tn+1|sn)

=

ααα(sn)
ααα(sn)111dyn R

tn+1

tn
(I +Mynyn(x) dx)Mynk(tn+1)111dk

ααα(sn)
ααα(sn)111dyn R

tn+1

tn
(I +Mynyn

(x) dx)myn
(tn+1)

=
ααα(sn)R

tn+1

tn
(I +Mynyn(x) dx)Mynk(tn+1)111dk

ααα(sn)R
tn+1

tn
(I +Mynyn

(x) dx)myn
(tn+1)

,

as desired.
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Proof of Theorem 3.4.3. In the previous proof, we already noted that the distribu-

tion function 1− F̄ (n+1)(t|sn) is absolutely continuous with respect to the Lebesgue

measure with density

f (n+1)(t|sn) =
ααα(sn)

ααα(sn)111dyn

t

R
tn

(I +Mynyn
(x) dx)myn

(t)

for t > tn; see in particular (3.A.2). Then dΛjk(t) = λjk(t) dt with

λjk(t) =
∑
n∈N0

1(Tn, Tn+1](t)1(Yn=j)
f (n+1)(t|Sn−1, Tn, j)

F̄ (n+1)(t|Sn−1, Tn, j)
G(n+1)(k|Sn−1, Tn, j, t),

confer with Jacobsen (2006, Proposition 4.4.1(b)(ii)). The result now follows from

inserting the expressions for F̄ (n+1) and G(n+1) obtained in Proposition 3.4.1 along

with the above expression for f (n+1).

Proof of Theorem 3.5.1. Due to the decomposition

p̄j(t, s, z) =
∑
n∈N0

1[Tn, Tn+1)(t)P(X(s) =j, U(s) > z |Tn+1 > t, Sn),

it suffices to show that

P(X(s) =j, U(s) > z |Tn+1 > t, Sn = sn) = p̃j(t, s, z; sn),

whenever they are well-defined. The case tn ≥ s − z is trivial, so suppose in the

following that tn < s− z. We find that

P(X(s) =j, U(s) > z |Tn+1 > t, Sn = sn)

=
∑
ỹn

P(X(s) =j, U(s) > z, Tn+1 > t,X(t) = yn |Sn = sn)

P(Tn+1 > t |Sn = sn)

=
∑
ỹn

(
P(Tn+1 > t,X(t) = yn |Sn = sn)

P(Tn+1 > t |Sn = sn)

P(X(s) =j, U(s) > z |Tn+1 > t,X(t) = yn, Sn = sn)

)
.

According to the first statement of Proposition 3.4.1,

P(Tn+1 > t |Sn = sn) =
ααα(sn)

ααα(sn)111dyn

t

R
tn

(I +Mynyn
(x) dx)111dyn

.

Also, using similar techniques as in the proof of Proposition 3.4.1 and referring to

Lemma 3.A.1, one may show that

P(Tn+1 > t,X(t) = yn |Sn = sn) =
ααα(sn)

ααα(sn)111dyn

t

R
tn

(I +Mynyn
(x) dx)eeeỹn

.
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If s− z ≤ t, then

P(X(s) =j, U(s) > z |Tn+1 > t,X(t) = yn, Sn = sn)

= 1(j=yn)P(X(s) =j, Tn+1 > s |Tn+1 > t,X(t) = yn, Sn = sn)

= 1(j=yn)eee
′
ỹn

s

R
t

(I +Mynyn
(x) dx)eeej̃ ,

so that

P(X(s) =j, U(s) > z |Tn+1 > t, Sn = sn)

= 1(j=yn)

ααα(sn)
s

R
tn

(I +Mynyn(x)dx)eeej̃

ααα(sn)
t

R
tn

(I +Mynyn
(x)dx)111dyn

,

which exactly equals p̃j(t, s, z; sn), confer with (3.5.10). If instead s− z > t, then

the Markov property of X yields

P(X(s) =j, U(s) > z |Tn+1 > t,X(t) = yn, Sn = sn)

=
∑
ǰ

P(X(s) =j, U(s) > z,X(s− z) = (j, ǰ) |X(t) = yn)

=
∑
ǰ

P(X(s) =j, U(s) > z |X(s− z) = (j, ǰ))P(X(s− z) = (j, ǰ) |X(t) = yn)

=
∑
ǰ

eee′ǰ

s

R
s−z

(I +Mjj(x)dx)eeej̃eee
′
yn

s−z

R
t

(I +M(x)dx)eeej

= eee′yn

s−z

R
t

(I +M(x)dx)Ej

s

R
s−z

(I +Mjj(x)dx)eeej̃ .

Collecting results completes the proof.



Chapter 4

Aggregate Markov models in life insurance:

estimation via the EM algorithm

This chapter is based on the manuscript Ahmad and Bladt (2022a).

Abstract

In this paper, we consider statistical estimation of time-inhomogeneous

aggregate Markov models. Unaggregated models, which corresponds to

Markov chains, are commonly used in multi-state life insurance to model

the biometric states of an insured. By aggregating microstates to each

biometric state, we are able to model dependencies between transitions

of the biometric states as well as the distribution of occupancy in these.

This allows for non-Markovian modeling in general. Since only paths of

the macrostates are observed, we develop an expectation-maximization

(EM) algorithm to obtain maximum likelihood estimates of transition

intensities on the micro level. Special attention is given to a semi-

Markovian case, known as the reset property, which leads to simplified

estimation procedures where EM algorithms for inhomogeneous phase-

type distributions can be used as building blocks. We provide a numerical

example of the latter in combination with piecewise constant transition

rates in a three-state disability model with data simulated from a time-

inhomogeneous semi-Markov model. Comparisons of our fits with more

classic GLM-based fits as well as true and empirical distributions are

provided to relate our model to existing models and their tools.

Keywords: Phase-type distributions; Parametric inference; EM algorithm; multi-

state life insurance; semi-Markovianity
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4.1 Introduction

In this paper, we consider statistical estimation of the finite state space, time-

inhomogeneous aggregate Markov process introduced in the companion paper

Ahmad, Bladt, and Furrer (2022). The term aggregate refers to certain states

of the process being pooled into so-called macrostates. The interpretation of

macrostates could for example be biometric or behavioral states in a life insurance

context, like active, disabled, or free-policy. The pooled states are referred to as

microstates and are introduced to improve the sojourn time distributions of the

macrostates and introduce dependencies between transitions. This allows for non-

Markovian modeling in general. Since only paths of the macrostates are observed,

this corresponds to an incomplete data problem with respect to the underlying

microstates, and we employ an expectation-maximization (EM) algorithm to obtain

maximum likelihood estimates of transition intensities on the micro level.

The aggregate Markov model of Ahmad, Bladt, and Furrer (2022) may be consid-

ered as the underlying process of a time-inhomogeneous BMAP (Batch Markovian

Arrival Processes, Latouche and Ramaswami, 1999), and contains as special cases

time-homogeneous phase-type renewal processes (see Neuts, 1978), Markov mod-

ulated Poisson processes (see Rydén, 1994) and of course (time-homogeneous)

BMAPs. In the aggregate Markov model, the sojourn time distributions are IPH

and dependent, as shown in Ahmad, Bladt, and Furrer (2022, Proposition 4.1).

Methods for fitting independent IPH distributions via the EM algorithm have

been considered in Albrecher, Bladt, and Yslas (2022) for commuting sub-intensity

matrix functions and in Ahmad, Bladt, and Bladt (2022) for general IPHs. Methods

for the estimation of homogeneous BMAPs can be found in Breuer (2002, 2003).

In the multi-state life insurance context, however, we both need the time-

inhomogeneity and dependency between transitions to properly capture age depen-

dencies and duration effects. The nature of such models implies that sub-intensity

matrices at different times may not commute, which is a crucial assumption in

the independent IPH fitting of Albrecher, Bladt, and Yslas (2022). We, therefore,

extend the general approach of Ahmad, Bladt, and Bladt (2022) to include the de-

pendencies. This will provide the main contribution of the paper. Special attention

is paid to the semi-Markovian case considered in Ahmad, Bladt, and Furrer (2022,

Subsection 4.2), known as the reset property, where sojourn time distributions are

IPH and independent. Here, we show how algorithms of Ahmad, Bladt, and Bladt

(2022) partly can be used as inputs to our algorithms.

An important ingredient in our methods is the approximation of the models by

piecewise constant transition rates. In general, transition probabilities of the Markov

processes involved are solutions to ordinary differential equations of Kolmogorov

type, the solution of which is denoted the product integral (see Gill and Johansen,
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1990; Johansen, 1986). Assuming piecewise constant rates, the solutions can be

expressed explicitly in terms of products of matrix exponentials. Furthermore,

maximum likelihood estimation greatly simplifies and can be expressed in terms

of multinomial and Poisson regressions based on a set of sufficient statistics in the

different time intervals.

While we develop an EM algorithm for the general model, we only implement

and apply it to data in the case where the reset property is satisfied along with

piecewise constant transition rates; this relates to the approach in Ahmad, Bladt,

and Bladt (2022). Here, we present a numerical example where macro data is

simulated from a time-inhomogeneous semi-Markovian disability model commonly

used in the context of disability insurance (see, e.g., Hoem, 1972; Helwich, 2008;

Christiansen, 2012; Buchardt, Møller, and Schmidt, 2015). We compare our model

fits with more classic GLM-based fits as well as true and empirical distributions

to illustrate how the aggregate Markov model with the reset property is able to

capture duration effects in these kinds of models.

The remainder of the paper is structured as follows. In Section 4.2 we set up the

model and notation. Section 4.3 considers the estimation of completely observed

aggregate Markov processes. Special attention is given to the piecewise constant

case and the reset property, where links to Multinomial and Poisson regressions

are provided. Then, in Section 4.4, an EM algorithm for fitting aggregate Markov

models from observing only the macro process is developed. Special attention is

devoted to the piecewise constant case and the reset property. The proof of the EM

algorithm is deferred to Appendix 4.A. Finally, Section 4.5 contains a numerical

example in a disability model.

4.2 The aggregate Markov model

We now present the aggregate Markov model introduced in the companion paper

Ahmad, Bladt, and Furrer (2022), and some probabilistic properties of the model

that are relevant to the present paper. Consider a jump process Z taking values on

the finite set J = {1, 2, ..., J}, J ∈ N. We think of these as biometric or behavioral

states governing the states of the insured in a life insurance context, for example,

active, disabled, free-policy, or dead, and we thus refer to them as macrostates. To

each macrostate i ∈ J , a number di ≥ 1 of microstates are assigned. The resulting

state space is therefore

E = {i= (i, ĩ) : i ∈ J , ĩ ∈ {1, 2, ..., di}},

and the total number of microstates is d̄ =
∑

i∈J di. Elements of E are in general

denoted by bold letters such as i ∈ E.



78 Chapter 4. Ahmad & Bladt (2022a)

Now introduce a time-inhomogeneous Markov jump process

X = {X(t)}t≥0 = {(X1(t), X2(t))}t≥0

on the state space E with transition intensity matrix function M(t). Then X1(t)

keeps track of the macrostate, that is Z(t) = X1(t), while X2(t) identifies the

current microstate contingent on the state of X1(t).

The transition intensity matrix function M(t) can be written on the following

block form:

M(t) =


M11(t) M12(t) · · · M1J(t)

M21(t) M22(t) · · · M2J(t)
...

...
. . .

...

MJ1(t) MJ2(t) · · · MJJ(t)

, (4.2.1)

where Mii(t) are sub-intensity matrices of dimension di × di providing transition

rates between the microstates of macrostate i at time t, and Mij(t) are non-negative

matrices of dimension di × dj providing transition rates from microstates within

macrostate i to microstates within macrostate j at time t. We denote an element

of M(t) by µij(t), i,j∈ E. We assume that Z(0) = X1(0) ≡ 1, so that the initial

distribution of X is given by

πππ = (πππ1(0),0),

where π1(0) is the initial distribution of X2(0) among the microstates 1, 2, . . . , d1.

The transition (sub-)probability matrix functions within macrostates are given as

the product integral (see Johansen, 1986; Gill and Johansen, 1990)

P̄i(s, t) =
t

R
s

(I +Mii(x) dx) , i ∈ J . (4.2.2)

The vector eee′
ĩ
P̄i(s, t) then contains the distribution of X(t) within macrostate i on

the event of staying in macrostate i in the whole time interval [s, t], and given that

X(s) = i; here and in the following, eeeĩ denotes the di-dimensional column vector

with one in entry ĩ and zeros otherwise, and primes denote matrix transposition.

The matrix Mij(t)dt, j ̸= i, then contains the (infinitesimal) transition probabilities

between microstates belonging to macrostates i and j, respectively. All in all,

for some generic path of Z, represented via its associated marked point process

(Ti, Yi)i∈N0
as Sn = (Ti, Yi)i≤n, the dyn

-dimensional row vector (see Lemma A.1 in

Ahmad, Bladt, and Furrer, 2022)

α(sn) = π1(0)

n−1∏
ℓ=0

P̄yℓ
(tℓ, tℓ+1)Myℓyℓ+1

(tℓ+1) (4.2.3)

provides the (defective) distribution in macrostate yn at time tn. In particular,

according to Ahmad, Bladt, and Furrer (2022, Remark 4.2), the sojourn times
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are inhomogeneous phase-type distributed (IPH, Albrecher and Bladt, 2019) and

dependent on past jump times and transitions:

Tn+1 − Tn | Sn ∼ IPH

(
α(Sn)

α(Sn)111dyn

, MYnYn
(Tn + •)

)
. (4.2.4)

The corresponding exit rate function out of macrostate i is then given as the column

vector function

mmmi(t) = −Mii(t)111di
=
∑
j∈J
j ̸=i

Mij(t)111dj
. (4.2.5)

Throughout the paper, we pay special attention to the case where the reset property

introduced in Ahmad, Bladt, and Furrer (2022, (3.3)) is satisfied. Here Mij(t),

j ̸= i, is a matrix of rank one on the form

Mij(t) = βββij(t)πππj(t), (4.2.6)

where βββij(t) is a di-dimensional non-negative column vector function and πππj(t) is a

dj-dimensional non-negative row vector function with πππj(t)111dj
= 1. In this case,

mmmi(t) =
∑
j∈J
j ̸=i

βββij(t), (4.2.7)

and, according to Ahmad, Bladt, and Furrer (2022, Remark 4.5), the conditional

sojourn time distributions (4.2.4) become independent of past jump times and

transitions:

Tn+1 − Tn | Sn ∼ IPH(πππYn(Tn), MYnYn(Tn + •)) . (4.2.8)

These simplifications imply a specific time-inhomogeneous semi-Markovian structure

to the macrostate process Z, cf. Ahmad, Bladt, and Furrer (2022, Subsection 4.2),

which explains the focus on these type of models in our numerical example in

Section 4.5.

In this paper, we develop methods for statistical fitting of the aggregate Markov

model, namely estimation of the micro intensities µij based on independent observa-

tions of the trajectories of the macrostate process Z. Since this leads to incomplete

data with respect to the underlying macro-micro state process X, we employ an

expectation-maximization (EM) algorithm to obtain maximum likelihood estima-

tions of the micro intensities. We develop a general EM algorithm and implement it

in the case where the reset property (4.2.6) is satisfied along with piecewise constant

transition rates.

4.2.1 Piecewise constant transition rates

Following Ahmad, Bladt, and Bladt (2022, Section 2.1), suppose that the transition

rates are piecewise constant on a grid s0 = 0 < s1 < · · · < sK−1 < ∞ = sK of K
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time points, K ∈ N, with values

M(s) = Mk =
{
µk
ij

}
i,j∈E

, s ∈ (sk−1, sk], k ∈ {1, . . . ,K}. (4.2.9)

Introducing k(x) as the unique k ∈ {1, . . . ,K} satisfying that x ∈ (sk−1, sk], we

now have that the transition (sub-)probability matrix functions within macrostates

(4.2.2) simplify to a product of matrix exponentials on the form

P̄i(s, t) = eM
k(s)
ii (sk(s)−s)

 k(t)−1∏
ℓ=k(s)+1

eM
ℓ
ii(sℓ−sℓ−1)

eM
k(t)
ii (t−sk(t)−1), (4.2.10)

with the convention that empty product integrals equals the identity matrix. The

defective distribution (4.2.3) at time tn then also simplify, to

α(sn) = π1(0)

n−1∏
ℓ=0

P̄yℓ
(tℓ, tℓ+1)M

k(tℓ+1)
yℓyℓ+1

, (4.2.11)

with the matrices P̄yℓ
(tℓ, tℓ+1) being on the form (4.2.10). We give special attention

to this case being satisfied along with the reset property when we develop our

algorithms in this paper, as they will provide simplifications similar to those in

Ahmad, Bladt, and Bladt (2022).

Here it may be noted that if the resulting exit rates (4.2.5) are different between

two sub-intervals, the density of the conditional sojourn time distributions (4.2.4)

become discontinuous at the corresponding grid point between the two sub-intervals.

This follows by similar arguments as those made in Ahmad, Bladt, and Bladt (2022,

Subsection 2.1).

4.3 The case of complete micro data

We now consider the complete data case where trajectories of the underlying macro-

micro state process X is fully observed, which corresponds to methods known from

inference of time-inhomogeneous Markov jump processes on finite state spaces; we

refer to Andersen et al. (1993) for a detailed exposition on this. The approach

and notation of this section largely follow that of Ahmad, Bladt, and Bladt (2022,

Section 3.1-3.2).

4.3.1 General case

Suppose that we observe N ∈ N i.i.d. realizations of the Markov jump process X of

macro-micro states on some time interval [0, T ], where T > 0 is a given and fixed

time horizon; represent the (fictive) data by X = (X(1), . . . ,X(N)). Denote with

N = (N (1), . . . , N (N)) the corresponding data of the multivariate counting process

associated to X, that is, N (n), n = 1, . . . , N , have components

N
(n)
ij (t) = #

{
s ∈ (0, t] : X(n)(s−) = i, X(n)(s) =j

}
.



4.3. The case of complete micro data 81

Parametrizing the transition rates on the micro level with a parameter vector

θ ∈ Θ, where Θ is some finite-dimensional, suitably regular parameter space with

non-empty interior, such that

M(s) = M(s;θ),

we have that the likelihood function for the joint parameter (πππ1,θ) is given by

LX(πππ1,θ) = LX
0 (πππ1)

∏
i,j∈E
j̸=i

LX
ij(θ),

LX
0 (πππ1) =

d1∏
r=1

π(1,r)(0)
B(1,r)(0),

LX
ij(θ) = exp

(∫
(0,T ]

log
(
µij(s;θ)

)
dNij(s)−

∫ T

0

Ii(s)µij(s;θ)ds

)
,

(4.3.1)

where, for i,j∈ E, j ̸= i, and s ∈ [0, T ],

Ii(s) =

N∑
n=1

1(X(n)(s)=i) and Nij(s) =

N∑
n=1

N
(n)
ij (s), (4.3.2)

with B(1,r)(0) = I(1,r)(0).

Then Ii(s) gives the number of observations in state i at time s, while Nij(s)

gives the total number of jumps observed from state i to j on [0, s]. In particular,

B(1,r)(0) then becomes the total number of initiations in microstate r of macrostate

1 observed. When we later consider the case where the reset property is satisfied

along with piecewise constant transition rates, we encounter more kinds of initiations

in macrostates that adds to this notion.

The corresponding log-likelihood LX(πππ1,θ) = logLX(πππ1,θ) is given by

LX(πππ1,θ) = LX
0 (πππ1) +

∑
i,j∈E
j̸=i

LX
ij(θ), (4.3.3)

LX
0 (πππ1) =

d1∑
r=1

B(1,r)(0) log(π(1,r)(0)),

LX
ij(θ) =

∫
(0,T ]

log
(
µij(s;θ)

)
dNij(s)−

∫ T

0

Ii(s)µij(s;θ)ds, (4.3.4)

and the MLE of (πππ1,θ) is then found by maximizing the log-likelihood:

(π̂ππ1, θ̂) = argmax
(πππ1, θ)

LX(πππ1,θ).

The product structure of the likelihood (4.3.1) in πππ1 and θ gives that we can estimate

these separately via their respective likelihoods LX
0 and LX

ij, i,j∈ E, j ̸= i. For
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πππ1, one realizes that the likelihood LX
0 is proportional to the likelihood obtained from

viewing (B(1,1)(0), . . . , B(1,d1)(0)) as an observation from the Multinomial(N,πππ1(0))

distribution, where N is considered fixed. Hence, the MLE of πππ1 is explicitly given

by

π̂(1,r)(0) =
B(1,r)(0)

N
. (4.3.5)

The MLE of θ is then given by

θ̂ = argmax
θ

∑
i,j∈E
j̸=i

LX
ij(θ),

which, in general, requires numerical methods for optimization. Similar discussions

are seen in, e.g., Ahmad, Bladt, and Bladt (2022, Section 3.1).

4.3.2 Reset property

We now assume the reset property (4.2.6) is satisfied. The setup remains that of

Subsection 4.3.1, except that we now, due to the nature of the exit rates βββij and

initial distributions πππj playing distinct roles, extend the parameter space to Θ×H ,

such that, for (θ, ηηη) ∈ Θ×H,

Mij(s;θ, ηηη) = βββij(s;θ)πππj(s;ηηη), j ̸= i. (4.3.6)

This parameterization allows for separate estimations of exit rates and initial

distributions within the reset property. Note that we implicitly also set πππ1(0) =

πππ1(0;ηηη), so that we allow for the possibility of πππ1(0) to be regressed against the

other initial distributions at the different time points.

Having this setup, we see by splitting the likelihood contributions for the different

transitions, LX
ij, between those within macrostates and those between macrostates

that the likelihood (4.3.1) now simplifies to, using that πππj(s;ηηη)111dj = 1 for all j,

LX(θ, ηηη) =
∏
i∈E

LX
i (ηηη)

di∏
ǐ=1
ǐ̸=ĩ

LX
i(i,̌i)(θ)

∏
j∈J
j ̸=i

LX
ij(θ),

with LX
i(i,̌i)

as in (4.3.1), and

LX
i (ηηη) = exp

(∫
[0,T ]

log (πi(s;ηηη))dNi(s)

)
, (4.3.7)

LX
ij(θ) = exp

(∫
(0,T ]

log (βij(s;θ))dNij(s)−
∫ T

0

Ii(s)βij(s;θ) ds

)
, (4.3.8)
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where we define Nij and Ni as the aggregated processes

Nij(s) =

dj∑
j̃=1

Nij(s) and Ni(s) =



∑
j∈E
j ̸=i

Nji(s) for s > 0,

Bi(0) for s = 0, i = 1,

0 Otherwise.

(4.3.9)

Note that we rather untraditionally, but for notational convenience, couple the

number of initiations at time 0 with the counting process counting the number of

jumps into a macrostate in our definition of Ni. This is related to the aforementioned

possibility of regressing the initial distribution πππ1(0;ηηη) at time 0 with the other

initial distributions πππj(·;ηηη), where this definition allows us to unify computations.

The corresponding log-likelihood (4.3.3) takes the form

LX(θ, ηηη) =
∑
i∈E

(
LX

i (ηηη) +

di∑
ǐ=1
ǐ̸=ĩ

LX
i(i,̌i)(θ) +

∑
j∈J
j ̸=i

LX
ij(θ)

)
, (4.3.10)

with LX
i(i,̌i)

as in (4.3.4), and

LX
i (ηηη) =

∫
[0,T ]

log (πi(s;ηηη))dNi(s),

LX
ij(θ) =

∫
(0,T ]

log (βij(s;θ))dNij(s)−
∫ T

0

Ii(s)βij(s;θ) ds.

(4.3.11)

The MLE of (θ, ηηη) is then found by maximizing the relevant log-likelihood contri-

butions:

θ̂ = argmax
θ

∑
i∈E

(
di∑
ǐ=1
ǐ̸=ĩ

LX
i(i,̌i)(θ) +

∑
j∈J
j ̸=i

LX
ij(θ)

)
,

η̂ηη = argmax
ηηη

∑
i∈E

LX
i (ηηη),

which also here, in general, requires numerical methods for optimization.

4.3.3 Piecewise constant transition rates

Consider again the general case of Subsection 4.3.1, and assume now that the

transition intensity matrix function M(·;θ) is piecewise constant on the form

(4.2.9). Then the likelihood contributions for the transitions between states, LX
ij,

simplify to:

LX
ij(θ) =

K∏
k=1

(
µk
ij(θ)

)Oij(k)
exp
(
−µk

ij(θ)Ei(k)
)
, (4.3.12)
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where Oij(k) is the total number of occurrences of transitions from state i to j in

the time interval (sk−1, sk], and Ei(k) is the total time spent in state i in the time

interval (sk−1, sk], the so-called exposure, given by

Oij(k) =

∫
(sk−1,sk]

dNij(t) and Ei(k) =

∫ sk

sk−1

Ii(t) dt. (4.3.13)

The corresponding log-likelihood contributions take the form

LX
ij(θ) =

K∑
k=1

(
Oij(k) log

(
µk
ij(θ)

)
− µk

ij(θ)Ei(k)
)
. (4.3.14)

Thus, in the case of piecewise constant transition rates, the occurrences and

exposures in the different time intervals, along with the number of initiations in

the different microstates of macrostate 1,{(
B(1,r)(0), Oij(k), Ei(k)

)}
k∈{1,...,K}, r∈{1,...,d1}, i,j∈E, j̸=i

,

are sufficient statistics. One even notes that the resulting likelihood, (4.3.1) com-

bined with (4.3.12), is proportional to the likelihood obtained from independent

observations (
B(1,1)(0), . . . , B(1,d1)(0)

)
,(

Oij(k), k ∈ {1, . . . ,K}, i,j∈ E, j ̸= i
)
,

(4.3.15)

where(
B(1,1)(0), . . . , B(1,d1)(0)

)
is Multinomial(N,π1(0))− distributed,

Oij(k) is Poisson
(
Ei(k)µ

k
ij(θ)

)
− distributed,

(4.3.16)

with N and Ei(k) considered fixed. Hence, the MLE of π1(0) remains explicitly

given by (4.3.5), while the MLE of θ can be obtained from Poisson regressions of

the occurrences against the times on the grid, which can be carried using standard

software packages. For example, if the intensities µk
ij(θ) are exponential functions

of θ, a Poisson regression with log-link function and log-exposure as offset can be

carried out, corresponding to fitting the model

log(µij(s;θ)) =

q∑
r=1

θ
(r)
ijg

(r)(s), (4.3.17)

for suitably regular known functions g(r), with a common choice being g(r)(s) = sr.

The predictions at sk then constitutes the MLEs of the intensities.

In the special case where each of the parameters in θ are the transition rates in

the different time intervals, that is, θ =
(
θkij

)
i,j∈E, j̸=i, k=1,...,K

such that

µk
ij(θ) = θkij,
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the MLE of θ simplify to so-called occurrence-exposure rates (cf. also Asmussen,

Nerman, and Olsson, 1996; Ahmad, Bladt, and Bladt, 2022):

θ̂kij =
Oij(k)

Ei(k)
.

This can be seen as a direct “non-parametric” approach to estimate the micro

intensities in the different time intervals, which then is a special case of the general

parametric approach. The assumption of piecewise constant transition rates is

often seen as an approximation to continuous versions obtained when the number

of grid points tends to infinity. The observations of this subsection largely follow

the observations made in Aalen, Borgan, and Gjessing (2008, Section 5).

4.3.4 Reset property with piecewise constant transition rates

We now assume the reset property (4.2.6) in combination with piecewise constant

transition rates on the form (4.2.9), so that for j ̸= i, k ∈ {1, . . . ,K}, and s ∈
(sk−1, sk],

βββij(s;θ) = βββk
ij(θ),

πππj(s;ηηη) = πππk
j (ηηη),

with πππ1(0;ηηη) = πππ0
1(ηηη). The transition rates between macrostates are then on the

form

Mk
ij(θ, ηηη) = βββk

ij(θ)πππ
k
j (ηηη). (4.3.18)

In this case, the likelihood contributions for transitions between macrostates (4.3.7)-

(4.3.8) simplify to

LX
i (ηηη) =

K∏
k=0

πk
iii (ηηη)

Bi(k),

LX
ij(θ) =

K∏
k=1

βk
ij(θ)

Oij(k) exp
(
−βk

ij(θ)Ei(k)
)
,

(4.3.19)

where, for k ∈ {1, . . . ,K}, Bi(k) is the total number of initiations in microstate ĩ

in the time interval (sk−1, sk] resulting from jumps into macrostate i, and Oij(k)

is the total number of transitions in time interval (sk−1, sk] from macrostate i to j

happening from microstate ĩ:

Bi(k) =
∑
j∈E
j ̸=i

Oji(k) and Oij(k) =

dj∑
j̃=1

Oij(k). (4.3.20)
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The corresponding log-likelihood contributions simplify to

LX
i (ηηη) =

K∑
k=0

Bi(k) log
(
πk
iii (ηηη)

)
, (4.3.21)

LX
ij(θ) =

K∑
k=1

(
Oij(k) log

(
βk
ij(θ)

)
− βk

ij(θ)Ei(k)
)
. (4.3.22)

Consequently, in the case where the reset property is satisfied in combination with

piecewise constant transition rates, (4.2.9) and (4.3.18), the sufficient statistics

regarding the occurrences between macrostates reduce to those of (4.3.20). In fact,

by inserting the simplified likelihood contributions (4.3.19) into the general piecewise

constant case (4.3.12), which again are inserted into the general likelihood (4.3.1),

we realize that it now is proportional to the likelihood obtained from independent

observations

(Bi(k), k = 0, . . . ,K, i ∈ E),((
Oi(i,̌i)(k), Oij(k)

)
, k = 1, . . . ,K, i ∈ E, ǐ ∈ {1, . . . , di}, ǐ ̸= ĩ, j ∈ J , j ̸= i

)
,

where(
B(i,1)(k), . . . , B(i,di)(k)

)
is Multinomial

(
Bi(k),π

k
i (ηηη)

)
− distributed,

Oi(i,̌i)(k) is Poisson
(
Ei(k)µ

k
i(i,̌i)(θ)

)
− distributed,

Oij(k) is Poisson
(
Ei(k)β

k
ij(θ)

)
− distributed,

with Bi(k) =
∑di

ĩ=1
Bi(k), k ∈ {1, . . . ,K}, being the total number of jumps to

macrostate i observed in (sk−1, sk]; for k = 0 and i = 1, we have B1(0) = N ,

cf. also (4.3.16). Hence, the MLE of θ is obtained from similar kinds of Poisson

regressions as those in Subsection 4.3.3, but the MLE of ηηη can now be obtained

from multinomial regressions of the number of initiations against the times on the

grid, which also can be carried using standard software packages.

For example, if for a fixed macrostate i ∈ J , the probabilities πk
i(ηηη) are expo-

nential functions of ηηη (relative to the probability πk
(i,di)

(ηηη) in the last microstate di,

say), then a multinomial logistic regression can be carried out, corresponding to

fitting the model

πi(s;ηηη) =
exp
(
1(̃i ̸=di)

∑q
r=1 η

(r)
i g(r)(s)

)
1 +

∑di−1
ǐ=1

exp
(∑q

r=1 η
(r)

(i,̌i)
g(r)(s)

) , (4.3.23)

where the functions g(r) are as in (4.3.17). The predictions at sk then constitute the

MLEs of the initial distributions. Similar types of multinomial logistic regressions
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for initial distributions of (inhomogeneous) phase-type distributions are performed

in Bladt and Yslas (2022) and Albrecher, Bladt, and Müller (2022), although in

the context of covariate information.

4.4 EM algorithm for the aggregate Markov model

In this section, we give the main contributions of the paper, namely maximum

likelihood estimation of micro intensities using the expectation-maximization (EM)

algorithm, where we give special attention to the case where the reset property is

satisfied along with piecewise constant transition rates. The results of this section

naturally extends those of Ahmad, Bladt, and Bladt (2022, Section 3.3).

4.4.1 General EM algorithm

The macro data we observe are N i.i.d. realizations of the macrostate process Z on

the generic time interval [0, T ]. It shall turn out to be useful to represent the data

via the associated marked point process (Ti, Yi)i∈N0
to keep track of jump times

and transitions. This is also the approach of, e.g., Asmussen, Nerman, and Olsson

(1996).

Denote with S(n) =
(
T (n), Y (n)

)
= (T

(n)
i , Y

(n)
i )i≤M(n) the n’th observation,

n = 1, . . . , N , of jump times and transitions of the macrostate process Z, whereM (n)

is the number of transitions observed, so that T = maxn=1,...,N T
(n)

M(n) . Represent

all observed data by the vector

SSS =
(
S(1), . . . ,S(N)

)
.

Let E(πππ1,θ) denote the expectation under which the Markov jump process X

of macro-micro states has transition intensity matrix function M(·;θ) and initial

distribution (πππ1(0),000). The EM algorithm for estimation of the micro-level parameter

(πππ1,θ) then consists of initializing with some value (πππ
(0)
1 ,θ(0)) ∈ [0, 1]d1 ×Θ, and

then iteratively compute the conditional expected log-likelihood given macro data

under some current parameter (πππ
(m)
1 , θ(m)), the so-called E-step,

(πππ1,θ) 7→ L̄(m)(πππ1, θ) = E
(πππ

(m)
1 , θ(m))

[
LX(πππ1,θ)

∣∣SSS], m ∈ N0, (4.4.1)

and then maximize this to update the parameter to (πππ
(m+1)
1 ,θ(m+1)), the so-called

M-step. For notational convenience, we write, under some parameter (πππ
(m)
1 ,θ(m)),

P̄
(m)
i (s, t) =

t

R
s

(
I +Mii

(
x;θ(m)

)
dx
)
, i ∈ J , (4.4.2)

for the transition (sub-)probability matrix functions within macrostates, and

α(m)(sn) = π
(m)
1 (0)

n−1∏
ℓ=0

P̄ (m)
yℓ

(tℓ, tℓ+1)Myℓyℓ+1

(
tℓ+1;θ

(m)
)
, (4.4.3)
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for the corresponding defective distribution at time tn. Also, we denote with 111′n the

row vector of ones with the same dimension as ααα(m)(S(n)).

To obtain the conditional expected log-likelihood given macro data, we need

some conditional expected statistics. For r ∈ {1, . . . , d1}, and i,j ∈ E, j ̸= i,

define

B̄
(m)
(1,r)(0) = E

(πππ
(m)
1 , θ(m))

[
B(1,r)(0)

∣∣SSS], (4.4.4)

Ī
(m)
i (s) = E

(πππ
(m)
1 , θ(m))

[Ii(s) |SSS], (4.4.5)

N̄
(m)
ij (s) = E

(πππ
(m)
1 , θ(m))

[
Nij(s)

∣∣SSS]. (4.4.6)

Introduce the di × di matrix function ccc
(m)
i and the dj × di matrix function aaa

(m,ℓ)
ij ,

i, j ∈ J , j ̸= i, and ℓ ∈ {1, . . . , n}, given by

c
(m)
i

(
u;sn

)
=

n∑
ℓ=1

1[tℓ−1, tℓ)(u)1(yℓ−1 = i)×

P̄
(m)
i (u, tℓ)ααα

(m)
ℓ (sn)ααα

(m)(sℓ−1)P̄
(m)
i (tℓ−1, u),

a
(m,ℓ)
ij

(
u;sn

)
= 1(tℓ−1, tℓ](u)1(yℓ−1 = i, yℓ = j)×

P̄
(m)
j (u, tℓ+1)ααα

(m)
ℓ+1(sn)ααα

(m)(sℓ−1)P̄
(m)
i (tℓ−1, u),

where the dyℓ−1
-dimensional row vector

ααα
(m)
ℓ (sn) = Myℓ−1yℓ

(
tℓ;θ

(m)
)( n−1∏

r=ℓ

P̄ (m)
yr

(tr, tr+1)Myryr+1

(
tr+1;θ

(m)
))

111dyn

takes care of sample path probabilities from the ℓ’th jump and onwards. We then

have the following main result.

Theorem 4.4.1. The conditional expected log-likelihood given the macro data SSS
under the parameter (πππ

(m)
1 ,θ(m)), m ∈ N0, is given by

L̄(m)(πππ1,θ) = L̄
(m)
0 (πππ1) +

∑
i,j∈E
j̸=i

L̄
(m)
ij (θ),

L̄
(m)
0 (πππ1) =

d1∑
r=1

B̄
(m)
(1,r)(0) log(π(1,r)(0)), (4.4.7)

L̄
(m)
ij (θ) =

∫
(0,T ]

log
(
µij(u;θ)

)
dN̄

(m)
ij (u)−

∫ T

0

Ī
(m)
i (u)µij(u;θ) du,

where, for r ∈ {1, . . . , d1},

B̄
(m)
(1,r)(0) =

N∑
n=1

π
(m)
(1,r)(0)eee

′
rP̄

(m)
1

(
0, T

(n)
1

)
ααα
(m)
1

(
S(n)

)
ααα(m)

(
S(n)

)
111n

,
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while for i ∈ E and ǐ ∈ {1, . . . , di}, ǐ ̸= ĩ,

Ī
(m)
i (u) =

N∑
n=1

eee′
ĩ
c
(m)
i

(
u;S(n)

)
eeeĩ

ααα(m)
(
S(n)

)
111n

,

dN̄
(m)

i(i,̌i)
(u) =

N∑
n=1

µi(i,̌i)

(
u;θ(m)

)eee′
ǐ
c
(m)
i

(
u;S(n)

)
eeeĩ

ααα(m)
(
S(n)

)
111n

du,

and for j∈ E, j ̸= i,

dN̄
(m)
ij (u) =

N∑
n=1

M(n)∑
ℓ=1

µij

(
u;θ(m)

)eee′j̃a(m,ℓ)
ij

(
u;S(n)

)
eeeĩ

ααα(m)
(
S(n)

)
111n

dε
T

(n)
ℓ

(u),

where ε
T

(n)
ℓ

is the Dirac measure in T
(n)
ℓ .

Proof. See Appendix 4.A

The result shows that in order to develop an EM algorithm for the general

aggregate Markov model, one must significantly extend the EM algorithm for

general IPHs introduced in Ahmad, Bladt, and Bladt (2022, Appendix A) to

computationally more demanding algorithms, even though the conditional sojourn

time distributions (4.2.4) follow IPH distributions. This is due to the fact that the

general aggregate Markov model admits a path dependency, which is seen from the

initial distributions ααα of the IPH distributions of the conditional sojourn times. We,

therefore, require an extension of the already complex algorithm of Ahmad, Bladt,

and Bladt (2022, Appendix A) to an algorithm where we keep track of past and

future macro paths in the calculation of the conditional expected statistics.

It may be noted from Subsection 4.3.2, cf. also (4.2.7)-(4.2.8), that the above-

mentioned computational complexities can be remedied by assuming that the reset

property (4.2.6) is satisfied. We, therefore, assume that this is the case for the

remainder of the paper to obtain our main algorithms. The general EM algorithm,

which we do not implement here, is presented in Appendix 4.B for completeness, as

it may have its own merit in future work.

4.4.2 EM algorithm within the reset property

We now assume that the reset property on the form (4.3.6) is satisfied, such that

the complete data log-likelihood takes the form (4.3.10). Since we in this case

parametrize transition rates in (θ,η) ∈ Θ × H, the conditional expected log-

likelihood given the macro data SSS, under some current parameter (θ(m), ηηη(m)) is

defined as the map

(θ, ηηη) 7→ L̄(m)(θ, ηηη) = E(θ(m),ηηη(m))

[
LX(θ, ηηη)

∣∣SSS], m ∈ N0, (4.4.8)
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where E(θ,ηηη) denotes the expectation under which the Markov jump process X of

macro-micro states has transition intensity matrix function M(·;θ, ηηη) and initial

distribution (πππ1(0;ηηη),000).

The nature of the reset property allows us to consider each observed macro sojourn

independently, and we shall therefore group data into the different macrostates so

that computations can be carried out locally within macrostates without the need

to take care of past and future macro paths. This is made precise as follows. For

i ∈ J , let

Mi =

N∑
n=1

M(n)∑
ℓ=1

1
(Y

(n)
ℓ−1=i)

denote the number of sojourns in macrostate i observed, and furthermore let

TTT i =
(
T (1)
i , . . . , T (Mi)

i

)
be the set of macrostate i observations given by

TTT i =
{(

T
(n)
ℓ−1, Y

(n)
ℓ−1, T

(n)
ℓ , Y

(n)
ℓ

) ∣∣∣ n = 1, . . . , N, ℓ = 1, . . . ,M (n) s.t Y
(n)
ℓ−1 = i

}
=
{(
R

(n)
i , i, τ

(n)
i , Z

(n)
i

)}
n∈{1,...,Mi}

. (4.4.9)

Then TTT i contains data points for macrostate i, consisting of time of entries R
(n)
i

into the macrostate, jump times τ
(n)
i out of the state, and macrostates Z

(n)
i jumped

to at time τ
(n)
i . Similar type of data representations are made in Breuer (2002).

For a generic realization ⊔i = (ri, i, τi, zi) of T (n)
i , the matrix function ccc

(m)
i and

defective distribution ααα(m) now satisfy, for u ∈ (ri, τi],

c
(m)
i (u;⊔i) = P̄

(m)
i (u, τi)βββizi

(
τi;θ

(m)
)
πππi

(
ri;ηηη

(m)
)
P̄

(m)
i (ri, u),

ααα(m)(⊔i)111dzi
= πππi

(
ri;ηηη

(m)
)
P̄

(m)
i (ri, τi)βββizi

(
τi;θ

(m)
)
.

(4.4.10)

Concerning jumps between macrostates, introduce the aggregated conditional

expected statistics

N̄ij(s) = E(θ(m),ηηη(m))[Nij(s) |SSS] and N̄i(s) = E(θ(m),ηηη(m))[Ni(s) |SSS],

where the aggregated statistics Nij and Ni are given in (4.3.9). Furthermore, the

conditional expected statistics within macrostates, Ī
(m)
i and N̄

(m)

i(i,̌i)
, are given as

in the general case in (4.4.5)-(4.4.6), but where the expectation is taken under

(θ(m), ηηη(m)), i.e. with the operator E(θ(m),ηηη(m)). We now have the following result.

Corollary 4.4.2. Suppose that the reset property (4.2.6) holds. Then the conditional

expected log-likelihood (4.4.8) is given by

L̄(m)(θ, ηηη) =
∑
i∈E

(
L̄
(m)
i (ηηη) +

di∑
ǐ=1
ǐ̸=ĩ

L̄
(m)

i(i,̌i)
(θ) +

∑
j∈J
j ̸=i

L̄
(m)
ij (θ)

)
, (4.4.11)
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where L̄
(m)

i(i,̌i)
is as in (4.4.7), while

L̄
(m)
i (ηηη) =

∫
[0,T ]

log (πi(u;ηηη))dN̄
(m)
i (u),

L̄
(m)
ij (θ) =

∫
(0,T ]

log (βij(u;θ))dN̄
(m)
ij (u)−

∫ T

0

Ī
(m)
i (u)βij(u;θ) du,

(4.4.12)

but where the conditional expected statistics are given by, for i ∈ E and ǐ ∈
{1, . . . , di}, ǐ ̸= ĩ,

dN̄
(m)
i (u) =

Mi∑
n=1

πi

(
u;ηηη(m)

)
eee′
ĩ
P̄

(m)
i

(
u, τ

(n)
i

)
βββ
iZ

(n)
i

(
τ
(n)
i ;θ(m))

ααα(m)
(
T (n)
i

)
111n

dε
R

(n)
i

(u),

Ī
(m)
i (u) =

Mi∑
n=1

eee′
ĩ
c
(m)
i

(
u; T (n)

i

)
eeeĩ

ααα(m)
(
T (n)
i

)
111n

,

dN̄
(m)

i(i,̌i)
(u) =

Mi∑
n=1

µi(i,̌i)

(
u;θ(m)

)eee′
ǐ
c
(m)
i (u; T (n)

i )eeeĩ

ααα(m)
(
T (n)
i

)
111n

du,

(4.4.13)

while for j ∈ J , j ̸= i,

dN̄
(m)
ij (u) =

Mi∑
n=1

1
(Z

(n)
i =j)

πππi

(
R

(n)
i ;ηηη(m)

)
P̄

(m)
i

(
R

(n)
i , u

)
eeeĩβij(u;θ

(m))

ααα(m)
(
T (n)
i

)
111n

dε
τ
(n)
i

(u).

(4.4.14)

Proof. See Appendix 4.A.

Remark 4.4.3. The conditional expected log-likelihood (4.4.11) can be seen to have

close relations to the conditional expected log-likelihood of Ahmad, Bladt, and

Bladt (2022, Theorem 3.4). Indeed, consider e.g.∫ T

0

Ī
(m)
i (u)µij(u;θ)du =

Mi∑
n=1

∫ τ
(n)
i

R
(n)
i

eee′
ĩ
c
(m)
i

(
u; T (n)

i

)
eeeĩ

ααα(m)
(
T (n)
i

)
111n

µij(u;θ) du.

Looking at a single term on the right-hand side and applying the substitution

v = u−R
(n)
i to the integral, we see that it equals

∫ τ
(n)
i −R

(n)
i

0

eee′
ĩ
c
(m)
i

(
v +R

(n)
i ; T (n)

i

)
eeeĩ

ααα(m)
(
T (n)
i

)
111n

µij(v +R
(n)
i ;θ) dv,

where the shifted versions of c
(m)
i equals
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τ
(n)
i −R

(n)
i

R
v

(
I +Mii

(
x+R

(n)
i ;θ(m)

)
dx
)
βββ
iZ

(n)
i

(
τ
(n)
i ;θ(m)

)
×

πππi

(
R

(n)
i ;ηηη(m)

) v

R
0

(
I +Mii

(
x+R

(n)
i ;θ(m)

)
dx
)
.

Performing similar type of manipulations for the other terms in (4.4.13)-(4.4.14), we

see that each term in the conditional expected log-likelihood (4.4.11), corresponding

to each macro sojourn n ∈ {1, . . . ,Mi}, i ∈ J , equals the conditional expected

log-likelihood of Ahmad, Bladt, and Bladt (2022, Theorem 3.4), if in the latter we

have

� A single IPH observation τ
(n)
i −R

(n)
i

� Initial distribution πππi

(
R

(n)
i ;ηηη(m)

)
� Sub-intensity matrix function x 7→ Mii

(
x+R

(n)
i ;θ(m)

)
� Exit rate vector function x 7→ βββ

iZ
(n)
i

(
x+R

(n)
i ;θ(m)

)
on the state-space {1, . . . , di} of transient states, and with parameter space Θ. △

It follows from Corollary 4.4.2 and Remark 4.4.3 that the E-step of the EM

algorithm for the aggregate Markov model with the reset property can be formulated

in terms of, and executed by, the E-step of the EM algorithm in Ahmad, Bladt,

and Bladt (2022, Appendix A). The computational demand of performing the

estimation procedure, in this case, is therefore comparable to those for general

IPHs. As explained in Ahmad, Bladt, and Bladt (2022, Subsection 3.3), these

computational demands are generally much higher than those of, e.g., Albrecher,

Bladt, and Yslas (2022) and Asmussen, Nerman, and Olsson (1996), and assuming

piecewise constant transition rates may therefore be of significant advantage. We

shall follow this approach for the remainder of the paper to obtain our main

algorithm, using the setup made in Subsection 4.3.4. As for the general case,

we present the EM algorithm resulting from this section in Appendix 4.B for

completeness, as it may have its own merit in future work.

4.4.3 EM algorithm with piecewise constant transition rates

within the reset property

We now consider the simplifications arising from assuming that the transition

intensity matrix function M(·;θ, ηηη) is piecewise constant on the form (4.2.9) along

with the reset property (4.3.18) being satisfied. Since the resulting complete data
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log-likelihood, (4.3.10) with (4.3.14) and (4.3.21)-(4.3.22), is linear in the sufficient

statistics, we see that for the E-step, it now suffices to compute the conditional

expected sufficient statistics,

B̄
(m)
i (k) = E(θ(m), ηηη(m))[Bi(k) |SSS],

Ē
(m)
i (k) = E(θ(m), ηηη(m))[Ei(k) |SSS],

Ō
(m)

i(i,̌i)
(k) = E(θ(m), ηηη(m))

[
Oi(i,̌i)(k)

∣∣∣SSS],
Ō

(m)
ij (k) = E(θ(m), ηηη(m))[Oij(k) |SSS],

(4.4.15)

and then the M-step regarding the update of θ simplifies to a Poisson regression,

while the update of ηηη simplifies to a multinomial regression, as described in Sub-

section 4.3.4, but where the sufficient statistics are replaced by their conditional

expectations computed in the E-step.

The transition (sub-)probability matrices within macrostates (4.4.2) and corre-

sponding defective distribution (4.4.3) under the parameter (θ(m), ηηη(m)) are now

on the form (cf. (4.2.10)-(4.2.11)):

P̄
(m)
i (s, t) = eM

k(s)
ii (θ(m))(sk(s)−s)

 k(t)−1∏
ℓ=k(s)+1

eM
ℓ
ii(θ

(m))(sℓ−sℓ−1)

eM
k(t)
ii (θ(m))(t−sk(t)),

ααα(m)
(
T (n)
i

)
111n = πππ

k
(n−)
i

i

(
ηηη(m)

)
P̄

(m)
i

(
R

(n)
i , τ

(n)
i

)
βββ
k
(n+)
i

iZ
(n)
i

(
θ(m)

)
, (4.4.16)

where we recall that k(x), for x ≥ 0, equals the unique k ∈ {1, . . . ,K} satisfying

that x ∈ (sk−1, sk]; for notational convenience, we put k
(n−)
i = k

(
R

(n)
i

)
and

k
(n+)
i = k

(
τ
(n)
i

)
. The conditional expected sufficient statistics (4.4.15) then follow

immediately from the more general results of Corollary 4.4.2.

Corollary 4.4.4. Suppose that the transition intensity matrix function M(·;θ, ηηη)
is piecewise constant on the form (4.2.9), and that the reset property (4.3.18) is

satisfied. Then the conditional expected sufficient statistics (4.4.15) are given by,

B̄
(m)
i (k) =

Mi∑
n=1

1
(k

(n−)
i = k)

π
k
(n−)
i

i

(
ηηη(m)

)
eee′
ĩ
P̄

(m)
i

(
R

(n)
i , τ

(n)
i

)
βββ
k
(n+)
i

iZ
(n)
i

(
θ(m)

)
ααα(m)

(
T (n)
i

)
111n

,

Ē
(m)
i (k) =

Mi∑
n=1

∫ τ
(n)

i|k

τ
(n)

i|k−1

eee′
ĩ
c
(m)
i

(
u; T (n)

i

)
eeeĩ du

ααα(m)
(
T (n)
i

)
111n

,
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Ō
(m)

i(i,̌i)
(k) =

Mi∑
n=1

∫ τ
(n)

i|k

τ
(n)

i|k−1

eee′ǐc
(m)
i

(
u; T (n)

i

)
eeeĩ du

ααα(m)
(
T (n)
i

)
111n

µk
i(i,̌i)

(
θ(m)

)
,

Ō
(m)
ij (k) =

Mi∑
n=1

1
(Z

(n)
i = j)

1
(k

(n+)
i = k)

πππ
k
(n−)
i

i

(
ηηη(m)

)
P̄

(m)
i

(
R

(n)
i , τ

(n)
i

)
eeeĩβ

k
(n+)
i

ij (θ(m))

ααα(m)
(
T (n)
i

)
111n

,

with P̄ (m) and ααα(m) as in (4.4.16), and where

τ
(n)
i|k =

(
sk ∨R(n)

i

)
∧ τ (n)i .

Proof. By inserting the expressions for the sufficient statistics in the complete data

case, (4.3.13) combined with (4.3.20), into (4.4.15), the result follows immediately

from (4.4.13)-(4.4.14) in Corollary 4.4.2.

By employing the same techniques as in Remark 4.4.3 on the conditional expected

statistics of Corollary 4.4.4, we find that the E-step in this case can be written

in terms of the E-step of Ahmad, Bladt, and Bladt (2022, Algorithm 1), with

analogue modifications of shifting all inputs from time 0 to the time of entries into

the macrostate, R
(n)
i , and so the computational demand should be comparable

to the estimation of IPHs with piecewise constant transition rates. In particular,

the sub-intensity matrix function is shifted, and so one must accordingly shift

the grid points on which it is piecewise constant. This is a conceptually different

modification than that of the more general case of Subsection 4.4.2.

The complete EM algorithm for the aggregate Markov model with piecewise con-

stant transition rates within the reset property is presented in Algorithm 4.1 below.

We implement this algorithm and show a numerical example of its applicability in

the following section.
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Algorithm 4.1 EM algorithm for the aggregate Markov model with the reset
property and piecewise constant transition rates

Input : Initial parameters (θ(0), ηηη(0)) ∈ Θ×H, and for each macrostate i ∈ J ,
data points within the macrostate,

T i =
{(
r
(n)
i , τ

(n)
i , z

(n)
i

)}
n∈{1,...,mi}

,

consisting of time of entries r
(n)
i into the macrostate, jump times τ

(n)
i out of the

state, and macrostate z
(n)
i jumped to at time τ

(n)
i .

0) Set m := 0

1) E-step: For each macrostate i ∈ J ,

� For each sojourn n ∈ {1, . . . ,mi},

i) Set k
(n−)
i := k

(
r
(n)
i

)
and k

(n+)
i := k

(
τ
(n)
i

)
.

ii) Run the E-step of Ahmad, Bladt, and Bladt (2022, Algorithm 1)
with

– Grid points 0 = s̃0 < s̃1 < · · · < s̃
K−k

(n−)
i

< s̃
K−k

(n−)
i +1

= ∞,

where

s̃k = s
k
(n−)
i +k−1

− r
(n)
i , k ∈

{
1, . . . ,K − k

(n−)
i + 1

}
.

– State-space of transient states {1, . . . , di}

– A single IPH observation τ
(n)
i − r

(n)
i

– Initial distribution πππ
k
(n−)
i

i

(
ηηη(m)

)
– Sub-intensity matrix function x 7→ Mii

(
x+ r

(n)
i ;θ(m)

)
– Exit rate vector function x 7→ βββ

iz
(n)
i

(
x+ r

(n)
i ;θ(m)

)
which, across k ∈

{
1, . . . ,K − k

(n−)
i + 1

}
, gives the output:

– Expected statistics for the initial state: B̄
(n,m)
i

(
k
(n−)
i

)
– Expected exposures: Ē

(n,m)
i

(
k
(n−)
i + k − 1

)
– Expected occurrences for transient states: Ō

(n,m)

i(i,̌i)

(
k
(n−)
i + k − 1

)
– Expected occurrences for the ’absorbing’ state: Ō

(n,m)

iz
(n)
i

(
k
(n+)
i

)
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iii) Compute total expected sufficient statistics, for k ∈ {1, . . . ,K},

B̄
(m)
i (k) =

Mi∑
n=1

B̄
(n,m)
i (k), Ō

(m)

i(i,̌i)
(k) =

Mi∑
n=1

Ō
(n,m)

i(i,̌i)
(k),

Ē
(m)
i (k) =

Mi∑
n=1

Ē
(n,m)
i (k), Ō

(m)

iz
(n)
i

(k) =

Mi∑
n=1

Ō
(n,m)

iz
(n)
i

(k).

2) M-step: Update the parameters:

i) Compute η̂ηη(m+1) as the MLE of the regressions(
B̄

(m)
(i,1)(k), . . . , B̄

(m)
(i,di)

(k)
)
∼ Multinomial

(
Bi(k),π

k
i (η)

)
,

across k ∈ {0, 1, . . . ,K} and i ∈ J .

ii) Compute θ̂(m+1) as the MLE of the regressions

Ō
(m)

i(i,̌i)
(k) ∼ Pois

(
µk
i(i,̌i)(θ)Ē

(m)
i (k)

)
,

Ō
(m)
ij (k) ∼ Pois

(
βk
ij(θ)Ē

(m)
i (k)

)
,

across k ∈ {1, . . . ,K}, i ∈ E, ǐ ∈ {1, . . . , di}, ǐ ̸= ĩ, and j ∈ J .

3) Set m := m+ 1 and GOTO 1), unless a stopping rule is satisfied.

Output: Fitted parameters (θ̂, η̂ηη).

4.5 Numerical example

In this section, we present a numerical example illustrating the methods developed

in Section 4.4. The purpose of the example is to let the EM algorithm fit micro

intensities based on macro data, which are simulated from a time-inhomogeneous

semi-Markov model already used in the context of multi-state life insurance, see,

e.g., Hoem (1972), Helwich (2008), Christiansen (2012), and Buchardt, Møller, and

Schmidt (2015) for these type of models. Since the aggregate Markov model with the

reset property exactly admits a time-inhomogeneous semi-Markovian structure (see

Subsection 4.2 in Ahmad, Bladt, and Furrer, 2022), we are able to apply algorithms

within this special case to fit an aggregate Markov model with the reset property

that sufficiently captures the duration effects appearing in these kinds of models.
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disabled 2active 1

dead 3

ν12(t)

ν23(t, u)ν13(t)

ν21(t, u)

Figure 4.1: The time-inhomogeneous semi-Markovian disability model with recoveries
where the macro data is simulated from.

We simulate 10,000 paths of macro data from the three-state disability model

depicted in Figure 4.1, where we consider a 30-year old male being active upon

initiation. For the time and duration-dependent transition rates νij , we use a

set of transition rates that are based on rates employed by a large Danish life

insurance company for males, which has been reported to and published by the

Danish Financial Supervisory Authority. They are given by, for ages t ∈ [30, 110]

and durations u ≤ t,

ν13(·) : The 2012 edition of the Danish FSA’s longevity benchmark,

ν12(t) =

{
e72.539−10.669t+0.534t2−0.0128t3+1.4922·10−4t4−6.8007·10−7t5 for t ≤ 67

0.0009687435 for t > 67

ν21(t, u) =


e−0.9148875−0.0309126t+4.8715347u for u ≤ 0.2291667

e0.3766531−0.0309126t−0.7642786u for u ∈ (0.2291667, 2]

e−0.4808001−0.0309126t−0.335552u for u ∈ (2, 5]

e−0.042168−0.092455t for u > 5

(4.5.1)

ν23(t, u) =

{
e−6.1057464+0.0635736t−0.2891195u for u ≤ 5

e−11.9169277+0.1356766t for u > 5

Since this model only contains duration dependence regarding transitions from

the disabled state, we fit the aggregate Markov model depicted in Figure 4.2 to

the simulated data, where only the disabled state contains microstates, so that

d1 = d3 = 1 and d2 ≥ 1. This model always has the reset property satisfied, and it

allows us to capture the duration effects regarding transitions from the disabled

state.

Algorithm 4.1 is then used to fit piecewise constant transition rates and initial

distributions on the micro level in the disabled state for a varying number of

disability microstates, d2 ∈ {1, 2, 3, 5, 7, 10}. We use piecewise constant transition
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(2,1) · · · (2, d2)active (1,1)

dead (3,1)

disabled

Figure 4.2: Disability model with d2 unobservable disability microstates.

rates on the grid {30, 36, 37, . . . , 88, 110}, and the rates between microstates as well

as exit rates are parametrized similarly as the true rates (4.5.1), that is, (4.3.17)

with q = 1 and g(1)(s) = s, such that Poisson GLMs of occurrences against time

(with logarithmic link function and log-exposure as offset) is carried out in the

M-step; this implies that logarithmic transition rates are (piecewise) linear in time.

For the initial distribution, we use (4.3.23) so that multinomial logistic regressions

of the number of initiations against time are carried out in the M-step. The resulting

fits of the transition rates in the disabled state on the micro level, as well as initial

distributions and exit rates, can be found in Figure 4.6 for the case d2 = 10.
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Figure 4.3: Conditional densities (left) and survival functions (right) of the sojourn
time in the disabled state given entry at time s = 60.5, for different number of disability
microstates, d2, along with the GLM fit as well as true and empirical distributions. The
case d2 = 1 corresponds to a Markov chain.

We then compare our model fits with the true model, of course, but to avoid



4.5. Numerical example 99

statistical noise and also allow for comparison to more classic methods, we also

carry out a semi-Markovian GLM fit on the macro data, that is, a Poisson GLM fit

of occurrences against age and duration with log-link function and log-exposure as

offset. Here we use segmented regressions in the duration dimension to obtain the

parametrization (4.5.1).

In Figure 4.3 we show for s = 60.5 the resulting fits of the conditional survival

function and density of the sojourn time distribution in the disabled state given

entry into the state at time s, respectively given by

t 7→ πππ2(s; η̂ηη)P̄2(s, t; θ̂)111d2
and t 7→ πππ2(s; η̂ηη)P̄2(s, t; θ̂)

(
βββ21(t; θ̂) + βββ23(t; θ̂)

)
against their empirical counterparts as well as (cf., e.g., Hoem, 1972; Helwich, 2008;

Christiansen, 2012):

t 7→ e−
∫ t
s
ν2·(v,v−s) dv and t 7→ e−

∫ t
s
ν2·(v,v−s) dv(ν21(t, t− s) + ν23(t, t− s))

for the true model and the GLM fits. We see that a single microstate, corresponding

to a Markov chain, does not fit very well to the data, which is to be expected as

this model is not able to capture the duration effects appearing in the true model.

However, we see that by adding microstates to the disabled state, we are able to fit

the distributions with a high accuracy already with 2-3 microstates. A challenging

part of the density close to the origin (corresponding to small durations) as well

as around discontinuity points requires many more microstates compared to the

GLM fit, though, but this does not seem to carry over to the corresponding survival

function, where our model fits performs very well.

While these survival functions and densities focus on sojourn times and, therefore,

not on specific transitions out of the state, we may further examine how the actual

transition rates are fitted; these play an important role in the context of multi-state

life insurance. Indeed, according to Ahmad, Bladt, and Furrer (2022, Subsection

4.2), we have fitted an aggregate Markov model with the reset property that

admits a time-inhomogeneous semi-Markovian structure with the following time

and duration-dependent transition rates out of the disabled state:

(t, u) 7→ πππ2(t− u; η̂ηη)P̄2(t− u, t; θ̂)

πππ2(t− u; η̂ηη)P̄2(t− u, t; θ̂)111d2

βββ2j(t; θ̂), j ∈ J , j ̸= 2. (4.5.2)

In Figure 4.4, we examine this as a function of time, t, for a fixed duration u = 1,

and compare it with the true rates t 7→ ν2j(t, 1), as well as its empirical counterpart,

namely empirical occurrence-exposure rates on the macro level in the disabled

state. Here, we also see how badly the Markov chain case of a single microstate

fits, but more importantly, we see that it requires more microstates to be able to

fit the actual transition rates more accurately than we saw with the sojourn time

distributions. However, since we see a higher deviation away from the true model
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for the GLM fit, especially for recoveries, this might also be due to statistical noise.

Indeed, except for a very small amount of data for recoveries at young ages, we see

fits with a high number of microstates that performs at least as well as the GLM

fit.
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Figure 4.4: Estimated transition rates (4.5.2) for recoveries (left) and deaths as disabled
(right) as a function of time, t, with a fixed duration u = 1 for different number of disability
microstates, d2, along with the GLM fit as well as the true rates, ν2j, and the empirical
occurrence-exposure rates.
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Figure 4.5: Estimated transition rates (4.5.2) for recoveries (left) and deaths as disabled
(right) as a function of duration, u, with a fixed time, t, for different number of disability
microstates, d2, along with the GLM fit as well as the true rates, ν2j, and the empirical
occurrence-exposure rates.
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Figure 4.6: Fitted transition rates on micro level in the disabled state, µ(2,̃i)(2,̌i)(·; θ̂), as
well as the initial distribution π(2,̃i)(·; η̂ηη) and exit rates β(2,̃i)j(·; θ̂), for the case d2 = 10.

To round of the analysis, we consider in Figure 4.4 the fitted rates (4.5.2) as a

function of the duration u for a fixed time, t. Due to the aforementioned lack of data,

we focus on t = 50.5 for the recovery rate and t = 60.5 for the mortality as disabled,
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which are ages with sufficient data. Here, we also see the lower accuracy in the

fits close to the origin, as with the conditional densities, which is particularly the

case for the recovery rate. The irregularity of the true rates in this region seems to

require many microstates for the model to fully capture this kind of duration effect,

though the GLM fit also seems to have the same problems, so the performance of

the two fits may also be comparable here. For the mortality as disabled, however,

we see that the GLM fits much better for durations smaller than five years, while

our model then seems to fit better for higher durations. This conforms with the

observations made for the conditional densities.
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4.A Proofs

In this section, we present the proofs of Theorem 4.4.1 and Corollary 4.4.2. To prove

Theorem 4.4.1, we need the following lemma which builds upon Ahmad, Bladt, and

Bladt (2022, Lemma 3.2). The result relates to similar conditional distributions

considered in Norberg (1991) and Hoem (1969b), but where we include past and

future jump times in the conditioning.

Lemma 4.A.1. Let X = {X(t)}t≥0 = {(X1(t), X2(t))}t≥0 be a time-inhomoge-

neous Markov jump process on E with transition intensity matrix function M and

initial distribution (πππ1(0),000). Let Sn = (Ti, Yi)i≤n be the first n jump times and

transitions of the macrostate process X1. Then, for ℓ ∈ {1, . . . , n}, the conditional

process within a macro sojourn,

Wℓ(t)
d
= X(t)

∣∣Sn on (Tℓ−1 ≤ t < Tℓ),

is a time-inhomogeneous Markov jump process taking values on {1, . . . , dYℓ−1
} with

initial distribution

π̃ℓ
i (Sn) =

ααα(Sℓ−1)eeeieee
′
iP̄Yℓ−1

(Tℓ−1, Tℓ)αααℓ+1(Sn)

ααα(Sn)111dYn

,

transition probabilities

p̃ℓij(t, s
∣∣Sn) =

eee′iP̄Yℓ−1
(t, s)eeejeee

′
jP̄Yℓ−1

(s, Tℓ)αααℓ+1(Sn)

eee′iP̄Yℓ−1
(t, Tℓ)αααℓ+1(Sn)

,

and transition intensities

µ̃ℓ
ij(t
∣∣Sn) = µ(Yℓ−1,i)(Yℓ−1,j)(t)

eee′jP̄Yℓ−1
(t, Tℓ)αααℓ+1(Sn)

eee′iP̄Yℓ−1
(t, Tℓ)αααℓ+1(Sn)

,
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where eeek, k ∈ {1, . . . , dYℓ−1
}, is a dYℓ−1

-dimensional column vector with one in

entry k and zeros otherwise.

Proof. It follows from Ahmad, Bladt, and Furrer (2022, Lemma A.1) that

P(Tℓ ∈ dtℓ, Yℓ = yℓ | Sℓ−1 = sℓ−1) =
ααα(sℓ)111dyℓ

ααα(sℓ−1)111dyℓ−1

dtℓ,

which implies, using that P(S0 = s0) = 1,

P(Tn ∈ dtn, Yn = yn, . . . , T1 ∈ dt1, Y1 = y1)

=

n∏
ℓ=1

P(Tℓ ∈ dtℓ, Yℓ = yℓ | Sℓ−1 = sℓ−1) (4.A.1)

=

n∏
ℓ=1

ααα(sℓ)111dyℓ

ααα(sℓ−1)111dyℓ−1

dtℓ. (4.A.2)

= ααα(sn)111dyn
dt1 dt2 · · · dtn.

The remaining part of the proof now largely follows the approach taken in Ahmad,

Bladt, and Bladt (2022, Lemma 3.2). Fix ℓ ∈ {1, . . . , n} and t, s ≥ 0. Applying

same techniques as in (4.A.2), we get from the Markov property of X, that on the

event (Tℓ−1 ≤ s < Tℓ),

E
[
1(Tℓ∈ dtℓ,Yℓ=yℓ,...,Tn∈ dtn,Yn=yn)

∣∣FX(s)
]

= eee′X2(s)
P̄X1(s)(s, tℓ)αααℓ+1(sn) dtℓ · · · dtn,

(4.A.3)

and similarly when conditioning on FX(t), on the corresponding event at time

t. The transition probabilities for Wℓ are then obtained as follows, on the event

(Tℓ−1 ≤ t < Tℓ),

E
[
1(Wℓ(s)=j)

∣∣FWℓ(t)
]
= E

[
1(X(s)=j)1[Tℓ−1,Tℓ)(s)

∣∣FX(t) ∨ σ(Sn)
]

= E
[
1(X(s)=j)1[Tℓ−1,Tℓ)(s)

∣∣FX(t) ∨ σ(Tℓ, Yℓ, . . . , Tn, Yn)
]

=
E
[
1(X(s)=j)1[Tℓ−1,Tℓ)(s)

∣∣FX(t)
]
eee′
j̃
P̄j(s, Tℓ)αααℓ+1(Sn)

eee′X2(t)
P̄X1(t)(t, Tℓ)αααℓ+1(Sn)

=
eee′X2(t)

P̄X1(t)(t, s)eeej̃eee
′
j̃
P̄j(s, Tℓ)αααℓ+1(Sn)

eee′X2(t)
P̄X1(t)(t, Tℓ)αααℓ+1(Sn)

,

where use the Markov property of X in the second equality, and the tower property

with the sigma-algebra FX(s)∨σ(Tℓ, Yℓ, . . . , Tn, Yn) ⊇ FX(t)∨σ(Tℓ, Yℓ, . . . , Tn, Yn)
in the third equality. The fourth equality follows from Ahmad, Bladt, and Furrer
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(2022, Lemma A.1 and Proposition 4.1). Conditioning on X(t) = i, we get the

desired transition probabilities. From these, the corresponding transition intensities

follow immediately:

µ̃ℓ
ij(t
∣∣Sn) = lim

h↓0

p̃ℓij(t, t+ h
∣∣Sn)

h

=
1

eee′iP̄Yℓ−1
(t, Tℓ)αααℓ+1(Sn)

×

lim
h↓0

eee′iP̄Yℓ−1
(t, t+ h)eeej

h
eee′jP̄Yℓ−1

(t+ h, Tℓ)αααℓ+1(Sn)

= µ(Yℓ−1,i)(Yℓ−1,j)(t)
eee′jP̄Yℓ−1

(t, Tℓ)αααℓ+1(Sn)

eee′iP̄Yℓ−1
(t, Tℓ)αααℓ+1(Sn)

.

Here, we use the continuity of the transition (sub-)probability matrix function P̄Yℓ−1

obtained from the continuity of product integrals (whenever they exist). Lastly, to

derive the initial distribution, we see using the same techniques as in (4.A.2), that

P
(
Tn ∈ dtn, Yn = yn, . . . , Tℓ−1 ∈ dtℓ−1,

X(Tℓ−1) = (yℓ−1, ĩ), . . . , T1 ∈ dt1, Y1 = y1
)

(4.A.4)

= ααα(sℓ−1)eeeĩeee
′
ĩ
P̄yℓ−1

(tℓ−1, tℓ)αααℓ+1(sn) dt1 · · · dtn, (4.A.5)

and so

P(Wℓ(Tℓ−1) = i) = E
[
1(X(Tℓ−1)=i)

∣∣σ(Sn)
]

=
ααα(Sℓ−1)eeeĩeee

′
ĩ
P̄Yℓ−1

(Tℓ−1, Tℓ)αααℓ+1(Sn)

ααα(Sn)111dyn

,

as desired.

Proof of Theorem 4.4.1. The proof largely follows the approach taken in Ahmad,

Bladt, and Bladt (2022, Theorem 3.4). For notational convenience, we write E(m)

for the expectation operator E
(πππ

(m)
1 , θ(m))

. Now, it is evident from an application of

Fubini’s theorem that the conditional expected log-likelihood (4.4.1) is on the form

(4.4.7), and it, therefore, suffices to show the results for the conditional expected

statistics (4.4.4)-(4.4.6). By independence between the data points in SSS and Lemma

4.A.1, we get

B̄
(m)
(1,r)(0) =

N∑
n=1

E(m)
[
1(X(n)(0)= (1,r))

∣∣S(n)
]
= π̃0

r

(
S(n)

)
,

which by insertion yields the desired result. For Ī
(m)
i , we get

Ī
(m)
i (u) =

N∑
n=1

E(m)
[
1(X(n)(u)= i)

∣∣S(n)
]
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=

N∑
n=1

M(n)∑
ℓ=1

1[
T

(n)
ℓ−1, T

(n)
ℓ

)(u)1(
Y

(n)
ℓ−1 = i

) di∑
ǐ=1

π̃ℓ
ǐ

(
S(n)

)
p̃ǐ ĩ
(
T

(n)
ℓ−1, u|S

(n)
)
.

The inner sum is then given by

di∑
ǐ=1

π̃ℓ
ǐ

(
S(n)

)
p̃ǐ̃i
(
T

(n)
ℓ−1, u|S

(n)
)

=

di∑
ǐ=1

ααα(m)
(
S(n)
ℓ−1

)
eeeǐeee

′
ǐ
P̄

(m)
i

(
T

(n)
ℓ−1, u)eeeĩeee

′
ĩ
P̄

(m)
i

(
u, T

(n)
ℓ

)
ααα
(m)
ℓ+1

(
S(n)

)
ααα(m)

(
S(n)

)
111dyn

=
ααα(m)

(
S(n)
ℓ−1

)
P̄

(m)
i

(
T

(n)
ℓ−1, u

)
eeeĩeee

′
ĩ
P̄

(m)
i

(
u, T

(n)
ℓ

)
ααα
(m)
ℓ+1

(
S(n)

)
ααα(m)

(
S(n)

)
111dyn

,

which shows the result for Ī
(m)
i . For N̄

(m)

i(i,̌i)
, ǐ ∈ {1, . . . , di}, ǐ ̸= ĩ, we get

N̄
(m)

i(i,̌i)
(u) =

N∑
n=1

M(n)∑
ℓ=1

E(m)

[∫
(0,u]

1[
T

(n)
ℓ−1, T

(n)
ℓ

)(x)1(
Y

(n)
ℓ−1 = i

) dN (n)

i(i,̌i)
(x)

∣∣∣∣∣S(n)

]
.

Then, using the intensity process of {X(n)(x)}
x∈
[
T

(n)
ℓ−1, T

(n)
ℓ

)∣∣S(n) from Lemma 4.A.1,

N̄
(m)

i(i,̌i)
(u)

=

N∑
n=1

M(n)∑
ℓ=1

E(m)

[∫ u

0

1[
T

(n)
ℓ−1, T

(n)
ℓ

)(x)1(
Y

(n)
ℓ−1 = i

)1(X(n)(x)= i)µ̃
ℓ
ĩ̌i

(
x
∣∣S(n)

)
dx

∣∣∣∣S(n)

]

=

N∑
n=1

M(n)∑
ℓ=1

∫ u

0

1[
T

(n)
ℓ−1, T

(n)
ℓ

)(x)1(
Y

(n)
ℓ−1 = i

)×
di∑
r=1

π̃ℓ
r(S(n))p̃rĩ

(
T

(n)
ℓ−1, x|S

(n)
)
µ̃ℓ
ĩ̌i
(x
∣∣S(n)) dx

=

N∑
n=1

M(n)∑
ℓ=1

∫ u

0

1[
T

(n)
ℓ−1, T

(n)
ℓ

)(x)1(
Y

(n)
ℓ−1 = i

)×
ααα(m)

(
S(n)
ℓ−1

)
P̄

(m)
i

(
T

(n)
ℓ−1, x

)
eeeĩµi(i,̌i)

(
x;θ(m)

)
eee′
ĩ
P̄

(m)
i

(
x, T

(n)
ℓ

)
ααα
(m)
ℓ+1

(
S(n)

)
ααα(m)

(
S(n)

)
111dyn

dx.

Taking dynamics in u then yields the desired result. Finally, for N̄
(m)
ij , j ̸= i, we

see that Nij can be written as

Nij(u) =

N∑
n=1

M(n)∑
ℓ=1

1(
Y

(n)
ℓ−1 = i, Y

(n)
ℓ = j

)1(
T

(n)
ℓ ≤u

)1(
X(n)(T

(n)
ℓ −)= i

)1(
X(n)(T

(n)
ℓ )=j

)
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such that

N̄
(m)
ij (u) =

N∑
n=1

M(n)∑
ℓ=1

1(
Y

(n)
ℓ−1 = i, Y

(n)
ℓ = j

)1(
T

(n)
ℓ ≤u

)×
E(m)

[
1(

X(n)(T
(n)
ℓ −)= i

)1(
X(n)(T

(n)
ℓ )=j

) ∣∣∣∣σ(S(n)
)]
.

Now, since

P(m)
(
X(n)(T

(n)
ℓ ) =j

∣∣∣X(n)(T
(n)
ℓ −) = i

)
= µij

(
T

(n)
ℓ ;θ(m)

)
,

we get, using the same techniques as in (4.A.2)-(4.A.5), that

P
(
T

(n)

M(n) ∈ dt
(n)

m(n) , Y
(n)

M(n) = y
(n)

m(n) , . . . , T
(n)
ℓ ∈ dt

(n)
ℓ ,X(T

(n)
ℓ ) =j,X(T

(n)
ℓ −) = i,

T
(n)
ℓ−1 ∈ dt

(n)
ℓ−1, Y

(n)
ℓ−1 = i, . . . , T1 ∈ dt1, Y1 = y1

)
= ααα(m)

(
s
(n)
ℓ−1

)
P̄

(m)
i

(
t
(n)
ℓ−1, t

(n)
ℓ

)
eeeĩµij

(
t
(n)
ℓ ;θ(m)

)
eee′
j̃
P̄

(m)
j

(
t
(n)
ℓ , t

(n)
ℓ+1

)
ααα
(m)
ℓ+2

(
s(n)

)
×

dt
(n)
1 · · · dt(n)

m(n) .

Hence,

N̄
(m)
ij (u)

=

N∑
n=1

M(n)∑
ℓ=1

1(
Y

(n)
ℓ−1 = i, Y

(n)
ℓ = j

)1(
T

(n)
ℓ ≤u

)×
ααα(m)

(
S(n)
ℓ−1

)
P̄

(m)
i

(
T

(n)
ℓ−1, T

(n)
ℓ

)
eeeĩµij

(
T

(n)
ℓ ;θ(m)

)
eee′
j̃
P̄

(m)
j

(
T

(n)
ℓ , T

(n)
ℓ+1

)
ααα
(m)
ℓ+2

(
S(n)

)
ααα(m)

(
S(n)

)
111n

.

Taking dynamics in u then yields the desired result.

Proof of Corollary 4.4.2. It is evident from the complete data log-likelihood (4.3.10)

that the conditional expectation (4.4.8) is on the form (4.4.11), by an application

of Fubini’s theorem. It, therefore, suffices to show that the conditional statistics

are given as in (4.4.13)-(4.4.14). To obtain these, the defining property is, as also

noted in Ahmad, Bladt, and Furrer (2022, Subsection 4.2), that the reset property

(4.2.6) implies that for j ̸= i,

πi

(
t;ηηη(m)

)
P̄

(m)
i (t, s)βββij

(
s;θ(m)

)
is a 1×1-dimensional matrix, and thus cancels if appearing in both the numerator and

denominator of a fraction. Concerning the conditional statistics within macrostates,
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Ī
(m)
i and N̄

(m)

i(i,̌i)
, this property implies

N∑
n=1

c
(m)
i

(
u;S(n)

)
ααα(m)

(
S(n)

)
111n

=

N∑
n=1

M(n)∑
ℓ=1

1[
T

(n)
ℓ−1, T

(n)
ℓ

)(u)1(
Y

(n)
ℓ−1 = i

) c(m)
i

(
u;T

(n)
ℓ−1, i, T

(n)
ℓ , Y

(n)
ℓ

)
ααα(m)

(
T

(n)
ℓ−1, i, T

(n)
ℓ , Y

(n)
ℓ

)
111n
,

(4.A.6)

where, for generic values 0 ≤ x1 < x2 < ∞, and j ∈ J , j ≠ i, we have for

u ∈ [x1, x2),

c
(m)
i (u;x1, i, x2, j) = P̄

(m)
i (u, x2)βββij

(
x2;θ

(m)
)
πππi

(
x1;ηηη

(m)
)
P̄

(m)
i (x1, u),

ααα(m)(x1, i, x2, j)111dj
= πππi

(
x1;ηηη

(m)
)
P̄

(m)
i (x1, x2)βββij

(
x2;θ

(m)
)
,

(4.A.7)

and zero otherwise. Hence, for a fixed time u between two jump times, each term

on the right-hand side of (4.A.6) only depends on the last jump before u, the next

jump time after u, and state jumped to at the next jump time; the past and future

sojourns outside time u are cancelled out. Consequently, when summing over all

observations and corresponding sojourns, one can equivalently sum over the data

points in Ti, as these provide the jump times and states needed (cf. (4.4.9)). This

gives

N∑
n=1

c
(m)
i

(
u;S(n)

)
ααα(m)

(
S(n)

)
111n

=

Mi∑
n=1

c
(m)
i

(
u; T (n)

i

)
ααα(m)

(
T (n)
i

)
111n
, (4.A.8)

which shows (4.4.13) for Ī
(m)
i and N̄

(m)

i(i,̌i)
. Concerning the conditional statistics for

jumps between macrostates, N̄
(m)
ij , we use N̄

(m)
ij from Theorem 4.4.1 to get

N̄
(m)
ij (u) =

dj∑
j̃=1

N̄ij(u)

=

N∑
n=1

M(n)∑
ℓ=1

1(
T

(n)
ℓ ≥u

)βij

(
T

(n)
ℓ ;θ(m)

)
πππj

(
T

(n)
ℓ ;ηηη(m)

)a(m)
ij

(
T

(n)
ℓ ;S(n)

)
eeeĩ

ααα(m)
(
S(n)

)
111n

.

Using the same technique with the fraction as in (4.A.6)-(4.A.8), we get

N̄
(m)
ij (u)

=

N∑
n=1

M(n)∑
ℓ=1

1(
T

(n)
ℓ ≥u

)1(
Y

(n)
ℓ−1 = i, Y

(n)
ℓ = j

)×
πππi

(
T

(n)
ℓ−1;ηηη

(m)
)
P̄

(m)
i

(
T

(n)
ℓ−1, T

(n)
ℓ

)
eeeĩβij

(
T

(n)
ℓ ;θ(m)

)
ααα(m)

(
T

(n)
ℓ−1, i, T

(n)
ℓ , j

)
111n



108 Chapter 4. Ahmad & Bladt (2022a)

=

Mi∑
n=1

1(
τ
(n)
i ≥u

)1(
Z

(n)
i = j

)πππi

(
R

(n)
i ;ηηη(m)

)
P̄

(m)
i

(
R

(n)
i , τ

(n)
i

)
eeeĩβij

(
τ
(n)
i ;θ(m)

)
ααα(m)

(
T (n)
i

)
111n

.

Taking dynamics in u then yields (4.4.14). Concerning the conditional statistics for

initiations into macrostates, N̄
(m)
i , we use the exact same approach as for N̄

(m)
ij ,

with the only difference being the summation over j of eeej̃βji(·;θ(m)) instead of a

summation over j̃ of πj(·;ηηη(m))eee′
j̃
.
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4.B General EM algorithms

Algorithm 4.2 EM algorithm for the general aggregate Markov model

Input : Data points s = (s(1), . . . , s(N)), each element consisting of m(n) jump times

and transitions on the macro level, and initial parameters (πππ
(0)
1 ,θ(0)) ∈ [0, 1]d1 ×Θ.

0) Set m := 0

1) E-step: For r ∈ {1, . . . , d1}, compute conditional statistics for the initial state,

B̄
(m)

(1,r)(0) =

N∑
n=1

π
(m)

(1,r)(0)eee
′
rP̄

(m)
1

(
0, t

(n)
1

)
ααα

(m)
1

(
s(n)

)
ααα(m)

(
s(n)

)
111n

,

and, for i,j∈ E, j ≠ i, and θ ∈ Θ (on a suitable grid), compute the conditional
expected log-likelihood for the transitions:

L̄
(m)
ij (θ) =

∫
(0,T ]

log(µij(u;θ)) dN̄
(m)
ij (u)−

∫ T

0

Ī
(m)
i (u)µij(u;θ) du,

where

Ī
(m)
i (u) =

N∑
n=1

eee′
ĩ
c
(m)
i

(
u; s(n)

)
eeeĩ

ααα(m)
(
s(n)

)
111n

,

and, for ǐ ∈ {1, . . . , di}, ǐ ̸= ĩ,

dN̄i(i,̌i)(u) =

N∑
n=1

µi(i,̌i)

(
u;θ(m))eee′ǐc(m)

i

(
u; s(n)

)
eeeĩ

ααα(m)
(
s(n)

)
111n

du,

while for j ̸= i,

dN̄
(m)
ij (u) =

N∑
n=1

M(n)∑
ℓ=1

µij

(
u;θ(m))eee′j̃a(m,ℓ)

ij

(
u; s(n)

)
eeeĩ

ααα(m)
(
s(n)

)
111n

dε
T

(n)
ℓ

(u).

2) M-step: Update the parameters:

π̂
(m+1)

(1,r) (0) =
B̄

(m)

(1,r)(0)

N
,

θ̂(m+1) = argmax
θ

∑
i,j∈E
j̸=i

L̄
(m)
ij (θ).

3) Set m := m+ 1 and GOTO 1) until a stopping rule is satisfied.

Output: Fitted parameters (π̂ππ1, θ̂).
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Algorithm 4.3 EM algorithm for the aggregate Markov model with the reset
property

Input : Initial parameters (θ(0), ηηη(0)) ∈ Θ×H, and for each macrostate i ∈ J ,
data points within the macrostate,

T i =
{(
r
(n)
i , τ

(n)
i , z

(n)
i

)}
n∈{1,...,mi}

,

consisting of time of entries r
(n)
i into the macrostate, jump times τ

(n)
i out of the

state, and macrostate z
(n)
i jumped to at time τ

(n)
i .

0) Set m := 0

1) E-step: For each macrostate i ∈ J ,

� For each n ∈
{
1, . . . ,m

(n)
i

}
, run the E-step of the EM algorithm in

Ahmad, Bladt, and Bladt (2022, Appendix A) with

– Parameter space Θ

– State-space of transient states {1, . . . , di}

– A single IPH observation τ
(n)
i − r

(n)
i

– Initial distribution πππi

(
r
(n)
i ;ηηη(m)

)
– Sub-intensity matrix function x 7→ Mii

(
x+ r

(n)
i ;θ(m)

)
– Exit rate vector function x 7→ βββ

iz
(n)
i

(
x+ r

(n)
i ;θ(m)

)
which outputs:

– Conditional statistics for the initial state: N̄
(n,m)
i

(
R

(n)
i

)
– Likelihood for transitions between transient states: L̄

(n,m)

i(i,̌i)
(θ)

– Likelihood for transitions to the ’absorbing’ state: L̄
(n,m)

iz
(n)
i

(θ)

for θ ∈ Θ (on a suitable grid).

2) M-step: Update the parameters:

η̂ηη(m+1) = argmax
ηηη

∑
i∈E

mi∑
n=1

N̄
(n,m)
i

(
R

(n)
i

)
log
(
πi

(
R

(n)
i ;ηηη

))

θ̂(m+1) = argmax
θ

∑
i∈E

mi∑
n=1

(
di∑
ǐ=1
ǐ̸=ĩ

L̄
(n,m)

i(i,̌i)
(θ) +

∑
j∈J
j ̸=i

L̄
(n,m)
ij (θ)

)
.

3) Set m := m+ 1 and GOTO 1) until a stopping rule is satisfied.

Output: Fitted parameters (θ̂, η̂ηη).



Chapter 5

Phase-type representations of stochastic

interest rates with applications to life

insurance

This chapter is based on the manuscript Ahmad and Bladt (2022b).

Abstract

The purpose of the present paper is to incorporate stochastic interest

rates into a matrix-approach to multi-state life insurance, where formulas

for reserves, moments of future payments and equivalence premiums

can be obtained as explicit formulas in terms of product integrals or

matrix exponentials. To this end we consider the Markovian interest

model, where the rates are piecewise deterministic (or even constant) in

the different states of a Markov jump process, and which is shown to

integrate naturally into the matrix framework. The discounting factor

then becomes the price of a zero-coupon bond which may or may not be

correlated with the biometric insurance process. Another nice feature

about the Markovian interest model is that the price of the bond coincides

with the survival function of a phase-type distributed random variable.

This, in particular, allows for calibrating the Markovian interest rate

models using a maximum likelihood approach to observed data (prices)

or to theoretical models like e.g. a Vasiček model. Due to the denseness

of phase-type distributions, we can approximate the price behavior of any

zero-coupon bond with interest rates bounded from below by choosing

the number of possible interest rate values sufficiently large. For observed

data models with few data points, lower dimensions will usually suffice,

while for theoretical models the dimensionality is only a computational

issue.

Keywords: Zero-coupon bond; Phase-type distribution; Stochastic interest rate;

Multi-state life insurance; Thiele’s differential equation
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5.1 Introduction

This paper considers stochastic interest models, which are state-wise deterministic

dependent on an underlying finite state-space Markov process. The spot rate r(u)

at time u is assumed to be on the form

r(u) = rX(u)(u), (5.1.1)

where {X(u)}u≥0 denotes a time-inhomogeneous Markov jump process on a p-

dimensional state-space, and ri(u), i = 1, ..., p, are deterministic functions. Assum-

ing an arbitrage free bond market, a zero-coupon bond with terminal date T can

then be defined in terms of its prices by

B(t, T ) = EQ
(
e−

∫ T
t

rX(u)(u) du
∣∣∣ F(t)

)
, 0 ≤ t ≤ T, (5.1.2)

where F(t) = σ(X(u) : 0 ≤ u ≤ t) is the σ-algebra generated by {X(u)}u≥0.

The expectation is taken under some risk-neutral measure Q (see, e.g., Björk,

2009; Elliott and Kopp, 1999). If all ri(u) ≥ 0, a key result of the paper is that,

conditionally onX(t), T → B(t, T ) equals the survival function of an inhomogeneous

phase-type distribution.

In the presence of negative interest rates, this is longer certain since B(t, T ) may

be larger than one and non-monotone. However, assuming that the negative interest

rates are bounded from below by a number −ρ < 0, we get from (5.1.2) that

e−ρ(T−t)B(t, T ) = EQ
(
e−

∫ T
t

(rX(u)(u)+ρ) du
∣∣∣ F(t)

)
(5.1.3)

then equals a survival function of an inhomogeneous phase-type distribution.

The interpretation that the bond prices are (possibly scaled) phase-type survival

functions enables us to fit (calibrate) the transition rates of {X(u)}u≥0 from the

observed bond prices by using a maximum likelihood approach. Since phase-

type distributions are dense, i.e. can approximate any distribution with a sufficient

number of phases, we may then fit a PH to the observed survival function (equivalent

to a histogram) such that all observations (bond prices) are hit. The last point of

observation may be considered right censored. All fitted transition rates are under

a risk-neutral measure Q.

The functional form of the state-wise price of the bond was noted already in

Norberg (2003, (3.17)), though its relation to phase-type theory was not mentioned,

and its potential was not further explored. We also believe that the “bond price

representation” (5.1.2) of a phase-type survival function is unknown to the phase-

type community.

In the context of multi-state life insurance, modeling stochastic interest rates also

play a crucial role. The literature varies from SDE based models, see e.g. Norberg
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and Møller (1996), Møller and Steffensen (2007), Buchardt (2014), Baños (2020),

and Asmussen and Steffensen (2020), to the finite state-space Markov chain models

of Norberg (1995a,b) on the form (5.1.1). In the SDE-based methods, one often

relies on an independence assumption between interest rates and biometric risk

so that available forward rate curves can be used for valuation; an exception is

Buchardt (2014), where dependence between interest rates and biometric risk is

incorporated. In either case, the SDE-based models do not integrate into classic

Thiele and Hattendorff type of results, which limits time-dynamic valuations based

on these traditional methods.

The spot rate model (5.1.1), however, can be wholly incorporated into Thiele and

Hattendorff type of differential equations for reserves and higher order moments,

as shown by Norberg (1995b,a) and further explored in Norberg (2003). These

observations allow for dependency between interest rates and transitions in life

insurance, as well as time-dynamic valuations, without altering the traditional

methods. The latter refers to the model (5.1.1) as the Markov chain market while

Koller (2012) refers to it as Markovian interest intensities.

In this paper, we work with an extended version of the bond prices,

EQ
(
1(X(T )=j)e

−
∫ T
t

rX(u)(u) du
∣∣∣ F(t)

)
, j = 1, ..., p, (5.1.4)

which in an insurance context are the discounting factors on the event that the

terminal state will be j. Providing a matrix-representation for (5.1.4), we then

find how it naturally integrates into the matrix framework of Bladt, Asmussen,

and Steffensen (2020). The extension is convenient from a mathematical point

of view and also relates to the partial (Bladt, Asmussen, and Steffensen, 2020)

and retrospective reserves in single states (Subsection 5.E in Norberg, 1991). The

treatment of the latter, however, is outside the scope of the current paper. We

restate the results of the former framework in the context of stochastic interest rates.

The proofs, and parts of the exposition, will differ from that of Bladt, Asmussen,

and Steffensen (2020).

Markov jump processes in finance are often used in connection with regime

switching models or where the different states are used to alter the parameters of

usually SDE-driven processes. Here transitions can take place under some physical

measure and may have a real-world interpretation. The Markov chain model

for interest rates (5.1.1) can be thought of as a regime-switching model under a

risk-neutral measure, particularly if the interest rates for each state are known a

priori.

The Markov jump process approach can approximate bond price modeling

in terms of diffusions. Formal constructions have been made in Bharucha-Reid

(1960), Kurtz (1970, 1978), and Mijatović and Pistorius (2013). Since phase-type

distributions form a dense class of distributions on the positive reals, this paper will
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offer an alternative and parsimonious way to approximate any zero-coupon bond

(arbitrarily close) by a bond on the form (5.1.2).

The paper is organised as follows. Section 5.2 introduces some background and

notation. Bond price modeling using phase-type distribution is developed in Section

5.3. In Section 5.4, we develop estimation of the Markovian interest rate model, both

with and without restricted interest rates, and we provide examples of calibration to

diffusion models and real data. In Section 5.5 we adjust the life insurance framework

of Bladt, Asmussen, and Steffensen (2020) to allow for stochastic interest rates of

the form (5.1.1). It contains examples of how to set up a model using the fitted

bond parameters of Section 5.3 as well as a matrix-based method for calculating

the equivalence premium, either via Newton’s method or as an explicit formula. In

Section 5.6 we present a numerical example. For the sake of exposition, the proofs

are deferred to Appendix 5.B.

5.2 Background

5.2.1 Notation

Unless otherwise stated, row vectors are denoted by bold Greek lowercase letters

(e.g., πππ) and column vectors by bold lowercase Roman letters (e.g., vvv). Elements

of vectors are denoted by the same unbold, indexed letters (like vvv = (v1, ..., vp)
′).

The vector eeei is the column vector which is 1 at index i and zero otherwise whereas

eee = (1, 1, ..., 1)′.

Matrices are denoted by bold capital letters (Greek or Roman) and their elements

by their corresponding lowercase indexed letters (e.g. A = {aij}). If vvv is a vector

(row or column), then ∆(vvv) denotes the diagonal matrix, which has vvv as diagonal.

5.2.2 The product integral

Consider a time-inhomogeneous Markov jump process X = {X(t)}t≥0 taking

values in a finite state space E = {1, . . . , p}, with intensity matrix (functions)

M(t) = {µij(t)}i,j∈E . Denote by P (s, t) = {pij(s, t)} the corresponding transition

matrix, the elements of which are the transition probabilities pij(s, t) = P(X(t) =

j|X(s) = i) for i, j ∈ E. The transition matrix P (s, t) then satisfies Kolmogorov’s

forward and backward differential equations,

∂

∂t
P (s, t) = P (s, t)M(t), P (s, s) = I,

∂

∂s
P (s, t) = −M(s)P (s, t), P (t, t) = I.

(5.2.1)
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The solution to (5.2.1), which in general is not explicitly available, will be denoted

by
t

R
s

(I +M(x) dx) (5.2.2)

and referred to as the product integral of M(x) from s to t. This is also true for

general matrix functions M(t), which satisfy (5.2.1) but are not intensity matrices.

Product integrals have several nice properties. For any s, t, u ≥ 0, it satisfies the

product rule

u

R
s

(I +M(x) dx) =
t

R
s

(I +M(x) dx)
u

R
t

(I +M(x) dx), (5.2.3)

which in turn implies that the product integral is invertible with[
t

R
s

(I +M(x) dx)

]−1

=
s

R
t

(I +M(x) dx). (5.2.4)

If all M(x) commute, then

t

R
s

(I +M(x) dx) = exp

(∫ t

s

M(x) dx

)
. (5.2.5)

In particular, for M(x) ≡ M , we get

t

R
s

(I +M(x) dx) = eM(t−s). (5.2.6)

If A(x) and B(y) commute for all x, y, then

t

R
s

(I + (A(x) +B(x)) dx) =
t

R
s

(I +A(x) dx)
t

R
s

(I +B(x) dx). (5.2.7)

In particular,

e−r(t−s)
t

R
s

(I +A(x) dx) =
t

R
s

(I + [A(x)− rI] dx), (5.2.8)

where I denotes the identity matrix.

Remark 5.2.1. The idea behind the notation of the product integral comes from a

Riemann type of construction using step-functions. If we approximate M(x) by

a piecewise constant matrix function taking values M(xi) on [xi, xi + ∆xi) for

s = x0 < x1 < · · · < xN = t and where ∆xi = xi+1 − xi, then by (5.2.6) the

product integral over [xi, xi +∆xi) equals the matrix exponential

eM(xi)∆xi = I +M(xi)∆xi +O(∆x2i ).

By letting ∆xi → 0 and using (5.2.3) we then arrive at the notation (5.2.2). △
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A valuable formula for computing integrals involving product integrals is the

so-called Van-Loan’s formula for product integrals (see Lemma 2 in Bladt, Asmussen,

and Steffensen, 2020), which states that

t

R
s

I +

A(u)B(u)

0 C(u)

 du

 (5.2.9)

=


t

R
s

(I +A(u) du)

∫ t

s

x

R
s

(I +A(u) du)B(x)
t

R
x

(I +C(u) du) dx

0
t

R
s

(I +C(u) du)

.

This formula is valid for matrix functions A(x),B(x) and C(x), which are piecewise

continuous. The matrices A(x) and C(x) are square matrices of possibly different

dimensions, so B(x) is not necessarily a square matrix.

Let

C(s, t) =
t

R
s

(I +A(x) dx)⊗ I,

where ⊗ denotes the Kronecker product. The Kronecker product between a p1 × q1
matrix A = {aij} and a p2 × q2 matrix B = {bij} is defined as the p1p2 × q1q2
matrix

A⊗B = {aijB}i=1,...,p1,j=1,...,q1 = {aijbkℓ}.

Using that (A⊗B)(C ⊗D) = (AC)⊗ (BD), we get

∂

∂t
C(s, t) =

t

R
s

(I +A(x) dx)A(t)⊗ I

=

(
t

R
s

(I +A(x) dx)⊗ I

)
(A(t)⊗ I)

= C(s, t) (A(t)⊗ I) ,

and we conclude that

C(s, t) =
t

R
s

(I + (A(x)⊗ I) dx). (5.2.10)

A similar argument gives that

I ⊗
t

R
s

(I +A(x) dx) =
t

R
s

(I + (I ⊗A(x)) dx). (5.2.11)
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Finally, if A(t) and B(t) are Riemann integrable matrix functions of dimensions

q × q and p× p respectively, then

t

R
s

(I + (A(x)⊕B(x)) dx) =
t

R
s

(I +A(x) dx)⊗
t

R
s

(I +B(x) dx), (5.2.12)

where ⊕ denotes the Kronecker sum, defined by A(t)⊕B(t) = A⊗ I + I ⊗B(t),

and where the first I has the dimension of B(t) and the second I has the dimension

of A(t). To see this, we notice that A(t)⊗ I and I ⊗B(t) commute, so by (5.2.7)

we get that

t

R
s

(I + (A(x)⊕B(x)) dx) =
t

R
s

(I + (A(x)⊗ I) dx)
t

R
s

(I + (I ⊗B(x)) dx)

=

[
t

R
s

(I +A(x) dx)⊗ I

][
I ⊗

t

R
s

(I +B(x) dx)

]

=
t

R
s

(I +A(x) dx)⊗
t

R
s

(I +B(x) dx).

For further details on Kronecker products and sums, we refer to Graham (1981).

5.2.3 Phase-type distributions

Consider a (time-inhomogeneous) Markov jump process {Y (t)}t≥0, where state p+1

is absorbing and 1, ..., p are transient. The intensity matrix M(x) for {Y (t)}t≥0 is

then on the form

M(x) =

(
T (x) ttt(x)

000 0

)
, (5.2.13)

where T (x) is a p× p sub-intensity matrix consisting of transition rates between

transient states, and ttt(x) = −T (x)eee is a column vector of exit rates, i.e. rates for

jumping to the absorbing state. Then by Van-Loan’s formula (5.2.9), the transition

matrix for {Y (t)}t≥0 is given by

P (s, t) =
t

R
s

(
I +

(
T (u) ttt(u)

000 0

)
du

)

=


t

R
s

(I + T (u) du) eee−
t

R
s

(I + T (u) du)eee

0 1

.
Hence R

t

s
(I + T (u) du) is the matrix which contains the transition probabilities

between the transient states from times s to t.
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We assume that P(Y (0) = p + 1) = 0, and define πi = P(Y (0) = i). Hence

πππ = (π1, ..., πp) satisfies that πππeee =
∑

i πi = 1, so that πππ is the initial distribution

for {Y (t)}t≥0 concentrated on the transient states only. Then

(P(Y (t) = 1),P(Y (t) = 2), ...,P(Y (t) = p)) = πππ
t

R
0

(I + T (u) du) (5.2.14)

is a row vector that contains the probabilities of the process being in the different

transient states at time t.

Now let

τ = inf{t > 0 : Y (t) = p+ 1}

denote the time until absorption. Then from (5.2.14) we immediately get that

P(τ > t) = πππ
t

R
0

(I + T (u) du)eee (5.2.15)

since the right-hand side equals the probability of the process belonging to any of

the transient states by time t, i.e., absorption has not yet occurred. Differentiating

(5.2.15) and using (5.2.1) we see that τ has a density on the form

fτ (x) = πππ
x

R
0

(I + T (u) du)ttt(x). (5.2.16)

Definition 5.2.2. The distribution of τ is called an inhomogeneous phase-type

distribution, and we write τ ∼ IPH(πππ,T (x)), where the indexation of T (x) is over

x ≥ 0.

We do not need to specify ttt(x) since it is implicitly given by T (x). Indeed,

since row sums of intensity matrices (and hence of (5.2.13)) are zero, we have that

ttt(x) = −T (x)eee. If T (x) ≡ T , then we simply write τ ∼ PH(πππ,T ). This corresponds

to the underlying Markov jump process being time-homogeneous.

We also notice T (x)+∆(ttt(x)) defines an intensity matrix (without the absorbing

state).

The class of phase-type distributions (both PH and IPH) is dense (in the sense

of weak convergence) in the class of distributions on the positive reals, implying

that any distribution with support R+ may be approximated arbitrarily close by

a phase-type distribution. This result is also of considerable practical importance

since phase-type distributions can be fitted both to data and distributions using a

maximum likelihood approach. For the time-homogenous case, PH, see Asmussen,

Nerman, and Olsson (1996) while for IPH we refer to Albrecher, Bladt, and Yslas

(2022).
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5.3 Phase-type representations of bond prices

Consider the stochastic interest rate model of (5.1.1), and let E = {1, . . . , p} denote

the state-space of the Markov jump process X = {X(t)}t≥0 with intensity matrix

M(t) = {µij(t)}i,j∈E . Let rrr(t) = (r1(t), . . . , rp(t))
′
be the column vector which

contains the interest rate functions.

The main result of this section is the following result.

Theorem 5.3.1. For i, j ∈ E, let

dij(s, t) = E

(
1(X(t)=j) exp

(
−
∫ t

s

rX(u)(u) du

)∣∣∣∣X(s) = i

)
, s ≤ t.

Then the matrix D(s, t) = {dij(s, t)}i,j∈E has the following representation

D(s, t) =
t

R
s

(I + [M(u)−∆(rrr(u))] du). (5.3.1)

Proof. Conditioning on the state of s+ ds, we get that

dij(s, t) = (1 + µii(s) ds)dij(s+ ds, t)(1− ri(s) ds)

+
∑
k ̸=i

µik(s) dsdkj(s+ ds, t)(1− ri(s) ds)

= dij(s+ ds, t)(1− ri(s) ds) + µii(s) dsdij(s+ ds, t)

+
∑
k ̸=i

µik(s) dsdkj(s+ ds, t)

so that

− ∂

∂s
dij(s, t) = −ri(t)dij(s, t) +

∑
k

µik(t)dkj(s, t). (5.3.2)

In matrix form, this amounts to

∂

∂s
D(s, t) = − (M(s)−∆(rrr(s)))D(s, t). (5.3.3)

Noting that D(t, t) = P (t, t) = I, we hence conclude that (5.3.1) holds.

Remark 5.3.2. The quantities dij(s, t) in Theorem 5.3.1 are introduced as rrr-

deflated transition probabilities in Buchardt, Furrer, and Møller (2020, Appendix

1), where the authors derive the differential equation (5.3.3). While they give a

martingale-based proof, we provide a probabilistic sample path argument and give

a product integral representation. △
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Remark 5.3.3. Multiplying both sides of (5.3.3) with e from the right, we recover

the differential equation for the state-wise discount factors obtained in Norberg

(1995a, (4.4)). △

Assume that all ri(x) are bounded from below, and let

ρ = max

(
0,−min

i∈E
inf
x≥0

ri(x)

)
.

Then ρ = 0 if all interest rates are non-negative, and otherwise −ρ provides a lower

bound for all of them. Then we have the following result.

Theorem 5.3.4. The price of the zero-coupon bond (5.1.2) satisfies

B(t, T ) = EQ

(
exp

(
−
∫ T

t

rX(u)(u) du

)∣∣∣∣∣X(t)

)
= eee′X(t)D(t, T )eee. (5.3.4)

Conditional on X(t) = i,

T → e−ρ(T−t)B(t, T )

is the survival function for an IPH distributed random variable, τ(t), with initial

distribution eee′i and intensity matrices M(x+ t)−∆(rrr(x+ t))− ρI, x ≥ 0.

In particular, if all interest rates are non-negative, then ρ = 0 and the price itself,

T → B(t, T ) becomes the survival function.

Proof. The formula (5.3.4) follows directly from the construction of the D(t, T )

matrix by summing out over j in dij(t, T ), which corresponds to post-multiplying

D(t, T ) by eee. Next, we notice that

e−ρ(T−t)
T

R
t

(I + [M(u)−∆(rrr(u))] du) =
T

R
t

(I + [M(u)−∆(rrr(u))− ρI] du) ,

which follows from (5.2.8). The matrixM(x)−∆(rrr(x))−ρI is a sub-intensity matrix,

which together with the distribution for X(t) defines a phase-type representation

(πππt,M(x+ t)−∆(rrr(x+ t)− ρI), x ≥ 0 (starting at time t).

The forward rate f(t, T ) is defined by

f(t, T ) = − ∂

∂T
logB(t, T ).

Using Theorem 5.3.4, we may write

B(t, T ) = eρ(T−t)F̄τ(t)(T ),

where F̄τ(t)(T ) = 1− Fτ(t)(T ) denotes the survival function for

τ(t) ∼ IPH(eee′X(t),M(x+ t)−∆(rrr(x+ t))− ρI).
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Then

− ∂

∂T
logB(t, T ) = −ρ+

fτ(t)(T )

1− Fτ(t)(T )
,

where fτ(t) denotes the density function for τ(t). Hence we have proved the following

result.

Corollary 5.3.5. Conditional on X(t) = i, the forward rate f(t, T ) equals the

hazard rate at T for the random variable τ(t) ∼ IPH(eeei,M(x+t)−∆(rrr(x+t))−ρI),
less ρ, i.e.

f(t, T ) =
fτ(t)(T )

1− Fτ(t)(T )
− ρ. (5.3.5)

Another immediate consequence of Theorem 5.3.4 is the following.

Corollary 5.3.6. Assume that all interest rates are non-negative. Then conditional

on X(t) = i, the random variable τ(t) ∼ IPH(eee′i,M(t+ x)−∆(rrr(t+ x))), x ≥ 0

then has a c.d.f. given by

Fτ(t)(T ) = 1−B(t, T ) = EQ

(∫ T

t

rX(y)(y)e
−

∫ y
t

rX(u)(u) du dy

∣∣∣∣∣X(t) = i

)
.

Proof. This follows from Theorem 5.3.4with ρ = 0 and

fτ(t)(y) = − ∂

∂y
B(t, y) = EQ

(
rX(y)(y)e

−
∫ y
t

rX(u)(u) du
∣∣∣X(t) = i

)
.

Integrating the expression then yields the result.

For the case where t = 0, the above results are reduced to the following.

Corollary 5.3.7. Assume that all interest rates are non-negative. Let τ ∼
IPH(πππ,M(x)−∆(rrr(x))) and let πππ = (π1, ..., πp)

′ denote the (initial) distribution

of X(0). Then

P(τ > T ) = EQ

(
exp

(
−
∫ T

0

rX(u)(u) du

))
(5.3.6)

Fτ(t)(T ) = = EQ

(∫ T

0

rX(y)(y)e
−

∫ y
0

rX(u)(u) du dy

)
(5.3.7)

f(0, T ) =
fτ (T )

1− Fτ (T )
. (5.3.8)

Remark 5.3.8. The density fτ (t) has the interpretation of being the expected

present value of the current interest rate accumulated in a small time interval

arround t, and Fτ (T ) is the present value of the total accumulated interest rate

during [0, T ]. △
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Example 5.3.9. Assume that all interest rates are non-negative. If {X(t)}t≥0 is

time-homogeneous and rrr(t) = rrr = (r1, ..., rp), then we also have that

EQ

(∫ T

0

e−
∫ y
0

rX(u) du dy

)
=

∫ T

0

EQ
(
e−

∫ y
0

rX(u) du
)
dy

=

∫ T

0

P(τ > y) dy

=

∫ T

0

πππe(M−∆(rrr))yeeedy

= πππ(M −∆(rrr))−1e(M−∆(rrr))Teee− πππ(M −∆(rrr))−1eee

= µ
[
1− π̃ππe(M−∆(rrr))Teee

]
= µP(τ̃ > T ),

where µ = πππ [−(M −∆(rrr))]
−1
eee is the expectation of τ ,

π̃ππ =
πππ [−(M −∆(rrr))]

−1

πππ [−(M −∆(rrr))]
−1
eee

is the stationary distribution of a phase-type renewal process with inter-arrivals being

PH(πππ,M −∆(rrr)), see Bladt and Nielsen (2017, Th. 5.3.4), and τ̃ ∼ PH(π̃ππ,M −
∆(rrr))). Hence the swap rate ρ can be expressed as

ρ =
EQ
(∫ T

0
rX(y)e

−
∫ y
0

rX(u) du dy
)

EQ
(∫ T

0
e−

∫ y
0

rX(u) du dy
) =

Fτ (T )

µP(τ̃ > T )

=
1− πππe(M−∆(rrr))Teee

πππ [−(M −∆(rrr))]
−1

e(M−∆(rrr))Teee
. △

5.4 Estimation

Time-homogeneous phase-type distributions or inhomogeneous phase-type distribu-

tion where the sub-intensity matrices are on the form

T (x) = λθ(x)T ,

for some parametric function λθ(x), can be estimated in terms of an EM algorithm.

An observation from a phase-type distribution is hence considered to be the time

until a Markov jump process is absorbed, where all transitions and sojourn times in

the different states are unobserved. This makes the estimation an incomplete data

problem, which an EM algorithm can solve. Essentially the unobserved sufficient

statistics (number of jumps between states, total time in then different states)

are replaced by their conditional expectations given data and used in the explicit
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formulas for the maximum likelihood estimators. This updates the parameters, and

the procedure is repeated until convergence. Convergence is secured as the likelihood

increases in each step. The limit may be a global or only a local maximum.

Repeated data (absorption times), of course result in the same conditional

expectations given their data. This carries over to weighted data as well, and hence

the EM algorithm may efficiently estimate data in histograms. In particular, we

may estimate to theoretical distributions by treating their discretized density as a

histogram. This provides the link to fitting the intensity matrix of {X(t)}t≥0 in

(5.1.1) through bond prices, (5.1.2) or (5.1.3), either in terms of observed data or

to a theoretical model.

Indeed, consider bond prices B(0, Ti) available at different maturities T1, ..., Tn.

Then according to Theorem 5.3.4 we have that

B(0, Ti) = πππD(0, Ti)eee = eρTiP(τ > Ti), i = 1, 2, ..., n,

for some ρ > 0 and where τ ∼ IPH(πππ,M(u)−∆(rrr(u))− ρI). Then ρ must satisfy

that

e−ρTiB(0, Ti) ≤ 1, i = 1, 2, ..., n.

This can be achieved by choosing

ρ = max
i∈{1,...,n}

(
logB(0, Ti)

Ti

)
.

In the life insurance context in Denmark, by regulation the bond prices (discounting

factors) must be computed from discrete forward rates, fd(0, Ti), published by the

Danish Financial Supervisory Authority. Thus

B(0, Ti) = (1 + fd(0, Ti))
−Ti

from which
logB(0, Ti)

Ti
= − log(1 + fd(0, Ti)).

Hence

ρ = max
i

(− log(1 + fd(0, Ti))) = −min
i

log(1 + fd(0, Ti)). (5.4.1)

Hence calibrating to data B(0, Ti), i = 1, ..., n can be done by fitting PH or IPH

distributions to e−ρTiB(0, Ti) using an EM algorithm. The possible interest rates

can either be picked by the EM algorithm (referred to as unrestricted interest rates),

or we can fix the possible rates to values (or functions) of our choice (restricted

interest rates).

In the former case, we obtain a maximum likelihood estimate (π̂ππ, T̂ (x)) for the

parameters. The estimate for M(x) is then readily obtained from

M̂(x) = T̂ (x) +∆(ttt(x)).
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To find the induced interest rates, we also have from Theorem 5.3.4 that

T̂ (x) = M̂(x)−∆(rrr(x))− ρI

so we conclude that the estimated exit rates ttt(x) must satisfy

ttt(x) = rrr(x) + ρeee,

where eee is the vector of ones. Hence the induced interest rates are given by

rrr(x) = ttt(x)− ρeee.

Neither the transition rates nor the interest rates are unique, but the resulting

discount factor (bond price) is invariant under different representations, which is

all that matters regarding reserving in the insurance context.

If, in turn, we decide to choose the possible range of interest rates ri(x) ourselves,

then the EM-algorithm is modified not to update the exit rates. This modification

is easily dealt with by simply removing updates of the latter in the original EM

algorithm of Asmussen, Nerman, and Olsson (1996) or Albrecher, Bladt, and Yslas

(2022). See Appendix 5.A for details. In this case, the exit rates will be fixed at

ttt(x) = rrr(x) + ρeee

so

M̂(x) = T̂ (x) +∆(rrr(x)) + ρI.

While the parametrization of the transition rates may not be unique, the interest

rates remain fixed.

We now present two examples of fitting to real data and one example to a

theoretical model. The estimation is computed using the R-package matrixdist.

Example 5.4.1 (Fitting to observed bond prices with restricted interest rates).

Bond prices, B(0, T ) as of 31/12/2003 (time zero) with maturities T = 1, 2, ..., 30

years are available from the Danish Financial Supervisory Authority and given

by 0.9755051, 0.9434934, 0.9059545, 0.8679149, 0.8251354, 0.7857250, 0.7472528,

0.7075066, 0.6679984, 0.6286035, 0.5951316, 0.5625969, 0.5310441, 0.5005108,

0.4710280, 0.4448469, 0.4197550, 0.3958013, 0.3728296, 0.3508858, 0.3319907,

0.3140894, 0.2970098, 0.2808430, 0.2654229, 0.2508400, 0.2369349, 0.2237965,

0.2112725, 0.1994495, respectively.

This corresponds to an empirical survival distribution to which we can then fit

phase-type distributions of different dimensions. Regarding the discretization, we

let 0.5+ i, i = 0, ..., 29 denote the data points with probability mass B(i)−B(i+1),

where B(0) = 1, and a right censored data point at 30 with probability mass

B(30) = 0.1994495. Since all observed bond prices are less than one, we have ρ = 0,

corresponding to an environment with non-negative interest rates.
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We used p = 2, 3, 4, 5, 10 and 15 phases, with state-wise interest rates being

rpi = i/(10p), i = 1, ..., p for the different dimensions p. Underlying this choice is

the assumption that the interest rates fluctuate between 1% and 10%, and the

ri’s are obtained as the points that divide the interval [0, 0.1] into p, including the

right endpoint. The vectors rrrp = (rp1 , ..., r
p
p)

′ will serve as exit rate vectors of the

phase-type distributions to be fitted.
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Figure 5.1: Phase-type fits to Zero-coupon bond prices (left) and corresponding yield
curves (right) for dimension p = 2, 3, 4, 5.
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Figure 5.2: Phase-type fits to Zero-coupon bond prices (left) and corresponding yield
curves (right) for dimension p = 5, 10, 15.
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Figure 5.3: Fitted phase-type densities vs. weighted data for p = 2, 3, 4, 5 (left) and
p = 5, 10, 15 (right).

In Figure 5.1 (left), we have plotted the phase-type fits to the empirical survival

curve for dimensions p = 2, 3, 4, 5. At dimension 3, we obtain a decent fit and

excellent fits for dimensions 4 and 5. The likelihood values for 4 cases are -3.178171,

-3.16838,-3.166633, and -3.166182. Further experimentation with dimensions 10 and

15 resulted in likelihoods of -3.165002 and -3.164654, respectively. However, the

plots of bond prices and yields are indistinguishable from the plots corresponding

to dimension 5, see Figure 5.2. We can also assess the quality of the fits by plotting

the estimated density function vs. the weighted data, shown in Figure 5.3. Again

the plots for dimensions p = 5, 10, 15 are almost indistinguishable. Therefore, we

conclude that dimension 4 or 5 will suffice to approximate the bond prices.

The estimates of the sub-intensity matrix M−∆(rrr) (under a risk neutral measure

Q) for dimensions p = 3, 4, 5 are given by

 −0.13 0.1 0

0 −0.41 0.34

0.14 0 −0.24

 ,


−0.25 0.22 0.01 0

0.14 −1.11 0.75 0.18

0.06 0.29 −0.63 0.2

0.09 0.22 0.65 −1.05

 ,

and 
−0.26 0.02 0.06 0.07 0.08

0.07 −1.68 0.69 0.23 0.65

0.19 0.32 −1.99 0.93 0.48

0.04 0.35 0.27 −1.2 0.46

0.07 0.82 0.07 0.8 −1.85

 .
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To fit the bond prices, the initial distributions of Markov processes were all on the

form (1, 0, ..., 0) of appropriate dimension, i.e., initiation in state 1. ◦

Example 5.4.2 (Fitting to 2019 bond prices with unrestricted interest rates). To

illustrate the applicability of our methods also in the case of a negative interest

rate environment, we can instead fit to bond prices as of 31/12/2019 from the

Danish Financial Supervisory Authority; this dataset consists of maturities of

T = 1, 2, ..., 120 years. In this case, we let the EM algorithm choose the necessary

positive and negative interest rates.

The first five years have bond prices above one and given by 1.00231736,

1.00403337, 1.00445679, 1.00382807, and 1.00197787, which reflects the (slightly)

negative interest rate environment at the time. From (5.4.1), we get ρ = 0.002314677

as the exponential factor to down-scale prices to below one.

0 20 40 60 80 100 120

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

maturity

de
ns

ity

PH(5)
PH(10)
PH(15)

0 20 40 60 80 100 120

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

maturity

yi
el

d

PH(5)
PH(10)
PH(15)

0 20 40 60 80 100 120

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

maturity

pr
ic

e

PH(5)
PH(10)
PH(15)

Figure 5.4: Fitted phase-type densities (left), corresponding yield curves (middle) and
bond prices (right) for dimensions p = 5,10,15 based on bond price data as of 31/12/2019.

In Figure 5.4, we show the phase-type fits to the bond prices. We have used the

subclass of time-homogeneous Coxian distributions, where initiation is always in

state 1, and the only possible transitions are from a state, i say, to the following,

i+ 1, or to exit to the absorbing state.

If the primary purpose is using the fits as a discounting factor in a life insurance

model, then probably all fits could be used (right plot). If the yield curve fitting

is the concern, then only dimensions 10 and 15 seem to catch the appropriate

curvature. Regarding the probability density of the phase-type, the 15-dimensional

fit is the best.

To exemplify, we consider the ten dimensional fit. The fitted intensity matrix,
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M̂ , for {X(u)}u≥0, is given by

−0.5212 0.5212 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 −0.5212 0.5212 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 −0.5185 0.5185 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 −0.5161 0.5161 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 −0.5152 0.5152 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 −0.4664 0.4664 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.3099 0.3099 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.3099 0.3099 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 −0.3099 0.3099

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000


The matrix contains six different parameter values. The matrix structure is carried

over from the phase-type fit to the (discounted) bond prices. The blocks with

the same parameters correspond to Erlang blocks, i.e. convolution of exponential

distributions with the same parameter.

The induced (estimated) interest rates (in %) are, respectively,

−ρ,−ρ, 0.03468739, 0.28218594,−ρ, 4.64627655,−ρ,−ρ,−ρ, 3.86252219.

These should also be counted as parameters. ◦

Example 5.4.3 (Fitting to a two-factor Vasicek model). In this example we

consider the two-factor Vasicek short rate model G2++ (see Brigo and Mercurio,

2006) with an initial negative interest rate.

Here the bond prices as of time zero are given by

B(0, T ) = exp

{
−ψ(T ) + 1

2
V 2(0, T )

}
,

where

V 2(0, T ) =

2∑
i=1

σ2
i

k2i

(
T − t−Bki(0, T )−

ki
2
B2

ki
(0, T )

)
+

2σ1σ2σ12
k1k2

(T − t−Bk1(0, T )−Bk2(0, T ) +Bk1+k2(0, T )) ,

Bk(0, T ) =
1− e−k(T−t)

k
and ψ(T ) =

(θ − r0)(1 + e−k1T ) + k1θT

k1
.

We chose the same parameters as in Diez and Korn (2020), Fig. 3, apart from the

initial interest rate r0, which was set to −1%. Hence the parameters are

r0 = −0.01, k1 = 0.401, k2 = 0.178, σ1 = 0.0378, σ2 = 0.0372,

θ = 0.01297, σ12 = −0.996.
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Figure 5.5: Fitted phase-type densities (left) and corresponding yield curves (middle)
and bond prices (right) for dimensions p = 3,4,5 based on bond prices from the two-factor
Vasicek G2++ model.

We fitted 3,4 and 5 dimensional time-homogeneous phase-type distributions with a

Coxian structure to the discounted bond prices e−ρTB(0, T ). Here ρ = 0.005955398

and the intensity matrix for M based on 4 phases is given by

M̂ =


−0.17 0.17 0.00 0.00

0.00 −0.66 0.66 0.00

0.00 0.00 −0.61 0.61

0.00 0.00 0.00 0.00


with corresponding interest rates −ρ,−ρ, 0.0782987520.006307674, while for 5

phases, we get

M̂ =


−0.65 0.65 0.00 0.00 0.00

0.00 −1.79 1.79 0.00 0.00

0.00 0.00 −1.89 1.89 0.00

0.00 0.00 0.00 −0.12 0.12

0.00 0.00 0.00 0.00 0.00

 .

The corresponding (estimated) interest rates are

−ρ, −ρ, −ρ, 0.012793967, 0.006280658.

A total of six parameters specify the four-dimensional model, while seven parameters

determine the five-dimensional. ◦

5.5 Applications to life insurance

In this section, we incorporate the stochastic interest rate model of the previous

sections to life insurance valuations. We consider the model introduced by Norberg
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(1995b,a) and extend their results on reserves and higher order moments to so-called

partial reserves and higher order moments, that is, corresponding results on events

of the terminal state. Partial reserves and moments play important roles when

dealing with so-called retrospective reserves in single states (cf. Subsection 5.E

in Norberg, 1991), which, however, is outside the scope of the present paper. We

provide this extension following the matrix approach of Bladt, Asmussen, and

Steffensen (2020) so that these types of results are extended to allow for stochastic

interest rates on the form (5.1.1). The extensions of the results of these papers are

pointed out in a series of remarks throughout the section.

5.5.1 A Life insurance model with stochastic interest rates

Let X = {X(t)}t≥0 be a time-inhomogeneous Markov jump process with a finite

state-space E and intensity matrix Λ(t) = {λij(t)}i,j∈E . Then we define a payment

process {B(t)}t≥0 by

dB(t) =
∑
i∈E

(
1(X(t−)=i)bi(t) dt+

∑
j∈E

bij(t) dNij(t)

)
, (5.5.1)

where bi(t) are continuous payment rates (negative if premiums) and bij(t) lump

sum payments, which occur according to the counting measure Nij(t). The intensity

matrix is decomposed into

Λ(t) = Λ0(t) +Λ1(t), (5.5.2)

where Λ1(t) is a non-negative matrix and, consequently, Λ0(t) a sub-intensity

matrix, i.e. row sums are non-positive. The counting process is linked to the

transitions of X in the following way. Upon transition from i to j, i ̸= j, in X at

time t, a lump sum payment of bij(t) will be triggered with probability

λ1ij(t)

λ0ij(t) + λ1ij(t)
. (5.5.3)

If i = j, then Nii(t) denotes an inhomogeneous Poisson process with intensity λii(t),

and a lump sum during a sojourn in state i will then be triggered in [t, t+ dt) with

probability λ1ii(t) dt.

Finally, we assume that the spot interest rates in state i follow a deterministic

function ri(t). Hence the interest rates follow the model (5.1.1).

Remark 5.5.1. The classic Markov chain life insurance setting of, e.g., Hoem

(1969a) and Norberg (1991), is the recovered if ri(t) ≡ r(t), bii(t) = 0 and if the

probabilities (5.5.3) are either zero or one. Extending the classic setting to allow for

different interest rates in the different states was considered in Norberg (1995b,a),

where Thiele type of differential equations for the reserves and higher order moments

were derived. △
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For the purpose of computing reserves and higher order moments, Bladt, As-

mussen, and Steffensen (2020, (3.8)-(3.11)), we let bbb(t) = (bi(t))i∈E denote the

vector containing the continuous rates, and define matrices

B(t) = {bij(t)}i,j∈E ,

R(t) = Λ1(t) •B(t) +∆(b(t)),

C(k)(t) = Λ1(t) •B•k(t), k ≥ 2,

where ∆(b(t)) denotes the diagonal matrix with bbb(t) as diagonal. The operator •
denotes Schur (entrywise) matrix product, defined by A •B = {aijbij} for matrices

A = {aij} and B = {bij}.

Hence B(t) is the matrix containing the lump payments at transitions and at

Poisson arrivals during sojourns, R(t) is the matrix whose ij’th element is the

expected reward accumulated during [t, t + dt) upon transition from i to j, or

during a sojourn in state i if i = j. The C(k)(t) matrix is more technical to be used

when dealing with higher order moments.

Finally, we let

r(t) = (ri(t))i∈E .

denote the vector of interest rates.

Now assume that the interest rate process is modeled and fitted using bond prices

like in Section 5.4. Accordingly there is a Markov jump process Xr = {Xr(t)}t≥0

with state-space Er = {1, 2, ..., p} and intensity matrix Λr(t) = {λrij(t)}t≥0, say,

such that the corresponding bond prices B(t, T ) are given as in Theorem 5.3.4.

Similarly, we let Xb = {Xb(t)}t≥0 denote the Markov jump process governing the

transition between the biometric states with the state-space Eb = {1, 2, ..., q} and

intensity matrix Λb(t) = {λbij(t)}t≥0. Hence the Markov jump process appearing in

(5.5.1) can be written on the form

X(t) = (Xb(t), Xr(t)) (5.5.4)

with state-space E = Eb × Er.

Hence we need to decide upon an ordering of E, which will be lexicographical.

This means the for elements (i, ĩ), (j, j̃) ∈ E,

(i, ĩ) < (j, j̃) ⇐⇒ (i− 1)p+ ĩ < (j − 1)p+ j̃.

In other words, each biometric state i consists of sub-states (i, 1), ..., (i, q) depending

on the state of the underlying Markov process Xr, see Figure 5.6. The processes Xb

and Xr may or may not be independent, and the payment processes (5.5.1) likewise

may or may not be independent of Xr. In the independent case the processes Xb
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Figure 5.6: Lexicographical ordering: for each biometric state (blue), several sub-states
(orange) define the underlying interest rate level.

and Xr are defined on each their state-space, and the common state-space will be

the product set of the two. If the processes are sharing states, with the possibility

of having simultaneous jumps, then we obtain dependency of the processes. Such

a case could, e.g. be a rise in the interest rate causing an increased intensity of

jumping to surrender or free-policy states (see, e.g., Buchardt, 2014).

In the following example, we consider the simplifications in the representations

when assuming independence.

Example 5.5.2 (Independence). If the transition rates of X satisfy, for all i, j ∈ Eb,

j ̸= i, and ĩ, j̃ ∈ Er, j̃ ̸= ĩ,

λ(i,̃i),(j,̃i)(t) = λ(i,j̃),(j,j̃)(t) = λbij(t),

λ(i,̃i),(i,j̃)(t) = λ(j,̃i),(j,j̃)(t) =: λr
ĩj̃
(t),

we have that Xb and Xr are independent. Using the lexicographical ordering,

we can, in this case, obtain compact matrix representations in terms of the two

processes as follows. The transition intensity matrix of X is now of the form

Λ(t) = Λb(t)⊕Λr(t) = Λb(t)⊗ Ip + Iq ⊗Λr(t),

where ⊕ denotes the Kronecker sum, and where In denotes the identity matrix

of dimension n × n. We recall that the Kronecker product, ⊗, is defined by

A⊗B = {aijB}, where A = {aij}.
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The interest rate vector satisfies

rrr(t) = eee⊗ (r1(t), ..., rp(t)),

where eee = (1, 1, ..., 1)′.

If we further assume that the payment process (5.5.1) is independent of Xr, i.e.

such that the payment functions satisfy, for all i, j ∈ Eb and ĩ, j̃ ∈ Er,

b(i,̃i)(t) = b(i,j̃)(t) =: bbi (t),

b(i,̃i),(j,̃i)(t) = b(i,j̃),(j,j̃)(t) =: bbij(t),

b(i,̃i),(i,j̃)(t) = b(j,̃i),(j,j̃)(t) = 0,

we have that the payment matrices are on the form

B(t) = Bb(t)⊗ I

bbb(t) = bbbb(t)⊗ eee

where

bbbb(t) =
(
bb1(t), . . . , b

b
q(t)
)′

and B(t) =
{
bbij(t)

}
i,j∈Eb

.

Similarly, we may directly decompose Λb:

Λb(t) = Λ1
b(t)⊕Λ0

b(t)

such that the decomposition (5.5.2) reads

Λ1(t) = Λ1
b(t)⊗ Iq, and Λ0(t) = Λ0

b ⊗ Ip + Iq ⊗Λr(t) = Λ0
b(t)⊕Λr(t),

The conceptual difference in the decomposition of Λ1 and Λ0 lies in the absence of

lump sum payments upon transition between interest levels. ◦

5.5.2 Reserves

We now consider the valuation of the payment process B. Introduce the matrix of

partial state-wise prospective reserves,

V (s, t) = {Vij(s, t)}i,j∈E ,

Vij(s, t) = E

(
1(X(t)=j)

∫ t

s

e−
∫ x
s

rX(u)(u) du dB(x)

∣∣∣∣X(s) = i

)
.

Due to the stochastic interest rates, this is an extension of Bladt, Asmussen, and

Steffensen (2020). With D(s, t), introduced in (5.3.1), modified to the setup of this

section as

D(s, t) =
t

R
s

(I + [Λ(u)−∆(rrr(u))] du),

we have the following result.
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Theorem 5.5.3. The matrix of partial state-wise prospective reserves V (s, t) has

the following integral representation:

V (s, t) =

∫ t

s

D(s, x)R(x)P (x, t) dx. (5.5.5)

Proof. See Appendix 5.B.

The actual computation of the reserves can be effectively executed using the

following Van-Loan type of formula, which avoids integration.

Corollary 5.5.4. V (s, t) can be extracted from the relation

t

R
s

(
I +

(
Λ(u)−∆(rrr(u)) R(u)

0 Λ(u)

)
du

)
=

(
D(s, t) V (s, t)

0 P (s, t)

)
.

Finally, we state and prove Thiele’s differential equations for partial reserves

with stochastic interest rates.

Theorem 5.5.5 (Thiele).

∂

∂s
V (s, t) = − [Λ(s)−∆(rrr(s))]V (s, t)−R(s)P (s, t),

where V (t, t) = 0. For the conventional state-wise prospective reserves, V Th(t) =

V (t, T )eee, this has the form

∂

∂t
V Th(t) = ∆(rrr(t))V Th(t)−Λ(t)V Th(t)−R(t)eee,

where V Th(T ) = 000.

Proof. See Appendix 5.B.

Remark 5.5.6. Writing out the elements of the differential equation for V Th, we

get for i ∈ E,

∂

∂t
V Th
i (t) = ri(t)V

Th
i (t)− bi(t)−

∑
j∈E

λij(t)
(
bij(t) + V Th

j (t)− V Th
i (t)

)
,

V Th
i (T ) = 0,

which is the differential equation obtained in Norberg (1995b, (3.2)) in the case of

a first-order moment. △
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5.5.3 Higher order moments

Consider the matrix of partial state-wise higher order moments of future payments,

given by, for k ∈ N (see Bladt, Asmussen, and Steffensen (2020, (3.6)-(3.7))),

V (k)(t, T ) =
{
V

(k)
ij (t, T )

}
i,j∈E

,

V
(k)
ij (t, T ) = E

1(X(T )=j)

(∫ T

t

e−
∫ x
t

rX(u)(u) du dB(x)

)k
∣∣∣∣∣∣X(t) = i

,
and introduce what we shall term the reduced partial state-wise higher order

moments:

V (k)
r (t, T ) =

V (k)(t, T )

k!
.

Since all payment functions and transition rates are deterministic, results for these

higher-order moments are now straightforward to obtain by using the undiscounted

result,

m(k)
r (t, T ) =

∫ T

t

P (t, x)R(x)m(k−1)
r (x, T ) dx

+

k∑
m=2

∫ T

t

P (t, x)C(m)
r (x)m(k−m)

r (x, T ) dx,

where m
(k)
r (t, T ), k ∈ N, contains the partial state-wise k’th moment, normalised

by k!, of the undiscounted future payments (see Bladt, Asmussen, and Steffensen

(2020, (7.4))), i.e. V
(k)
r (s, T ) with no interest rate. Indeed, rates bi(t) and lump

sums bij(t) must be replaced by the discounted versions with discounting factor,

exp(−
∫ t

s
rX(u)(u) du) (for fixed s ≤ t). Powers of lumps sums like bij(t)

m, m ∈ N,
are discounted by exp(−m

∫ t

s
rX(u)(u) du). Denoting

D(m)(s, t) =
t

R
s

(I + [Λ(u)−m∆(rrr(u))] du), m ∈ N,

we then obtain the following version of Hattendorff’s theorem for partial reserves

with stochastic interest rate.

Theorem 5.5.7. The matrix of reduced partial state-wise higher order moments

satisfies the integral equation, for k ∈ N0,

V (k)
r (t, T ) =

∫ T

t

D(k)(t, x)R(x)V (k−1)
r (x, T ) dx

+

k∑
m=2

∫ T

t

D(k)(t, x)C(m)
r (x)V (k−m)

r (x, T ) dx.
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Proof. See Appendix 5.B.

Defining

F
(k)
U (x) =



Λ(x) − k∆(rrr(x)) R(x) C(2)
r (x) · · · C(k−1)

r (x) C(k)
r (x)

0 Λ(x) − (k − 1)∆(rrr(x)) R(x) · · · C(k−2)
r (x) C(k−1)

r (x)

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.

0 0 0 · · · Λ(x) − ∆(rrr(x)) R(x)

0 0 0 · · · 0 Λ(x)


we get by Van Loan that

T

R
t

(I + F
(k)
U (x) dx) =



∗ ∗ ∗ ∗ · · · ∗ V
(k)
r (t)

∗ ∗ ∗ ∗ · · · ∗ V
(k−1)
r (t)

∗ ∗ ∗ ∗ · · · ∗ V
(k−2)
r (t)

...
...

...
...

...
...
...

...
...

∗ ∗ ∗ ∗ · · · ∗ V
(1)
r (t)

∗ ∗ ∗ ∗ · · · ∗ P (t, T )


. (5.5.6)

From these results, we can derive a number of classical results. Differentiation of

(5.5.6) gives

∗ ∗ ∗ ∗ · · · ∗ ∂
∂tV

(k)
r (t)

∗ ∗ ∗ ∗ · · · ∗ ∂
∂tV

(k−1)
r (t)

∗ ∗ ∗ ∗ · · · ∗ ∂
∂tV

(k−2)
r (t)

...
...

...
...

...
...
...

...
...

∗ ∗ ∗ ∗ · · · ∗ ∂
∂tV

(1)
r (t)

∗ ∗ ∗ ∗ · · · ∗ ∂
∂tP (t, T )


= −F

(k)
U (t)

T

R
t

(I + F
(k)
U (x) dx)

= −



Λ(t) − k∆(rrr(t)) R(t) C(2)
r (t) · · · C(k−1)

r (t) C(k)
r (t)

0 Λ(t) − (k − 1)∆(rrr(t)) R(t) · · · C(k−2)
r (t) C(k−1)

r (t)

.

.

.
.
.
.

.

.

.
.
.
.
.
.
.
.
.
.

.

.

.
.
.
.

0 0 0 · · · Λ(t) − ∆(rrr(t)) R(t)

0 0 0 · · · 0 Λ(t)
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×



∗ ∗ ∗ ∗ · · · ∗ V
(k)
r (t)

∗ ∗ ∗ ∗ · · · ∗ V
(k−1)
r (t)

∗ ∗ ∗ ∗ · · · ∗ V
(k−2)
r (t)

...
...

...
...

...
...
...

...
...

∗ ∗ ∗ ∗ · · · ∗ V
(1)
r (t)

∗ ∗ ∗ ∗ · · · ∗ P (t, T )


.

We then obtain the following differential equation by only considering the first row

times the last column.

Theorem 5.5.8. The matrix of reduced partial state-wise higher order moments

satisfies the system of differential equations, for k ∈ N0,

∂

∂s
V (k)
r (t) = (k∆(rrr(t))−Λ(t))V (k)

r (t)−R(t)V (k−1)
r (t)−

k∑
i=2

C(i)
r (t)V (k−i)

r (t),

with terminal condition V
(k)
r (T ) = 1(k=0)I.

Remark 5.5.9. A martingal-based proof for the corresponding (unreduced) state-

wise moments, k!V
(k)
r (t)eee, can be found in Norberg (1995b). △

Example 5.5.10 (Independence continued). We can continue our decompositions

from the independence case of Example 5.5.2 to reserves and higher-order moments.

Indeed, since

Λb(u)⊕Λr(u)− k∆(eee⊗ rrr(u)) = Λb(u)⊗ I + I ⊗ (Λr(u)− k∆(rrr(u)))

= Λb(u)⊕ (Λr(u)− k∆(rrr(u)),

we get from (5.2.12) that

t

R
s

(I + (Λb(u)⊕Λr(u)− k∆(eee⊗ rrr(u)) du))

=
t

R
s

(I +Λb(u) du)⊗
t

R
s

(I + (Λr(u)− k∆(rrr(u)) du)

=
t

R
s

(I +Λb(u) du)⊗D(k)(s, t)

Thus, each diagonal block element can be computed using these representations

when setting up the matrix FU for the computation of these higher order moments.

In particular, for partial state-wise reserves (i.e. k = 1), we obtain a more direct

expression. Assuming that the initial biometric state is i ∈ Eb, the terminal j ∈ Eb

and that the initial distribution of the fitted interest rate phase-type distribution is



138 Chapter 5. Ahmad & Bladt (2022b)

πππ. Then

Vij(t, T ) = (eee′i ⊗ πππ)

∫ T

t

(
x

R
t

(I +Λb(u) du)⊗D(t, x)

)
(R(x)⊗ I)

×

(
T

R
x

(I +Λb(u) du)⊗
T

R
x

(I +Λr(u) du)

)
dx (eeej ⊗ eee)

=

∫ T

t

πππD(t, x)eeeeee′iPb(t, x)R(x)Pb(x, T )eeej dx

=

∫ T

t

EQ
(
e−

∫ T
t

rXr(u)(u) du
∣∣∣F(t)

)
eee′iPb(t, x)R(x)Pb(x, T )eeej dx,

which is consistent with similar expressions obtained in Norberg (1995a). ◦

5.5.4 Equivalence premium

Assume that R(t) = R(t; θ) such that θ is a parameter of either B(t) and/or ∆(bbb(t))

only. Hence, θ could, e.g., be a premium rate in state 1 or a transition payment

between some states. We then write V (t) = V (t; θ) so that

V (t; θ) =

∫ T

t

u

R
t

(I + [Λ(s)−∆(rrr(s))]ds)R(u; θ)
T

R
u

(I +Λ(s)ds)du.

If the interest rates satisfy ∆(rrr(s)) ≥ 0, then Λ(s) −∆(rrr(s)) is a sub-intensity

matrix, so that R
u

t
(I + [Λ(s)−∆(rrr(s))]ds) is a sub-probability matrix, i.e.

0 ≤
u

R
t

(I + [Λ(s)−∆(rrr(s))]ds)eee ≤ eee.

If R(·; θ) is continuously differentiable and Λ and rrr are continuous, then by Leibniz’

integral rule

∂

∂θ
V (t; θ) =

∫ T

t

u

R
t

(I + [Λ(s)−∆(rrr(s))]ds)
∂

∂θ
R(u; θ)

T

R
u

(I +Λ(s)ds)du.

Hence we get from the Van Loan formula (5.2.9),

T

R
t

I +

Λ(u)−∆(r(u)) ∂
∂θR(u; θ)

0 Λ(u)

 du

 =

D(t, T ) ∂
∂θV (t; θ)

0 P (t, T )

 .

(5.5.7)

Remark 5.5.11. Similar kinds of derivatives as those of (5.5.7) are considered in

Kalashnikov and Norberg (2003), where differential equations for reserves concerning

valuation elements and payments are derived. The formulas presented here may

thus be seen as corresponding matrix representations. △
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If state i ∈ E is the starting state, we can formulate the equivalence principle by

finding the θ that solves

V Th
i (0; θ) = eee′iV (0; θ)eee = 0

using Newton’s method,

θn+1 = θn − eee′iV (0; θ)eee

eee′iVθ(0; θ)eee
,

where Vθ denotes the partial derivative wrt. θ. For example, if θ is a constant

premium (rate) such that

Rθ(t; θ) = A(t),

i.e. a matrix function not depending on θ, then Vθ(t; θ) = Vθ(t) will not depend on

θ either, so we conclude that the map θ 7→ V Th
i (t; θ) is linear (for fixed t), so that

in particular

V Th
i (0; θ) = aθ + b

for some constants a, b. Then b can be computed from b = V Th
i (0; 0) = eee′iV (0; 0)eee

and a = eee′iVθ(0; 0)eee. Hence, Newton’s method converges in one iteration, and the θ

which fulfills the equivalence principle is given by

θ = − eee′iV (0; 0)eee

eee′iVθ(0; 0)eee
. (5.5.8)

Hence, this formula can compute the equivalence premium if it is assumed to

be (piecewise) constant over time, which is often the case in practical examples.

However, the formulation in terms of derivatives is usually not seen, with Kalashnikov

and Norberg (2003, (3.5)) being one of few exceptions. If the constancy assumption

is not satisfied, a parametrized expression in terms of θ can be calculated by

Newton’s method.

5.5.5 Distributions of future payments based on reduced

moments

In this section, we briefly comment on the implementation of the Gram-Charlier

series for the density and distribution functions based on reduced moments, following

along the lines of Bladt, Asmussen, and Steffensen (2020); for an approach based

on PDEs and integral equations (though not implemented numerically), we refer to

Norberg (2005, Section 5).

The goal is to approximate the distribution of

X =

∫ T

0

e−
∫ x
0

rX(u)(u) du dB(x)
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using a Gram-Charlier series expansion. In Bladt, Asmussen, and Steffensen (2020),

it was shown that under suitable regularity conditions, the density f for X can be

approximated by

f(x) ≈ f∗(x)

N∑
n=0

cnpn(x),

where f∗ is a reference density, pn(x) an orthonormal basis of polynomials for

Hilbert space L2(f∗), and cn = E(pn(X)). The reference distribution f∗ can be

chosen arbitrarily as long as f/f∗ ∈ L2(f∗). Hence it is advisable to choose f∗ as

close to f as possible.

For a given reference density f∗, the polynomials

qn(x) =

∣∣∣∣∣∣∣∣∣∣
a0 · · · an−1 1

a1 · · · an x
. . .

an · · · a2n−1 xn

∣∣∣∣∣∣∣∣∣∣
,

where

an =

∫ b

a

xnf∗(x) dx, n = 0, 1, ...

defines an orthogonal basis for Hilbert space L2(f∗) with inner product

⟨g, h⟩ =
∫ b

a

g(x)h(x)f∗(x) dx.

With the Hankel determinants

A−1 = 1, An =

∣∣∣∣∣∣∣∣∣∣
a0 · · · an−1 an
a1 · · · an an+1

. . .

an · · · a2n−1 a2n

∣∣∣∣∣∣∣∣∣∣
, n = 0, 1, .....

it can then be shown that

pn(x) =
qn(x)√
An−1An

, n = 0, 1, ...

is an orthonormal basis (ONB) in L2(f∗). Also, it is immediate that

cn = E(pn(X)) =
1√

An−1An

∣∣∣∣∣∣∣∣∣∣
a0 · · · an−1 1

a1 · · · an E(x)
. . .

an · · · a2n−1 E(xn)

∣∣∣∣∣∣∣∣∣∣
.

If f∗ is chosen to be the standard normal distribution, the corresponding polynomials

pn are the (probabilists) Hermite polynomials. While the Hermite polynomials were
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used in Bladt, Asmussen, and Steffensen (2020) up to very high orders, their use in

the following example fails already at low orders. This is likely caused by the tail of

the normal distribution being too light. We propose a class of reference distributions

based on a shifted beta distribution closely related to the Jacobi Polynomials as

an alternative. This distribution will have finite support but a much heavier tail.

Finite support is usually not a problem in a life insurance context.

Define a reference distribution f∗ with support on a finite interval [a, b] by

f∗(x) =
Γ(α+ β + 2)

Γ(α+ 1)Γ(β + 1)
(b− a)−α−β−1(b− y)α(y − a)β , x ∈ [a, b], α, β > −1.

Thus we need to find an orthonormal basis for L2(f∗). The starting point is the

weight function

wα,β(x) = (1− x)α(1 + x)β .

The space L2(w) has an orthogonal basis of Jacobi polynomials given by

q(α,β)n (x) =
(α+ 1)n

n!

n∑
k=0

(α+ β + 1 + n)k(−n)k
(α+ 1)kk!

(
1− x

2

)k

,

where (a)n = a(a+ 1) · · · (a+ n− 1) denotes the Pochammer symbol.

By normalizing the weight function into a density on [−1, 1] and then transforming

it into a density on [a, b], we obtain an ONB for f∗ of polynomials given by

pα,βn (x) =

√
n!(2n+ α+ β + 1)(α+ β + 1)n
(α+ 1)n(β + 1)n(α+ β + 1)

q(α,β)n

(
2x− a− b

b− a

)
.

So for given a, b, we need to compute

cn = E
(
p(α,β)n (X)

)
=

√
n!(2n+ α+ β + 1)(α+ β + 1)n
(α+ 1)n(β + 1)n(α+ β + 1)

E

(
q(α,β)n

(
2X − a− b

b− a

))
.

Here

E

(
q(α,β)n

(
2X − a− b

b− a

))
=

(α+ 1)n
n!

n∑
k=0

(α+ β + 1 + n)k(−n)k
(α+ 1)k

1

k!
E

((
1− (2X − a− b)/(b− a)

2

)k
)
,

where the inner expectation is computed as

1

k!
E

((
1− (2X − a− b)/(b− a)

2

)k
)

=
1

(b− a)k

k∑
i=0

(−1)i
bk−i

(k − i)!

E(Xi)

i!
.
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Finally, the approximation is then given by

f(x) ≈ f∗(x)

N∑
n=0

cnp
(α,β)
n (x). (5.5.9)

Concerning the corresponding distribution function, we integrate the above

equation to obtain

F (y) ≈ F ∗(y)− b− a

4

(
1−

(
2y − a− b

b− a

)2
)
f∗(y)

×
N∑

n=1

cn

√
1

n

(2 + α+ β)(α+ β + 3)

(1 + α)(1 + β)(α+ β + n+ 1)(α+ β + n+ 2)
×

p
(α+1,β+1)
n−1

(
2y − a− b

b− a

)
.

Hence, these formulas can be used to approximate the density and distribution via

these Jacobi types of polynomials.

5.6 Numerical Example

We now present a numerical example based on Example 5.5.2, where interest rates

and biometric risk are assumed independent, where we carry over the estimation of

interest transition rates from the calibrated bond prices of Section 5.4.

Consider the numerical example of Buchardt and Møller (2015) as the model for

the biometric risk and corresponding life insurance contract. That is, the states of

the insured Xb are modeled as a time-inhomogeneous Markov jump process taking

values Eb = {1, 2, 3}, the three-state disability model depicted in Figure 5.7.

disabled 2active 1

dead 3

λb12

λb23λb13

λb21

Figure 5.7: The classic three-state disability model with reactivation

We consider a 40-year-old male today (at time 0) with a retirement age of 65

and the following life insurance contract:

� A disability annuity of rate 1 while disabled until the retirement of age 65.
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� A life annuity of rate 1 while alive until the retirement of age 65.

� A constant premium rate θ paid while active until the retirement of age 65,

priced under the equivalence principle at time 0.

The maximum contract time is T = 70, corresponding to a maximum age of 110

years. The transition rates are given by

λb12(s) =
(
0.0004 + 104.54+0.06(s+40)−10

)
1(s≤25),

λb21(s) =
(
2.0058e−0.117(s+40)

)
1(s≤25),

λb13(s) = 0.0005 + 105.88+0.038(s+40)−10,

λb23(s) = λb13(s)
(
1 + 1(s≤25)

)
.

The payment matrices for this product combination corresponds to having B(t) =

Λ1(t) = 0, and

bbb(t; θ) =

(θ, 1, 0), for t ≤ 25

(1, 1, 0), for t > 25
.

For the stochastic interest rate model, we take the fitted bond prices from Example

5.4.1 with p = 4 phases, so that the interest rates are given as r(t) = rXr(t), with

rrr = (0.025, 0.050, 0.075, 0.100),

and where Xr is a time-homogeneous Markov jump process taking values the finite

state space Er = {1, 2, 3, 4} with initial distribution πππ = (1, 0, 0, 0) and transition

intensity matrix

Λr =


−0.25 0.22 0.01 0

0.14 −1.11 0.75 0.18

0.06 0.29 −0.63 0.2

0.09 0.22 0.65 −1.05

+∆(rrr).

We then determine the equivalence premium θ using the method outlined in Section

5.5.4. This is explicit on the form (5.5.8) due to bbb(t; ·) being affine (for fixed t),

and we get θ = 0.1583467. This is almost three times lower than the premium rate

obtained when pricing with a constant first-order interest rate of 1% as in Buchardt

and Møller (2015), which makes sense since the present interest rate model always

gives interest rates above this level.

We then calculate moments of up to order 20 of the present value of future

payments to approximate its density and distribution function via Gram-Charlier

expansions based on the (shifted) Jacobi polynomials, as outlined in Section 5.5.5.

The parameters used in the procedure are shown in Table 5.1, and the resulting
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Parameter α β a b
Value 1 0.05 -3 70

Table 5.1: Parameters for the Gram-Charlier implementation with (shifted) Jacobi
polynomials.
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Figure 5.8: Left: Density approximation based on 20 moments and a histogram based on
1,000,000 simulations. Right: Distribution function approximation based on the same 20
moments and the empirical distribution function from the same simulations.

density and distribution function are shown in Figure 5.8. From the fitted

distribution function, one may compute different quantities of interest, e.g., quantiles

of the present value. In Table 5.2, we show various quantiles based on the empirical

(simulated) distribution function and the approximated distribution function based

on 20 moments.

Quantile

95% 97% 99% 99.5%
Empirical 3.51 5.51 9.51 12.01

Moment-based 3.13 5.54 8.89 12.63

Table 5.2: Selected quantiles of the present value based on the empirical distribution
of 1,000,000 simulations and based on the Gram-Charlier approximation based on 20
moments.

5.A Modified EM algorithm for phase-type fitting with

fixed exit rate vector

First, we consider the case we want to fit a phase-type distribution with parameters

(πππ,T (x)) to data y1, ..., yN . Here the data are positive real numbers which are

thought of as the time until absorption of the underlying Markov process with
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intensity matrix (
T (x) ttt(x)

000 0

)
.

We will assume throughout that T (x) = T , i.e. the Markov process is time-

homogeneous. This presents no restriction as long as the interest rate process to be

approximated is assumed to be stationary.

If, additionally to the absorption times, we could observe the full trajectories of

the Markov process until absorption, then the estimation would be an easy task. In

this case, for i ̸= j

π̂i =
Bi

N
, t̂ij =

Nij

Zi
, t̂i =

Ni

Zi
(5.A.1)

whereas t̂ii = −t̂i −
∑

j ̸=i t̂ij . Here Bi denotes the number of processes starting in

state i, Nij the number of transitions from i to j in all processes, Ni the number of

processes that exits to the absorbing state from state i and Zi the total time all

processes spend in state i.

In the case of incomplete data, where only absorption times are observed, the

EM–algorithm can be employed. The idea is to replace the unobserved sufficient

statistics Bi, Nij , Ni and Zi by the their conditional expectations given data, i.e.

E(Bi|Y = y) etc. The EM-algorithm then alternates between computing these

conditional expected values (E-step) and plugging them into (5.A.1) as a substitute,

thereby generating new parameters.

To perform maximization under the constraint ttt(x) = ttt = rrr, we see that this can

be achieved simply by removing the update t̂i =
Ni

Zi
from the EM-algorithm, so

that the M -step amounts to

π̂i =
Bi

N
, t̂ij =

Nij

Zi
, i ̸= j, t̂ii = −r̂i −

∑
j ̸=i

t̂ij . (5.A.2)

Fitting a PH distribution to a theoretical distribution is done by approximating

the theoretical distribution into a histogram. Hence data will be the discretization

points, and the density values will be the corresponding weights. For further

details on the EM-algorithm, we refer to Asmussen, Nerman, and Olsson (1996) or

Albrecher, Bladt, and Yslas (2022).

5.B Proofs

Proof of Theorem 5.5.3. First, we notice that, for i, j ∈ E,

Vij(s, t)

=
∑
k∈E

E

(
1(X(t)=j)

∫ t

s

1(X(x)=k)e
−

∫ x
s

rX(u)(u) du dB(x)

∣∣∣∣X(s) = i

)
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=
∑
k∈E

∫ t

s

E
(
1(X(t)=j)1(X(x)=k)e

−
∫ x
s

rX(u)(u) du dB(x)
∣∣∣X(s) = i

)
=
∑
k∈E

∫ t

s

E
(
E
(
1(X(t)=j)1(X(x)=k)e

−
∫ x
s

rX(u)(u) du dB(x)
∣∣∣Fx

)∣∣∣X(s) = i
)

=
∑
k∈E

∫ t

s

E
(
1(X(x)=k)e

−
∫ x
s

rX(u)(u) du E
(
1(X(t)=j) dB(x)

∣∣Fx

)∣∣∣X(s) = i
)
.

But on the event (X(x) = k),

E
(
1(X(t)=j) dB(x)

∣∣Fx

)
= bk(x)dx pkj(x, t) +

∑
ℓ∈E
ℓ ̸=k

bkℓ(x)λ
1
kℓ(x)dx pℓj(x, t)

so

Vij(s, t)

=
∑
k∈E

∫ t

s

pkj(x, t) E
(
1(X(x)=k)e

−
∫ x
s

rX(u)(u) du
∣∣∣X(s) = i

)
bk(x) dx

+
∑
k∈E

∫ t

s

E

(
1(X(x)=k)e

−
∫ x
s

rX(u)(u) du

(∑
ℓ∈E
ℓ ̸=k

bkℓ(x)λ
1
kℓ(x) dx pℓj(x, t)

)∣∣∣∣∣X(s) = i

)

=
∑
k∈E

∫ t

s

pkj(x, t) E
(
1(X(x)=k)e

−
∫ x
s

rX(u)(u) du
∣∣∣X(s) = i

)
bk(x) dx

+
∑
k∈E

∫ t

s

(∑
ℓ∈E
ℓ ̸=k

bkℓ(x)λ
1
kℓ(x) pℓj(x, t)

)
E
(
1(X(x)=k)e

−
∫ x
s

rX(u)(u) du
∣∣∣X(s) = i

)
dx

=

∫ t

s

∑
k∈E

Dik(s, x)bk(x)pkj(x, t) dx+

∫ t

s

∑
k,ℓ∈E
ℓ ̸=k

Dik(s, x)bkℓ(x)λ
1
kℓ(x)pℓj(x, t) dx.

In matrix form this amounts to (5.5.5).

Proof of Theorem 5.5.5. Using that the product integral satisfies Kolmogorov’s

forward and backward equations, we get that(
∂
∂sD(s, t) ∂

∂sV (s, t)

0 ∂
∂sP (s, t)

)
=

∂

∂s

t

R
s

(
I +

(
Λ(u)−∆(rrr(u)) R(u)

0 Λ(u)

)
du

)

= −

(
Λ(s)−∆(rrr(s)) R(s)

0 Λ(s)

)(
D(s, t) V (s, t)

0 P (s, t)

)
,

from which Thiele’s differential equation can be pulled out from the upper right

corner of each side of the equation.
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Proof of Theorem 5.5.7. Write(∫ T

t

e−
∫ x
t

rX(u)(u) du dA(x)

)k

=

∫ T

t

· · ·
∫ T

t

e−
∫ x1
t rX(u)(u) du · · · e−

∫ xk
t rX(u)(u) du dA(xk) · · · dA(x1).

(5.B.1)

Now

dA(t) = bX(t) dt+ bX(t−)j(t) dNX(t−)j(t),

and assume that s ∈ [t, T ] is a point of increase for the counting process x→ Nab(x)

which trigger lump sum payments. Then in the computation of the above integral,

there will be jump contributions at time s, where any number m ∈ {1, 2, ..., k} of

the variables x1, ..., xk may be equal to s, say xi1 = · · ·xim = s. We can pick m

out of the k variables in
(
k
m

)
= k!/(m!(k −m)!) ways. If m variables coincide at

the jump time s, then a contribution of bab(s)
m is added. Hence only looking at

jump coincidences, i.e. m ≥ 2, the contribution to the integral (5.B.1) is

k∑
m=2

(
k

m

)∫ T

t

e−m
∫ s
t
rX(u)(u) dubab(s)

m×(∫ T

s

· · ·
∫ T

s

e−
∫ xm+1
t rX(u)(u) du · · · e−

∫ xk
t rX(u)(u) du dA(xk) · · · dA(xm+1)

)
dNab(s).

Indeed, since there are precisely m coincidences, the remaining integrals must start

from s+ = s; otherwise, the integration intervals would contain s as well. Changing

the lower limits of the integrals appearing in the exponentials, we can further rewrite

the expression as

k∑
m=2

(
k

m

)∫ T

t

e−k
∫ s
t
rX(u)(u) dubab(s)

m× (5.B.2)(∫ T

s

· · ·
∫ T

s

e−
∫ xm+1
s rX(u)(u) du · · · e−

∫ xk
s

rX(u)(u) du dA(xk) · · · dA(xm+1)

)
dNab(s).

Taking conditional expectation E(1(X(T )=j) · |X(t) = i) of (5.B.2), we get

k∑
m=2

(
k

m

)∫ T

t

E

(
1(X(T )=j)e

−k
∫ s
t
rX(u)(u) dubab(s)

m×(∫ T

s

· · ·
∫ T

s

e−
∫ xm+1
s rX(u)(u) du · · · e−

∫ xk
s

rX(u)(u) du dA(xk) · · · dA(xm+1)

)
dNab(s)∣∣∣∣X(t) = i

)
=

k∑
m=2

(
k

m

)∫ T

t

E
(
1(X(T )=j)Y Z dNab(s)

∣∣X(t) = i
)
, (5.B.3)
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where Y = e−k
∫ s
t
rX(u)(u) dubab(s)

m and

Z =

∫ T

s

· · ·
∫ T

s

e−
∫ xm+1
s rX(u)(u) du · · · e−

∫ xk
s

rX(u)(u) du dA(xk) · · · dA(xm+1).

Further conditioning on a lump sum triggering event at time s, caused by (X(s) =

b, X(s−) = a), the probability of which is dab(s) ds, and using that 1(X(T )=j)Z

and 1(X(s−)=a)Y are conditionally independent given X(s) = b, (5.B.3) reduces to

k∑
m=2

(
k

m

)∫ T

t

E

(
1(X(T )=j)Z

∣∣∣∣X(s) = b

)
E

(
1(X(s)=a)Y

∣∣∣∣X(t) = i

)
dab(s) ds

=

k∑
m=2

(
k

m

)∫ T

t

D
(k)
ia (t, s)dab(s)bab(s)

mV
(k−m)
bj (s, T ) ds. (5.B.4)

Summing over a and b, and putting (5.B.4) on matrix form (in i, j) this amounts to

k∑
m=2

(
k

m

)∫ T

t

D(k)(t, s)C(m)(s)V (k−m)(s, T ) ds. (5.B.5)

Now we consider the integral when there are no coincidences. To this end, we

rewrite (∫ T

t

e−
∫ x
t

rX(u)(u) du dA(x)

)k

= k

∫ T

t

e−
∫ x
t

rX(u)(u) du

(∫ T

x

e−
∫ y
t

rX(u)(u) du dA(y)

)k−1

dA(x)

= k

∫ T

t

e−k
∫ x
t

rX(u)(u) du

(∫ T

x

e−
∫ y
x

rX(u)(u) du dA(y)

)k−1

dA(x)

Then

V
(k)
ij (t, T )

= E

1(X(T )=j)

(∫ T

t

e−
∫ x
t

rX(u)(u) du dA(x)

)k
∣∣∣∣∣∣X(t) = i

 (5.B.6)

= k

∫ T

t

E

(
1(X(T )=j)e

−k
∫ x
t

rX(u)(u) du × (5.B.7)

(∫ T

x

e−
∫ y
x

rX(u)(u) du dA(y)

)k−1

dA(x)

∣∣∣∣∣X(t) = i

)

= k
∑
ℓ

∫ T

t

E

(
1(X(x)=ℓ)e

−k
∫ x
t

rX(u)(u) du1(X(T )=j)×
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E

(
1(X(T )=j)

(∫ T

x

e−
∫ y
x

rX(u)(u) du dA(y)

)k−1

dA(x)

∣∣∣∣X(x) = ℓ

)∣∣∣∣X(t) = i

)
.

(5.B.8)

On the event that (X(x) = ℓ), the contribution to the expectation of the above

integral (5.B.8), where no coincidences are allowed (i.e., the reward at time x from

at most one jump and benefit rates), amounts to

E

(
1(X(T )=j)

(∫ T

x

e−
∫ y
x

rX(u)(u) du dA(y)

)k−1 ∣∣∣∣X(x) = ℓ

)
bℓ(x) dx

+
∑
m

E

(
1(X(T )=j)

(∫ T

x

e−
∫ y
x

rX(u)(u) du dA(y)

)k−1 ∣∣∣∣X(x) = m

)
dℓm(x)bℓm(x)dx

= bℓ(x)V
(k−1)
ℓj (x, T ) dx+

∑
m

dℓm(x)bℓm(x)V
(k−1)
mj (x, T ) dx,

and the integral (5.B.8) then equals

k
∑
ℓ

∫ T

t

E

(
1{X(x) = ℓ}e−k

∫ x
t

rX(u)(u) du

∣∣∣∣X(t) = i

)
×(

bℓ(x)V
(k−1)
ℓj (x, T ) +

∑
m

dℓm(x)bℓm(x)V
(k−1)
mj (x, T )

)
dx,

which in matrix form amounts to

k

∫ T

t

D(k)(t, x)R(x)V (k−1)(x, T ) dx. (5.B.9)

Adding (5.B.5) and (5.B.9) then proves the result.





Chapter 6

Multivariate higher order moments in

multi-state life insurance

This chapter is based on the paper Ahmad (2022).

Abstract

It is well-known that combining life annuities and death benefits

introduce opposite effects in payments with respect to the mortality risk

on the lifetime of the insured. In a general multi-state framework with

multiple product types, such joint effects are less trivial. In this paper,

we consider a multivariate payment process in multi-state life insurance,

where the components are defined in terms of the same Markovian state

process. The multivariate present value of future payments is introduced,

and we derive differential equations and product integral representations

of its conditional moments and moment generating function. Special

attention is given to pair-wise covariances between two present values,

where results closely connected to Hattendorff type of results for the

variance are derived. The results are illustrated in a numerical example

in a disability model.

Keywords: Multi-state life insurance; Multivariate payment process; Dependent

risk; Conditional moments; Product integral

6.1 Introduction

In this paper, we extend the results of Bladt, Asmussen, and Steffensen (2020)

to multivariate payment processes with components defined in terms of the same

multi-state Markov process. Our main contributions are differential equations and

product integral representations of higher order moments of the multivariate present
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value, which are derived via its moment generating function. The main results

appear as natural multivariate generalizations to those of Bladt, Asmussen, and

Steffensen (2020) and Norberg (1995b), and to some extent also Adékambi and

Christiansen (2017), and this is pointed out in a series of remarks throughout the

paper. We give special attention to pair-wise covariances between two present values

and derive results that reveal close connections to Hattendorff type of results for

the variance of a present value.

The paper is motivated by the following. The use of multi-state time–inhomo-

geneous Markov models in life insurance, dating back to at least Hoem (1969a),

have provided a unified mathematical framework to model the random pattern

of states of the insured with different kinds of life and health events; see e.g. an

overview in Asmussen and Steffensen (2020, Chapter V.2). While these are models

for primarily unsystematic biometric risk, one may also use multi-state Markov

models to integrate systematic risk as in Norberg (1995a) and Norberg (1999).

For valuation and risk management, the present value of future payments is the

main quantity of interest, and the conditional expected present value constitute

the prospective reserve; this principle relies on diversification of unsystematic risk

resulting from the law of large numbers on independent and identically distributed

present values. The prospective reserve satisfies the celebrated Thiele’s differential

equations, cf. Hoem (1969a).

Since there may be a significant risk of future payments deviating from expected

values, the insurer adds safety margins to premiums and reserves. While this is

usually done implicitly via a first order basis consisting of prudent assumptions on

interest and transition rates, an alternative approach is to compute safety margins

explicitly via (properties of) the probability distribution of future payments. This is

the focal point of Christiansen (2013), where approximations based on the Central

Limit Theorem (CLT) are established. Here, the variance of future payments is

needed; it is obtained as an integral expression in Hoem (1969a), see also Hoem and

Aalen (1978) and Norberg (1991), and Hattendorff’s theorem, which is formulated in

the multi-state framework by Ramlau-Hansen (1988) and Norberg (1992), provides

particularly simple formulae in terms of the associated multivariate counting process

and so-called sum at risks. Turning to higher order moments beyond the variance

increases the precision in these kinds of approximations; in Norberg (1995b), we have

differential equations for all moments of future payments, and in Bladt, Asmussen,

and Steffensen (2020), a general matrix-based framework using product integrals

is developed to compute said moments, from which densities and distribution

functions of future payments are approximated via polynomial expansions. These

type of results are extended to the semi-Markovian framework in Adékambi and

Christiansen (2017) to allow for duration dependency in payments and transition

rates. Other ways of calculating distribution functions can be found in Hesselager

and Norberg (1996) and Adékambi and Christiansen (2020), where integral and
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differential equations for these are derived.

In practice, an insured typically holds a combination of various product types

in order to be covered in case of different kinds of life and health events. In the

multi-state framework, this is without further notice handled by considering the

aggregated payment process, and reserves, higher order moments and probability

distributions can be calculated using the methods outlined above. However, since

these product types are contingent on events that work in different directions w.r.t.

their underlying risks, a decomposition of the total risk into the different risk types

is important in pricing and reserving as well as in risk management. In Christiansen

(2013), asymptotic safety margins are obtained for premiums and reserves, from

which a decomposition of risk types corresponding to the different transitions in

the Markov chain is established. In this paper, we take a different point of view; we

decompose the payment process into different product types and examine the joint

distribution of their future payments by calculating its moments; in particular, we

calculate covariance matrices and illustrate how they may be used to approximate

joint safety margins via multivariate CLT approximations. The simplest example is

the product combination of life annuities and death benefits, which have opposite

effects with respect to the mortality risk on the lifetime of the insured. In the general

multi-state framework of this paper, more complex and non-trivial interactions

can be examined; we give a motivating example in a disability model in the next

section.

For systematic risk, the idea of mixing various product types and analysing their

interacting effect has already been discussed extensively in the concept of so-called

natural hedging in life insurance, where one considers the effects on the reserves

with respect to future changes in mortality rates in a portfolio consisting exactly of

life annuities and death benefits; see e.g. Cox and Lin (2007). While this concept

arose in the survival model at first, an example in the multi-state model have

appeared recently in Levantesi and Menzietti (2018) where the authors analyze

interactions with life products and long-term care insurance using a disability

model. Results from this paper allows us to carry out these kinds of analyzes in a

general multi-state framework, however with models for systematic risk restricted

to time-inhomogeneous Markov chains on finite state spaces.

The paper is structured as follows. We start out in Section 6.2 with presenting

a motivating example of decomposition of payment processes into different types.

Section 6.3 then introduces the setup of the paper: the multi-state Markov process

governing the state of the insured, the multivariate payment process describing the

collection of life insurance contracts held by the insured, and the multivariate present

value of their payments. In Section 6.4, we derive product integral representations

of the conditional moment generating function of the present value, which is shown

to satisfy a system of partial differential equations. In Section 6.5 we use this to
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derive ordinary differential equations and product integral representations for the

conditional moments. Finally, in Section 6.6 we illustrate results of this paper in a

numerical example of the motivating example from Section 6.2.

6.2 Motivating example

Before presenting the general setup and main results of the paper, we start out

with giving a motivating example of the problems we wish to solve. The setup of

the example is a disability model, which serves to illustrate the motivations in the

simplest non-trivial multi-state life insurance setting.

Consider a single insured having a deterministic retirement time T with the

following product combination:

(1) Death benefit paying S upon death before time T .

(2) Deferred life annuity paying a benefit rate of b while alive, starting from time

T .

(3) Disability annuity paying a benefit rate of d while disabled until time T .

The state of the insured is modeled in the disability model with recoveries, as

depicted in Figure 6.1.

disabled 1active 0

dead 2

µ01

µ12µ02

µ10

Figure 6.1: Disability model with recoveries.

The payment process B giving accumulated benefits from this product design

then takes the form

dB(t) = 1(Z(t−)=0)

(
b · 1(t≥T ) dt+ S · 1(t<T ) dN02(t)

)
+ 1(Z(t−)=1)

(
d · 1(t<T ) dt+ b · 1(t≥T ) dt+ S · 1(t<T ) dN12(t)

)
,

B(0) = 0,
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where Z = {Z(t)}t≥0 is the process (with state-space according to Figure 6.1)

indicating the state of the insured and Nij is the associated counting process

counting the number of jumps from state i to j, for i, j ∈ {0, 1, 2}, i ̸= j.

The present value at initiation of the contract (at time 0) of future benefits up

to some terminal time point t > 0 is then given by

U(0, t) =

∫ t

0

e−
∫ s
0
r(v) dv dB(s),

where r = {r(v)}v≥0 is some deterministic interest rate that accounts for time value

of money. Based on a principle of diversification of unsystematic biometric risk, the

prospective reserve is given as the expected present value, i.e. V (0, t) = E[U(0, t)],

which satisfies the well-known Thiele’s differential equation, cf. Hoem (1969a). This

principle relies on the strong law of large numbers on i.i.d. present values (coming

from i.i.d. insured with same product combination), U1(0, t), U2(0, t), . . .,

1

N

N∑
i=1

U i(0, t)
a.s−→ E

[
U1(0, t)

]
, as N → ∞.

To avoid a significant risk of future payments deviating from expected values,

the insurer adds safety margins to the prospective reserve. Assuming an explicit

approach based on the probability distribution of the present value, a natural

approach is to use approximations based on the Central Limit Theorem (CLT), cf.

Christiansen (2013):

√
N

(
1

N

N∑
i=1

U i(0, t)− E
[
U1(0, t)

]) D−→ N
(
0,Var

[
U1(0, t)

])
, as N → ∞.

We recall that Var
[
U1(0, t)

]
can be calculated using multi-state versions of Hatten-

dorff’s theorem, cf. Ramlau-Hansen (1988). One may even turn to higher order

moments beyond the variance to approximate these distributions further, cf. Norberg

(1995b) and Bladt, Asmussen, and Steffensen (2020).

Now, since the different payment types work in different directions w.r.t. the

underlying mortality and disability risk, the safety margins on the individual product

types are dependent. We are therefore interested in computing joint safety margins

that suitably represents decompositions of these type of risks. This we can obtain by

decomposing the payment process B into the three types corresponding to (1)− (3)

above:

B(t) = B1(t) +B2(t) +B3(t),

dB1(t) = S · 1(t<T )

(
1(Z(t−)=0) dN02(t) + 1(Z(t−)=1) dN12(t)

)
, B1(0) = 0,

dB2(t) = b · 1(t≥T )

(
1(Z(t−)=0) + 1(Z(t−)=1)

)
dt, B2(0) = 0,
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dB3(t) = d · 1(t<T )1(Z(t−)=1) dt, B3(0) = 0,

and where the present value of the payment processes B1, B2 and B3 are coupled

in a vector: U(0, t) = (U1(0, t), U2(0, t), U3(0, t))
′. The joint distribution of U(0, t)

now becomes the key to obtain joint safety margins related to the different product

types. With i.i.d. present values U1(0, t),U2(0, t), . . ., the multivariate CLT now

applies

√
N

(
1

N

N∑
i=1

U i(0, t)− E
[
U1(0, t)

]) D−→ N
(
0,ΣU1(0,t)

)
, as N → ∞,

ΣU1(0,t) =
{
Cov

(
U1
i (0, t), U

1
j (0, t)

)}
i,j=1,2,3

.

Hence, the covariance matrix of U1(0, t) allows for approximation of joint safety

margins for the three product types. Again, turning to higher order moments

of U1(0, t) in general improves these approximations in the same way as for the

univariate case. The focal point of this paper is to compute these higher order

moments for multivariate present values in a general multi-state framework, and

give special attention to pair-wise covariances as motivated by this example.

We should like to mention that while this example concerned joint safety margins

on the unsystematic biometric risk in life and disability insurance, one could have

used the same model for e.g. systematic mortality risk. This is obtained by thinking

of the states as demographic states, say, where e.g. the disability state represents a

situation where the overall mortality for all insured in the portfolio have increased

(or decreased). Then we would obtain joint safety margins related to systematic

mortality risk when considering the joint distribution of the multivariate present

value (a modification of the payment processes might be necessary here).

6.3 Setup

We now proceed with the general setup of the paper. Subsection 6.3.1 introduces

the process governing the state of the insured and the multivariate payment process

describing the collection of products held by the insured. Subsection 6.3.2 then

considers the multivariate present value of future payments, whose components

consists of the present value of the individual payments, and we introduce the

calculation of their higher order moments as the main purpose of the paper. By

considering existing results in Norberg (1995b) and Bladt, Asmussen, and Steffensen

(2020) for single payment processes, we end the section by explaining our main

ideas and give an overview on how we are to obtain the multivariate extension in

this paper.

Notation and conventions For vectors x,y ∈ Rn, we say that x ≤ y if xℓ ≤ yℓ
for all ℓ = 1, . . . , n. Furthermore, we denote with x̄ the sum of the elements in x, i.e.
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x̄ =
∑n

ℓ=1 xℓ. Also, eℓ is the ℓ’th unit vector in Rn and En = {e1, . . . , en} denotes

the set of unit vectors, i.e. the natural basis of Rn. Furthermore, ⟨x,y⟩ =
∑n

ℓ=1 xℓyℓ
denotes the usual inner product.

For n× n matrix valued functions R ∋ x 7→ A(x) we denote its product integral

in the (time) interval (s, t] as

F (s, t) =
t

R
s

(I +A(x) dx),

whenever it exists; here I is the n × n identity matrix. For a survey on product

integration and its properties, we refer to Gill and Johansen (1990) and Johansen

(1986) and the applications to life insurance in Milbrodt and Stracke (1997) and

Bladt, Asmussen, and Steffensen (2020). Numerical schemes for calculation of

product integrals can be found in Helton and Stuckwisch (1976).

For the purpose of computing multivariate higher order moments, we consider

the map S : Nn
0 → P(Nn

0 ) defined as

S(x) =
{
ξ ∈ Nn

0 \ {0}
∣∣ ξ ≤ x

}
, x ∈ Nn

0 . (6.3.1)

The set S(x) then contains all combinations of lower order moments of x, excluding

the 0’th moment, and the cardinality
∣∣S(x)∣∣ =∏n

ℓ=1(xℓ + 1)− 1 then represents

the amount of these that appear; whenever we wish to include the 0’th moment, we

write S̃(k) = S(k)∪{0}. For notational convenience, we simply define the mapping

| · | : Nn
0 → N0 as

|x| :=
n∏

ℓ=1

(xℓ + 1)− 1, x ∈ Nn
0 .

To compute higher order partial derivatives of multivariate scalar functions f :

Rn → R, we use the following notation, for m ∈ Nn
0 ,

∂m

∂xm
f(x) =

∂m̄

∂xm1
1 ∂xm2

2 · . . . · ∂xmn
n

f(x)

provided they exist.

6.3.1 Life insurance model

The state of the insured is governed by a non-explosive Markov jump process

Z = {Z(t)}t≥0 taking values on a finite state space J = {0, . . . , J −1}, J ∈ N, with
deterministic initial state Z(0) = z0 ∈ J . Denote with M(t) = {µij(t)}i,j∈J the

transition intensity matrix of Z and let P (s, t) = {pij(s, t)}i,j∈J be the correspond-

ing transition probability matrix. The multivariate counting process associated

with Z is denoted N(t) = {Nij(t)}i,j∈J ,i̸=j , with components given by

Nij(t) = # {s ∈ (0, t] : Z(s−) = i, Z(s) = j} .
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We consider a collection of life insurance contracts described by the n-dimensional

payment process B(t) = (B1(t), . . . , Bn(t))
′
with each component giving accumu-

lated benefits less premiums for the corresponding contract; here n ∈ N is a fixed and

finite number of contracts. We suppose that the ℓ’th payment process, ℓ = 1, . . . , n,

consist of deterministic sojourn payment rates bℓi and transition payments bℓij ,

i, j ∈ J , i ̸= j, in terms of the state process Z. Coupling these in vectors,

bi(t) =
(
b1i (t), . . . , b

n
i (t)

)′
, (6.3.2)

bij(t) = (b1ij(t), . . . , b
n
ij(t))

′, (6.3.3)

we formally characterize B as

dB(t) =
∑
i∈J

(
1(Z(t)=i)bi(t)dt+

∑
j:j ̸=i

bij(t)dNij(t)

)
, B(0) = 0. (6.3.4)

We assume throughout that the transition rates µij as well as the payment functions

bℓi , b
ℓ
ij , for i, j ∈ J , i ̸= j, and ℓ = 1, . . . , n, are bounded on finite intervals. This

makes all integrals and expectations in the following well defined and finite.

We think of B as describing payments with different product types that naturally

are dependent. The simplest example is the combination of life annuities and death

benefit, which have opposite effects with respect to the mortality risk on lifetimes.

In the general multi-state framework of this paper, we are able to examine product

interactions that are less trivial; cf. the motivating example in Section 6.2.

Example 6.3.1 (Disability model). The setup of the motivating example from

Section 6.2 in the disability model corresponds to having the following vectors of

payments functions (6.3.2)–(6.3.3):

b0(t) =
(
0, b · 1(t≥T ), 0

)′
,

b1(t) =
(
0, b · 1(t≥T ), d · 1(t<T )

)′
,

b02(t) = b12(t) =
(
S · 1(t<T ), 0, 0

)′
,

with the remaining vectors of payment functions having purely zero entries. ◦

6.3.2 Present values and their moments

Let r = {r(t)}t≥0 be a continuous, suitably regular and deterministic short rate.

To account for time value of money, introduce v(s, t) as the discount factor for a

payment at time t valuated at time s ≤ t, i.e.

v(s, t) = e−
∫ t
s
r(x) dx.

The present value at time s of future benefits less premiums up to time t for the

payment process B is then given by

U(s, t) =

∫ t

s

v(s, u) dB(u) = (U1(s, t), . . . , Un(s, t))
′
, (6.3.5)
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where the components Uℓ(s, t) =
∫ t

s
v(s, u) dBℓ(u), ℓ = 1, . . . , n, are the present

values of the individual payment process.

The components of U are (by construction) seen to be dependent, which in-

troduces joint effects on the payments with respect to the underlying event risk.

To analyze these dependence structures, we wish to examine its joint distribution

by computing its conditional higher order moments given the current state of the

insured, that is, by computing

V
(k)
i (s, t) = E

[
n∏

ℓ=1

Uℓ(s, t)
kℓ

∣∣∣∣∣Z(s) = i

]
(6.3.6)

for any i ∈ J and k = (k1, . . . , kn) ∈ Nn
0 . For k = eℓ we have that V

(eℓ)
i (s, t) is the

state-wise prospective reserve for the ℓ’th payment process, calculated using the

classic Thiele’s differential equation, cf. Hoem (1969a).

As mentioned in the introduction, having multiple product types for the same

insured is usually handled by adding all payment functions together as b̄i and b̄ij ,

or, equivalently, by considering the aggregate present value Ū(s, t). This effectively

gives a one dimensional payment process to examine; in Hoem (1969a) we have

Thiele’s differential equation for conditional expectations and in Adékambi and

Christiansen (2017), Bladt, Asmussen, and Steffensen (2020), and Norberg (1995b)

we have differential equations for conditional higher order moments, which e.g.

allows for calculation of safety margins on reserves as in Christiansen (2013). The

present paper is therefore to be thought of as a way of decomposing the aggregated

payments into the different product types and study the joint distribution of their

future payments, which then would allow for calculation of joint safety margins for

the different product types as outlined in Section 6.2.

The following matrices, which we think of as inputs to the computations, are

needed in the derivations; for ℓ ∈ {1, . . . , n}, i, j ∈ J , i ≠ j, and y ∈ Nn
0 \(En∪{0}),

let

Bℓ(s) =
{
bℓij(s)

}
i,j∈J , (6.3.7)

bℓ(s) =
(
bℓ0(s), . . . , b

ℓ
J+1(s)

)′
, (6.3.8)

Rℓ(s) = M(s) •Bℓ(s) +∆(bℓ(s)), (6.3.9)

C(y)(s) = M(s) •B•y1

1 (s) • . . . •B•yn
n (s), (6.3.10)

where ∆(bℓ(s)) denotes the diagonal matrix with the vector bℓ(s) as diagonal

elements, • denotes the entry-wise matrix product and e.g. B•y
1 (s) denotes the

entry-wise matrix product of B1(s) with itself y times; here we use the convention

that e.g. B•0
1 (s) denotes the matrix with all entries equal to 1. These matrices are

defined analogously to those of Bladt, Asmussen, and Steffensen (2020, (3.8)–(3.11))

with the relevant extension to a multivariate payment process.
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The remainder of the paper now focuses on computation of V
(k)
i (s, t), carried

out as follows. Following Bladt, Asmussen, and Steffensen (2020), we first compute

the conditional higher order moments on events that the insured terminates in

specific states, given by, for j ∈ J ,

V
(k)
ij (s, t) = E

[
1(Z(t)=j)

n∏
ℓ=1

Uℓ(s, t)
kℓ

∣∣∣∣∣Z(s) = i

]
(6.3.11)

with corresponding matrix

V (k)(s, t) =
{
V

(k)
ij (s, t)

}
i,j∈J

. (6.3.12)

This is carried out by deriving the relevant moment generating function. As in

Bladt, Asmussen, and Steffensen (2020), we shall refer to these as the conditional

partial moments of U(s, t). From these, the conditional moments V
(k)
i (s, t) are

obtained via the relation
∑

j∈J V
(k)
ij (s, t) = V

(k)
i (s, t), such that

V
(k)
i (s, t) =

{
V (k)(s, t)1

}
i
, (6.3.13)

where 1 = (1, 1, . . . , 1)′.

For the first order moment k = 1 (in the one-dimensional case n = 1), the partial

reserves (6.3.11) have already been introduced in existing literature; they coincide

with the conditional prospective premium reserves introduced by Wolthuis (1992).

In Norberg (1991), we also encounter these type of quantities for corresponding

retrospective reserves initiated at time zero, i.e. for s = 0.

These earlier treatments in the literature of these kinds of quantities justifies the

conditional partial moments (6.3.12) as relevant objects to study on their own. In

this paper, however, they are primarily introduced as a mathematical convenient

object towards obtaining the conditional moments (6.3.6); this is the same focus in

Bladt, Asmussen, and Steffensen (2020).

6.4 Moment generating functions

Consider the multivariate present value U(s, t). The moment generating function

of its conditional distribution given Z(s) = i on the event (Z(t) = j), i, j ∈ J , is

given by

Fij(θ; s, t) = E
[
e⟨θ,U(s,t)⟩1(Z(t)=j)

∣∣∣Z(s) = i
]
, θ ∈ Rn, (6.4.1)

with corresponding matrix

F (θ; s, t) = {Fij(θ; s, t)}i,j∈J .

We are then able to obtain the moment generating function by a direct application

of results in Bladt, Asmussen, and Steffensen (2020).
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Theorem 6.4.1. The joint distribution of the multivariate present value U(s, t)

has moment generating function given by

F (θ; s, t) =
t

R
s

(
I +

[
M(u) •

{
ev(s,u)⟨θ,bij(u)⟩

}
i,j∈J

+ v(s, u)

n∑
ℓ=1

θℓ∆(bℓ(u))

]
du

)
.

Proof. Let θ ∈ Rn and 0 ≤ s ≤ t be given. By linearity of integrals, we note

⟨θ,U(s, t)⟩ =
∫ t

s

v(s, u) dB̃θ(u),

dB̃θ(u) =
∑
i∈J

1{Z(u−)=i}

(
⟨θ, bi(u)⟩du+

∑
j:j ̸=i

⟨θ, bij(u)⟩dNij(u)

)
.

Hence, ⟨θ,U(s, t)⟩ is the present value of a one-dimensional payment process with

sojourn payment rates ⟨θ, bi(·)⟩ and transition payments ⟨θ, bij(·)⟩. Thus, in the

spirit of Bladt, Asmussen, and Steffensen (2020), we may view F (θ; s, t) as the

moment generating function of a total (undiscounted) reward evaluated in 1 with

the payment functions u 7→ ⟨θ, v(s, u)bi(u)⟩ and u 7→ ⟨θ, v(s, u)bij(u)⟩ (for fixed

s). The result then follows from an application of Bladt, Asmussen, and Steffensen

(2020, Theorem 3).

Remark 6.4.2. Theorem 6.4.1 is a generalization of Bladt, Asmussen, and Steffensen

(2020, Theorem 3) to multivariate payment processes with discounting. Indeed, by

letting n = 1 and r(s) = 0 for all s ≥ 0, the result simplifies to, suppressing the

superfluous dependency in ℓ,

F (θ; s, t) =
t

R
s

(
I +

[
M(s) •

{
eθbij(s)

}
i,j∈J

+ θ∆(b(s))

]
du

)
,

which is the product integral of Bladt, Asmussen, and Steffensen (2020, Theorem

3). △

From the product integral representation of F , we are able to obtain a partial

differential equation satisfied by F . Similar type of equations are also obtained in

Adékambi and Christiansen (2017).

Theorem 6.4.3. The moment generating function F satisfies the system of partial

differential equations

∂

∂s
F (θ; s, t) = r(s)

n∑
ℓ=1

θℓ
∂

∂θℓ
F (θ; s, t)

−

[
M(s) •

{
e⟨θ,bij(s)⟩

}
i,j∈J

+

n∑
ℓ=1

θℓ∆(bℓ(s))

]
F (θ; s, t),

(6.4.2)

with the terminal condition F (θ; t, t) = I.
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Proof. For θ ∈ Rn and 0 ≤ s ≤ u, let

A(s, u;θ) = M(u) •
{
ev(s,u)⟨θ,bij(u)⟩

}
i,j∈J

+ v(s, u)

n∑
ℓ=1

θℓ∆(bℓ(u))

denote the matrix that is product integrated in Theorem 6.4.1. It satisfies the

relation ∂
∂sA(s, u;θ) = r(s)

∑n
ℓ=1 θℓ

∂
∂θℓ

A(s, u;θ), which can be seen from direct

calculations. Now, since F is a product integral of the matrix function A(s, ·;θ), it
has the Peano-Baker series representation given by

F (θ; s, t) = I +
∞∑

n=1

∫ t

s

∫ xn

s

· · ·
∫ x2

s

A(s, x1;θ) · · ·A(s, xn;θ) dx1 · · · dxn.

Differentiating this w.r.t. s, we get using Lebniz’ integral rule,

∂

∂s
F (θ; s, t) = −A(s, s;θ)F (θ; s, t)

+

∞∑
n=1

∫ t

s

∫ xn

s

· · ·
∫ x2

s

∂

∂s
(A(s, x1;θ) · · ·A(s, xn;θ)) dx1 · · · dxn

In the last differentiation, we can in each combination (when applying the product

rule) substitute the derivative w.r.t. to s with r(s)
∑n

ℓ=1 θℓ
∂

∂θℓ
A(s, u;θ). This gives

∂

∂s
F (θ; s, t)

= −A(s, s;θ)F (θ; s, t)

+

∞∑
n=1

∫ t

s

∫ xn

s

· · ·
∫ x2

s

r(s)

n∑
ℓ=1

θℓ
∂

∂θℓ
(A(s, x1;θ) · · ·A(s, xn;θ)) dx1 · · · dxn

= −A(s, s;θ)F (θ; s, t) + r(s)

n∑
ℓ=1

θℓ
∂

∂θℓ
F (θ; s, t),

as claimed. The boundary condition follows from the definition of product integrals.

Throughout the proof, we have used that the Peano-Baker series converges uniformly

on compact intervals in order to interchange summation and differentiation.

Remark 6.4.4. Consider the univariate case n = 1 and suppress the superfluous

dependency in ℓ. By multiplying both sides of (6.4.2) with 1 = (1, 1, . . . , 1)′ and

extracting the i’th element, i ∈ J , we see that Fi(θ; s, t) := E
[
eθU(s,t)

∣∣Z(s) = i
]

satisfies the partial differential equation

∂

∂s
Fi(θ; s, t) = r(s)θ

∂

∂θ
Fi(θ; s, t)− θbi(s)Fi(θ; s, t)

−
∑
k:k ̸=i

µik(s)
(
eθbik(s)Fk(θ; s, t)− Fi(θ; s, t)

)
,
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with the boundary condition Fi(θ; t, t) = 1. This is the partial differential equation

of Adékambi and Christiansen (2017, Proposition 4.3) in the Markovian special

case with no duration dependency. △

Having derived the relevant moment generating function of the multivariate

present value U(s, t), we are now ready to compute the corresponding higher order

moments.

6.5 Higher order moments

In this section, we derive the conditional (partial) higher order moments (6.3.6)

and (6.3.12), which constitutes the main contribution of the paper. In Subsection

6.5.1 we derive differential equations for the conditional partial moments (6.3.12)

using the moment generating function F (·; s, t) derived in Section 6.4. Then we

use this result to derive differential equations for the conditional moments (6.3.6)

via the relation (6.3.13). In Subsection 6.5.2, we then show how all conditional

partial moments up to a given order k ∈ Nn
0 can be obtained from a product

integral calculation. Throughout the section, we highlight how the results appear

as natural and simple multivariate extensions to results in Bladt, Asmussen, and

Steffensen (2020) and Norberg (1995b), in particular when notation may appear as

cumbersome.

6.5.1 Differential equations of conditional (partial) moments

We now turn our attention to deriving ordinary differential equations for the

conditional (partial) moments. For this, recall that S(k) denotes the set of all lower

order moments of the k’th moment, excluding the 0’th moment, with elements we

may write as

S(k) =
{
y1, . . . ,y|k|

}
.

The following main result then take use of the moment generating function derived

in Section 6.4 to obtain differential equations for the conditional partial moments.

Theorem 6.5.1. The conditional partial moments V (k)(·, t) satisfies the backward

differential equations given by, for k ∈ Nn
0 ,

∂

∂s
V (k)(s, t) =

(
k̄ r(s)I −M(s)

)
V (k)(s, t)−

n∑
ℓ=1

kℓRℓ(s)V
(k−eℓ)(s, t)

−
∑

y∈S(k)
y/∈En

n∏
ℓ=1

(
kℓ
yℓ

)
C(y)(s)V (k−y)(s, t),

(6.5.1)

with the terminal conditions V (k)(t, t) = 1(k=0)I.
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Proof. We can use the moment generating function F (· ; s, t) to calculate derivative
∂
∂sV

(k)(s, t) as

∂

∂s
V (k)(s, t) =

∂k

∂θk

∂

∂s
F (θ; s, t)

∣∣∣∣
θ=0

.

Differentiating both sides of (6.4.2), we get by the generalized product rule

∂k

∂θk

∂

∂s
F (θ; s, t)

= r(s)

n∑
ℓ=1

∑
y∈S̃(k)

n∏
r=1

(
kr
yr

)[
∂y

∂θy
θℓ

]
∂k−y

∂θk−y

∂

∂θℓ
F (θ; s, t)

−
∑

y∈S̃(k)

n∏
r=1

(
kr
yr

)
∂y

∂θy

[
M(s) •

{
e⟨θ,bij(s)⟩

}
i,j∈J

+

n∑
ℓ=1

θℓ∆(bℓ(s))

]
×

∂k−y

∂θk−y
F (θ; s, t).

= r(s)

n∑
ℓ=1

[
1(y=0)θℓ + kℓ1(y=eℓ)

] ∂k−y

∂θk−y

∂

∂θℓ
F (θ; s, t)

−
∑

y∈S̃(k)

n∏
r=1

(
kr
yr

)[
M(s) •

{
n∏

ℓ=1

bℓij(s)
yℓe⟨θ,bij(s)⟩

}
i,j∈J

+

n∑
ℓ=1

1(y=eℓ)∆(bℓ(s))

]
∂k−y

∂θk−y
F (θ; s, t).

In the last equality, we have used that
∏n

r=1

(
kr

yr

)
= kℓ if y = eℓ along with

∂y

∂θy θℓ = 1(y=0)θℓ + 1(y=eℓ) for ℓ = 1, . . . , n. Now, evaluating in θ = 0, we get

∂

∂s
V (k)(s, t)

= r(s)

n∑
ℓ=1

kℓ
∂k−eℓ

∂θk−eℓ

∂

∂θℓ
F (θ; s, t)

∣∣∣∣
θ=0

−
∑

y∈S̃(k)

n∏
ℓ=1

(
kℓ
yℓ

)M(s) •

{
n∏

ℓ=1

bℓij(s)
yℓ

}
i,j∈J

+

n∑
ℓ=1

1(y=eℓ)∆(bℓ(s))

×

V (k−y)(s, t)

= k̄ r(s)V (k)(s, t)

−
∑

y∈S̃(k)

n∏
ℓ=1

(
kℓ
yℓ

)[
M(s) •B•y1

1 (s) • . . . •B•yn
n (s) +

n∑
ℓ=1

1(y=eℓ)∆(bℓ(s))

]
×

V (k−y)(s, t).
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Splitting the last sum into terms corresponding to y = 0 and y = eℓ, for ℓ = 1, . . . , n,

gives

∂

∂s
V (k)(s, t) =

(
k̄ r(s)I −M(s)

)
V (k)(s, t)−

n∑
ℓ=1

kℓRℓ(s)V
(k−eℓ)(s, t)

−
∑

y∈S(k)
y/∈En

n∏
ℓ=1

(
kℓ
yℓ

)
C(y)(s)V (k−y)(s, t),

the desired differential equation. The boundary condition follows from (6.3.11) with

the fact that V (0)(t, t) = P (t, t) = I.

Remark 6.5.2. The differential equation of Theorem 6.5.1 generalizes Norberg

(1995b, Theorem 6) to multivariate present values; for n = 1 we have, supressing

the superfluous dependency in ℓ, that S(k) = {1, 2, . . . , k} and E1 = {1}, and so

the differential equations reads

∂

∂s
V (k)(s, t) = (k r(s)I −M(s))V (k)(s, t)− kR(s)V (k−1)(s, t)

−
k∑

y=2

(
k

y

)
C(y)(s)V (k−y)(s, t),

with the terminal conditions V (k)(t, t) = 1(k=0)I. △

From the differential equation of the conditional partial moments, we immediately

obtain differential equations for the corresponding conditional moments V
(k)
i (s, t)

by multiplying the former with 1 = (1, 1, . . . , 1)′, as explained in Section 6.3.

Theorem 6.5.3. The conditional moments V
(k)
i (·, t) satisfies the backward differ-

ential equations given by, for i ∈ J ,

∂

∂s
V

(k)
i (s, t) =

(
k̄r(s) + µi·(s)

)
V

(k)
i (s, t)−

n∑
ℓ=1

kℓ b
ℓ
i(s)V

(k−eℓ)
i (s, t)

−
∑
j:j ̸=i

µij(s)
∑

y∈S̃(k)

n∏
ℓ=1

(
kℓ
yℓ

)
(bℓij(s))

yℓV
(k−y)
j (s, t),

(6.5.2)

with the terminal conditions V
(k)
i (t, t) = 1(k=0).

Proof. Simply multiply the differential equation in Theorem 6.5.1 with the vector

1 = (1, 1, . . . , 1)′ on both sides and extract the i’th element of the vectors.

Remark 6.5.4. The differential equation of Theorem 6.5.3 generalizes Norberg

(1995b, (3.2)) to multivariate present values; for n = 1 we have, supressing the
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superfluous dependency in ℓ, that S(k) = {1, 2, . . . , k} and E1 = {1}, and so the

differential equations reads

∂

∂s
V

(k)
i (s, t) = (kr(s) + µi·(s))V

(k)
i (s, t)− kbi(s)V

(k−1)
i (s, t)

−
∑
j:j ̸=i

µij(s)

k∑
y=0

(
k

y

)
(bij(s))

yV
(k−y)
j (s, t),

with the terminal conditions V
(k)
i (t, t) = 1(k=0). △

Remark 6.5.5. The conditional central moments

m
(k)
i (s, t) = E

[
n∏

ℓ=1

(
Uℓ(s, t)− V

(eℓ)
i (s, t)

)kℓ

∣∣∣∣∣ Z(s) = i

]

may be obtained from the conditional (non-central) moments V
(k)
i (s, t) via an

application of the multidimensional binomial formula, giving

m
(k)
i (s, t) =

∑
y∈S̃(k)

n∏
ℓ=1

(−1)kℓ−yℓ

(
kℓ
yℓ

)
V

(y)
i (s, t)V

(eℓ)
i (s, t)kℓ−yℓ . (6.5.3)

Thus, by first solving the differential equation of Theorem 6.5.3 we are able to

compute m
(k)
i (s, t) via (6.5.3). Here, we may note that solving the differential

equation of Theorem 6.5.3 to compute the k’th moment immediately gives V
(y)
i (s, t)

for all y ∈ S̃(k); details regarding this is explained in Subsection 6.5.2. △

Example 6.5.6 (Conditional covariance). For n = 2 and k = (1, 1) we have

that S̃(k) = {(0, 0), (1, 0), (0, 1), (1, 1)}, and so the differential equation for the

conditional product moment V
(1,1)
i (s, t) = E[U1(s, t)U2(s, t) |Z(s) = i] is given by

∂

∂s
V

(1,1)
i (s, t) = (2r(s) + µi·(s))V

(1,1)
i (s, t)− b1i (s)V

(0,1)
i (s, t)− b2i (s)V

(1,0)
i (s, t)

−
∑
j:j ̸=i

µij(s)

(
V

(1,1)
j (s, t) + b1ij(s)V

(0,1)
j (s, t) + b2ij(s)V

(1,0)
j (s, t)

+ b1ij(s)b
2
ij(s)

)
,

V
(1,1)
i (t, t) = 0,

where V
(0,1)
i and V

(1,0)
i are the state-wise prospective reserves of the two payment

processes, which can be calculated using Thiele’s differential equation. From this,

the conditional central moment m
(1,1)
i (s, t) is given as

m
(1,1)
i (s, t) = E

[(
U1(s, t)− V

(1,0)
i (s, t)

)(
U2(s, t)− V

(0,1)
i (s, t)

) ∣∣∣ Z(s) = i
]

= V
(1,1)
i (s, t)− V

(1,0)
i (s, t)V

(0,1)
i (s, t), (6.5.4)

which is the conditional covariance of U1(s, t) og U2(s, t) given Z(s) = i. ◦
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Following up on the example, it turns out that it is possible to derive differential

equations for the conditional covariance between two present values in which the

sum at risk used in the Thiele differential equations appears. The result is also

presented without proof in Asmussen and Steffensen (2020, Proposition 10.3), and

we are able to proof the result here through our results on the non-central moments.

Corollary 6.5.7. The conditional covariance m
(eℓ+em)
i (s, t) between Uℓ(s, t) and

Um(s, t) given Z(s) = i satisfies the system of backward differential equations given

by, for i ∈ J ,

∂

∂s
m

(eℓ+em)
i (s, t) = 2r(s)m

(eℓ+em)
i (s, t)

−
∑
j:j ̸=i

µij(s)
(
Rℓ

ij(s)R
m
ij (s) +m

(eℓ+em)
j (s, t)−m

(eℓ+em)
i (s, t)

)
,

with terminal conditions m
(eℓ+em)
i (t, t) = 0. Here, Rℓ

ij denotes the sum at risk in

the ℓ’th payment process for the transition from state i to j, i ̸= j, given by

Rℓ
ij(s) = bℓij(s) + V

(eℓ)
j (s, t)− V

(eℓ)
i (s, t),

and analogously for Rm
ij .

Proof. Differentiating (6.5.4) w.r.t. s on both sides gives

∂

∂s
m

(eℓ+em)
i (s, t) =

∂

∂s
V

(eℓ+em)
i (s, t)− V

(em)
i (s, t)

∂

∂s
V

(eℓ)
i (s, t)

− V
(eℓ)
i (s, t)

∂

∂s
V

(em)
i (s, t) (6.5.5)

Then insert the expression for ∂
∂sV

(eℓ+em)
i (s, t) obtained in Example 6.5.6 as well

as the Thiele differential equations for the state-wise prospective reserves, given by

∂

∂s
V

(eℓ)
i (s, t) = r(s)V

(eℓ)
i (s, t)− bℓi(s)−

∑
j:j ̸=i

µij(s)R
ℓ
ij(s),

and analogously for V
(em)
i . By gathering the relevant terms, we obtain the desired

differential equation. The boundary condition follows directly from (6.5.4).

Remark 6.5.8. Note that the differential equation of Corollary 6.5.7 corresponds

to a Thiele differential equation with interest rate 2r, no sojourn payments and

transition payments Rℓ
ijR

m
ij from state i to state j. Consequently, the conditional

covariance m
(eℓ+em)
i has the representation

m
(eℓ+em)
i (s, t) = E

[∫ t

s

e−
∫ u
s

2r(v) dv dB̃(u)

∣∣∣∣Z(s) = i

]
dB̃(u) =

∑
i∈J

1(Z(u−)=i)

∑
j:j ̸=i

Rℓ
ij(u)R

m
ij (u) dNij(u).
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In the case of the conditional variance, i.e. ℓ = m, these type of representations

are known as Hattendorff’s theorem, which has been formulated in a multi-state

Markovian framework by Ramlau-Hansen (1988) using martingale techniques and

further generalized in Norberg (1992). The result here may thus reveal that the

probabilistic structures leading to Hattendorff’s theorem is not only limited to the

variance, but can be carried over to the covariance. △

From the conditional covariances (and variances when ℓ = m), we are then able

to put up the conditional covariance matrix of U(s, t) given Z(s) = i,

Σi(s, t) =
{
m

(eℓ+em)
i

}
ℓ,m=1,...,n

(6.5.6)

as well as the corresponding correlation matrix

ρi(s, t) =

 m
(eℓ+em)
i (s, t)√

m
(eℓ+eℓ)
i (s, t)m

(em+em)
i (s, t)


ℓ,m=1,...,n

(6.5.7)

which makes us able to analyze pair-wise dependence structures between the present

values. In particular, these may be used to approximate joint safety margins via

multivariate CLT approximations as outlined in Section 6.2.

6.5.2 Product integral representation of conditional partial

moments

In this subsection, we derive a product integral representation for the conditional

partial moments. This allows for the partial moments to be treated both theoretically

and numerically as objects of its own within the theory of product integrals, where

all properties and results for these can be benefited from, see e.g. Johansen (1986)

and Gill and Johansen (1990) for theoretical properties and Helton and Stuckwisch

(1976) for numerical schemes. Specific to this problem, the product integral shall

even demonstrate how one may compute all moments V (y), y ∈ S̃(k), at once.

From the differential equations for the conditional (partial) moments, we see a

structure similar to those of a single payment stream, namely that one must use all

lower order moments y1, . . . ,y|k|−1 ∈ S(k) (each computed using Theorem 6.5.1 or

6.5.3) to compute the k’th moment. Since each of these need their corresponding

lower order moments S(ym), m = 1, . . . , |k| − 1, we are able to compute the

k’th moment starting from the 0’th moment, which is V (0)(s, t) = P (s, t) (or

V
(0)
i (s, t) = 1), and then iteratively for each m = 1, . . . , |k| compute the ym’th

moment using the lower order moments y1, . . . ,ym−1. In total, one must then solve

(|k|+ 1) J × J-dimensional systems of differential equations for V (k), and (|k|+ 1)

J-dimensional systems for V
(k)
i .

However, this approach relies on how we sort the vectors y1, . . . ,y|k|, or, equiva-

lently, the order at which we solve the differential equations, since we must ensure
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that the sets S(ym) are increasing, i.e. that S(ym−1) ⊆ S(ym) for all m = 1, . . . , |k|,
such that we actually are able to draw upon all lower order moments when calcu-

lating a given moment ym. Note that this is a trivial matter in the case of a single

payment process, since for n = 1 we have S(k) = {1, . . . , k}.

It turns out that the key to obtain the result is to order the vectors y1, . . . ,y|k|

in a way that fortunately is standard in most software packages.

Assumption 6.5.9. We assume that the lower order moments in the set S(k) ={
y1, . . . ,y|k|} are lexicographical ordered, that is, they satisfy that for all m′ > m,

m,m′ ∈ {1, . . . , |k|}, there exist u ∈ {1, . . . , n} (dependent on m and m′), such that

ymℓ = ym
′

ℓ for all ℓ < u, and

ymu < ym
′

u .

In other words, ym′
is strictly larger than ym in the first entry where they differ

(it may be smaller in the remaining entries). Details regarding this type of ordering

and its properties are presented in Appendix 6.A.

Now, define the matrix F
(k)
U (x), x ≥ 0, as



M(x)− k̄r(x)I f
(k)
1 (x) f

(k)
2 (x) . . . f

(k)
|k| (x)

0 M(x)− ȳ|k|−1r(x)I f
(y|k|−1)
1 (x) . . . f

(y|k|−1)
|k|−1

(x)

...
...

. . .
...

...

0 0 0 M(x)− ȳ1r(x)I f
(y1)
1 (x)

0 0 0 0 M(x)


with f

(ym)
u (x), for m = 1, . . . , |k| and u = 1, . . . ,m, given by, setting y0 := 0,

f (ym)
u (x) =



ym1 R1(x) if ym − ym−u = e1,

ym2 R2(x) if ym − ym−u = e2,
...

...

ymn Rn(x) if ym − ym−u = en,∏n
ℓ=1

(
ym
ℓ
ξℓ

)
C(ξ)(x), if ym − ym−u = ξ ∈ S(ym) \ En,

0 Otherwise.

(6.5.8)

Here, one should think of the matrices
{
f
(ym)
u (x)

}m

u=1
as those needed to compute

the ym’th moment, cf. Theorem 6.5.1, and so each block row of F
(k)
U (x) corresponds

to a calculation of a lower order moment.
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Example 6.5.10 (Conditional covariance). For the computation of conditional

covariances, we have for n = 2 and k = (1, 1) that the matrix F
(1,1)
U (x) reads as

F
(1,1)
U (x) =


M(x)− 2r(x)I R2(x) R1(x) C(1,1)(x)

0 M(x)− r(x)I 0 R1(x)

0 0 M(x)− r(x)I R2(x)

0 0 0 M(x)

 ,

arising from the fact that the lexicographical ordering of S((1, 1)) is given as

(0, 1), (1, 0), and (1, 1). ◦

Now, let

G(k)(s, t) =
t

R
s

(
I + F

(k)
U (x)dx

)
(6.5.9)

denote the product integral on the interval (s, t] of the matrix function F
(k)
U . Since

the matrix F
(k)
U (x) is a

(
|k|+1

)
×
(
|k|+1

)
block-partitioned matrix with blocks of

sizes J × J , we have that G(k)(s, t) is of similar size, and we denote with G
(k)
ij (s, t)

the ij’th block of G(k)(s, t) for i, j ∈ {1, . . . |k| + 1}. The following result then

demonstrates how all moments of up to order k are obtained through this single

calculation of a product integral.

Theorem 6.5.11. For each i ∈ {0, 1, . . . , |k|} we have, for m = 0, 1, . . . , i,

G
(k)
|k|+1−i,|k|+1−m(s, t) = 1(yi≥ym)

n∏
ℓ=1

(
yiℓ
ymℓ

)
e−ȳm

∫ t
s
r(v) dvV (yi−ym)(s, t), (6.5.10)

which in particular gives the conditional yi’th moment for m = 0:

G
(k)
|k|+1−i,|k|+1(s, t) = V (yi)(s, t). (6.5.11)

Proof. We shall mimic the proof of Bladt, Asmussen, and Steffensen (2020, The-

orem 3-4) and modify suitably to the present setup. By multiplying (6.5.1) with

R
s

t

(
I +

[
M(u)− k̄r(u)I

]
du
)
on both sides we get

∂

∂s

(
s

R
t

(
I +

[
M(u)− k̄r(u)I

]
du
)
V (k)(s, t)

)

= −
n∑

ℓ=1

kℓ

s

R
t

(
I +

[
M(u)− k̄r(u)I

]
du
)
Rℓ(s)V

(k−eℓ)(s, t)

−
∑

y∈S(k)
y/∈En

n∏
ℓ=1

(
kℓ
yℓ

) s

R
t

(
I +

[
M(u)− k̄r(u)I

]
du
)
C(y)(s)V (k−y)(s, t).

Integrating the equation yields
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V (k)(s, t)

=

n∑
ℓ=1

kℓ

∫ t

s

x

R
s

(
I +

[
M(u)− k̄r(u)I

]
du
)
Rℓ(x)V

(k−eℓ)(x, t) dx

+
∑

y∈S(k)
y/∈En

n∏
ℓ=1

(
kℓ
yℓ

)∫ t

s

x

R
s

(
I +

[
M(u)− k̄r(u)I

]
du
)
C(y)(x)V (k−y)(x, t) dx.

We now provide an induction argument to verify the identity (6.5.10) claimed in the

theorem using this integral equation. For i = 0 and m = 0 the identity is trivially

true. So assume that the identity is true for some i− 1, i ∈ {1, . . . , |k|+ 1}, and
corresponding m = 0, 1 . . . , i − 1. Then Bladt, Asmussen, and Steffensen (2020,

Lemma 1) gives us that

G
(k)
|k|+1−i,|k|+1−i(s, t) =

t

R
s

(
I +

[
M(x)− ȳir(x)I

]
dx
)
= e−ȳi

∫ t
s
r(v) dvP (s, t),

which is (6.5.9) form = i. From the Lemma, it also follows that form = 0, 1, . . . , i−1,

G
(k)
|k|+1−i,|k|+1−m(s, t)

=

i−m∑
j=1

∫ t

s

e−ȳi
∫ x
s

r(v) dvP (s, x)f
(yi)
j (x)G

(k)
|k|+1−(i−j),|k|+1−m(x, t)dx

From the induction hypothesis we have that

G
(k)
|k|+1−(i−j),|k|+1−m(x, t)

= 1(yi−j≥ym)

n∏
ℓ=1

(
yi−j
ℓ

ymℓ

)
e−ȳm

∫ t
x
r(v) dvV (yi−j−ym)(x, t),

and furthermore, f
(yi)
j (x) may be written as

f
(yi)
j (x) =

n∑
ℓ=1

1(yi−yi−j=eℓ)y
i
ℓRℓ(x) +

∑
ξ∈S(yi)
ξ/∈En

1(yi−yi−j=ξ)

n∏
ℓ=1

(
yiℓ
ξℓ

)
C(ξ)(x).

Note that when yi − yi−j = ξ for some ξ ∈ S(yi) (including the unit vectors) and

some j = 1, . . . , i−m, it holds(
yi−j
ℓ

ymℓ

)(
yiℓ
ξℓ

)
=

(
yiℓ
ymℓ

)(
yiℓ − ymℓ
ξℓ

)
for all ℓ = 1, . . . , n. Thus, we now have
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G
(k)
|k|+1−i,|k|+1−m(s, t)

=

n∏
ℓ=1

(
yiℓ
ymℓ

)∫ t

s

e−ȳi
∫ x
s

r(v) dvP (s, x)e−ȳm
∫ t
x
r(v) dv

i−m∑
j=1

1(yi−j≥ym)×{
n∑

ℓ=1

1(yi−yi−j=eℓ)(y
i
ℓ − ymℓ )Rℓ(x)V

(yi−ym−eℓ)(x, t)

+
∑

ξ∈S(yi)
ξ/∈En

1(yi−yi−j=ξ)

n∏
ℓ=1

(
yiℓ − ymℓ
ξℓ

)
C(ξ)(x)V (yi−ym−ξ)(x, t)

}
dx

Then observe that the discount factors can be factored as, for x ∈ [s, t],

e−ȳi
∫ x
s

r(v) dve−ȳm
∫ t
x
r(v) dv = e−ȳm

∫ t
s
r(v) dve−(ȳi−ȳm)

∫ x
s

r(v) dv.

Furthermore, when yi−j ≥ ym and yi − yi−j = ξ for some ξ ∈ S(yi) and j =

1, . . . , i−m, we have that ξ ≤ yi −ym, and so the last sum can be carried out over

S(yi − ym) \ En. Thus, we now have

G
(k)
|k|+1−i,|k|+1−m(s, t)

= 1(yi≥ym)

n∏
ℓ=1

(
yiℓ
ymℓ

)
e−ȳm

∫ t
s
r(v) dv×

∫ t

s

e−(ȳi−ȳm)
∫ x
s

r(v) dvP (s, x)

{
n∑

ℓ=1

(yiℓ − ymℓ )Rℓ(x)V
(yi−ym−eℓ)(x, t)

+
∑

ξ∈S(yi−ym)
ξ/∈En

n∏
ℓ=1

(
yiℓ − ymℓ
ξℓ

)
C(ξ)(x)V (yi−ym−ξ)(x, t)

}
dx

= 1(yi≥ym)

n∏
ℓ=1

(
yiℓ
ymℓ

)
e−ȳm

∫ t
s
r(v) dvV (yi−ym)(s, t),

as claimed. In the first equality, we have used that for all ξ ∈ S(yi − ym),

i−m∑
j=1

1(yi−yi−j=ξ) = 1(yi≥ym),

which follows from Lemma 6.A.1.
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The theorem gives us that the right-block column of G(k)(s, t) contains all

moments of order up to k, including the 0’th moment, as follows:

t

R
s

(
I + F

(k)
U (x) dx

)
=



∗ ∗ ∗ ∗ . . . ∗ V (k)(s, t)

∗ ∗ ∗ ∗ . . . ∗ V (y|k|−1)(s, t)

∗ ∗ ∗ ∗ . . . ∗ V (y|k|−2)(s, t)
...

...
...

...
...

...

∗ ∗ ∗ ∗ . . . ∗ V (y1)(s, t)

∗ ∗ ∗ ∗ . . . ∗ P (s, t)


,

and so all lower order up to order k are obtained through this product integral

calculation. From this, the conditional moments V
(k)
i and corresponding central

moments m
(k)
i are obtained via (6.3.6) and (6.5.3), respectively.

6.6 Numerical example

In this section, we illustrate the methods presented in the previous sections in a

numerical example of the motivating example considered in Section 2.

We consider a 40-year old male today at time 0 with retirement age 65, such

that T = 25. We suppose that the valuation basis is taken to be the technical basis

in the numerical example of Buchardt and Møller (2015), which is given by the

following:

r(s) = 0.01,

µ01(s) =
(
0.0004 + 104.54+0.06(s+40)−10

)
1(s≤25),

µ10(s) =
(
2.0058 · e−0.117(s+40)

)
1(s≤25),

µ02(s) = 0.0005 + 105.88+0.038(s+40)−10,

µ12(s) = µ02(s)
(
1 + 1(s≤25)

)
.

Some of the transition intensities are inspired by the Danish G82M technical basis.

We examine the pair-wise covariance and correlation structures of the product

combinations in the active state, i.e. the entries of the conditional covariance and

correlation matrix given in (6.5.6)–(6.5.7) with i = 0; this is illustrated in Figure

6.2–6.3. The calculations are based on a numerical solution of the differential

equation of Corollary 6.5.7 for the conditional covariance.

We see that the biggest dependence is between the life annuity and death benefit,

which is was expected, but we also see a similar (but opposite) dependence structure

between the disability annuity and death benefit respectively life annuity. The

death benefit seem to be slightly more correlated with the disability annuity than

the life annuity is, which is the most non-trivial observation encountered here. The
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calculated covariances can further be used to carry out the CLT approximation of

the joint distribution outlined in Section 6.2, which we refrain from doing here.
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Figure 6.2: Pair-wise conditional covariances [0, 25] ∈ s 7→ Σ0(s, 70)ℓm, ℓ,m ∈ {1, 2, 3},
ℓ ≤ m, between the three products until retirement conditional on the insured being active.
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Figure 6.3: Pair-wise conditional correlations [0, 25] ∈ s 7→ ρ0(s, 70)ℓm, ℓ,m ∈ {1, 2, 3},
ℓ < m, between the three products until retirement conditional on the insured being active.
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6.A Lexicographical ordering

Let k = (k1, . . . , kn) ∈ Nn
0 be a n-dimensional vector of natural numbers including

zero. We think of this vector as representing some multivariate higher order moment

we wish to calculate for the multivariate present value U . Specific to this, we need

to consider all combinations of lower order moments represented by the elements of

S(k); recall (6.3.1) for its definition. Write these elements as

S(k) =
{
y1, . . . ,y|k|

}
.

The vectors y1, . . . ,y|k| are then said to be lexicographical ordered if for all m′ > m,

there exist u (dependent on m and m′) such that

ymℓ = ym
′

ℓ for all ℓ < u, and

ymu < ym
′

u .

In other words ym
′
must be strictly larger than ym in the first entry where they differ

(it may be smaller in the remaining entries), and one commonly writes ym <lex ym′
.

An illustration of the ordering is presented in Table 6.1.

y1 = (0, . . . , 0, 1)′ ykn+1 = (0, . . . , 1, 0) y|k|−kn = (k1, . . . , kn−1, 0)
′

y2 = (0, . . . , 0, 2)′ ykn+2 = (0, . . . , 1, 1) y|k|−kn+1 = (k1, . . . , kn−1, 1)
′

...
... · · ·

...

ykn = (0, . . . , 0, kn)
′ y2(kn+1)−1 = (0, . . . , 1, kn)

′ y|k| = (k1, . . . , kn)
′

Table 6.1: Illustration of lexicographical ordering of vectors in S(k).

The following result on this type of ordering provides the foundation to succes-

sively compute multivariate higher order moments based on already computed lower

order moments.

Theorem 6.A.1. Assume that y1, . . . ,y|k| are lexicographical ordered. Then for

all i = 1, . . . , |k| and m = 0, 1, . . . , i− 1 such that yi ≥ ym, we have

S(yi − ym) ⊆
i−1⋃
j=m

{
yi − yj

}
.

Sketch of proof. We show the result for the two-dimensional case n = 2, and

the generalization to higher dimension then follows using same (but notationally

cumbersome) techniques. Let i = 1, . . . , |k| be given. From the illustration of the

lexicographic ordering of vectors in S(k) shown in Table 6.1, we may realize that

the vectors take the form

yi = (a, i− a(k2 + 1))
′
, if i ∈ [a(k2 + 1), (a+ 1)(k2 + 1)− 1]
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where a = 1, . . . , k1. This can be verified by exploiting the structure of which the

ordering is carried out. Now let m = 0, 1 . . . , i−1 be given such that yi ≥ ym. Then

similarly there exist b = 0, 1, . . . , k1 such that m ∈ [b(k2 + 1), (b+ 1)(k2 + 1)− 1],

which then gives

yi − ym = (a− b, i−m− (a− b)(k2 + 1))
′
, (6.A.1)

By similar reasonings, we have for j = m, . . . , i− 1 there exist c = 1, . . . , k1 such

that j ∈ [c(k2 + 1), (c+ 1)(k2 + 1)− 1], giving

yi − yj = (a− c, i− j − (a− c)(k2 + 1))
′
.

Due to the indices having the orderm ≤ j ≤ i, we have that b ≤ c ≤ a. Consequently,

the set
⋃i−1

j=m

{
yi − yj

}
consists of vectors on the form

(a− c, i− j − (a− c)(k2 + 1))
′

where j varies on m, . . . , i− 1 and c varies on b, b+ 1, . . . , a.

Now take ξ ∈ S(yi − ym). Since ξ ≤ yi − ym, it follows from (6.A.1) that there

exist d ≤ a− b and r ≤ i−m− (a− b)(k2 + 1), d, r ∈ N0, such that

ξ = (a− (b+ d), i− (m+ r)− (a− b)(k2 + 1))
′

= (a− (b+ d), i− (m+ r + d(k2 + 1))− (a− (b+ d))(k2 + 1))
′
,

where we have added and subtracted the term d(k2 + 1) in the second coordinate

to obtain the last equality. We now see that ξ is on the form

(a− c, i− j − (a− c)(k2 + 1))
′

with c = b+ d and j = m+ r + d(k2 + 1), and so we have ξ ∈
⋃i−1

j=m

{
yi − yj

}
, as

claimed. This concludes the sketch of the proof.



Chapter 7

Computation of bonus in multi-state life

insurance

This chapter is based on the paper Ahmad, Buchardt, and Furrer (2022).

Abstract

We consider computation of market values of bonus payments in multi-

state with-profit life insurance. The bonus scheme consists of additional

benefits bought according to a dividend strategy that depends on the

past realization of financial risk, the current individual insurance risk, the

number of additional benefits currently held, and so-called portfolio-wide

means describing the shape of the insurance business. We formulate

numerical procedures that efficiently combine simulation of financial risk

with classic methods for the outstanding insurance risk. Special attention

is given to the case where the number of additional benefits bought only

depends on the financial risk. Methods and results are illustrated via a

numerical example.

Keywords: Market consistent valuation; With-profit life insurance; Participating

life insurance; Economic scenarios; Portfolio-wide means

7.1 Introduction

The potential of systematic surplus in multi-state with-profit life insurance (some-

times referred to as participating life insurance) leads to bonus payments that

depend on the development of the financial market and the states of the insured.

This dependence is typically non-linear and involves the whole paths of the processes

governing the financial market and the states of the insured. Consequently, the

computation of market values of bonus payments lies outside the scope of classic

177
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backward and forward methods. In this paper, we present computational schemes

for a selection of these more involved market values using a combined approach in

which we simulate the financial risk while retaining classic analytical methods and

numerical methods for differential equations in regards to the outstanding insurance

risk.

In the preexisting literature on valuation of both with-profit and equity/unit-

linked life insurance, the focus is prevalently on financial risk, so that it is not

uncommon to disregard biometric and behavioral risks more or less completely,

see e.g. Bauer et al. (2006) and Zaglauer and Bauer (2008) and, concerning with-

profit life insurance, cf. the discussion in Jensen and Schomacker (2015, Section

1). Exceptions include for instance Bacinello (2001) and Møller and Steffensen

(2007) and, more recently, Bacinello, Millossovich, and Chen (2018), where both

financial risk and mortality/longevity risk are considered. Our emphasis is in the

spirit of Jensen and Schomacker (2015) and concerns the specific challenges that

universally arise from including event risk via multi-state modeling. This places

our research as part of the literature on multi-state modeling for with-profit life

insurance. For a non-technical introduction to multi-state modeling in life insurance,

see Koller (2012).

For Danish with-profit products, the investment strategy and dividend strategy

are to a great extent controlled by the insurer, and practitioners have traditionally

determined the market value of bonus payments residually, cf. Møller and Steffensen

(2007, Chapter 2). This is achieved by considering the available assets together with

the market value of guaranteed payments and imposing the equivalence principle on

the market basis in combination with certain ad hoc adjustments. In case parts of

the assets correspond to expected future profits, also denoted as contractual service

margins in the IFRS 17 regulatory framework, cf. Board (2017), the equivalence

principle is invalidated, which points to more sophisticated computational methods.

The provision of these kinds of methods constitutes the main contribution of this

paper.

We distinguish between dividends and bonuses: The development of the portfolio

and the financial market typically gives rise to a surplus, which is distributed among

the policyholders’ policies via dividend yields according to the chosen dividend

strategy. After this allocation, the accumulated dividends on each policy are paid

out according to a specific bonus scheme, and we refer to these extra payments

as the bonus payments. The study of systematic surplus, dividends and bonus

payments in multi-state with-profit life insurance goes back to Ramlau-Hansen

(1991) and Norberg (1999, 2001), where one finds careful definitions of various

concepts of surplus, discussions of general principles for its redistribution, and the

introduction of forecasting techniques in a so-called Markov chain interest model,

see also Norberg (1995a). In Steffensen (2006), partial differential equations for
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market values of so-called predetermined payments and bonus payments are derived

in a Black-Scholes model.

The projection of bonus payments in multi-state life insurance and the computa-

tion of associated market values has recently received renewed attention, see Jensen

and Schomacker (2015), Jensen (2016), Bruhn and Lollike (2021), and Falden and

Nyegaard (2021). In Jensen (2016), the focus is on projection of bonus payments

conditionally on the insured sojourning in a specific state; this approach targets

e.g. product design and bonus prognosis from the perspective of the insured rather

than market valuation. Conversely, the paper Jensen and Schomacker (2015) also

deals with projection of bonus payments but on a portfolio level, which ensures

computational feasibility but does not shed light on the full complexity of multi-

state with-profit life insurance. Although with-profit life insurance focuses on

the portfolio of insured and although decisions by the insurer (so-called future

management actions), including possible determination of dividend yields, often

depend mainly on the performance of said portfolio, one ought to take into account

that bonus payments in principle are allocated to the individual insured. This

is the starting point in Bruhn and Lollike (2021), where the focus is on deriving

differential equations for relevant retrospective reserves given a dividend strategy

(used to buy additional benefits) that depends in an affine manner on the reserves

themselves. The process governing the state of the insured is assumed Markovian.

In Falden and Nyegaard (2021), the results of Bruhn and Lollike (2021) are ex-

tended to allow for policyholder behavior, namely the options of surrender and

free policy conversion. The surrender option allows the policyholder to cancel all

future payments and instead receive a single payment corresponding in some sense

to the value of the contract, while the free policy option allows the policyholder to

cancel future premiums at the cost of reducing future benefits. In Bruhn and Lollike

(2021) and Falden and Nyegaard (2021), the dependence of the dividend strategy

on the financial state of the insurance business, encapsulated in what we below

shall term the shape of the insurance business, and the practical and computational

challenges arising from this are not highlighted nor studied. This paper derives its

main novelty value from addressing these challenges within a multi-state framework

while also allowing for financial risk.

In this paper, we derive methods for the computation of market values of bonus

payments in a Markovian multi-state model for a financial market consisting of

one risky asset in addition to a bank account governed by a potentially stochastic

interest rate. The insurance risk and financial risk are assumed independent. We

include incidental modeling of the policyholder options surrender and free policy

conversion following Henriksen et al. (2014), Buchardt and Møller (2015), and

Buchardt, Møller, and Schmidt (2015). In regards to dividends and bonus, we adopt

a somewhat universal dividend strategy; examples throughout the text, including

the numerical example, provide links to the preexisting literature and actuarial
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practice by focusing on dividends arising via a second order interest rate, which

in particular gives rise to an interest rate guarantee. The allocated dividends are

later paid out according to a bonus scheme, and we here focus solely on the bonus

scheme known as additional benefits, where dividends are simply used to buy extra

benefits; this bonus scheme constitutes the focal point of Møller and Steffensen

(2007, Chapter 6) and is also quite common in practice.

In practice, the dividend strategy depends on product design, regulatory frame-

works, and decisions made by the insurer. In this paper, we assume that the

dividend strategy is explicitly computable based on the following information: the

past realization of financial risk, the current individual insurance risk (state of

insured and time since free policy conversion), the current shape of the insurance

business, and the number of additional benefits currently held. Furthermore, the

dividend strategy must be affine in the number of additional benefits. The shape

of the insurance business consists first and foremost of so-called portfolio-wide

means, cf. Møller and Steffensen (2007, Chapter 6), which reflect on a portfolio level

the current financial state of the insurance business and thus are relevant to the

insurer in determining the dividend strategy and investment strategy. In particular,

the shape of the insurance business includes portfolio-wide means of the technical

reserve of guaranteed payments and of the expected accumulated guaranteed cash

flows. Consequently, the shape of the insurance business depends on the dividend

strategy, which again depends on the shape of the insurance business.

Using classic techniques, we derive a system of differential and integral equations

for the computation of the expected accumulated bonus cash flows conditionally

on the realization of financial risk. This allows us to formulate a procedure for

the computation of the market value of bonus payments which efficiently combines

simulation of financial risk with classic methods for the remaining insurance risk.

By not needing to simulate insurance risk, our procedure has a significant advantage

compared to full-blown Monte Carlo methods. We identify the special case where the

number of additional benefits depend only on financial risk – the state-independent

case – and show how this significantly simplifies the numerical procedure. It is

our impression that the state-independent model is aligned to current actuarial

practice, where it might e.g. serve as an approximation for valuation on a portfolio

level. This is further examined in a numerical example.

We should like to stress that while our results are subject to important technical

regularity conditions, it is the general methodology and conceptual ideas that consti-

tute the main contributions of this paper. Furthermore, our concepts, methods, and

results are targeted academics and actuarial practitioners alike, and, consequently,

we aim at keeping the presentation at a reasonable technical level.

The paper is structured as follows. In Section 7.2, we present the setup. The

general results and general numerical procedure are given in Section 7.3, while the
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state-independent case is the subject of Section 7.4. Section 7.5 is devoted to a

numerical example. Finally, Section 7.6 concludes with a comparison to recent

advances in the literature and a discussion of possible extensions.

7.2 Setup

In the following, we describe the mathematical framework. Subsections 7.2.1–7.2.3

introduce the processes governing the financial market, the state of the insured, and

the insurance payments, and we discuss the valuation of so-called predetermined

payments. The dividend and bonus scheme is described in Subsection 7.2.4, which

leads to a specification of the total payment stream as a sum of predetermined

payments and bonus payments. Contrary to the predetermined payments, the

bonus payments depend on the development of the financial market, which adds an

extra layer of complexity to the valuation problem. The focal point of this paper is

to establish explicit methods for the computation of the market value of the bonus

payments; a precise description of this problem is given in Subsection 7.2.5. In

the remainder of the paper, the problem is studied for a specific class of dividend

processes specified in Subsection 7.2.6.

A background probability space (Ω,F,P) is taken as given. Unless explicitly

stated or evident from the specific context, all statements are in an almost sure

sense w.r.t. P. The probability measure P relates to market valuation and therefore

corresponds to some risk neutral probability measure. Due to the presence of

insurance risk, the market is not complete, which implies that the risk neutral

probability measure is not unique. Since we shall assume financial risk and insurance

risk to be independent, one can think of the probability measure P as the product

measure of some risk neutral probability measure for financial risk and some

probability measure for insurance risk.

7.2.1 Preliminaries

The state of the insured is governed by a non-explosive jump process Z = {Z(t)}t≥0

on a finite state space J with deterministic initial state Z(0) ≡ z0 ∈ J . Denote

by N the corresponding multivariate counting process with components Njk =

{Njk(t)}t≥0 for j, k ∈ J , k ̸= j given by

Njk(t) = # {s ∈ (0, t] : Z(s−) = j, Z(s) = k} .

Let S1 = {S1(t)}t≥0 be the price process for some risky asset (diffusion process, in

particular continuous) and let r = {r(t)}t≥0 be a suitably regular short rate process

with corresponding bank account S0(t) = S0(0) exp
(∫ t

0
r(v) dv

)
, S0(0) ≡ s0 > 0,

and suitably regular forward interest rates f(t, ·), t ≥ 0, satisfying

E
[
e−

∫ T
t

r(s) ds
∣∣∣FS(t)

]
= e−

∫ T
t

f(t,s) ds
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for all 0 ≤ t < T as well as f(t, t) = r(t) for all t ≥ 0; here FS is the natural

filtration generated by S = (S0, S1), which exactly represents available market

information. The available insurance information is represented by the filtration

FZ naturally generated by Z, and the total information available is represented by

the filtration F = FS ∨ FZ naturally generated by (S,Z).

To allow for free policy behavior and surrender, we suppose the state space J
can be decomposed as

J = J p ∪ J f ,

with J p := {0, . . . , J} and J f := {J + 1, . . . , 2J + 1} for some J ∈ N. Here J p

contains the premium paying states, while J f contains the free policy states, and

transition to {J} and {2J + 1} corresponds to surrender as premium paying and

free policy, respectively, cf. Buchardt and Møller (2015) and Buchardt, Møller, and

Schmidt (2015). We suppose that J f is absorbing and can only be reached via a

transition from {0} to {J + 1}, {J} and {2J + 1} are absorbing, and that {J} and

{2J + 1} can only be reached from {0} and {J + 1}, respectively. The setup is

depicted in Figure 7.1.

7.2.2 Life insurance contract with policyholder options

The life insurance contract is described by a payment stream B = {B(t)}t≥0

giving accumulated benefits less premiums. It consists of predetermined payments

B◦ = {B◦(t)}0≤t≤n, stipulated from the beginning of the contract, and additional

bonus payments determined when market and insurance information are realized

during the course of the contract; details regarding the latter are given in later

subsections.

We specify the predetermined payments as in Buchardt and Møller (2015) and

Buchardt, Møller, and Schmidt (2015). For simplicity, we suppose that the pre-

determined payments regarding the classic states J p consist of suitably regular

deterministic sojourn payment rates bj and transition payments bjk; in particular,

surrender results in a deterministic payment. In the free policy states, no premiums

are paid and the benefit payments are reduced by a factor ρ ∈ [0, 1] depending on

the time of free policy conversion. In rigorous terms, we have

dB◦(t) = dB◦,p(t) + ρ(τ) dB◦,f(t), B◦(0) = 0,

dB◦,p(t) =
∑
j∈J p

1(Z(t−)=j)

(
bj(t) dt+

∑
k∈Jp

k ̸=j

bjk(t) dNjk(t)

)
, B◦,p(0) = 0,

dB◦,f(t) =
∑
j∈J f

1(Z(t−)=j)

(
bj′(t)

+ dt+
∑
k∈Jf

k ̸=j

bj′k′(t)+ dNjk(t)

)
, B◦,f(0) = 0,
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0

· · ·
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J
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policy

Figure 7.1: General finite state space extended with a surrender state {J} and free policy
states J f . The states J p \ {J} contain the biometric states of the insured, e.g. active,
disabled, and dead. The states J f are a copy of J p, and a transition from {0} to {J + 1}
corresponds to a free policy conversion. A transition to {J} or {2J + 1} corresponds to a
surrender of the policy.

with J f ∋ j 7→ j′ := j − (J + 1), x+ := max{0, x}, and x− := −min{0, x} (for

x ∈ R), and where τ is the time of free policy conversion given by

τ = inf{t ∈ [0,∞) : Z(t) ∈ J f}.

We have τ = 0 if and only if z0 ∈ J f ; in this case, the policy is initially a free

policy. Without loss of generality we thus let ρ(0) = 1. Furthermore, we suppose

there are no sojourn payments in the surrender states, i.e. bJ ≡ 0.

It is useful to decompose the predetermined payment stream B◦ into benefit and

premium parts. We add the superscripts ± to denote the benefit and premium

part, respectively. Then we have

B◦,−(t) = B◦,p,−(t),

B◦,+(t) = B◦,p,+(t) + ρ(τ)B◦,f(t),

dB◦,p,±(t) =
∑
j∈J p

1(Z(t−)=j)

(
bj(t)

± dt+
∑
k∈Jp

k ̸=j

bjk(t)
± dNjk(t)

)
, B◦,p,±(0) = 0.
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In the following, we assume the existence of a maximal contract time n ∈ (0,∞)

in the sense that all sojourn payment rates and transition payments, including

those of the unit bonus payment stream, cf. Subsection 7.2.4, are zero for t > n.

7.2.3 Valuation of the predetermined payments

The life insurance contract is written on the technical basis, also called the first

order basis, which is, at least originally, designed to consist of prudent assumptions

on financial risk and insurance risk. The technical basis is modeled via another

probability measure P⋆ under which the short rate process r⋆ is deterministic

and suitably regular, while Z is independent of S and Markovian with suitably

regular transition rates µ⋆. The assumptions regarding absorption, as illustrated in

Figure 7.1, are retained under P⋆. Policyholder behavior is typically not explicitly

included on the technical basis; in particular, there is no change in technical reserve

upon free policy conversion. Following along the lines of Buchardt and Møller (2015)

and Buchardt, Møller, and Schmidt (2015), this is consistent with the assumption

that the transition rates under the technical basis, the surrender payments, and the

free policy factor take the form

µ⋆
jk = µ⋆

j′k′ , j, k ∈ J f , k ̸= j,

b0J = Ṽ ⋆
0 ,

(0,∞) ∋ t 7→ ρ(t) =
Ṽ ⋆
0 (t)

Ṽ ⋆,+
0 (t)

,

(7.2.1)

where for j ∈ J p\{J} the state-wise technical reserve Ṽ ⋆
j of predetermined payments

and the corresponding valuation of benefits only Ṽ ⋆,+ are given by

Ṽ ⋆
j (t) = E⋆

[∫ n

t

e−
∫ s
t
r⋆(v) dv dB◦(s)

∣∣∣∣Z(t) = j

]
, (7.2.2)

Ṽ ⋆,+
j (t) = E⋆

[∫ n

t

e−
∫ s
t
r⋆(v) dv dB◦,+(s)

∣∣∣∣Z(t) = j

]
, (7.2.3)

with E⋆ denoting integration w.r.t. P⋆. The specification of the technical reserve is

circular, since the payments depend on the technical reserve, which again depends

on the payments.The setup described here is closely related to the generic situation

described in Christiansen and Djehiche (2020, Section 4.3), where circularity is

resolved by a careful construction of the involved processes and using backward

stochastic differential techniques; for instance, our specification (7.2.1) ensures that

equation (4.8) in Christiansen and Djehiche (2020) holds.

It is possible to show that the state-wise technical reserves of predetermined
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payments satisfy the following differential equations of Thiele type:

d

dt
Ṽ ⋆
j (t) = r⋆(t)Ṽ ⋆

j (t)− bj(t)−
∑

k∈Jp\{J}
k ̸=j

(
bjk(t) + Ṽ ⋆

k (t)− Ṽ ⋆
j (t)

)
µ⋆
jk(t), Ṽ ⋆

j (n) = 0,

(7.2.4)

for j ∈ J p \ {J}. By adding +’s as superscripts, one finds an identical system of

differential equations concerning the valuation of benefits only.

We are now ready to define the technical reserve of predetermined payments

denoted V ⋆,◦. First, for the purpose of bonus allocation, the definitions of state-wise

reserves of predetermined payments are naturally extended from j ∈ J p \ {J} to

j ∈ J via

V ⋆,◦
j (t) =


Ṽ ⋆
j (t) if j ∈ J p \ {J},
ρ(τ)Ṽ ⋆,+

j′ (t) if j ∈ J f \ {2J + 1} ,
0 if j ∈ {J, 2J + 1} .

(7.2.5)

Note that V ⋆,◦
j depends on τ in the free policy states, thus being stochastic,

while it is deterministic in the premium paying states. The technical reserve of

predetermined payments V ⋆,◦ is now defined according to V ⋆,◦(t) = V ⋆,◦
Z(t)(t). In

particular, V ⋆,◦(t) is a version of the conditional expectation

E⋆

[∫ n

t

e−
∫ s
t
r⋆(u) du dB◦(s)

∣∣∣∣F(t)

]
.

In practice, the technical reserves are exactly computed according to (7.2.4)

and (7.2.5). Here we provide a probablistic setup and specification that is consistent

with this approach.

We now turn our attention to valuation under the market basis modeled via P.

Here we assume that Z and S are independent and that Z is Markovian with suitably

regular transition rates µ. The market reserve V ◦ of predetermined payments is

then given by

V ◦(t) = E
[∫ n

t

e−
∫ s
t
r(u) du dB◦(s)

∣∣∣∣F(t)

]
=

∫ n

t

e−
∫ s
t
f(t,u) duA◦(t,ds), (7.2.6)

with A◦ the so-called expected accumulated predetermined cash flows given by

A◦(t, s) = E
[
B◦(s)−B◦(t) | FZ(t)

]
. (7.2.7)

Denote with p the transition probabilities of Z under P. Following Buchardt and

Møller (2015) and Buchardt, Møller, and Schmidt (2015), on (Z(t) ∈ J f ),

A◦(t, ds) = ρ(τ)
∑
j∈J f

pZ(t)j(t, s)

(
bj′(s)

+ +
∑
k∈Jf

k ̸=j

bj′k′(s)+µjk(s)

)
ds, (7.2.8)
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while on (Z(t) ∈ J p),

A◦(t,ds) =
∑
j∈J p

pZ(t)j(t, s)

(
bj(s) +

∑
k∈Jp

k ̸=j

bjk(s)µjk(s)

)
ds

+
∑
j∈J f

pρZ(t)j(t, s)

(
bj′(s)

+ +
∑
k∈Jf

k ̸=j

bj′k′(s)+µjk(s)

)
ds (7.2.9)

where the so-called ρ-modified transition probabilities pρjk, j ∈ J p and k ∈ J ,

are defined by pρjk(t, s) = E[1(Z(s)=k)ρ(τ)
1(τ≤s) |Z(t) = j] and satisfy for k ∈ J f

so-called ρ-modified versions of Kolmogorov’s forward differential equations:

d

ds
pρjk(t, s) =

∑
ℓ∈Jf

ℓ ̸=k

pρjℓ(t, s)µℓk(s) + 1(k=J+1)pj0(t, s)µ0k(s)ρ(s)− pρjk(t, s)µk•(s),

pρjk(t, t) = 0,

(7.2.10)

while pρjk(t, s) = pjk(t, s) for k ∈ J p.

7.2.4 Dividends and bonus

With premiums determined by the principle of equivalence based on the prudent

technical basis, the portfolio creates a systematic surplus if everything goes well.

This surplus mainly belongs to the insured and is to be paid back in the form

of dividends. Following Norberg (1999, 2001), we let D = {D(t)}t≥0 denote the

accumulated dividends, and we suppose it only consists of absolutely continuous

dividend yields:

dD(t) = δ(t) dt, D(0) = 0,

where δ = {δ(t)}t≥0 is suitably regular and F-adapted. In Subsection 7.2.6, we

specify the dividend strategy further. Classic examples include dividends distributed

via a second order interest rate, see Example 7.2.7 below.

The dividends are allocated to the individual life insurance contract but not

yet paid out; payout occurs at a possibly later point in time according to some

specific bonus scheme. In the following, we adopt the bonus scheme known as

additional benefits, that is we suppose that the dividends are used as a premium

to buy additional benefits on the technical basis corresponding to a so-called unit

bonus payment stream B† that only consists of benefits and thus is unaffected by

the free policy option. It is given by

dB†(t) =
∑
j∈J

1(Z(t−)=j)

(
b†j(t) dt+

∑
k∈J
k ̸=j

b†jk(t) dNjk(t)

)
, B†(0) = 0,
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where the payment functions in the premium paying states J p, b†j and b†jk, are

suitably regular non-negative deterministic functions with b†J ≡ 0, while

b†j = b†j′ and b†jk = b†j′k′ , j, k ∈ J f , k ̸= j,

b†0J = Ṽ ⋆,†
0 ,

where for j ∈ J p \ {J} we denote by Ṽ ⋆,†
j the state-wise technical unit reserves

of B† given as (7.2.2) with B◦ replaced by B†. Again, these state-wise technical

reserves satisfy differential equations of Thiele type, namely (7.2.4) with added

superscripts †.

For the purpose of bonus allocation, the state-wise technical unit reserves are

naturally extended from j ∈ J p \ {J} to j ∈ J via

V ⋆,†
j (t) =


Ṽ ⋆,†
j (t) if j ∈ J p \ {J},
Ṽ ⋆,†
j′ (t) if j ∈ J f \ {2J + 1} ,

0 if j ∈ {J, 2J + 1} ,

(7.2.11)

when the technical value of the additional benefits V ⋆,† reads V ⋆,†(t) = V ⋆,†
Z(t)(t).

The expected accumulated unit bonus cash flows A† of B† on the market basis

can be found analogously to A◦ and read

A†(t, ds) = a†(t, s) ds, (7.2.12)

a†(t, s) =
∑
j∈J

pZ(t)j(t, s)

(
b†j(s) +

∑
k∈J
k ̸=j

b†jk(s)µjk(s)

)
. (7.2.13)

The state-wise counterparts are denoted A†
i and a†i , i ∈ J . They satisfy that

A†
Z(t)(t, ds) = a†Z(t)(t, s) ds = a†(t, s) ds = A†(t, ds) by taking the form

A†
i (t, ds) = a†i (t, s) ds, (7.2.14)

a†i (t, s) =
∑
j∈J

pij(t, s)

(
b†j(s) +

∑
k∈J
k ̸=j

b†jk(s)µjk(s)

)
. (7.2.15)

The market unit reserve of B† denoted V † is given analogously to (7.2.6) but

with the superscript † replacing ◦. Note that contrary to the market reserve of

predetermined payments, it may be taken to only depend on Z(t) at time t, since

this is the case for the corresponding expected accumulated unit bonus cash flow.

We write V †
Z(t)(t) in place of V †(t) to highlight this fact.

Having specified the unit bonus payment stream B† as well as its technical

value and associated expected accumulated cash flows, we are now in a position to

finalize the specification of the bonus scheme. Thus, let Q(t) denote the number of
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additional benefits, that is the number of benefit streams B†, held at time t. Since

δ is used as a premium to buy B† on the technical basis, we have that (cf. equation

(4.11) in Norberg (2001))

dQ(t) =
dD(t)

V ⋆,†
Z(t)(t)

=
δ(t)

V ⋆,†
Z(t)(t)

dt, Q(0) = 0. (7.2.16)

Imposing this bonus mechanism, the total payment stream consisting of both

predetermined payments and bonus payments is given by

dB(t) = dB◦(t) +Q(t) dB†(t), B(0) = 0. (7.2.17)

In this paper, we implicitly think of Q as weakly increasing, although this is not

a mathematical requirement. This way of thinking is reflected in the terminology.

Along these lines, we define the payment process Bg by

Bg(t,ds) = dB◦(s) +Q(t) dB†(s), Bg(t, t) = B(t), (7.2.18)

and refer to it as the payments guaranteed at time t ≥ 0, while the remaining

payments

(Q(s)−Q(t)) dB†(s)

are referred to as bonus (payments).

The number of unit bonus payment streams B† held increases according to the

dynamics (7.2.16), where V ⋆,†
Z(t)(t) is the price (on the technical basis) at time t of

a unit bonus payment stream. Thus, at time t, the guaranteed payment stream

originating from bonus is increased to s 7→ Q(t) dB†(s). The technical reserve of the

contract, which is formally defined in (7.2.28) below, is the value on the technical

basis of the combined benefits given by (7.2.18). By construction, this technical

reserve increases exactly by the increase in accumulated dividends, whereas this is

typically not the case for the market value; the market value is formally defined

in (7.2.26) and (7.2.27) below.

In the remainder of the paper, we focus on valuation of the payment stream

(7.2.17), in particular the bonus payments. We assume that Q exists and is suitably

regular, so that the technical arguments in the remainder of the paper are legitimate.

This is an implicit condition that must be checked for any specific model.

7.2.5 Liabilities

Thinking of time zero as now, the present life insurance liabilities of the insurer are

described by the market value of the total payment stream B evaluated at time

zero:

V (0) = E
[∫ n

0

e−
∫ t
0
r(v) dv dB(t)

]
.
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By (7.2.17), this amounts to market valuation of the predetermined payments and

bonus payments. Thus V (0) = V ◦(0) + V b(0) where V ◦(0) is given by (7.2.6) and

V b(0) = E
[∫ n

0

e−
∫ t
0
r(v) dvQ(t) dB†(t)

]
. (7.2.19)

is the time zero market value of bonus payments.

Remark 7.2.1. By setting Q(0) = 0, we think of time zero as the time of initialization

of the insurance contract. To determine the market value of bonus payments after

initialization of the contract, one could extend the filtration F to include additional

information at time zero and consider a general F(0)-adapted Q(0). This extension

is straightforward and achieved by focusing on Q(·)−Q(0) rather than Q(·), and
thus the requirement Q(0) = 0 is only really made for notational convenience. △

There exist well-established methods to calculate V ◦(0) explicitly using the

expected accumulated cash flows of predetermined payments on the market basis

from (7.2.8)–(7.2.9); in particular, this computation does not depend on the dividend

strategy δ nor further realizations of the financial market (only the forward rate

curve f(0, ·) is required). On the contrary, the time zero market value of bonus

payments V b(0) does depend on the strategy δ. Due to possibly non-linear path

dependencies regarding both the financial and biometric/behavioral scenarios, this

implies that classic computational methods via (ρ-modified) Kolmogorov’s forward

differential equations are not applicable.

The focal point of the paper is to establish methods to calculate the market value

of bonus payments V b(0). We consider an approach that combines simulations of

the financial market with analytical methods and numerical methods for differential

equations in regards to calculations involving the state of the insured. Everything

else being equal, this approach should be numerically superior to a pure simulation

approach for which one would simulate both the financial market and the state of

the insured. To formalize the main idea, we define what we shall term Q-modified

transition probabilities (at time 0) for j ∈ J by

pQz0j(0, t) = E
[
Q(t)1(Z(t)=j)

∣∣FS(t)
]

(7.2.20)

for all t ≥ 0. We immediately have the following result:

Proposition 7.2.2. The time zero market value of bonus payments is given by

V b(0) =E
[∫ n

0

e−
∫ t
0
r(v) dvAb(0,dt)

]
, (7.2.21)

Ab(0,dt) = ab(0, t) dt, (7.2.22)

ab(0, t) :=
∑
j∈J

pQz0j(0, t)
(
b†j(t) +

∑
k∈J
k ̸=j

b†jk(t)µjk(t)
)
. (7.2.23)
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Furthermore, if Q is adapted to FS, then

pQz0j(0, t) = Q(t)pz0j(0, t), (7.2.24)

ab(0, t) = Q(t)a†(0, t). (7.2.25)

Proof. Since {Q(t)}t≥0 is continuous and adapted, it is predictable. Using martin-

gale techniques, in particular that

Q(t) dNjk(t)−Q(t)1(Zt−=j)µjk(t) dt

defines a martingale, we find that

V b(0) = E

[∫ n

0

e−
∫ t
0
r(v) dv

∑
j∈J

Q(t)1(Z(t−)=j)

(
b†j(t) +

∑
k∈J
k ̸=j

b†jk(t)µjk(t)

)
dt

]
.

Since there is almost surely at most a finite number of transitions on each compact

time interval, we may replace 1(Z(t−)=j) by 1(Z(t)=j). Using the law of iterated

expectations and Fubini’s theorem, we conclude that

V b(0)

= E

[∫ n

0

e−
∫ t
0
r(v) dv

∑
j∈J

E
[
1(Z(t)=j)Q(t)

∣∣FS(t)
](

b†j(t) +
∑
k∈J
k ̸=j

b†jk(t)µjk(t)

)
dt

]

= E

[∫ n

0

e−
∫ t
0
r(v) dv

∑
j∈J

pQz0j(0, t)

(
b†j(t) +

∑
k∈J
k ̸=j

b†jk(t)µjk(t)

)
dt

]

= E

[∫ n

0

e−
∫ t
0
r(v) dvab(0, t) dt

]
.

Furthermore, if Q is FS-adapted, then the Q-modified transition probabilities

satisfy

pQz0j(0, t) = E
[
1(Z(t)=j)Q(t)

∣∣FS(t)
]
= Q(t)pz0j(0, t),

and thus ab(0, t) = Q(t)a†(0, t), cf. (7.2.13).

Remark 7.2.3. Note that by casting Q according to (7.2.16), by interchanging the

order of integration, and by using the law of iterated expectations, it is possible to

derive the following alternative formula for the time zero market value of bonus

payments:

V b(0) =

∫ n

0

E

[
e−

∫ s
0
r(v) dvδ(s)

V †
Z(s)(s)

V ⋆,†
Z(s)(s)

]
ds.

From this expression, we see how the time zero market value of bonus payments

consists of an accumulation of time zero market values of additional benefits
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bought at different points in time. When we later compare different scenario-based

projection models, this representation of the time zero value of the bonus payments

turns out to be quite useful, cf. Example 7.4.4. △

Since the so-called expected accumulated bonus cash flow Ab(0, ·) is FS-adapted,

the result provides a representation of V b(0) motivating a computational scheme

based on simulation of the financial market. For each simulated financial scenario,

we should compute Ab(0, ·) explicitly in each scenario, which in general requires

computation of of pQz0j(0, ·) for all j ∈ J ; this we study in Section 7.3. In the special

case where Q is FS-adapted, it holds that pQz0j(0, ·) = Q(·)pz0j(0, ·), and the problem

simplifies to a direct calculation of Q that does not involve the biometric/behavioral

states, and can essentially be solved by a classic computation of the expected

accumulated cash flow A†(0, ·) via Kolmogorov’s forward differential equations; this

is studied in Section 7.4.

As mentioned above, the computation of the expected accumulated bonus cash

flow depends on the actual specification of the dividend strategy δ during the course

of the contract, and in practice, this strategy is a control variable that depends on

what we refer to as the shape of the insurance business. In the following subsection,

we formalize the shape of the insurance business and its corresponding controls,

which leads to a specification of a class of dividend strategies.

7.2.6 Shape and controls

We now introduce the shape of the insurance business consisting of key quantities

on a portfolio level that the insurer needs at future time points to determine the

controls, i.e. the dividend strategy and the investment strategy. We only introduce

a few key financial indicators, but we believe that our general methodology allows

for the implementation of additional shape variables.

To describe the shape of the insurance business, we first consider the liabilities,

specifically the technical value and the market value of guaranteed payments on a

portfolio level. Recall that the payments Bg(t, ·) guaranteed at time t ≥ 0 take the

form (7.2.18). The market value of guaranteed payments V g is thus given by

V g(t) = E
[∫ n

t

e−
∫ s
t
r(v) dvBg(t,ds)

∣∣∣∣F(t)

]
=

∫ n

t

e−
∫ s
t
f(t,v) dvAg(t, ds), (7.2.26)

with Ag denoting the expected accumulated guaranteed cash flows,

Ag(t,ds) = A◦(t, ds) +Q(t)A†
Z(t)(t, ds). (7.2.27)

Similarly, the technical reserve of guaranteed payments is given by

V ⋆(t) = V ⋆,◦(t) +Q(t)V ⋆,†
Z(t)(t). (7.2.28)
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The so-called portfolio-wide means of V ⋆, Ag, and V g are now obtained by averaging

out the unsystematic insurance risk by applying the law of large numbers w.r.t.

a collection of independent and comparable insured in the portfolio, see e.g. the

discussions in Møller and Steffensen (2007, Chapter 6) and Norberg (1991). The

portfolio-wide means take the form

Āg(t, s) :=E
[
Ag(t, s) | FS(t)

]
, t ≤ s <∞

V̄ g(t) :=E
[
V g(t) | FS(t)

]
,

V̄ ⋆(t) :=E
[
V ⋆(t) | FS(t)

]
for t ≥ 0. From (7.2.26) we find that V̄ g(t) may be obtained from Āg(t, ds) via the

equation

V̄ g(t) =

∫ n

t

e−
∫ s
t
f(t,v) dvĀg(t, ds). (7.2.29)

Thus it suffices to consider only Āg and V̄ ⋆.

The portfolio-wide means represent values of liabilities under the assumption

that the insurance portfolio is of such a size that unsystematic insurance risk can be

disregarded. It corresponds to what is often referred to as mean-field approximations

in the literature. In Subsection 7.3.1, we show how to compute these.

We now turn our attention to the assets. They are described by a portfolio of S

which is self-financed by the premium less benefits that the portfolio of insured pays

to the insurer. We denote the value process by U = {U(t)}t≥0. We think of this

process as the assets for the whole portfolio, but in our presentation the payments

involved are only the contributions of a single insured. Since an individual insured

pays −dB(t) to the insurer, this contribution to the total payments of the portfolio

can be represented by the expected cash flow −
(
A◦(0, dt) +Ab(0, dt)

)
. Thus we let

U take the form

dU(t) = θ(t) dS0(t) + η(t) dS1(t)−
(
A◦(0,dt) +Ab(0,dt)

)
, U(0) ≡ u0,

where (θ, η) = (θ(t), η(t))t≥0 is a suitably regular FS-adapted investment strategy.

We think of η as a control variable for the insurer, since the number of units invested

into the bank account is determined residually by θ(t) = (U(t)− η(t)S1(t))/S0(t).

This gives

dU(t) = r(t)(U(t)− η(t)S1(t))dt+ η(t) dS1(t)−
(
A◦(0,dt) +Ab(0,dt)

)
. (7.2.30)

In this paper, we only consider a single insured and the portfolio-wide mean reserves

represent the contribution of this insured to the shape of the insurance business. To

take into account multiple independent insured, one can consider Z(0) as stochastic

with distribution corresponding to the empirical distribution of initial states in the
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portfolio. The latter can be described by weights wj with the j’th weigth giving

the proportion of insured that are initially in state j ∈ J . The corresponding

portfolio-wide means would in this case read∑
j∈J

wjEj

[
Ag(t, s) | FS(t)

]
and

∑
j∈J

wjEj

[
V ⋆(t) | FS(t)

]
,

where Ej corresponds to expectation under the assumption that Z(0) ≡ j. Ad-

ditionally, the insured typically belong to different cohorts implying that e.g. the

transition rates and payment processes differ among insured. This is handled in

a similar way. Also, the same considerations apply to the payments affecting the

value process U . We consider these kinds of extensions from a single insured to

a whole portfolio straightforward and do not give them further attention in the

remainder of the paper.

Let S(·∧ t) = {S(u)}0≤u≤t. We can now make the concepts of shape and controls

precise.

Definition 7.2.4. The shape of the insurance business I is the triplet

I =
{
U(t), Āg(t,ds), V̄ ⋆(t)

}
t≥0

,

while the controls are the pair (δ, η) = {δ(t), η(t)}t≥0.

Assumption 7.2.5. We suppose that (δ, η) are chosen such that the setting is

well-specified in the sense that Q exists and is suitably regular. Furthermore, we

assume that η takes the form

η(t) = η(t, S(· ∧ t), I(t)) (7.2.31)

for some explicitly computable and suitably regular deterministic mapping η, and

we assume that δ takes the form

δ(t) = δ0 (t, S(· ∧ t), Z(t), I(t))
+ δ1 (t, S(· ∧ t), Z(t), I(t)) ρ(τ)1(τ≤t)

+ δ2 (t, S(· ∧ t), Z(t), I(t))Q(t),

(7.2.32)

for some suitably regular deterministic mappings δ0, δ1 and δ2 that we are able to

compute explicitly.

Remark 7.2.6. In Remark 7.2.1 we discussed the extension to general Q(0) and the

idea of focusing on Q(·)−Q(0). By rewriting (7.2.32) in the following manner,

δ(t) = δ0 (t, S(· ∧ t), Z(t), I(t)) + δ2 (t, S(· ∧ t), Z(t), I(t))Q(0)

+ δ1 (t, S(· ∧ t), Z(t), I(t)) ρ(τ)1(τ≤t)

+ δ2 (t, S(· ∧ t), Z(t), I(t)) (Q(t)−Q(0)),

we see how this idea would manifest itself in relation to Assumption 7.2.5. △
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In the following, we also use the shorthand notations t 7→ δi(t, Z(t)), i = 0, 1, 2,

which only highlights FZ-measurable quantities.

The assumption that the controls depend only on portfolio-wide means rather

than actual realizations of the balance sheet and the assets is the key choice of this

paper. The risk we hereby account for is only the systematic risk, i.e. the risk that

affects all insured.

Note that it is the assumption of δ being dependent on U that makes η a process

that affects the payments to the insured, thus justifying it as a control. Note also

that we allow δ to depend on Z, τ , and Q, while this is not the case for η. This

is since the dividends are allocated to the individual insured while the assets are

a portfolio level quantity. The specific affine structure on δ mirrors that of B,

cf. (7.2.17). This is important for practical applications, as the following example

highlights.

Example 7.2.7 (Second order interest rate). The technical reserve V ⋆ from

(7.2.28) accumulates with the first order interest rate r⋆. Dividends may then arise

by accumulating the technical reserve with a second order interest rate rδ that

is continuously readjusted based on the shape of the insurance business. This is

obtained by letting

δ(t) =
(
rδ(t)− r⋆(t)

)
V ⋆(t), (7.2.33)

rδ(t) = Φ(t, S(· ∧ t), I(t)), (7.2.34)

for some explicitly computable and suitably regular mapping Φ. This corresponds

to setting

δ0(t, j) =
(
rδ(t)− r⋆(t)

)
1(j∈J p\{J})Ṽ

⋆
j (t),

δ1(t, j) =
(
rδ(t)− r⋆(t)

)
1(j∈J f\{2J+1})Ṽ

⋆,+
j′ (t)

δ2(t, j) =
(
rδ(t)− r⋆(t)

)
V ⋆,†
j (t),

for all j ∈ J . In case of a survival model, various specifications of second order

interest rates is among the focal points of Møller and Steffensen (2007). In discrete

time, second order interest rates are also employed in Bacinello (2001), where rδ

is taken to be the maximum of the technical interest rate r⋆ and a proportion

(the so-called participation level) of the return on some reference portfolio. In the

numerical example of Section 7.5, we consider the following special case of rδ:

rδ(t) = r⋆(t) +
κ
(
U(t)−max

{
V̄ ⋆(t), V̄ g(t)

})+
V̄ ⋆(t)

, κ ∈ [0, 1], (7.2.35)

where κ is the share of some measure of excess assets used to buy additional benefits.

This choice of rδ, where rδ > r⋆, in particular leads to a dividend design which also

constitutes a minimum interest rate guarantee of r⋆. In case of a survival model,

this type of rδ also appears in e.g. Møller and Steffensen (2007, Chapter 4.5.3). ◦
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The aim of this paper is to develop methods to compute the market value of

bonus payments V b(0). Recall from Proposition 7.2.2 that this can be done via

the computation of the expected accumulated bonus cash flow Ab(0, ·), which

depends on the financial market through Q. To achieve this within the setup of

Assumption 7.2.5, we adopt a simulation approach. It follows from (7.2.16) that for

a simulated financial scenario, i.e. a realization of the whole path of S, we need the

shape of the insurance business I(t) = (U(t), Āg(t,ds), V̄ ⋆(t)) and corresponding

controls (δ(t), η(t)) for all time points t ≥ 0. In other words, starting today from

time zero, we must project the shape of the insurance business and the controls into

future time points for each simulated financial scenario.

In the following sections, we formulate our scenario-based projection models

demonstrating how to project the shape of the insurance business in a specific

financial scenario, and how to apply these projections to calculate the expected

accumulated bonus cash flow Ab(0, ·). Section 7.3 concerns the general case where

Q is allowed to be FZ ∨ FS-adapted and where we apply (7.2.22)–(7.2.23). In

the subsequent Section 7.4 we specialize to Q being state independent (of Z), i.e.

FS-adapted, where we instead can apply the simpler formula (7.2.25).

7.3 Scenario-based projection model

This section contains the main contributions of the paper and provides the foun-

dation for the special case in Section 7.4. In Subsection 7.3.1, we formulate our

general scenario-based projection model demonstrating how to project the shape of

the insurance business into future time points in a given financial scenario. The

projections are then in Subsection 7.3.2 used to calculate the Q-modified transi-

tion probabilities pQz0j(0, ·) and corresponding expected accumulated bonus cash

flow Ab(0, ·). Based on this, we present in Subsection 7.3.3 a procedure for the

computation of V b(0) via an application of Proposition 7.2.2.

As noted in Proposition 7.2.2, we are able to simplify calculations of Ab(0, ·) to
what we coin state-independent calculations of Q and p if Q is assumed FS-adapted.

This special case leads to a notion of a state-independent scenario-based projection

model, which is studied in more details in Section 7.4.

7.3.1 Projecting the shape

We now turn our attention to projection of the shape of the insurance business.

This consists of computation of I = (U, Āg, V̄ ⋆) for realizations of S, where each

realization exactly represents a simulated financial scenario.

The method for computation of U for a realization of S follows immediately from

the dynamics of the assets according to (7.2.30). The computational issue reduces
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to that of computing pQz0j(0, ·), cf. (7.2.22)–(7.2.23) and (7.2.30). Thus we focus on

the projection of the portfolio-wide means Āg and V̄ ⋆.

First, we consider the portfolio-wide means Āg of the expected accumulated

guaranteed cash flows Ag.

Proposition 7.3.1. The portfolio-wide means Āg of the expected accumulated

guaranteed cash flows Ag read

Āg(t,ds) = A◦(0,ds) +
∑
j∈J

pQz0j(0, t)A
†
j(t, ds)

for all t ≥ 0.

Proof. By (7.2.27), (7.2.20), and due to the assumed independence between Z and

S, we immediately find that

Āg(t, s) = E
[
A◦(t, s) | FS(t)

]
+
∑
j∈J

E
[
1(Z(t)=j)Q(t)A†

Z(t)(t, s)
∣∣∣FS(t)

]
= E[A◦(t, s)] +

∑
j∈J

pQz0j(0, t)A
†
j(t, s).

By (7.2.7) and the iterated law of expectations,

E[A◦(t, s)] = E[B◦(s)−B◦(t)]

= A◦(0, s)− E[B◦(t)−B◦(0)].

Since the latter term does not depend on s, we find that

Āg(t, ds) = A◦(0, ds) +
∑
j∈J

pQz0j(0, t)A
†
j(t, ds)

as desired.

Consequently, given A◦ and A† the computational issue has been reduced to that

of computing the Q-modified transition probabilities pQz0j(0, ·).

Next we consider the portfolio-wide mean of the technical reserve of guaranteed

payments, V̄ ⋆. We could follow the same approach above and calculate the technical

reserves via expected (accumulated) cash flows, however, since the technical interest

rate is deterministic, a range of technical reserves, including V ⋆,†, Ṽ ⋆, and Ṽ ⋆,+,

can be computed more efficiently by solving the differential equations of Thiele type

derived from (7.2.4), cf. Subsection 7.2.3 and Subsection 7.2.4.

Denote by V̄ ⋆,◦ the portfolio-wide mean technical reserves of predetermined

payments given by

V̄ ⋆,◦(t) = E
[
V ⋆,◦(t) | FS(t)

]
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for t ≥ 0. Since Z and S are assumed independent, we could replace the conditional

expectation by an ordinary expectation.

Proposition 7.3.2. The portfolio-wide mean technical reserve of guaranteed pay-

ments reads

V̄ ⋆(t) = V̄ ⋆,◦(t) +
∑
j∈J

pQz0j(0, t)V
⋆,†
j (t),

while the portfolio-wide mean technical reserve of predetermined payments reads

V̄ ⋆,◦(t) =
∑
j∈Jp

j ̸=J

pz0j(0, t)Ṽ
⋆
j (t) +

∑
j∈Jf

j ̸=2J+1

pρz0j(0, t)Ṽ
⋆,+
j′ (t). (7.3.1)

Proof. By (7.2.28) and (7.2.20), direct calculations yield

V̄ ⋆(t) = E
[
V ⋆,◦(t) | FS(t)

]
+
∑
j∈J

E
[
1(Z(t)=j)Q(t)V ⋆,†

Z(t)(t)
∣∣∣FS(t)

]
= V̄ ⋆,◦(t) +

∑
j∈J

pQz0j(0, t)V
⋆,†
j (t).

To obtain (7.3.1), we split V ⋆,◦ according to the events of Z(t) being in J p \ {J},
J f \ {2J + 1}, and {J, 2J + 1}. According to (7.2.5), we then have

V̄ ⋆,◦(t) = E
[
1(Z(t)∈J p\{J})Ṽ

⋆
Z(t)(t) + 1(Z(t)∈J f\{2J+1})ρ(τ)Ṽ

⋆,+
Z(t)′(t)

∣∣∣FS(t)
]

= E

[ ∑
j∈Jp

j ̸=J

1(Z(t)=j)Ṽ
⋆
j (t) +

∑
j∈Jf

j ̸=2J+1

1(Z(t)=j)ρ(τ)Ṽ
⋆,+
j′ (t)

∣∣∣∣∣FS(t)

]

=
∑
j∈Jp

j ̸=J

pz0j(0, t)Ṽ
⋆
j (t) +

∑
j∈Jf

j ̸=2J+1

pρz0j(0, t)Ṽ
⋆,+
j′ (t),

as desired.

As already mentioned, the technical reserves V ⋆,†, Ṽ ⋆, and Ṽ ⋆,+ can be computed

efficiently using differential equations of Thiele type, while the ρ-modified transition

probabilities are simply computed according to (7.2.10). Thus Proposition 7.3.2

reduces the computational complexity to that of computing Q-modified transition

probabilities pQz0j(0, ·). This computation is studied in details in the next subsection.

7.3.2 Q-modified transition probabilities

We are now ready to present a system of differential equations for the Q-modified

transition probabilities pQz0j(0, ·); here p
ρ
z0j

(0, ·) := pz0j(0, ·) for z0 ∈ J f , which is

in accordance with τ = 0 for z0 ∈ J f and the assumption ρ(0) = 1.
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Theorem 7.3.3. The Q-modified transition probabilities pQz0j(0, ·) satisfy for j ∈ J
the differential equations

d

dt
pQz0j(0, t) =

pz0j(0, t)δ0(t, j) + pρz0j(0, t)δ1(t, j) + pQz0j(0, t)δ2(t, j)

V ⋆,†
j (t)

(7.3.2)

− pQz0j(0, t)µj•(t) +
∑
k∈J
k ̸=j

pQz0k(0, t)µkj(t), pQz0j(0, 0) = 0.

Proof. The boundary conditions follows by the assumption that Q(0) = 0. Referring

to (7.2.20) and (7.2.16), we have

pQz0j(0, t) = E
[
1(Z(t)=j)Q(t)

∣∣FS(t)
]
= E

[
1(Z(t)=j)

∫ t

0

δ(u)

V ⋆,†
Z(u)(u)

du

∣∣∣∣∣FS(t)

]

with

δ(t) = δ0(t, Z(t)) + δ1(t, Z(t))ρ(τ)
1(τ≤t) + δ2(t, Z(t))Q(t).

Note that for 0 ≤ u ≤ t and k ∈ J ,

E

[
1(Z(u)=k)

pQz0k(0, u)

pz0k(0, u)

∣∣∣∣∣FS(t)

]
= E

[
1(Z(u)=k)Q(u)

∣∣FS(t)
]
,

E
[
1(Z(u)=k)

pρz0k(0, u)

pz0k(0, u)

]
= E

[
1(Z(u)=k)ρ(τ)

1(τ≤u)
]
.

Thus by Markovianity of Z and independence between Z and S,

pQz0j(0, t) = E

[
1(Z(t)=j)

∫ t

0

∑
k∈J

1(Z(u)=k)b
Q
k (u) du

∣∣∣∣∣FS(t)

]
(7.3.3)

with bQk , k ∈ J , given by

bQk (u) =
δ0(u, k) + δ1(u, k)

pρ
z0k(0,u)

pz0k(0,u)
+ δ2(u, k)

pQ
z0k(0,u)

pz0k(0,u)

V ⋆,†
k (u)

(7.3.4)

for all u ≥ 0. The assumption of independence between Z and S, Markovianity of

Z, and Fubini’s theorem finally yield

pQz0j(0, t) =

∫ t

0

∑
k∈J

pz0k(0, u)pkj(u, t)b
Q
k (u) du. (7.3.5)

The statement of the theorem is now established by differentiation as follows.

Leibniz’ integration rule gives

d

dt
pQz0j(0, t) =

∑
k∈J

1(k=j)pz0k(0, t)b
Q
k (t)
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+

∫ t

0

∑
k∈J

pz0k(0, u)

(
d

dt
pkj(u, t)

)
bQk (u) du

=
δ0(t, j)pz0j(0, t) + δ1(t, j)p

ρ
z0j

(0, t) + δ2(t, j)p
Q
z0j

(0, t)

V ⋆,†
j (t)

+

∫ t

0

∑
k∈J

pz0k(0, u)

(
d

dt
pkj(u, t)

)
bQk (u) du.

Applying Kolmogorov’s forward differential equations and (7.3.5) to the last line of

the equation we find that

d

dt
pQz0j(0, t) =

δ0(t, j)pz0j(0, t) + δ1(t, j)p
ρ
z0j

(0, t) + δ2(t, j)p
Q
z0j

(0, t)

V ⋆,†
j (t)

− pQz0j(0, t)µj•(t) +
∑
ℓ∈J
ℓ ̸=j

pQz0ℓ(0, t)µℓj(t)

as desired.

Remark 7.3.4. There exists a clear link between Q-modified transition probabilities

and so-called state-wise retrospective reserves. Referring to (7.3.3) and (7.3.4), we

see that for a fixed financial scenario,

Wj(·) :=
pQz0j(0, ·)
pz0j(0, ·)

corresponds to the state-wise retrospective reserve of Norberg (1991) (in the presence

of information G(t) = FS(t) ∨ σ(Z(t)), cf. Subsection 5.B in Norberg, 1991) with

payments

−
∑
j∈J

1(Z(t)=j)b
Q
j (t) dt

and interest rate zero. Contrary to the primary setup of Norberg (1991), the

payments considered here are functions of the state-wise retrospective reserves

Wj(·). △

The system of differential equations for pQz0j(0, ·) from Theorem 7.3.3 involves the

shape of the insurance business I through the mappings δ0, δ1, and δ2. Together

with the results of the previous subsection, Theorem 7.3.3 allows us to formulate

a procedure for the calculation of V b(0). The procedure is presented in the next

subsection.
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7.3.3 Numerical procedure

Based on the results of the previous subsections, we demonstrate a procedure for

the scenario-based projection model. An actual numerical example is given later in

Section 7.5. In what follows, we suppose we are given mappings (δ, η) serving as

controls. They are assumed to satisfy Assumption 7.2.5.

Besides the financial scenarios, the input consists of the following quantities

which can be precalculated independently of the financial scenarios:

(1) The expected accumulated cash flow of predetermined payments A◦(0, s) for

s ≥ 0 as in (7.2.9).

(2) The portfolio-wide mean technical reserve of predetermined payments V̄ ⋆,◦(t)

for all t ≥ 0 calculated via (7.3.1).

(3) For each t ≥ 0, state-wise expected accumulated unit bonus cash flows A†
j(t, s)

for all s ≥ t and j ∈ J as in (7.2.14)–(7.2.15).

(4) State-wise technical unit reserves V ⋆,†
j (t) for all t ≥ 0 and j ∈ J as in (7.2.11).

(5) Transition probabilities pz0j(0, t) for all t ≥ 0 and j ∈ J .

As discussed previously, this input can be calculated using classic methods for

solving differential equations of Thiele type as well as (ρ-modified) Kolmogorov

forward differential equations.

The financial scenarios are N realizations {Sk(t)}t≥0, k = 1, . . . , N , of {S(t)}t≥0

with corresponding short rate rk and forward rate curves fk. We consider them as

output of an economic scenario generator.

The procedure essentially consists of computing pQz0j(0, ·), j ∈ J , and U(·) in
each financial scenario by solving a system of (stochastic) differential equations.

The involved part is to evaluate the differentials. The procedure looks as follows.

For each financial scenario k = 1, . . . , N :

� Initialize with pQ,k
z0j

(0, 0) = 0 for all j ∈ J and Uk(0) = u0.

� Apply a numerical algorithm to solve the coupled (stochastic) differential equa-

tion systems for pQ,k
z0j

(0, ·), j ∈ J , and Uk(·) from Theorem 7.3.3 and (7.2.30),

respectively.

– Evaluating the differentials at time t involves the mappings (δ0, δ1, δ2, η)

from (7.2.31)–(7.2.32). By inspection of the differentials and these map-

pings, we see that we require the shape of the insurance business

Ik(t) =
(
Uk(t), Āg,k(t, ds), V̄ ⋆,k(t)

)
,
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the expected bonus cash flow ab,k(0, t), as well as the input. Computation

of Āg,k(t,ds), V̄ ⋆,k(t), and ab,k(0, t) is achieved via Proposition 7.3.1,

Proposition 7.3.2, and (7.2.23).

� We emphasize that as part of evaluating the differentials we computed the

expected bonus cash flow ab,k(0, ·).

The procedure completes by computing the market value of bonus payments V b(0)

via

V b(0) ≈ 1

N

N∑
k=1

∫ n

0

e−
∫ t
0
rk(v) dvab,k(0, t) dt

using an algorithm for numerical integration.

Note that we require the input (3), which are the state-wise expected accumulated

unit bonus cash flows A†
j(·, ·) evaluated on the two-dimensional time grid {(t, s) ∈

[0,∞)2 : t ≤ s}. To precompute this input, one must solve Kolmogorov’s forward

differential equations many times, once for every t ≥ 0 and j ∈ J . This significantly

impacts the numerical efficiency of the procedure. Furthermore, the algorithm itself

depends on the market basis for the specific insured through the transition rates

µ. In practice, where the algorithm must be executed for many insured, one must

view the specific transition rates for a single insured as input.

In general, it is preferable to use analytical methods and numerical methods for

ordinary differential equations compared to Monte Carlo methods. For example,

solving Kolmogorov’s forward differential equations in order to calculate an expected

cash flow may be done orders of magnitudes faster (for a given precision requirement)

compared to calculating the same expected cash flow via Monte Carlo methods.

The procedure presented above shows how to disentangle biometric and behavioral

risk from financial risk, allowing us to solve part of the problem via numerical

methods for differential equations instead of using Monte Carlo methods. For a

given precision requirement, this significantly reduces the time required to handle

biometric and behavioral risk. If the portfolio merely consists of a single insured,

which we presumed, it is however the simulation of financial risk that constitutes

the main numerical complexity and time usage. As the number of insured increases,

so does the relative time needed to calculate expected cash flows, since the same

financial scenarios are used across all insured, and thus the numerical speed up of

our procedure, compared with a full-blown Monte Carlo approach, should become

significant.

In the following section, we present the simpler state-independent scenario-based

projection model, where we require that the dividend strategy be specified (or

approximated) such that Q is FS-adapted. By presenting a numerical procedure
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for the model, we show how this requirement on the dividend strategies leads to a

numerical speedup.

7.4 State-independent scenario-based projection model

This section concerns the formulation of the state-independent scenario-based

projection model. The model is a special case of the projection model from

Section 7.3 which relies on ensuring Q to be an FS-adapted process such that the

simplified case of Proposition 7.2.2 applies.

In Subsection 7.4.2, we provide sufficient conditions on δ such that Q is FS-

adapted. Next, Subsection 7.4.3 revisits the projection of the shape under this

simplification. Finally, in Subsection 7.4.4 we present a procedure for the compu-

tation of the market value of bonus payments in the state-independent projection

model.

7.4.1 Background

The concept of state-independent modeling is uncommon in the literature, with

the projection model described in Jensen and Schomacker (2015, Section 4) being

one of few exceptions. It is our impression that projections models such as the one

found in Jensen and Schomacker (2015, Section 4) have been implemented or are

being implemented in practice, which further underlines the importance of studying

state-independent scenario-based projection models in more detail.

In the projection model described in Jensen and Schomacker (2015, Section 4),

additional benefits are bought according to the portfolio-wide mean V̄ ⋆,† of the

technical reserve rather than the actual technical reserve V ⋆,†
Z(·), see Jensen and

Schomacker (2015, p. 196). Furthermore, the dividend yield is implicitly assumed

FS-adapted, since in Jensen and Schomacker (2015) the evolution of the policy is

only described on an averaged portfolio level. In unity, this leads to an FS-adapted

Q. In the following, we provide sufficient conditions on δ within our setup to ensure

this adaptability. Later, in Example 7.4.4 in Subsection 7.4.3, we provide a slightly

more explicit link to the projection model in Jensen and Schomacker (2015, Section

4).

7.4.2 Class of dividend strategies

Recall from (7.2.16) and (7.2.32) that Q is the solution to the differential/integral

equation

dQ(t) =
δ0(t, Z(t)) + δ1(t, Z(t))ρ(τ)

1(τ≤t) + δ2(t, Z(t))Q(t)

V ⋆,†
Z(t)(t)

dt, Q(0) = 0.
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To ensure that Q is an FS-adapted process, it suffices to require that δ0, δ1 and δ2
are on the form

δi(t, Z(t)) = δ̃i(t)V
⋆,†
Z(t)(t), i = 0, 2, (7.4.1)

δ1(t, Z(t)) = 0, (7.4.2)

where we have used the shorthand notation δ̃i(t) = δ̃i (t, S(· ∧ t), I(t)) for suitably
regular deterministic mappings δ̃i, i = 0, 2. This is a consequence of the following

observation. When (7.4.1)–(7.4.2) hold, then simply

dQ(t) =
(
δ̃0(t) + δ̃2(t)Q(t)

)
dt, Q(0) = 0. (7.4.3)

This implies pQz0j(0, t) = Q(t)pz0j(0, t), cf. (7.2.24).

Remark 7.4.1. Since the class of dividend strategies presented here builds on

Assumption 7.2.5, affinity inQ is more or less implicitly assumed. The simplifications

we obtain in the following Subsections 7.4.3–7.4.4 build on Q being FS-adapted

rather than the dividend strategy being affine in Q. The results are therefore

trivially extendable to dividend strategies that are non-affine in the number of

additional benefits held. △

7.4.3 Projecting the shape revisited

For the portfolio-wide means Āg we observe a simplification in the part that

concerns future bonus payments similar to what we previously saw concerning the

predetermined payments:

Corollary 7.4.2. Assume that the dividend strategy δ is on the form (7.4.1)–(7.4.2).

The portfolio-wide means Āg of the expected accumulated guaranteed cash flows Ag

then read

Āg(t, ds) = A◦(0,ds) +Q(t)A†(0,ds).

Proof. From Proposition 7.3.1 and its proof, we have

Āg(t, s) = A◦(0, s)− E[B◦(t)−B◦(0)] + E
[
Q(t)A†(t, s)

∣∣FS(t)
]
.

Since by assumption Q is FS-adapted and Z and S are independent, referring

to (7.2.6) with superscript ◦ replaced by † and applying the law of iterated expec-

tations yields

E
[
Q(t)A†(t, s)

∣∣FS(t)
]
= Q(t)E

[
B†(s)−B†(t)

]
= Q(t)A†(0, s)−Q(t)E

[
B†(t)−B†(0)

]
Consequently,

Āg(t, ds) = A◦(0, ds) +Q(t)A†(0, ds)

as desired.
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For the technical reserve, the result is similar. Before we present the result, let

the portfolio-wide mean technical unit bonus reserve V̄ ⋆,† be given by

V̄ ⋆,†(t) = E
[
V ⋆,†
Z(t)(t)

∣∣∣FS(t)
]

for t ≥ 0. Since Z and S are assumed independent, we could replace the conditional

expectation by an ordinary expectation. It is then a trivial observation that

V̄ ⋆,†(t) =
∑
j∈J

pz0j(0, t)V
⋆,†
j (t). (7.4.4)

Corollary 7.4.3. Assume that the dividend strategy δ is on the form (7.4.1)–(7.4.2).

The portfolio-wide mean technical reserve of guaranteed payments then reads

V̄ ⋆(t) = V̄ ⋆,◦(t) +Q(t)V̄ ⋆,†(t).

Proof. Since by assumption, Q is FS-adapted and Z and S are independent, the

result follows immediately from (7.2.24), Proposition 7.3.2, and (7.4.4).

The following example is a continuation of Example 7.2.7 regarding the accumu-

lation of the technical reserve with a second order interest rate.

Example 7.4.4 (Second order interest rate continued). The dividend strategy from

Example 7.2.7 regarding accumulation of the technical reserve V ⋆ with a second

order interest rate rδ does not satisfy the requirements on δ from (7.4.1)–(7.4.2).

Instead, the strategy

δ(t) =
(
rδ(t)− r⋆(t)

) V̄ ⋆(t)

V̄ ⋆,†(t)
V ⋆,†
Z(t)(t), (7.4.5)

satisfies (7.4.1)–(7.4.2) with

δ̃0(t) = (rδ(t)− r⋆(t))
V̄ ⋆,◦(t)

V̄ ⋆,†(t)
and δ̃2(t) = (rδ(t)− r⋆(t)).

One may think of this strategy as an accumulation of the portfolio-wide mean

technical reserve V̄ ⋆ with rδ instead, since by (7.4.3),

V̄ ⋆,†(t) dQ(t) =
(
rδ(t)− r⋆(t)

)
V̄ ⋆(t) dt.

This is in accordance with the projection model in Jensen and Schomacker (2015,

Section 4). By multiplying the strategy (7.4.5) with

V ⋆(t)

V̄ ⋆(t)
and

V̄ ⋆,†(t)

V ⋆,†
Z(t)(t)

one arrives at strategy of Example 7.2.7. If the two ratios are close to one,

the strategy (7.4.5) approximates the strategy of Example 7.2.7. Note that
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E
[
V ⋆(t)/ V̄ ⋆(t)

∣∣FS(t)
]
= 1, i.e. the portfolio-wide mean of the first ratio is equal

to one. For the latter ratio this is not necessarily the case, since it is non-linear in

V ⋆,†
Z(t)(t).

Even if the ratioes are not close to one, the strategy given by (7.4.5) may still

approximate the strategy of Example 7.2.7 in terms of producing an akin time

zero market value of bonus payments. Taking as starting point the strategy of

Example 7.2.7 and the expression of Remark 7.2.3, we find that

V b(0) =

∫ n

0

E

[
e−

∫ s
0
r(v) dv

(
rδ(s)− r⋆(s)

)
V ⋆(s)

V †
Z(s)(s)

V ⋆,†
Z(s)(s)

]
ds,

so that by the law of iterated expectations,

V b(0) =

∫ n

0

E

[
e−

∫ s
0
r(v) dv

(
rδ(s)− r⋆(s)

)
E

[
V ⋆(s)

V †
Z(s)(s)

V ⋆,†
Z(s)(s)

∣∣∣∣∣FS(s)

]]
ds. (7.4.6)

Taking instead as a starting point the strategy given by (7.4.5), we find the expression∫ n

0

E

[
e−

∫ s
0
r(v) dv

(
rδ(s)− r⋆(s)

)
V̄ ⋆(s)

V †
Z(s)(s)

V̄ ⋆,†(s)

]
ds (7.4.7)

for the corresponding time zero market value of bonus payments. We should like to

hightlight that the second order interest rate rδ depends on Q through the shape of

the insurance business, so that the second order interest rates of (7.4.6) and (7.4.7)

may differ.

From (7.4.6) and (7.4.7), we see that the strategy given by (7.4.5) in particular

leads to a decent approximation of the market value of bonus payments as long as

(
rδ(s)− r⋆(s)

)
E

[
V ⋆(s)

V †
Z(s)(s)

V ⋆,†
Z(s)(s)

∣∣∣∣∣FS(s)

]

≈
(
rδ(s)− r⋆(s)

)
V̄ ⋆(s)

E
[
V †
Z(s)(s)

∣∣∣FS(s)
]

V̄ ⋆,†(s)

for all s ≥ 0. This is for example the case if the second order interest rates only

differ ever so slightly and

E

[
V ⋆(s)

V †
Z(s)(s)

V ⋆,†
Z(s)(s)

∣∣∣∣∣FS(s)

]
≈ V̄ ⋆(s)

E
[
V †
Z(s)(s)

∣∣∣FS(s)
]

V̄ ⋆,†(s)

for all s ≥ 0. The latter is by definition of the portfolio-wide mean technical reserve

V̄ ⋆ indeed the case if the safety loading s 7→ V †
Z(s)(s)/V

⋆,†
Z(s)(s) is approximately

state-independent, i.e. does not depend significantly on Z (whenever V̄ ⋆ is non-

zero). ◦
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7.4.4 Numerical procedure

Based on the results of the previous subsections, we demonstrate a procedure for the

state-independent scenario-based projection model. An actual numerical example

is given later in Section 7.5. In what follows, we suppose we are given mappings

(δ, η) serving as controls. They are assumed to satisfy Assumption 7.2.5 with δ on

the form (7.4.1)–(7.4.2).

Besides the financial scenarios, the input consists of the following quantities

which can be precalculated independently of the financial scenarios:

(1) The expected accumulated cash flow of predetermined payments A◦(0, s) for

all s ≥ 0 as in (7.2.9).

(2) The portfolio-wide mean technical reserve of predetermined payments V̄ ⋆,◦(t)

for all t ≥ 0 calculated via (7.3.1).

(3) The expected unit bonus cash flow a†(0, s) for all s ≥ 0 as in (7.2.13).

(4) The portfolio-wide mean technical unit bonus reserve V̄ ⋆,†(t) for all t ≥ 0

calculated via (7.4.4)

As discussed previously, this input can be calculated using classic methods for

solving differential equations of Thiele type as well as (ρ-modified) Kolmogorov

forward differential equations.

The financial scenarios are N realizations {Sk(t)}t≥0, k = 1, . . . , N , of {S(t)}t≥0

with corresponding short rate rk and forward rate curves fk. We consider them as

output of an economic scenario generator.

The procedure essentially consists of computing Q(·) and U(·) in each financial

scenario by solving a system of (stochastic) differential equations. The involved part

is to evaluate the differentials. The procedure looks as follows. For each financial

scenario k = 1, . . . , N :

� Initialize with Qk(0) = 0 and Uk(0) = u0.

� Apply a numerical algorithm to solve the coupled (stochastic) differential

equation systems for Qk(·) and Uk(·) from (7.4.3) and (7.2.30), respectively.

– Evaluating the differentials at time t involves the mappings (δ̃0, δ̃2, η)

from (7.2.31) and (7.4.1). By inspection of the differentials and these

mappings, we see that we require the shape of the insurance business

Ik(t) =
(
Uk(t), Āg,k(t, ds), V̄ ⋆,k(t)

)
,
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the expected bonus cash flow ab,k(0, t) = Qk(t)a†(0, t), cf. (7.2.25), as

well as the input. Computation of Āg,k(t, ds) and V̄ ⋆,k(t) is achieved via

Corollary 7.4.2 and Corollary 7.4.3.

� We emphasize that as part of evaluating the differentials we computed the

expected bonus cash flow ab,k(0, ·).

The procedure completes by computing the market value of bonus payments V b(0)

via

V b(0) ≈ 1

N

N∑
k=1

∫ n

0

e−
∫ t
0
rk(v) dvab,k(0, t) dt

using an algorithm for numerical integration.

Note that in comparison with the procedure of Subsection 7.3.3, the expected

unit bonus cash flows a†j(t, ·), j ∈ J , have only to be precomputed for j = z0
and t = 0. This leads to a speedup. Additionally, the procedure itself does not

depend on the market basis for the specific insured (except potentially through the

mappings δ̃0, δ̃2, and η). These are the primary practical advantages that are gained

by strengthening the requirements on the dividend strategy to (7.4.1)–(7.4.2).

7.5 Numerical example

In this section, we illustrate the methods presented in the previous sections via a

numerical example intended to show how our methods and results can be applied in

practice. The predetermined payments, technical basis, and market basis are based

on the numerical example in Buchardt and Møller (2015); our extension consists of

the inclusion of financial risk and bonus payments. The numerical example aims at

illustrating similarities and differences between the state-dependent scenario-based

projection model and a state-independent approximation in the spirit of Jensen

and Schomacker (2015, Section 4), cf. Example 7.4.4.

7.5.1 Setup

The state of the insured is modeled in an eight-state disability model with policy-

holder behavior as depicted in Figure 7.2. We consider a male who is 40 years

old today. His retirement age is taken to be 65, and his predetermined payments

consist of:

� A disability annuity of rate 100000 per year while disabled, but only until

retirement, i.e. age 65.

� A life annuity of rate 100000 per year while alive and non-lapsed (corresponding

to states 0, 1, 4, and 5), but only from retirement, i.e. age 65.
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� Premium payments of rate 46409.96 per year while active, but only until

retirement, i.e. age 65.

The maximal contract time is set equal to 70, i.e. n = 70, corresponding to a

maximal age of 40 + 70 = 110 years. We note that the predetermined payments

disabled 1active 0

dead 2

surrender3

active
free policy

4 disabled
free policy

5

dead
free policy

6

surrender
free policy

7

µ01

µ12µ02

µ10

µ04

µ03

µ47

µ45

µ56µ46

µ54

Figure 7.2: Disability model with policyholder behavior. The state-space is decomposed
according to J = J p ∪ J f with J p = {0, . . . , 3} and J f = {4, . . . , 7}.

are actuarially fair in the sense that the equivalence principle is satisfied on the

technical basis. The technical basis takes the following form:

r⋆(s) = 0.01,

µ⋆
01(s) =

(
0.0004 + 104.54+0.06(s+40)−10

)
1(s≤25),

µ⋆
10(s) =

(
2.0058e−0.117(s+40)

)
1(s≤25),

µ⋆
02(s) = 0.0005 + 105.88+0.038(s+40)−10,

µ⋆
12(s) = µ⋆

02(s)
(
1 + 1(s≤25)

)
.

The technical basis and the aforementioned predetermined payments further deter-

mine the surrender payments and the free policy factor, which we do not explicitly

state, cf. Subsection 7.2.3.

The market basis takes the following form:

µ02(·) : The 2012 edition of the Danish FSA’s longevity benchmark,
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µ01(s) = 105.662015+0.033462(s+40)−101(s≤25),

µ10(s) = 4.0116e−0.117(s+40)1(s≤25),

µ12(s) =
(
0.010339 + 105.070927+0.05049(s+40)−10

)
1(s≤25) + µ02(s)1(s>25),

µ03(s) = (0.06− 0.002s)1(s≤25),

µ04(s) = 0.051(s≤25),

with µjk = µ(j−4)(k−4) for j, k ∈ J f , j ̸= k.

We now deviate from Buchardt and Møller (2015) by introducing a bond market,

so that the risky asset with price process S1 corresponds to a zero-coupon bond

with expiry n = 70. The short rate follows a Vasicek model, so that the dynamics

are given by

dr(t) = (β − α · r(t))dt+ σdW (t), r(0) = 0.01,

dS1(t) = r(t)S1(t)dt− σψ(t, n)S1(t)dW (t), S1(n) = 1,

where ψ(t, n) =
(
1− e−α(n−t)

)
/α. The parameters β, α, and σ may be found in

Table 7.1. They are taken from the numerical example in Buchardt and Møller

(2018) and yield a mean reversion to about 0.043.

Regarding bonus payments, we consider the case where all dividends are used

only to buy additional life annuity benefits, so that in particular the rate of the

disability annuity is kept fixed throughout the entire contract period. Consequently,

the unit bonus payments B† are determined according to

b†0(t) = b†1(t) = 100000 · 1(t≥25).

Regarding the controls (δ, η), we consider the dividend strategy δ introduced in

Example 7.2.7 with the second order interest rate (7.2.35), and investment strategy

η given by:

η(t) =

∫ n

t
ψ(t, s)e−

∫ s
t
f(t,v) dvĀg(t,ds)

ψ(t, n)S1(t)
.

The investment strategy is chosen such that it hedges the interest rate risk of the

guaranteed cash flows Āg on a portfolio level.

The values of the parameters for the short rate model and the dividend strategy

are shown in Table 7.1.

Parameter β α σ κ
Value 0.007006001 0.162953 0.015384 0.2

Table 7.1: Parameters for the short rate model and dividend strategy. The parameters of
the former are taken from the numerical example in Buchardt and Møller (2018), which
provides a mean reversion of the short rate to β/α ≈ 0.043.
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7.5.2 Results and discussion

The inputs as described in Subsection 7.3.3 and Subsection 7.4.4 are computed

in classic fashion using standard numerical methods. Next, we carry out the

state-dependent numerical procedure outlined in Subsection 7.3.3 as well as the

state-independent procedure presented in Subsection 7.4.4 to determine the time

zero market value of bonus payments V b(0); the computations are based N = 10000

financial scenarios and Euler-Maruyama discretizations with step length 0.01 years.

In the latter procedure, we use the dividend strategy presented in Example 7.4.4

with rδ on the same form as above. The results are presented in Table 7.2 along

with the market value of predetermined payments V ◦(0).

V ◦(0) Time zero market value of bonus payments V b(0)
State-dependent State-independent Relative difference

-72582 72661 72663 -0.00201%

Table 7.2: Time zero market values from both the state-dependent and state-independent
implementation. The relative difference lies within the margin of numerical error.

We see that the two implementations produce identical results, in the sense that

the difference is within the margin of numerical error, for this product design and

set of parameter values.

To show what is going on behind the scenes, we investigate in a bit more detail the

inner workings of the state-independent and state-dependent numerical procedures.

To this end, we fix the financial scenario presented in Figure 7.3.
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Figure 7.3: Short rate and bond price corresponding to a single financial scenario.
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In Figure 7.4, we compare t 7→ pQz0j(0, t), j ∈ J , of the state-dependent imple-

mentation to t 7→ Q(t)pz0j(0, t) of the state-independent implementation. With

Proposition 7.2.2 in mind, we also compare differences in bonus cash flows across

states. To be precise, Figure 7.5 contains a comparison of state-wise bonus cash

flows, i.e. here we compare

t 7→ pQz0j(0, t)
(
b†j(t) +

∑
k∈J
k ̸=j

b†jk(t)µjk(t)
)

of the state-dependent implementation to

t 7→ Q(t)pz0j(0, t)
(
b†j(t) +

∑
k∈J
k ̸=j

b†jk(t)µjk(t)
)

of the state-independent implementation.
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Figure 7.4: Q-modified transition probabilities for a single financial scenario in the
state-dependent implementation (solid line) and in the state-independent implementation
(dashed line).
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Figure 7.5: State-wise bonus cash flows for a single financial scenario in the state-
dependent implementation (solid line) and in the state-independent implementation (dashed
line).

In general, the two numerical procedures lead to fundamentally different inter-

mediate quantities. The state-independent implementation both overestimates and

underestimates – depending on the state – intermediate state-specific quantities

compared to the state-dependent implementation. But intriguingly the aggregation

over states cancels these differences, resulting in the same value for V b(0).

To offer a different point of view based on Remark 7.2.3 and Example 7.4.4, we

take a closer look at the value of the dividend payments between implementations.

To elaborate, we compare

t 7→ E

[(
rδ(t)− r⋆(t)

)
V ⋆(t)

V †
Z(t)(t)

V ⋆,†
Z(t)(t)

∣∣∣∣∣FS(t)

]

of the state-dependent implementation to

t 7→ E

[(
rδ(t)− r⋆(t)

)
V̄ ⋆(t)

V †
Z(t)(t)

V̄ ⋆,†(t)

∣∣∣∣∣FS(t)

]

of the state-independent implementation. The absolute relative differences are less

than 1%, which indicates that it is the aggregation over states and not times that

cancels the intermediate differences and gives rise to essentially identical values for

V b(0).
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7.6 Final remarks

In this section, we compare our methodology and results with recent advances in the

literature and discuss possible extension in demand by practitioners. Subsection 7.6.1

contains comparisons with Bruhn and Lollike (2021), Falden and Nyegaard (2021),

and Jensen and Schomacker (2015), while the inclusion of both duration effects

(so-called semi-Markovianity) and the bonus scheme consolidation is the focal point

of Subsection 7.6.3.

7.6.1 Comparison with recent advances in the literature

In Bruhn and Lollike (2021) and the follow-up paper Falden and Nyegaard (2021),

where the methods and results of the former are generalized to allow for surrender

and free policy conversion, primary attention is given to the derivation of differential

equations for quantities such as

E
[
1(Z(t)=j)V

⋆(t)
∣∣FS(t)

]
.

Since V ⋆ = V ⋆,◦ +Q · V ⋆,†, we find that t 7→ 1(Z(t)=j)V
⋆(t) is an affine function of

t 7→ 1(Z(t)=j)Q(t). Thus disregarding free policy conversion, we see a direct link

between the differential equations derived in Bruhn and Lollike (2021) and Falden

and Nyegaard (2021) and those of Theorem 7.3.3. For these results suitable affinity

of the dividend strategy is a key assumption.

The inclusion of the policyholder option of free policy conversion adds an ad-

ditional layer of complexity. We assumed the unit bonus payment stream B† to

be unaffected by the free policy option, which leads to the total payment stream

given by (7.2.17). No such assumption is made in Falden and Nyegaard (2021),

which leads to more involved payment streams, although by setting B† = B◦,+,

our payment stream equals that of Falden and Nyegaard (2021, Subsection 5.2,

cf. (11)–(12)).

We consider some key concepts and provide practical insights that are not

within the scope of Bruhn and Lollike (2021) and Falden and Nyegaard (2021).

We explicitly include financial risk, which serves as a good starting point for the

extension to doubly stochastic models with dependence between the financial market

and the stochastic transition rates. Moreover, we identify and discuss the theoretical

and practical challenges arising from the fact that the dividend strategy depends on

the shape of the insurance business. Furthermore, we provide ready-to-implement

numerical schemes for the computation of the market value of bonus payments.

Finally, we discuss potential simplifications arising when the number of additional

benefits is (approximated to be) FS-adapted – the state-independent case, which

might be of particular interest to practitioners.
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As discussed previously, the projection model described in Jensen and Schomacker

(2015, Section 4) appears to be conceptually very close to exactly our state-

independent model, cf. Subsection 7.4.2 and Example 7.4.4. Consequently, we

believe that our presentation among other things serves to formalize and generalize

the pragmatic approach found in Jensen and Schomacker (2015) and, correspond-

ingly, aims at bridging the gap between the methods and results found in Bruhn

and Lollike (2021) and Falden and Nyegaard (2021) and Jensen and Schomacker

(2015).

7.6.2 State-independent approximations

The dividend strategies considered in the numerical example of Section 7.5 are to

some extent absorbing in nature, meaning that they over time broadly speaking

distribute the available assets to the insured. This is consistent with the fact that

both the state-dependent and state-independent implementation produce a time

zero market value of bonus payments identical to the available assets.

In addition to the numerical results presented in Section 7.5, we have examined

other product designs and sets of parameter values. Without reporting every detail

here and now, this did not immediately produce large differences in the time zero

market value of bonus payments between implementations. To uncover why this is

the case, further theoretical and numerical studies are required.

7.6.3 Extensions

In both theory and practice, the generalization to so-called semi-Markovian models

introducing duration dependence in the transition rates and payments is popular

and impactful, cf. Hoem (1972), Helwich (2008), Christiansen (2012), and Buchardt,

Møller, and Schmidt (2015). We believe that the methods we use here can easily

be adapted to semi-Markovian models.

The increase in numerical speed from the general case to the state-independent

case is increasing in the complexity of the intertemporal dependence structure,

which can be seen as follows. Referring to Subsection 7.3.3 and Subsection 7.4.4,

the general projection model requires as input the expected unit bonus cash flows

evaluated on a two-dimensional time grid, while evaluation on a one-dimensional

time grid suffices for the state-independent model. When including duration effects,

the complexity increases, which ought to entail a four-dimensional time/duration

grid for the expected unit bonus cash flows in general projections and a two-

dimensional time/duration grid in state-independent projections. The gain in

numerical speed by assuming the state-independent special case is thus far greater

in the semi-Markovian model compared to the Markovian model.

In Denmark, the bonus scheme known simply as consolidation (in Danish:
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styrkelse) sees widespread use in practice, cf. Jensen and Schomacker (2015, Subsec-

tion 4.1). Consolidation involves two technical bases: a low (more prudent) basis

and a high (less prudent) basis. At the onset of the contract, the predetermined

payments, i.e. the payments guaranteed at time zero, satisfy an equivalence principle

for which some payments are valuated on the high technical basis and the remaining

payments are valuated on the low technical basis. Dividends are then used to

shift these payments from the high to the low basis while upholding the relevant

equivalence principle. Typically consolidation is combined with the bonus scheme

additional benefits in the following manner. When all predetermined payments have

been shifted to the low technical basis, future dividends are used to buy additional

benefits. This ruins a key affinity assumption, which increases the complexity

significantly. In particular, an extension of Theorem 7.3.3 appears to require more

sophisticated methods. In the state-independent case, the assumption of affinity

is not required, cf. Remark 7.4.1. Consequently, we believe that it is straightfor-

ward to extend the state-independent projection model to include consolidation in

combination with additional benefits.
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