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Abstract

In this thesis I demonstrate how certain quantum group structures can be realised from Wilson line
operators in perturbative Chern-Simons theory. The relevant theory for this purpose is a so called
split Chern-Simons theory on a manifold with boundaries, for which the associated Lie algebra
g admits a decomposition into the direct sum of a dual pair of maximal isotropic subalgebras (a
Manin triple). The thesis consists of an introduction and two papers.

The first paper is joint work with Dani Kaufman. We study the limit when two parallel Wilson lines
carrying different representations of g come together. By explicitly computing the corresponding
Feynman integrals we show, up to leading order in perturbation theory, that this operation produces
a single Wilson line associated to the tensor product representation in the quantized universal
enveloping algebra Uℏ(g). In combination with a known result of recovering the classical r-matrix
from crossing Wilson lines in the same theory, this suggests that the category of Wilson lines is
equivalent to the category of representations of Uℏ(g) as a braided tensor category. We point out
a connection of this theory with the Fock-Goncharov moduli spaces of local systems.

In the second paper, I study Chern-Simons theory for a Lie algebra that decomposes into the
direct sum of a pair of dual subalgebras of which one of them is abelian. The resulting theory can
be identified with a topologically twisted 3d N = 4 gauge theory. For this Lie algebra Feynman
diagrams become particularly simple and I show, at all orders in perturbation theory, that the
expectation value of a pair of crossing Wilson line operators is a solution to the quantum Yang-
Baxter equation. My proof is based on a known technique for constructing knot invariants from
Wilson loops in Chern-Simons perturbation theory, using the Axelrod-Singer compactification of
the configuration space of Feynman diagram vertices.
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Resumé

I denne afhandling demonstrerer jeg hvordan bestemte kvantegruppestrukturer kan realiseres fra
Wilson linje operatorer i perturbativ Chern-Simons teori. Den relevante teori til dette formål er
en såkaldt split Chern-Simons teori på en mangfoldighed med rand, for hvilken den tilhørende Lie
algebra tillader en dekomposition som en direkte sum af et dualt par af maksimale isotropiske
delalgebraer. Afhandlingen består af en introduktion og to artikler.

Den første artikel er et samarbejde med Dani Kaufman. Vi studerer grænsen når to Wilson
linjer, der bærer på forskellige representationer af g, kommer tæt på hinanden. Ved eksplicit at
udregne de tilhørende Feynman integraler, viser vi, op til første orden i perturbationsteori, at
denne operation producerer en enkelt Wilson linje associeret til tensorprodukt-representationen i
den kvantiserede universelle omsluttende algebra Uℏ(g). I kombination med et kendt resultat om
udledningen af en klassisk r-matrix fra krydsende Wilson linjer i den samme teori, peger dette på
at kategorien af Wilson linjer er ækvivalent med kategorien af representationer af Uℏ(g) som en
flettet tensorkategori. Vi påpeger en forbindelse af denne teori med Fock-Goncharov moduli rum
a lokale systemer.

I den anden artikel studerer jeg Chern-Simons teori i en opsætning tilsvarende den første artikel,
men for en Lie algebra der kan dekomponeres til en direkte sum af et par af duale delalgebraer,
af hvilken den ene er abelsk. Den resulterende teori kan identificeres med en topologisk tvisted
3d N = 4 gauge teori. For denne Lie algebra bliver Feynman diagrammer særligt simple, og jeg
viser, til alle ordner i perturbationsteori, at forventningsværdien af et par krydsende Wilson linje
operatorer er en løsning på Yang-Baxter ligningen. Mit bevis er baseret på en velkendt teknik
til at konstruere knudeinvarianter fra Wilson loop i Chern-Simons perturbationsteori, som bruger
Axelrod-Singer kompaktificeringen af konfigurationsrummet af knuder i Feynman diagrammer.
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Thesis Statement

This thesis consists of an introduction and two papers.

The first paper is joint work with Dani Kaufman and is publicly available on arXiv: 2307.10830.

The second paper is partially based on material included in my master’s thesis as part of the 4+4
PhD program at the University of Copenhagen. I submitted my master’s thesis in August 2021
and defended in September 2021. The paper is publicly available on arXiv: 2309.15833.
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Chern-Simons perturbation theory

The underlying gauge theory which forms the foundation for the work done in this thesis a three-
dimensional topological quantum field theory known as Chern-Simons. In this introduction I give
a basic non-formal introduction to the concepts of the theory that will be relevant for the topics
studied in the two papers.

Chern-Simons theory is defined for a general three-manifold M , a Lie group G and a principal G
bundle E ! M by the action functional

SCS(A) =
1

2π

∫

M

Tr(A ∧ dA) +
1

3
Tr(A ∧ [A,A]), (1)

which encodes all dynamics of the theory. Here, the gauge field A is a connection on E given
locally as a one-form on M taking value in the Lie algebra g of G, and Tr : g⊗ g ! R denotes an
invariant non-degenerate bilinear pairing on g. The above gauge theory was developed by Edward
Witten in a seminal paper [15], where he showed through exact (non-perturbative) methods that
it provides a framework for realising the Jones knot polynomials as the expectation value of at set
of observables called Wilson loops. Chern-Simons theory has since then proven widely successful
for its capacity of producing non-trivial invariants of three-manifolds.

In this thesis I study Chern-Simons theory in the formalism of perturbation theory. This means that
the expectation value of observables are treated as perturbative series in an expansion parameter
ℏ around a “free field theory” with no interactions. Interactions are encoded in Feynman diagrams
which in the present theory are weighted three-valent graphs with each edge representing a closed
two-form on M×M\diag known as the propagator. Computing the weight (amplitude) of Feynman
diagrams entails integrating the associated differential form over the space of embeddings of its
vertices into M . However, since propagators are singular along the diagonals, such integrals are ill-
defined in the ultraviolet limit where vertices come close together in M . This subject was treated
by Axelrod and Singer in [2], [3] using the following idea: Let ConfV (M) denote the (configuration)
space of embeddings V ↪! M and let MV be the space of all maps from V to M . Then there is
an embedding

ConfV (M) ⊂ MV .

For a given subset S ⊂ V , Axelrod and Singer defined a compactification of ConfV (M) in the
direction where the vertices in S come together by replacing the diagonal ∆S ⊂ MV with the
spherical blowup of MV along ∆S . Since propagators extend smoothly to the boundary of the
compactified space this accounts for all ultraviolet singularities of the theory.

A new perspective on knot invariants

The construction of Axelrod and Singer led to a way of understanding Witten’s knot invariants
from a perspective of perturbation theory, put forward by Kontsevich [13] and formally elaborated
by Bott and Taubes [4]. In particular, Bott and Taubes extended the definitions of Axelrod and
Singer to include Wilson loops in the manifold. Given a closed loop K ⊂ M and a representation
ρ of the gauge group G, a Wilson loop Wρ(K) is a gauge invariant observable defined as the trace
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of holonomy of the gauge field around K. This is often written somewhat informally as

Wρ(K) = Trρ

(
P exp

∫

K

A

)
, (2)

where P denotes the path ordering of the exponential and Trρ is the trace taken in the represen-
tation ρ. In perturbation theory one can think of a Wilson loop simply as a smooth embedding
K : S1 ↪! M along with a Feynman rule for the coupling of the gauge field to K. In this setting
Feynman diagrams are graphs in M with one-valent “external” vertices along the Wilson loop K

and three-valent “internal” vertices in the ambient space (figure 1).

Figure 1: A Feynman diagrams in the theory with Wilson loops.

The study of Bott and Taubes was Wilson loops in M = R3. I here sketch the main ideas of their
construction. Let K be a smooth one-parameter family (isotopy) of embeddings Kt : S1 ↪! R3

for t ∈ [0, 1]. An element Kt ∈ K induces an embedding of configuration spaces ConfW (S1) ↪!

ConfW (R3) and hence there is a map

ConfW (S1)× K ! ConfW (R3).

Bott and Taubes defined the configuration space associated to a graph with internal vertices V

and external vertices W as the pullback

ConfV,W ConfV ∪W (R3)

ConfW (S1)× K ConfW (R3) .

(3)

Notice that ConfV,W includes the parameter t which continuously deforms the embedding. In fact,
the left column in the above diagram gives a projection

ConfV,W ! K ,

and the configuration space corresponding to a fixed embedding Kt is the fiber ConftV,W over
Kt ∈ K via this projection. Now, for a given embedding Kt ∈ K , the expectation value of the
Wilson loop Wρ(Kt) is given by the sum over all Feynman diagrams as the one in figure 1:

⟨Wρ(Kt)⟩ =
∑

Γ

ℏord(Γ)It(Γ),
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where, for each Feynman diagram Γ the associated amplitude It(Γ) is the integral of a closed
differential form θ(Γ) over the fiber ConftV,W :

It(Γ) =

∫

ConftV,W

θ(Γ).

To see how knot invariants can be deduced from the above construction, write ∆It(Γ) = I1(Γ) −
I0(Γ). By Stokes’ theorem it holds that:

∫

ConfV,W

dθ(Γ) = ∆It(Γ) +

∫

∂ ConfV,W

θ(Γ),

where ∂ ConfV is the co-dimension one boundary in the Axelrod-Singer compactification extended
to include Wilson loops via the pullback diagram (3). Now, since θ(Γ) is a closed form, the term
on the left-hand side of the above equality is zero and it follows that

∆ ⟨Wρ(Kt)⟩ =
∑

Γ

ℏord(Γ)
∫

∂ ConfV,W

θ(Γ). (4)

Thus, for the expectation value of Wilson loops to give knot invariants, the contributions from all
boundary integrals on the right-hand side of equation (4) must either vanish identically or mutually
cancel out. Bott and Taubes showed in [4], via a series of vanishing theorem, that ⟨Wρ(K)⟩ defines
a knot invariant up to subtracting an appropriate multiple of the self-linking number of K. The
appearance of the self-linking number is due to an inherent feature of Chern-Simons theory known
as the framing anomaly.

Split Chern-Simons theory and quantum groups

Starting from a quasi-triangular Hopf-algebra, Reshetikhin and Turaev constructed quantum in-
variants of framed knots [14], which they suggested to be a purely mathematical realisation of
Witten’s knot invariants. Making this claim explicit would entail showing that similar quantum
group structures can be derived in the setting of Chern-Simons theory.

In [8] and [9] Costello, Witten and Yamazaki derived quantum group structures in a four dimen-
sional extension of Chern-Simons theory defined on a product manifold R2×C×, where C× = C\{0}
is equipped with a holomorphic 1-form that has poles at 0 and ∞. A key to their constructions
is the choice of appropriate boundary condition on the gauge field at the 0 and ∞ poles in C×

which breaks the global gauge symmetry of the theory. To obtain such boundary conditions, the
semi-simple Lie algebra g of the theory is extended with an extra copy h̃ of the Cartan subalgebra
to arrive at a Lie algebra g̃ = g⊕ h̃ that admits a decomposition into maximal isotropic subalgebras
g = l−⊕ l+ (called a Manin triple). The gauge field is then restricted to take value in l− at R2×{0}
and in l+ at R2 × {∞}. This theory permits a set of gauge invariant observables called Wilson
lines, obtained from omitting the trace in equation (2) and replacing the closed loop K by a line
supported at a point in C× and extending to infinity along R2. To a Wilson line supported at
z ∈ C× is associated a representation ρ of g[[z]] acting on a vector space V , and the expectation
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value of a set of Wilson lines L1, . . . , Lk associated to representations (ρ1, V1), . . . , (ρk, Vk) is an
element

⟨L1, . . . , Lk⟩ ∈ End(V1 ⊗ · · · ⊗ Vk).

In this setting, Costello et al. realised the leading order Yangian deformation of g[[z]] from op-
erations on Wilson lines via explicit Feynman diagram computations. In particular, they derived
the leading order deformation of the co-product from the operation of merging parallel Wilson
lines and solutions to the Yang-Baxter equation (with spectral parameter) from the expectation
value of crossing Wilson lines. It was conjectured in their second paper that similar structures can
be recovered from the setting of usual three-dimensional Chern-Simons theory on a manifold with
boundaries R2× [−1, 1], where boundary conditions on the gauge field are given by restricting to l−
(resp. l+) on the lower (resp. upper) boundary. In a paper [1] the present author showed explicitly
that this is the case by computing leading order Feynman integrals to recover solutions to the
Yang-Baxter equation as the expectation value of crossing Wilson lines in the three-dimensional
setting. This corresponding three dimensional gauge theory agrees with the “split” Chern-Simons
theory that was studied by Cattaneo et al. [6, 5].

Results of this thesis

The aim of this thesis is to expand on the connection between line operators in Chern-Simons
perturbation theory on a three-manifold with boundaries and quantum groups.

Paper 1 In the first paper, with Dani Kaufman, we study Wilson lines in the three dimensional
setting described above. By computing the leading order Feynman diagrams contributions, we
show that the operation of merging parallel Wilson lines in this theory produced the leading order
deformation of the co-product in the quantized universal enveloping algebra Uℏ(g). Together with
the result in [1], this justifies, up to leading order in perturbation theory, that the category of
Wilson lines is equivalent to the category of representation RepUℏ(g).

We point out a connection between split Chern-Simons theory with boundaries, including Wilson
lines, and the moduli spaces of local systems introduced by Fock and Goncharov. In fact, Fock
and Goncharov [10] introduced a set of coordinates on the moduli space of framed G-local systems
on surfaces with punctures, marked points on the boundaries, and flags (parameterised by Borel
subgroups of G) assigned to each marked point. These spaces are strikingly similar the setup of
split Chern-Simons theory with boundaries, where boundary conditions on the gauge field are (up
to an extra copy of the Cartan) given by Borel subalgebras of g. In work by Goncharov and Shen
[12] the quantum group is constructed as part of the quantized ring of functions on the moduli
space of local systems on a punctured disk with two marked points on the boundary. In light of
the quantum group realisation from Wilson lines, in my work with Kaufman, we can interpret the
disk as the cross section of R2 × I with a Wilson line operator extending to infinity in the “time”
direction along R2. This is illustrated in figure 2. Understanding more extensively how the two
frameworks are connected seems an interesting topic to explore.
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l+

l−

Figure 2: Cross section of a Wilson line in R2 × I.

Paper 2 In the second paper I study Chern-Simons theory for a Lie algebra that admits a
decomposition g = a ⊕ a∗, where a∗ is an abelian subalgebra of g, dual to a with respect to the
invariant pairing. For this algebra, the Chern-Simons action can be identified with the action for a
three-dimensional topological BF theory. Moreover, work of Costello and Gaiotto [7] and Garner
[11] shows this theory to be equivalent to a topologically twisted 3d N = 4 gauge theory. I show
that the expectation value of crossing Wilson lines in this theory solves the Yang-Baxter equation
at all orders in perturbation theory. The essential idea for showing this to all orders is the use
of Stokes’ theorem and vanishing arguments similar to those of Bott and Taubes in [4]. Initially,
my hope was to implement this technique for recovering Yang-Baxter solutions at all orders in
same setup as paper 1. However, this appears to be too ambitious, as the arguments of Bott and
Taubes rely on a full rotation symmetry of the propagator which in this case is broken by the
boundary conditions – in fact, the broken symmetry is what allows for the recovering quantum
group structures. In the appendix I give a detailed account of where the vanishing arguments seem
to fail, specialising to the Lie algebra g = sl2(C). In the case of 3d topological BF theory, the
only contributing Feynman diagrams are trees, which turns out to account for the vanishing of all
“problematic” boundary integrals.
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Abstract

We study Wilson line operators in 3-dimensional Chern-Simons theory on a manifold with
boundaries and prove to leading order, through a direct calculation of Feynman integrals, that
the merging of parallel Wilson lines reproduces the coproduct on the quantum group Uℏ(g).
We outline a connection of this theory with the moduli spaces of local systems defined by
Goncharov and Shen.

Keywords: Perturbation Theory, Chern-Simons Theory, Quantum Group, Wilson
Line

1 Introduction

Topological quantum field theories like Chern-Simons theory have long been known to have con-
nections to quantum groups and their representations. The goal of this paper is to give an explicit
realization of this connection in the setting of perturbative 3-dimensional Chern-Simons theory
with boundary conditions, by showing that the tensor product in the category of representations
of the quantum group can be realized from the operation of merging two parallel Wilson lines.

In recent papers [4], [5] Costello, Witten and Yamazaki constructed a 4-dimensional conformal
Chern-Simons theory in which they realized the representation theory of the Yangian. They suggest
in section 7.8 of their second paper that a 3-dimensional theory with boundaries can be constructed
from their 4-dimensional theory by restricting to U(1)-invariant fields. The corresponding 3-
dimensional theory was constructed explicitly by the first author in [1]. Concretely, the set-up is
Chern-Simons theory on a manifold M = R2 × I with a semi-simple Lie algebra g. The relevant
set of boundary conditions on the gauge field A ∈ Ω1(M, g) comes from defining a Manin triple
(l−, l+, g) and restricting A to take value in subalgebras l+ (resp. l−) on the upper (resp. lower)
boundary. Since the gauge symmetry of the action is broken by the boundary conditions, this theory
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permits a set of gauge invariant operators given by open Wilson lines associated to representations
of g and extending to infinity along R2.

In the present paper, we consider a product on the set of Wilson lines in the above setting coming
from merging two parallel lines. By computing the leading order Feynman amplitude for a gauge
boson coupling to the pair of merging lines, we show that this product agrees with the leading
order deformation of the tensor product in Rep(Uℏ(g)). It was argued in [1] that, in the same
theory, the leading order contribution to the expectation value of a pair of crossing Wilson lines
is given by the classical r-matrix. Together these results suggest that the category of Wilson line
operators is equivalent to the category Rep(Uℏ(g)) as a braided monoidal category.

One motivation for considering this 3d Chern-Simons theory with boundary conditions instead of
the 4d conformal version is its close connection to the moduli spaces of local systems on punctured
surfaces considered by Goncharov and Shen, [9]. In fact, as we will discuss in the final section
of this paper, our construction can be seen as a realization through perturbation theory of the
“geometric avatar of a TQFT” described in section 5 of the paper of Goncharov and Shen.

2 The Gauge Theory

The gauge theory that we will be concerned with is 3-dimensional Chern-Simons theory defined
by the action:

SCS(A) =
1

2π

∫

M

〈
A ∧ dA+

1

3
A ∧ [A,A]

〉
(2.1)

where the gauge field (connection) A ∈ Ω1(M, g) is a 1-form on M taking values in the Lie algebra
g of the gauge group and ⟨ , ⟩ is an invariant symmetric bilinear form on g. In the present paper
we will take M = R2× I where I = [−1, 1] and we take g to be a complex semi-simple Lie algebra.

In order to have a well-defined theory in the presence of boundaries, we must impose boundary
conditions on the gauge field. Specifically, when varying the action with respect to the gauge field,
A ! A+ δA where δA is an exact 1-form, we pick up a boundary term:

1

2π

∫

R2×{−1,1}
⟨A ∧ δA⟩ , (2.2)

and we must impose boundary conditions on A and δA ensuring that this term vanishes on each
boundary. At the same we want that the restriction of the gauge theory to each boundary com-
ponent is in itself a well-defined, gauge invariant theory (see [4] section 9.1 for more elaboration
on this). By the second requirement, choosing a set of boundary conditions amounts to specifying
subalgebras l+, l− ⊂ g and imposing that A and δA take value in l+ (resp. l−) at the upper (resp.
lower) boundary. It was argued in [4] that a we get a valid set of boundary conditions giving rise
to quantum group structures by choosing l+ and l− so that the triple (g, l+, l−) is a Manin triple.
In other words l+ and l− must be non-intersecting, half-dimensional, isotropic subalgebras of g

such that g = l+ ⊕ l−.
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3 Manin Triples and Quantum Groups

3.1 Constructing a Manin Triple

Not all semi-simple Lie algebras admit the structure of a Manin triple (for example if the Lie
algebra has odd dimension). Following the construction of [4] (section 9.2) we can modify g

to accommodate for this by adding another copy of the Cartan subalgebra. We give here the
construction in full detail.

Let h ⊂ g be a Cartan subalgebra and consider the root system Φ of g relative to h equipped with
a polarization Φ = Φ+ ⊔ Φ−. We write n+ and n− for the sum over root spaces gα corresponding
to the set of positive roots α ∈ Φ+ and negative roots −α ∈ Φ−, respectively. Then n− and n+

are isotropic subalgebras and we get a decomposition of g:

g = n− ⊕ h⊕ n+.

Now add to g another copy h̃ of the Cartan subalgebra:

g̃ = g⊕ h̃

with the bracket on g trivially extended to g̃, i.e. [a, b̃] = 0 for a ∈ g and b̃ ∈ h̃. We can extend the
Killing form on g to g̃ as follows: ⟨a, b̃⟩ = 0 for all a ∈ g, b̃ ∈ h̃ and ⟨ã, b̃⟩ = ⟨a, b⟩ for all a, b ∈ h.
This gives an invariant symmetric bilinear form on g̃. Define

h+ =
{
h+ ih̃

∣∣h ∈ h
}
⊂ h⊕ h̃

h− =
{
h− ih̃

∣∣h ∈ h
}
⊂ h⊕ h̃ .

With this definition ⟨ , ⟩ vanishes on h+ and h− and thereby choosing

l− = n− ⊕ h− and l+ = n+ ⊕ h+. (3.1)

the triple (g̃, l+, l−) is a Manin triple.

Conventions Let r be the rank of g. We fix a choice of simple roots ∆+ = {αi}ri=1 ⊂ Φ+

along with a basis {Hi}ri=1 of h. Furthermore, we let Xα be a generator of the root space gα

normalized so that [Xα, Xβ ] = Xα+β and [Xαi
, X−αi

] = Hi. Using standard notation, we write
Ei, Fi := Xαi

, X−αi
for each simple root αi ∈ ∆+ and we write H+

i = Hi+iH̃i and H−
i = Hi−iH̃i.

A basis B+ for l+ can now be given as:

B+ = {Xα, H
+
i }α∈Φ+,i=1,...,r.

Let B− be the basis for l− dual to B+ with respect to the Killing form. Then B = B+ ∪ B− is a
basis for g̃. We write

B = {ta}a=1,...,dim g̃ , B+ = {ta}a=1,...,dim g̃/2 .

Finally, we denote by ta the dual element of ta ∈ B.
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3.2 Quantization

In this subsection we briefly recall the construction of a quantum double via the Drinfel’d double
construction. For a detailed exposition we refer the reader to e.g. [8] section 4.

Let b = n+ ⊕ h ⊂ g be the Borel subalgebra relative the to setup of section 3.1 and let (aij) be the
Cartan matrix of g. The Drinfel’d double Dℏ(b) is the algebra over C[[ℏ]] with generators:

{Ei, Fi, H
+
i , H−

i | i = 1, . . . , r}

and relations

[H±
i , Ej ] = aijEj

[H±
i , Fj ] = −aijFj

[H±
i , H±

j ] = [H±
i , H∓

j ] = 0

[Ei, Fj ] = δij
eℏH

+
i /2 − e−ℏH−

i /2

eℏ/2 − e−ℏ/2

(3.2)

along with the quantum Serre relations for i ̸= j. In the case of sln(C) these relations take the
form

E2
i Ej − (eℏ/2 + e−ℏ/2)EiEjEi + EiE

2
j = 0

F 2
i Fj − (eℏ/2 + e−ℏ/2)FiFjFi + FiF

2
j = 0.

For the general case see e.g. [8] section 4.2. The quantized universal enveloping algebra of g is
constructed from the double as

Uℏ(g) := Dℏ(b)/ ⟨H+
i −H−

i ⟩ .

It holds that Dℏ(b) has the structure of a quasi-triangular Hopf algebra with co-product:

∆Ei = 1⊗ Ei + Ei ⊗ 1 +
ℏ
4
(Ei ⊗H+

i −H+
i ⊗ Ei) +O(ℏ2)

∆Fi = 1⊗ Fi + Fi ⊗ 1 +
ℏ
4
(Fi ⊗H−

i −H−
i ⊗ Fi) +O(ℏ2)

∆H±
i = 1⊗H±

i +H±
i ⊗ 1.

(3.3)

Notice that this realizes the usual co-product on the universal enveloping algebra as the limit ℏ ! 0

and we have that Dℏ(b) ∼= D(b)[[ℏ]] as C[[ℏ]] modules, where D(b) = U(g̃).

Remark 1. Often in the theory of quantum groups one defines

K±
i = qH

±
i , q = exp (ℏ/2)

for which the (non-perturbative) co-product takes the form

∆Ei = (K+
i )−1/2 ⊗ Ei + Ei ⊗ (K+

i )1/2.

Since we are realizing the co-product in the setting of perturbation theory, it will be more convenient
to use equation (3.2) and (3.3) as our convention.

Lemma 1. The leading order correction to the co-product on a general basis element ta ∈ B+ is
given by

∆(1)ta =
1

2

n/2∑

b,c=1

(
fa

bc tb,V ⊗ tc,V ′
)
. (3.4)
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Recall the definition of the structure constant:

[ta, tb] =
n∑

c=1

fab
ctc , fabc = ⟨[ta, tb], tc⟩ . (3.5)

Proof. One checks that this formula agrees with the co-product in equation (3.3) on the algebra
generators Ei, H

+
i and that it commutes with the bracket.

The R-matrix Another part of the quasi-triangular Hopf algebra structure is an R-matrix ele-
ment R ∈ Dℏ(b)⊗Dℏ(b) given by

R = 1 +
∑

ℏkr(k), (3.6)

where each r(k) is an element of D(b) ⊗ D(b). The element r := r(1) is known as the classical
R-matrix and is given by

r =

n/2∑

a=1

ta ⊗ ta . (3.7)

The category of representations of Dℏ(b) is a braided monoidal category with monoidal product
coming from the co-product in equation (3.3) and braiding coming the R-matrix in equation (3.7).

4 Perturbation Theory

4.1 The Propagator

The remainder of this paper studies the expectation value of operators in the theory in the setting
of perturbation theory. An essential ingredient for this is constructing a propagator, which can
be thought of as the probability distribution for a gauge boson traveling between two points
on the manifold. The propagator in the present setting is a Lie algebra valued two-form P ∈
Ω2

(
(M ×M) \diag, g̃⊗ g̃

)
such that P is a Green’s function for the differential operator d, that is

dP (x, y) = δ(3)(x, y)C (g̃), (4.1)

where δ(3)(x, y) is the 3-dimensional Dirac delta distribution localized at x = y and C (g̃) ∈ g̃⊗ g̃ is
the Casimir element of g̃. Moreover we impose the a set of boundary conditions on the propagator
coming from the boundary conditions on the gauge field in equation (3.1): Write ∂+M for the
upper boundary ∂+M = R2 × {1} and ∂−M for the lower boundary ∂−M = R2 × {−1}. We
require that

(i) the restrictions P
∣∣
∂+M×M

and P
∣∣
M×∂−M

takes value in l+ ⊗ l−,

(ii) the restrictions P
∣∣
∂−M×M

and P
∣∣
M×∂+M

takes value in l+ ⊗ l−.

A two-form satisfying the equation (4.1) along with the above boundary constraints can be con-
structed as follows: Let ω = f volS2 ∈ Ω2(S2) where volS2 is the unit volume form on S2 given in
terms of the coordinates on R3 by

volS2 = x dy ∧ dz + y dz ∧ dx+ z dx ∧ dy,
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and f ∈ C∞(S2) satisfying the following properties:

(i) f is only supported in a small neighbourhood of “the north pole” xnp = (0, 0, 1)

(ii) f is symmetric under rotations around the axis through xnp = (0, 0, 1) and xsp = (0, 0,−1)

(iii)
∫
S2 f volS2 = 1.

Furthermore, let ϕ : M ×M \ diag ! S2 be the map

ϕ(x, y) =
y − x

|y − x| (4.2)

and let R be the orientation reversing map, R : S2 ! S2, R(x) = −x. We now define the
propagator as the pull back

P = ϕ∗(ω r+ −R∗ω r−
)
, (4.3)

where r+ ∈ l+ ⊗ l− and r− ∈ l− ⊗ l+ are uniquely determined by the constraint in equation (4.1).
To see this, notice first that since P is the pull back of a top-dimensional form on S2 it holds that
dP (x, x′) vanishes for all x, x′ with x ̸= x′. Now fix x′ = 0 and consider the integral of dP (x, 0)

when x is in the unit ball around 0. by Stokes’ theorem we have
∫

x∈B

dP (x, 0) =

∫

S2

P (x, 0) =

∫

S2

(
ω(x) r+ −R∗ω(x) r−

)
= r+ + r− .

This fixes r+ and r−, namely
r+ = r , r− = T ◦ r . (4.4)

where r is the classical R-matrix given in equation (3.7) and T is the map that swaps the tensor
factors.

4.2 Feynman Diagrams

In perturbation theory, the expectation value of an observable is computed as an expansion in the
parameter ℏ in terms of a set of weighted graphs (Feynman diagrams). The weight of a given graph
is determined from a set of Feynman rules derived from the Chern-Simons action in equation (2.1).
By a Feynman diagram in the present setting we mean the following:

Definition 1. A Feynman diagram is a directed trivalent graph with leaves (external half-edges)
and with the half-edges decorated by elements of B such that: A half-edge labeled by ta ∈ B+ is
connected by an edge to a half-edge labeled by ta ∈ B− with the edge orientation going from B−
to B+.

Feynman rules The Feynman rules outlined below associates to any Feynman diagram Γ a
differential form on the space of embeddings of the vertices of Γ into R2 × I. The weight of a
Feynman diagram is computed as the integral of the associated differential form over the space of
embeddings.
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(1) An edge going from a vertex at p ∈ R2 × I to a vertex at q ∈ R2 × I contributes a two-form
ℏϕ∗ω(p, q) coming from the propagator (see remark 2 below).

(2) An internal vertex with incident edges labeled by basis elements ta, tb, tc ∈ B contributes a
factor structure constant 1

ℏfabc.

Recall that the structure constant is given by fabc = ⟨[ta, tb], tc⟩.

(3) An external half-edge labeled by ta ∈ B and connected a vertex at p ∈ R2 × I contributes a
gauge field Aa(p) .

Remark 2. Write P =
∑

ab P
abta ⊗ tb. We note that, in a free Chern-Simons theory (with

no boundary conditions), one would consider Feynman diagrams with unoriented edges and
with half-edges labeled by general elements of B. To an edge with half-edges labeled by ta

and tb, the Feynman rules would associate the component P ab(x, y). However, as seen from
equation (4.3), the boundary conditions in the present theory split the propagator into two
parts corresponding to the two edge orientations, and we can therefore choose as a convention
to define Feynman diagrams with oriented and sum over all edge orientations.

4.3 Wilson Lines in perturbation theory

A common set of gauge invariant observables to study in Chern-Simons theory is the so called
Wilson loops. Given a closed loop γ ⊂ M and a representation V of g the associated Wilson loop
is defined as the trace of the holonomy of the gauge field around γ:

WV (γ) = TrV

(
P exp

∫

γ

A

)

:= Tr(1V ) +

∫

γ

dxiAa
i (x) Tr(ta,V ) +

∫

γ

dxi

∫ x

dx′jAa
i (x)A

b
j(x

′) Tr(ta,V tb,V ) + . . .

where P means the path ordering of the exponential and we use the notation ta,V to denote the
basis element ta acting in the representation V . In this paper, we consider instead a set of operators
called Wilson lines coming from omitting the trace and replacing the closed loop γ with an open
line L extending to infinity along R2. In the setting of perturbation theory, we think of a Wilson
line L(V ) simply as a pair (L, V ), and we allow a gauge field Aa to couple to L(V ) by inserting a
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basis element ta,V at the corresponding point on L. In other words, we expand the definition of
Feynman diagrams to include graphs with univalent vertices along L, with the additional Feynman
rule that a vertex on L with incident half-edge labeled by ta contributes an element ta,V .

Figure 1: Feynman rule for the coupling of a gauge field Aa to the Wilson line L(V ).

5 Quantum Groups and Wilson lines

5.1 Merging parallel Wilson lines

The study of the remainder of the paper will be the product of two parallel Wilson line operators
in the limit when the lines come close together. We fix a set of coordinates (x, y, z) on R2× I with
(x, y) coordinates in R2 and z the coordinate along I. Let L(V ) be a Wilson line supported at
x = z = 0 and Lε(V

′) a Wilson line supported at x = ε, z = 0. We write L(V )Lε(V
′) to mean the

disjoint union of the lines L and Lε such that a gauge field Aa couples to the line L by inserting an
element ta,V ⊗ 1V ′ and to the line L′ by inserting an element 1V ⊗ ta,V ′ . In general, the coupling
of an external gauge field to the two Wilson lines is given by a perturbative expansion in ℏ using
the Feynman rules in section 4.2:

Aa

(
L(V )Lε(V

′)
)
=

∞∑

k=0

ℏkA(k)
a

(
L(V )Lε(V

′)
)
∈ End(V ⊗ V ′) (5.1)

where each element A(k)
a

(
L(V )Lε(V

′)
)
∈ End(V ⊗ V ′) is computed as the weighted sum over

Feynman diagrams with a single external half-edge (leaf) labeled by ta and with the number of
internal edges minus the number of internal vertices equal to k. In the limit ε ! 0 one would
expect equation (5.1) to reproduce the expression for an external gauge field coupling to a single
Wilson line at L. It is however not immediately clear what representation should be associated to
the merged Wilson line.
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Figure 2: The classical level Feynman diagrams for an external gauge field coupling to the two
Wilson lines.

At the classical level the gauge field simply couples to each line individually as shown in figure 2,
and the corresponding Feynman amplitude is given by

A(0)
a

(
L(V )Lε(V

′)
)
=

∫

q∈L

Aa(q) ta,V ⊗ 1V ′ +

∫

q′∈Lε

Aa(q′) 1V ⊗ ta,V ′ .

Taking the limit ε ! 0 on the right-hand side in the above we get
∫

q∈L

Aa(x)
(
ta,V ⊗ 1V ′ + 1V ⊗ ta,V ′

)
,

which is the expression for a gauge field coupling to a single Wilson line at L in the tensor product
representation V ⊗ V ′. Hence, at the classical level we have

lim
ε!0

A(0)
a

(
L(V )Lε(V

′)
)
= A(0)

a

(
L(V ⊗ V ′)

)
. (5.2)

The object of the remainder of this paper is to carry out the computation of the leading order
contribution A(1)

a

(
L(V )Lε(V

′)
)

in the limit ε ! 0. As we shall see, this gives a correction to the
tensor product V ⊗V ′ in equation (5.2) which agrees with the leading order quantum deformation
of the tensor product in Dℏ(b) given in equation (3.3). This is expressed in the following theorem:

Theorem 1. It holds that

lim
ε!0

A(1)
a

(
L(V )Lε(V

′)
)
= A(1)

a

(
L(V ⊗ℏ V ′)

)
,

where V ⊗ℏ V ′ is the tensor product in RepDℏ(b) defined via the co-product in equation (3.3).

Notice that lemma 1 in section 3.2 defines the relevant co-product on a general basis element
ta ∈ B+ and it follows that:

A(1)
a

(
L(V ⊗ℏ V ′)

)
=

1

2

dim g̃/2∑

b,c=1

(
fa

bc tb,V ⊗ tc,V ′
) ∫

q∈L

Aa(q). (5.3)

We conjecture theorem 1 to hold at all orders in perturbation theory. However, explicitly computing
the contributing Feynman integrals at higher orders appears to be too difficult a task, and a proof
would therefore require different techniques.
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5.2 The Configuration Space of Vertices

The differential form associated to a Feynman diagram Γ is defined on the configuration space
of vertices of Γ. We here give a definition of the relevant configuration space in the presence of
Wilson lines L,Lε, and we refer the reader to [3] for a more general definition. As we are interested
in studying the limit when ε goes to 0 it will be convenient to think of ε as a parameter in the
configuration space.

Definition 2. For n1, n2,m ∈ Z≥0 define Confn1,n2,m to be the space of points

{ε, q1, . . . qn1
, q′1, . . . , q

′
n2
, p1, . . . , pm},

where ε ∈ [0,∞) and

q1, . . . qn1
∈ L with qi ̸= qj ,

q′1, . . . , q
′
n2

∈ Lε with q′i ̸= q′j ,

p1, . . . , pm ∈ (R2 × I) \ {q1, . . . , qn1
, q′1, . . . , q

′
n2
} with pi ̸= pj .

Furthermore, consider the projection onto the first factor

Confn1,n2,m ! (0,∞).

We denote by Confεn1,n2,m the fiber of this projection over a fixed ε ∈ (0,∞).

5.3 Contributing Diagrams at Leading Order

Figure 3: Contributing diagrams.

Figure 4: Vanishing diagrams.
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Lemma 2. The only Feynman diagrams contributing to A(1)
a

(
L(V )Lε(V

′)
)

are the ones shown in
figures 3.

Proof. Recall that the diagrams contributing to A(1)
a

(
L(V )Lε(V )

)
has the number of internal edges

minus the number of internal vertices equal to one. This gives precisely the diagrams shown in
figure 3 and 4. Consider first the diagram on the left-hand side of figure 4. Since the lines are
in the same plane parallel to the boundary, the form vanishes due to the propagator only being
non-zero in a small neighbourhood of the north pole. Consider now diagram on the right-hand side
of figure 4. The associated configuration space is Conf2,0,1. Let G < Homeo(R3) be the subgroup
of scalings and translations along L and consider the quotient map:

Conf2,0,1 ! Conf2,0,1 /G (5.4)

The subgroup G is two-dimensional and hence the space Conf2,0,1 /G has dimension 5 − 2 = 3.
On the other hand, let P1 ∧ P2 ∈ Ω4(Conf2,0,1) be the product of propagators associated to the
internal edges, that is,

P1 ∧ P2 (q1, q2, p) := ϕ∗ω(q1, p) ∧ ϕ∗ω(q2, p).

By definition the propagator is invariant under scalings and translations along the L and hence
the form P1 ∧ P2 factors through the quotient map in equation (5.4). By dimensional counting,
this implies that P1 ∧ P2 vanishes.

Consider therefore the diagrams in figure 3. We can assume that ta ∈ B+ since the computation
for ta ∈ B− is entirely analogous. In this case, the only contribution to the expectation value comes
from the diagram on the right-hand side of figure 3. In fact, the internal vertex of diagram on the
left-hand side of figure 3 has all three incident half edges labeled by elements ta, tb, tc ∈ B+. By the
Feynman rules in section 4.2 this vertex is assigned a structure constant fabc = ⟨[ta, tb], tc⟩ which
is zero since the Killing form vanishes on l+. The Feynman amplitude coming from the diagram
on the right-hand side of figure 3 takes the form

A(1)
a

(
L(V )Lε(V

′)
)
=

dim g̃/2∑

b,c=1

(
fa

bc tb,V ⊗ tc,V ′
)
Iε , (5.5)

where
Iε :=

∫

Confε1,1,1

Aa(p) ∧ ϕ∗ω(p, q) ∧ ϕ∗ω(p, q′). (5.6)

5.4 A Configuration Space Compactification

Since the propagator is only defined away from the diagonal, it is not clear what will happen to the
integral Iε in equation (5.6) when p ! q, q′. In order compute limε!0 Iε, we must therefore define
a partial compactification Conf1,1,1 of Conf1,1,1 in the direction ε ! 0 such that the integrand
extends smoothly to the corresponding boundary ∂ε Conf1,1,1. Then we have

lim
ε!0

Iε =
∫

∂εConf1,1,1

Aa(p) ∧ ϕ∗ω(p, q) ∧ ϕ∗ω(p, q′) . (5.7)
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To this aim, we use the so called Fulton-MacPherson configuration space compactification. This
compactification was originally due to Fulton and MacPherson [7] and applied to Chern-Simons
perturbation theory by Axelrod and Singer [2] and (in the presence of Wilson loops) Bott and
Taubes [3]. In this compactification ∂ε Conf1,1,1 can be divided into the disjoint union of strata

∂ε Conf1,1,1 =

3⋃

i=1

∂i Conf1,1,1

corresponding to the following cases:

(a) The internal vertex p remains far from the lines compared to ε as ε ! 0.

(b) The internal vertex p moves close to the lines and at least one vertex q or q′ remains far from
ε ! 0.

(c) All three vertices move close to each other as ε ! 0.

Lemma 3. We get no contribution to equation (5.7) coming from the boundary stratum ∂1 Conf1,1,1

corresponding to case (a) in the above.

Proof. When p is far from the lines the integrand in equation (5.6) extends smoothly to the
boundary coming from allowing ε ! 0, and the corresponding boundary stratum takes the form

∂1Conf1,1,1 =
{
(q, q′, p) ∈ L× L× (R2 × I \ L)

∣∣ p ̸= q, q′
}
.

The contribution to equation (5.7) is given by
∫

p∈(R2×I)\L
A(p) ∧

(∫

q∈L

ϕ∗ω(q, p)

)
∧
(∫

q′∈L

ϕ∗ω(q′, p)

)
, (5.8)

which is zero since the last two factors are identical one forms.

Lemma 4. We get no contribution to equation (5.7) coming from the boundary stratum ∂2 Conf1,1,1

corresponding to case (b) in the above.

Proof. This follows from the property that ω is only non-zero in a small neighbourhood of the
north pole. In fact, assume that p is approaching some point q ∈ L and that q′ remains far from
p as ε ! 0. Because the Wilson lines are in the same plane parallel to the boundary it holds that,
given any η > 0 there is a δ > 0 such that, if we define U ⊂ Conf1,1,1 to be the neighbourhood
where |p − q′| > η and |p − q| < δ then ϕ∗ω(p, q′) = 0 for all (p, q, q′) ∈ U . The situation is
illustrated in figure 5
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Figure 5: Neighbourhood of Conf1,1,1 where p is close to q and far from q′.

By lemma 3 and 4, the only contribution to equation (5.7) comes from the boundary stratum
∂3 Conf1,1,1 corresponding to all three vertices coming together as ε ! 0. To define the corre-
sponding boundary stratum we need the following definition:

Figure 6: The space H.

Definition 3. Let Sr be the “right” half of the unit circle with center (0, 0), i.e.

Sr =
{
(x, y, 0) ∈ R2 × I

∣∣ x2 + y2 = 1 , x > 0
}

We define
H =

{
(u, v) ∈ Sr × R3 \ {0}

∣∣ v ̸= u
}
.

The space H is illustrated in figure 6.

Lemma 5. We can define a partial compactification of Conf1,1,1 in the direction where all three
vertices come together, such that the compactified space is a manifold with boundary and corre-
sponding boundary stratum ∂3 Conf1,1,1 is given by

∂3 Conf1,1,1 = L×H .

Proof. For some small η > 0, define U ⊂ Conf1,1,1 by

U =
{
(ε, q, q′, p) ∈ Conf1,1,1

∣∣ |p− q| < η and |q′ − q| < η
}
.

Furthermore, define V ⊂ (0, η)× L×H by

V =
{
(t, q0, (u, v)) ∈ (0, η)× L×H

∣∣ |v|t < η
}
, (5.9)
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There exists a diffeomorphism φ : V ! U defined by (t, q0, (v, u)) 7! (ε, q, q′, p), where

ε = uy , q = q0 , q′ = q0 + tu , p = q0 + tv , (5.10)

with uy denoting the y-coordinate of u. This implies that

Conf1,1,1 := Conf1,1,1 ∪V V ,

where
V =

{
(t, q0, (u, v)) ∈ [0, η]× L×H

∣∣ |v|t < η
}
,

is a manifold with boundary. Letting all three vertices come together in Conf1,1,1 corresponds to
letting t ! 0 in V and the lemma follows.

5.5 Proof of Theorem 1

We are now equipped to prove theorem 1. Notice first that with the change of coordinates given
in equation (5.10), we have

A(p) = A(q + tv) , ϕ∗ω(p, q) = ϕ∗ω(0, v) , ϕ∗ω(p, q′) = ϕ∗ω(v, u).

All of the above forms extends continuously to the boundary ∂3 Conf1,1,1 corresponding to the
limit t ! 0. Hence, by equation (5.7) and lemma 3, 4 and 5 in the previous subsection, it holds
that

lim
ε!0

I(ε) =
∫

q∈L

Aa(q)

∫

(u,v)∈H
ϕ∗ω(v, 0) ∧ ϕ∗ω(v, u). (5.11)

By equation (5.3) and (5.5), proving theorem 1 now amounts to showing that the second integral
in equation (5.11) contributes a factor of 1/2. This is the goal of the present subsection.

Figure 7: The space C.

Proof of theorem 1. Let C ⊃ H be the spaces obtained from allowing u to be in the full circle
S ⊂ R2 × {0}. That is, we define

C =
{
(u, v) ∈ S × R3} .

Due to the rotation symmetry of ω (see section 4.1), it holds that
∫

(u,v)∈H
ϕ∗ω(v, 0) ∧ ϕ∗ω(v, u) =

1

2

∫

(u,v)∈C
ϕ∗ω(v, 0) ∧ ϕ∗ω(v, u). (5.12)
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In fact, we are going to modify the space of integration even further: Recall from section 4.1 that
ω is only supported in a small neighbourhood of the north pole. Hence, the only contribution to
the integral in the right-hand side of equation (5.12) comes from when v ∈ R3

− := R2 × (−∞, 0).
Defining C− ⊂ C by

C− = {(u, v) ∈ S × R3
−} ,

we can therefore replace C with C− in equation (5.12):
∫

(u,v)∈H
ϕ∗ω(v, 0) ∧ ϕ∗ω(v, u) =

1

2

∫

(u,v)∈C−

ϕ∗ω(v, 0) ∧ ϕ∗ω(v, u). (5.13)

The integral on the right-hand side of equation (5.13) can be computed using purely geometric
arguments. Let S2

+ be the upper half of the unit sphere and consider the map Φ : C− ! S2
+×S2

+ \
diag, given by

Φ(u, v) = (ϕ(v, 0), ϕ(u, v)) =

(
− v

|v| ,
u− v

|u− v|

)
.

Lemma 6. The map Φ is a diffeomorphism.

Proof. An inverse map Φ−1 is constructed as follows: Let (a, b) ∈ S2
+ × S2

+ \ diag. For any u ∈ S

write rua for the ray going out from u and pointing along the vector −a and write rb for the ray going
out from 0 and pointing along the vector −b. Because a ̸= b, as we move u around the circle we
encounter exactly one point uab for which the rays rua and rb intersect. Denoting the corresponding
point of intersection by vab we obtain an inverse map by defining Φ−1(a, b) = (uab, vab).

From lemma 6 and the property that ω integrates to one on S2 it now follows that
∫

C−

ϕ∗ω(v, 0) ∧ ϕ∗ω(v, u) =
∫

S2
+×S2

+

ω(a) ∧ ω(b) = 1.

Notice that we can include the diagonal diag ⊂ S2
+ × S2

+ in the integral because ω extends contin-
uously to the diagonal which is a subspace of co-dimension one. Inserting this back into equation
(5.11) we get

lim
ε!0

Iε =
1

2

∫

q∈L

A(q) .

By equation (5.3) and (5.5) this completes the proof of theorem 1.

6 Outlook to moduli spaces of local systems

To a Lie group G and a surface S with punctures, boundaries, and marked points on the boundaries,
Goncharov and Shen [9] construct a moduli space LocS,G which parameterizes G local systems on
S along with some extra data at the punctures, boundaries, and marked points of S. These spaces
are closely related to the X moduli spaces of “framed” local systems on S originally constructed by
Fock and Goncharov [6], with a slight modification to allow for cutting and gluing of surfaces. In
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particular, one associates to each marked point on the boundary the conjugacy class of the Borel
subgroup B ⊂ G.

Figure 8: The gluing map on surfaces.

There is a quantization of the ring of regular functions on LocS,G which is denoted by Oℏ(LocS,G).
Goncharov and Shen construct a natural gluing operation on these quantized spaces coming from
gluing surfaces along the boundary segments between two marked points; when S is obtained by
gluing S′ and S′′ along boundary segments between marked points one obtains a map

Oℏ(LocS,G)
Glue
−−−! Oℏ(LocS′,G)⊗Oℏ(LocS′′,G).

To see how this construction relates that of the present paper, consider a disk with one puncture
and two marked points on its boundary. There is a map

κ : Dℏ(b) ! Oℏ(Loc⊙,G)

which is given explicitly on generators, see [10] for a very nice exposition on this in the sln case
and see [11] for the general ADE case. The coproduct is given in Oℏ(Loc⊙,G) as follows: Take two
copies of the punctured disk and glue them along boundary segments between marked points to
obtain a twice punctured disk with two marked points on its boundary (see figure 8). We denote
the twice punctured disk by T . By bringing the two punctures close together and cutting out a
small circle around the two punctures one obtains a new once punctured disk (see figure 9). This
construction gives a map

Oℏ(Loc⊙,G)
Cut
−−! Oℏ(LocT,G)

Glue
−−−! Oℏ(Loc⊙,G)⊗Oℏ(Loc⊙,G). (6.1)

which agrees with the coproduct in Dℏ(b). Similarly, the braiding on Dℏ(b) is given on Oℏ(Loc⊙,G)

as the map twisting the two punctures around each other:

Oℏ(LocT,G)
Braid
−−−−! Oℏ(LocT,G) (6.2)

Figure 9: The cutting map.
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In other words there are commutative diagrams:

Dℏ(b) Dℏ(b)⊗Dℏ(b)

Oℏ(Loc⊙,G) Oℏ(Loc⊙,G)⊗Oℏ(Loc⊙,G)

∆

κ κ⊗κ

Glue

Dℏ(b) Dℏ(b)⊗Dℏ(b) Dℏ(b)⊗Dℏ(b)

Oℏ(Loc⊙,G) Oℏ(LocT,G) Oℏ(LocT,G) Oℏ(Loc⊙,G)⊗Oℏ(Loc⊙,G)

∆

κ

R

κ⊗κ

Cut Braid Glue

Thus the analogy of this in 3-dimension Chern-Simons theory should now be apparent from the
construction in this paper: The punctures in the moduli spaces of Goncharov and Shen translate
into Wilson line operators in our theory extending to infinity in the time direction. Cutting a
disk around each Wilson line tangent to the boundaries gives a punctured disk two marked points
on its boundary. The opposite Borel subgroups assigned to the marked points at the top and
bottom can then be thought of as coming from the boundary conditions in the theory and the
operation of merging two Wilson lines corresponds to the operation of gluing punctured disks
together. We expect that much of the formalism described by Goncharov and Shen (the modular
functor conjectures of sections 2.5 and 5 of [9]) can be realized within Chern-Simons theory by
exploring this connection further.
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The R-Matrix in 3d Topological BF Theory
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2100 Copenhagen, Denmark

Abstract

In this paper I study Wilson line operators in a certain type of “split” Chern-Simons theory

for a Lie algebra g = a ⊕ a∗ on a manifold with boundaries. The resulting gauge theory is a

3d topological BF theory equivalent to a topologically twisted 3d N = 4 theory. I show that

this theory realises solutions to the quantum Yang-Baxter equation all orders in perturbation

theory as the expectation value of crossing Wilson lines.
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1 Introduction

The perturbative framework for Chern-Simons theory on a general three-manifold M was for-
malised by Axelrod and Singer in [4]. To account for ultraviolet singularities in Feynman integrals
they used a Fulton-MacPherson like compactification of the configuration space of Feynman dia-
gram vertices in M . The compactified space has the form of a stratified space with boundary strata
defined from spherical blow-ups along the diagonals where subsets of vertices come together. This
has led to a technique for recovering manifold invariants from Chern-Simons theory implemented
in a series of notable works, see e.g. [3, 5, 6, 15]. In particular, Bott and Taubes [6] constructed
knot invariants from Wilson loops in S3. The essential ingredient in this work is the use of Stokes’
theorem: Since propagators in the theory are closed forms, proving invariance of the expectation
value of Wilson loops under continuously displacing loop strands amounts to proving a series of
vanishing theorems for Feynman integrals on the boundary of the configuration space. The ob-
jective of this paper is to implement the same type of arguments for the purpose of recovering a
solution to the Yang-Baxter equation (an R-matrix) from the expectation value of crossing Wilson
lines at all orders in perturbation theory.

In [2] the present author carried out leading order Feynman diagram computations to realise the
classical Yang-Baxter equation from Wilson lines in Chern-Simons theory for a semi-simple Lie
algebra g, on a manifold with boundaries R2 × [−1, 1]. In order to obtain Yang-Baxter solutions,
one must place boundary condition on the gauge field to break the full gauge symmetry of the
theory. This is achieved by extending the Lie algebra by an extra copy of the Cartan subalgebra to
admit a decomposition into maximal isotropic subalgebras g = l− ⊕ l+, restricting the gauge field
to l− (resp. l+) on the upper (resp. lower) boundary. This work was inspired by a construction
of Costello, Witten and Yamazaki [10], [11] in a 4-dimensional analogue of Chern-Simons theory.
In this framework, the Yang-Baxter equation states the equivalence between the diagrams on the
left- and right-hand side of figure 1, where the lines represent Wilson lines extending to infinity
along R2 and supported at different points in [−1, 1]. The corresponding expectation value is an
element in U(g)⊗3[[ℏ]].

L2,0L1,0 L3,0 L2,1L1,1 L3,1

Figure 1: The Yang-Baxter equation for crossing Wilson lines.
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Directly implementing vanishing arguments similar to those of Bott and Taubes to the above
theory appears too ambitious as the vanishing theorems rely on a full rotational symmetry of the
propagator which in this case is broken by the boundary conditions. However, things become easier
if we instead consider a Lie algebra g = a ⊕ a∗ with relations [a, b∗] = [a, b]∗ and [a∗, b∗] = 0 for
a, b ∈ a. Chern-Simons theory for this Lie algebra is equivalent to a B-twisted 3d N = 4 theory;
see e.g. [9, 13, 14]. For this theory Feynman diagrams become particularly simple. In fact, the
gauge field decomposes into two parts A ∈ Ω1(M)⊗ a and B ∈ Ω1(M)⊗ a∗, and the only type of
interaction vertices permitted by the theory has one incoming B-field and two outgoing A-fields.
It turns out that this accounts for the problematic boundary faces and we can therefore prove the
following theorem:

Theorem 1. Let ⟨Lt⟩ be the expectation value of the product of Wilson lines in figure 1, where
the parameter t corresponds to moving the middle line continuously to the right. In the theory
described above it holds that ⟨L1⟩ − ⟨L0⟩ = 0.

This entails proving a series of vanishing theorems in line with those of Bott and Taubes. The
perturbative formalism for this “split” Chern-Simons theory on a manifold with boundaries was
first studied in work of Cattaneo et al. [7, 8], from where the term originates.

2 The Quantum Yang-Baxter Equation

We begin by briefly recalling some basic notions relating to the quantum Yang-Baxter equation.
Let g be a Lie algebra that can be quantized via the Drinfel’d double construction and let Uℏ(g) be
the corresponding quantized universal enveloping algebra of g. For each i, j ∈ {1, 2, 3} with i ̸= j

define ρij : Uℏ(g)⊗2 ! Uℏ(g)⊗3 by

ρ12(a⊗ b) = a⊗ b⊗ 1 , ρ13(a⊗ b) = a⊗ 1⊗ b , ρ23(a⊗ b) = 1⊗ a⊗ b

Given an element Rℏ ∈ Uℏ(g)⊗Uℏ(g), write Rij = ρij(Rℏ). We say that Rℏ is a quantum R-matrix
if it is invertible and it satisfies the following relation known as the Yang-Baxter equation:

R23R13R12 = R12R13R23 , (2.1)

This equation is commonly represented graphically by the diagram shown below.

21 3

R12

R13

R23

=

21 3

R23

R13

R12
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To interpret this diagram, we imagine that each line carries a vector space Vi, i ∈ {1, 2, 3} cor-
responding to some representation of g. At the crossing between line i and line j the incoming
vector spaces are transformed by the element Rij ∈ End(Vi ⊗ Vj) acting in the given representa-
tion.Reading the figure from up to down in the direction of the arrow reproduces the Yang-Baxter
equation. The existence of an R-matrix gives a braiding structure on Uℏ(g), and hence in particular
it allows for the construction of invariants of knots and braids.

3 Split Chern-Simons Theory with Boundaries

3.1 The basic setup

Let g be a Lie algebra with a non-degenerate invariant pairing Tr : g ⊗ g ! R and assume
that g admits a decomposition g = a ⊕ a∗ where a∗ is dual to a with respect Tr. Moreover, let
B(a) = {ξa}a=1,...,dim a be a basis for a and B(a∗) = {ζa}a=1,...,dim a be the dual basis for a∗. The
gauge theory that we study in this paper is Chern-Simons for the Lie algebra g described above,
with relations

[ξa, ξb] = f c
abξc , [ζa, ξb] = fa

bcζ
c , [ζa, ζb] = 0, (3.1)

where f c
ab are the structure constants of a. Notice that, with this definition, a and a∗ are maximal

isotropic subalgebras of g and hence the triple (g, a, a∗) is a Manin triple. This is, in essence, what
allows us to derive quantum groups structured in the theory. The above gauge theory is defined
by the Chern-Simons action:

SCS(C) =
1

2π

∫

M

Tr(C ∧ dC) +
1

3
Tr([C,C] ∧C), (3.2)

where the gauge field C is a one-form on a manifold M taking values in g, i.e. C ∈ Ω1(M) ⊗ g.
We will decompose C into a part A taking value in a and a part B taking value in a∗. That is,
we write

C = A+B,

where A ∈ Ω1(M) ⊗ a and B ∈ Ω1(M) ⊗ a∗. Observe that, when inserting this into the Chern-
Simons action, the terms containing only A’s or B’s vanish since the subalgebras a and a∗ are
isotropic. Similarly the term Tr([A,B],B) vanish by the relations in equation (3.1). Thus the
resulting action takes the form:

SCS(A+B) =
1

2π

∫

M

Tr(A ∧ dB+B ∧ dA) +
1

3
Tr([A,A] ∧B), (3.3)

which we identify with the action of a 3d topological BF theory. The first term in the above action
is a kinetic term and represents the free propagation of a gauge field between states A and B.
We use a convention where the corresponding propagator is represented by an oriented edge going
from A to B. The form of the cubic interaction term then implies that the only allowed interaction
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vertices in the theory are the of the form shown in figure 2, with one incoming B-edge and two
outgoing A-edges. We will say more on this in section 4.4.

B

A A

Figure 2: Interaction vertices in the relevant split Chern-Simons theory

In what follows we take M to be a manifold with boundaries, M = R2 × I, where I = [−1, 1].
In this setting, when varying the action with respect to the gauge field, i.e. A ! A + dχA and
B ! B+ dχB, we pick up a boundary term:

δSCS = · · ·+ 1

2π

∫

R2×{−1,1}
Tr(dχA ∧ dB+ dχB ∧ dA).

Therefore, in order to have a consistent theory in the presence of boundaries, we must impose
boundary conditions on the gauge field such that this term vanishes (see e.g. [10]). We accommo-
date for this by requiring that A = 0 on the upper boundary R2 × {1} and B = 0 on the lower
boundary R2 × {−1}.

3.2 The propagator

As explained above the gauge field can propagate between states Aa(x) and Bb(y) for some x, y ∈
M and a, b ∈ {1, . . . ,dim a}. The corresponding probability distribution is a two form P a

b(x, y)

known as the propagator. It satisfies the following defining relations:

P a
b(x, y) = −Pb

a(y, x) (3.4)

dP a
b(x, y) = δabδ

(3)(x, y). (3.5)

where d is the differential operator and δ(3)(x, y) is the Dirac delta function. Furthermore, the
boundary conditions on the gauge field translate to the following constraint on the propagator:

P a
b(x, y) = 0 when x ∈ R2 × {1} or y ∈ R2 × {−1}. (3.6)

Let ϕ : (R3 × R3) \∆ ! S2 be the map

ϕ(x, y) =
y − x

|y − x| .

and define ω ∈ Ω2(S2) by

ω := f volS2 ∈ Ω2(S2),
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where volS2 is the unit volume form on S2 given in terms of the coordinates on R3 by: volS2 =

x dy dz+y dz dx+z dx dy and f : S2 ! R is a smooth function supported in a small neighbourhood
around xnp = (0, 0, 1) and normalized so that ω integrates to one on S2.

Proposition 3.1. If we define P ∈ Ω2(R3 × R3 \∆) by

P = ϕ∗ω, (3.7)

then P a
b(x, y) := P (x, y)δab satisfies the constraints in equation (3.4)-(3.6).

Proof. Since ω is a top-dimension form on S2 it holds that dP (x, y) = 0 away from the diagonal
x = y. To see that dP it is in fact the Dirac delta function we use Stokes’ theorem: Fix some
x ∈ R3 and let Bx be the unit ball centered at x

∫

y∈Bx

dP (x, y) =

∫

y∈B

dP (0, y) =

∫

y∈S2

P (0, y) =

∫

y∈S2

ω(y) = 1.

3.3 Wilson lines

With our choice of boundary conditions the global gauge symmetry of the action is completely
broken. As a consequence, the theory admits a set of gauge invariant operators known as Wilson
lines (see [10] for more details). For the present purpose we will think of a Wilson line simply as
a proper embedding in L : R ↪! R2 × I parallel to the boundary, along with a rule that a gauge
field Aa (resp. Ba) couples to L by inserting a basis element ξa (resp. ζa) at the corresponding
point in L.

L L′

Figure 3: The projection onto R2 of a pair of crossing Wilson lines.

Consider for example a pair of Wilson lines L and L′ supported at different points in I and
crossing in R2 as shown in figure 3. The two Wilson lines interact by exchanging gauge bosons.
The simplest (leading order) interaction corresponds to a single gauge boson propagating between
the lines. This interaction is illustrated in figure 3, where the oriented edge represents a propagator.
The corresponding amplitude is given by

ℏ
∫

x∈L,y∈L′
P (x, y)δab ξa ⊗ ζb, ,

where ℏ is a small expansion parameter. At higher orders in ℏ we get interactions coming from
the cubic interaction term in the Chern-Simons action in equation (3.2). Each interaction is
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represented by a directed graph (Feynman diagram) with three-valent interaction vertices in the
bulk and one-valent vertices along the Wilson lines. The expectation value for the interaction is
an element ⟨LL′⟩ ∈ U(g)⊗2 given as an perturbative expansion in ℏ in terms of the set of Feynman
diagrams:

⟨LL′⟩ =
∑

Γ

ℏord(Γ)M(Γ),

where ord(Γ) is the number of edges of Γ minus the number internal vertices and the weight
(amplitude) M(Γ) is determined by the Feynman rules.

Remark 1. On the surface it appears that the expectation value ⟨LL′⟩ depends on the angle of
crossing between the lines L and L′. We will argue in section 8 that ⟨LL′⟩ is in fact independent
of the angle. For now we take this for given and define R ∈ U(g)⊗2 by

R := ⟨LL′⟩ . (3.8)

3.4 The R-matrix from crossing Wilson lines

The goal of the remainder of this paper is to show that the element R is a quantum R-matrix,
that is, it satisfies the Yang-Baxter equation (2.1). In this framework, the lines in the Yang-Baxter
picure should be thought of as representing Wilson line operators supported at different points in
I. With this as our motivation we define the following smooth family of proper embeddings:

Definition 3.1. Let Lt be a family of embeddings

Lt :
∐

α=1,2,3

Rα ↪! R2 × I,

parametrized by t ∈ [0, 1], where Lt|Rα
= Lα,t : R ↪! R2 × I is given by

L1,t : s 7! (−s/
√
2, s/

√
2,−1/2) , L2,t : s 7! (t, s, 0) , L3,t : s 7! (s/

√
2, s/

√
2, 1/2).

The family of embeddings defined above is illustrated in figure 4 which shows the projection
onto R2. As t increases, the lines L1,t and L3,t are held fixed while L2,t is dragged continuously
over the crossing between the other two lines.

L2,0L1,0 L3,0 L2,1L1,1 L3,1

Figure 4: The embedding space Lt where t ∈ [0, 1].
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For each t ∈ [0, 1], the corresponding expectation value is an element

⟨Lt⟩ := ⟨L1,tL2,tL3,t⟩ ∈ U(g)⊗3.

The following section is dedicated to giving a precise definition of ⟨Lt⟩, which on the surface appears
to depend on the parameter t ∈ [0, 1]. The main objective of this paper is to show that ⟨Lt⟩ is in
fact independent on t. Since the form of the propagator ensures that interactions only take place
in a small neighbourhood around each crossing, this will imply the the expectation value of a pair
of crossing Wilson lines is an R-matrix. A formal argument for this is given in section 4.4 below.

4 Chern-Simons Perturbation Theory

In this section we give a definition of the expectation value ⟨Lt⟩ in the formalism of perturbation
theory. As mentioned, ⟨Lt⟩ is given by an expansion in ℏ in terms of a set of weighted graphs
called Feynman graphs which we define in subsection 4.1 below.

4.1 Feynman graphs

We here define the relevant set of graphs contributing to the expectation value ⟨Lt⟩. Given m ∈ Z≥0

and n = (n1, n2, n3) a tuple of integers nα ∈ Z≥0, we first fix the data corresponding to the sets of
m internal (bulk) vertices and of nα external vertices on the Wilson line Lα,t, along with a set of
half-edges incident on each vertex:

Let n =
∑

α nα. We define a set V of vertices consisting of:

1. A set of internal vertices V = {v1, . . . , vm}.

2. An set of external vertices Wα in each Wilson line Lα,t, given by:

W1 = {w1, . . . , wn1} , W2 = {wn1+1, . . . , wn1+n2} , W3 = {wn1+n2+1, . . . , wn}.

We write W =
⋃3

α=1 Wα and W = (W1,W2,W3).

Moreover, we define a set H of half-edges consisting of:

1. A set of half-edges {h1
i , h

2
i , h

3
i } for each internal vertex vi ∈ V .

2. A single half-edge hj for each external vertex wj ∈ W .

Finally, we denote by s : H ! V the source map s(hk
i ) = vi and s(hj) = wj .

With the above data fixed, the only data needed to define a graph is an involution of the set of
half-edges to form edges. In addition, we want the definition of a Feynman graph to include an
orientation of the edges and a Lie algebra labeling of the half-edges. This leads to the following
definition:
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Definition 4.1 (Feynman graphs). A Feynman graph Γ ∈ Gm,n is defined by the following data:

(i) A free involution ι : H ! H such that, if ι(hk
i ) = hl

j then i ̸= j. A pair {h, ι(h)} is called an
edge and we denote the set of edges by E(Γ).

(ii) An orientation of the edges corresponding to an ordering (h, h′) of each pair {h, h′} ∈ E(Γ).

(iii) An assignment τ : H ! B(a) ∪ B(a∗) such that if (h, h′) ∈ E(Γ) then τ(h) ∈ B(a) and
τ(h′) = τ(h)∗ ∈ B(a∗).

We write G =
⋃

m,n Gm,n for the collection of all Feynman graphs. When writing the expectation
⟨Lt⟩ we only wish to sum over isomorphism classes of Feynman graphs. Let us therefore make
precise what it means for two Feynman graphs to be isomorphic.

Definition 4.2. Two graphs Γ,Γ′ ∈ Gm,n are said to be isomorphic, and we write Γ ∼ Γ′, if there
are bijections

FV : V ! V , FH : H ! H

such that:

(i) FV acts as the identity map on the set of external vertices.

(ii) (FV , FH) is a graph isomorphism: FV ◦ s = s ◦ FH and FH ◦ ι = ι′ ◦ FH.

(iii) (FV , FH) preserves the edge orientation: If (h, h′) ∈ E(Γ) then (FH(h), FH(h′)) ∈ E(Γ′).

(iv) (FV , FH) preserves the Lie algebra decoration of edges: τ(h, h′) = τ ′(FH(h), FH(h′)).

4.2 The configuration space of vertices

We wish to consider the space of embeddings of the vertices V ∪W of Feynman graphs into R2×I,
such that for each α ∈ {1, 2, 3} the set of external vertices Wα maps to the Wilson line Lα,t. We
here give a formal definition of the space in question, following the definition given by Bott and
Taubes in [6].

Let S be some ordered set. We denote by ConfS(R2 × I) the configuration space of |S| ordered
points in R2 × I, i.e. the space of injections S ↪! R2 × I. Moreover, we denote by ConfS(R)
the space of injections S ↪! R such that the points in S are placed in increasing order along R.
Recall definition 3.1 and observe that an embedding Lt,α : R ↪! R2 × I induces an embedding of
configuration spaces ConfWα(R) ↪! ConfWα(R2 × I). Hence we have a map:

L :

k∏

α=1

ConfWα(R)× [0, 1] −! ConfW (R2 × I) . (4.1)
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The relevant configuration space ConfV,W is now defined as the pullback:

ConfV,W ConfV ∪W (R2 × I)

∏3
α=1 ConfWα(R)× [0, 1] ConfW (R2 × I) .

π

L

(4.2)

In particular, we can describe ConfV,W as the set of points (t, q, p), where t ∈ [0, 1], q ∈ ∏3
α=1 ConfWα

(R)
and p ∈ ConfV

(
R2 × I \

{
L (q, t)(wi)

}
wi∈W

)
.

Notice that we have a projection
ConfV,W ! [0, 1]

via the map on the left-hand side of the diagram (4.2). We write ConftV,W for the fiber of this map
over t ∈ [0, 1].

4.3 The expectation value

We are now equipped to present the Feynman rules that determines the amplitude Mt(Γ) associ-
ated to any Γ ∈ G and t ∈ [0, 1]. Our first step is to define a differential form of λ(Γ) on ConfV,W

as follows: For each edge e = (h, h′) ∈ E(Γ), let ϕe : ConfV ∪W (R2 × I) ! S2 be the map

ϕe(x) =
x(s(h′))− x(s(h))

|x(s(h′))− x(s(h))| ,

where s : H ! V is the source map (see section 4.1). Furthermore, let Φe : ConfV,W ! S2

be the pull back of ϕe to ConfV,W along the map in the top row of diagram (4.2) and write
Pe = Φ∗

eω ∈ Ω2(ConfV,W ). We define

λ(Γ) :=
∧

e∈E(Γ)

Pe. (4.3)

Notice that the degree of λ(Γ) is 2|E| = 3|V |+ |W | and hence λ(Γ) is a form of co-dimension one
on ConfV,W . Moreover, we associate to Γ a Lie-algebra factor c(Γ) ∈ U(g)⊗3 as follows:

(i) For each internal vertex vi we multiply by a factor:

∼ 〈
[τ(h1

i ), τ(h
2
i )], τ(h

3
i )
〉

vi

(ii) For each Wilson line Lα we get an element of U(g) given by:

∼ · · · τ(hj)τ(hj+1)τ(hj+2) · · ·
wj+1wj wj+2

· · · · · ·
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In other words, c(Γ) is given by

c(Γ) =
m∏

i=1

〈
[τ(h1

i ), τ(h
2
i )], τ(h

3
i )
〉 n1∏

j=1

τ(hj)⊗
n2∏

k=n1+1

τ(hk)⊗
n∏

l=n1+n2

τ(hl). (4.4)

Given t ∈ [0, 1] and Γ ∈ G we now wish to define the amplitude Mt(Γ) as the integral of the element
λ(Γ)c(Γ) over the configuration space of vertices ConftV,W . However, to properly define such an
integral we must equip the configuration space with a suitable orientation form. Specifically, the
orientation form in question must ensure that integrals are invariant under isomorphisms of Γ ∈ G.
Furthermore, the anti-symmetry relation in equation (3.4) implies that changing the orientation
of an edge must reverse the sign of orientation of the configurations space.

Given a point (q, p) ∈ ConftV,W we write pi = p(vi) ∈ R2 × I and qj = q(wj) ∈ R. Then, a small
neighbourhood of (p, q) ∈ ConftV,W has local coordinates t ∈ R, (p1i , p2i , p3i ) ∈ R3 for each internal
vertex vi ∈ V and qj ∈ R for each external vertex wj ∈ W .

Definition 4.3. Let g : H ! R be the map g(hk
i ) = pki and g(hj) = qj . For each Γ ∈ G we define

an orientation form on ConftV,W by

Or(Γ) =
∧

(h,h′)∈E(Γ)

(
dg(h) ∧ dg(h′)

)
.

In the following we use the notation Conft(Γ) to denote the configuration space ConftV,W

equipped with the orientation form Or(Γ). Similarly we denote by Conf(Γ) the configuration
space ConfV,W equipped with the orientation form Or(Γ) ∧ dt. We now define

Mt(Γ) =

∫

Conft(Γ)

λ(Γ) c(Γ). (4.5)

Proposition 4.1. The Feynman amplitude Mt(Γ) in equation (4.5) is invariant under isomor-
phisms of Γ.

Proof. By definition 4.2, any isomorphism of Γ is given by relabeling the internal vertices and
permuting the set of half-edges at each internal vertex. Since the definition of Mt(Γ) does not
depend on the labeling of vertices, we consider an isomorphism that permutes the half-edges
{h1

i , h
2
i , h

3
i } incident to some vi ∈ V . If the permutation is odd then the sign of Or(Γ) is reversed.

On the other hand, since the structure constants are totally anti-symmetric, also c(Γ) reverses its
sign, thus leaving the overall sign of Mt(Γ) unchanged.

We are now finally ready to give a precise definition of the expectation value ⟨Lt⟩

Definition 4.4. We define

⟨Lt⟩ =
∑

Γ∈G/∼
ℏord(Γ)Mt(Γ) ∈ U(g)⊗3, (4.6)
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where the sum runs over isomorphism classes of Feynman graphs, and ord(Γ) is the number of
edges minus the number of internal vertices of Γ.

4.4 Admissible Feynman graphs

Only a limited set of Feynman graphs has a non-vanishing contribution to the sum in equation (4.6).
In fact, recall that g = a⊕ a∗ is defined by the following non-trivial brackets:

[ξa, ξb] = f c
abξc , [ζa, ξb] = fa

cbζ
c.

With this definition, the coefficient ⟨[τ(h1
i ), τ(h

2
i )], τ(h

3
i )⟩ associated to an internal vertex vi is only

non-zero when vi has exactly one incoming and two outgoing edges, as shown in figure 5.

∼ ⟨[ζa, ξb], ξc⟩ = fa
bc

b c

a

Figure 5: The only allowed internal vertex

Moreover, we get no contributions from graphs that have an oriented cycles as shown in figure
6 (a) or from graphs that have an oriented path that ends and begins on the same Wilson line
as shown in figure 6 (b). This follows from the definition of the propagator Pe = ϕ∗

eω. In fact,
because ω is only non-zero in a small neighbourhood of the north pole, λ(Γ) is only supported in
a neighbourhood of ConfV,W where all edges in R2 × I point strictly upwards along I. Hence λ(Γ)

vanishes everywhere for the graphs in figure 6.

(a) (b)

Figure 6: Non-contributing Feynman graphs

The above discussion can be summarized to give the following proposition:

Proposition 4.2. The only Feynman diagrams contributing to the sum in equation (4.6) are
forests with edges in R2× I pointing strictly upwards along I and roots and leafs connected to the
Wilson lines (see figure 7).
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L3,t

L2,t

L1,t

Figure 7: Example of an admissible Feynman graph

It follows from proposition 4.2 that a given connected Feynman graph Γ connects at least two
Wilson lines. Again using the fact that ω is only non-zero in a small neighbourhood of the north
pole, it follows that the associated differential form λ(Γ) only has support in a small neighbourhood
of R2 around the crossing between the corresponding Wilson lines. Recall from remark 1 of section
3.3 that we denoted the (angle independent) expectation value of a pair of crossing Wilson lines
by R ∈ U(g)⊗2. For each i, j ∈ {1, 2, 3} with i ̸= j let ρij : U(g)⊗2 ! U(g)⊗3 be the map defined
in section 2, i.e.

ρ12(a⊗ b) = a⊗ b⊗ 1 , ρ13(a⊗ b) = a⊗ 1⊗ b , ρ23(a⊗ b) = 1⊗ a⊗ b.

and write Rij = ρij(R) ∈ U(g)⊗3. By the above discussion we now have the following lemma:

Lemma 4.1. ⟨L0⟩ and ⟨L1⟩ takes the form

⟨L0⟩ = R12R13R23 and ⟨L1⟩ = R23R13R12 .

The situation is illustrated in figure 8. The dotted circle indicates the area where the interaction
matrix Rij acts.

L2,0L1,0 L3,0

R12

R13

R23

L2,1L1,1 L3,1

R12

R13

R23

Figure 8: A graphical illustration of lemma 4.1.
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5 Finiteness of the Integrals

Because the propagator Pe = ϕ∗
eω is only defined away from the diagonal it is not immediately clear

that the Feynman integrals in equation (4.5) converges in the limit when vertices come together. In
fact, the finiteness of Feynman integrals in Chern-Simons theory on a general three-manifold was
proven in [4] by Axelrod and Singer, using a configuration space compactification closely related
to the Fulton-MacPherson compactification [12], and in [6] this was extended by Bott and Taubes
to Chern-Simons theory in the presence of Wilson lines. For the present purpose these results can
be assembled to give the following theorem:

Theorem 2. There is a partial compactification ConfV,W of the configuration spaces ConfV,W for
subsets of vertices coming together, such that the compactified space is a manifold with corners
and the differential forms λ(Γ) are smooth forms with compact support on ConfV,W .

In this compactification boundary strata are defined using spherical blow-ups along diagonals
where subsets of vertices come together. In subsections 5.1 and 5.2 below we give a full description
of the corresponding boundary strata of co-dimension one, each coming from a single subset of
vertices all coming together at the same speed. Denoting by ∂ ConfV,W the corresponding co-
dimension one boundary it holds that ∂ ConfV,W is given by the disjoint union of the following
strata:

• For each S ⊂ V we get boundary stratum ∂S ConfV,W corresponding to the vertices S coming
together.

• For each α ∈ {1, 2, 3}, S ⊂ V and T ⊂ Wα with T ̸= ∅ we get a boundary stratum
∂S,T ConfV,W corresponding to vertices S ∪ T coming together on the line Lα,t.

The reader is referred to [4], [16] and the appendix of [6] for details on the strata of higher co-
dimension, which correspond to collapsing nested subsets of vertices.

5.1 Boundary strata for internal collisions

We begin by describing the boundary strata corresponding to a subset S ⊂ V of internal vertices
coming together. Recall that given a point (t, q, p) ∈ ConfV,W we use the notation pi = p(vi)

and qj = q(wj). Let i0 := min{i}vi∈S and write v0 := vi0 and p0 := pi0 . Furthermore, let dmin

be the minimal distance between p0 and a vertex in {pi}vi∈V \S ∪ {qj}wj∈W . We can define a
neighbourhood U ⊂ ConfV,W where the vertices in S are close together and far from all other
vertices as follows:

U =

{
(t, q, p) ∈ ConfV,W

∣∣∣∣
( ∑

vi∈S

|p0 − pi|2
)1/2

< ηdmin

}
,

where η > 0 is small. Given any point (t, q, p) ∈ U we can now write

pi = p0 + rdminuα , vi ∈ S \ {v0}, (5.1)
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where uα ∈ R3 and r ∈ (0, η) are uniquely determined by the conditions:

•
∑

i |ui|2 = 1,

• ui ̸= uj for i ̸= j.

Definition 5.1. Let G < Homeo(R3) to be group of scalings and translations in R3. We define

CS := ConfS(R3)/G

where G acts on ConfS(R3) by translating and/or scaling all points simultaneously.

The points (ui)i∈S\{v0} then determines a set of coordinates on the space CS and hence the change
of coordinates in equation (5.1) determines a diffeomorphism

U ∼= CS × Conf(V \S)∪{v0},W ×(0, η). (5.2)

The boundary stratum corresponding to the vertices {pi}i∈S coming together is obtained by in-
cluding the r = 0 in the interval on the right-hand side of equation (5.2). Hence

∂S ConfV,W = CS × Conf(V \S)∪{v0},W . (5.3)

5.2 Boundary strata for external collisions

We now describe the boundary strata corresponding to a subset of both internal and external
vertices coming together on one of the Wilson lines. Let S ⊂ V and T ⊂ Wα for some α ∈ {1, 2, 3}
and let eα be the unit vector pointing along Lα,t (notice that eα does not depend on t). Given a
point (t, q, p) ∈ ConfV,W we use the following notation:

• ⟨pi, eα⟩ is the projection of pi onto Lα,t,

• j0 = min{j}wj∈T and we write w0 := wj0 and q0 := qj0

• dmin is the minimal distance between Lα,t(q0) and a vertex in (V \ S) ∪ (W \ T ).

We can define a neighbourhood V ⊂ ConfV,W where the vertices in S ∪ T are close together and
far from all other vertices as follows:

V =

{
(t, q, p) ∈ ConfV,W

∣∣∣∣
( ∑

vi∈T

|q0 − ⟨pi, ei⟩ |2 +
∑

wj∈T

|q0 − qj |2
)1/2

< ηdmin

}
.

Given any (t, q, p) ∈ V , vi ∈ S and wj ∈ T we can write:

pi = Lα,t(q0) + rdminui , vi ∈ S

qj = q0 + rdminaj , wβ ∈ T \ {w0}
(5.4)

for unique r ∈ (0, η), ui ∈ R3 and aj ∈ R subject to the conditions:

•
∑

i | ⟨ui, eα⟩ |2 +
∑

j |aj |2 = 1,
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• ui ̸= uj , ai ̸= aj and ui ̸= ajeα when i ̸= j.

Definition 5.2. Let ConfS,T (L,R3) be the configuration space with points in the bulk and along
the line L ⊂ R3. Concretely, ConfS,T (L,R3) is defined as the pullback:

ConfS,T (L,R3) ConfS∪T (R3)

ConfT (R) ConfT (R3) .L

(5.5)

Moreover, let G′ < Homeo(R3) be the subgroup of scalings and translations along L. We define

CS,T := ConfS,T (L,R3)/G′

where G′ acts on ConfT,S by translating and/or scaling all points simultaneously.

The points
{
(ui)vi∈S , (aj)wj∈T\{w0}

}
determine a set of coordinates on the space CS,T defined

above and hence the change of coordinates in equation (5.4) determines a diffeomorphism

V ∼= ConfV \S,W ′ ×CS,T × (0, η), (5.6)

where W ′ is obtained from W by substituting Wα with (Wα \ T ) ∪ {w0}. The boundary stratum
corresponding to the vertices S ∪ T coming together is obtained by including the r = 0 in the
interval on the right-hand side of equation (5.6). Hence

∂S,T ConfV,W ∼= ConfV \S,W ′ ×CS,T . (5.7)

6 Stokes’ Theorem

The remainder of this paper is dedicated to proving theorem 1, namely that ∆t ⟨Lt⟩ = ⟨L1⟩ −
⟨L0⟩ = 0. To this aim we will use the below proposition.

Proposition 6.1. Let ∂ Conf(Γ) be the co-dimension one boundary in the Axelrod-Singer com-
pactification. Then

∆t ⟨Lt⟩ =
∑

Γ

ℏord(Γ)
∫

∂ Conf(Γ)

λ(Γ) c(Γ) . (6.1)

Proof. Observe that the total co-dimension one boundary of Conf(Γ) is given by the union of
boundary components coming from

1. The boundary ∂ Conf(Γ) corresponding to subsets of vertices coming together.

2. The boundaries Conf1(Γ) and Conf0(Γ) corresponding to t = 0 and t = 1.

3. The boundaries coming from an internal vertex reaching R2 × {−1} or R2 × {1}.
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By proposition 4.2 and lemma 4.1 in section 4.4 it holds for any Γ ∈ G that λ(Γ) has compact
support in Conf(Γ) and vanishes on the boundary corresponding to case 3 in the above. Moreover,
since the propagator is a closed form on the interior of Conf(Γ) it holds that dλ(Γ) = 0. The
following version of Stokes’ theorem now applies:

0 =

∫

Conf(Γ)

dλ(Γ) =

∫

∂ Conf(Γ)

λ(Γ) +

∫

Conf0(Γ)

λ(Γ)−
∫

Conf1(Γ)

λ(Γ) . (6.2)

Inserting equation (6.2) into the expression for ⟨Lt⟩ in equation (4.6) the proposition follows.

Proving theorem 1 therefore amounts to showing that the sum of all boundary integrals in
equation (6.1) vanishes. By the construction in the previous section we have

∫

∂ Conf(Γ)

λ(Γ) c(Γ) =
∑

S

∫

∂S Conf(Γ)

λ(Γ) c(Γ) +
∑

S,T

∫

∂S,T Conf(Γ)

λ(Γ) c(Γ) .

7 Vanishing Theorems

This section contains the proof of theorem 1 via a series of vanishing results for the boundary
integrals in equation (6.1). These results are variations of the vanishing theorems of Bott and
Taubes [6]. Concretely, in section 7.1 we prove the vanishing of boundary integrals coming from
internal collisions and in section 7.2 we prove the vanishing of boundary integrals coming from
external collisions (collisions along a Wilson line) .

7.1 Vanishing theorems for internal collisions

Theorem 3. The boundary integrals contributing to equation (6.1) coming from internal collisions
vanishes, that is ∑

Γ

ℏord(Γ)
∑

S

∫

∂S Conf(Γ)

λ(Γ) c(Γ) = 0 . (7.1)

Notation: Given Γ ∈ G and S ⊂ V , we denote by ΓS the sub-graph of Γ spanned by the vertices
in S and by δSΓ the graph obtained from Γ by collapsing ΓS to a single internal vertex v0. Then

∂S Conf(Γ) = CS × Conf(δSΓ).

Observe that λ(Γ) splits into a product λ(Γ) = λ1 ∧ λ2 where λ1 is constructed from edges in
ΓS and λ2 is constructed from the remaining edges. In order to prove theorem 3 we will need the
following lemma.

Lemma 7.1. Upon restricting to ∂S Conf(Γ), the form λ1 factors through the projection

π1 : ∂S Conf(Γ) ! CS

and the form λ2 factors through the projection

π2 : ∂S Conf(Γ) ! Conf(δSΓ).
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Proof. The proposition follows from the change of coordinates in equation (5.1). In fact, if e

connects two internal vertices vi, vj ∈ S we have

Φe(x) =
pj − pi
|pj − pi|

=
uj − ui

|uj − ui|
,

which implies that Φe and thereby Pe factors through the projection π1. On the other hand, if e
connects a vertex vi ∈ V \ S and a vertex vj ∈ S we have

Φe(x) =
pj − pi
|pj − pi|

=
p0 + ruj − pi∣∣p0 + ruj − pi

∣∣ !
p0 − pi
|p0 − pi|

when r ! 0,

and hence Pe factors through the projection π2.

We write
λ1|∂S Conf(Γ) = π∗

1 λ̃(ΓS) and λ2|∂S Conf(Γ) = π∗
2 λ(δSΓ).

Corollary 7.1. Given Γ ∈ G and S ⊂ V , let ηS(Γ) be the number of edges connecting a vertex
in S with a vertex in (V ∪W ) \ S. The contribution to equation (7.1) from the boundary stratum
∂S Conf(Γ) vanishes unless ηS(Γ) = 4.

Proof. By counting the number of edges connecting vertices in S one finds deg λ̃(ΓS) = 3|S|−ηS(Γ).
On the other hand, dimCS = 3|S| − 4, and hence λ̃(ΓS) vanishes unless ηS(Γ) ≥ 4. By a similar
argument λ(ΓS,T ) vanishes on the boundary stratum unless ηS(Γ) ≤ 4.

Lemma 7.2. The contribution to equation (6.1) coming from boundary strata where more than
two internal vertices come together vanishes.

Proof. This follows directly from corollary 7.1 and proposition 4.2, since collapsing more than two
internal vertices in a forest creates a vertex of valence greater than four.

The following lemma is known as the IHX relations.

Lemma 7.3. The contribution to equation (7.1) coming from boundary strata where two internal
vertices come together vanishes.

Proof. Let Γ0 be a graph which has a single four-valent internal vertex v0 with one incoming and
three outgoing edges, and with all other vertices three- and one-valent. There are exactly three
graphs Γ1,Γ2,Γ3 ∈ G that identify with Γ0 when collapsing two internal vertices. These graphs
are shown in figure 9, where we imagine that all vertices and edges outside the encircled area are
held fixed:
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pj

pi

Γ1

a b

de

pjpi

Γ2

a b

de

pjpi

Γ3

a b

de

−! p0

Γ0

a b

de

Figure 9: The IHX-relation

The boundary stratum corresponding to collapsing pi and pj is given by:

∂{vi,vj} Conf(Γk) = C{vi,vj} × Conf(Γ0) ∼= S2 × Conf(Γ0),

for k = 1, 2, 3. If we choose the ordering of half edges in each graph to be clockwise, it follows from
definition 4.3 that

Or(Γ1) = −Or(Γ2) = Or(Γ3).

Hence, the contribution to the sum in equation (7.1) coming from this boundary stratum takes the
form:

∫

S2

ω

∫

Conf(Γ0)

λ(Γ0) c(Γ0), (7.2)

where c(Γ0) obtained from applying the usual Feynman rules to all three- and one-valent vertices
of Γ0, and assigning to the four-valent vertex p0 the factor:

(f c
abf

e
cd − f c

bdf
e
ac + f c

adf
e
bc),

which vanishes by Jacobi identity for the structure constants. This proves the theorem.

By combining lemma 7.2 and 7.3 we have now proved theorem 3. In section 7.2 below we show
the similar vanishing theorems for external collisions. Many of the arguments are repetitions of
those given above.

7.2 Vanishing theorems for external collisions

Theorem 4. The boundary integrals contributing to equation (6.1) coming from external collisions
vanishes, that is ∑

Γ

ℏord(Γ)
∑

S,T

∫

∂S,T Conf(Γ)

λ(Γ) c(Γ) = 0. (7.3)
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Notation: Given Γ ∈ G, S ⊂ V and T ⊂ Wα for some α ∈ {1, 2, 3}, denote by ΓS,T the subgraph
of Γ spanned by the vertices in S ∪ T and by δS,TΓ the graph obtained from Γ by collapsing ΓS,T

to a single external vertex w0. Then

∂S,T Conf(Γ) = CS,T × Conf(ΓS,T ).

We begin by proving the equivalents of lemma 7.1 and corollary 7.1 in the case of external
collisions. As in section 7.1 we can write λ(Γ) = λ1 ∧λ2 where λ1 is constructed from the edges in
ΓS,T and λ2 is constructed from the remaining edges.

Lemma 7.4. Upon restricting to ∂S,T Conf(Γ), the form λ1 factors through the projection

π̃1 : ∂S,T Conf(Γ) ! CS,T

and the form λ2 factors through the projection

π̃2 : ∂S,T Conf(Γ) ! Conf(δS,TΓ).

Proof. Let e be an edge connecting a vertices vi ∈ S and wj ∈ T . Then with the coordinate change
in equation (5.4) we have

Φe(x) =
Lα,t(qj)− pi∣∣Lα,t(qj)− pi

∣∣ =
ajeα − ui

|ajeα − ui|
,

which implies that Φe and thereby Pe factors through the projection π̃1. On the other hand, if e
connects a vertex vi ∈ V \ S and a vertex vj ∈ S we have

Φe(x) =
pj − pi
|pj − pi|

=
Lα,t(q0) + ruj − pi∣∣Lα,t(q0) + ruj − pi

∣∣ !
Lα,t(q0)− pi
|Lα,t(q0)− pi|

when r ! 0

and hence Φe factors through the projection π̃2. The remaining cases are similar.

We write
λ1|∂S,T Conf(Γ) = π̃∗

1 λ̃(ΓS,T ) and λ2|∂S,T Conf(Γ) = π̃∗
2 λ(δS,TΓ).

Corollary 7.2. Given Γ ∈ G, S ⊂ V and T ⊂ Wα, let ηS,T (Γ) be the number of edges connecting
a vertex in S ∪ T with a vertex in (V ∪W ) \ (S ∪ T ). The contribution to equation (7.3) from the
boundary stratum ∂S,T Conf(Γ) vanishes unless ηS,T (Γ) = 2.

Proof. By counting the number of edges connecting vertices in S ∪ T one finds deg λ̃(ΓS,T ) =

3|S| + |T | − ηS,T (Γ). On the other hand, dimCS,T = 3|S| + |T | − 2, and hence λ̃(ΓS,T ) vanishes
unless ηS,T (Γ) ≥ 2. By a similar argument λ(δS,TΓ) vanishes on the boundary stratum unless
ηS,T (Γ) ≤ 2.

The following lemma is known as the STU relations.
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Lemma 7.5. The contribution to equation (7.3) corresponding to two vertices coming together
where at least one is external vanishes.

Proof. Let Γ0 be a graph with a single two-valent external vertex v0 that has an incoming and an
outgoing edge, and with all other vertices three- and one-valent. There are exactly three graphs
Γ1,Γ2,Γ3 ∈ G that maps to Γ0 upon collapsing two vertices. These graphs are shown in figure 10.

Γ1

a

wj

b

wj+1

Γ2

a

qj+1

b

qj

Γ3

qj

pi

a b

−!

Γ0

q0

a b

Figure 10: The STU-relation

Collapsing the vertices qj and qj+1 in Γ1 and Γ2 and the vertices qj and pi in Γ3 into a single vertex
q0 we obtain a graph Γ0 with a single two-valent external vertex as shown on the right-hands side
of figure 10. The corresponding boundary strata are given by

∂ ∅,{wj ,wj+1} Conf(Γk) = {∗} × Conf(Γ0)

for k = 1, 2 and

∂{vi},{wj} Conf(Γ3) = C{vi},{wj} × Conf(Γ0) ∼= S2 × Conf(Γ0).

We now determine the induced orientation on Conf(Γ0) coming from each Γk, k ∈ {1, 2, 3}. By
definition 4.3 we can write

Or(Γ1) = −Or(Γ2) = dqj ∧ dqj+1 ∧X (7.4)

and
Or(Γ3) = (dqj ∧ dp1i ) ∧ dp2i ∧ dp3i ∧X , (7.5)

where X is the same for all Γk, k ∈ {1, 2, 3}. Inserting qj+1 = qj + r for some r > 0 into equation
(7.4) we get

Or(Γ1) = −Or(Γ2) = −dqj ∧ dr ∧X .

Similarly, we can write pi = Lt,α(qj) + ru for some r > 0 and unit vector u ∈ R3, and inserting
this into (7.5) we get

Or(Γ3) = dqj ∧ d3(ru) ∧X = dqj ∧ volS2 ∧ r2dr ∧X .
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In each case, the vector r is orthogonal to the boundary and pointing into the configuration space.
Thus, fixing an orientation Or(Γ0) = dqj ∧ dX on Conf(Γ0), the contribution to equation (7.3)
from the three boundary integrals takes the form:

∫

Conf(Γ0)

λ(Γ0) c(Γ0),

where c(Γ0) is the Lie algebra factor obtained from applying the usual Feynman rules to Γ0 at
each three- and one-valent vertex, and assigning to the two-valent vertex q0 the factor:

ζaξb − ξbζ
a − fa

bcζ
c

∫

S2

ω.

Recall that from the definition in section 3.2 that ω integrates to one on S2, and hence the above
factor vanish by the Lie algebra relations:

[ζa, ξb] = fa
bcζ

c .

Similar arguments would apply had we started from a graph Γ0 with two incoming or two outgoing
edges. Hence the theorem follows.

Lemma 7.6. Let S ⊂ V and T ⊂ Wα such that T ̸= ∅ and |S ∪ T | > 2. Then contribution to
equation (7.3) from the boundary stratum where the vertices in S ∪ T come together vanishes.

Proof. Recall from corollary 7.2 that we only get a contribution to equation (7.3) when Γ has
exactly two edges “leaving the stratum”, that is, connecting a vertex in S ∪ T with a vertex not in
S ∪ T . We consider the following three cases separately:

(a) Both of the edges leaving the stratum have orientations pointing out of S ∪ T :

(b) Both of the edges leaving the stratum have orientations pointing into S ∪ T :

(c) One of the edges leaving the stratum has orientation point into S ∪ T and the other edge has
orientation pointing out of S ∪ T :
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Case (a): Since, by proposition 4.2, all contributing graphs are trees, this situation can only
occur when |S ∪ T | = 2.

Case (b): We can assume that at least one of the edges leaving the stratum is connected to an
internal vertex v ∈ S since otherwise |S| = ∅ and |T | = 2. Let Γv be the disconnected sub-graph
of ΓS,T spanned by the vertices S′ ∪ T ′ connected by a path to v as illustrated in figure 11. We
write

λ̃(ΓS,T ) = λ̃1 ∧ λ̃2

where λ̃1 is constructed from edges in Γv and λ̃2 is the contribution from the remaining edges in
ΓS,T . It then holds that λ̃1 factors through the projection

p : CS,T ! CS′,T ′

which forgets about the vertices not in Γv. By counting the number of edges and vertices in Γv one
finds that λ̃1 vanishes by the same dimensional arguments as used in the proof of corollary 7.2.

v

Figure 11: Boundary stratum with two incoming edges. The red edges form the sub-graph Γv.

Case (c): We will further divide case (c) into two subcases:

(c1) Either one of the edges leaving the stratum is connected an external vertex w ∈ T or both
edges leaving the stratum are connected to the same internal vertex v ∈ S.

(c2) Both edges leaving the stratum are connected to internal vertices v, v′ ∈ S and v ̸= v′.

Case (c1): In this case λ̃(ΓS,T ) vanishes on dimensional grounds by arguments completely anal-
ogous to those for case (b).
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Case (c2): Assume that the outgoing edge is connected v ∈ S. By assumption Γ has two edges
connecting v to two different vertices in S ∪ T . The situation is illustrated below where we have
assigned coordinates x, y and z to the three vertices. Notice that x and z may be coordinates along
the Wilson line.

x
y

z

v

We can now use a well known coordinate change originally due to Kontsevich [15] to show the
vanishing of the integral ∫

CS,T

λ̃(ΓS,T ). (7.6)

In fact, integrating over y in equation (7.6) while keeping all other vertices fixed produces the
integral ∫

y∈R3

ϕ∗ω(x, y) ∧ ϕ∗ω(y, z). (7.7)

We now make the following change of coordinates: y = x+ z − y′.
∫

y

ϕ∗ω(x, y) ∧ ϕ∗ω(y, z) = −
∫

y′
ϕ∗ω(x, x+ z − y′) ∧ ϕ∗ω(x+ z − y′, z)

= −
∫

y′
ϕ∗ω(y′, z) ∧ ϕ∗ω(x, y′).

(7.8)

The minus since comes from this coordinate change being orientation reversing and the last equality
uses translation invariance of ϕ. This implies that the integral in equation (7.7) equals minus itself
and hence must be zero.

Lemma 7.5 and 7.6 proves theorem 4, and together with theorem 3 this completes the proof of
theorem 1. By lemma 4.1, this implies that the expectation value R of a pair of crossing Wilson
lines is a solution to the Yang-Baxter equation. In the following section we argue that R is in fact
an R-matrix in the sence of section 2. In particular, we show that R is independent of the angle of
crossing between the Wilson lines and that it satisfies a so called unitarity relation, implying that
it is invertible.

8 Angle Independence and Unitarity

Proposition 8.1. Let L and L′ be two (non-parallel) lines in R2× I supported at different points
in I. Then expectation value R = ⟨LL′⟩ is independent of the angle of crossing between the lines.
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L

L′

θ

Figure 12

Proof. Consider changing the angle θ at the crossing in figure 12 by keeping L′ fixed while rotating
L. We can apply the same vanishing arguments as in section 7 to check that the expectation value
is unchanged under this operation. Notice that in this case the tangent vector to L dependents on
θ. We therefore get the following weaker version of corollary 7.2: Let Γ ∈ G and let S be a subset
of internal vertices and T a subset of external vertices on L. It then holds that λ(Γ) vanishes on
∂S,T Conf(Γ) unless ηS,T (Γ) ≤ 2. On the other hand, since by proposition 4.2 the only contributing
Feynman graphs in are forests with roots on L and leafs on L′, it holds that ηS,T (Γ) ≥ 2 for any
choice of Γ, and hence the vanishing arguments carry through regardless.

Proposition 8.2. The element R is invertible, that is, it satisfies the relation shown in figure 13.

R

R̃

(a) (b)

Figure 13

Proof. We here use the exact same arguments as for the angle independence of R in proposition 8.1.
In fact, if we start from the diagram in figure 13 (a) and keep the top line fixed while continuously
moving the bottom line to the left we obtain diagram in figure 13 (b). By the same argument as
above, the expectation value is invariant under this operation.
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9 Conclusion

We have proved that the expectation value R = ⟨LL′⟩ of a pair of crossing Wilson lines is an
R-matrix. In [1] Kaufman and the present author showed that the leading order deformation of
the co-product in Uℏ(g) can be realised from the operation of merging two parallel Wilson lines. As
in [2], computations are here carried out in the setting of Chern-Simons theory for a semi-simple
Lie algebra extended by an extra copy of the Cartan subalgebra. The arguments however translate
directly into the present context. Together these results give a Wilson line realisation of the co-
product and R-matrix in the quasi-triangular Hopf algebra Uℏ(g), thus supporting the claim that
the category of Wilson line operators is equivalent to the category of representations of Uℏ(g) as a
braided tensor category.

A final remark worth noting: As mentioned in the introduction, the theory we have studied is
equivalent to a topologically twisted 3d N = 4 gauge theory. Moreover, if we take g = a⊕ a∗ to be
a Lie super-algebra this would also cover Chern-Simons theory as a 3d N = 4 gauge theory with
matter. We have here only considered the case when g is a classical Lie algebra but nothing in the
arguments should change significantly if one instead considers the super-algebra case.
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Problematic boundary integrals for g = sl2(C)

The broken symmetry of the propagator prevents us from directly implementing the vanishing
theorems of Bott and Taubes [4] to recover solutions to the Yang-Baxter equation for Chern-
Simons theory in the setup of paper 1 (section 2 and 3.1). In paper 2, this is accounted for by
considering a Lie algebra for which the only contributing Feynman diagrams are trees. Recall from
proposition (6.1) of paper 2 that, to recover solutions to the Yang-Baxter equation, we need the
following sum to vanish:

∆t ⟨Lt⟩ =
∑

Γ

ℏord(Γ)
∫

∂ Conf(Γ)

λ(Γ) c(Γ) . (1)

In this appendix I describe the boundary strata contributing to this sum starting from the setup
of paper 1.

For simplicity, consider g = sl2(C) extended by a copy H̃ of the Cartan. Then g̃ = sl2(C) ⊕ H̃

has generators {E,F,H+, H−}, where H+ = H + iH̃ and H− = H − iH̃, and we impose boundary
conditions by restricting the gauge field to l+ = span{E,H+} on the upper boundary R2×{1} and
to l− = span{F,H−} on the lower boundary R2 × {−1}. We will use the definition of Feynman
diagrams given in section 5 of paper 2, with the convention that edges have orientation going from
l− to l+. By definition of the structure constant, the only allowed internal vertices in the theory
are the ones shown below:

E

H− F

F

H+ E

Figure 3: The allowed Feynman diagram vertices

Observe first that the contribution to equation (1) from principal faces (two vertex collisions)
vanishes due to the IHX and STU relations just as in paper 2. We therefore focus in the contribution
from hidden faces (more-than-two vertex collisions). For internal collisions the vanishing arguments
carry through and we have the following proposition:

Proposition A. The contribution to equation (1) from the boundary strata corresponding to
internal collisions vanishes.

Proof. We only give a sketch of the proof. Let Γ ∈ G and S ⊂ V be a subset of internal vertices.
By corollary 7.1 of paper 2 the associated differential form λ(Γ) vanishes on ∂S ConfV,W unless Γ

has exactly four half-edges “leaving S”, as illustrated in the two examples below:

61



S

F

E

E H− S

H−

F

E H+

Figure 4: Examples of boundary strata for internal collisions

Assume that Γ has at least two of the half-edges leaving S labeled by E (or equivalently by F ), as in
the diagram on the left-hand side of figure 4. Now, let Γ′ be the graph obtained from Γ permuting
these two half-edges. Then c(Γ) = c(Γ′) and the similarly λ(Γ) = λ(Γ′) upon restricting to the
boundary ∂S ConfV,W . However, by definition 4.3 of paper 2, the orientation form changes sign:
Or(Γ) = −Or(Γ′). Since both graphs contribute to the sum in equation (1), the total contribution
coming from this boundary stratum cancels out.

Assume instead that at least two of the half-edges leaving S are labeled by either H− or H+ as on
the right-hand side of figure 4. Notice that

Tr([E,F ], H+) = Tr([E,F ], H−) = 1.

Hence, the Lie algebra factor c(Γ) is unchanged under permuting the two half-edges labeled by H±
and the vanishing follows in the same way as above. This accounts for all possible labelings of the
half-edges leaving S and so the proposition follows.

We now turn to the boundary integrals for external collisions. Let T ⊂ Wα for α ∈ {1, 2, 3},
with T ̸= ∅ and |S ∪ T | > 2. By corollary 7.2 of paper 2 the differential form λ(Γ) vanishes on
∂S,T ConfV,W unless Γ has exactly two half-edges leaving S ∪ T .

S ∪ T

Proposition B. The contribution to equation (1) from the stratum ∂S,T ConfV,W vanishes for
graphs with both of the half-edges leaving S ∪ T labeled by the same generator of g.

Proof. The corresponding boundary integrals cancel out by the same arguments as in proposition A.
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Proposition C. The contribution to equation (1) from the stratum ∂S,T ConfV,W vanishes for
graphs with at least one of the half-edges leaving the stratum labeled by H− or H+.

Proof. Assume first that the half-edge labeled by H± is incident to a vertex on the Wilson line.
Then λ(Γ) vanishes on ∂S,T Conf(Γ) on dimensional grounds (see case (b) of lemma 7.6 in paper
2). We can therefore assume that the half-edge labeled by H± is incident to an internal vertex in
v ∈ S. Then the situation is as in figure 5.

zx

y

H±

Figure 5: Boundary stratum with a red edge leaving the stratum.

The Kontsevich change of coordinates in case (c2) of lemma 7.6 now ensures that the integral over
CS,T vanishes.

The only remaining case is therefore the contribution to equation (1) from ∂S,T ConfV,W for graphs
Γ with two half-edges leaving S ∪ T , one labeled by E and the other by F . Observe that this
situation only occurs when T is a set of vertices on the middle Wilson line. An example of such
a boundary integral, for which it appears there is no easy vanishing argument, is illustrated in
figure 6.

E

F

Figure 6: Problematic boundary integrals
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