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Abstract

This thesis deals with the topic of term structure modeling with a focus on the current

LIBOR transition. We begin by studying the SOFR futures market in the context of

Gaussian dynamic term structure models. We show that, despite jumps and spikes in

the overnight benchmark, a continuous Gaussian arbitrage-free Nelson-Siegel model

is able to fit the term structure of SOFR futures rates. Furthermore, using a shadow

rate extension, we find that accounting for the zero lower bound has significant

impact on volatility. Next, we develop a multi-curve model, which endogenously

generates the spreads between different tenors of secured and unsecured rates. We

show that the model is able to simultaneously fit the term structure of SOFR, Federal

Funds, and Eurodollar futures rates as well as spot USD LIBOR and term repo rates.

The framework models the spreads as roll-over risk, which we further separate into a

credit and funding-liquidity component allowing us to decompose the LIBOR-OIS

spread. The last paper considers the task of accurately modeling both overnight and

term rates based the SOFR benchmark. We show that a continuous model is unable

to simultaneously reflect the near piecewise constant dynamics of overnight SOFR

and the diffusive dynamics of SOFR futures rates. Instead, we construct a model of

scheduled and unscheduled jumps in the short-rate reflecting jumps in the central

bank policy rate following scheduled and unscheduled FOMC meetings. Accounting

for jumps in the short-rate, the jump model is able to reconcile the overnight and

futures rate dynamics.
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Resumé

Denne afhandling omhandler rentemodellering med fokus p̊a den igangværende

LIBOR transition. Vi starter med at studere markedet for SOFR futures kontrakter

ved brug af Gaussiske dynamiske rentemodeller. Her viser vi, at en kontinuert Gaussisk

arbitrage-fri Nelson-Siegel model er i stand til at beskrive rentestrukturen af SOFR

futures renter p̊a trods af permanente og kortvarige spring i den underliggende dag-

til-dag reference rente. Derudover viser vi, at en skygge-rente udvidelse, som tager

højde for den nedre grænse for nominelle renter, har en signifikant indvirkning p̊a

volatilitet. I den næste artikel udvikler vi en multikurve model, der endogent genererer

spændet mellem forskellige løbetider for sikrede og usikrede renter. Modellen kan

beskrive rentestrukturen for SOFR, Federal Funds og Eurodollar futures renter samt

USD LIBOR og repo renter. Modellen forklarer spændene ved hjælp af ’roll-over’

risiko, som vi yderligere opdeler i en kredit og funding-likviditets komponent, hvilket

gør det muligt at dekomponere LIBOR-OIS spændet. Den sidste artikel undersøger,

hvordan man korrekt kan modellere b̊ade dag-til-dag og futures renter baseret p̊a

SOFR. Vi viser, at en kontinuert model ikke er i stand til samtidig at beskrive den

næsten stykvis konstante dynamik af dag-til-dag SOFR og den diffusionslignende

dynamik for SOFR futures renter. I stedet konstruerer vi en model med planlagte og

uplanlagte spring i den korte rente, der afspejler spring i styringsrenten som følge af

planlagte og uplanlagte FOMC møder. Ved at tage højde for spring i den korte rente

er modellen i stand til at forene dag-til-dag og futures rente dynamikkerne.
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Chapter 1

Introduction

Arguably the most important change to the fixed income markets in recent years is

the ongoing benchmark transition from London Interbank Offered Rates (LIBORs) to

Risk-Free Rates (RFRs). The purpose of this introduction is to provide the historical

background on the benchmark transition. We also give a brief description of the

theoretical framework that is the basis of the thesis. The last section motivates some

of the resulting challenges within the field of dynamic term structure modeling and

contains an overview of the main contributions in each of the remaining chapters.

1.1 The LIBOR Transition

This section covers the timeline of the LIBOR transition and the events that sparked

transition away from LIBOR as the main interest rate benchmark. Furthermore,

we describe the new RFR benchmarks and some of the basic properties in which

LIBORs differ from RFRs.

1.1.1 The London Interbank Offered Rate

LIBORs are a set of benchmark rates, which have long played a key role as the main

benchmark rate in fixed income contracts. The LIBOR benchmarks exist in multiple

different currencies (USD, CHF, GBP, Euro, and JPY) and tenors (O/N, 1W, 1M,

3M, 6M, and 12M). As of mid 2018, LIBORs were the reference rates in $400 trillion

notional of derivatives, loans, and other financial products.1

In each currency, LIBOR is calculated as a trimmed average of submitted quotes

from a set of LIBOR panel banks. The quotes are obtained from each panel bank as

the answer to the question:

”At what rate could you borrow funds, were you to do so by asking for and then

accepting interbank offers in a reasonable market size just prior to 11 a.m. London

1See Schrimpf and Sushko, 2019.
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2 Chapter 1. Introduction

time?”

As such LIBOR is meant to reflect the marginal unsecured interbank funding

costs of the LIBOR panel banks. Since financial intermediaries are at the center of

providing funding this feature was one of the main reasons that LIBOR gained its

popularity as a benchmark rate. However, the method also implies that the LIBOR

fixings are based on quotes from a fairly small set of panel banks and not necessarily

based on actual transactions.

The lack of actual transactions underpinning the submitted LIBOR quotes has

indeed largely been the case since the Great Financial Crisis (GFC). Multiple reasons

have caused the interbank market for unsecured lending at term to largely disappear

following the GFC. First, the events of the GFC brought attention to the risks

associated with this type of funding, which were previously assumed to be mostly

negligible. Second, post GFC central bank policies and regulation greatly increased

the amount of reserves held by financial institutions while reducing the attractiveness

of interbank funding.

The quote based construction and lack of underlying transactions made LIBOR

increasingly susceptible to manipulation. This became evident following the LIBOR

scandal during the 2010s in which several major LIBOR panel banks were fined

billions of dollars for submitting misleading quotes. During the scandal, panel banks

were accused of manipulating LIBOR in multiple ways such as banks colluding on

submitting quotes that would be favourable to their own derivatives positions as well

as LIBOR systematically rising on the first day of each month when adjustable-rate

mortgages were set to reset.

The lack of an underlying market and manipulation scandal ultimately led to the

announcement of the discontinuation of LIBOR by the Financial Conduct Authority

in the UK. This was officially done in the speech by Andrew Bailey, 2017 in which

he noted:

”The absence of active underlying markets raises a serious question about the

sustainability of the LIBOR benchmarks that are based upon these markets.”

Initially, the LIBOR discontinuation date was scheduled at the end of 2021.

However, due to the COVID-19 crisis, the cessation of USD LIBOR was delayed to

June 2023 for all USD LIBOR fixings except the one-week and two-month tenors.

Following the announcement of the LIBOR discontinuation a set of alternative

benchmarks have been proposed by regulators. These new benchmarks are collectively

referred to as Risk-Free Rates or simply RFRs.
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1.1.2 RFRs and the Secured Overnight Financing Rate

The following RFRs have been chosen to replace LIBOR in each of the LIBOR

currencies: SOFR (USD), €STR (EUR), TONAR (JPY), SARON (CHF), and

SONIA (GBP). Unlike the quote-based construction of LIBOR, the new benchmarks

are calculated based on actual transactions in an underlying market, which is

sufficiently large to make manipulation of the benchmark implausible. Furthermore,

while LIBOR is published for multiple different tenors, RFRs are overnight rates.

Since the main focus of this thesis is on the USD LIBOR transition we will

focus on the USD RFR. In 2017, the Secured Overnight Financing Rate (SOFR)

was recommended by the Alternative Reference Rates Committee (ARRC) as the

USD LIBOR replacement. SOFR is a secured overnight rate, which also includes

transactions with wholesale non-bank counterparties.

Figure 1.1: Historical SOFR and three- and six-month USD LIBOR fixings.

Figure 1.1 plots the historical time series of SOFR as well as the commonly used

three- and six-month USD LIBOR. There are several reasons as to why SOFR differs

from LIBOR. First, LIBOR is a term rate, it therefore reflects expectations about

future interest rate levels during its term, whereas SOFR only reflect interest rates

on an overnight basis. Second, since LIBOR reflects unsecured funding at term it

contains a credit or term funding risk component. SOFR, on the other hand, being

a secured overnight rate, does not contain such risks. Finally, disruptions in the

Treasury repo markets as well as the regulatory end of month reports on dealers’

balance sheet exposures have at times caused short-lived upward spikes in SOFR.

Financial contracts referencing SOFR are usually not written on the individual

SOFR fixings, but rather compounded averages of the overnight rate. The com-

pounded averages reflect a backward-looking rate only known by the end of the

compounding period and at the time of payment. The setting in arrears of the

compounded SOFR averages is distinctly different from LIBOR, which is a forward-
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looking rate and thus fixes in advance and pays in arrears. A forward-looking rate

is still preferred in some markets. The ARRC therefore expressed the need for a

forward-looking term SOFR and later recommended CME Term SOFR to be used as

the forward-looking SOFR term rate. CME Term SOFR is based on SOFR futures

contract quotes and does not represent actual lending at term. It therefore does

not contain the credit or term funding risk present in LIBOR. The lack of these

components has sparked the creation of multiple credit sensitive benchmarks such as

the ICE Bank Yield Index (IBYI), Bloomberg Short-Term Bank Yield Index (BSBY)

and AMERIBOR.

1.2 Dynamic Term Structure Models

Dynamic term structure models are used in numerous fixed income tasks such as

forecasting, determining risk-premiums, risk-management, and hedging. Since bonds

and other fixed income derivatives are highly traded assets arbitrage opportunities

are usually short-lived. The absence of arbitrage is thus a common assumption in

these markets. This puts restrictions on how the cross-section of yields can move.

Arbitrage-free dynamic term structure models naturally impose such restrictions

on the cross-section of bond yields. The models also enable the separation of risk

premiums from actual expectations.

Perhaps the most widely used class of term structure models are Affine Term

Structure Models (ATSMs). As indicated by the name, ATSMs are based on affine

processes. In the next section, we briefly summarize affine processes and their use in

ATSMs.

1.2.1 Affine Procesesses and Term Structure Models

Affine processes are ubiquitous in financial mathematics and have been the main

workhorse in dynamic term structure models for decades. In this section, we review

the basic theory of affine processes in relation to term structure modeling.

We begin by fixing a standard filtered probability space (Ω,F , (Ft)t≥0, P ). Our

objective is to model a stochastic process in continuous time, Xt. The purpose of

this process could be to capture the dynamics of interest rates, volatility, default

intensity, etc. In general, we refer to a process as being affine if the conditional

characteristic function is exponentially affine in the current state

E
[
eiz

′XT |Ft
]
= eα(t,T,z)+β(t,T,z)

′Xt . (1.2.1)

The majority of ATSMs studied in the literature are based on the continuous time-

homogeneous affine term structure models formalized in Duffie and Kan, 1996. These

assume that Xt is a d-dimensional process, which solves

dXt = µ(Xt)dt+ σ(Xt)dWt. (1.2.2)
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Where Wt is a P Wiener process with independent components and

µ(x) = K0 +K1x, K0 ∈ Rd, K1 ∈ Rd×d

(σ(x)σ(x)′)ij = H0ij +H1ij · x, H0ij ∈ R, H1ij ∈ Rd.

That is, both the drift and instantaneous variance are affine in the state, Xt. Assuming

that the discount rate is also an affine function of Xt defined as rt = ρ0 + ρ′1Xt, the

discounted transform admits an exponentially affine solution

E
[
e−

∫ T
t
rsds+z

′XT |Xt

]
= eα(T−t)+β(T−t)′Xt . (1.2.3)

Furthermore, the coefficients α(τ) and β(τ) can be found as a solution to the Riccati

equations

∂β(τ)

∂τ
= −ρ1 +K ′

1β(τ) +
1

2
β(τ)′H1β(τ),

∂α(τ)

∂τ
= −ρ0 +K ′

0β(τ) +
1

2
β(τ)′H0β(τ)

with initial conditions α(0) = 0 and β(0) = z. In special cases these admit analytical

solutions, otherwise they can be efficiently evaluated using numerical methods for

ordinary differential equations such as Runge-Kutta.

Zero Coupon Bonds (ZCBs) are essential in the construction of the term structure

of interest rates. Assuming the dynamics are specified under a suitable risk-neutral

measure, Q, the price of the continuously compounded ZCB can be calculated as

p(t, T ) = EQ
[
e−

∫ T
t
rsds · 1|Ft

]
. (1.2.4)

The price of the ZCB can therefore be computed using the transform in Equation

1.2.3 with z = 0.

The literature on ATSMs is vast and various extensions to the stochastic differential

equation in 1.2.2 have been considered. Likewise, the transform in Equation 1.2.3 has

also been extended to more general payoffs allowing for the pricing of increasingly

complicated contracts such as interest rate options.

1.2.2 Multi-curve Models

Before the GFC, interest rates could be reasonably explained by the term structure

of a single risk-free rate. Thus, the same interest rate curve was used for both

discounting and determining future cash flows from the reference rate fixings. The

GFC resulted in a significant repricing of the risks associated with unsecured and

term funding such as LIBOR. This led to large increases in the spread between

LIBOR or Interest Rate Swaps (IRSs) referencing LIBOR and the maturity-matched

Overnight Index Swap (OIS) referencing the overnight Effective Federal Funds Rate
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(EFFR). It also resulted in notable basis spreads between IRSs referencing different

tenors of LIBOR making longer tenors of LIBOR more valuable.

Post-GFC market reforms to reduce interbank counterparty risk in over-the-counter

derivatives have further caused a shift to central clearing of standardized contracts

and an increased focus on collateralization of these products. Cleared contracts are

usually collateralized using cash remunerated at the OIS rate. Assuming full cash

collateralization on a continuous mark-to-market basis remunerated at the collateral

rate rct , the present value of a contract V (t) with a time T > t payoff X can be

shown to satisfy

V (t) = EQ
[
e−

∫ T
t
rcsdsX|Ft

]
. (1.2.5)

Where Q denotes a risk-neutral measure. That is, the payoff should be discounted

at the collateral rate. This implies that a single-curve framework cannot be used to

accurately value a collateralized derivative with payments dependent on a benchmark

rate significantly different from the collateral rate used for discounting. Multi-curve

models solve this issue by allowing for separate curves for discounting and generating

future cash flows.

On October 16, 2020, as a part of the USD LIBOR transition, the main clearing

houses moved from EFFR to SOFR as the primary collateral rate in what was

referred to as the discounting ”big bang”. This has effectively caused a large part of

the market to transition back to the traditional single-curve setup in which SOFR is

used both for discounting and determining the cash flows. Multi-curve models are

however still likely to remain relevant as multiple alternative benchmarks to overnight

SOFR may become popular with the cessation of LIBOR while other reference rates

such as EFFR continue to exist.

1.3 Overview and Contributions

In light of the historical background presented in the previous section, we now

proceed to motivate each of the three remaining chapters contained in the thesis.

The chapters represent independent research papers and the use of slightly different

notation as well as the repetition of certain key concepts should be expected. While

written as independent papers, all of the chapters share the same main objective of

developing and estimating dynamic term structure models used to analyze various

aspects of the USD LIBOR transition.

1.3.1 Dynamic Term Structure Models for SOFR Futures

In May of 2018, following the announcement of SOFR as the new USD benchmark

rate, the Chicago Mercantile Exchange (CME) introduced one- and three-month

futures contracts referencing SOFR. In Chapter 2, we study the use of dynamic

term structure models for the SOFR futures market. Specifically, we study a special
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Gaussian case of the dynamics in Equation (1.2.2) referred to as the class of Arbitrage-

free Nelson-Siegel Gaussian models.

The models are estimated to the historical record of SOFR futures contracts

using maximum-likelihood in conjunction with the Kalman filter. While Figure 1.1

shows the presence of jumps and, in the beginning of the sample, spikes in overnight

SOFR, we find that a three-factor Gaussian model is able to capture the cross-section

of SOFR futures rates during our sample period. As a robustness check, we also

estimate our model to Federal Funds futures and compare the SOFR futures market

to the well-established Federal Funds futures market.

Following the COVID-19 crisis, the Federal Reserve lowered the Federal Funds

target range to its post-GFC 0-25 basis point level. The drop in rates revived the

importance of interest rate modeling at the zero lower bound. In the chapter, we

therefore also consider a non-affine shadow-rate extension of the Gaussian model,

which respects the zero lower bound of nominal rates. We find that the shadow-rate

extension has a substantial impact on volatility during the low-rate regime affecting

futures convexity adjustments and option pricing.

1.3.2 Decomposing LIBOR in Transition: Evidence from the

Futures Markets

In Chapter 3 we study the differences in risk between term and overnight as well

as secured and unsecured funding. To quantify these risks, we develop an affine

multi-curve model, which is able to consistently model contracts based on secured

and unsecured overnight and term rates. The spreads between rates at different

tenors are explained as roll-over risk. The concept of roll-over risk captures the idea

that a financial entity may not be able to roll-over future short-term borrowing at

the prevailing reference rate. We divide roll-over risk into two separate components.

The first component is a credit-downgrade component, which arises from the risk

of a future increase in funding costs as a result of a deterioration in credit quality

of the entity. We refer to the second component as a funding-liquidity component,

which captures the risk of the entity not being able to roll-over its debt due to a

non-credit related reason such as a freeze in lending liquidity.

The paper builds on a vast literature studying the LIBOR-OIS spread following

the repricing of the risks associated with LIBOR during the GFC. The majority

of these papers focus on the period around the GFC when the spread first became

significant. However, the recent transition period from LIBOR to SOFR defines

a distinct period in which futures contracts referencing fixings of both SOFR and

LIBOR have traded simultaneously. In the empirical section of the paper we use the

coexistence of both benchmarks in order to estimate the outlined multi-curve model

to a joint data set of SOFR, Federal Funds, and Eurodollar futures rates as well as
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spot USD LIBOR and term repo rates. We therefore focus on a more recent data

period including the onset of the COVID-19 crisis in which the LIBOR-OIS spread

also temporarily spiked. We find that on average credit and liquidity risks contribute

equally to the LIBOR-OIS spread, however, the spike during COVID-19 was driven

by a large increase in credit risk. Furthermore, the model also provides an insight to

the effect of interventions in the repo market by the Federal Reserve after the repo

squeeze in September, 2019.

Understanding the risks related to term lending has gained an increased importance

in the context of the LIBOR transition in which markets transition from a term to an

overnight interest rate benchmark. Our model highlights that a forward-looking term

SOFR based on SOFR derivatives does not reflect actual term lending. In particular,

it does not reflect secured term lending such as a term repo due to the lack of a

funding-liquidity premium while it is missing both a credit and funding-liquidity

premium when compared to LIBOR.

1.3.3 Term Structure Modeling of SOFR: Evaluating the

Importance of Scheduled Jumps

The transition to RFRs has made the overnight rate the main building block in fixed

income products. However, the vast majority of papers on interest rate modeling

do not attempt to accurately model overnight rates or include overnight rates in

the estimation sample. Studying the historical SOFR fixings in Figure 1.1, we note

that, unlike LIBOR, SOFR is highly discontinuous with both lasting jumps and,

particularly during the start of the sample, also short-lived spikes. With exception

of two unscheduled rate cuts during March 2020 in response to the COVID-19 crisis,

all of the observed jumps in SOFR follow scheduled FOMC meeting dates. This

suggests that in order to accurately capture the dynamics of SOFR it is necessary to

account for the FOMC meeting calendar.

In Chapter 4 we first argue that while the Federal Reserve publishes a 25 basis

points Target Range for the Federal Funds rate, the main policy rate determining

changes in SOFR is the Interest On Reserve Balances (IORB). Based on this we

develop a model of scheduled and unscheduled jumps in the short-rate. We show

that by including scheduled jumps in the policy rate following FOMC meeting dates,

the model is able to simultaneously generate the near piecewise constant dynamics

of overnight SOFR and the diffusive dynamics of SOFR futures rates. Furthermore,

we also estimate a continuous model with dynamics similar to those in Equation

1.2.2 and thus ignores the impact of the scheduled FOMC meeting dates on the

short-rate. We find evidence that the continuous model is misspecified, especially

around FOMC meeting dates with changes in the policy rate. In contrast, our

model, which incorporates the FOMC meeting calendar, does not reflect the same

misspecifications. Our analysis suggests that accounting for the scheduled jumps is
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increasingly important for shorter-term rates or near the end of the accumulation

period in backward-looking rates when only few fixings of the overnight benchmark

remain. Similarly, the importance decreases as the term of the considered rate

increases. In partiuclar, when only three-month futures contracts are considered, as

is the case in Eurodollar futures referencing LIBOR, the continuous model is able to

capture the futures rate dynamics.





Chapter 2

Dynamic Term Structure Models for SOFR

Futures

This chapter contains the manuscript Skov and Skovmand (2021).

Abstract

LIBOR is scheduled for discontinuation, and the replacement advocated

by US regulators is the Secured Overnight Financing Rate (SOFR). The

only SOFR linked derivative with significant liquidity and trading history

is the SOFR futures contract, traded at the CME. We use the historical

record of futures prices to construct dynamic arbitrage-free models for the

SOFR term structure. We find that a Gaussian arbitrage-free Nelson-Siegel

model describes term structure well without accounting for jumps and

seasonal effects observed in SOFR. However, a shadow-rate extension is

needed to describe volatility near the zero-boundary impacting the futures

convexity adjustment and option pricing.

Keywords: SOFR, LIBOR, Futures, Arbitrage-Free Nelson-Siegel, Term Structure

Models.

2.1 Introduction

In 2017 it was announced by the Financial Conduct Authority in the UK that

their intention was to phase out LIBOR by the end of 2021. The same year the

Alternative Reference Rates Committee (ARRC) announced that the recommended

replacement in the US, would be the Secured Overnight Financing Rate (SOFR). Due

to this forthcoming disruption of the sizeable LIBOR derivatives market, studying

the dynamics and proper model specification of SOFR is imperative for pricing and

risk managing the transition from LIBOR to SOFR.

11



12 Chapter 2. Skov & Skovmand (2021)

In this paper we develop arbitrage-free models for SOFR with a view towards

describing the dynamics of the SOFR term structure implied from futures prices.

The SOFR futures market being the only one with any significant liquidity and

trading history. More precisely we construct models that are arbitrage-free and able

to generate realistic SOFR term structures. Our work is to the authors knowledge

the first to estimate dynamic arbitrage-free models for the SOFR term structure.

Other dynamic models for SOFR have been put forward for example Lyashenko and

Mercurio (2019), Macrina and Skovmand (2020), Andersen and Bang (2020). But the

existing approaches have mainly focused on pricing derivatives on the compounded

SOFR average, and have not taken their models to actual data. An exception is

Gellert and Schlögl (2021), who perform a multi-date calibration under the risk-

neutral measure with a view towards analyzing the impact of SOFR spikes.

Our research focuses on models that can be easily estimated to futures data, using

standard statistical methods. With this view, we limit our analysis to Gaussian

affine term structure models in particular the arbitrage-free Nelson-Siegel framework

of Christensen, Diebold, and Rudebusch (2011), and its shadow-rate extension in

Christensen and Rudebusch (2016). The models are estimated using the maximum-

likelihood Kalman filtering method. This is straightforward in the purely Gaussian

models, but for the Shadow-rate model it is complicated by a lack of closed form

expressions for the futures prices. We develop an approximation formula and verify

its accuracy using simulation methods.

Our work draws heavy inspiration from Heitfield and Park (2019), who have put

forward a model free approach to translating SOFR futures prices into a forward

looking term rate. In particular their approach is currently used by the Federal

Reserve to publish an indicative term SOFR rate derived from futures prices. We

use their indicative rates as a robustness check on our model and find that our model

aligns with those rates to a very high degree. We furthermore find that the jumps

and seasonal effects observed in SOFR do not need to be specifically accounted for

when the goal is to describe the futures curve.

Since Heitfield and Park (2019) do not use a dynamic arbitrage-free term structure

model, they as a result ignore the nonlinear nature of futures contracts measured by

the so-called convexity adjustment. Convexity has been studied for SOFR futures in

Henrard (2018) and in more detail in Rosen (2019), but not to the authors knowledge

in a model estimated to the historical record. Having an estimated dynamic model

allows us to gauge the practical relevance of convexity. We find evidence that the

convexity adjustment, shows significant model dependence at the lower bound, but is

only relevant if futures prices are used to build a term structure beyond 2-3 years in

the future. In particular the convexity adjustment is not significant when translating

futures prices into term rates with a tenor less than one year, which aligns with the

methods of Heitfield and Park (2019). Finally we study how the spike in SOFR

of September 2019 as well as the March 2020 drop in overall interest rates has
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impacted the SOFR and the related rates. We find that the Gaussian models and

the shadow-rate models yield similar results up until March 2020 rate drop. But

we find that Gaussian models are unable to capture the volatility compression that

occurs after this rate drop.

The paper is structured in the following way. We begin with a brief background

on the LIBOR transition followed by a general description of our empirical setup

including a general description of for forward looking term rates. We describe the

models the pricing formulas, the data and estimation method relegating most of the

mathematical detail to the Appendix. In section 4 we present our results and in

section 5 we investigate the size and dynamics of the the convexity adjustment for

SOFR futures.

2.2 Background on SOFR

The SOFR is an overnight rate based on repo transactions for US treasury securities.

The rate was chosen to replace LIBOR, due to the sizeable volume of the repo

market, but also because it was not a direct policy rate, unlike the EFFR, which

is the rate the Fed refers to in the published targets of the Federal Open Market

Comittee (FOMC). SOFR has already been partially implemented, replacing the

EFFR as the the main rate used for discounting.1 This is part of a global trend as

regulators throughout the world have pushed towards moving away from LIBOR

or its equivalents to overnight transactions based rates generically referred to as a

Risk-Free Rates (RFR).2

The transition from LIBOR to SOFR is not frictionless as SOFR is fundamentally

different from LIBOR. The key difference is that LIBOR is reported across multiple

tenors covering unsecured term lending up to 12 months. SOFR, being an overnight

rate, by construction has no in-built view of the future beyond the 24 hour term, and

is furthermore secured in the sense that credit risk is mitigated in a repo transaction

(see also Lou (2021) for a discussion of credit risk in SOFR). Furthermore, SOFR

has shown itself to be extremely volatile at times. This was exemplified by the

September 17, 2019 so called ”SOFR Surge” where the rate jumped 282 basis points

compared to the previous day. The ARRC has recommended (see for example

Alternative Reference Rate Committee (2019)) that LIBOR is replaced by a running

three month compounded daily average of SOFR, and this will naturally decrease

the volatility. The recommendation for existing contracts is that the LIBOR fixing

should be replaced by this backward-looking average rate plus a spread that reflects

the historical median spread to LIBOR.

Changing the fixing rate from LIBOR to some transformation of SOFR in an

existing contract can in principle be easily done if both parties of the loan or derivative

1The switch from EFFR to SOFR as the primary discounting rate at the LCH and CME clearing
houses took place on October 16 2020.

2In the UK SONIA, the Eurozone has chosen ESTER, SARON in Switzerland, and so on.
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agree to make the switchḟootnoteIn practicality there are multiple complications and

potential for legal battles see for example Henrard (2019) for a quant perspective on

this part of the transition. But moving from EFFR discounting to SOFR discounting

requires, not only the value of the benchmark itself, but a liquid market of forward-

looking instruments underlying SOFR. The previous practice of discounting using

EFFR relied heavily on a liquid OIS market to derive the EFFR discounting curve.

A similar market for SOFR OIS’ does not yet exist. The ISDA counted just 389

trades in all SOFR related swaps (including basis swaps) the week ending February

19, 2021. This compared to 14,321 trades in swaps referencing USD LIBOR.

Having a liquid derivatives market underlying SOFR is desirable not just for

deriving a discounting curve, but also for implying the ”term SOFR” i.e. a discrete

forward rate referencing the markets expectation of SOFR over the term period.

Market participants (see Risk.net (2020)) have called for such a benchmark, preferring

the forward-looking nature of LIBOR over the backward-looking SOFR average. As

a result, it is written in the transition plan of the ARRC (See Alternative Reference

Rate Committee (2020)) that a term SOFR benchmark rate should be published

by the end of 2021. Various methods for constructing such a benchmark have been

suggested by the ARRC in Alternative Reference Rate Committee (2018). They

express some doubts that the SOFR swap market will be robust enough in the

near future to underlie an index due to its lack of liquidity. This leaves SOFR

futures as the only realistic underlying asset class for a term SOFR benchmark. The

average daily trading volume of SOFR futures has been increasing steadily since

their introduction at the CME in 2018 and for the month of January 2021 it was

1,8 mio. contracts up 117% from January 2020. Translating futures prices into a

term structure is inherently a model dependent task due to the so called convexity

adjustment measured as the difference between the forward and futures rate. Model-

free attempts to calculate the convexity generally requires volatility inputs derived

from non-linear derivatives, but such a market with a SOFR underlying is not likely

to materialize until LIBOR is fully discontinued.3 This effectively means that using

a model is the only way to consistently construct the SOFR term structure. And

of course also the only way to price and hedge SOFR derivatives. If the wishes of

the regulators come to fruition and SOFR becomes the main benchmark replacing

LIBOR it would be natural to expect a liquid market to spawn of SOFR equivalents

to the massively popular LIBOR derivatives such as swaptions, caps, floors and other

non-linear derivatives. A model for the dynamics of the SOFR term structure based

on futures data would therefore be particularly important to price and hedge these

products in the early stages of the transition, when futures are arguably the only

credible source for market expectations of SOFR. However, the future dominance of

SOFR is by no means guaranteed. As of 2021 it seems likely that SOFR will exist

3Since Jan 2020 the CME also offers options on SOFR futures. But by January 2021, there has
been little to no trading in these instruments.
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along side a variety of other interest rate benchmarks reflecting the funding costs

in different types of markets and at different levels of risk (see for example Risk.net

(2021) for an overview of many of the alternative indices).

2.3 Empirical Setup

2.3.1 Defining SOFR term rates

Define the filtered probability space (Ω,F , {Ft}t≥0, Q), with Q being the risk neutral

measure defined the by the continuous savings account numeraire given by Bt =

e
∫ t
0
rsds. {rt}t≥0 is the risk free short rate. We can then define the zero coupon bond

as

p(t, T ) = BtEQ
[
B−1
T |Ft

]
. (2.3.1)

This allows to construct the discrete overnight SOFR is defined as,

Rdi(ti) =
1

di

(
1

p(ti, ti + di)
− 1

)
(2.3.2)

with di denoting the day count fraction multiplied by the amount of days to which

the overnight rate applies. E.g. di = 3/360 on Fridays and di = 1/360 on business

days that are not followed by a holiday.

A critical part of the LIBOR transition has been to define a replacement benchmark for

LIBOR based on the new RFRs. The regulatory agencies and the ARRC has decided

LIBOR is to be replaced by a backward-looking compounded average calculated as

RB(S, T ) =
1

T − S

(
N∏
i=1

(1 + diRdi(ti))− 1

)
. (2.3.3)

Unlike LIBOR rates, which are fixed in advance, the RFR based backward-looking

rates are only known at the end of the term and thus FT -measurable, hence they

can hardly be considered as proper term rates. Figure 2.1 plots the three month

compounded term SOFR term rate against the overnight SOFR and EFFR. The

SOFR is closely related to the federal funds rate, however it displays clear rate spikes

on certain month, quarter or year ends known from the repo market it is based on.

The figure shows that the backward-looking running average is significantly volatility

reducing to the point that even the September 2019 spike in SOFR reduces to a

minor uptick in the backward-looking benchmark. While it cannot be said that

the backward-looking rate has been excessively volatile, it has nevertheless been high-

lighted by the Alternative Reference Rate Committee (2018) that a forward-looking

term rate is preferable by market participants, since it would incorporate market

expectations about the future rates, but also because of the so called ’measurability
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Figure 2.1: Overnight SOFR and EFFR as well as the backward-looking discretely com-
pounded three-month SOFR term rate.

problem’ (see Henrard (2019)) that arises from having a rate that is measurable at

the end as opposed to the beginning of the term. However, assuming that a synthetic

zero-coupon bond term structure can be implied from market prices such a proper

forward looking term rate is simply calculated as the discrete spot rate,

RF (S, T ) =
1

T − S

(
1

p(S, T )
− 1

)
. (2.3.4)

The backward and the forward-looking rates are easily seen, by repeated application

of the tower property, to be related through discounted expectation as

BtEQ
[
B−1
T RF (S, T )|Ft

]
= BtEQ

[
B−1
T RB(S, T )|Ft

]
, t ≤ S ≤ T. (2.3.5)

Which means that the price of any forward starting linear derivative will be the

same at any point before the accrual date regardless of whether a backward or

forward-looking benchmark is used to determine the cash-flows. In particular setting

t = S, and changing to the T -forward measure we get

RF (S, T ) =
BS

p(S, T )
EQ
[
B−1
T RB(S, T )|FS

]
= ET [RB(S, T )|FS ], (2.3.6)

from which we can see that the forward looking term rate is a prediction of the

backward-looking rate under the T -forward measure.

An Overnight-Index-Swap (OIS) is a fixed for floating swap with floating payments

equal that of the backward looking rates in (2.3.3). From (2.3.5) and (2.3.6) it

therefore follows that OIS prices would determine forward looking term rate in a

model free manner. But as stated above the OIS market with a SOFR underlying is

not yet sufficiently liquid. The current market for OIS is still very much dominated

by EFFR as the underlying overnight rate. We are thus left with the SOFR futures
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as the main source of data for inferring forward looking SOFR term rates. Since

this is an inherently model dependent task we will consider the ability of a model to

construct correct forward looking SOFR term rates from futures data as one of the

main criteria to assess the performance of the models specified in the next section.

2.3.2 Constructing the short rate models

When modeling the term structure of futures rates we consider one-, two-, and

three-factor versions of Gaussian arbitrage-free short-rate models. Since unrestricted

affine multi-factor models often suffer from over-parametrization resulting in multiple

maxima of the likelihood function, we consider the parameter restrictions of the

arbitrage-free Nelson-Siegel (AFNS) model presented in Christensen, Diebold, and

Rudebusch (2011) belonging to the class of Gaussian affine term structure models.

The AFNS model is a three-factor model effectively replicating the yield factor

loadings of the popular Dynamic Nelson-Siegel model in Diebold and Li (2006).

Furthermore, we consider a two-factor version of the AFNS model omitting the final

(curvature) factor as well as the standard Gaussian single-factor model by Vasicek

(1977). Finally, we consider a shadow-rate extension of the AFNS model where

the short rate satisfies the zero lower bound as in Black (1995). We briefly outline

the general setup of the models used in this paper, while model specific parameter

restrictions and results are given in Appendix 2.A. As before we define the filtered

probability space (Ω,F , {Ft}t≥0, Q) and assume that the state variable, {Xt}t≥0, is

a Markov process, which solves the stochastic differential equation

dXt = KQ[θQ −Xt]dt+ΣdWQ
t , (2.3.7)

where KQ and Σ are N × N matrices, θQ ∈ RN and {WQ}t≥0 is an F-adapted

Brownian motion on RN . In the Gaussian models the short rate is given by

rt = ρ0 + ρ′1Xt, (2.3.8)

with ρ0 a scalar and ρ1 ∈ RN . While in the shadow-rate model we let st = ρ0 + ρ
′
1Xt

denote the shadow short rate and define

rt = max(st, 0) (2.3.9)

as the actual short rate. As in the previous section we set Bt = e
∫ t
0
rsds and

p(t, T ) = BtEQ
[
B−1
T |Ft

]
.

The real world dynamics are connected to the risk neutral dynamics by specifying a

market price of risk, Λt,

dWQ
t = Λtdt+ dWP

t . (2.3.10)

We consider an essentially affine market price of risk as in Duffee (2002), which under

Gaussian state variable dynamics reduces to

Λt = λ1 + λ2Xt. (2.3.11)
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The resulting P -dynamics share the same form as the Q-dynamics and are thus also

Gaussian

dXt = KP [θP −Xt]dt+ΣdWP
t . (2.3.12)

Throughout we will assume independent dynamics of the state variables under the

physical measure and thus restrict KP and Σ to be diagonal matrices.

2.3.3 Pricing SOFR futures

The settlement price of the futures contract is quoted as 100(1 − R(S, T )) where

R(S, T ) denotes the futures rate and is a function of the discrete overnight reference

rates during the contract period and thus FT -measurable. R(S, T ) is defined differ-

ently for One-Month and the Three-Month SOFR futures. In both cases we can use

the well known result (see for example Hunt and Kennedy (2004)) that the value of

a futures contract with a random payoff equals the risk neutral expectation of the

non-discounted payoff. The time t futures rate between time S and T can therefore

be computed as

f(t;S, T ) = EQ [R(S, T )|Ft] . (2.3.13)

We present general futures rates formulas for both one- and three-month futures

contracts. Specific solutions to the AFNS model are provided in Appendix 2.A, and

the development of the approximation formulas for the shadow-rate model can be

found in Appendix 2.B

One-month SOFR futures

The one-month futures rate is based on the arithmetic average of the daily reference

rate during the contract month

R1m(S, T ) =
1

N

N∑
i=1

Rdi(ti). (2.3.14)

Where N denotes the total number of days in the month and Rdi(ti) for i ∈ 1, ..., N

with S ≤ t1, ..., tN ≤ T the published SOFR rates given in (2.3.1). For any date for

which the rate is not published the last preceding rate is used, as specified in the

futures contract. As in Mercurio (2018) we approximate the discrete average by an

integral of the instantaneous short rate

R1m(S, T ) ≈ 1

T − S

∫ T

S

rsds. (2.3.15)

As we show in Appendix 2.D, this approximation is strictly not necessary as an

exact solution does exist in the affine case. We compute the exact one-month rate in

Appendix 2.D, which shows that the approximation error is similar across all contracts
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and only a fraction of a basis point. We nevertheless apply the approximation for

ease of computation.

Denote the time t rate of the one-month futures starting to accrue at time S and

with settlement on time T by f1m(t;S, T ) then

f1m(t;S, T ) =
1

T − S
EQ
[∫ T

S

rsds|Ft

]
. (2.3.16)

When pricing a futures contract settling at the end of the current month and thus

S < t, we have to account for the part of the underlying rate that has already been

accrued. In this case the futures rate is calculated as

f1m(t;S, T ) =
1

N

N0∑
i=1

Rdi(ti) +
1

T − S
EQ
[∫ T

t

rsds|Ft

]
(2.3.17)

where Rdi(ti) for i ∈ 1, ..., N0 with S ≤ t1, ..., tN0
≤ t are realized rates and thus

Ft-measurable. The settlement of the one-month federal funds futures is based on

the same specifications and the pricing formula is therefore valid for both SOFR and

federal funds one-month futures traded at the CME.

Three-month SOFR futures

The three month futures contract is based on the daily compounded reference rate

during the contract quarter

R3m(S, T ) =
1

T − S

(
N∏
i=1

(1 + diRdi(ti))− 1

)
. (2.3.18)

Where Rdi(ti) for i ∈ 1, ..., N with S ≤ t1, ..., tN ≤ T denotes the realized overnight

rates in the reference quarter and dti the amount of days to which Rdi(ti) applies.

Again, we follow Mercurio (2018) and approximate the daily compounded rate by

the continuously compounded rate

R3m(S, T ) ≈ 1

T − S

(
e
∫ T
S
rsds − 1

)
. (2.3.19)

The accuracy of the continuous approximation is studied in Appendix 2.D showing

errors of an order less than 10−7 for all open contracts. This again is applied mainly

for ease of computation. The time t rate of the three-month future starting to accrue

at time S and with settlement on time T is then given by

f3m(t;S, T ) =
1

T − S

(
EQ
[
e
∫ T
S
rsds|Ft

]
− 1
)
. (2.3.20)

When S < t and part of the underlying rate has already accrued we account for this

in the pricing formula using discrete compounding

f3m(t;S, T ) =
1

T − S

((
N0∏
i=1

[1 + diRdi(ti)]

)
EQ
[
e
∫ T
t
rsds|Ft

]
− 1

)
(2.3.21)
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where Rdi(ti) for i ∈ 1, ..., N0 with S ≤ t1, ..., tN0
≤ t denotes Ft-measurable realized

overnight rates.

2.3.4 Data and estimation

To infer SOFR-based term rates we estimate the models using end of day prices

on CME SOFR futures contracts. All futures data is collected through Refinitiv

Eikon. The models are fitted using the extended Kalman filter maximum likelihood

method described in Appendix 2.C. Code for the extended Kalman filter and relevant

pricing functions is available and uploaded at Github.4 We apply historical futures

data starting from the 19th of June 2018 up until the day where the term rates are

computed. Term rates are based on a minimum of 250 historical daily futures data

observations allowing us to compute term rates from June 2019 and onwards. We

calculate the term rates using equation (2.3.4), applying the ACT/360 day count

convention and the modified following business day convention on the USNY business

day calendar.

The quality of the obtained model estimates and resulting term rates strongly rely

on the observed futures prices accurately reflecting market expectations on futures

rates. As shown in Heitfield and Park (2019) the majority of the liquidity in the

SOFR futures markets is concentrated around the nearest one-month contracts and

three-month contracts at a one year horizon. Based on this we use observations

of one-month contracts for the seven nearest calendar months as well as the five

closest quarterly contracts. The data therefore reflects market expectations covering

a period of just over a year. Daily term rates are then calculated using the latest

set of filtered state variables together with the optimal set of parameters provided

by the Kalman filter. In Appendix 2.C we perform a simulation study testing the

efficiency of the Kalman filter maximum likelihood method. The study shows that

the parameters related to the risk neutral dynamics and thus determining the term

structure are accurately identified by the filter showing no significant bias. It should

further be noted that while we construct term rates using end of day quotes in this

paper, one can apply the same approach at any point during the day using the

Kalman filtering on the prevailing futures prices while using e.g. end of day historical

data in the estimation to obtain a relevant term structure.

2.4 Empirical Results

Figure 2.2 presents the SOFR-based term rates obtained using the one-, two-, and

three-factor Gaussian models. Particularly at the one-month tenor the models show

significant variation in the model implied term rates. Also the graphs show that when

market expectations of futures rates are stable implying a flat yield curve all three

4https://github.com/Jacob-Skov/DTSM-SOFR-Futures

https://github.com/Jacob-Skov/DTSM-SOFR-Futures


2.4. Empirical Results 21

Figure 2.2: Model implied arbitrage-free term rates for different tenors based on rolling
re-estimates from 17th of June 2019.

Model One-Month Three-Month

1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 5th

Vasicek 18.1 21.5 13.3 7.0 0.0 5.8 10.7 13.0 9.6 11.1 23.5 32.4
AFNS2 4.7 4.3 3.1 2.5 2.3 1.8 1.5 2.1 1.3 1.8 4.3 8.0
AFNS3 3.1 3.1 3.3 2.7 2.1 1.6 1.6 1.0 1.3 1.8 0.9 1.0
Shadow 2.9 3.1 3.3 2.6 2.1 1.6 1.6 0.9 1.3 1.8 0.9 1.8

Table 2.1: RMSEs of the fitted futures rates based on the final parameter estimates and
filtered state variables for each of the models using the full SOFR data sample. All values
are in basis points. The final log-likelihood values of the Vasicek, AFNS2, AFNS3 and
shadow-rate model respectively are 41826.1, 51050.6, 53247.6 and 53409.3

models provide near identical term rates. This can be seen during the most recent

period after the drastic lowering of rates following COVID-19 due to announcements

made by Federal Reserve to keep rates near zero for an extended amount of time.

When assessing the fit of the model implied futures rates to the observed futures

rates we consider the root mean square error defined as

RMSE(i) =

√∑T
t=1

(
fobst (i)− ft(i)

)2
T

, (2.4.1)

where fobst (i) denotes the observed futures rate at time t for contract number i and

ft(i) is the corresponding model implied futures rate. Table 2.1 contains the RMSEs

of the fitted futures rates for each model. Clearly, the Vasicek model is not able to

properly fit the term structure resulting in large deviations from the observed rates.

The two-factor model is able to capture most of the variation in the cross section of
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Figure 2.3: Fitted and observed futures rates for the seven nearest one-month contracts
and five nearest three-month contracts as of the 3rd of September 2019.

futures rates, but does show increasing RMSEs the short and long end of the term

structure of futures rates, while the three-factor model provides a close fit across all

observed contracts. This is also seen in figure 2.3, which shows the fitted futures

rates as of the 3rd of September 2019 together with the market implied futures rates.

The futures rates on the particular date indicate a market expectation of a future

decrease in SOFR. The graph illustrates the inability of the single-factor model in

capturing the term structure of futures rates, while both the two- and three-factor

AFNS models perform notably better. The nearest three-month futures rate appears

to be reasonably well approximated by the Vasicek model. However, this is only due

to the fact that the majority of the underlying overnight rates already have been

accrued on this contract. The flat futures rate curve produced by the Vasicek model

is a direct consequence of a near zero KQ estimate, making the state variable act as

a level factor under the Q-dynamics.

Since a sufficiently liquid market of linear SOFR derivatives allowing for standard

curve construction does not exist, we compare the model implied term rates to the

model-independent term rates based on the method presented in Heitfield and Park

(2019) published daily on the New York Federal Reserve’s website as a benchmark

reference.5 The model-free term rates in Heitfield and Park (2019) are calculated

using a step function to parametrize the one-day forward curve, allowing for jumps

on dates determined by the target rate announcement dates in the FOMC calender.

Expected jump sizes are then recalibrated daily.

Table 2.2 reports statistics on the differences between the indicative term rates

5https://www.federalreserve.gov/econres/notes/feds-notes/indicative-forward-

looking-sofr-term-rates-20190419.htm

https://www.federalreserve.gov/econres/notes/feds-notes/indicative-forward-looking-sofr-term-rates-20190419.htm
https://www.federalreserve.gov/econres/notes/feds-notes/indicative-forward-looking-sofr-term-rates-20190419.htm
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Model Tenor RMSE Mean SD 5% Q1 Median Q3 95%

Vasicek 1 Month 23.0 -11.9 19.7 -54.0 -26.5 -0.5 2.7 4.1
3 Month 15.1 -8.0 12.8 -34.1 -18.3 -1.2 1.8 2.9
6 Month 6.7 -3.3 5.8 -15.1 -6.9 0.1 0.8 1.7

AFNS2 1 Month 4.8 0.0 4.8 -12.4 -0.7 0.5 1.3 4.9
3 Month 1.9 -0.2 1.9 -4.3 -0.5 0.1 0.6 2.0
6 Month 0.7 0.0 0.7 -0.9 -0.2 0.1 0.4 1.1

AFNS3 1 Month 1.7 0.0 1.7 -2.8 -0.7 -0.1 0.6 3.1
3 Month 1.0 0.1 0.9 -1.0 -0.4 0.0 0.4 2.0
6 Month 0.7 0.2 0.7 -0.6 -0.3 0.0 0.5 1.4

Shadow 1 Month 1.8 -0.3 1.8 -2.8 -1.3 -0.5 0.5 3.2
3 Month 0.9 0.1 0.9 -1.3 -0.5 0.0 0.4 1.9
6 Month 0.7 0.1 0.7 -0.7 -0.3 0.0 0.4 1.3

Table 2.2: Difference between model implied term rates based on rolling re-estimates and
published Federal Reserve indicative term rates.

published by the Fed and our model implied term rates. Comparing the root mean

squared errors across the three models show that the three-factor model provides the

closest fit to the model-independent term rates across all tenors. As also indicated

by the graphs in figure 2.2 it is especially the shortest tenors that the lower factor

models fail to accurately fit.

The SOFR rate is heavily correlated with EFFR (See Figure 2.1) and thus heavily

influenced by the targets set by the FOMC, a reasonable assumption would be that

a term structure model with a positive probability of jumps on the announcement

dates would be necessary to fit the SOFR futures curve especially in the short term.

Table 2.2 shows that this feature is in fact not necessary. The AFNS model, without

introducing jumps, is able to produce term rates very similar to those of the model

free step-function used in Heitfield and Park (2019). This is also seen in figure 2.4,

which compares the three-factor AFNS model three-month term rate to the indicative

three-month term rate presented in Heitfield and Park (2019) as well as the realized

forward-looking compounded SOFR three-month term rate.

Figure 2.5 compares the three-month AFNS model implied SOFR term rate to

the three-month-OIS rate and three-month LIBOR. The LIBOR-SOFR three-month

term spread reflects a term premium present in the unsecured term borrowing of

LIBOR. Following the Great Financial Crisis the premium is driven by a credit risk

and funding-liquidity risk premium (see e.g. Backwell et al. (2019)). The spread

increases in times of stress as is clearly seen by the sharp increase in LIBOR following

COVID-19 while SOFR, being an overnight secured rate, was not affected and like

the OIS-rate closely tracked the target range set by the Federal Reserve. Both

the ARRC and ISDA recommend calculating the LIBOR-SOFR spread used for

legacy contracts using a five-year historical median between the backward-looking

compounded average SOFR and LIBOR. However, such a spread would not be

consistent with a forward-looking term SOFR. Instead, adding a spread to a forward-
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Figure 2.4: Comparison of forward-looking three-month SOFR term rates.

Figure 2.5: Comparison of forward-looking three-month term rates. The three-month
SOFR term rated is based on the final AFNS estimates using the set of filtered state variables.

looking term SOFR following the same approach would require historical SOFR term

rates as presented in this paper.

2.4.1 Federal funds futures implied term rates

As a robustness check we re-estimate our model, using end of day data on federal

funds futures traded at the CME instead of SOFR futures. Federal funds futures

have traded since 1988 and thus allow us to test the models on a longer time frame.

Also, a well developed OIS-market based on federal funds rates exists, which allows

us to compare the model implied term rates to actual market term rates. We use

data for one-, three- and six-month OIS contracts, which have single end of term

payment of exactly
∏N
i=1(1+ diR

EFFR
di

(ti))− 1, per unit notional with REFFRdi
being

the daily quoted effective federal funds rate. From (2.3.6) it follows that the implied

OIS term rate is exactly the EFFR equivalent of the term rate in (2.3.4).
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Figure 2.6: Three-month end of day OIS-rate and model implied three-month three-month
term rate based on rolling re-estimates from 3rd of January 2005.

Model Tenor RMSE Mean SD 5% Q1 Median Q3 95%

Vasicek 1 Month 10.3 -2.3 10.1 -22.5 -2.7 -1.1 0.4 9.9
3 Month 4.0 0.0 4.0 -6.5 -0.4 0.5 1.3 4.4
6 Month 5.8 2.6 5.2 -4.5 0.2 2.4 3.8 11.0

AFNS2 1 Month 2.5 0.2 2.5 -3.5 -1.1 0.5 1.4 3.9
3 Month 1.8 1.1 1.5 -1.1 0.5 1.1 1.6 3.1
6 Month 1.7 1.2 1.2 -0.5 0.7 1.2 1.6 3.0

AFNS3 1 Month 2.7 1.3 2.4 -1.5 0.6 1.2 1.8 3.9
3 Month 2.1 1.1 1.8 -1.2 0.4 1.1 1.7 3.4
6 Month 1.8 1.2 1.3 -0.5 0.7 1.2 1.6 3.0

Shadow 1 Month 2.7 1.3 2.4 -1.5 0.5 1.2 1.9 3.9
3 Month 2.1 1.1 1.9 -1.5 0.3 1.1 1.7 3.4
6 Month 2.0 1.1 1.7 -1.8 0.6 1.2 1.6 3.1

Table 2.3: Differences between model implied term rates based on rolling re-estimates and
observed end of day OIS-rates.

Federal Funds futures are only traded on a one-month contract period with listed

contracts covering the 36 first calendar months. As with SOFR-futures most of the

traded volume is concentrated around the nearest contracts. We therefore base the

estimation on observed end of day prices on the seven nearest one-month futures

contracts, thus covering term rates up to six months ahead. The data sample runs

from January 2005 until December 2020 and we consider rolling daily estimates

beginning in January 2007.

Figure 2.6 plots the model implied term rates at a three month tenor against the

corresponding end of day observed OIS-rate. Also in the federal funds case, the

three-factor AFNS model is able to closely match the observed OIS-rates even during

the drastic rate cuts seen under the financial crisis.

Table 2.3 reports statistics on the difference between model implied and observed

OIS term rates. Interestingly, the results favour the two-factor model, which does
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provide the closest overall fit as measured by the RMSE, suggesting that two factors

is enough to fit the EFFR market. This of course is partly due to the Federal Funds

futures data only containing the seven first one-month contracts thus resulting in

less daily data points that the model has to fit.6 We also note that the three-factor

models slightly overestimate the term rates compared to the OIS rate, however still

tracks the OIS implied term rate well. Refraining from the fact that this is based on

end of day data from two different sources, the relatively lower liquidity of the short

term OIS-market resulting in a higher spread compared to the futures market could

have an impact on the slightly different term structures implied by these markets.

2.4.2 Comparing SOFR and EFFR futures

As a final model-free robustness check we gauge the potential immaturity of the

SOFR futures market by comparing the properties of the relatively new market for

SOFR futures to the well-established Federal Funds based futures market. Since

both the EFFR and SOFR are closely tied to the Federal Funds target range, we

would expect that if the SOFR futures market is well functioning you would see

similar response in both markets in the wake of the announcements following FOMC

meetings. We follow the approach presented in Kuttner (2001) to calculate the

unexpected change in the Federal Funds target rate implied by the futures market.

Let τ denote the day in the month of the FOMC meeting, N the total number of

days in the month and f1mτ the spot one-month futures rate the day of the FOMC

meeting. The unexpected surprise in the futures rate, ∆ru, is then calculated as

∆ru =
N

N − τ
(f1mτ − f1mτ−1). (2.4.2)

When the meeting falls on the first date of the month, we replace f1mτ−1 with the

futures rate on the last day of the preceding month. If instead the meeting is at the

last day of the month, we calculate the price difference in the futures contract of the

following month. Figure 2.7 plots the unexpected change in the target rate implied

by SOFR and EFFR futures on all FOMC dates since SOFR futures started trading

on CME. The two markets react very similarly to FOMC meetings announcements.

The largest difference of 7.5 basis points appeared around the FOMC meeting date in

September 2019. This is no surprise as SOFR experienced a drastic spike to above 5

percent on September 17 thus creating uncertainty around the SOFR and impacting

the spot one-month futures rate.

Next, we compare risk premia in the two markets following the method presented

in Piazzesi and Swanson (2008). For comparability we focus solely on one-month

futures contracts. Using end of month data for the six nearest upcoming futures

contracts, n ∈ {1, ..., 6}, we calculate the ex post realized excess returns of the

6A principal component analysis reveals that three factors are required to capture 99.9% of the
variation in the SOFR futures data, while only two factors are required for the EFFR futures data.
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Figure 2.7: Comparison of price changes on one-month spot EFFR and SOFR futures
contracts on FOMC dates. Dates in red mark actual changes in the target rate.

one-month futures contract, rx1mt+n, as the difference between the time t futures rate

of the one-month futures contract, f1m(n) (t), and the ex post realized one-month futures

rates, R1m
t+n,

rx1mt+n = f1m(n) (t)−R1m
t+n. (2.4.3)

We then proceed to run the regression

rx1mt+n = α(n) + ε
(n)
t+n. (2.4.4)

The exercise is performed on both SOFR and EFFR futures based the same data

sample starting with end of month futures data from May 2018 when SOFR futures

launched on CME and until the end of December 2020. We also consider the full

Federal Funds data sample used in the model estimation containing data from

January 2005. Table 2.4 contains the estimated constant risk premia for each of

the expiries. We can first note that including the full data sample containing the

post financial crisis years with little volatility in the Federal Funds overnight rate

results in a much smaller risk premium than when using more recent data. But the

table also demonstrates very similar risk-premia when comparing SOFR to EFFR

futures. Interestingly, it shows a slightly higher premium in the SOFR contracts.

One could speculate the reason could be due to liquidity risk premium in the rather

new market for SOFR futures or perhaps more likely caused by the observed SOFR

spikes. But as the table also shows, the statistical uncertainty is much too great to

draw any inference in this regard. Most importantly, for this study, we do not find

any evidence to suggest that SOFR futures should not be used in the construction of

SOFR term rates.
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n SOFR EFFR EFFR Full Sample

α(n) Annualized α(n) Annualized α(n) Annualized

1m
2.5
(2.5)

30.1
(30.0)

2.3
(2.3)

27.3
(27.8)

1.6
(0.6)

19.0
(7.4)

2m
7.4
(5.1)

44.5
(30.4)

6.7
(4.9)

40.2
(29.5)

4.3
(1.4)

25.8
(8.1)

3m
12.6
(6.9)

50.2
(27.7)

11.8
(6.7)

47.1
(26.9)

7.1
(2.0)

28.6
(7.9)

4m
18.5
(8.4)

55.4
(25.3)

17.4
(8.3)

52.1
(24.8)

10.1
(2.6)

30.3
(7.7)

5m
25.4
(9.5)

61.0
(22.8)

24.3
(9.3)

58.5
(22.3)

13.2
(3.1)

31.6
(7.4)

6m
33.3
(10.4)

66.6
(20.9)

32.5
(10.1)

65.0
(20.2)

16.3
(3.6)

32.6
(7.2)

Table 2.4: Risk premium for one-month SOFR and EFFR futures contracts using futures
data from end of May 2018 until end of December 2020 as well as the full Federal Funds futures
sample starting in January 2005. Standard errors are shown in parentheses. Annualized
excess returns are obtained by multiplying the excess returns, rx

(n)
t+n, with 1/n before running

the regression.

2.4.3 SOFR volatility

The Gaussian short rate distribution of the AFNS model ignores the decrease in

volatility resulting from rates being compressed at a lower bound. As of December

2020 the Federal Reserve has never lowered its target rate below zero or expressed

willingness in doing so. Therefore, in this paper we assume a zero lower bound of

U.S. rates as is often done in shadow-rate models on U.S. data, see e.g. Christensen

and Rudebusch (2016). However, towards the end of 2020 Federal Funds futures

contracts have priced have priced negative rates in 2021. In the following section we

show how the compression of rates at the zero lower bound also impacts the pricing

of options on futures. In order to compare the change in value across time figure 2.8

plots the value of a hypothetical at the money call option on a three-month SOFR

European futures option with a fixed six month expiry.7 The option value can then

be calculated as

C(t, P 3m(t;S, T ),K, T ) = EQ
[
e−

∫ T
t
rsds

(
P 3m(T ;S, T )−K

)+ |Ft
]

(2.4.5)

where P 3m(t;S, T ) denotes the time t price of the three-month SOFR futures contract

expiring at time T . Figure 2.8 clearly shows a decrease in the value of the option in

the shadow-rate model as the distribution of future short rates becomes truncated at

the zero lower bound. This is especially apparent after the rate drop in March 2020

where the option hit a minimum value equal to just 6% of the price of the equivalent

option in the AFNS model.

7In reality, CME SOFR futures options are American style and thus have an early exercise
premium. Flesaker (1993) reports that the the premium is typically less than one basis point for
options that are not substantially in the money.
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Figure 2.8: The price of an at the money call option on a hypothetical three-month SOFR
futures contract expiring in six months. The prices are quoted in IMM index points and
based on daily rolling re-estimations and obtained using Monte Carlo simulations under the
risk-neutral measure.

2.5 SOFR futures convexity adjustment

The convexity adjustment of a futures contract is defined as the difference between

the futures rate and an equivalent forward rate. Having estimated a model for the

term structure of futures rates, we can compute the convexity adjustment. We

follow Mercurio (2018) when defining the convexity adjustment for the one- and

three-month SOFR futures. Here we focus solely on the three-factor AFNS model as

well as its shadow-rate extension. The one-month adjustment is calculated from the

continuously compounded forward rate, F (t;S, T ), given by

F (t;S, T ) =
log(p(t, S))− log(p(t, T ))

T − S
. (2.5.1)

Defining the convexity adjustment as the difference between the one-month futures

rate and the continuously compounded forward rate, C1m(t;S, T ) := f1m(t;S, T )−
F (t;S, T ), and applying (2.A.10) the one-month adjustment in the AFNS model is

C1m(t;S, T ) =
A(t, T )−A(t, S)

T − S
. (2.5.2)

We define the three-month convexity adjustment as the difference between the

three-month futures rate and the simple forward rate defined as,

RF (t;S, T ) =
1

T − S

(
p(t, S)

p(t, T )
− 1

)
. (2.5.3)

Similarly the convexity adjustment is defined as C3m(t;S, T ) := f3m(t;S, T ) −
RF (t;S, T ). Then by (2.A.13) in Appendix 2.A, the three-month convexity adjust-
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Figure 2.9: Size of convexity adjustments in the AFNS model as of December 11th 2020
using the final set of SOFR-estimates based on the full sample. The adjustments are plotted
for all open SOFR futures contracts traded on the CME.

ment in the AFNS model is

C3m(t;S, T ) =

(
RF (t;S, T ) +

1

T − S

)(
eA(t,T )−A(t,S)eA(S,T )e

1
2B(S,T )′VQ[XS |Ft]B(S,T ) − 1

)
.

(2.5.4)

One- and Three-month convexity adjustments in the shadow-rate model are calculated

using Monte Carlo simulations. Figure 2.9 plots the AFNS model implied size of the

convexity adjustment of the futures rates for the 13 and 39 one- and three-month

contracts matching the set of listed SOFR futures on the CME, assuming one is

at the beginning of the accrual period of the nearest futures. It clearly shows that

using long-dated three-month futures rates as a proxy for the forward rate without

any adjustment can lead to sizeable errors. However, when focusing solely on the

nearest futures contracts covering the short end of the term structure the convexity

adjustment is of very limited scale.

Since the convexity adjustment is model dependent, it changes with the model

estimates. To illustrate the range of the size of the adjustment for our data period, we

plot convexity adjustments for a selected set of contracts based on rolling re-estimates

using SOFR futures data. This is illustrated in figure 2.10, which shows a notable

variation in the size of the convexity adjustment for long-dated three-month futures

rates.

Given the expression for the one-month convexity adjustment (2.5.2), we see that

it is dependent on the estimates of the decay parameter, λ, and the volatility matrix,

Σ. As seen in (2.5.4) the three-month convexity adjustment also depends on the

level of the discrete forward rate RF (t;S, T ), however, only to a limited extent since

the term is small compared to 1
T−S ≈ 4. Given the final set of parameter values
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Figure 2.10: Size of convexity adjustments using rolling re-estimates on SOFR futures
data for different fixed time to expiries. The 13 months to expiry one-month and 9 years
and 9 months to expiry three-month contracts reflect the last open SOFR futures contracts.
The black lines plot the standard AFNS model and the red lines plot the equivalent convexity
adjustment in the shadow-rate extension.

increasing the forward rate by 10% adds less than 0.5 basis point to the convexity

adjustment of the furthest futures contract. The main factor driving the variation in

the convexity adjustment is the conditional yield volatility under the risk neutral

measure as represented by the term B(S, T )′VQ[XS |Ft]B(S, T ) in the three-month

convexity adjustment. Thus when rates become increasingly volatile the size of the

convexity adjustment also increases. Figure 2.10 also plots the equivalent convexity

adjustment of the shadow-rate model. The plots show the convexity adjustment of all

contracts dropping close to zero after the FED lowered the target rate in March 2020.

The drop reflects a decrease in volatility in the shadow-rate model and highlights

that the convexity adjustment is zero when rates are deterministic.

To obtain estimates of the convexity adjustments for a longer sample period

containing the global financial crisis, we consider the estimates from the federal

funds futures data and plot convexity adjustments as if both one- and three-months

contracts equal to those of the SOFR market traded in this market. Figure 2.11 clearly

illustrates a spike in the size of the adjustment following the crisis. Subsequently,

when rates became compressed against the zero lower bound the convexity adjustment

gradually decreases in the Gaussian AFNS model, while in the shadow-rate model we

again see a significant drop. Due to the short rate specification in the shadow-rate

model, the volatility parameters do not need to decrease to fit the compression

in volatility while at the lower bound, thus when the Federal Funds increased the

Federal Funds target range away from zero in 2015 the convexity adjustment increases

noticeably.
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Figure 2.11: Size of convexity adjustments using rolling re-estimates on federal funds
futures data. The 13 months to expiry one-month and 9 years and 9 months to expiry
three-month contracts reflect the last open SOFR futures contracts.

2.6 Conclusion

In this paper we investigate the use of dynamic term structure models for the SOFR

futures market using historical data. We find that a standard three-factor arbitrage-

free Nelson-Siegel model is able to describe the dynamics of futures prices quite

well without explicitly incorporating the expected jumps in the spot rate on FOMC

announcement dates. Furthermore, our model is able to produce term rates that

are indistinguishable from the indicative rates published by the federal reserve. We

furthermore demonstrate that a shadow-rate extension can explicitly capture the

volatility compression occurring after a rate drop. Using the models we are able to

quantify the size of the convexity adjustment in this market, and determine at what

maturity and volatility level such a correction should be implemented.

This provides a framework, which can easily be made to include other derivatives

such as SOFR caps, floors and swaptions as these markets become more mature.

Future work could extend the empirical analysis to a multi-curve setup. This could

include estimating the joint behavior of multiple benchmarks suchs as SOFR, EFFR

and LIBOR or some of the more recently proposed benchmarks like AMERIBOR,

BSBY or AXI. The estimated models could also be directly used as the SOFR or

EFFR components to one of the many existing multi-curve setups (see for example

Grbac and Runggaldier (2015) for an overview) for pricing and risk managing

derivatives on multiple benchmarks.
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2.A AFNS Model Specifications and Results

Here we present the specific parameter restrictions of the AFNS models as well as

results needed to price the one- and three-month futures contracts for the AFNS

model, similar results can be obtained for the one- and two-factor models. The

three-factor Arbitrage-Free Nelson-Siegel model places the following restrictions on

the risk neutral dynamics

θQ =

0

0

0

 , KQ =

0 0 0

0 λ −λ
0 0 λ

 , ρ0 = 0, ρ1 =

1

1

0

 . (2.A.1)

The state variables are Gaussian with mean and variance

EQ [XT |Ft] = e−K
Q(T−t)Xt, (2.A.2)

VQ [XT |Ft] =
∫ T

t

e−K
Q(T−s)ΣΣ′

(
e−K

Q(T−s)
)′
ds. (2.A.3)

Where the matrix exponential can be calculated analytically as

e−K
Q(T−t) =

1 0 0

0 e−λ(T−t) λ(T − t)e−λ(T−t)

0 0 e−λ(T−t)

 . (2.A.4)

Given a diagonal volatility matrix, Σ, we find

VQ [XT |Ft]

=


σ2
11(T − t) 0 0

0 −e−2λ(T−t)+1
2λ

σ2
22 +

1−e−2λ(T−t)((2λ(T−t))(λ(T−t)+1)+1)
4λ

σ2
33

e−2λ(T−t)(−2λ(T−t)−1)+1
4λ

σ2
33

0 e−2λ(T−t)(−2λ(T−t)−1)+1
4λ

σ2
33

−e−2λ(T−t)+1
2λ

σ2
33

 .

(2.A.5)

The integral
∫ T
t
rsds is also Gaussian with mean and variance

EQ
[∫ T

t

rsds|Ft

]
= −B(t, T )′Xt, (2.A.6)

VQ
[∫ T

t

rsds|Ft

]
=

∫ T

t

3∑
j=1

(Σ′B(s, T )B(s, T )′Σ)jj ds. (2.A.7)

Where B(t, T ) takes the following form

B(t, T ) =

 −(T − t)

− 1−e−λ(T−t)

λ

(T − t)e−λ(T−t) − 1−e−λ(T−t)

λ

 . (2.A.8)
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Define A(t, T ) := 1
2V

Q
[∫ T
t
rsds|Ft

]
, an analytical formula of A(t, T ) is calculated in

the original paper Christensen, Diebold, and Rudebusch (2011). Assuming a diagonal

volatility matrix the expression simplifies to

A(t, T ) = σ2
11

(T − t)3

6
+ σ2

22(T − t)

(
1

2λ2
− 1

λ3
1− e−λ(T−t)

T − t
+

1

4λ3
1− e−2λ(T−t)

T − t

)
+ σ2

33(T − t)
( 1

2λ2
+

1

λ2
e−λ(T−t) − 1

4λ
(T − t)e−2λ(T−t) − 3

4λ2
e−2λ(T−t)

− 2

λ3
1− e−λ(T−t)

T − t
+

5

8λ3
1− e−2λ(T−t)

T − t

)
. (2.A.9)

We are now ready to compute the one- and three-month futures rates. The one-month

futures rate can be computed as

f1m(t;S, T ) = EQ
[

1

T − S

∫ T

S

rsds|Ft

]

= EQ
[

1

T − S

∫ T

t

rsds−
1

T − S

∫ S

t

rsdsFt

]

=
(B(t, S)−B(t, T ))

′

T − S
Xt. (2.A.10)

And when S < t such that part of the underlying has already been realized

f1m(t;S, T ) =
1

N

N0∑
i=1

Rdi(ti)−
B(t, T )′

T − S
Xt. (2.A.11)

The three-month futures rate can be computed using the tower property

EQ
[
e
∫ T
S
rsds|Ft

]
= EQ

[
EQ
[
e
∫ T
S
rsds|FS

]
|Ft
]

= EQ
[
eA(S,T )−B(S,T )′XS |Ft

]
= eA(S,T )e−B(S,T )′e−K

Q(S−t)Xt+
1
2B(S,T )′VQ[XS |Ft]B(S,T ). (2.A.12)

such that

f3m(t;S, T ) =
1

T − S

(
eA(S,T )e−B(S,T )′e−K

Q(S−t)X0+
1
2B(S,T )′VQ[XS |Ft]B(S,T ) − 1

)
.

(2.A.13)

And when S < t

f3m(t, S, T ) =
1

T − S

((
N0∏
i=1

[1 + diRdi(ti)]

)
eA(t,T )−B(t,T )′Xt − 1

)
. (2.A.14)
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2.B Pricing the Futures Contracts in a Shadow-Rate Model

Introducing a lower bound on the short rate results in a model where the short rate

is no longer Gaussian. Therefore, we can not use the same results used to price the

futures contracts in the standard AFNS model. In this section we present formulas

necessary to price the one- and three-month futures contracts in a shadow-rate

extension of the three-factor AFNS model. We start by listing a few auxiliary results

required to calculate the futures rates. Using the results from Appendix 2.A we can

calculate the mean of the shadow short rate as

EQ[sT |Ft] = ρ′1e
−KQ(T−t)Xt

= Lt + e−λ(T−t)St + λ(T − t)e−λ(T−t)Ct. (2.B.1)

The variance is given by

VQ[sT |Ft] = ρ′1VQ[XT |Ft]ρ1 (2.B.2)

and thus

VQ[sT |Ft] = σ2
11(T − t) + σ2

22

1− e−2λ(T−t)

2λ

+ σ2
33

(
1− e−2λ(T−t)

4λ
− 1

2
(T − t)e−2λ(T−t) − 1

2
(T − t)2λe−2λ(T−t)

)
.

(2.B.3)

Where we have assumed a diagonal volatility matrix Σ and used equation (2.A.5).

Furthermore, we note that for s, u > t

CovQ[su, ss|Ft] =
∫ u∧s

t

ρ′1e
−KQ(u−ν)ΣΣ′

(
e−K

Q(s−ν)
)′
ρ1dν. (2.B.4)

Again, assuming a diagonal volatility matrix the covariance can be calculated as

CovQ[su, ss|Ft] = σ2
11((u ∧ s)− t) +

σ2
22

2λ

(
e−λ(s+u−2(u∧s)) − e−λ(s+u−2t)

)
+
σ2
33

4λ

(
e−λ(s+u−2(u∧s)) (λ(s+ u− 2(u ∧ s)) + 1)

− e−λ(s+u−2t)
(
2λ2(s− t)(u− t) + λ(s+ u− 2t) + 1

) )
. (2.B.5)

The one- and three-month futures rates are computed using results from Priebsch

(2013). We follow the notation and denote µt,T = EQ[sT |Ft], σ2
t,T = VQ[sT |Ft] and

σt,u×s = CovQ[su, ss|Ft]. Computing the one-month futures rate requires calculating

the first moment of
∫ T
t
rsds under the risk neutral measure. The expectation is given

by

EQ
[∫ T

t

rsds|Ft

]
=

∫ T

t

µt,sΦ

(
µt,s
σt,s

)
σt,sϕ

(
σt,s
µt,s

)
ds. (2.B.6)
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The one-month rate can therefore be computed up to the standard normal CDF,

which is then numerically integrated over the remaining duration of the contract.

The three-month futures rate is approximated using the power series expansion of

the cumulant generating function

logEQ
[
e
∫ T
t
rsds|Ft

]
=

∞∑
j=1

κQj
j!

(2.B.7)

where κQj is the jth cumulant of
∫ T
t
rsds under the Q-measure. We truncate the series

at two terms and use the result that the two first cumulants of any random variable

are equal to the two first centered moments. The approximation then becomes

EQ
[
e
∫ T
t
rsds|Ft

]
≈ exp

(
EQ
[∫ T

t

rsds|Ft

]
+

1

2
VQ
[∫ T

t

rsds|Ft

])
. (2.B.8)

Since we have already shown how to compute the first moment in the one-month

futures rate, it only remains to compute the second moment to obtain the variance.

Again, using results from Priebsch (2013) the expression for the second moment

under the risk neutral measure is

EQ
(∫ T

t

rsds

)2

|Ft

 =2

∫ T

t

∫ s

t

{
(µt,uµt,s + σt,u×s) Φ

d
2 (−ζt,u,−ζt,s;χt,u×s)

+ σt,sµt,uϕ(ζt,s)Φ

ζt,u − χt,u×sζt,s√
1− χ2

t,u×s


+ σt,uµt,sϕ(ζt,u)Φ

ζt,s − χt,u×sζt,u√
1− χ2

t,u×s


+ σt,uσt,s

√
1− χ2

t,u×s

2π
ϕ

(√
ζ2t,u − 2 ∗ χt,u×sζt,uζt,s + ζ2t,s

1− χ2
t,u×s

)}
duds

(2.B.9)

with ζt,j =
µt,j
σt,j

for j = u, s and χt,u×s =
σt,u×s
σt,uσt,s

. Φd2 denotes the decumulative

bivariate normal distribution function, which satisfies Φd2(z1, z2;χ) = 1 − Φ(z1) −
Φ(z2)+Φ2(z1, z2;χ), where Φ2 is the cumulative bivariate normal distribution function

of two standard normals with covariance χ. As with the first moment the integrand

is numerically integrated over both dimensions to obtain the second moment.8

Zero coupon bonds in the shadow-rate model are approximated using the series

8Computing the double integral can quickly become computationally expensive. In our empirical
implementaion we numerically integrate the expression using the Gauss-Kronrod method with five
points in each dimension.
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Date One-Month Three-Month

1M 2M 3M 4M 5M 6M 7M 3M 6M 9M 12M 15M

06/17/19 -0.02 -0.02 -0.01 -0.01 -0.01 0.00 0.00 0.14 0.07 0.04 0.02 0.00
12/11/20 0.00 0.04 0.02 0.06 0.07 0.04 0.03 0.02 0.06 0.02 -0.02 -0.04

Table 2.5: Difference between the approximated futures rate and Monte Carlo implied
futures rate for all contract lengths used in the estimation. All values are in basis points.

expansion of the cumulant generating function

logEQ
[
e−

∫ T
t
rsds|Ft

]
=

∞∑
j=1

(−1)j
κQj
j!
. (2.B.10)

Again, truncating the series at two terms the approximation becomes

P (t, T ) = EQ
[
e−

∫ T
t
rsds|Ft

]
= exp

(
−EQ

[∫ T

t

rsds|Ft

]
+

1

2
VQ
[∫ T

t

rsds|Ft

])
.

(2.B.11)

2.B.1 Accuracy of the shadow-rate model futures rate

approximation

We test the accuracy of the cumulant based approximation of the futures rates in

the shadow-rate model to the futures rates in equation 2.3.16 and 2.3.20. To gauge

the size of the error we compare the approximation to futures rates obtained using

Monte Carlo simulations under the risk neutral measure. The simulations are based

on 100,000 paths with a step size of 1/3600. Table 2.5 contains the error as measured

by the difference between the approximation and Monte Carlo value for all maturities

used in the estimation. We assume that the prices are observed at the beginning of

the nearest futures contract and thus none of the overnight rates have been accrued

by the contracts. To evaluate the approximations both away from and at the zero

lower bound we consider the estimates and state variables at the beginning of the

estimation period as well as the most recent date reflecting a period with rates at

their lower bound.

Table 2.5 illustrates that errors on all considered contracts are a fraction of a

basis point and far less than the minimum price fluctuation on CME SOFR futures

contracts. Thus for estimation purposes the approximation results in accurate futures

prices in the shadow-rate model.
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2.C Estimation Methodology

The presented models are estimated using a Kalman Filter on end of day futures

data. Thus we consider the discretized state process under the P -dynamics given by

Xt = θP + e−K
P∆t(Xt−1 − θP ) +

∫ ∆t

0

e−K
PuΣdWP

u (2.C.1)

with ∆t set to 1/250 to approximately reflect the number of daily futures data

observations in a year. Rearranging we define the state equation of the Kalman

Filter as

Xt =
(
I − e−K

P∆t
)
θP + e−K

P∆tXt−1 + ξt (2.C.2)

with ξt ∼ N (0, Q) and covariance, Q, where

Q =

∫ ∆t

0

e−K
PuΣΣ′

(
e−K

Pu
)′
du. (2.C.3)

For any specification of KP an analytical solution to Q is available by applying

the eigendecomposition with V a matrix of the eigenvectors and Λ a vector of the

corresponding eigenvalues

e−K
Pu = e−V ΛV −1u = V e−ΛuV −1, (2.C.4)

we can calculate the covariance matrix as

Q = V

(∫ ∆t

0

e−ΛuV −1ΣΣ′(V −1)′e−Λudu

)
V ′. (2.C.5)

Define G = V −1ΣΣ′(V −1)′ the entries of the matrix defined by the integral are then(∫ ∆t

0

e−ΛuV −1ΣΣ′(V −1)′e−Λudu

)
ij

=
Gij

Λii + Λjj

(
1− e−(Λii+Λjj)∆t

)
. (2.C.6)

The prediction step in the Kalman filter is computed as

Xt|t−1 = FtXt−1|t−1 + Ct, (2.C.7)

Pt|t−1 = FtPt−1|t−1F
′
t +Q. (2.C.8)

Where Ft = e−K
P∆t denotes the state transition model and Ct =

(
I − e−K

P∆t
)
θP

the control input. The standard Kalman filter requires the measurement equation to

be affine in the state vector

yt = At +BtXt + εt (2.C.9)

with εt ∼ N (0, H) where H is a diagonal matrix and the transition and measurement

errors, ξt and εt, are independent. The affine measurement equation is only satisfied



2.C. Estimation Methodology 39

for the one-month futures rate approximation. in the case of the three-month futures

we apply the method of the extended Kalman filter where the measurement equation

is assumed to be on the general form

yt = h(Xt,Θ) + εt. (2.C.10)

A Taylor expansion of h is then done around Xt|t−1

h(Xt,Θ) ≈ h(Xt|t−1,Θ) +
∂h(Xt,Θ)

∂Xt

∣∣∣
Xt=Xt|t−1

(Xt −Xt|t−1). (2.C.11)

Now defining

At = h(Xt|t−1,Θ)− ∂h(Xt,Θ)

∂Xt

∣∣∣
Xt=Xt|t−1

Xt|t−1, (2.C.12)

Bt =
∂h(Xt,Θ)

∂Xt

∣∣∣
Xt=Xt|t−1

(2.C.13)

the affine approximation becomes

yt ≈ At +BtXt + εt. (2.C.14)

The measurement residuals are computed using the time t futures rates data, yt, and

the model implied futures rates.

νt = yt − h(Xt,Θ). (2.C.15)

The residuals have a conditional mean of 0 and conditional variance given by

St := V[νt|yt−1, ..., y1] = H +BtPt|t−1B
′
t. (2.C.16)

In the update step the a priori state estimates are updated using the observed time t

data

Xt|t = Xt|t−1 +Ktνt, (2.C.17)

Pt|t = (I −KtBt)Pt|t−1 (2.C.18)

where Kt denotes is the optimal Kalman gain matrix given by

Kt = Pt|t−1B
′
tS

−1
t . (2.C.19)

The resulting Gaussian log-likelihood for a given set of parameters, Θ, is determined

by the conditional mean and variance of the innovations νt

l(y1, ..., yT ; Θ) = −NT
2

log(2π)− 1

2

T∑
t=1

(
log |St|+ ν′tS

−1
t νt

)
(2.C.20)

To obtain the optimal set of parameters, Θ̂, we maximize the log-likelihood function

using the Nelder-Mead algorithm with a function value tolerance of 0.01. The state

variables are required to be stationary under the P -measure and we therefore require

the eigenvalues of KP to be positive.
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2.C.1 Efficiency of the extended Kalman filter

The validity of the results heavily relies on the model parameters as well as underlying

state variables being accurately estimated by the extended Kalman filter. Therefore,

we construct a simulation study to investigate the efficiency of the extended Kalman

filter maximum-likelihood method when estimating the model based on data from

futures contracts. We assume that the observed futures follow the AFNS model with

parameters equal to the final set of parameters obtained for the full SOFR dataset.

The underlying state variables are simulated using the discretized P -dynamics

Xt+1 = Xt +KP (θP −Xt)∆t+
√
∆tΣZt (2.C.21)

with Zt ∼ N (0, I3) and ∆t set to 1/250 to reflect the daily observations and the

value used in the actual estimation problem. The process is started in the un-

conditional mean X0 = θP . To reflect the SOFR-estimation the simulated data

consists of seven consecutive observations of one-month futures and five consecutive

observations of three-month futures. To simplify the study we assume that the

contract lengths are 30 and 90 days for all one- and three-month futures. Further,

we assume that at all times we observe both the first one- and three-month con-

tract at the beginning of the accrual period, thus we do not have to factor in any

rates that have already been accumulated by the contracts. The set of start dates

(denoted in ACT/360) for the simulated one- and three-months contracts respec-

tively are therefore τ1m = {0, 30/360, 60/360, 90/360, 120/360, 150/360, 180/360}
and τ3m = {0, 90/360, 180/360, 270/360, 360/360}. The simulated datasets contain

500 observations reflecting approximately two years of daily data. The futures prices

are assumed to be observed without error, but rounded to nearest half basis point

representing the minimum price fluctuation on CME SOFR futures.9 We base the

simulation study on 1.000 paths. To avoid misspecification the optimization algorithm

is started in the true set of parameter values.

Focusing on the parameters specific to the physical measure, KP and θP , in table

2.6 we note that these parameters are poorly estimated with fairly large standard

errors. As shown in Christensen, Lopez, and Rudebusch (2013) this is a common

issue when estimating Gaussian term structure models and getting a sensible estimate

of the physical drift and mean reversion requires a much longer data sample than

what is currently available from the SOFR futures market. However, when turning to

the parameters governing the risk-neutral dynamics, λ and Σ, we note that these are

estimated close to their respective true values showing no significant bias and a low

standard deviation from the true values. This is promising since only the risk-neutral

dynamics are relevant when computing the current term structure, while the drift

parameters under the physical measure are solely required in e.g. forecasting exercises.

9The nearest one and three-month futures contract both have a minimum price fluctuation of
0.25 basis point. We disregard this minor detail here.
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Parameter True Value Mean SD 5% Q1 Median Q3 95%
kP11 0.0980 0.0763 0.1331 0.0032 0.0247 0.0512 0.0881 0.2072
kP22 0.5153 0.4753 0.7928 0.0072 0.0697 0.2855 0.5843 1.5521
kP33 2.4486 2.1291 2.2305 0.0327 0.3457 1.4599 3.2279 6.5968
θP1 0.0175 0.0093 0.0037 -0.0002 0.0031 0.0051 0.0135 0.0277
θP2 -0.0037 -0.0004 0.0018 -0.0055 -0.0025 -0.0006 0.0012 0.0058
θP3 -0.0012 -0.0003 0.0002 -0.0024 -0.0010 -0.0003 0.0003 0.0020
σ11 0.0054 0.0054 0.0002 0.0051 0.0053 0.0054 0.0055 0.0057
σ22 0.0062 0.0062 0.0003 0.0059 0.0061 0.0062 0.0063 0.0065
σ33 0.0088 0.0088 0.0003 0.0083 0.0086 0.0088 0.0090 0.0093
λ 2.0284 2.0281 0.0047 2.0206 2.0251 2.0281 2.0310 2.0357

Table 2.6: Estimation results using the Kalman Filter on 500 daily simulated futures
observations. The results are based on 1000 simulations.

State Variable RMSE Mean SD 5% Q1 Median Q3 95%
Level 0.3 0.0 0.3 -0.4 -0.2 0.0 0.2 0.4
Slope 0.2 0.0 0.2 -0.4 -0.2 0.0 0.2 0.4
Curve 0.6 0.0 0.6 -1.0 -0.5 0.0 0.4 1.0

Table 2.7: Statistics on the difference between the true final state variable and the filtered
state variable obtained from the Kalman Filter. All values are in basis points.

In order to produce a valid term structure it is also important that the filtering

process is able to accurately reproduce the value of the latent state variable. To test

this aspect we compare the true final set of state variables from each simulation with

the final filtered set of state variables produced by the Kalman filter. Note that we

use the standard Level, Slope and Curve to describe each the three factors of the

AFNS model. The results in table 2.7 indicate that the filtered state variables closely

track the true values with errors of less than one basis point.

2.D Futures Rate Approximations

In the following we compare exact futures rates to rates obtained from the approxima-

tions presented in section 2 and used in the historical estimation. Since we consider

Gaussian term structure models exact expressions for the futures rates of both the

one- and three-month contracts exist. The results shown here are based on the

three-factor AFNS model but can similarly be obtained for the one- and two-factor

Gaussian models.

To illustrate the size of the approximation we consider the final set of parameters

obtained from the full period of SOFR futures data with the state variable Xt equal

to the unconditional mean θP . We define the approximation error as the difference

between the approximation and the exact futures rate. Figure 2.12 presents the

approximation error covering 13 consecutive one-month and 39 consecutive three-

month contracts. The size of the error is similar across all consecutive contracts and
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Figure 2.12: Approximation error for one- and three-month futures rates based on the
final SOFR parameter estimates.

small compared to the minimum price fluctuation of the futures contract. Based on

this the approximations do not have any significant impact on the model estimation

and resulting term rates.

2.D.1 Exact one-month SOFR futures rate

Recalling that the one month futures rate is given by the discrete average R(t, T ) =
1
N

∑N
i=1

1
di

(
1

p(ti,ti+di)
− 1
)
, we can calculate the mean of the average overnight rate

during the reference period as

f1m(t;S, T ) = EQ

[
1

N

N∑
i=1

1

di

(
1

p(ti, ti + di)
− 1

)
|Ft

]

=
1

N

N∑
i=1

1

di

EQ

 1

EQ

[
e
−

∫ ti+di
ti

rsds|Fti

] |Ft

− 1


=

1

N

N∑
i=1

1

di

(
EQ

[
1

eA(ti,ti+di)+B(ti,ti+di)′Xti
|Ft

]
− 1

)

=
1

N

N∑
i=1

1

di

(
EQ

[
e−A(ti,ti+di)−B(ti,ti+di)

′Xti |Ft

]
− 1

)
=

1

N

N∑
i=1

1

di

(
e−A(ti,ti+di)e−B(ti,ti+di)

′e−K
Q(ti−t)Xt+ 1

2
B(ti,ti+di)

′VQ[Xti |Ft]B(ti,ti+di) − 1

)
(2.D.1)

2.D.2 Exact three-Month SOFR futures rate

To gauge the size of the approximation error of the three-month futures rate using

the continuous approximation we follow Henrard (2018). Here it is shown that
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the three-month futures rate in a Gaussian Heath-Jarrow-Morton setup without

approximation is given by

f3m(t;S, T ) =
1

T − S

(
p(t, S)

p(t, T )

n∏
i=1

γ(ti−2, ti−1, ti−1, tn)− 1

)
(2.D.2)

with t−1 = t, S = t0 < t1 <, ..., < tn−1 < tn = T and

γ(s, t, u, v) = exp

(∫ t

s

ν(τ, v)(ν(τ, v)− ν(τ, u))′dτ

)
(2.D.3)

where ν(t, T ) defines the p(t, T ) bond volatility. By application of the multi-

dimensional Itô’s lemma with g(t,Xt) = eA(t,T )+B(t,T )′Xt we have the following

Q-dynamics

dp(t, T ) = dg(t,Xt) = rtp(t, T )dt+

n∑
i=1

∂f

∂xi
σidWt

= rtp(t, T )dt+

n∑
i=1

Bi(t, T )e
A(t,T )+B(t,T )′XtσidWt

= rtp(t, T )dt+ p(t, T )

n∑
i=1

Bi(t, T )σidWt

= rtp(t, T )dt+ p(t, T )ν(t, T )dWt, (2.D.4)

with σi denoting the row vectors of the volatility matrix, Σ. Thus in the three factor

AFNS model with a diagonal volatility matrix the T -bond volatility is

ν(t, T )′ =


−(T − t)σ11

− 1−e−λ(T−t)

λ σ22(
(T − t)e−λ(T−t) − 1−e−λ(T−t)

λ

)
σ33

 . (2.D.5)

The expression for γ(s, t, u, v) becomes rather involved for the three-factor model

and thus omitted here. It is however a scalar that can be analytically computed.





Chapter 3

Decomposing LIBOR in Transition:

Evidence from the Futures Markets

This chapter contains the manuscript Skov and Skovmand (2022).

Abstract

Applying historical data from the USD LIBOR transition period, we

estimate a joint model for SOFR, Federal Funds, and Eurodollar futures

rates as well as spot USD LIBOR and term repo rates. The framework

endogenously models basis spreads between each of the benchmark rates

and allows for the decomposition of spreads. Modeling the LIBOR-OIS

spread as credit and funding-liquidity roll-over risk, we find that the spike

in the LIBOR-OIS spread during the onset of COVID-19 was mainly due

to credit risk, while on average credit and funding-liquidity risk contribute

equally to the spread.

Keywords: SOFR, LIBOR, Federal Funds Rate, Futures, Roll-Over Risk.

3.1 Introduction

Fixed income markets are currently undergoing a major transition from the well

established IBOR rates to overnight transaction-based rates termed Risk-Free rates

(RFR) as the primary interest rate benchmark. In the US the Secured Overnight

Financing Rate (SOFR) is scheduled to replace USD LIBOR by the middle of 2023.

In particular, when facing a transition from LIBOR to SOFR, understanding and

modeling what sets LIBOR apart from SOFR from an empirical point of view is

of great importance to market participants. Furthermore, the end of LIBOR has

45
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already prompted a wide variety of potential replacements,1 as SOFR, being a

secured overnight rate, does not measure the actual cost of unsecured borrowing at

term. In fact, Klingler and Syrstad (2021) show that term rates based on SOFR can

be detached from banks marginal funding and highlight the possible problematic

implications of this for products such as credit lines during market stress. The

introduction of several alternative rates and the ensuing discussions (see for example

Bartholomew (2021)), reflect the demand for a rate that captures the actual cost of

funding as well as the need to understand and quantify the drivers of the funding

costs.

Vast amounts of research in the field of term structure modeling have been devoted

to the decomposition of LIBOR. Early studies such as Collin-Dufresne and Solnik

(2001), Feldhütter and Lando (2008), and Liu, Longstaff, and Mandell (2006) apply

affine arbitrage-free multifactor models to study the impact of liquidity and credit

risk on spreads between LIBOR, interest rate swap rates, and treasury yields. The

large increase in the spread between LIBOR and a maturity-matched overnight

indexed swap (OIS) referencing the Effective Federal Funds Rate (EFFR) during the

Great Financial Crisis further brought attention to the drivers of the LIBOR-OIS

spread. Michaud and Upper (2008) argue that the lack of relationship between

default risk and money market risk premia as well as the impact of central bank

liquidity facilities on interbank rates indicate that liquidity is a key component to

the size of the spread. Dubecq et al. (2016) use a quadratic term structure model to

decompose the EURIBOR-OIS into credit and liquidity risks and evaluate effects

of unconventional monetary policy in the euro zone during the crisis. Filipović

and Trolle (2013) study the decomposition of the LIBOR-OIS and EURIBOR-OIS

spread during the Financial Crisis using credit default swap (CDS) data on LIBOR

panel banks to identify a default and non-default component. Similarly, Gallitschke,

Seifried, and Seifried (2017) study the decomposition of the LIBOR-OIS into credit

and liquidity components using an equilibrium style modeling approach. Backwell

et al. (2019) use similar data to decompose the EURIBOR-OIS spread into roll-over

risk components. These studies all base their estimation of the LIBOR-OIS spread

around swap data.

In this paper we take a different approach and decompose the LIBOR-OIS spread

by leveraging the fact that since the introduction of the SOFR futures contract in

May of 2018 futures contracts referencing EFFR, SOFR, and LIBOR have traded

simultaneously at the Chicago Mercantile Exchange (CME). This allows us to describe

the dynamics of the benchmark rates using a joint model for Federal Funds, SOFR,

and Eurodollar futures. While the majority of the existing research has focused on

the decomposition of the LIBOR-OIS spread during the Financial Crisis, our paper,

as a result of the fairly recent introduction of SOFR futures, studies the behaviour

1For example the ICE Bank Yield Index (IBYI), Bloomberg Short-Term Bank Yield Index
(BSBY), AMERIBOR, and AXI (see Berndt, Duffie, and Zhu (2020))
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of the spread in the current transitory interest rate environment and in particular

around the onset of the COVID-19 pandemic.

When modeling futures rates, we have to account for the futures convexity ad-

justment, see e.g. Skov and Skovmand (2021) and Mercurio (2018). This is a

model-dependent task, we therefore consider an affine framework for the the joint

benchmark dynamics. Modeling term rates, we follow the approach of Alfeus, Gras-

selli, and Schlögl (2020) and Backwell et al. (2019) and model the LIBOR-OIS spread

as a result of roll-over risk. By roll-over risk, we refer to the risk that an entity at a

future point in time is not able to roll-over its loan at the prevailing reference rate,

due to changes in credit or funding-liquidity risk. An increase in the roll-over risk

components of our model thus leads to a steepening in the term structure of money

market spreads consistent with the observations in Gorton, Metrick, and Xie (2021)

showing that there was a ”flight from maturity” during the Great Financial Crisis.

We apply the Kalman filter quasi-maximum likelihood method to estimate the

model to the historical record of spot and futures rates with up to one year of

maturity. The model fit shows that the model is able to capture the cross-sectional

and time variation in the term structure of futures rates for all three benchmark

rates. As an additional validity check we show that the model is able to provide

close fits to out of sample swap rates on OIS contracts for EFFR and SOFR as

well as LIBOR swap contracts. Examining the latent state variables filtered by the

model estimation indicates that the FOMC announcement on October 11th 2019 in

response to the SOFR surge during September 2019 was effective in bringing down

both the repo specific liquidity premium as well as the funding-liquidity component.

Finally, including data on term repos allow us to decompose the three- and

six-month LIBOR-OIS spread into a credit and funding-liquidity component. Our

framework suggests that the credit and funding components on average each con-

tribute equally to the spread during our sample period. We also find that the large

spike in the LIBOR-OIS spread during the outbreak of the COVID-19 crisis was

mainly driven by an increase in credit risk.

The paper is structured as follows. In section 3.2 we present the joint affine setup

for SOFR, EFFR, LIBOR, and term repos as well as the main formulas required to

compute spot and futures rates. Section 3.3 details the data and quasi-maximum

likelihood method used to estimate the model. In section 3.4 we discuss the empirical

results.



48 Chapter 3. Skov & Skovmand (2022)

3.2 Constructing a Joint Interest Rate Setup for SOFR,

EFFR, Term Repo, and LIBOR

3.2.1 Modeling SOFR and EFFR

We consider a single risk-free short-rate, r(t), defined on the filtered probability space

(Ω,G, {G}t≥0, Q). The risk-neutral measure, Q, is defined by the risk-free continuous

savings account numeraire with value process B(t) = B(0)e
∫ t
0
r(u)du. The associated

risk-free zero coupon bond price process is given by

p(t, T ) = B(t)EQ
[
B(T )−1|G(t)

]
. (3.2.1)

The spread between the risk-free rate and SOFR is represented by a non-negative

process ψ(t). The process captures the systemic specific risk premia in the repo

market such as gap risk, induced by varying liquidity of treasury securities, default

risk in treasuries, haircuts etc. (see Lou (2021) for an depth discussion of the

magnitude of these particular risks and Hu, Pan, and Wang (2021) for an analysis

of pricing in the tri-party repo market). The SOFR specific short rate process is

therefore given by

rs(t) = r(t) + ψ(t). (3.2.2)

For identification reasons we posit dynamics for the SOFR related short rate process

rs(t) directly using a two-factor Gaussian process

drs(t) = κr(θs(t)− rs(t))dt+ σrdW r(t), (3.2.3)

dθs(t) = κθ(θθ − θs(t))dt+ σθ
(
ρdW r(t) +

√
1− ρ2dW θ(t)

)
. (3.2.4)

While the continuous specification is a limitation given the discontinuous dynamics

of the underlying overnight rate, we note that, as shown in Skov and Skovmand

(2021), a simple Gaussian setup without jumps is sufficient to obtain a decent

fit when modeling futures contracts based on arithmetic or compounded averages

of the overnight benchmark as is used in swap and futures contracts referencing

SOFR. However, if time series data on the underlying overnight rate fixings were

included in the estimation, it would be necessary to extend the model to be able to

account for unexpected and expected jumps and spikes observed in the overnight

rate. Furthermore, such extensions, consistent with the underlying dynamics, are

likely to produce higher likelihood values on estimation dates with actual jumps in

the underlying rate. Several recent papers provide frameworks consistent with these

characteristics. Andersen and Bang (2020) present a consistent approach to modeling

spikes in the overnight SOFR, Gellert and Schlögl (2021) focus on spikes and jumps

at known times, and Backwell and Hayes (2022) present a framework incorporating

both expected and unexpected jumps in the overnight rate.

The spread between EFFR and the true risk-free rate is represented by an average

overnight credit spread reflecting that the EFFR is an unsecured overnight rate. We
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denote the non-negative overnight credit spread, Λ(t), and the affected short rate

rFF (t) = r(t) + Λ(t). (3.2.5)

Λ(t) thus represents the time t overnight credit spread of an average institution able

to borrow at the EFFR.

Consider the spread between EFFR and SOFR defined as

ζ(t) := rFF (t)− rs(t) = Λ(t)− ψ(t). (3.2.6)

While both the overnight credit component and systemic repo component are non-

negative, the spread between the two can turn both positive and negative depending

on the size of each component. Furthermore, despite SOFR and EFFR represent a

secure and unsecured rate, respectively, it is clear from the data and as we show in

this paper that EFFR is not consistently greater than SOFR. The EFFR represents

the unsecured rate in the funding market between top tier financial institutions that

post reserves at the Fed, and thus approximately reflect the average cost of unsecured

overnight funding of US LIBOR panel banks.2 On the other hand SOFR is derived

from repo transactions and thus contains many idiosyncratic aspects specific to the

repo market, exemplified most prominently in the SOFR Surge of September 2019.

See Lou (2021) for an in depth description of the repo market underlying SOFR.

As a consequence we model the spread between EFFR and SOFR using a Gaussian

process

dζ(t) = κζ(θζ − ζ(t))dt+ σζdW ζ(t). (3.2.7)

Modeling the spread above as opposed to the individual three components r(t), Λ(t),

and ψ(t) avoids the need of identifying the pure risk free rate r(t), since a proper

proxy for this rate is not available in the context of our model nor identified by our

data. We stress that while we are unable to identify the individual components,

our approach of directly modeling the SOFR specific short rate, rs(t), and the

EFFR-SOFR spread process, ζ(t), still allow us to ascribe the correct underlying

components to the equivalent secured and unsecured term rates as we describe in

section 3.2.3 and 3.2.3.

3.2.2 Modeling the LIBOR rate

In modeling LIBOR we use a multi-curve model construction. The literature on

multi-curve models is vast, and we refer to Grbac and Runggaldier (2015) for an

overview of the literature. In particular, we follow a structure similar to Alfeus,

2We note that the participants in the Federal Funds market are not limited to the US LIBOR
panel banks, but consist of a larger set of institutions with accounts at the Federal Reserve banks.
This includes US commercial banks, US branches of foreign banks, savings and loan organizations,
and government-sponsored enterprises. The EFFR therefore only approximately reflects the cost of
overnight unsecured funding of the panel banks.
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Grasselli, and Schlögl (2020) and ascribe the spread between overnight and term

unsecured borrowing to roll-over risk. This approach is similar in spirit to the

so-called renewal approach in Collin-Dufresne and Solnik (2001), which was also

applied in a different context in Filipović and Trolle (2013). Thus, we consider a

time t representative member of the LIBOR panel able to finance itself at both

the overnight unsecured rate, EFFR, as well as on a fixed term basis with LIBOR.

Roll-over risk then represents the risk of a time t representative member not being

able to roll-over its overnight unsecured financing at a time u with u > t. We denote

the time u roll-over risk infinitesimal spread of a time t representative LIBOR panel

member by γt(u), and thus the total unsecured funding rate of this representative

entity at time u ≥ t

rft (u) = rFF (u) + γt(u). (3.2.8)

Since such an entity is assumed to be able to finance itself using both unsecured

overnight and term borrowing at time t we require that γt(t) = 0. However, for any

u > t the entity fixed at time t may no longer be representative of the LIBOR panel.

As such there is a risk of the the event γt(u) > 0 occurring. I.e a roll-over risk event

where the entity is unable to refinance its debt at the current market benchmark rate.

The representative entity we consider in our model is therefore not to be understood

as fixed, but potentially changing for every time t that is considered.

The roll-over risk spread, γt(u), can be decomposed into two separate components,

a credit-downgrade component and a funding-liquidity component. The credit-

downgrade component denoted λt(u) reflects the credit deterioration of the time t

representative entity compared to the time u updated reference panel. The funding-

liquidity component captures the risk that the entity is not able to roll-over its

debt at the reference rate without it being due to a decrease in credit quality. Such

freezes in lending liquidity or the fear thereof are best associated with the Financial

Crisis or perhaps more recently during the repo squeeze in 2019. Thus, we model

the total roll-over risk spread expressed as the sum of both credit-downgrade and

funding-liquidity risk

γt(u) = λt(u) + ϕt(u). (3.2.9)

The rate which applies to funding an unsecured loan over the period [t, T ] using the

unsecured overnight rate therefore contains both the overnight average credit spread

as well as the roll-over risk specific components. Thus, for any time u with t ≤ u ≤ T

the funding rate, rft (u), consists of

rft (u) = r(u) + Λ(u) + λt(u) + ϕt(u). (3.2.10)

Since the roll-over risk specific components are interpreted as future shocks in either

credit quality or funding-liquidity and initiated at zero, we model these as pure jump

processes. The credit component dynamics for u ≥ t are assumed to given as

dλt(u) = −βλλt(u)du+ dJλt (u), λt(t) = 0, (3.2.11)
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and similarly the funding-liquidity component for u ≥ t is assumed to be given as

dϕt(u) = −βϕϕt(u)du+ dJϕt (u), ϕt(t) = 0. (3.2.12)

In both cases the jump sizes are assumed exponentially distributed with a fixed

mean of 2%. Furthermore, we will assume zero recovery at default throughout the

paper. The recovery rate and mean jump size are interchangeable with the intensity

level and thus these quantities are fixed in order to be able to identify the intensity

processes.3 The jumps in the credit-downgrade component, Jλt (u), are assumed to

have a stochastic intensity process modeled using a two-factor square-root process

dξ(t) = κξ(η(t)− ξ(t))dt+ σξ
√
ξ(t)dW ξ(t), (3.2.13)

dη(t) = κη(θη − η(t))dt+ ση
√
η(t)dW η(t). (3.2.14)

For the intensity of the jumps, Jϕt (u), in the funding-liquidity component, we apply

a single square-root process

dν(t) = κν(θν − ν(t))dt+ σν
√
ν(t)dW ν(t). (3.2.15)

As an identifying restriction (see the following section 3.2.3), we assume that r(u),

ϕt(u) and in turn ν(u) are independent of the underlying systemic repo risk process

ψ(u). The model is now fully specified under the risk neutral measure Q and we can

formulate the state vector processXt(u) := (rs(u), θs(u), ζ(u), λt(u), ϕt(u), ξ(u), η(u), ν(u))
′

for u ≥ t. As demonstrated in Appendix 3.A this defines an affine process in the

sense of Duffie, Pan, and Singleton (2000) for each t, with dynamics

dXt(u) = KQ
(
θQ −Xt(u)

)
du+ΣD(Xt(u), t)dW

Q(u) + dJt(u) (3.2.16)

the elements of which are explicitly defined in Appendix 3.A. When estimating

the model to the historical record of data, we also require the dynamics under the

physical measure P . The physical and risk-neutral measures are related through the

market price of risk, µ(t), by

dWQ(t) = dWP (t) + µ(t)dt. (3.2.17)

Since the components driving the roll-over risk are initiated at zero at each observation

date, we do not model their time series properties and therefore only specify a

market price of risk for the remaining state variables. Estimating the drift specific

parameters under P is severely challenged by the fairly short sample of data on

contracts referencing SOFR. We therefore consider a simple completely affine market

price of risk structure given by

µ(t) =
(
µr, µθ, µζ , µξ

√
ξ(t), µη

√
η(t), µν

√
ν(t)

)′
. (3.2.18)

3Related studies such as Filipović and Trolle (2013) and Backwell et al. (2019) follow a similar
approach in order to identify the intensity process.
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3.2.3 Term Rates with Roll-Over Risk

In this section we outline how to compute fair secured (repo) and unsecured (LIBOR)

term rates, following an approach similar to Backwell et al. (2019). The fair term

rates are determined by equating the present value of a term loan at the secured or

unsecured term rate to the present value of a strategy in which the loan is rolled-over

at the equivalent secured or unsecured overnight benchmark rate on an overnight,

and in our model abstraction, continuous basis. As stated in the previous section the

analysis is done from the point of view of a so called LIBOR representative entity.

That is, an entity, which is able to borrow and lend at LIBOR at present, but may

not be able to at a future time.

Term LIBOR

In order to compute the fair term LIBOR, we start by considering the present value

of continuously rolling over a loan from time t to time T at the unsecured funding

rate in (3.2.10)

U(t, T ) = B(t)EQ
[

1

B(T )
e
∫ T
t
rft (u)du1(τt>T )|Gt

]
= B(t)EQ

[
e
∫ T
t
ϕt(u)+λt(u)+Λ(u)du1(τt>T )|Gt

]
= B(t)EQ

[
e
∫ T
t
ϕt(u)du|Ft

]
. (3.2.19)

The last equality follows from the results on the intensity based credit risk approach

in Appendix 3.B with Ft ⊆ Gt. If instead the entity is able to borrow unsecured over

the period [t, T ] at a rate L(t, T ), then the present value of the repayment is given by

B(t)EQ
[

1

B(T )
1(τt>T ) (1 + (T − t)L(t, T )) |Gt

]
. (3.2.20)

Next, we define the value of the defaultable zero coupon

Q(t, T ) = B(t)EQ
[

1

B(T )
1(τt>T )|Gt

]
= B(t)EQ

[
e−

∫ T
t
r(u)+λt(u)+Λ(u)du|Ft

]
= B(t)EQ

[
e−

∫ T
t
rs(u)+ζ(u)+λt(u)du|Ft

]
. (3.2.21)

Where again we have used the intensity based credit risk approach as well as the

relation r(u) + Λ(u) = rs(u) + ζ(u) to obtain processes identified in the model setup.

The present value of the unsecured term loan in (3.2.20) can then be expressed as

(1 + (T − t)L(t, T ))Q(t, T ). (3.2.22)

The repayment of the roll-over risky account and the term loan must reflect the

same present value in order to preclude arbitrage opportunities for the representative
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entity. Thus, we equate (3.2.19) and (3.2.22) to get the fair spot LIBOR rate

L(t, T ) =
1

T − t

(
U(t, T )

Q(t, T )
− 1

)

=
1

T − t

 EQ
[
e
∫ T
t
ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
rs(u)+ζ(u)+λt(u)du|Ft

] − 1

 . (3.2.23)

The term LIBOR is consistent with our interpretation of the EFFR as the rate at

which a LIBOR panel bank is able to fund itself unsecured on a running basis. Indeed,

as the term aspect vanishes the rate matches the rate of the overnight unsecured

benchmark. Specifically, assuming differentiability with respect to T and applying

the definition λt(t) = ϕt(t) = 0

lim
T→t

L(t, T ) =
∂

∂T

 EQ
[
e
∫ T
t
ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
rs(u)+ζ(u)+λt(u)du|Ft

] − 1

∣∣∣∣∣∣
T=t

=
∂

∂T
EQ

[
e
∫ T
t
ϕt(u)du|Ft

]∣∣∣
T=t

− ∂

∂T
EQ

[
e−

∫ T
t
rs(u)+ζ(u)+λt(u)du|Ft

]∣∣∣
T=t

= rs(t) + ζ(t) + λt(t) + ϕt(t)

= rFF (t). (3.2.24)

The spot LIBOR is calculated using the affine model specifcation as

L(t, T ) =
1

T − t

(
eA

L(T−t)+BL(T−t)′Xt(t) − 1
)

(3.2.25)

where AL(T − t) and BL(T − t) solve the spot LIBOR specific equations specified in

Appendix 3.A. We note that while we consider jump processes, Jλt (u) and J
ϕ
t (u), for

each t, the intensities of Jλt (u) and J
ϕ
t (u) are driven by the same time-homogeneous

processes for every t. The resulting LIBOR expression therefore only depends on

time to maturity as also seen by AL(T − t) and BL(T − t) depending only on T − t

and not directly on t.

Term repo rate

A repo loan, is a loan that is fully mitigated by credit risk since a secure underlying

asset, i.e. a treasury instrument is posted as collateral with the counterparty.

To determine the fair term Repo rate, Rrepo(t, T ), we can thus follow a similar

approach as before. A reasonable assumption is that the same entity that is a time-t

representative of the LIBOR panel also has access to a sufficiently large pool of

treasury instruments and therefore is able to fund itself using repo transactions on a

running, and in our model abstraction, continuous basis. This means it can fund

itself at a continuous rate that disregards credit spreads altogether due to posting
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of the underlying asset with the counterparty. The funding rate of the entity on a

continuous repo loan is therefore

rrepot (u) = r(u) + ψ(u) + ϕt(u). (3.2.26)

Recall that ψ(u) captures the systemic specific risk premia in the repo market, also

present in the SOFR rate defined in Equation (3.2.2). Similarly, ϕt(u) represents

the funding-liquidity spread also present in the LIBOR rate. We first consider the

present value of a repo strategy where one unit of currency is rolled-over at the

continuous repo rate rrepot (u) from t to T . The time t value is then given by

B(t)EQ
[

1

B(T )
e
∫ T
t
rrepot (u)du|Ft

]
= EQ

[
e
∫ T
t
ψ(u)+ϕt(u)du|Ft

]
. (3.2.27)

Alternatively, the entity can borrow over the entire period using a term repo. The

time t value of the time T repayment of the repo loan is

B(t)EQ
[

1

B(T )
(1 + (T − t)Rrepo(t, T )) |Ft

]
= B(t)EQ

[
1

B(T )
|Ft
]
(1 + (T − t)Rrepo(t, T )) . (3.2.28)

Again, requiring equal present values of each approach by setting (3.2.27) equal to

(3.2.28) implies

Rrepo(t, T ) =
1

T − t

EQ
[
e
∫ T
t
ψ(u)+ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
r(u)du|Ft

] − 1

 . (3.2.29)

Analogously to the LIBOR case, one can show that our definition of the term repo

rate is consistent with our interpretation of SOFR as the secured overnight funding

rate in the sense that

lim
T→t

Rrepo(t, T ) = rs(t). (3.2.30)

Since the individual r(u) and ψ(u) processes are not identified in our model, we ap-

proximate the true term repo rate in (3.2.29) to obtain an expression that can

be calculated using processes identified by the model. The approximation as-

sumes independence between ψ(u) and ϕt(u) as well as r(u) and ψ(u). Further-

more, it ignores a convexity adjustment for ψ(t) by applying the approximation

EQ
[

1

e
∫T
t ψ(u)du

|Ft
]
≈ 1

EQ
[
e
∫T
t ψ(u)du|Ft

] . The resulting term repo approximation can

then be calculated as

Rrepo(t, T ) ≈ 1

T − t

 EQ
[
e
∫ T
t
ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
rs(u)du|Ft

] − 1

 . (3.2.31)
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We detail the derivation of the approximation in Appendix 3.C and study its validity

by creating an upper and lower bound for the true term repo rate. The bounds show

that, given our model estimates, the resulting approximation error is less than 0.02

and 0.08 basis points for the three- and six-month repo contracts considered in the

estimation. Again, the approximate term repo rate is calculated using the affine

model specification

Rrepo(t, T ) ≈ 1

T − t

(
eA

repo(T−t)+Brepo(T−t)′Xt(t) − 1
)
. (3.2.32)

Where Arepo(T − t) and Brepo(T − t) solve the term repo specific equations (See

Appendix 3.A).

3.2.4 Futures Contracts

Futures contracts traded at the CME are quoted as 100(1−R(S, T )) where R(S, T )

denotes the contract specific futures rate, which comes in the four different variants

as described below. Following standard results (see e.g. Hunt and Kennedy (2004))

the value of a futures contract with a random payoff is given by the risk-neutral

expectation of the non-discounted payoff. Applying this to interest rate futures the

time t futures rate is given by

f(t;S, T ) = EQ [R(S, T )|Ft] . (3.2.33)

Eurodollar futures

Eurodollar futures contracts reference a future three-month LIBOR fixing. The

Eurodollar futures rate is therefore given by

fED(t;S, T ) = EQ [L(S, T )|Ft] . (3.2.34)

Inserting the spot LIBOR expression in (3.2.25) we have

fED(t;S, T ) =
1

T − S
EQ
[(
eA

L(T−S)+BL(T−S)′XS(S) − 1
)
|Ft
]

=
1

T − S
EQ
[(
eA

L(T−S)+B̂L(T−S)′Xt(S) − 1
)
|Ft
]
. (3.2.35)

In the last equation we recall that the jump specific elements, λS(S) and ϕS(S) in

XS(S) are zero by definition. Thus, we let B̂L(T − S) be identical to BL(T − S),

but with zeros in the jump specific elements. The Eurodollar futures rates is then

calculated as

fED(t;S, T ) =
1

T − S

(
eA

ED(S−t)+BED(S−t)′Xt(t) − 1
)
. (3.2.36)

Where AED(S − t) and BED(S − t) solve the Eurodollar futures specific Riccati

equations (see Appendix 3.A) with initial conditions AED(0) = AL(T − S) and

BED(0) = B̂L(T − S) with T − S = 91/360.
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Three-month SOFR futures

The three-month SOFR futures rate, Rs,3m(S, T ), is computed as the daily com-

pounded SOFR fixings during the reference quarter

Rs,3m(S, T ) =
1

T − S

(
N∏
i=1

(
1 + diR

s
di(ti)

)
− 1

)
, (3.2.37)

with Rsdi(ti) for i ∈ 1, ..., N with S ≤ t1, ..., tN ≤ T denoting the realized SOFR

fixings in the reference quarter and di the day count fraction multiplied amount of

days to which Rsdi(ti) applies.
4 When computing the futures rate we consider the

continuous approximation of the futures rate

Rs,3m(S, T ) ≈ 1

T − S

(
e
∫ T
S
rs(u)du − 1

)
. (3.2.38)

The errors induced by this approximation are studied in detail in Appendix D in

Skov and Skovmand (2021) and they are found to be of no economic significance.

Given the approximation, the three-month SOFR futures rate can be computed as

fs,3m(t;S, T ) = EQ
[

1

T − S

(
e
∫ T
S
rs(u)du − 1

)
|Ft
]

=
1

T − S
EQ
[
EQ
[(
e
∫ T
S
rs(u)du − 1

)
|FS
]
|Ft
]

=
1

T − S
EQ
[(
eA

s,3m(T−S)+Bs,3m(T−S)′XS(S) − 1
)
|Ft
]

=
1

T − S

(
eA

s,f (S−t)+Bs,f (S−t)′Xt(t) − 1
)
. (3.2.39)

Where As,3m(T − S), Bs,3m(T − S), As,f (S − t), and Bs,f (S − t) all solve Riccati

equations presented in Appendix 3.A with initial conditions As,3m(0) = Bs,3m(0) = 0,

As,f (0) = As,3m(T −S), and Bs,f (0) = Bs,3m(T −S) with T −S = 91/360 reflecting

the accrual days in the three-month SOFR futures contract. It is important to

emphasize that while the LIBOR fixing is a forward looking term rate and thus

FS-measurable, the SOFR futures rate is based on a backward-looking compounded

rate and therefore only FT -measurable. Thus, for S < t < T we have to account for

the part of the underlying that has already been accrued

fs,3m(t;S, T ) =
1

T − S

((
N0∏
i=1

[
1 + diR

s
di(ti)

])
eA

s,3m(T−t)+Bs,3m(T−t)′Xt(t) − 1

)
(3.2.40)

where Rsdi(ti) for i ∈ 1, ..., N0 with S ≤ t1, ..., tN0
≤ t are the Ft-measurable realized

SOFR fixings.

4E.g. for Fridays di = 3/360 while di = 1/360 on days with a normal business day the following
day.
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One-month SOFR futures

The one-month SOFR futures rate is based on the arithmetic average of the daily

SOFR fixings during the contract month

Rs,1m(S, T ) =
1

T − S

N∑
i=1

diR
s
di(ti), (3.2.41)

with N the total number of days in the month and Rsdi(ti) for i ∈ 1, ..., N with

S ≤ t1, ..., tN ≤ T the published SOFR. For any date for which the rate is not

published the last preceding rate is used. As in Mercurio (2018) we approximate the

discrete average by an integral of the instantaneous short rate

Rs,1m(S, T ) ≈ 1

T − S

∫ T

S

rs(u)du. (3.2.42)

Again, the errors induced by this approximation are studied in detail in Appendix

D in Skov and Skovmand (2021) and found to be of no economic significance. The

one-month SOFR futures rate can therefore be computed as follows

fs,1m(t;S, T ) = EQ
[

1

T − S

∫ T

S

rs(u)du|Ft

]
. (3.2.43)

The expectation is calculated explicitly in Appendix 3.A. For spot contracts when

S < t < T a part of the total futures rate has already fixed, which we account for by

letting

fs,1m(t;S, T ) =
1

T − S

N0∑
i=1

diR
s
di(ti) + EQ

[
1

T − S

∫ T

t

rs(u)du|Ft

]
(3.2.44)

where Rsdi(ti) for i ∈ 1, ..., N0 with S ≤ t1, ..., tN0
≤ t are the realized SOFR fixings.

Federal funds futures

The Federal Funds futures contract has a one-month reference period and shares the

same specifications as the one-month SOFR futures contract, however referencing the

daily EFFR fixings. The approach to deriving the futures rate is therefore analogous

to the previous section, and we get for t ≤ S < T

fFF (t;S, T ) = EQ
[

1

T − S

∫ T

S

rFF (u)du|Ft

]
. (3.2.45)

Again, we refer to Appendix 3.A for an explicit expression of the expectation.

3.3 Data and Estimation

Our dataset is collected through Refinitiv. It consists of daily observations on

spot three- and six-month LIBOR fixings, the three- and six-month term repo for
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treasuries, Eurodollar futures, one- and three-month SOFR futures, and Federal

Funds futures. Liquidity in the interest rate futures markets is generally concentrated

in the contracts closest to expiry. Since the focus of this study is also the short end

of the term structure, we include contracts with up to around one year of maturity.5

Volume in the futures market for SOFR contracts at CME has steadily increased

since its beginning in May 2018. Heitfield and Park (2019) present data for the first

year of trading in SOFR futures showing liquidity in the five nearest one-month

contracts and nine nearest three-month contracts. Following this we include the five

nearest one-month and five nearest three-month SOFR futures contracts in the data

sample. The market for Eurodollar futures is massive and contracts are liquid out to

a maturity of five years, however, in order to obtain an identical range to the SOFR

contracts we include the four nearest Eurodollar contracts. Federal funds futures

contracts are traded one and a half years out. We include the 12 nearest contracts in

our estimation.6 Our data sample begins in June 2018 when SOFR futures started

trading at the CME and runs until October 2021 resulting in a total of 840 daily

observations.

Based on the futures contracts included in the estimation, we note that our model

estimation covers the term structure of the benchmark rates out to maturities of

approximately one year. In this study, we thus solely focus on the short-term joint

dynamics of the interest rate benchmarks. The short-term focus is unavoidable since

our study relies on the coexistence of derivatives referencing actual independent

fixings for both SOFR and LIBOR, which are only available during the transition

period. Furthermore, the cessation of US LIBOR was initially announced to happen

by the end of 2021, this was then extended on November 30, 2020 to June 30, 2023

for all maturities except the one-week and two-month LIBOR. Therefore, the implied

rate by any derivative referencing LIBOR traded before November 30, 2020 and

maturing after 2021 as well as any derivative traded after November 30, 2020 and

maturing after June 2023 will reflect the LIBOR fallback language rather than the

actual cost of interbank funding (see section 3.4.6 for further details on the Eurodollar

futures LIBOR fallback methodology).

There are several reasons for looking at the futures market when modeling the

short end of the term structure. First, the futures market is by far the most liquid

short term market referencing the benchmark rates. Second, a historical record of

contracts referencing SOFR is only available in the futures market. Third, since the

futures contracts are exchange traded instruments the data consists of actual traded

futures prices unlike OTC derivatives such as caps or swaps where data depends on

quoted broker prices. Finally, using futures contracts we do not have to take into

account the discounting rate (see Equaion 3.2.33). This is especially relevant during

5Since futures contracts have fixed expiration dates the time to maturity of the included contracts
will vary across different observation dates in our sample.

6Daily volumes on all futures contracts can be found at https://www.cmegroup.com/

https://www.cmegroup.com/
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our data sample since the price alignment interest (PAI) used by LCH and CME in

e.g. swaps changed in October 2020 from EFFR to SOFR.

When estimating the model we transform the observed spot LIBOR rates into

equivalent yields

yL(t, T ) =
1

T − t
log (1 + (T − t)L(t, T )) (3.3.1)

As with the spot LIBOR rates we also transform the term repo

yrepo(t, T ) =
1

T − t
log (1 + (T − t)Rrepo(t, T )) . (3.3.2)

Following Bikbov and Chernov (2005) we also consider a similar transformation to

obtain Eurodollar futures yields

yED(t;S, T ) =
1

T − S
log
(
1 + (T − S)fED(t;S, T )

)
, (3.3.3)

as well as three-month SOFR futures yields

ys,3m(t;S, T ) =
1

T − S
log
(
1 + (T − S)fs,3m(t;S, T )

)
. (3.3.4)

The transformations imply that the spot and futures rates are affine in the state

variables and thus allow us to apply the standard Kalman filter when estimating the

model (see Appendix 3.D for details on the Kalman filter). The Federal Funds and

one-month SOFR futures rate approximations in Equation (3.2.45) and (3.2.43) are

already affine in the state variables, therefore a similar transform is therefore not

required for these contracts.

3.4 Empirical Results

In this section we examine the consistency of the model outputs with observed data

as well as estimates and latent variables. We then proceed to use our framework to

decompose the spot three-and six-month LIBOR and compare risk premia in the

futures markets.

3.4.1 Model fit

To validate that the model is able to capture the variation in futures and spot rates

across our sample period, we compare the fitted values to the observed values. Figure

3.1 plots the futures rates for a subset of the SOFR contracts in our data sample.

The futures expiry dates are fixed dates, thus the time to maturity for each of the

plotted contracts vary through the sample. E.g. the expiry of the nearest SOFR

futures contract varies from one day to three months, while the second nearest SOFR

futures contract has an expiry range between three and six months and so on. The

resulting fit reflects the results presented in Skov and Skovmand (2021) showing
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Figure 3.1: In sample fit of the first and last one- and three-month SOFR futures contracts.

Figure 3.2: In sample fit of the first and last Federal Funds and Eurodollar futures contracts

that two Gaussian factors are enough to capture the majority of the variation in the

SOFR futures market up to a one year maturity.

The Eurodollar and Federal Funds futures rates are plotted in figure 3.2. Focusing

on the spot Eurodollar futures rate, we note the spike during the onset of the COVID-

19 crisis reflecting the spike in spot LIBOR as seen in figure 3.3. However, the

increase is far less pronounced in the later contracts indicating that the Eurodollar

futures market predicted the spike in LIBOR to be fairly short-lived.

In addition to futures contracts, we also include spot LIBOR and term repo in the

estimation. The fit of these rates is plotted in Figure 3.3. We see that the roll-over

risk approach is able to capture the large spike in the LIBOR while also matching
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Figure 3.3: In sample fit of three- and six-month spot LIBOR and repo rates.

SOFR Futures EFFR Futures ED Futures Spot LIBOR Term Repo
RMSE 2.2 2.0 2.9 2.5 2.4

Table 3.1: RMSEs of the fitted rates for the full sample. All values are in basis points.

the term repo rate during the period in March 2020. We also note that term repos

are fairly illiquid contracts, which is clearly seen from the observed six-month term

repo data series showing multiple missing values, particularly during the market

stress just after the onset of the COVID crisis. However, missing values are easily

overcome during the filtering used in the estimation (see Appendix 3.D).

Table 3.1 shows the fitted root mean squared errors (RMSE). When computing

the RMSEs, we consider the actual futures and spot rates instead of the yield

transformations used in the estimation. The RMSEs further demonstrate that the

model provides a close fit across futures contracts on all three benchmarks.

3.4.2 Estimates

Table 3.2 presents the estimated parameter values and standard deviations. First, we

note that the process governing the spread between the overnight rates SOFR and

EFFR has an estimated mean level, θζ , equal to zero together with a low volatility,

σζ , reflecting the high level of correlation between SOFR and the effective Federal

Funds rate. Turning to the roll-over risk specific estimates, we see that the intensity

process is rather volatile, however, with a quick mean reversion, while the stochastic

mean process is more stable as also seen from the state variables in figure 3.4. The

large estimate of βϕ indicates that the funding-liquidity specific shocks are expected

to quickly revert back to a normal state again. The parameters related to the

market price of risk are estimated with significant standard errors, however, this is
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Mean Reversion Estimate Mean Estimate Volatility Estimate Risk Premium Estimate

κr 1.2394 σr 0.0032 µr -1.3117
(0.0039) (0.0000) (1.4424)

κθ 0.0273 θθ 0.0306 σθ 0.0071 µθ 0.0003
(0.0017) (0.0012) (0.0001) (0.5767)

κζ 0.5945 θζ 0.0000 σζ 0.0006 µζ -0.1095
(0.0808) (0.0000) (0.0001) (1.0250)

κξ 8.2375 σξ 2.8610 µξ 0.8202
(0.1714) (0.1607) (1.1110)

κη 0.1299 θη 0.0163 ση 0.7715 µη 0.1451
(0.0405) (0.3187) (0.0571) (0.4502)

κν 1.6624 θν 2.4408 σν 3.1921 µν -0.2445
(0.0651) (0.3218) (0.2297) (0.4180)

βλ 5.1952
(0.0742)

βϕ 37.3898
(3.9829)

Table 3.2: Parameter estimates with standard deviations in parentheses. The correlation
parameter, ρ, is estimated at 0.0650 (0.0276). The estimated values of the filtering parameters
and their standard deviations in basis points are σSOFR = 2.3094 (0.0139), σEFFR =
2.0621 (0.0095), and σLIBOR = 2.8949 (0.0164). The maximized log-likelihood value is
170, 331.

as expected given the fairly short sample size.

3.4.3 State variables

To investigate the drivers of the interest rate benchmarks, we plot the path of the

filtered state variables during the data period in figure 3.4. The period reflects a

decrease in short term interest rate expectations as seen by the downward trend of the

stochastic mean θs(t), which even turns slightly negative during the first half of 2020.

The ζ(t) process related to the spread between the overnight benchmarks, SOFR

and EFFR, is concentrated around zero reflecting both positive and negative spreads

between the two rates. During the SOFR surge on September 17, SOFR increased

to above 5 percent.7 We note that the spread process also turns negative during the

same period indicating an increase in the underlying systemic repo risk component.

The decomposition thus shows that neither of the underlying spreads, ψ(t) and

Λ(t), dominate the other one during the entire sample. This further emphasizes

that even though SOFR is a secured rate unlike the EFFR, SOFR should not be

thought of as being closer to a ”pure” risk free rate than the EFFR. Turning to

the roll-over risk specific variables represented by the jump intensity processes in

the instantaneous funding rate. The process ξ(t) relating to the credit downgrade

component with its stochastic drift term η(t) and ν(t) the intensity of jumps in the

7See Anbil, Anderson, and Senyuz (2020) for details on what happened during the SOFR surge.
Copeland, Duffie, and Yang (2021) argue that the spikes in SOFR were a result of the reduced
aggregate reserves following the balance-sheet normalization between 2017 and September 2019.
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Figure 3.4: The plot displays the filtered state variables impacting to the overnight
benchmark rates during the sample period from June 2018 to October 2021. The vertical
line marks the October 11th FOMC meeting.

funding-liquidity spread are plotted in the right hand panel of figure 3.4. In the period

up to the SOFR surge of September 2019 the model identifies a general liquidity-

spread increase through the rise in the intensity process ν(t), as well as an increase

in SOFR relative to EFFR as the ζ(t) process moves into negative territory. All the

while the credit-downgrade intensity ξ(t) hovers around zero in the same period. On

October 11th 2019 following the SOFR surge the Fed announced that it would conduct

operations in the term and overnight repo market.8 After the announcement, we see

an immediate increase in the SOFR-EFFR spread component suggesting a decrease

in the systemic repo risk premium. Furthermore, the funding-liquidity component

also decreases significantly. The decomposition therefore indicates that the actions

of the Fed did help to decrease risk premia both in the overnight and term rate

market.9 Further, looking at the overnight SOFR fixings since the announcement,10

spikes in SOFR have largely disappeared indicating that the Fed policy was indeed

effective in eliminating SOFR spikes.

The COVID-19 related events of early March 2020 resulted in a massive spread

between term LIBOR and the Federal Funds rate. Figure 3.4 shows that the increase

in risk was, unlike the events following the SOFR surge, not just isolated to funding-

liquidity risk. It affected the average overnight credit spread, as well as both the

credit-downgrade and funding-liquidity risk. This can be seen in the clear spikes

8See https://www.federalreserve.gov/newsevents/pressreleases/monetary20191011a.htm
9Allen, Carletti, and Gale (2009) create a model for interbank liquidity and the intervention

of central banks. Likewise, Christensen, Lopez, and Rudebusch (2014) find that the Fed’s Term
Auction Facility (TAF) helped to reduce risk premia in interbank lending rates during the Financial
Crisis.

10A dynamically updated series of SOFR can be found at https://fred.stlouisfed.org/series/
SOFR

https://www.federalreserve.gov/newsevents/pressreleases/monetary20191011a.htm
https://fred.stlouisfed.org/series/SOFR
https://fred.stlouisfed.org/series/SOFR
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Maturity SOFR-OIS EFFR-OIS 3M-IRS 6M-IRS
1Y 0.7 0.9 1.4 1.9

Table 3.3: RMSEs of the fitted swap rates for the full sample. All values are in basis points.
SOFR swap data is only available from July 2020.

in both intensity processes ν(t), and ξ(t) during the same period. Likewise, the

low LIBOR-OIS spread in the second half of 2021 results in close to zero intensity

processes.

3.4.4 Comparing with swap contracts

As an additional validity check of the model, we perform an out of sample test of the

model by comparing short-term observed swap rates with model implied rates. We

detail the pricing of OIS and IRS contracts in Appendix 3.A.

The model endogenously models the spread between different LIBOR tenors as a

result of roll-over risk. Therefore, we also test the ability of the model to extrapolate

the spot six-month rate to swaps of greater maturity referencing the six-month

LIBOR fixing. To obtain data on the six-month LIBOR IRS we use that the basis

swap rate, BS3M,6M (t, T ), reflects the difference in fixed rates of two IRS referencing

different LIBOR tenors. Swap rates referencing the six-month LIBOR fixing are then

calculated as

IRS6M (t, T ) = IRS3M (t, T ) +BS3M,6M (t, T ). (3.4.1)

Figure 3.5 and table 3.3 displays the fitted swap rates along with their RMSEs, and

shows a tight fit reflecting a swap and futures market that is well in line with each

other. Swap data could of course be added to the estimation data, likely resulting

in a closer fit to the swap market. Furthermore, the swap market is traded at far

greater maturities compared to futures thus allowing for modeling of the mid to

long term maturities of the term structure as in Filipović and Trolle (2013) and

Backwell et al. (2019). We restrict the scope of our estimation to futures contracts

due to the limited liquidity of the SOFR swap market during our sample period. But

also, as discussed in section 3.3, because LIBOR derivatives expiring after June 2023

will reference SOFR plus the ISDA fixed fallback spread and thus not reflect actual

expectations of interbank funding.

When decomposing the LIBOR-OIS spread into its roll-over risk components it

is essential that the model correctly ascribes credit risk in the LIBOR panel to the

roll-over risk credit component λt(u). We investigate the decomposition by comparing

the model-implied CDS-spread for an average LIBOR panel bank to the observed

CDS spreads for the LIBOR panel banks. In particular, we construct the time series

of CDS-spreads by trimming and averaging CDS-quotes for all banks in the current
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Figure 3.5: Observed and model implied one-year swap rates. SOFR swap data is only
available from July 2020.

USD LIBOR panel using the LIBOR specific methodology.11 We focus on the the

shortest on-the-run CDS contract, which has a six month tenor, however, due to

the biannual roll dates for these contracts the effective maturity varies between six

months and a full year. Since we cannot identify the overnight average credit spread

Λ(t) using our dataset, we are only able to calculate the fair CDS-spread implied

from the roll-over risk specific credit component. We detail the calculation of the

fair swap spread in Appendix 3.A. Figure 3.6 plots the model implied spread against

the observed LIBOR panel CDS spread. In addition to excluding the overnight

average credit component there are multiple reasons why we would not expect the

model to produce an exact fit to the CDS spread. First, any idiosyncrasies in the

short-term CDS market will not be reflected by the model fit without including these

contracts in the estimation. Second, Since our estimation only includes data on

the spot three- and six-month repo the decomposition of roll-over risk beyond the

six-month tenor will be depend on an extrapolation. However, despite this the plot

clearly still shows that the decomposed credit component captures variation in credit

risk for the LIBOR panel banks. This is also apparent from the correlation of 75.2%

between changes in the monthly averages of the credit-downgrade intensity process,

ξ(t), and the observed average CDS spread.

3.4.5 Decomposing roll-over risk in spot LIBOR

In order to investigate the cost of unsecured interbank term funding present in LIBOR,

we use our model to decompose the roll-over risk components in the spot three- and

six-month LIBOR. As previously mentioned the LIBOR-OIS spread contains both

11The current USD LIBOR methodology and panel banks can be found at https://www.theice.
com/iba/libor

https://www.theice.com/iba/libor
https://www.theice.com/iba/libor
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Figure 3.6: Observed and model implied six month CDS spread based on the decomposed
roll-over risk credit component.

credit and funding-liquidity risks, which cannot be separated using only data on

EFFR and LIBOR. Previous studies such as Filipović and Trolle (2013) and Backwell

et al. (2019) use CDS data on LIBOR panel banks in order to identify the credit

component and thus separate the roll-over risk specific components. These studies

attempt to identify the entire term structure of the IRS-OIS spread. Due to the

short term nature of this study, we focus solely on the decomposition of the three-

and six-month spot LIBOR-OIS spread, however, CDS contracts are only traded at

maturities of six months or longer with most of the liquidity concentrated in the five

year maturity contract.12 Furthermore, using five-year CDS contracts Junge and

Trolle (2015) find that liquidity risk accounts for 24% of CDS spreads on average. To

avoid the liquidity premium and mismatch in maturities, we take a different approach

and include data on the three- and six-month term repo rate. A similar method is

used in Smith (2010) who applies the three-month LIBOR-repo spread to identify

the credit component in LIBOR. As we formalize in section 3.2.3 the term repo rate

is a secured rate and therefore unaffected by the overnight average credit spread

as well as credit-downgrade risk. However, it is a term loan and thus still contains

funding-liquidity risk as well as the systemic repo risk premium. As an identification

strategy we assume that funding-liquidity risk impacts the LIBOR and term repo

market equally through the same funding-liquidity risk spread ϕt(u). We note that

in contrast to the previously mentioned studies in Filipović and Trolle (2013) and

Backwell et al. (2019) such a decomposition of the term repo is only applicable since

we have included data on SOFR, allowing us to define the value of the overnight

12Due to the biannual roll dates for CDS contracts the actual contract maturities are usually
greater than the quoted tenors. E.g. the actual expiry of the shortest CDS contract varies between
six months and up to an entire year. See Boyarchenko, Costello, and Shachar (2019) for details on
the CDS market.
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rolled-over secured loan in Equation (3.2.27), which accounts for the systemic repo

risk premium captured by ψ(t). Furthermore, this allows us to remain agnostic about

the size of the average overnight credit risk level and in turn the actual underlying

risk-free rate unlike previous studies where the overnight average credit spread has

been assumed either as a fixed level of e.g. 5 basis points (as in Filipović and Trolle

(2013) and Alfeus, Grasselli, and Schlögl (2020)) or extrapolated from credit default

swap contracts (as in Backwell et al. (2019)).

Figure 3.7 plots the decomposed three- and six-month LIBOR-OIS spreads. First,

we note that the large spike in the spread in March 2020 was mainly driven by a large

increase in credit-downgrade risk. This observation also aligns with studies of the

LIBOR-OIS spread during the great financial such as King, Lewis, et al. (2020) who

find that at the peak of the crisis the spread was dominated by credit risk. During

normal periods, however, we find that the funding component is equally relevant in

explaining the spread. Considering the entire sample period the credit component

explains 51.2% of the three-month LIBOR-OIS spread and 53.9% of the six-month

spread. Comparing with similar studies, Filipović and Trolle (2013) find that the

impact of the non-default component is greater than the credit component for the

spot three-month spread in both the USD and euro market. Similarly, Schwarz (2019)

show that her liquidity measure dominates the impact of credit on the EURIBOR-OIS

spread during both the Financial and European Debt Crisis. Thus, we find a slightly

larger impact from the credit component on the LIBOR-OIS spread using our data

sample and method. We note that the market for term repo lending, especially the

six-month repo loan, is fairly illiquid and thus the observed repo rate may reflect

an added market liquidity premium.13 The term repo may therefore contain both

market and funding-liquidity risk.14 Such a premium would result in the model

decomposition overestimating the roll-over risk funding-liquidity component in the

LIBOR-OIS spread and thus underestimating the size of the credit component.

The figure further plots a regression based decomposition of the credit component.

We regress the three- and six-month LIBOR-OIS spread on the equivalent LIBOR-

repo spread

SpreadOISt = α+ β × Spreadrepot + εt. (3.4.2)

The estimate of the three-month regression coefficient β3m is 0.9652 (0.0236) and

for the six-month spot LIBOR decomposition we obtain β6m is 0.8528 (0.0314). We

compute the regression based credit component as β ×Spreadrepot to ensure that the

credit component spread is zero when the LIBOR-repo spread is zero. The regression

shows a similar decomposition to the model mainly diverging in the second half of

2019 where the LIBOR-repo spread went slightly negative. A negative LIBOR-repo

13Volume data for term repos published by the OFR can be found at https://www.

financialresearch.gov/short-term-funding-monitor/datasets/repo/
14see Brunnermeier and Pedersen (2009) for details on the close relationship between market

and funding-liquidity

https://www.financialresearch.gov/short-term-funding-monitor/datasets/repo/
https://www.financialresearch.gov/short-term-funding-monitor/datasets/repo/
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Figure 3.7: Decomposed three- and six-month LIBOR-OIS spreads.

spread is inconsistent with our roll-over risk interpretation of the spread and likely

due to market liquidity in the term repo market. Our model specification clearly

precludes negative LIBOR-repo (as well negative as LIBOR-OIS) spreads, which is

also apparent from the model based decomposition of the LIBOR-OIS spread.

3.4.6 Comparing risk premia in futures markets

Assuming that the LIBOR transition follows its current trajectory and three-month

USD LIBOR fixings cease after June 30, 2023 the Eurodollar futures market referenc-

ing the LIBOR fixings will also end. Furthermore, the fallback method proposed by

CME for all Eurodollar futures contracts maturing after the LIBOR cessation date

is to convert Eurodollar futures contracts into the corresponding SOFR futures con-

tracts plus the fixed ISDA fallback spread.15 The ISDA fallback spread has already

been fixed at 26.161 basis points for three-month USD LIBOR.16 In this section we

compare the risk premia in the new futures market for three-month SOFR contracts

to the Eurodollar contracts that these are meant to replace. Any results involving

the physical measure are of course impacted by a level of uncertainty due to the fairly

large standard deviations of the market price of risk related parameters as displayed

in table 3.2. In order to compare the risk premia in these markets, we consider the

zero cost portfolio of buying one Eurodollar futures contract and simultaneously

selling the equivalent three-month SOFR futures contract. The constructed portfolio

should be insensitive to changes in the underlying risk-free rate, but sensitive to the

15The CME proposed fallback for Eurodollar contracts is available at https:

//www.cmegroup.com/content/dam/cmegroup/notices/ser/2021/02/SER-8720.pdf and https:

//www.cmegroup.com/education/files/webinar-fallbacks-for-eurodollars.pdf?itm_source=

rates_recap_article&itm_medium=hypertext&itm_campaign=rates_recap&itm_content=022021
16The fixed fallback spreads can be found at https://assets.bbhub.io/professional/sites/

10/IBOR-Fallbacks-LIBOR-Cessation_Announcement_20210305.pdf

https://www.cmegroup.com/content/dam/cmegroup/notices/ser/2021/02/SER-8720.pdf
https://www.cmegroup.com/content/dam/cmegroup/notices/ser/2021/02/SER-8720.pdf
https://www.cmegroup.com/education/files/webinar-fallbacks-for-eurodollars.pdf?itm_source=rates_recap_article&itm_medium=hypertext&itm_campaign=rates_recap&itm_content=022021
https://www.cmegroup.com/education/files/webinar-fallbacks-for-eurodollars.pdf?itm_source=rates_recap_article&itm_medium=hypertext&itm_campaign=rates_recap&itm_content=022021
https://www.cmegroup.com/education/files/webinar-fallbacks-for-eurodollars.pdf?itm_source=rates_recap_article&itm_medium=hypertext&itm_campaign=rates_recap&itm_content=022021
https://assets.bbhub.io/professional/sites/10/IBOR-Fallbacks-LIBOR-Cessation_Announcement_20210305.pdf
https://assets.bbhub.io/professional/sites/10/IBOR-Fallbacks-LIBOR-Cessation_Announcement_20210305.pdf
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spread processes between SOFR and LIBOR fixings. As previously mentioned, due

to the forward-looking nature of the LIBOR rate, the Eurodollar contract settles

at the beginning of the interest rate period, while the equivalent SOFR contract

settles at the end of the reference period. The SOFR contract therefore remains

risky through the entire period. To account for the mismatch, we calculate the risk

premium at time t of the constructed portfolio as the difference between the time t

value of the portfolio and the expected value at the beginning of the reference period

of the contracts denoted by time S.

RP (t;S, T ) = fED(t;S, T )− fs,3m(t;S, T )−EP
[
fED(S;S, T )− fs,3m(S;S, T )|Ft

]
(3.4.3)

As also mentioned in Piazzesi and Swanson (2008) Equation (3.4.3) is not a completely

accurate representation of the expected excess return of the portfolio. This is due

to the daily mark to market of futures contracts. However, they find that the

simplification is insignificant to the size of the risk premium and thus we follow the

same approach.

Due to the varying expiry of the actual futures contracts, we cannot compare

the risk premium of the portfolio equally across observation dates. Instead, we

consider a set of standardized contracts with fixed maturities for each observations

date. In particular we will consider contracts for each quarter ahead such that

S − t ∈ {90/360, 180/360, 270/360, 360/360}.

We note that the completely affine market price of risk specification in Equation

(3.2.18) results in the risk-neutral mean reversion matrix being identical to the

physical mean reversion for the Gaussian part of the state variables. Since we model

the SOFR and Federal Funds futures rates purely as Gaussian processes this implies

that the risk premium on these contracts is essentially constant. The time variation

in risk premia observed for our constructed portfolio is therefore purely driven by

risk premia related to the roll-over risk specific processes.

Figure 3.8 plots the resulting annualized risk premium from the strategy.17 The

portfolio clearly reflects a positive risk premium due to the added risk in the three-

month LIBOR fixing compared to the equivalent compounded SOFR rate. the most

recent period characterized by the fairly low LIBOR-OIS spread (and equally low

LIBOR-SOFR spread) is also reflected in a modest risk premium. The plot also

shows that part of the large spike in March 2020 was driven by a significant spike

in the risk premia related to interbank lending. Finally, we note that the FOMC

announcement on October 11th, was effective in part by successfully reducing the

risk premia in interbank lending.

Table 3.4 plots the full sample average annualized risk premia for each contract

17Annualized risk premia are obtained by dividing the premium with the holding period of the
constructed portfolio, i.e. S − t
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Figure 3.8: The figure plots the annualized risk premium for the constructed portfolio
given different holding periods. The vertical line marks the October 11th FOMC meeting.

(S − t) 3M SOFR Eurodollar 1M SOFR Federal Funds
90 days 32.1 88.4 34.9 35.5
180 days 28.6 54.6 31.0 31.6
270 days 25.8 42.5 27.8 28.3
360 days 23.4 35.7 25.1 25.6

Table 3.4: Model implied annualized expected excess returns for SOFR, Eurodollar and
Federal Funds futures contracts.

from holding the contract until the beginning of the accrual period. The average

annualized risk premium is positive, but decreasing in time to maturity for all

contracts. For the one-months contracts we also note that the SOFR and Federal

Funds futures are near identical in risk premium for our sample, which is also to

be expected given the close to zero µζ = −0.1095 estimate. This aligns with the

model-free analysis in Skov and Skovmand (2021) showing very similar excess average

returns of one-month SOFR and EFFR futures contracts.

3.5 Conclusion

In this paper, we have presented an affine multicurve framework, which jointly models

SOFR, EFFR, LIBOR, and term repos while ascribing economic interpretation to the

spreads between each of the different rates. The framework thus provides a unified

approach for risk managing the LIBOR transition. In particular the model would have

many potential use cases such as pricing bespoke tenors, calculating the value transfer

of shifting from LIBOR to SOFR as well as pricing nonlinear derivatives involving

multiple benchmark rates. The LIBOR benchmark allows financial institutions to

gain exposure to the roll-over risk premium embedded in the cost of funding at
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term. Such exposure is not easily obtained elsewhere. As we show some of it is

obtainable through exposure to credit risky instruments pricing, but a significant

component is not, as seen through our decomposition of the LIBOR-OIS spread. The

decomposition shows that the spike in the LIBOR-OIS spread during March 2020

was largely driven by an increase in the credit premium, however, during the full

sample period we find that the funding-liquidity component is on average equally

important in explaining the spread. Beyond 2023, as LIBOR is discontinued, the

model components would still be identifiable with the LIBOR specific data swapped

by one of the likely contenders to replace it. Furthest along is possibly the BSBY,

which already has futures contracts traded at the CME, but as of writing with very

sparse liquidity. However, even in the absence of a liquid derivatives market there is

considerable information gained simply by including spot rate data in the model, as

is also demonstrated in this paper.

3.A Pricing in the Affine Setup

We write the dynamics of the state process under the Q-measure on matrix form

dXt(u) = KQ
(
θQ −Xt(u)

)
du+ΣD(Xt(u), t)dW

Q(u) + dJt(u) (3.A.1)

where Xt(u) = (rs(u), θs(u), ζ(u), λt(u), ϕt(u), ξ(u), η(u), ν(u))
′ is the vector of state

variables. The drift specifications are given by

KQ =



κr −κr 0 0 0 0 0 0

0 κθ 0 0 0 0 0 0

0 0 κζ 0 0 0 0 0

0 0 0 βλ 0 0 0 0

0 0 0 0 βϕ 0 0 0

0 0 0 0 0 κξ −κξ 0

0 0 0 0 0 0 κη 0

0 0 0 0 0 0 0 κν


, θQ =



θθ

θθ

θζ

0

0

θη

θη

θν


. (3.A.2)

And the volatility specification becomes

Σ =



σr 0 0 0 0 0 0 0

σθρ σθ
√
1− ρ2 0 0 0 0 0 0

0 0 σζ 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 σξ 0 0

0 0 0 0 0 0 ση 0

0 0 0 0 0 0 0 σν


, D(X(t), t) = diag





1

1

1

0

0√
ξ(t)√
η(t)√
ν(t)




(3.A.3)
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where diag(v) is a diagonal matrix with the elements in v on the diagonal. Finally,

Jt(u) ∈ R8 and WQ(u) ∈ R8 are defined as

WQ(u) =
(
W r(u),W θ(u),W ζ(u), 0, 0,W ξ(u),W η(u),W ν(u)

)′
, (3.A.4)

Jt(u) =
(
0, 0, 0, Jλt (u), J

ϕ
t (u), 0, 0, 0

)′
. (3.A.5)

Based on this the ODEs referenced in section 3.2 and used when computing the

futures and spot rates can be expressed in a general framework of ODEs satisfying

∂B1(τ)

∂τ
= −κrB1(τ)− [R]1 , (3.A.6)

∂B2(τ)

∂τ
= −κθB2(τ) + κrB1(τ)− [R]2 , (3.A.7)

∂B3(τ)

∂τ
= −κζB3(τ)− [R]3 , (3.A.8)

∂B4(τ)

∂τ
= −βλB4(τ)− [R]4 , (3.A.9)

∂B5(τ)

∂τ
= −βϕB5(τ)− [R]5 , (3.A.10)

∂B6(τ)

∂τ
= −κξB6(τ) +

1

2
(B6(τ)σ

ξ)2 +
B4(τ)

0.02−1 −B4(τ)
− [R]6 , (3.A.11)

∂B7(τ)

∂τ
= −κηB7(τ) + κηB6(τ) +

1

2
(B7(τ)σ

η)2 − [R]7 , (3.A.12)

∂B8(τ)

∂τ
= −κνB8(τ) +

1

2
(B8(τ)σ

ν)2 +
B5(τ)

0.02−1 −B5(τ)
− [R]8 , (3.A.13)

∂A(τ)

∂τ
= (KQθQ)′B(τ) +

1

2
B(τ)′σ0σ

′
0B(τ), (3.A.14)

Where R ∈ R8 is specific to each of the ODEs and [R]i denotes the i
th element in R.

σ0 is the volatility related to the Gaussian processes

σ0 =

[
P3×3 03×5

05×3 05×5

]
, P3×3 =

 σr 0 0

σθρ σθ
√

1− ρ2 0

0 0 σζ

 . (3.A.15)

3.A.1 Spot and futures rates

We now list the different specifications of R used to solve the ODEs presented in

section 3.2. In order to solve the LIBOR specific ODEs, we note that

EQ
[
e
∫ T
t
ϕt(u)du|Ft

]
= eA

U (T−t)+BU (T−t)′Xt(t) (3.A.16)

whereAU (T−t) andBU (T−t) solve the general set of ODEs withR = (0, 0, 0, 0,−1, 0, 0, 0)′

and initial conditions AU (0) = BU (0) = 0. Similarly, we calculate the denominator

as

EQ
[
e−

∫ T
t
rs(u)+ζ(u)+λt(u)du|Ft

]
= eA

Q(T−t)+BQ(T−t)′Xt(t) (3.A.17)
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and again AQ(T − t) and BQ(T − t) solve the general set of ODEs with R =

(1, 0, 1, 1, 0, 0, 0, 0)′ and initial conditions AQ(0) = BQ(0) = 0. Finally, the LIBOR

specific expressions are calculated as AL(T − t) = AU (T − t) − AQ(T − t) and

BL(T − t) = BU (T − t)−BQ(T − t). Likewise, for the term repo contract we first

note that

EQ
[
e−

∫ T
t
rs(u)du|Ft

]
= eA

s(T−t)+Bs(T−t)′Xt(t) (3.A.18)

whereAs(T−t) andBs(T−t) solve the general set of ODEs withR = (1, 0, 0, 0, 0, 0, 0, 0)′

and initial conditions As(0) = Bs(0) = 0. Thus, we compute the term repo us-

ing the expressions Arepo(T − t) = AU (T − t) − As(T − t) and Brepo(T − t) =

BU (T − t)−Bs(T − t).

The SOFR accumulating account used to price the three-month SOFR futures

contract is calculated with As,3m(τ) and Bs,3m(τ), which solve the general set of

ODEs with R = (−1, 0, 0, 0, 0, 0, 0, 0)′. The Eurodollar and three-month SOFR

futures specific ODEs AED(τ) and BED(τ) as well as As,f (τ) and Bs,f (τ) both solve

the general ODEs with R = (0, 0, 0, 0, 0, 0, 0, 0)′, however, with the different initial

conditions given in section 3.2.4 and 3.2.4, respectively.

For the one-month SOFR futures rate, we first apply the Fubini theorem to change

the order of integration

EQ
[

1

T − S

∫ T

S

rs(u)du|Ft

]
=

1

T − S

∫ T

S

EQ [rs(u)|Ft] du. (3.A.19)

We note that the risk-neutral expectation of the Gaussian subset of the state variables

is given by

EQ [Xt(u)|Ft] =

θθ + e−(u−t)κr (r(t)− θθ
)
−

κr
(
e−(u−t)κr−e−(u−t)κθ

)
κr−κθ

(
θ(t)− θθ

)
θθ + e−(u−t)κθ (θ(t)− θθ

)
θζ + e−(u−t)κζ (ζ(t)− θθ

)
 .

(3.A.20)

For the SOFR futures rate, we only need the integral of the first coordinate, which

we define as

Ir(t;S, T ) =

∫ T

S

θθ + e−(u−t)κr (r(t)− θθ
)
−
κr
(
e−(u−t)κr − e−(u−t)κθ

)
κr − κθ

(
θ(t)− θθ

)
du

=(T − S)θθ +
e−(S−t)κr − e−(T−t)κr

κr
(
r(t)− θθ

)
+
κr
(
e−(S−t)κθ − e−(T−t)κθ

)
− κθ

(
e−(S−t)κr − e−(T−t)κr)

κθ(κr − κθ)

(
θ(t)− θθ

)
.

(3.A.21)
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Thus, the expectation is

EQ
[

1

T − S

∫ T

S

rs(u)du|Ft

]
=

1

T − S
Ir(t;S, T ) (3.A.22)

For the Federal Funds futures rate, we include the integral over the expectation of

the SOFR-EFFR spread process

Iζ(t;S, T ) =

∫ T

S

θζ + e−(u−t)κζ (ζ(t)− θθ
)
du

= (T − S)θζ +
e−(S−t)κζ − e−(T−t)κζ

κζ
(
ζ(t)− θζ

)
. (3.A.23)

Such that the expectation is calculated as

EQ
[

1

T − S

∫ T

S

rFF (u)du|Ft

]
=

1

T − S

(
Ir(t;S, T ) + Iζ(t;S, T )

)
. (3.A.24)

3.A.2 Swap rates

This section presents the results required to compute the swap rates in section 3.4.4.

On October 16, 2020, the London Clearing House (LCH) and Chicago Mercantile

Exchange (CME) changed the Price Alignment Interest (PAI) on cleared swaps from

EFFR to SOFR. For the sake of simplicity, we assume SOFR to be the collateral

rate for the entire sample period.18 To ease the notation, we define the pseudo zero

coupon bond referencing SOFR ps(t, T ) := E
[
e−

∫ T
t
rs(u)du|Ft

]
, which we compute

as

ps(t, T ) = eA
s(T−t)+Bs(T−t)′Xt(t), (3.A.25)

where we reiterate that As(T − t) and Bs(T − t) solve the Riccati equations with

R = (1, 0, 0, 0, 0, 0, 0, 0)′ and initial conditions As(0) = 0 and Bs(0) = 0. The floating

leg SOFR-rate is calculated from the daily compounded SOFR analogously to the

three-month SOFR futures contract in Equation (3.2.37). Again, we consider the

continuous approximation, which we denote Rs(Ti−1, Ti). In the USD market SOFR

OIS payments occur at a similar frequency for each leg and once a year for all

contracts with a maturity of one year or greater. We denote the payment dates by Ti
for i = 1, ..., n and δ = Ti − Ti−1 with Tn = T . The fair SOFR OIS rate, OISs(t, T ),

is then given by

OISs(t, T ) =
1− ps(t, Tn)∑n
i=1 δp

s(t, Ti)
(3.A.26)

18See Rutkowski and Bickersteth (2021) for an in depth study on pricing SOFR derivatives under
differential funding cost.
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Applying the same continuous approximation for the standard OIS contract referenc-

ing EFFR, the resulting OIS rate satisfies

OISFF (t, T ) =

∑n
i=1 δEQ

[
e−

∫ Ti
t rs(u)duRFF (Ti−1, Ti)|Ft

]
∑n
i=1 δp

s(t, Ti)
. (3.A.27)

Where RFF (Ti−1, Ti) denotes the continuous approximation of the floating leg EFFR-

rate. We note that OIS contracts referencing SOFR and EFFR follow identical

conventions. In order to calculate the expectation in the nominator we rewrite it as

EQ
[
e−

∫ Ti
t rs(u)duRFF (Ti−1, Ti)|Ft

]
=

1

δ
EQ
[
e−

∫ Ti
t rs(u)due

∫ Ti
Ti−1

rFF (u)du|Ft
]
− ps(t, Ti)

δ
. (3.A.28)

Focusing on the term on the left we have

1

δ
EQ
[
e−

∫ Ti
t rs(u)due

∫ Ti
Ti−1

rFF (u)du|Ft
]

=
1

δ
EQ
[
e−

∫ Ti−1
t rs(u)duEQ

[
e
∫ Ti
Ti−1

ζ(u)du|FTi−1

]
|Ft
]
. (3.A.29)

The inner expectation can be solved using the general set of ODEs where R =

(0, 0,−1, 0, 0, 0, 0, 0)′

EQ
[
e
∫ Ti
Ti−1

ζ(u)du|FTi−1

]
= eA

aux(δ)+Baux(δ)XTi−1
(Ti−1) (3.A.30)

with initial conditions Aaux(0) = 0 and Baux(0) = 0. This allows us to compute the

entire expectation as

EQ
[
e−

∫ Ti−1
t rs(u)dueA

aux(δ)+Baux(δ)′XTi−1
(Ti−1)|Ft

]
= eA

OIS(Ti−1−t)+BOIS(Ti−1−t)Xt(t)

(3.A.31)

where AOIS(Ti−1 − t) and BOIS(Ti−1 − t) again solve the general set of ODEs with

R = (1, 0, 0, 0, 0, 0, 0, 0) and initial conditions AOIS(0) = Aaux(δ) and BOIS(0) =

Baux(δ).

Next, we consider an IRS referencing the LIBOR fixings. The standard USD IRS

references the three-month LIBOR with the floating leg payment frequency matching

the LIBOR fixing. The payment dates on the fixed leg are semi-annually. We denote

the floating leg payment dates TLi for i = 1, ..., n with TLi − TLi−1 = δL and the fixed

leg payment dates T fixi for i = 1, ...,m with T fixi − T fixi−1 = δfix. Finally, we assume

identical dates for the final payment such that Tn = TM = T . The IRS rate ensuring

zero initial value of the swap is

IRS(t, T ) =

∑n
i=1 δ

LEQ
[
e−

∫ TLi
t rs(u)duL(TLi−1, T

L
i )|Ft

]
∑m
i=1 δ

fixps(t, Ti)
. (3.A.32)
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Following the approach of the OIS we rewrite the expectation as

EQ
[
e−

∫ S
t
rs(u)duL(TLi−1, T

L
i )|Ft

]
=

1

δL
EQ
[
e−

∫ S
t
rs(u)duU(TLi−1, T

L
i )

Q(TLi−1, T
L
i )

|Ft
]
− ps(t, TLi )

δL
.

(3.A.33)

Focusing on the term on the left, we have

1

δL
EQ
[
e−

∫ TLi
t rs(u)duU(TLi−1, T

L
i )

Q(TLi−1, T
L
i )

|Ft
]

=
1

δL
EQ
[
EQ
[
e−

∫ TLi
t rs(u)duU(TLi−1, T

L
i )

Q(TLi−1, T
L
i )

|FTLi−1

]
|Ft
]

=
1

δL
EQ
[
e−

∫ TLi−1
t rs(u)dups(TLi−1, T

L
i )
U(TLi−1, T

L
i )

Q(TLi−1, T
L
i )

|Ft
]
. (3.A.34)

The expectation is then calculated similarly to the Eurodollar futures rate in Equation

(3.2.36). Thus, we compute the term as

1

δL
eA

IRS(TLi−1−t)+B
IRS(TLi−1−t)

′Xt(t), (3.A.35)

where AIRS(TLi−1 − t) and BIRS(TLi−1 − t) solve the general ODEs with R =

(1, 0, 0, 0, 0, 0, 0, 0)′ and initial conditions given by AIRS(0) = As(δL) + AU (δL) −
AQ(δL) and BIRS(0) = Bs(δL)+BU (δL)−BQ(δL) except for the the jump elements

with Jλt (u) and J
ϕ
t (u), which have their initial conditions set equal to zero reflecting

the renewal of the LIBOR panel.

Credit default swaps

We calculate the fair CDS spread on a unit notional contract providing protection

over the period [t;T ] while assuming zero recovery at default. The value of the

protection leg is

EQ
[
e−

∫ τt
t
rs(u)du1(τt≤T )|Gt

]
, (3.A.36)

and for the payment leg

n∑
i=1

C(Ti − Ti−1)EQ
[
e−

∫ Ti
t rs(u)du1(Ti<τt)|Gt

]
(3.A.37)

+

n∑
i=1

CEQ
[
(τt − Ti−1)e

−
∫ τt
t
rs(u)du1(Ti−1<τt≤Ti)|Gt

]
, (3.A.38)

where C denotes the spread, T0 = t and Ti for i = 1, .., n are the quarterly payment

dates with Tn = T . as in Lando (2009), we have that the value of the protection leg

is given by ∫ T

t

EQ
[
(Λ(u) + λt(u))e

−
∫ u
t
rs+Λ(u)+λt(u)du|Ft

]
du. (3.A.39)
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When calculating the integrand we note that Λ(u) is unidentified in our model and

thus omitted in the calculation of the CDS spread (see section 3.4.4), that is we set

Λ(u) = 0. The integrand is then computed using the extended transform in Duffie,

Pan, and Singleton (2000)

(a(u− t) + b(u− t)′Xt(t)) e
Acds(u−t)+Bcds(u−t)′Xt(t) (3.A.40)

where Acds(u− t) and Bcds(u− t) solve the ODEs in Equation (3.A.6))-(3.A.14) with

initial conditions Acds(0) = 0 Bcds(0) = 0 and R = (1, 0, 0, 1, 0, 0, 0, 0)′ while a(τ)

and b(τ) satisfy the modified ODEs

∂b1(τ)

∂τ
= −κrb1(τ), (3.A.41)

∂b2(τ)

∂τ
= −κθb2(τ) + κrb1(τ), (3.A.42)

∂b3(τ)

∂τ
= −κζb3(τ), (3.A.43)

∂b4(τ)

∂τ
= −βλb4(τ), (3.A.44)

∂b5(τ)

∂τ
= −βϕb5(τ), (3.A.45)

∂b6(τ)

∂τ
= −κξb6(τ) +B6(τ)b6(τ)(σ

ξ)2 +
0.02−1b4(τ)

(0.02−1 −B4(τ))2
, (3.A.46)

∂b7(τ)

∂τ
= −κηb7(τ) + κηB6(τ) +B7(τ)b7(τ)(σ

η)2, (3.A.47)

∂b8(τ)

∂τ
= −κνb8(τ) +B8(τ)b8(τ)(σ

ν)2 +
0.02−1b5(τ)

(0.02−1 −B5(τ))2
, (3.A.48)

∂a(τ)

∂τ
= (KQθQ)′b(τ) +B(τ)′σ0σ

′
0b(τ), (3.A.49)

with initial conditions a(0) = 0 and b(0) = (0, 0, 0, 1, 0, 0, 0, 0)′. We can then

numerically integrate the integrand in (3.A.40) to obtain the value of the protection

leg. For the payment leg we calculate the expectation in the first sum in Equation

(3.A.37) as

EQ
[
e−

∫ Ti
t rs(u)du1(Ti<τt)|Gt

]
= eA

cds(Ti−t)+Bcds(Ti−t)′Xt(t). (3.A.50)

For the expectation in the second sum, Equation (3.A.38), we have

EQ
[
(τt − Ti−1)e

−
∫ τt
t
rs(u)du1(Ti−1<τt≤Ti)|Gt

]
=

∫ Ti

Ti−1

(u− Ti−1) (a(u− t) + b(u− t)′Xt(t)) e
Acds(u−t)+Bcds(u−t)′Xt(t)du. (3.A.51)

3.B The Intensity Based Credit Risk Approach

In order to price credit risky instruments, we follow Filipović and Trolle (2013) and

extend the doubly stochastic framework to accommodate default times for each
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arbitrary time t. Thus, we consider the filtration Ft = σ(X(s)|0 ≤ s ≤ t) and an i.i.d.

sequence of exponentially distributed random variables Et ∼ Exp(1) independent of

the filtration Ft. For each t we then define the random default times by

τt = inf

{
T > t|

∫ T

t

Λ(u) + λt(u)du ≥ Et

}
, (3.B.1)

and denote the filtration generated by all default indicator processes as Ht. The

random times τt are stopping times with respects to the enlarged filtration Gt =
Ft ∨Ht. Following standard results on the intensity based approach (see e.g. Lando

(2009)) and assuming zero recovery, any FT -measurable integrable random variable,

X, satisfies

EQ
[
X1(τt>T )|Gt

]
= EQ

[
Xe−

∫ T
t

Λ(u)+λt(u)du|Ft
]
. (3.B.2)

3.C The Term Repo Approximation

In this appendix we investigate the accuracy of the approximation in Equation

(3.2.31) to the true term repo rate, which we recall is given by

Rrepo(t, T ) =
1

T − t

EQ
[
e
∫ T
t
ψ(u)+ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
r(u)du|Ft

] − 1

 . (3.C.1)

It is clear from this expression that we are unable compute the repo rate without

identifying the underlying risk-free rate, r(u) and the repo specific risk premium,

ψ(u), separately. However, applying Jensen’s inequality, we can construct both an

upper and lower bound for Rrepo(t, T ) using only processes identified in our model,

which allows us to evaluate the maximum possible error of the approximation in

(3.2.31).

First, we note that the approximation used in the paper is in fact a lower bound.

To see this, assume independence between ψ(u) and ϕt(u) as well as r(u) and ψ(u)
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as in section 3.2.3. Focusing on the fraction we have

EQ
[
e
∫ T
t
ψ(u)+ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
r(u)du|Ft

] =
EQ

[
e
∫ T
t
ϕt(u)du|Ft

]
EQ

[
e
∫ T
t
ψ(u)du|Ft

]
EQ

[
e−

∫ T
t
r(u)du|Ft

]
=

EQ
[
e
∫ T
t
ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
r(u)du|Ft

]
1

EQ
[
e
∫T
t ψ(u)du|Ft

]

≥
EQ

[
e
∫ T
t
ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
r(u)du|Ft

]
EQ

[
1

e
∫T
t ψ(u)du

|Ft
]

=
EQ

[
e
∫ T
t
ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
rs(u)du|Ft

] . (3.C.2)

Next, in order to calculate an upper bound, we assume independence between

ψ(u) + ϕt(u) and r(u), which yields

EQ
[
e
∫ T
t
ψ(u)+ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
r(u)du|Ft

] = EQ
[
e
∫ T
t
ψ(u)+ϕt(u)du|Ft

] 1

EQ
[
e−

∫ T
t
r(u)du|Ft

]
≤ EQ

[
e
∫ T
t
ψ(u)+ϕt(u)du|Ft

]
EQ

[
1

e−
∫ T
t
r(u)du

|Ft
]

= EQ
[
e
∫ T
t
rs(u)+ϕt(u)du|Ft

]
. (3.C.3)

Thus, combining Equation (3.C.2) and (3.C.3) we obtain

EQ
[
e
∫ T
t
ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
rs(u)du|Ft

] ≤
EQ

[
e
∫ T
t
ψ(u)+ϕt(u)du|Ft

]
EQ

[
e−

∫ T
t
r(u)du|Ft

] ≤ EQ
[
e
∫ T
t
rs(u)+ϕt(u)du|Ft

]
(3.C.4)

Because of the Gaussian specification of the rs(u) and ζ(u) processes, the spread

between the upper and lower bound is constant across the entire sample for each of

the considered maturities. Specifically, given our model estimates, we find that the

spread between the upper and lower bound approximation of the term repo rate is

0.02 basis points for the three-month repo and 0.08 basis points for the six-month

repo. Furthermore, due to the low volatility of the ζ(u) process (see table 3.2), we

expect the underlying ψ(u) to display an equally low volatility. This implies that the

ignored convexity adjustment in (3.C.2) is negligible and thus the lower bound is a

very close approximation to the actual term repo rate.
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3.D The Kalman Filter

We estimate the model using quasi-maximum likelihood method with the Kalman

Filter on spot LIBOR and end of day futures data. When estimating the time series

property of the model, we consider the reduced state process X(t) ∈ R6 excluding

the roll-over risk jump variables and thus we omit the subscript. Having defined

a completely affine market price of risk the implied drift parameters under the

P -measure are obtained from

KP = K̂Q − Σ̂diag(µ)δ2, (3.D.1)

θP = (KP )−1[K̂Qθ̂Q + Σ̂diag(µ)δ1] (3.D.2)

where θ̂Q, K̂Q and Σ̂ refer to the Q-parameters in Equation (3.A.2) and (3.A.3)

excluding the fourth and fifth row and column specific to the roll-over risk jump

variables and

µ =
(
µr, µθ, µζ , µξ, µη, µν

)′
, δ1 = (1, 1, 1, 0, 0, 0)

′
, δ2 = diag

(
(0, 0, 0, 1, 1, 1)

′)
.

(3.D.3)

The state transition equation is given by

X(ti) =
(
I − e−K

P∆t
)
θP + e−K

P∆tX(ti−1) + ω(ti) (3.D.4)

with ∆t = ti − ti−1 set to 1/252 to approximately reflect the number of daily futures

data observations in a year. We approximate the transition densities with a Gaussian

distribution and thus assume ω(ti) ∼ N (0, Z(ti)). Multiple papers such as Duan

and Simonato (1999) have conducted Monte Carlo studies demonstrating that the

quasi maxixmum likelihood procedure obtained when approximating the transition

density in the square-root process by a normal density produces reliable estimates.

The conditional covariance matrix, Z(ti), is equal to

Z(ti) =

∫ ti

ti−1

e−K
PuΣ̂D(E [X(u)|F(ti−1)] , u)D(E [X(u)|F(ti−1)] , u)

′Σ̂′
(
e−K

Pu
)′
du.

(3.D.5)

We compute Z(ti) analytically using the methods presented in Christensen, Lopez,

and Rudebusch (2015). Next, we define the measurement equation which, given our

yield transformations in section 3.3, is affine in the state variables

y(ti) = A(ti) +B(ti)
′X(ti) + ε(ti), ε(ti) ∼ N (0, H(ti)). (3.D.6)

We consider independent measurement errors with separate error distributions for

secured, Federal Funds, and LIBOR rates. Thus, we define H(ti) as a diagonal matrix

with measurement error variances σ2
SOFR for SOFR and term repo observations,

σ2
EFFR for Federal Funds futures observations, and σ2

LIBOR for spot LIBOR and
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Eurodollar observations. Let X(ti|tj) = E[X(ti)|y(tj), ..., y(t1)] and P (ti|tj) =

V[X(ti)|y(tj), ..., y(t1)] for j ≤ i denote the conditional expectation and variance.

The prediction step of the kalman filter is then

X(ti|ti−1) = FX(ti−1|ti−1) + C, (3.D.7)

P (ti|ti−1) = FP (ti−1|ti−1)F
′ + Z(ti). (3.D.8)

Where F = e−K
P∆t denotes the state transition model and C =

(
I − e−K

P∆t
)
θP

the control input. In the update step the a priori state estimates are updated using

the time ti observations

X(ti|ti) = X(ti|ti−1) +K(ti)ν(ti), (3.D.9)

P (ti|ti) = (I −K(ti)B(ti))P (ti|ti−1). (3.D.10)

Where we have defined the optimal Kalman gain matrix as

K(ti) = P (ti|ti−1)B(ti)
′(S(ti))

−1 (3.D.11)

with S(ti) the variance of the prefit residuals

S(ti) = H +B(ti)P (ti|ti−1)B(ti)
′. (3.D.12)

Approximating the transition densities by a Gaussian quasi log-likelihood for a given

set of parameters, Θ, the log-likelihood is given by

l(y(t1), ..., y(tT ); Θ) =

T∑
i=1

(
−N

2
log(2π)− 1

2

(
log |S(ti)|+ ν(ti)

′(S(ti))
−1ν(ti)

))
(3.D.13)

with N the number of observations at each date and T the amount of dates in out

data sample. To obtain the optimal set of parameters, Θ̂, we maximize the quasi log-

likelihood function using the Nelder-Mead algorithm with a function value tolerance

of 0.01. The state variables are required to be stationary under the P -measure and

we therefore require the eigenvalues of KP to be positive.

The futures market calendar differs slightly from the LIBOR publishing dates. In

the estimation we consider all dates with futures resulting in dates with missing spot

LIBOR data. Furthermore, the six-month repo rate is rather illiquid and thus there

are days in our time series for which we have no six-month repo quote, particularly

around March 2020. The missing observations are easily accommodated in the

kalman filter by considering an N(ti)×N -matrix W (ti) where N is the total amount

of observations including missings and N(ti) is the actual amount of observations

at time ti. W (ti) is then a subset of IN such that y⋆(ti) = W (ti)y(ti) is the set of

non-missing observations. The measurement equation is then simply replaced by

y⋆(ti) = A⋆(ti) +B⋆(ti)
′X(ti) + ε⋆(ti), ε⋆(ti) ∼ N (0, H⋆(ti)), (3.D.14)
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where A⋆(ti) = W (ti)A(ti), B
⋆(ti) = W (ti)B(ti) and H⋆(ti) = W (ti)HW (ti)

′.

Finally, we change N in the likelihood contributions to reflect the actual number of

observations on a given date N(ti).



Chapter 4

Term Structure Modeling of SOFR:

Evaluating the Importance of Scheduled

Jumps

This chapter contains the manuscript Schlögl, Skov, and Skovmand (2023).

Abstract

As interest rate benchmarks move from LIBOR to overnight Risk-

Free Rates (RFR), it has become increasingly important for models to

accurately capture the interest rate dynamics at the overnight tenor.

Overnight rates closely track central bank policy rate decisions resulting,

in highly discontinuous dynamics around scheduled meeting dates. In this

paper, we construct a dynamic term structure model, which accounts for

the discontinuous short-rate dynamics. We show that the model is able to

jointly fit the overnight US policy rate, SOFR and SOFR futures rates

through the recent Fed hiking cycle. Comparing our model with a standard

continuous time-homogeneous short-rate model, we find several indications

that our model avoids the clear misspecification of the continuous model,

in particular with regard to the short-rate dynamics around meeting

dates of the Federal Open Market Committee (FOMC). This effect begins

to disappear as the term of the rates under consideration is increased,

suggesting that diffusive dynamics are a reasonably accurate reflection

of the evolution of market expectations embodied in longer-term interest

rates.

Keywords: SOFR, Jumps, FOMC, Futures.
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4.1 Introduction

Since Vasicek (1977), time-homogeneous affine term structure models have been

the main tool when estimating dynamic term structure models. However, the push

by regulators during recent years to move from LIBOR to overnight Risk-Free

Rates (RFR) as the main benchmarks in fixed income products has increased the

importance of accurately modeling rates at the overnight tenor. Overnight rates

are highly dependent on central bank policy rates, which predominantly change on

dates that are scheduled in advance and known to the market participants. Time-

homogeneous and diffusive models ignore these scheduled announcement effects and

therefore cannot be expected to accurately capture the dynamics of the policy rate

and consequently the overnight benchmark.

Our focus is the Secured Overnight Financing Rate (SOFR), the USD RFR

benchmark scheduled to replace USD LIBOR following its June 2023 cessation

deadline. Studying the historical changes in SOFR following Federal Open Market

Committee (FOMC) meetings, we argue that the primary US policy rate determining

the level of SOFR is the Interest on Reserve Balances (IORB). We then construct an

affine dynamic term structure model, which jointly models IORB, overnight SOFR

and SOFR futures rates. In our framework, the dynamics of IORB are modeled as a

time-inhomogeneous pure jump process consisting of both scheduled and unscheduled

jumps reflecting the scheduled and unscheduled meetings of the FOMC. modeling

IORB as a pure jump process, the filtered IORB short-rate path of the estimated

model is consistent with the observed piecewise constant dynamics.

SOFR is computed using aggregate data from the overnight treasury repo market.

It is therefore not entirely piecewise constant between FOMC announcements, but

also affected by the general funding conditions in the overnight treasury repo market.

We model the additional diffusive dynamics of SOFR by considering a stochastic

SOFR-IORB spread. Our framework thus models the variation in SOFR futures

rates as reflecting changes in expectations about future changes in the underlying

policy rate as measured by the IORB as well as a stochastic SOFR-IORB spread.

Previous papers have also studied the effect of central bank policy rate announce-

ments on the term structure. Piazzesi (2005) provides an early attempt to model

the Federal Funds target rate accounting for the FOMC meeting calendar. In her

model the target rate follows a pure jump process driven by Poisson processes, with

jumps during FOMC meetings triggered by elevated jump intensities. More recently,

inspired by the UK LIBOR Transition, Backwell and Hayes (2022) propose and

estimate a pure jump multicurve model for GBP LIBOR and SONIA OIS rates.

In their model overnight, SONIA is included as a direct observation of the SONIA

short-rate state variable, while term rates are modeled using a set of auxiliary state

variables determining the distribution of future expected and unexpected jumps.
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Gellert and Schlögl (2021) put forward a model for SOFR in the Heath-Jarrow-

Morton framework in which the target rate is piecewise constant between FOMC

meeting dates while forward rates evolve diffusively due to the changing market

expectations about future FOMC decisions driven by underlying Wiener processes.

Brace, Gellert, and Schlögl (2022) extend the model with stochastic volatility to also

fit options on SOFR futures.1 While these studies also include the scheduled central

bank announcements, our paper is the first to seek to include data on the overnight

policy and benchmark rates, not as a direct observation of a state variable, but as

a part of the estimation sample. Furthermore, the model we construct falls within

the traditional class of affine term structure models. The tractable nature of this

framework allows us to include option data as well as futures data in the estimation

sample.

In the empirical section of the paper we compare our jump model to an instance of

the standard time-homogeneous continuous affine term structure models. The models

are estimated on daily overnight rate, futures rate data using maximum-likelihood

estimation in conjunction with the Kalman filter. While the continuous model is

able to fit the cross-section of futures rates fairly well, as also shown in Skov and

Skovmand (2021), this is no longer the case when overnight rates are introduced in

the estimation sample. Studying the individual log-likelihood contributions we find

that, unlike the jump model, estimating the continuous model results in significant

deterioration of the log-likelihood contributions on observation dates with changes in

the overnight policy rate following FOMC announcements. The misspecification also

results in the continuous model being unable to jointly fit overnight and futures rates

during the Fed hiking cycle in 2022, whereas the time-inhomogeneous jump model is

consistent with both overnight and futures rates. Comparing real-time policy rate

forecasts produced by both models we find that the jump model performs better

at short horizons (one month) while the forecasts become similar when considering

longer forecast periods. Finally, accounting for the FOMC meeting calendar is not

only important when modeling overnight rates, but also in contracts with shorter

tenors such as the one-month futures or during the accumulation period of contracts

set in arrears as is the case in both one- and three-month SOFR futures and the

one-month SOFR futures option.

The paper is structured as follows. Section 4.2 studies the dynamics of SOFR

in relation to overnight US policy rates. Next, in section 4.3 We present the time-

inhomogeneous affine jump framework used to jointly model IORB and SOFR.

Section 4.5 details the data and estimation used in the empirical analysis while the

results are discussed in Section 4.6.

1Scheduled or expected jumps are also referred to in the literature as stochastic discontinuities.
Recently, Multiple theoretical papers have also studied the modeling of stochastic discontinuities in
relation to term structure modeling see e.g. Keller-Ressel, Schmidt, and Wardenga (2019), Fontana
et al. (2020), and Fontana, Grbac, and Schmidt (2022).
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Overnight Rates
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Figure 4.1: Overnight SOFR, IORB and the upper and lower bound of the Federal Funds
Target Range during our sample period.

4.2 Policy Rates, FOMC Announcements and SOFR

Two of the primary policy rates set by the Federal Reserve are the Federal Funds

Target Range and the Interest Rate on Reserve Balances (IORB). The Federal Funds

Target Range indicates an acceptable interval for the Effective Federal Funds Rate

(EFFR). The IORB replaces the Interest Rate on Required Reserves (IORR) and

Interest Rate on Excess Reserves (IOER), which were discontinued on July 29, 2021.2

The last time IORR and IOER differed was in 2008 and thus before our data sample.

With IORR and IOER identical during our entire data period, we will refer to all

three rates during our sample simply as IORB.

Figure 4.1 plots the Target Range, IORB, and SOFR. The plot suggests a stochastic

spread between SOFR and each of the policy rates. Note that, while mostly within

the target range, SOFR fixes both below and above IORB. Also, while spikes in SOFR

were frequent during the start of our data period, there have been no significant spikes

in SOFR since the October 11, 2019 Fed announcement to conduct operations in the

overnight repo market.3 Importantly, we see that SOFR closely tracks the changes in

the policy rates set by the Federal Reserve. Since the nineties, changes in the policy

rates have historically been announced following the eight annual scheduled FOMC

meetings, with few exceptions of changes after unscheduled meetings during crises

such as the Great Financial Crisis or the beginning of the COVID-19 pandemic. This

suggests that correctly modeling the jumps in policy rates around FOMC meetings

is crucial when modeling the dynamics of overnight SOFR.

2See https://www.federalreserve.gov/newsevents/pressreleases/bcreg20210602a.htm
3See https://www.federalreserve.gov/newsevents/pressreleases/monetary20191011a.htm

https://www.federalreserve.gov/newsevents/pressreleases/bcreg20210602a.htm
https://www.federalreserve.gov/newsevents/pressreleases/monetary20191011a.htm
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FOMC Date ∆Target Range ∆IORB ∆SOFR ∆EFFR
June 13, 2018 25 20 19 20
September 28, 2018 25 25 24 25
December 19, 2018 25 20 11 20
May 1, 2019 0 −5 −4 −4
July 31, 2019 −25 −25 −36 −26
September 18, 2019 −25 −30 −60 −35
October 30, 2019 −25 −25 −6 −24
January 29, 2020 0 5 5 5
*March 3, 2020 −50 −50 −41 −50
*March 15, 2020 −100 −100 −84 −85
June 16, 2021 0 5 4 4
March 16, 2022 25 25 25 25
May 4, 2022 50 50 49 50
June 15, 2022 75 75 75 75
July 27, 2022 75 75 75 75
September 21, 2022 75 75 74 75
November 2, 2022 75 75 75 75
December 14, 2022 50 50 52 50
February 1, 2023 25 25 25 25

Table 4.1: Changes in overnight policy and market rates around FOMC announcements. *
denotes unscheduled meetings. Dates in red have ∆Target Range ≠ ∆IORB. All values
are in basis points.

Studying the rate changes following FOMC announcements further, Table 4.1 lists

the Target Range and IORB changes made by the Fed and the corresponding change

in SOFR as well as EFFR on the day following the FOMC announcement during our

sample period. The table suggests that the primary policy rate affecting the level of

both SOFR and EFFR is the IORB and not the Target Range. E.g., following the

scheduled meeting on June 13, 2018 the target range increased by 25 basis points,

while IORB only increased by 20 basis points, which caused an increase in SOFR and

EFFR by 19 and 20 basis points, respectively. Furthermore, unlike the target range,

changes in the IORB are not restricted to the well-known increments in multiples of

25 basis points, but may change by as little as 5 basis points.4

4.3 Modeling the Joint Dynamics of IORB and SOFR

We fix the filtered probability space (Ω,F , {Ft}t≥0, Q) and specify the dynamics

directly under the risk-neutral Q-measure defined by the continuously compounded

savings account numeraire. To reflect the piecewise constant dynamics of IORB we

4For a brief discussion on how the IOER emerged as the key policy rate set by the Fed, see
Gellert and Schlögl (2021).
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model the IORB-specific short-rate as a pure jump process

drt = JDt dN
D
t + dJPt (4.3.1)

where ND
t is defined as a deterministic counting process reflecting the deterministic

jump dates. The set of deterministic jump dates {τ1, ..., τM} are denoted as T and

identified as the days following the scheduled FOMC meetings when the potential

changes in IORB become effective. Furthermore, JPt is a pure jump process with

jump arrival intensity νPt and iid jump sizes Z1, Z2, ... capturing unscheduled jumps

in the target rate. We assume that the scheduled jumps, JDt , have an exponentially

affine jump size distribution with parameters determined by affine transformations of

the underlying state process Xj
t . The dynamics of Xj

t are modeled using a standard

n-dimensional time-homogeneous continuous affine process

dXj
t = θj(Kj −Xj

t )dt+ΣjD(Xj
t )dW

j
t (4.3.2)

where D(Xj
t ) is a diagonal matrix with D(Xj

t )ii =
√
αi + β′

iX
j
t . We note that Xj

t

must be specified such that the parameters of the jump size distribution stay in the

space that they are defined on. Thus, in our framework the joint specification of

JDt and Xj
t dictates the term structure of scheduled FOMC meeting jumps. The

specification of rt implies that it is an affine time-inhomogeneous process. Since

there is no diffusion term in the dynamics of rt it remains constant between jumps

and the time t risk-neutral expectation of the IORB for any future time point u > t

is given by the current rate and expected sum of future jumps

EQt [ru] = rt +

η(u)−1∑
j=η(t)

EQt
[
JDτj

]
+ EQt

NPu −1∑
i=NPt

Zi

 (4.3.3)

with η(t) = {j ∈ N|τj−1 ≤ t < τj} and NP
t the amount of realized unscheduled jumps

at time t. Having described the dynamics of the IORB, we model the SOFR specific

short-rate, denoted rst , as the sum of IORB and an affine stochastic spread process,

st, such that

rst = rt + st. (4.3.4)

Given that spikes in SOFR were only present during the beginning of our sample and

seem to have disappeared in recent years, we do not attempt to incorporate spikes in

our modeling of the dynamics of SOFR. We refer to Andersen and Bang (2020) for a

potential way to treat spikes in SOFR.

4.3.1 Model specification

To obtain a working specification of our framework, we will assume that the size of

scheduled jumps is normally distributed with state-dependent mean and constant

variance

JDt ∼ N (γQ + ΓQ
′
Xj
t−, ω

2). (4.3.5)
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Furthermore, we let γQ = 0 and ΓQ = (1, 0)′ and specify Xj
t = (ξt, θt)

′ as a two-factor

Gaussian process

dξt = κξ(θt − ξt)dt+ σξdW ξ
t , (4.3.6)

dθt = κθ(θθ − θt)dt+ σθ
(
ρdW ξ

t +
√
1− ρ2dW θ

t

)
. (4.3.7)

The the joint specification of JDt and Xj
t implies that the mean jump sizes are

modeled by ξt, which in turn evolves stochastically around the central tendency

factor θt. Having specified a Gaussian distribution for the scheduled jumps and

ignoring the unscheduled jumps, our model can be seen as a special case of the

framework presented in Kim and Wright (2014). However, rather than modeling the

target rate specifically, that paper models government bond yields using a diffusive

term for the short-rate while considering scheduled jumps on dates with employment

report announcements. Next, we assume that the unscheduled jumps JPt arrive at a

constant intensity νP and specify the corresponding jump size distributions Z1, Z2, ...

as normal with mean µP and volatility σP . Lastly, since the spread between SOFR

and IORB is both negative and positive during our sample, we model it using a

simple one-factor Gaussian process

dst = θs(κs − st)dt+ σsdW s
t . (4.3.8)

Defining the joint process Xt = (rt, ξt, θt, st)
′
, our model specification constitutes a

four-factor model for the joint dynamics of IORB and SOFR.5 We relate the dynamics

under the physical and risk-neutral measures through the likelihood process

dLt
Lt−

= Ψ
(
JDt , X

j
t−

)
dND

t + Λ′dWP
t . (4.3.9)

Given the fairly short sample size, we consider a parsimonious risk premium specifi-

cation providing a close link between the risk-neutral and physical dynamics. First,

we specify a completely affine market price of risk specification for the diffusive state

variables. Thus, we define the market price of risk as Λ =
(
λξ, λθ, λs

)′
such that the

diffusive dynamics under the physical and risk-neutral measures are related through

dWQ
t = dWP

t + Λdt. (4.3.10)

5Another possible choice, which would preserve the affine property of rt, would
be to use scaled Poisson distributions for the up and down jumps, i.e., JD

t ∼ s ·(
Pois(γu + Γu′

Xj
t−)− Pois(γd + Γd′Xj

t−)
)
. The realized IORB jump sizes during our sample

presented in Section 4.2 suggest that we would need to set s = 0.0005 to be able to capture the
realized changes in the IORB during our sample. While this implies a discrete jump size distribution,
which may seem more realistic, estimating such a model results in large values of the rate parameters
controlling the Poisson distributions. Thus, while on average the sum of these would reflect the
scheduled jumps given a sufficiently flexible state process, the simulated paths would result in
frequent and large up/down jumps in the target rate dissimilar to the observed path. Specifying
Poisson jumps also implies that the rate parameter in each Poisson distribution needs to stay
positive, meaning that we cannot model Xj

t using a Gaussian process, which reduces the tractability
of the model. Nonetheless, the pricing formulas in Appendix 4.A are easily modified to allow for
Poisson jumps with state-dependent parameters driven by independent square-root processes, for
example.
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Second, we consider an essentially affine scheduled jump risk premium extension as

in Kim and Wright (2014)

Ψ
(
JDt , X

j
t−

)
= exp

(
−Υ

JDt − (γP + ΓP
′
Xj
t−))

ω
− 1

2
Υ2

)
− 1 (4.3.11)

with Υ = ϕ + ΦXj
t−. This implies that the physical jump distribution is JDt ∼

N (γP + ΓP
′
Xj
t−, ω

2) with γP = γQ + ωϕ and ΓP = ΓQ + ωΦ. We further restrict

the scheduled jump risk specification by ϕ = 0 and Φ = (Φ1, 0)
′ such that γP = 0

and ΓP = (ΓP1 , 0)
′. With these restrictions the jump risk premium effectively scales

the effect of ξt on the mean jump size under the physical measure. This allows us to

directly evaluate the impact of the jump risk premium by comparing the estimated

value of ΓP1 with the fixed value ΓQ1 = 1 under the risk-neutral measure. In order

to identify the dynamics of the unscheduled jumps under both measures we do not

allow for a risk premium on the unscheduled jumps, see Section 4.5.3 for further

discussion.

4.3.2 A continuous specification

In order to compare the proposed jump model, we also consider the class of standard

time-homogeneous continuous models. Specifically, we consider the maximally identi-

fiable three-factor Gaussian model from Dai and Singleton (2000) as a continuous

model for the dynamics of IORB. The IORB related short-rate is therefore affine in

the latent state variables rt = ρ0 + ρ1 ·Xt, which evolve as

dXt = KQ
(
θQ +Xt

)
dt+ΣdWQ

t . (4.3.12)

As in Kim and Wright (2014) we rotate the specification such that the third variable

defines the short-rate. The parameterization then becomes

KQ =

K11 0 0

K21 K22 0

K31 K32 K33

 , θQ =

00
0

 , Σ =

 c 0 0

0 c 0

σ31 σ32 σ33

 , ρ =

00
1

 .
(4.3.13)

Where c is a scaling constant, which we fix at 0.01. Similarly to the jump specification,

we define the SOFR specific short rate as the sum of the target rate and a stochastic

spread process driven by a single-factor Gaussian process rst = rt + st. Likewise,

we also specify a completely affine market price of risk specification with Λ =

(λ1, λ2, λ3, λ
s)

′
such that the diffusive dynamics again are related by

dWQ
t = dWP

t + Λdt. (4.3.14)

The jump and continuous specifications are thus both four-factor models for the joint

dynamics of IORB and SOFR, however, we note that the continuous specification

contains an extra diffusive Brownian motion term.
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4.4 SOFR futures and futures options

Interest rate futures referencing SOFR are traded on the CME. The futures price at

expiration is 100 (1−R(S, T )) with R(S, T ) denoting the futures rate. The mark-to-

market feature implies that the futures price is a martingale under the risk-neutral

measure (see e.g. Hunt and Kennedy (2004)). The present value of the futures

contract is therefore given by the risk-neutral expectation

F (t;S, T ) = EQt [100 (1−R(S, T ))] . (4.4.1)

Contracts referencing both a one- and three-month backward-looking rate are avail-

able. Denoting the realized SOFR fixings Rsti , the one-month futures rate is deter-

mined as the arithmetic average during the contract month

R1m(S, T ) =
1

T − S

N∑
i=1

1

360
Rsti (4.4.2)

with S ≤ t1, ..., tN ≤ T . The three-month futures rate is given by the compounded

average of the overnight fixings

R3m(S, T ) =
1

T − S

(
N∏
i=1

(
1 + diR

s
ti

)
− 1

)
(4.4.3)

with di the number of days until the next fixing multiplied by the day count fraction.

Futures contracts provide multiple advantages when studying the short end of

the term structure. Specifically, SOFR futures data contains the earliest record

of historical data on SOFR linked derivatives and the most liquidly traded short

term SOFR contracts. Furthermore, since futures are exchange-traded products, our

data consists of actual traded prices instead of quotes from brokers, as is often the

case with data on over-the-counter products such as Overnight Index Swaps (OIS).

Finally, spot-starting OIS rates involve compounding of the underlying overnight

rate throughout the entire period of the swap and thus the compounding period

increases as the maturity of the contract increases. In contrast, the futures rate is a

direct measurement of risk-neutral SOFR expectations during the reference period

of the contract, which is always either one or three months. This feature becomes

increasingly important when we want to be able to properly differentiate between the

ability of each model in fitting the term structure of SOFR around FOMC meetings.

Options on SOFR futures are available on both the one- and three-month under-

lying futures contracts. A key difference between the one- and three-month SOFR

option is the expiration date of the option. The option referencing the three-month

futures expires on the Friday before the third Wednesday of the contract month when

the underlying three-month futures starts to accumulate its rate. The one-month

futures option expires at the end of the contract month of the underlying one-month
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futures contract. The one-month SOFR futures therefore allows one to study the

option behaviour as the backward-looking rate fixes, however, as of writing trading

is only active in the three-month futures options. Like the futures contract, the

three-month SOFR futures option also provides the earliest record of traded SOFR

derivatives with optionality. Trading in SOFR futures options has greatly increased

during 2022, as the US LIBOR cessation date approaches, and in November 2022 open

interest in SOFR futures options has surpassed open interest in Eurodollar futures

options.6 Finally, while the undiscounted SOFR futures contract is a martingale

under the risk-neutral measure due to the mark-to-market feature, the SOFR futures

option payoff requires discounting. However, since October 2020 SOFR has been

the price alignment interest (PAI) at CME and thus SOFR futures options can be

accurately priced using a single-curve setup.

4.5 Data and Estimation

In this section we describe the data set and assumptions made in our model estimation

as well as the estimation method.

4.5.1 FOMC meeting data

We obtain the historical and future scheduled FOMC calendar from the Federal

Reserve website.7 Meetings are scheduled approximately a year in advance. Since

we only consider maturities up to around one year we use the actual historical

scheduled FOMC date.8 Our jump model does not include any FOMC meeting

calendar uncertainty. Instead, we model the target rate jumps following unscheduled

meetings as unscheduled jumps. Therefore, we also do not consider any changes or

unscheduled meetings in the FOMC meeting calendar. This means that unscheduled

meetings such as those that happened on March 3 and 15, 2020 are not a part of our

FOMC calendar. Similarly, the meeting on March 18, 2020, which was cancelled, is

also not removed from our FOMC calendar data.

4.5.2 Overnight, futures and futures option data

First, we collect the overnight SOFR and IORB data used in the estimation from

the website of the Federal Reserve Bank of St. Louis. Next, we obtain futures data

6See https://news.bloomberglaw.com/capital-markets/sofr-options-wagers-outnumber-

eurodollars-for-the-first-time-1?context=search&index=6
7See https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm
8We note that our framework can easily be extended to longer maturities simply by extrapolating

the FOMC dates. Scheduled FOMC meeting announcements are always on Wednesdays, with the
potential target rate change the day after on Thursday and thus in order to obtain the future
scheduled meeting dates for e.g. 2024, one can choose the Wednesdays closest to the equivalently
scheduled meeting date in 2023. The exact timing of the meeting dates are far less important for
the model estimation when considering meetings further than a year out, and thus extrapolating
the dates has little impact.

https://news.bloomberglaw.com/capital-markets/sofr-options-wagers-outnumber-eurodollars-for-the-first-time-1?context=search&index=6
https://news.bloomberglaw.com/capital-markets/sofr-options-wagers-outnumber-eurodollars-for-the-first-time-1?context=search&index=6
https://www.federalreserve.gov/monetarypolicy/fomccalendars.htm
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from Refinitiv Eikon. Our data sample consists of daily data starting in June 2018

(following the introduction of SOFR futures on CME) and ending in February 2023,

resulting in a total of 1178 SOFR futures trading days. Since we study the effect

of FOMC meetings, we focus on the short end of the term structure. Furthermore,

futures contracts close to expiry are usually the most liquidly traded. Therefore, we

consider futures contracts with a maturity up to around a year. Futures contracts

referencing SOFR are available as both one-month and three-month contracts. We

include the seven nearest one-month SOFR futures contracts and five nearest quarterly

three-month SOFR futures contracts. In Section 4.6.6 we extend the sample with

recent data on SOFR futures options. Similarly to futures contracts, options on

futures close to expiry are also the most liquid, in particular futures options expiring

within a year. Based on this, we include the four nearest quarterly SOFR futures

options. These have only recently become liquid and our options data sample

therefore starts June 1, 2022, consisting of 170 observations, which include options.

Since the main focus is estimate SOFR variance and not fit the actual smile, for each

option maturity we only consider the out-of-the-money call option closest to being

at-the-money for each contract maturity. Furthermore, we only consider options with

an open interest larger than 100. Finally, we exclude options with a quoted price

less than 0.02, which tend to be less accurate due to the minimum price fluctuation

of the contracts. This usually impacts the nearest options when the options are close

to expiry. SOFR futures options are American options. We therefore adjust option

prices for the early exercise premium as in Broadie, Chernov, and Johannes (2007)

and Bikbov and Chernov (2005) by calculating the Black-implied volatility including

the early exercise feature using a binomial tree. We then calculate the approximated

European option price by inserting the obtained implied volatility in the European

version of the Black formula. When calculating both the American Black-implied

volatility and the subsequent European option price we need to fix a constant rate

for discounting. Here, we use the fitted SOFR curve from the estimation without

options to obtain the prevailing SOFR term rate between the observation date and

the maturity date of the option. Since we only include OTM options with up to a

year of maturity the American feature has little impact on the price of the option.

The median size of the American premium measured in implied volatility is 0.4 basis

points, while the observed implied volatilities range from 48 to 180 basis points, with

a median size of 124 basis points.

4.5.3 Maximum-likelihood and the Kalman filter

We estimate the models using maximum-likelihood in conjunction with the Kalman

filter. This involves casting each model in its state space representation consisting

of a transition and measurement equation. The method is frequently used in the

estimation of dynamic term structure models, we therefore leave out the exact
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steps of the Kalman filtering process.9 Focusing on the state transition equation of

the time-inhomogeneous short-rate process in the jump model, we note that when

estimating the jump model we cannot explicitly identify the individual effect of

scheduled and unscheduled jumps on the term structure. However, once realized we

know both the size of the jump in IORB and if it was scheduled or not from the

following FOMC announcements. Assuming no risk-premium on the unscheduled

jumps, this allows us to pre-estimate the effect of the unscheduled jumps outside

the Kalman filtering algorithm from the empirical frequency and jump sizes. Thus,

under both the P− and Q-measure we fix the unscheduled jump intensity at the

empirical frequency during our sample νP = 0.428 and the unscheduled jump size

distributions are likewise fixed at the empirical mean µP = −0.0075 and variance

(σP )2 = 1.25e− 5.10 For the filtering we then update the target rate with its realized

unscheduled jump sizes during the unscheduled rate changes in March of 2020. Thus,

only considering the scheduled jumps in IORB, we define the state transition equation

of the discretized short rate process rti with ∆t = ti − ti−1 = 1/252 as

rti =

{
rti−1 + ΓP

′
Xj
ti−1

+ ϱti ti ∈ T
rti−1 ti /∈ T

(4.5.1)

where ϱti ∼ N (0, ω2). The conditional variance of rti is therefore ω
2 if ti ∈ T and

zero if ti /∈ T . The zero conditional variance of rti on non-FOMC dates due to

the offline estimation of unscheduled jumps is essential during estimation since it

implies that the policy rate cannot change during the Kalman filtering process, thus

enforcing the piecewise constant pattern of the policy rate between FOMC meeting

dates. Similarly to the continuous model specification, the remaining state variables

in the jump model are simply time-homogeneous Gaussian diffusions and we obtain

the transition equation from the discretized dynamics under the physical measure.

The standard Kalman filter also requires an affine measurement equation. From

Appendix 4.A we note that the one-month futures rates are already affine in the state

variables, whereas we use log transformations and consider futures and overnight

yields to obtain affine expressions for the overnight and three-month rates, i.e.,

yO/N (t, T ) =
1

T − t
log
(
1 + (T − t)RO/N (t, T )

)
, (4.5.2)

y3m(t;S, T ) =
1

T − S
log
(
1 + (T − S)f3m(t;S, T )

)
. (4.5.3)

Denoting by yti the stacked vector of futures and overnight observations for each

observation date ti, the measurement equation can be written as

yti = Ati +BtiXti + ϵti . (4.5.4)

9See Skov and Skovmand (2021) and Skov and Skovmand (2022) for applications and details on
estimating continuous time-homogeneous term structure models on historical SOFR futures data.

10Recall from table 4.1 that we observe two unscheduled jumps of −100 and −50 basis points
during our sample.
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ϵti is a vector of measurement errors, which we assume to be independent for each

observed overnight and futures rate. Furthermore, we assume mean zero Gaussian

errors with standard deviation σrates for each observation. The assumption puts a

tight requirement for the models to simultaneously fit the entire range of overnight

and futures rates.11 When including data on futures options, the measurement

equation becomes non-affine in the state vector. Instead, we apply the extended

Kalman filter, computing the required derivatives using small perturbations in the

state vector. We also assume a separate standard deviation σoptions for the option

measurement errors.

4.6 Empirical Results

4.6.1 Parameter estimates and state variables

Parameter estimates for both the continuous and jump model specifications are

presented in Table 4.2. Focusing on the jump model estimates, we first observe a

near zero estimate for the mean of the stochastic mean process θθ. Jumps in the

policy rate are thus expected to mainly occur at the nearest FOMC dates, with the

Federal Reserve expected to keep its policy rate fixed in the long run. Furthermore,

we find a significant negative correlation between the jump state factors, as indicated

by ρ = −0.94. A positive shock to the expectation of the nearest FOMC meeting

is thus expected to be offset by an almost equivalent decrease in the expectation of

future jumps. Finally, while the market price of risk parameter estimates display

fairly large standard deviations, we see a sizeable scheduled jump risk premium as

implied by ΓP1 = 0.61, which is notably lower than the fixed ΓQ1 = 1.

Figure 4.2 plots the filtered policy related short-rate factor and SOFR-IORB

spread factor for each specification. The figure clearly shows how the continuous

short rate specification is not able to reflect the discontinuous path for IORB, whereas

the jump specification is fully consistent with such a path. Furthermore, during the

recent Fed hiking cycle, in order to compensate for the continuous short-rate path,

the spread factor oscillates around jumps to fit the overnight SOFR fixings.

4.6.2 Log-likelihood contributions and FOMC dates

The continuous and jump models are not nested models, hindering the use of standard

likelihood ratio tests. However, simply comparing the maximized log-likelihoods for

each model in Table 4.2, we note that the jump specification produces a significantly

higher overall log-likelihood value, suggesting a better fit to the observed data. In

order to further study the cause of the difference in log-likelihood values, consider

11Skov and Skovmand (2021) allow for individual variances of each futures observation. This
additional flexibility of the measurement errors makes it harder to identify if the models are
misspecified.
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Jump Continuous
Parameter Estimate Parameter Estimate

κr 1.6988 (0.3072) ρ0 0.0033 (0.0013)
κθ 1.7046 (0.3047) K11 1.8398 (2.9764)
κs 0.0442 (0.0330) K21 2.1303 (0.6243)
θθ -0.0003 (0.0000) K22 0.3574 (0.0180)
θs 0.1056 (0.0777) K31 -2.3387 (2.3426)
σξ 0.0070 (0.0002) K32 -1.9901 (1.6970)
σθ 0.0088 (0.0026) K33 1.8505 (2.9684)
σs 0.0112 (0.0002) κs 200.903 (3.7261)
ρ -0.9447 (0.0138) θs -0.0001 (0.0000)
ω 0.0013 (0.0000) σ31 -0.0025 (0.0013)
λξ 0.4895 (0.8824) σ32 -0.0006 (0.0010)
λθ 0.8414 (0.5654) σ33 0.0036 (0.0006)
λs -0.4783 (0.4175) σs 0.0298 (0.0003)
ΓP1 0.6088 (0.0481) λ1 -0.2539 (0.8591)
- - λ2 0.5479 (0.6389)
- - λ3 -0.6841 (0.7330)
- - λs -1.4819 (1.1976)

σrates × 104 2.74 (0.10) σrates × 104 3.79 (0.07)
Log-likelihood 107,109 Log-likelihood 102,961

Table 4.2: Full sample parameter estimates for the jump and continuous model specifications.
Standard deviations are shown in parenthesis.
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Figure 4.2: The plots display the filtered rt and st state variables in both the continuous
and jump specification.

the daily log-likelihood contributions based on the optimal parameters. The daily

log-likelihood contributions throughout the sample period are plotted in Figure 4.3.

During the first two years of the sample we see occasional downward spikes in the
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Figure 4.3: Full sample daily log-likelihood values based on the optimal parameter estimates.
The vertical dotted lines marks FOMC meeting dates.

daily log-likelihood contributions of both models due to overnight spikes in SOFR,

most notably during the SOFR surge of September 2019. As noted in Section 4.3,

we do not attempt to model spikes in SOFR and the negative spikes in log-likelihood

values are thus to be expected. Likewise, the large drop in log-likelihoods following

the market stress of the COVID-19 Crisis is no surprise. During the subsequent

zero interest rate environment both specifications produce steady log-likelihood

contributions with slightly higher values obtained by the jump-model. The largest

differences are seen during the most recent period in 2022, following the multiple

policy rate hikes by the Fed. Figure 4.4 highlights the log-likelihood values from

January 2022 to the end of our sample in February 2023. The plot shows the distinct

crashes in the log-likelihood values of the continuous model specification following

FOMC meetings, whereas the jump specification correctly captures the scheduled

jumps in the overnight rates at FOMC dates and thus displays little to no difference in

log-likelihood contributions on these dates. The large deterioration in log-likelihood

values clearly reflects the misspecification of the continuous model around scheduled

FOMC dates with policy rate changes.

4.6.3 In-sample fit

In order to compare the ability of each of the models to fit the time variation in the

cross-section of overnight and futures rates, we compute the fitted overnight and

futures rates based on the filtered state variables. The resulting root-mean-square

errors (RMSE) are reported in Table 4.3. Based on the full sample RMSEs, we

observe an improvement across almost all futures rates when comparing the jump

specification to the classical continuous model. Focusing on the overnight rates, the
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Daily Log−Likelihood Contributions
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Figure 4.4: Daily log-likelihood values from January 2022 to the end of our sample based
on the optimal parameter estimates. The vertical dotted lines marks FOMC meeting dates.

continuous model has a surprisingly good fit to overnight SOFR. This is because

of the SOFR spread process, st, which in the continuous model is estimated with a

very strong mean reversion, κs = 200.9, and mean zero such that variations in this

process basically only impact the overnight SOFR fixings and enables the model to

fit the overnight SOFR fixings even when spikes are present. In the jump model, the

SOFR spread accounts for the entire term structure of the spread. Thus, it is not

able to fully capture the spikes during the first part of the sample.

We also report RMSEs for subsamples of the full data period. Specifically, we

consider the first period of our sample from June 1, 2018 to the end of 2022, and the

final part of the sample from January 1, 2022 to February 2, 2023 separately. Studying

the RMSEs of the subsamples, we see that the improvement in the jump specification

is mainly driven by a significant improvement in the most recent period from January

2022 to February 2023. During this period the Federal Reserve increased its policy

rates multiple times following scheduled FOMC meetings. While there was a degree

of uncertainty about the size of the policy rate hikes, the hikes were anticipated

thus creating a highly discontinuous expected path for the policy rate and in turn

SOFR. The jump specification is perfectly capable of fitting these discontinuities

and shows no real deterioration in fit during this period. However, the continuous

specification clearly fails to accurately capture the expected short-rate path as seen

by the significant increase in RMSEs across all overnight and futures rates.



4
.6
.

E
m
p
ir
ic
a
l
R
e
su

lt
s

99

Model Sample O/N Rates One-Month Futures Three-Month Futures
IORB SOFR 1st 2nd 3rd 4th 5th 6th 7th 1st 2nd 3rd 4th 5th

Full 1.0 5.1 2.0 4.0 2.5 2.1 1.8 1.7 1.9 1.5 2.1 2.1 1.7 2.3
Jump Start 1.0 5.5 2.2 4.2 2.3 1.9 1.7 1.6 1.7 1.4 2.1 2.0 1.2 1.9

End 0.7 3.3 1.3 3.5 3.1 2.5 2.0 1.9 2.4 1.6 2.0 2.5 2.7 3.4
Full 6.6 1.4 3.9 5.8 3.9 3.2 2.6 2.3 2.4 2.6 2.2 2.1 1.8 2.8

Continuous Start 4.4 1.4 2.7 3.8 2.4 1.9 1.5 1.4 1.7 1.5 1.9 1.9 1.1 1.8
End 11.1 1.2 6.6 9.7 6.8 5.8 4.6 4.1 3.7 4.8 3.1 2.9 3.0 4.9
Full - - 1.8 1.9 2.1 2.0 1.7 1.2 1.4 0.9 1.2 1.8 1.6 1.6

Jump Start - - 1.7 1.7 1.9 1.8 1.6 1.1 1.2 0.9 1.0 1.6 1.1 1.0
End - - 2.2 2.5 2.4 2.4 1.8 1.4 1.9 0.9 1.7 2.3 2.6 2.7
Full - - 1.6 2.9 3.3 3.0 2.5 1.7 1.5 1.0 1.2 1.5 1.3 1.4

Continuous Start - - 0.9 1.6 1.9 1.7 1.5 1.1 1.0 0.8 0.9 1.3 0.9 0.8
End - - 2.8 5.2 5.8 5.4 4.3 3.1 2.6 1.6 1.8 2.0 2.2 2.6
Full - - - - - - - - - 0.9 1.5 1.2 1.4 01.0

Jump Start - - - - - - - - - 0.7 1.3 1.1 1.0 0.6
End - - - - - - - - - 1.4 2.2 1.6 2.2 1.8
Full - - - - - - - - - 0.4 0.7 1.0 0.9 0.5

Continuous Start - - - - - - - - - 0.4 0.6 0.9 0.8 0.4
End - - - - - - - - - 0.5 1.0 1.2 1.3 0.8

Table 4.3: Comparative RMSEs for the jump and continuous models. ”Start” refers to the subsample covering the first period of our sample
from June 1, 2018 to the end of 2022, and ”End” refers to the final part of the sample from January 1, 2022 to February 2, 2023.
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Figure 4.5: Absolute fitting errors for the nearest futures contracts during the recent Fed
hiking cycle. The futures rates are adjusted to only reflect the implied futures rate for the
remaining reference period of the contract. The vertical lines mark scheduled FOMC dates.

Table 4.3 suggests better fits for the nearest one- and three-month futures contracts

compared to the second nearest contract. This is somewhat misleading and a result

of the fixing in arrears of the futures rate, which means that the nearest futures

contract has already accumulated a part of its underlying overnight SOFR fixings.

Therefore, when a large part of these fixings have already accumulated, even a highly

misspecified model will provide a decent fit to the futures rate. To account for this,

we adjust for the rate that has already accumulated and re-calculate the RMSEs

based on just the part of the futures rate that has not yet fixed.12 Focusing on the

last period of the sample starting from January 1, 2022, we find that the RMSE

for the nearest one-month futures in the continuous model is 11.2 bps compared to

3.0 bps for the jump model. Similarly, for the three-month contract the RMSE is

11.0 and 3.8 bps for the continuous and jump model, respectively. Figure 4.5 plots

the absolute errors between the observed and model-implied futures rates for the

nearest contracts while adjusting for the part of the contract, which has already

accumulated. The graphs clearly show the better fit of the jump model, especially

for the one-month contract around FOMC meetings.

Backwell and Hayes (2022) find that unscheduled jumps are necessary when fitting

12Specifically we adjust the observed and modeled rates by removing the accumulated fixings
and rescaling the resulting rate for the remaining period to reflect an annual rate. E.g. for the
nearest one-month contract with S < t < T we obtain

f1m
adjusted(t;S, T ) =

T − S

T − t

f1m(t;S, T )−
1

T − S

Nt∑
i=1

1

360
Rs

ti


where S ≤ t1, ..., tNt ≤ t.
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the term structure (up to one year) of SONIA. However, in their model the state

variables impact the jump distribution for the next meeting only, and all scheduled

jumps in the short rate after the upcoming meeting have expectation zero. This

implies, that in their model futures contracts starting to accumulate after the next

scheduled meeting are determined solely, by unscheduled jumps. Their model setup

thus necessitates a more rich model structure for the arrival intensity of unscheduled

jumps in order to get a realistic representation of the futures curve. Furthermore,

the need to have a significant unscheduled jump component is likely exacerbated

by the relatively low frequency of scheduled jumps in the UK. Backwell and Hayes

(2022) consider the quarterly meetings of the Bank of England’s Monetary Policy

Committee (MPC) as opposed to the eight annual meetings of the FOMC. In contrast,

our results thus suggest that a pure jump specification of the short rate can fit the

term structure without including stochastic intensity or a state dependent jump size

distribution of the unscheduled jumps (possibly because unscheduled jumps appear

quite rarely). This does not imply that unscheduled jumps are not part of the US

overnight rate dynamic, as clearly seen from the recent COVID-19 crisis. However,

the impact of the unscheduled and scheduled jumps on the term structure cannot be

separately identified from futures contracts and the scheduled FOMC meetings are

sufficiently frequent to allow for the scheduled jumps to capture the term structure

of SOFR futures rates.

Unsurprisingly, and as seen by the RMSEs, correctly modeling the discontinuities

becomes increasingly important the shorter the tenor of the considered rate due to

the averaging of the overnight fixings present in longer tenors. Next, we therefore

investigate the ability of each model to fit subsets of the daily observed rates. We

start by removing the overnight rates from the sample, leaving only the one-month

and three-month futures rates in the estimation. Subsequently, we also remove the

one-month futures contracts, such that only the three-month futures contracts remain.

After removing the overnight rates from the sample, we observe close to identical fits

in the three-month futures rates between the models. However, the jump specification

still significantly outperforms the continuous model in fitting the one-month futures

rate, particularly during the end of the sample. This becomes increasingly important

if one estimates a model based on Federal Funds futures, since these contracts only

exist with a one-month reference period. It suggests that even when the overnight

fixings are not of concern, accurately modeling the stochastic discontinuities of the

underlying overnight rate can significantly improve the fit of a model. Lastly, when

our sample consists of only three-month SOFR futures rates we see a notable decrease

in the RMSEs of the continuous specification, which then outperforms our jump

specification. The tenor structure of this subsample is effectively similar to a sample

of the Eurodollar futures that three-month SOFR futures are replacing, except for

the nearest three-month SOFR futures contract, which due to the accumulation
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during the contract period differs from the nearest Eurodollar futures contract.13

Therefore, when the fixings are based on sufficiently long tenors, as is the case with

contracts referencing LIBOR or three-month SOFR futures contracts, a continuous

specification seems able to fit the term structure even if the underlying overnight

rates are highly discontinuous.

4.6.4 Model implied term rates and CME term SOFR

As a part of the transition to SOFR, the ARRC expressed the need for a forward-

looking term SOFR rate once sufficiently liquid derivative markets referencing SOFR

to support such a rate had developed.14,15 In May 2021, the ARRC chose CME

as the administrator of term SOFR.16 CME Term SOFR for tenors of 1, 3, and 6

month was accepted by the ARRC on July 29, 2021 and later on May 21, 2022 the

12 month tenor was also endorsed.17 With over three trillion USD in loans as of

February 2023, a model should be able to produce forward-looking SOFR term rates

consistent with those published by the CME.18 Using the historical record of CME

Term SOFR rates since the approval by the ARRC as an out of sample benchmark,

we evaluate the ability of each model to produce SOFR term rates consistent with

those published by the CME. In order to accurately compare the model-implied term

rates we follow the conventions used by CME when calculating Term SOFR. CME

Term SOFR Rates are published on all overnight SOFR publishing dates at 5:00 am

and based on CME SOFR futures rates from the previous trading day. The tenor

starts on the second business day (included) after the publication day calculated

using the Following business day convention. Next, the term is calculated for the

relevant tenor using the Modified Following convention with an Actual/360 day count

convention. The rates are based on the five and twelve nearest one- and three-month

futures, respectively.19 Thus, denoting by t the calculation date, S the start date

13This is not to say that the underlying rates are the same: The accumulated overnight rate
underlying three-month SOFR futures is quite distinct from the LIBOR term rate underlying
Eurodollar futures. For a discussion of this issue, see Backwell et al. (2019).

14See https://www.sec.gov/spotlight/fixed-income-advisory-committee/arrc-faqs-

041519.pdf
15Despite the name, Term SOFR does not reflect actual term lending. Rather, it is derived from

the futures market. We refer to Backwell et al. (2019), Skov and Skovmand (2022), and Filipović
and Trolle (2013) for a discussion on term rates.

16See https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2021/20210521-

ARRC-Press-Release-Term-Rate-RFP.pdf
17See https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2021/ARRC_Press_

Release_Term_SOFR.pdf and https://www.newyorkfed.org/medialibrary/Microsites/arrc/

files/2022/ARRC_CME_12-Month_SOFR_Term_Rate.pdf]
18Updated numbers on the use of Term SOFR is available at https://www.cmegroup.com/market-

data/cme-group-benchmark-administration/term-sofr.html
19Full documentation on the calculation of CME Term SOFR is available at

https://www.cmegroup.com/market-data/files/cme-term-sofr-reference-rates-benchmark-

methodology.pdf

https://www.sec.gov/spotlight/fixed-income-advisory-committee/arrc-faqs-041519.pdf
https://www.sec.gov/spotlight/fixed-income-advisory-committee/arrc-faqs-041519.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2021/20210521-ARRC-Press-Release-Term-Rate-RFP.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2021/20210521-ARRC-Press-Release-Term-Rate-RFP.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2021/ARRC_Press_Release_Term_SOFR.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2021/ARRC_Press_Release_Term_SOFR.pdf
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2022/ARRC_CME_12-Month_SOFR_Term_Rate.pdf]
https://www.newyorkfed.org/medialibrary/Microsites/arrc/files/2022/ARRC_CME_12-Month_SOFR_Term_Rate.pdf]
https://www.cmegroup.com/market-data/cme-group-benchmark-administration/term-sofr.html
https://www.cmegroup.com/market-data/cme-group-benchmark-administration/term-sofr.html
https://www.cmegroup.com/market-data/files/cme-term-sofr-reference-rates-benchmark-methodology.pdf
https://www.cmegroup.com/market-data/files/cme-term-sofr-reference-rates-benchmark-methodology.pdf
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Model Tenor
One-Month Three-Month Six-Month Twelve-Month

Jump 3.1 2.0 2.0 2.7
Continuous 9.3 3.7 2.2 2.4

Table 4.4: Out of sample CME Term SOFR RMSEs.

and T the end date of the tenor, we calculate the model-implied term SOFR as

RsTerm(t;S, T ) =
360

T − S

(
ps(t, S)

ps(t, T )
− 1

)
. (4.6.1)

where ps(t, T ) is the SOFR zero coupon bond calculated as ψ(0, t, T ) in Appendix 4.A.

There are, however, still multiple reasons for the term rates to differ. First, the CME

methodology computes futures rates from forward rates and thus ignores the futures

convexity correction (see Skov and Skovmand (2021)). Second, CME term SOFR

rates are based on discrete compounding whereas we use a continuously compounded

approximation. Finally, CME Term SOFR uses aggregated futures prices between

7:00am and 2:00pm CT, while we estimate the models using end-of-day prices. Table

4.4 reports the RMSEs between the model-implied and observed CME Term SOFR

rates. As with the futures rates, we note a substatial improvement (relative to the

continuous model) in the fit of the one-month term rate. Already at the three-month

tenor the improvement decreases notably, while the errors become similar in size at

the six- and twelve-month tenors. The agreement between the jump model and the

CME term rates is no surprise, as the calculation of CME Term SOFR is based on

a step-function for the SOFR forward rates, which are allowed to jump on FOMC

meeting dates as in Heitfield and Park (2019). The results further emphasize the need

to include scheduled jumps to accurately capture the dynamics of the short end of the

SOFR curve if CME Term SOFR continues to gain popularity as a forward-looking

term rate benchmark.

4.6.5 Overnight policy rate forecasts

In this section, we investigate the ability of each model specification to forecast future

values of the IORB. In order to obtain real time estimates of the model-forecasted

IORB fixings, we perform rolling re-estimations starting from January 3, 2022 to the

end of our data period in February 2023. Each estimation is therefore based on at

least three and a half years of daily data from June 2018 to January 2022.20 In the

20While the focus of our study is on SOFR and SOFR futures, similar models estimated on EFFR
and Federal Funds futures data would allow for much longer data samples. Also, the EFFR-IORB
spread is less volatile compared to the SOFR-IORB spread, which might further improve on the
accuracy of the forecasted IORB.
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Figure 4.6: The figure compares the one-, three-, and six-month IORB forecasts for both
the continuous and jump specification. The plot displays the time t forecasts based on rolling
re-estimations as well as the future realized value of the IORB.

jump specification, we calculate the forecasted IORB value under the P -measure as

EPt [ru] = rt +

η(u)−1∑
j=η(t)

EPt
[
JDτj

]
+ EPt

NPu −1∑
i=NPt

Zi


= rt +

η(u)−1∑
j=η(t)

(
γP + ΓP

′
EPt
[
Xj
τj−

])
+ (u− t)νPµP (4.6.2)

with each EPt
[
Xj
τj−

]
computed as in Eq. (4.A.15), but under the P -dynamics.

In Figure 4.6, we plot the IORB forecasts against the actual subsequent realization

of the policy rate. Focusing on the one-month IORB forecast, we note that this

results in at most one FOMC meeting during the forecasting period. The forecasted

IORB value for IORB in the jump specification is therefore still highly discontinuous

with the forecasted IORB values jumping whenever a new FOMC meeting enters the

forecasting period. When we observe an FOMC meeting during the forecasting period

the forecasted IORB changes as the market expectations about the future FOMC

decision changes, however, when there is no FOMC meeting during the forecasting

period, the only change in the forecasted IORB is due to the very slight changes in the

filtered rt value because of the rolling re-estimations. Also, with no FOMC meetings

during the forecasting period the only difference between the current and forecasted

value of IORB is due to the impact of the constant intensity, unscheduled jumps.

These features of the jump specification result in very different short-term policy

forecasts compared to the one-month IORB forecasts in the continuous model, which

continuously change during the rolling re-estimations. Next, for the three-month
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Model One-Month Three-Month Six-Month
Mean RMSE Mean RMSE Mean RMSE

Jump 1.2 11.4 -28.0 40.0 -136.0 138.9
Continuous -6.6 21.4 -35.5 45.1 -130.0 132.5

Random Walk -34.0 47.4 -114.3 122.6 -242.3 247.1

Table 4.5: IORB Forecast errors summarized as mean and and root-mean-squared errors.
All values are in basis points.

and six-month forecasts we observe that as the forecasting period increases and

multiple scheduled FOMC meetings become present during the forecasting period

the forecasted policy rate of the jump specification becomes increasingly diffusive,

resembling the continuous specification.

Table 4.5 lists summary statistics for the IORB forecast errors for both model

specifications. As a reference we also include the static forecasts implied by a random

walk model. Comparing the one-month forecast errors, we note that the jump

specification greatly outperforms the continuous specification. At a three-month

term, however, the relative increase in forecast performance is less evident, while at

a six-month term the performance of both models significantly deteriorates, with

the continuous version performing slightly better. The sizeable negative three- and

six-month mean forecast errors reported are of course a result of the large and

frequent policy rate hikes by the Fed during 2022, as also indicated by the even

greater negative mean forecasting errors of the random walk model. The results

clearly reflect the difficulty in obtaining accurate policy rate estimates beyond the

very short term. However, in the short term the forecasting performance can be

significantly improved by accurately incorporating the scheduled jumps following

FOMC meetings.

4.6.6 Including SOFR futures options data

In this section, we extend the data sample by including data on three-month SOFR

futures options. As noted in Section 4.5, these contracts have only recently started

to trade and our study is thus preliminary. Furthermore, neither of the considered

models include stochastic volatility and accurately capturing the option dynamics

cannot be expected.21 Instead, the main purpose is to study the impact of scheduled

jumps on implied volatilities.

Table 4.6 reports the RMSEs for the implied volatilities. These indicate a sub-

stantially better fit by the continuous model specification. Due to the expiration

of the option before the three-month accumulation period, the three-month SOFR

21An immediate way to include stochastic volatility in the jump model would be to allow for
state dependence in the the variance of the normally distributed scheduled jumps. However, we
note that a part of the volatility also arises from the volatility of the processes determining the
mean of the jump size distribution.
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Model Three-Month Option
1st 2nd 3rd 4th

Jump 60.5 47.2 33.7 20.1
Continuous 16.7 28.8 30.2 24.3

Table 4.6: Black implied volatility fitting errors summarized as root-mean-squared errors.
All values are in basis points.
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Figure 4.7: Nearest one-month at-the-money futures call option Black implied volatily
from the jump model considering both a full sample estimation and a reducued sample period
starting after spikes in overnight SOFR disappeared. The vertical lines mark scheduled
FOMC dates.

futures option greatly resembles the Eurodollar futures option it is supposed to

replace. Thus, it is an option on a forward-looking three-month rate, the dynamics

of which the continuous specification is able to capture. The results are consistent

with those in Section 4.6.3, showing that the continuous specification performs well

when a sample of only three-month futures contracts are considered. Furthermore,

the additional Brownian motion allows for a more flexible volatility specification in

the continuous model. However, based on our previous analysis, one may not expect

the continuous model to be able to accurately model the one-month SOFR futures

option. This is particularly true for the nearest contract since, as noted in Section

4.4, the one-month option expire at the end of the accumulation period. The constant

volatility continuous model results in a linear decay in implied volatility during

the accumulation period. As shown in Figure 4.7, the jump model, even without

stochastic volatility, produces kinks in implied volatility around FOMC dates. Also,

implied volatilities are dependent on the existence and timing of an FOMC meeting

during the futures reference month. The validity of this behaviour can of course only

be verified if these contracts start to trade in the market. The graph based on the
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estimation on the full data set suggests that the majority of the volatility is not due

to the scheduled jumps, but rather the unscheduled jumps and the SOFR-IORB

spread process. However, this result is largely due to the spikes observed at the

beginning of the sample, which in the estimation result in substantial volatility for

the spread process. Consequently, the contribution of scheduled jumps (i.e., FOMC

meeting dates) to the time evolution of implied volatility of the one-month options is

much more evident when the initial part of the sample is excluded from the model

estimation. Arguably, this is a better reflection of market reality going forward, as

policy action by the Fed seems to have prevented the recurrence of SOFR spikes in

recent years.

4.7 Conclusion

The ongoing benchmark transition from LIBOR to Risk-Free Rates has made the

overnight rate the main building block in fixed income products. Studying the changes

in SOFR in relation to US policy rates, we argue that the primary policy rate affecting

changes in the level of SOFR is the IORB. Inspired by this, we develop a dynamic

term structure model, which is able to jointly model IORB, SOFR and SOFR futures

rates. Comparing our model to a standard time-homogeneous continuous affine

term structure model, we find that accounting for scheduled jumps, identified by the

FOMC meeting calendar, is necessary to accurately capture shorter-term interest

rate dynamics. However, modeling the scheduled jumps becomes less important as

the term of the rate is increased. In particular, when only three-month futures rates

are considered, the diffusive dynamics of the continuous model are able to describe

the time-variation in the cross-section of futures rates.

As the SOFR futures options market matures, an immediate addition for future

research would be to extend our framework with stochastic volatility. This would

be of particular interest if options on one-month SOFR futures start to trade more

actively, as their shorter tenor and expiration date at the end of the underlying

futures contract month lead a model incorporating scheduled jumps to predict a

behaviour that is quite distinct from the behaviour predicted by a more traditional

interest rate term structure model.

4.A Affine Pricing of Futures with Scheduled Jumps

Pricing in the standard continuous affine setup is well-known and we refer to Bikbov

and Chernov (2005) or Feldhütter, Trolle, and Schneider (2008) for pricing of

Eurodollar futures and futures options and Skov and Skovmand (2022) for a treatment

using SOFR futures. When computing the time t futures rates in the jump setup we
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will consider the auxiliary unscheduled jump process ĴPs for s ≥ t defined by

dĴPs = dJPs , ĴPt = 0. (4.A.1)

4.A.1 Overnight rates

We calculate the model implied overnight IORB as the simple rate

R(t, t+ d) =
1

d

(
1

p(t, t+ d)
− 1

)
(4.A.2)

with d = 1
360 the day count fraction and p(t, t+ d) = EQt

[
e−

∫ t+d
t

r(s)ds
]
, which we

calculate as

p(t, t+ d) = e−drtEQt
[
e
−

∫ t+d
t

∑η(u−)−1

j=η(t)
JDτj

+ĴPu du
]
. (4.A.3)

When computing the overnight rate, we assume that at the time of observation

any scheduled jumps either have already occurred and thus are included in rt or

are scheduled at least one day ahead and therefore do not impact the overnight

rate.22 Focusing on the unscheduled jumps and recalling that ĴPt = 0 we calculate

EQt
[
e−

∫ t+d
t

ĴPu du
]
= eα

J (d) where αJ(τ) solves the ODE

∂αJ(τ)

∂τ
= νP

(
e−µ

P τ+
(σP τ)2

2 − 1

)
, αJ(0) = 0. (4.A.4)

Similarly, the SOFR fixings are defined as

Rs(t, t+ d) =
1

d

(
1

ps(t, t+ d)
− 1

)
(4.A.5)

where ps(t, t+ d) includes the SOFR-IORB spread process. From the independence

of the spread process and unscheduled jumps we have (again assuming that the

scheduled jumps do not affect the overnight tenor)

ps(t, t+ d) = EQt
[
e−

∫ t+d
t

ru+sudu
]
= e−drtEQt

[
e−

∫ t+d
t

ĴPu du
]
EQt
[
e−

∫ t+d
t

sudu
]
.

(4.A.6)

It only remains to compute the contribution from the spread process, which is given

by EQt
[
e−

∫ t+d
t

sudu
]
= eα

s(d)+β(d)st where αs(τ) and βs(τ) are as in the Vasicek

model

βs(τ) =
e−κ

sτ − 1

κs
(4.A.7)

αs(τ) = −θsτ + (σs)2τ

2(κs)2
+

(
θs

κs
− (σs)2

(κs)3

)
(1− e−κ

sτ ) +
(σs)2(1− e−2κsτ )

4(κs)3
. (4.A.8)

such that

ps(t, t+ d) = e−drteα
J (d)+αs(d)+β(d)st (4.A.9)

22In reality this is always the case, since announced changes to the policy rate are effective at a
one-day lag.
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4.A.2 Three-month futures

We consider the continuously compounded approximation of the discrete compounding

in Eq. (4.4.3)

f3m(t;S, T ) = EQt
[

1

T − S

(
e
∫ T
S
rsudu − 1

)]
. (4.A.10)

By the independence of the scheduled jumps we can write

EQt
[
e
∫ T
S
rsudu

]
= e(T−S)rtEQt

[
e
∫ T
S

∑η(u−)−1

j=η(t)
JDτj

du
]
EQt
[
e
∫ T
S
ĴPu +sudu

]
(4.A.11)

For the scheduled jumps we note that the integral can be rewritten as∫ T

S

η(u−)−1∑
j=η(t)

JDτj du =

η(T−)−1∑
j=η(t)

min(T − S, T − τj)J
D
τj . (4.A.12)

Repeated use of iterated expectations then yields

EQ
t

[
e
∑η(T−)−1
j=η(t)

min(T−S,T−τj)J
D
τj

]
= EQ

t

[
e
∑η(T−)−2
j=η(t)

min(T−S,T−τj)J
D
τjEQ

τη(T−)−1−

[
e
min(T−S,T−τη(T−)−1)J

D
τη(T−)−1

]]

= EQ
t

[
e
∑η(T−)−2
j=η(t)

min(T−S,T−τj)J
D
τj e

min(T−S,T−τη(T−)−1)(γ+Γ′Xjτη(T−)−1−)+
min(T−S,T−τη(T−)−1)2

2
ω2

]

= EQ
t

[
e
∑η(T−)−3
j=η(t)

min(T−S,T−τj)J
D
τj

× EQ
τη(T−)−2−

[
e
min(T−S,T−τn−1)J

D
τη(T−)−2 e

min(T−S,T−τη(T−)−1)(γ+Γ′Xjτη(T−)−1−)+
min(T−S,T−τη(T−)−1)2

2
ω2]]

= EQ
t

[
e
∑η(T−)−3
j=η(t)

min(T−S,T−τj)J
D
τj e

min(T−S,T−τη(T−)−2)(γ+Γ′Xjτη(T−)−2−)+
min(T−S,T−τη(T−)−2)2

2
ω2

× EQ
τη(T−)−2−

[
emin(T−S,T−τη(T−)−1)(γ+Γ′Xjτn−)+

min(T−S,T−τη(T−)−1)2

2
ω2

]]
= EQ

t

[
e
min(T−S,T−τη(t))(γ+Γ′Xjτη(t)−

)+
min(T−S,T−τη(t))

2

2
ω2

× EQ
τη(t)−

[
e
min(T−S,T−τη(t)+1)(γ+Γ′Xjτη(t)+1−)+

min(T−S,T−τη(t)+1)2

2
ω2

. . .

× EQ
τη(T−)−2−

[
e
min(T−S,T−τη(T−)−1)(γ+Γ′Xjτη(T−)−1−)+

min(T−S,T−τη(T−)−1)2

2
ω2]

. . .
]]

= eα
j(t;S,T )+βj(t;S,T )′Xjt (4.A.13)

Since Xj
t is Gaussian we have an analytical solution for the Laplace transform and

can simply iterate through the expectations using the actual FOMC dates to get

αj(t;S, T ) and βj(t;S, T ) with no need to assume an approximate equidistant grid

as in Piazzesi (2005). The Gaussian conditional Laplace transform is

EQt
[
ea+b

′Xju

]
= eaeb

′EQt [X
j
u]+ 1

2 b
′VQt [X

j
u]b (4.A.14)
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with mean

EQt
[
Xj
u

]
=
(
I − e−K

j(u−t)
)
θj + e−K

j(u−t)Xj
t , (4.A.15)

and variance

VQt
[
Xj
u

]
=

∫ u

t

e−K
j(ν−t)ΣjΣj

′
(
e−K

j(ν−t)
)′
dν. (4.A.16)

We calculate the variance using the analytical solution in Fisher and Gilles (1996).

The unscheduled jumps and stochastic SOFR spread contribution can be calculated

using the tower property and standard methods on affine jump diffusions from Duffie,

Pan, and Singleton (2000) as

EQt
[
e
∫ T
S
ĴPu +sudu

]
= EQt

[
EQS
[
e
∫ T
S
ĴPu +sudu

]]
= EQt

[
eα

AJD(T−S)+βAJD(T−S)s(S)+(T−S)ĴP (S)
]

where βAJD(τ) and αAJD(τ) solve the ODEs

∂βAJD(τ)

∂τ
= −κsβAJD(τ) + 1, βAJD(0) = 0, (4.A.17)

∂αAJD(τ)

∂τ
= κsθsβAJD(τ) +

1

2

(
σsβAJD(τ)

)2
+ νP

(
eµ

P τ+
(σP τ)2

2 − 1

)
, αAJD(0) = 0.

(4.A.18)

Next, we calculate

EQt
[
eα

AJD(T−S)+βAJD(T−S)s(S)+(T−S)ĴP (S)
]
= eα̃

AJD(S−t)+β̃AJD(S−t)st (4.A.19)

where β̃AJD(τ) and α̃AJD(τ) solve the ODEs

∂β̃AJD(τ)

∂τ
= −κsβ̃AJD(τ), (4.A.20)

∂α̃AJD(τ)

∂τ
= κsθsβ̃AJD(τ) +

1

2

(
σsβ̃AJD(τ)

)2
+ νP

(
eµ

P (T−S)+ (σP (T−S))2

2 − 1

)
(4.A.21)

with initial conditions β̃AJD(0) = βAJD(T − S) and α̃AJD(0) = αAJD(T − S).

4.A.3 One-month futures

Again, we consider the common continuous approximation of the sum in Eq. (4.4.2)

f1m(t;S, T ) =
1

T − S
EQt

[∫ T

S

rsudu

]
. (4.A.22)

We treat the scheduled jumps, unscheduled jumps, and stochastic spread separately

EQt

[∫ T

S

rsudu

]
= (T − S)rt + EQt

∫ T

S

η(u−)−1∑
j=η(t)

JDτj du


+ EQt

[∫ T

S

ĴPu du

]
+ EQt

[∫ T

S

sudu

]
.
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Applying Eq. (4.A.12) and using iterated expectations we get

EQt

∫ T

S

η(u−)−1∑
j=η(t)

JDτj du

 = EQt

η(T−)−1∑
j=η(t)

min(T − S, T − τj)J
D
τj


= EQt

η(T−)−1∑
j=η(t)

min(T − S, T − τj)EQτj−
[
JDτj

]
= EQt

η(T−)−1∑
j=η(t)

min(T − S, T − τj)
(
γ + (Γ)′Xj(τj−)

)
=

η(T−)−1∑
j=η(t)

min(T − S, T − τj)(γ + (Γ)′EQt
[
Xj(τj−)

]
).

(4.A.23)

Thus we only need to calculate mean of the underlying state variables given by

(4.A.15). Since the unscheduled jumps are modeled as a compound Poisson process

we get ∫ T

S

EQt
[
ĴPu

]
du =

1

2
(T − S)

2
νPµP . (4.A.24)

And lastly the continuous spread is calculated as∫ T

S

EQt [su] du = (T − S)θs +
e−κ

s(S−t) − e−κ
s(T−t)

κs
(st − θs). (4.A.25)

4.A.4 Three-month SOFR futures options

Having adjusted our options data for the American feature, we consider the time

t value of a European call option on a three-month SOFR futures with reference

quarter from time S to T . The option expires at time u with u < S. Specifically, for

three-month quarterly SOFR futures options traded on the CME the option expires

on the last Friday before the Wednesday when the reference quarter of the contract

begins. Let k = 100−K then

π3m(t;u, S, T ) = EQt

[
e−

∫ u
t
rszdz

(
F 3m(u;S, T )−K

)+]
≈ EQt

[
e−

∫ u
t
rszdz

(
k − 100f3m(u;S, T )

)+]
= EQt

[
e−

∫ u
t
rszdz

(
k − 100

(
1

T − S
EQu
[
e
∫ T
S
rszdz

]
− 1

T − S

))+
]
.

(4.A.26)

Where the approximation is from the continuously compounded approximation of

the futures rate. Let α3m(u;S, T ) = αj(u;S, T ) + α̃AJD(S − u) and β3m(u;S, T ) =



112 Chapter 4. Schlögl, Skov, & Skovmand (2023)

(T − S, βj(u;S, T ), β̃AJD(S − u))′ then we can write (4.A.26) as

100

T − S
eα

3m(u;S,T )EQt

[
e−

∫ u
t
rszdz

(
k̂ − eβ

3m(u;S,T )′Xu
)
1(β3m(u;S,T )′Xu)<log(k̂))

]
=

100

T − S
eα

3m(u;S,T )
(
k̂G0,β3m(u;S,T )(log(k̂)−Gβ3m(u;S,T ),β3m(u;S,T )(log(k̂)

)
(4.A.27)

with k̂ = e−α
3m(u;S,T )

(
k(T−S)

100 + 1
)
and

Ga,b(y) = EQt
[
e−

∫ u
t
rszdzea

′Xu1(b′Xu<y)

]
. (4.A.28)

We calculate Ga,b(y) using its Fourier transform

Ĝa,b(y) =

∫
R
eiwydGa,b(y)

= EQt
[
e−

∫ u
t
rszdze(a+iwb)

′Xu
]
= ψ(a+ iwb, t, u). (4.A.29)

Let a = (ar, aj , aAJD)′ and b = (br, bj , bAJD)′ be the coefficients referring to the

short-rate, scheduled jump factors and spread factor, respectively. We then calculate

the transform as

ψ(a+ iwb, t, u) = EQt
[
e−

∫ u
t
rszdze(a+iwb)

′Xu
]

= EQt
[
e
−(u−t)rt−

∫ u
t

∑η(z−)−1

j=η(t)
JDτj

dz−
∫ u
t
ĴPz +szdz

× e(a
r+iwbr)ru+(aj+iwbj)′Xju+(aAJD+iwbAJD)su

]
= e(a

r+iwbr−(u−t))rtEQt
[
e
∑η(u−)−1

j=η(t)
(ar+iwbr−(u−τj))JDτj e(a

j+iwbj)′Xju

]
(4.A.30)

× EQt
[
e−

∫ u
t
sz+Ĵ

P
z dze(a

AJD+iwbAJD)su+(ar+iwbr)ĴPu

]
. (4.A.31)

The scheduled jumps in (4.A.30) can be calculated by repeated use of iterated

expectations using a similar approach to (4.A.13)

EQt
[
e
∑η(u−)−1

j=η(t)
(ar+iwbr−(u−τj))JDτj e(a

j+iwbj)′Xju

]
= EQt

[
e
(ar+iwbr−(u−τη(t)))(γ+Γ′Xjτη(t)−

)+
(ar+iwbr−(u−τη(t)))

2

2 ω2

× EQτη(t)−
[
e
(ar+iwbr−(u−τη(t)+1))(γ+Γ′Xjτη(t)+1−)+

(ar+iwbr−(u−τη(t)+1))2

2 ω2

. . .

× EQτη(T−)−2−

[
e
(ar+iwbr−(u−τη(T−)−1))(γ+Γ′Xjτη(T−)−1−)+

(ar+iwbr−(u−τη(T−)−1))2

2 ω2

× EQτη(T−)−1−

[
e(a

j+iwbj)′Xju

]]
. . .
]]

(4.A.32)
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The term in Eq. (4.A.31) is a standard time-homogeneous affine jump diffusion,

which we calculate as

EQt
[
e−

∫ u
t
sz+Ĵ

P
z dze(a

s+iwbs)su+(ar+iwbr)ĴPu

]
= eα

ψ(u−t)+βψ(u−t)st (4.A.33)

where αψ(τ)) and βψ(τ) solve the ODEs

∂βψ(τ)

∂τ
= −κsβψ(τ)− 1, (4.A.34)

∂αψ(τ)

∂τ
= κsθsβψ(τ) +

1

2

(
σsβψ(τ)

)2
+ νP

(
eµ

P (ar+iwbr−τ)+ (σP (ar+iwbr−τ))2
2 − 1

)
(4.A.35)

with initial conditions αψ(0) = 0 and βψ(0) = aAJD + iwbAJD. From the the Fourier

inversion theorem we then obtain

Ga,b(y) =
ψ(a, t, u)

2
− 1

π

∫ ∞

0

ψ(a+ iwb, t, u)e−iwy

w
dw. (4.A.36)

During estimation we truncate the integral at 5000 and evaluate it with Gauss–Legendre

quadrature using 50 points of the integral. We note that due to the time-in-

homogeneity we get different α3m(u, S, T ) and β3m(u, S, T ) for each futures contract

that the options are referencing. However, we only consider options referencing the

quarterly three-month SOFR futures contracts with fixed accumulations periods.

This results in a manageable set of initial conditions for our estimation. Note that

this is very different from something like a caplet where the accumulation period

would change for each observation date and thus require new initial values for each

observation date in the sample.

4.A.5 One-month SOFR futures options

We again disregard the American feature of the one-month futures option and

consider the time t value of a European call option on a one-month SOFR futures

with reference month from time S to T . The one-month option expires at the end of

the accrual period of the underlying futures contract, i.e. at time T

π1m(t;S, T ) = EQt

[
e−

∫ T
t
rszdz

(
F 1m(T ;S, T )−K

)+]
≈ EQt

[
e−

∫ T
t
rszdz

(
100(1− f1m(T ;S, T ))−K

)+]
=

100

T − S
EQt

e− ∫ T
t
rszdz

(
k −

∫ T

S

rszdz

)+


=
100

T − S
ps(t, T )EQTt

(k − ∫ T

S

rszdz

)+
 . (4.A.37)
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Where k = T−S
100 (100 −K) and QT denotes the T -forward measure defined by the

ps(t, T ) bond numeraire. The expectation in (4.A.37) can then be calculated using

Theorem 4 in Filipović, Larsson, and Trolle (2017) as

EQTt

(k − ∫ T

S

rszdz

)+
 =

1

π

∫ ∞

0

Re

(
q̂(h+ iw)

(h+ iw)2

)
dw (4.A.38)

with q̂(x) = EQTt

[
ex(k−

∫ T
S
rszdz)

]
where x ∈ C and h > 0 such that q̂(h) < ∞. in

order to compute q̂(x) we first change back to the risk-neutral measure

q̂(x) = EQTt

[
ex(k−

∫ T
S
rszdz)

]
=

1

ps(t, T )
EQt

[
e−

∫ T
t
rszdzex(k−

∫ T
S
rszdz)

]
(4.A.39)

Note that the ps(t, T ) in the denominator cancels out when inserted in (4.A.37).

Focusing on the nearest futures option with t ≥ S we include the accumulated part

of the rate in the modified strike as k̂ = k −
∫ t
S
rszdz such that

q̂(x) =
exk̂

ps(t, T )
EQt

[
e−(1+x)

∫ T
t
rszdz

]
= e−(T−t)(1+x)rtEQt

[
e
∑η(T−)−1

j=η(t)
−(u−τj)(1+x)JDτj

]
EQt
[
e−(1+x)

∫ T
t
sz+Ĵ

P
z dz
]
.

(4.A.40)

Again, we calculate the first expectation as in (4.A.13)

EQt
[
e
∑η(T−)−1

j=η(t)
−(u−τj)(1+x)JDτj

]
= EQt

[
e
−(u−τη(t))(1+x)(γ+Γ′Xjτη(t)−

)+
((u−τη(t))(1+x))

2

2 ω2

× EQτη(t)−
[
e
−(u−τη(t)+1)(1+x)(γ+Γ′Xjτη(t)+1−)+

((u−τη(t)+1)(1+x))2

2 ω2

. . .

× EQτη(T−)−2−

[
e
−(u−τη(T−)−1)(1+x)(γ+Γ′Xjτη(T−)−1−)+

((u−τη(T−)−1)(1+x))2

2 ω2]
. . .
]]

(4.A.41)

The second expectation is given by

EQt
[
e−(1+x)

∫ T
t
sz+Ĵ

P
z dz
]
= eα

q(T−t)+βq(T−t)st (4.A.42)

where αq(τ)) and βq(τ) solve the ODEs

∂βq(τ)

∂τ
= −κsβq(τ)− (1 + x), (4.A.43)

∂αq(τ)

∂τ
= κsθsβq(τ) +

1

2
(σsβq(τ))

2
+ νP

(
eµ

P (−(1+x)τ)+
(σP (−(1+x)τ))2

2 − 1

)
(4.A.44)
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with initial conditions αq(0) = βq(0) = 0. For longer dated options with t < S, q̂(x)

can be computed using iterated expectations

q̂(x) =
exk

ps(t, T )
EQt

[
e−

∫ S
t
rszdzEQS

[
ex(−(1+x)

∫ T
S
rszdz)

]]
. (4.A.45)
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