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Preface

Abstract

In this thesis, we shed light from various angles on ways of decomposing tensors. Our inves-

tigation consists of four parts.

In the first part, we study entanglement structures, which are a natural generalization of

tensor networks: While tensor network states can be seen as locally transformed versions of

a tensor “built” from two-party tensors laid out according to the geometry of a graph, entan-

glement structures are constructed from tensors put on the hyperedges of a hypergraph. We

find constructions and obstructions for the conversion between entanglement structures in the

sense of restriction and degeneration, and calculate the tensor rank of specific entanglement

structures.

We then go on to study tensor networks in more depth. More precisely, we study the quantum

max-flow, which quantifies the amount of entanglement between two regions of a tensor

network. We relate the quantum max-flow in the so-called bridge graph to the theory of

prehomogeneous tensor spaces and the representation theory of quivers, a connection that

enables us to calculate the quantum max-flow in this graph in a large number of cases.

After that, we define and study partial degeneration, an intermediate version of restriction and

degeneration, which are well-known preorders for tensors. By constructing various examples

and showing obstructions, we demonstrate that partial degeneration is inequivalent to both

restriction and degeneration. We also relate this concept to the notion of aided rank, a

generalization of tensor rank. Here, we again highlight di↵erences between the concepts of

degeneration and partial degeneration.

Finally, we analyze stabilizer rank decompositions, which are relevant in the theory of sim-

ulating quantum circuits. In particular, we present a technique to lower bound stabilizer

rank and approximate stabilizer rank. This technique yields, together with other interesting

consequences, a strong lower bound on the stabilizer rank of tensor powers of the so-called

T -state – a quantity gauging the e�ciency of the simulation of quantum circuits built from

Cli↵ord+T gates using the Gottesman-Knill theorem.
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Resumé

I denne afhandling kaster vi lys over måder at dekomponere tensorer. Vores undersøgelse

best̊ar af fire dele.

I den første del studerer vi sammenfiltringsstrukturer, som er en naturlig generalisering af ten-

sornetværk: Mens tensornetværkstilstande kan ses som lokalt transformerede versioner af en

tensor ”opbygget” af bipartite tensorer lagt p̊a kanterne af en graf, er sammenfiltringsstruk-

turer den naturlige generalisering, hvor en tensor er konstrueret af mindre tensorer sat p̊a

hyperkanterne af en hypergraf. Vi finder konstruktioner og obstruktioner for omdannelse,

i betydningen restriktion og degeneration, af sammenfiltringsstrukturer. Vi beregner ogs̊a

tensorrangen af visse sammenfiltringsstrukturer.

Vi fortsætter derefter med at dykke dybere ned i teorien om tensornetværk. Mere præcist

studerer vi det kvantemekaniske max-flow, som kvantificerer graden af sammenfiltring mellem

to omr̊ader i et tensornetværk. Vi relaterer det kvantemekaniske max-flow i en specifik graf

til teorien om præhomogene tensorrum og repræsentationsteorien for koggere, som gør os i

stand til at beregne størrelsen i mange tilfælde.

Derefter studerer vi partiel degeneration, som er en mellemversion af restriktion og degen-

eration. Ved at konstruere forskellige eksempler og vise obstruktioner viser vi, at partiel

degeneration hverken er ækvivalent med restriktion eller degeneration. Vi relaterer ogs̊a

dette begreb til begrebet understøttet rang, en generalisering af tensor rank. Her fremhæver

vi igen forskelle mellem sædvanlige begreber degeneration og partiel degeneration.

Til sidst analyserer vi stabilisatorrangdekompositioner, som er relevante for teorien om simu-

lering af kvantekredsløb. Specielt præsenterer vi en teknik til at begrænse b̊ade stabilisator-

rang og approximativ stabilisatorrang nedenfra. Teknikken giver, som en blandt flere inter-

essante konsekvenser, en god nedre grænse for stabilisatorrangen af den s̊akaldte T -tilstand

– en størrelse, der kvantificerer hvor e↵ektiv man kan simulere en kvantekredsløb bygget af

Cli↵ord+T -porte ved hjælp af Gottesman-Knill-sætningen.
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Contributions and structure

This thesis consists of four main parts following the general introduction in Chapter 1.

• Chapter 2 is based on ongoing work with Matthias Christandl.

• Chapter 3 is a partly modified version of the preprint [GLS22] which is joint work with

Fulvio Gesmundo and Vladimir Lysikov:

Gesmundo, Fulvio and Lysikov, Vladimir and Ste↵an, Vincent. Quantum max-flow in

the bridge graph, 2022. doi:10.48550/arXiv.2212.09794

• Chapter 4 is a partly modified version of the preprint [CGLS22] which is joint work

with Matthias Christandl, Fulvio Gesmundo and Vladimir Lysikov.

Christandl, Matthias and Gesmundo, Fulvio and Lysikov, Vladimir and Ste↵an, Vin-

cent. Partial degeneration of tensors, 2022. doi:10.48550/arXiv.2212.14095

• Chapter 5 is a partly modified version of [LS22] which is joint work with Benjamin

Lovitz.

Lovitz, Benjamin and Ste↵an, Vincent. New techniques for bounding stabilizer rank,

Quantum, 6:692, 2022. doi:10.22331/q-2022-04-20-692

Parts of this chapter also appear in Benjamin Lovitz’s Ph.D. thesis [Lov22]. Previous

to publication, the manuscript [LS22] has been uploaded to a preprint server:

Lovitz, Benjamin and Ste↵an, Vincent. New techniques for bounding stabilizer rank,

2021. doi:10.48550/arXiv.2110.07781.

During my Ph.D., I also worked on the article [BCG+20] which is not included in this thesis.
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Chapter 1

Introduction

The main objects of study in this thesis are tensors. By that, we always mean elements

T ∈ U1⊗ ⋅ ⋅ ⋅ ⊗Uk of the tensor product of finite-dimensional complex vector spaces U1, . . . , Uk

of dimension u1, . . . ,uk. Throughout this thesis, we will refer to k as the number of parties

and call T a k-party tensor. By fixing a basis e1, . . . , eui for each of the spaces Ui, a tensor

T is essentially a multidimensional array (Ti1...ik)i1...ik where the index ij runs from 1 to

uj = dim(Uj):

T =
u1...uk

�

i1...ik=1
Ti1...ikei1 ⊗ ⋅ ⋅ ⋅ ⊗ eik

Tensors are used in various fields of applied and theoretical mathematics and are the main

protagonists in many areas. One reason for their versatility is the sheer complexity of tensors:

The number of parameters necessary to describe a general tensor scales exponentially in the

number of parties. A key task for many applications is therefore, to find succinct descriptions

of the relevant tensors. Often, such descriptions are achieved by ways of decomposing tensors.

Typical examples that are frequently used and that we will study in this thesis are tensor

rank decompositions, tensor network representations, and stabilizer rank decompositions.

One way to think about tensor rank decompositions and tensor network representations is

by introducing certain preorders on the set of k-party tensors, for example, restriction and

degeneration. The notions of restriction and degeneration can be thought of as ways to

“compare” tensors: The fact that T restricts or degenerates to S reflects that T is more

complex than S. For a tensor, having a tensor rank decomposition of a certain length resp. a

particular tensor network representation can be equivalently stated as the tensor being a

restriction of a special tensor (which depends on the setup). In that way, we can think of

tensors as resources using restriction and degeneration. We will review all of the mentioned

concepts in Section 1.1, Section 1.3 and Section 1.4.
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Another way of decomposing tensors comes from the simulation of quantum circuits. It turns

out that quantum circuits with a computational basis state as input and that are composed of

gates from the so-called Cli↵ord gate set followed by measurements in the computational basis

can be simulated e�ciently on a classical device [Got98]. States that can be prepared from a

computational basis state by applying Cli↵ord gates only are called stabilizer states. In this

context, a natural way of decomposing tensors arises: The stabilizer rank of a tensor is the

minimal number of stabilizer states whose linear span contains it. By so-called magic state

injection, one can see that the stabilizer rank of a certain tensor quantifies the complexity of

a certain simulation protocol [BSS16, BG16, BBC+19, QPG21]. We will review the theory of

stabilizer rank decompositions in Section 1.5.

Each of the mentioned ways of decomposing tensors has its use cases in both application and

theory. Let us outline a few areas in which the study of tensors is central.

• In quantum many body physics and quantum information theory, tensors T ∈ U1⊗⋅ ⋅ ⋅⊗Uk

specify the state of a system of k particles where the i’th particle has ui degrees of free-

dom. Many interesting problems in these areas can be translated to problems about the

corresponding tensors [NC00, DVC00]. In this context, tensor network decompositions

are an important tool. Tensors that admit e�cient tensor network representations are

believed to capture the physical corner of the Hilbert space, that is, the set of “physi-

cally reasonable” quantum states. More specifically, they are believed to parametrize

the set of quantum states obeying an area law [Has07, ECP10]. Because of that, they

have been useful both for theoretical insights and in applications, for example, to per-

form e�cient calculations for complex quantum systems [FNW92, Whi92, PGVWC07,

Vid07, Vid08, SCPG10, Sch11, Orú14, LVV15, ALVV17, HP18]. We also mention that

tensor network techniques lie at the heart of many state-of-the-art quantum circuit sim-

ulators [FSC+18, Orú19, ZSW20, PCZ22, PZ22]. Tensor network decompositions are

moreover frequently used in areas like holography [Swi12, MNS+15, PYHP15, HNQ+16,
Eve17], quantum chemistry [CS11, KDTR15, SPM+15, CKN+16, ZC21] and numerical

computations for complex quantum systems [HP18, CGFW21]. More specifically, the

theory of restrictions and degenerations can lead to insights into quantum entanglement.

A breakthrough result in quantum information theory was the fact that three-party

quantum systems can be entangled in two genuinely di↵erent ways. This observation

was merely a translation of the fact that restriction and degeneration are inequiva-

lent notions as soon as the number of tensor factors is at least three [DVC00]. To

mention another example, the theory of prehomogeneous tensor spaces, more precisely,

of so-called matrix pencils has been applied to improve the understanding of entan-

glement in special three-party systems [CdTP06, CMS10]. Finally, in the theory of

quantum circuit simulation the minimal lengths, of stabilizer rank decompositions of

tensor powers of the so-called T -state are an important indicator of the e�ciency of

certain simulation protocols. Simulation schemes using the Gottesman-Knill theorem

to simulate quantum circuits built from the Cli↵ord+T gate set scale polynomially in

this quantity [BSS16, BG16, BBC+19, QPG21].
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• In algebraic complexity theory, tensors are used to study the complexity of multilin-

ear maps, most prominently, the complexity of matrix multiplication [BCS97, Blä13].

Here, the minimal size of a tensor rank decomposition of T is a natural measure of

complexity for the multilinear map associated with T : Roughly speaking, the minimal

length of a tensor rank decomposition of T tells us how many multiplications need to

be performed to calculate the corresponding multilinear map. Finding explicit (border)

rank decompositions is equivalent to finding explicit (approximate) algorithms to cal-

culate this multilinear map. For example, the study of tensor rank and tensor border

rank decompositions of certain special tensors led to a sequence of breakthrough re-

sults on the complexity of matrix multiplication [Str69, Pan78, BCLR79, Bin80, Sch81,

CW81, Rom82, Str87, CW87, Wil12, LG14, AW21]. For a comprehensive introduction

to this area, we refer to [BCS97, Blä13], for a discussion from the viewpoint of algebraic

geometry and representation theory, see for example [Lan12].

• Various other areas of applied mathematics, like machine learning, and theoretical areas,

like combinatorics, have employed the rich theory of tensors that has been developed in

the last decades. In the realm of machine learning, tensor network decompositions like,

for example, so-called tensor train decompositions, are used, see [Ose11, SS16, CWZ21,

LLZ+21] for examples. Tensor rank decomposition is often referred to as canonical

polyadic decomposition (“CANDECOMP”), parallel factor analysis (“PARAFAC”) or

CP-decomposition [KB09]. The highly developed theory of tensor (border) rank decom-

positions and closely related notions like, for example, slice rank have been successfully

applied to make progress on combinatorial problems like the sunflower problem and cap

sets [Tao16, EG17, CFTZ22].

In this thesis, we will study and generalize the mentioned ways of decomposing tensors from

various di↵erent angles. Let us briefly summarize the main contributions of this thesis.

• In Chapter 2, we will study entanglement structures which are a natural generalization

of tensor networks. We mention that similar concepts have been used recently in the

context of tensor network representations, for example, to construct tensor network

representations of the resonating valence bond (RVB) state [SPCPG12, CLVW20]. We

will study to what extent entanglement structures can be transformed into one another

in the sense of restriction and degeneration, respectively. We also study tensor rank

decompositions of entanglement structures. Concretely, we derive novel constructions

and obstructions for the conversion between entanglement structures and highlight by

that how subtle the question about the conversion between entanglement structures is.

To do so, we analyze the geometry of the underlying hypergraphs and relate our problem

to asymptotic tensor restrictions and the asymptotic spectrum of tensors introduced

in [Str86, Str88]. We also answer an open question in [CF18] by calculating the tensor

rank of every possible entanglement structure built from two copies of the so-called

W -tensor.

3



• In Chapter 3, we will study the so-called quantum max-flow, which is a quantity asso-

ciated with tensor networks. Roughly speaking, the quantum max-flow specifies how

entangled two regions of a tensor network can be. Work prior to [GLS22] showed cer-

tain upper bounds on the quantum max-flow, but calculating the quantum max-flow

seemed intangible [CFS+16, GLW18]. We will see how one can calculate the quantum

max-flow exactly for the smallest graph for which the quantum max-flow is nontrivial.

We are able to calculate it in a wide range of cases by relating it to the theory of

prehomogeneous tensor spaces and the representation theory of the so-called Kronecker

quiver. Chapter 3 is an adjusted version of [GLS22] which is joint work with Fulvio

Gesmundo and Vladimir Lysikov.

• In Chapter 4, we will introduce and study a novel, intermediate version of restriction and

degeneration and shed some light on this new way of seeing tensors as a resource. We

will see a plethora of examples as well as no-go and classification results highlighting

the properties of this new notion and demonstrating that it is, in fact, inequivalent

to both restriction and degeneration. We will also relate it to a notion called aided

rank. Chapter 4 is an adjusted version of [CGLS22] which is joint work with Matthias

Christandl, Fulvio Gesmundo and Vladimir Lysikov.

• In Chapter 5, we will present techniques from number theory that enable us to prove

lower bounds on the stabilizer rank of a large number of tensors, in particular, tensor

powers of the so-called T -state providing strong lower bounds on the simulation com-

plexity of quantum circuits built from the Cli↵ord+T gate set. Moreover, we develop a

deeper understanding of the notion of stabilizer rank by constructing tensors with max-

imal possible stabilizer rank and tensors with multiplicative stabilizer rank. Chapter 5

is an adjusted version of [LS22] which is joint work with Benjamin Lovitz.

We will now introduce the most important concepts for this thesis to set the stage for the

mentioned results.

1.1 Tensors: Resources of entanglement and complexity

Let U1, . . . , Uk be finite-dimensional, complex vector spaces of dimensions u1, . . . ,uk. For

each of the spaces Ui, we fix a basis e1 . . . eui with a corresponding dual basis e∗1, . . . , e∗ui
.

Consider a tensor

T =
u1...uk

�

i1...ik=1
Ti1...ikei1 ⊗ ⋅ ⋅ ⋅ ⊗ eik ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk.

For k = 1, this is just a u1-dimensional vector, and for k = 2, it can be identified with a u1×u2

matrix. We visualize k-party tensors for k = 1,2,3 in Figure 1.1. Note that we are being

slightly sloppy by using the same symbols for basis vectors in all of the spaces Ui in order to

reduce the number of indices needed. We will stick to this practice throughout this thesis.

Often, it is useful to think of a tensor in a resource-theoretic way.

4



(a) A one-party tensor. (b) A two-party tensor. (c) A three-party tensor.

Figure 1.1: Visualization of tensors in U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk for k = 1,2,3. For k = 1, this is just a
vector (Figure 1.1(a)), and for k = 2 a matrix (Figure 1.1(b)). For k = 3, we can imagine a
cube in which the coe�cients of the tensor are arranged (Figure 1.1(c)).

Definition 1.1.1. For tensors T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk and S ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗Vk, we say that T restricts

to S and write T ≥ S if there are linear maps Ai ∶ Ui → Vi such that S = (A1 ⊗ ⋅ ⋅ ⋅ ⊗Ak)T .

It is clear that restriction of tensors defines a preorder on the set of all k-party tensors. For

k = 1, all tensors (except the zero tensor) are equivalent under this preorder. For k = 2,

tensors T and S can be interpreted as matrices. It is a standard fact that T ≥ S holds if and

only if the matrix rank of T is greater than or equal to the matrix rank of S. Since matrix

rank is lower semicontinuous, the set

{S ∈ V1 ⊗ V2 ∶ T ≥ S} ⊂ V1 ⊗ V2

is a closed set for any choice of T ∈ U1⊗U2. It has been known at least since [Syl52] that this

does not generalize to k ≥ 3. The way to deal with this is to define an approximate version

of restriction called degeneration.

Definition 1.1.2. We say that T degenerates to S and write T � S if S = lim✏→0 T✏ is a

limit of restrictions T✏ of T . Here, the limit is taken in the Zariski topology.

It is a classical result that S is a degeneration of T if and only if there are linear maps

Ai(✏) ∶ Ui → Vi depending polynomially on ✏ such that

(A1(✏)⊗ ⋅ ⋅ ⋅ ⊗Ak(✏))T = ✏
dS + ✏d+1S1 + ⋅ ⋅ ⋅ + ✏

d+eSe

for some natural numbers d, e called approximation degree and error degree, respectively, and

some tensors S1, . . . , Se [Hil93]. For a degeneration T � S, both the approximation degree

and the error degree are not unique and depend on the specific maps Ai(✏). Sometimes, we

write T �e
d
S if there are specific degeneration maps Ai(✏) realizing the degeneration in these

degrees.

Example 1.1.3. Consider a three-party tensor

T =
u1,u2,u3

�

i1,i2,i3=1
Ti1,i2,i3ei1 ⊗ ei2 ⊗ ei3 ∈ U1 ⊗U2 ⊗U3.
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We can naturally associate with T a bilinear map

T ∶ U∗1 ×U∗2 → U3, (e
∗
i
, e∗

j
)�

u3

�

k=1
Tijkek,

or, equivalently, u3 bilinear forms. One bilinear map of particular interest is the multiplication

of matrices. The tensor corresponding to the bilinear map multiplying an m × n matrix with

an n × p matrix is given by

�m,n, p� =
m,n,p

�

i,j,k=1
(ei ⊗ ej)⊗ (ej ⊗ ek)⊗ (ek ⊗ ei) ∈ (Cm

⊗Cn
)⊗ (Cn

⊗Cp
)⊗ (Cp

⊗Cm
).

Another tensor that is important in this context is the r-th unit tensor

�r� =
r

�

i=1
ei ⊗ ei ⊗ ei ∈ (Cr

)
⊗3.

In this basis, the bilinear map corresponding to the unit tensor is the entry-wise multiplication

�r� ∶ Cr
×Cr

→ Cr,

�

�
�
�

�

x1

⋮

xr

�

�
�
�

�

,

�

�
�
�

�

y1

⋮

yr

�

�
�
�

�

�

�

�
�
�

�

x1y1

⋮

xryr

�

�
�
�

�

.

In this context, �r� ≥ T means that one can calculate the u3 bilinear forms associated with

T using r independent products of complex numbers. If �r� � T , then the bilinear forms

corresponding to T can be approximated arbitrarily well using r products of complex numbers.

Clearly, we can generalize the unit tensor from Example 1.1.3 to any number of parties k by

writing

�r� = �r�k =
r

�

i=1
ei ⊗ ⋅ ⋅ ⋅ ⊗ ei ∈ (Cr

)
⊗k.

Most of the time, it will be clear what k is, and we will just write �r�. The following definition

is motivated by Example 1.1.3.

Definition 1.1.4. For a tensor T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk, we define its rank as

R(T ) =min{r ∶ �r� ≥ T}.

Moreover, we define the border rank of T as

R(T ) =min{r ∶ �r� � T}.

From Definition 1.1.4, the following characterization of rank and border rank is immediate.

We mention that often, instead of Definition 1.1.4, this equivalent characterization is used to

define rank and border rank.

6



Proposition 1.1.5. Let T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk. It holds that R(T ) ≤ r if and only if there are

vectors ui1, . . . , uir ∈ Ui for i = 1, . . . , k such that

T =
r

�

i=1
ui1 ⊗ ⋅ ⋅ ⋅ ⊗ uik.

Moreover, T has border rank R(T ) ≤ r if and only if there are vectors ui1(✏) . . . uir(✏) ∈ Ui[✏]

depending polynomially on ✏ for i = 1, . . . , k such that

✏dT =
r

�

i=1
ui1(✏)⊗ ⋅ ⋅ ⋅ ⊗ uik(✏) +O(✏

d+1
)

for some natural number d.

We will sometimes refer to tensors of rank 1 as simple tensors. For k = 2, T can be interpreted

as a matrix, and Proposition 1.1.5 tells us that its rank and border rank coincide with its

matrix rank.

Remark 1.1.6. Let T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk be a tensor of rank at most r, that is, we can write

T =
r

�

i=1
ui1 ⊗ ⋅ ⋅ ⋅ ⊗ uik.

Consequently, we see that all tensors of rank at most r can be specified by r ⋅ (u1 + ⋅ ⋅ ⋅ + uk)

complex parameters in the fixed bases. Since the tensor product is multilinear with respect to

scalar multiplication, we can actually reduce this number further, and every tensor of rank

at most r can be specified by at most r ⋅ (u1 + ⋅ ⋅ ⋅ + uk) − r(k − 1) complex parameters. To

specify any tensor in U1⊗⋅ ⋅ ⋅⊗Uk we, of course, need u1 . . .uk parameters. Hence, there must

exist tensors of rank at least � u1...uk

r⋅(u1+⋅⋅⋅+uk)−r(k−1) �. In the language of algebraic geometry, the

quantity r ⋅ (u1 + ⋅ ⋅ ⋅ + uk) − r(k − 1) is an upper bound on the dimension of the r-th secant

variety of the Segre variety which is the set of all tensors with border rank at most r [Lan12,

Section 4.3.6]. In that way, one can see that there must be tensors of border rank at least

�
u1...uk

r⋅(u1+⋅⋅⋅+uk)−r(k−1) � in U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk [Lan12, Section 5.1.2]. Letting, for example, k = 3 and

u1 = u2 = u3 = u, we see that there are tensors in U1 ⊗ U2 ⊗ U3 with border rank scaling

quadratically in u.

As mentioned before, rank and border rank do not coincide in general for k ≥ 3. The following

example demonstrates that and has been known at least since [Syl52].

Example 1.1.7. Let U1 ≅ U2 ≅ U3 ≅ C2 with fixed bases e1, e2. Define the W -state as

W = e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ∈ U1 ⊗U2 ⊗U3.
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It turns out that R(W ) = 3 (see Example 1.3.3). On the other hand, applying the linear maps

Ai(✏) ∶

�
���
�
���
�

e1 � e1 + ✏e2

e2 � −e1

for i = 1,2,3, one can see that �2� �W and consequently R(W ) = 2.

Our way of thinking will often be inspired by an interpretation of tensors in quantum many-

body physics and quantum information theory.

Example 1.1.8. Tensors specify the joint state of a k−particle quantum system. For that,

fix for all i = 1 . . . k a basis e1 . . . eui of the space Ui which induces a Euclidean product on

U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk. Then, a k-particle quantum state is a unit vector  ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk. In this

context, the dimension ui of the space Ui is often referred to as the number of degrees of

freedom of the i’th particle. Motivated by this, we will often depict tensors graphically. We

might for example depict a tensor T ∈ U1 ⊗U2 ⊗U3 by

T = T ∈ U1 ⊗U2 ⊗U3.

In this context, a tensor u1⊗⋅ ⋅ ⋅⊗uk of tensor rank 1 is often called a product state. A quantum

state that is not a product state is called entangled. We will use the term entanglement in this

sense frequently. Consider, for example, the matrix multiplication tensor �1,1, p� ∈ C⊗Cp
⊗Cp.

It is clear that this tensor is not a product state, so it is entangled. Interpreted as a bipartite

tensor �1,1, p� ∈ C⊗(Cp
⊗Cp

) though, it is a product state. In that sense, we can think of the

second and the third party of this tensor being entangled, whereas there is no entanglement

between the first party and the rest. We depict this situation as

�1,1, p� = p ∈ C⊗Cp
⊗Cp.

More generally, the tensor rank is known in the physics literature as Schmidt rank and is

commonly used as a barometer for entanglement in many-party quantum systems [EB01,

HEB04, CDS08].

There are various ways of combining tensors. Clearly, given T ∈ U1⊗⋅ ⋅ ⋅⊗Uk and S ∈ V1⊗⋅ ⋅ ⋅⊗Vl,

we can combine it to a (k+ l)-party tensor T ⊗S using the usual tensor product. When k = l,

one often considers this tensor again as a k-party tensor in the following way.

Definition 1.1.9. Let T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk and S ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk be specified via

T =
u1...uk

�

i1...ik=1
Ti1...ikei1 ⊗ ⋅ ⋅ ⋅ ⊗ eik , S =

v1...vk

�

j1...jk=1
Sj1...jkej1 ⊗ ⋅ ⋅ ⋅ ⊗ ejk .
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T S� = ST

(a) A visualization of the Kronecker
product of two three-party tensors.

T S ST⊗ =

(b) A visualization of the tensor product of
two three-party tensors.

Figure 1.2: Illustrations of the Kronecker product in Figure 1.2(a) and the tensor product
in Figure 1.2(b): Taking the Kronecker product of two three-party tensors yields a three-
party tensor T � S while taking the tensor product yields a six-party tensor.

Their Kronecker product T � S ∈ (U1 ⊗ V1)⊗ ⋅ ⋅ ⋅ ⊗ (Uk ⊗ Vk) is given by

T � S =
u1...uk,v1...vk

�

i1...ik,j1...jk=1
Ti1...ik ⋅ Sj1...jk(ei1 ⊗ ej1)⊗ ⋅ ⋅ ⋅ ⊗ (eik ⊗ ejk).

We will write T�n for the n-fold Kronecker product T � ⋅ ⋅ ⋅ � T .

The Kronecker product combines two tensors of the same order k to a tensor which again is

of order k. Visually, one can, for example, think of the Kronecker product of two three-party

tensors as depicted in Figure 1.2(a).

Clearly, one can imagine situations that are intermediate to tensor product and Kronecker

product, that is, where only some of the local spaces are grouped together. These situations

will be studied in Chapter 2.

Example 1.1.10. The following trick was first observed in the context of quantum informa-

tion theory [BBC+93] and is known as (quantum) teleportation. Recall from Example 1.1.8

that the matrix multiplication tensor �1,1, p� ∈ C⊗Cp
⊗Cp is essentially a two-party tensor,

that is, a matrix. In the context of quantum information theory, this is known as an entan-

gled pair or EPR-pair on p levels between the second and third party [EPR35]. For a tensor

T ∈ U1 ⊗U2 ⊗U3, define

T �p ∶= T � �1,1, p� = T p ∈ U1 ⊗ (U2 ⊗Cp
)⊗ (U3 ⊗Cp

).

Here, the graphical notation reflects that the three parties share a quantum state (specified by

the tensor T ) and, in addition, the second and the third party share an EPR-pair on p levels.

We will frequently call this shared EPR-pair an aiding matrix. The overall tensor is given by

T �p =
u1,u2,u3,p

�

i1,i2,i3,j=1
Ti1,i2,i3ei1 ⊗ (ei2 ⊗ ej)⊗ (ei3 ⊗ ej) ∈ U1 ⊗ (U2 ⊗Cp

)⊗ (U3 ⊗Cp
).

Assume now p = u3 and consider

⇧u3 ∶ U3 ⊗Cu3 → C, ei ⊗ ej � �ij .

9



T
S

Figure 1.3: Visually, the direct sum of two tensors T and S is a block diagonal tensor with
blocks T and S on the diagonal. This figure is borrowed from [CGLS22, Figure 1].

We observe that applying ⇧u3 to the third tensor factor of T �u3 and the identity to the first

two tensor factors yields a restriction

T �u3 ≥ T̃ ∈ U1 ⊗ (U2 ⊗U3)⊗C

where T̃ is the tensor T considered as a two-party tensor T ∈ U1⊗ (U2⊗U3). Hence, we have

teleported the third party to the second party using the tensor �1,1,u3�.

Another way of combining tensors is the direct sum. Visually, taking the direct sum of two

tensors corresponds to putting the two tensors on the diagonal of a bigger tensor, see Fig-

ure 1.3.

Definition 1.1.11. Let tensors T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk and S ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk be given via

T =
u1...uk

�

i1...ik=1
Ti1...ikei1 ⊗ ⋅ ⋅ ⋅ ⊗ eik , S =

v1...vk

�

j1...jk=1
Sj1...jkej1 ⊗ ⋅ ⋅ ⋅ ⊗ ejk .

To define their direct sum, pick a basis e1, . . . , eui+vi of Ui ⊕ Vi for i = 1, . . . , k and define the

tensor T ⊕ S ∈ (U1 ⊕ V1)⊗ ⋅ ⋅ ⋅ ⊗ (Uk ⊕ Vk) via

(T ⊕ S)i1,...,ik =

�
������
�
������
�

Ti1,...,ik if i1 ≤ u1, . . . , ik ≤ uk,

Si1−u1,...,ik−uk if i1 > u1, . . . , ik > uk,

0 else.

Sometimes, it is insightful to group together parties of a tensor.

Definition 1.1.12. Let T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk be a tensor and write [k] = {1, . . . , k}. Let S ⊂ [k]

and denote Sc = [k]�S. Writing US =�i∈S Ui and USc =�i∈Sc Ui we can view T ∈ US ⊗USc

as a bipartite tensor. We call the linear map associated with T via the identification

US ⊗USc ≅ Hom(U∗S , USc)

a flattening map with respect to S. If S has exactly one element, we denote the associated

linear map by Ti ∶ U
∗
i
→ U1 ⊗ ⋅ ⋅ ⋅ ⊗ Ûi ⊗ ⋅ ⋅ ⋅ ⊗Uk.

10



Sometimes it is important for technical reasons to make sure that a tensor uses all degrees of

freedom. For that, the following definition is handy.

Definition 1.1.13. A tensor T ∈ U1⊗ ⋅ ⋅ ⋅ ⊗Uk is called concise if all the maps T1, . . . , Tk are

injective.

Intuitively, a tensor T is concise if it uses all degrees of freedom in each of the spaces

U1, . . . , Uk.

Remark 1.1.14. We will often restrict ourselves to three-party tensors T ∈ U1 ⊗ U2 ⊗ U3.

Note that we can, up to a change of basis on the space U1, identify T with the subspace

T1(U
∗
1 ) ⊂ U2 ⊗ U3. By fixing bases of the spaces U2 and U3, we can interpret U2 ⊗ U3, and

with that also T1(U
∗
1 ), as a space of matrices:

u2,u3

�

i2,i3=1
xi2,i3ei2 ⊗ ei3 ↔ (xi,j)

u2,u3

i,j=1 .

For example, for the W -tensor from Example 1.1.7, we have

W1(e
∗
1) = e1 ⊗ e2 + e2 ⊗ e1 ←→

�

�

0 1

1 0

�

�
, W1(e

∗
2) = e1 ⊗ e1 ←→

�

�

1 0

0 0

�

�
.

In that way, we can interpret

W (U∗1 ) =
�
��
�
��
�

�

�

x2 x1

x1 0

�

�
∶ x1, x2 ∈ C

�
��
�
��
�

.

1.2 Representation theory for tensors

The resource-theoretic interpretation of tensors that we have seen in Section 1.1 is often

studied using tools from representation theory. We emphasize that the following discussion

simplifies drastically since we work over complex numbers. Many concepts and results we will

see are more subtle for fields with positive characteristics. We assume familiarity with some

basic notation and terminology from commutative algebra and algebraic geometry. For an

introduction, we refer to [Sha13]. For an in-depth introduction to the representation theory

of linear algebraic groups, we refer to [Bor91]. Let us recall the notion of a group action.

Definition 1.2.1. Let G be a (linear algebraic) group and V be a vector space. We say that G

acts on V if there is a homomorphism ⇢ ∶ G→ GL(V ). The map ⇢ is called a representation

of the group G. In this context, V is sometimes called a G-module.

We will almost exclusively deal with the setup where G is a product of general linear groups.

Since it will be clear in most cases what the map ⇢ is, we will most of the time drop ⇢ and

use the shorthand notation g.v = ⇢(g)v.
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Note that we can combine two actions of a single group: If a group G acts on spaces V1 and

V2 via ⇢i ∶ G→ GL(Vi) then this induces an action of G on V1 ⊗ V2 via g.T = ⇢1(g)⊗ ⇢2(g)T

for all T ∈ V1 ⊗ V2. Similarly, this induces an action of G on V1 ⊕ V2, and in the same way,

one can, for two groups G and H acting on spaces V and W , construct a representation of

G ×H on V ⊗W . With this, we can see how representation theory connects to the notions

presented in Section 1.1.

Example 1.2.2. For V1, . . . , Vk finite-dimensional, complex vector spaces, �k

i=1GL(Vi) acts

naturally on V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk by extending

(g1, . . . , gk).v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk = (g1v1)⊗ ⋅ ⋅ ⋅ ⊗ (gkvk)

linearly.

The following concepts will be used throughout.

Definition 1.2.3. Let G act on V as above and let v ∈ V . We call G.v = {g.v ∶ g ∈ G} the

orbit of v (under G) and StabG(v) = {g ∈ G ∶ g.v = v} the stabilizer of v (under G). The

group StabG(v) is sometimes called the isotropy group of v in G.

The following result is well-known, for a detailed discussion, we refer to, for example, [Bor91,

Chapter I, Section 1.2].

Theorem 1.2.4. Let G be a group acting on a space V . For every v ∈ V , the orbit G.v is

Zariski-open in G.v. In particular, we have dim(G.v) = dim(G.v) for every v ∈ V . Here,

we refer to the dimension of an (irreducible, quasi-projective) variety in the sense of [Sha13,

Chapter 1, Section 6]

Example 1.2.5. Consider the action introduced in Example 1.2.2. Let T,S ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk

be tensors such that T ≥ S, that is, S = (A1 ⊗ ⋅ ⋅ ⋅ ⊗ Ak)T for some linear maps Ai. Since

the general linear group is Zariski-dense in the space of endomorphisms of Vi, it follows that

G.S ⊂ G.T . Hence, by Theorem 1.2.4 we see that dim(G.S) ≤ dim(G.T ). In other words, we

can find obstructions for tensor restriction by calculating orbit dimensions.

If the tensor S is concise, we can make Example 1.2.5 more precise.

Lemma 1.2.6. Let T,S ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗Vk be tensors and assume that S is concise. Then T ≥ S

holds if and only if T and S lie in the same orbit under the action of G = �k

i=1GL(Vi).

Proof. It is clear that S ∈ G.T implies T ≥ S. Assume now that T ≥ S and let A1, . . . ,Ak be

linear maps such that (A1⊗ ⋅ ⋅ ⋅ ⊗Ak)T = S. Clearly, such a tensor S cannot be concise if any

of the maps Ai is not invertible. Hence, S ∈ G.T , which finishes the proof.

The following result will be useful for calculating the dimension of an orbit. For a proof, see,

for example, [Kra85, Chapter II, Section 2.2].
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Proposition 1.2.7. For a linear algebraic group G acting on a vector space V , it holds that

dim(StabG(v)) = dim(G) − dim(G.v)

for all v ∈ V .

The following two definitions will be used frequently.

Definition 1.2.8. Let G act on V as before. We call a linear subspace W ⊂ V a G-submodule

if g.v ∈W for all v ∈W and all g ∈ G. The module V is called irreducible under the action

of G if it has no submodule except {0} and V itself.

Definition 1.2.9. Let G be a group, and U and V be G-modules. Then, a linear map

f ∶ U → V is called a G-module homomorphism if for all u ∈ U and g ∈ G it holds that

f(g.u) = g.f(u), that is if f commutes with the action of G. The space of G-homomorphisms

is denoted HomG(U,V ). If f is an isomorphism, then the G-modules U and V are called

isomorphic.

The following result about irreducible representations is known as Schur’s lemma [FH91,

Lemma 1.7].

Theorem 1.2.10. Let G be a group, and U and V be irreducible G-modules. Then, if U

and V are not isomorphic (as G-modules), HomG(U,V ) = {0}. If, on the other hand, U and

V are isomorphic as G-modules then HomG(U,V ) is 1-dimensional. In particular, if U = V

then HomG(U,U) = {� ⋅ idU ∶ � ∈ C}.

For a finite-dimensional vector space V , consider its k-th tensor power V ⊗k. The symmetric

group Sk acts on V ⊗k by permuting tensor factors: For each � ∈Sk, we obtain a linear map

by linearly extending

� ∶ v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk � v�(1) ⊗ ⋅ ⋅ ⋅ ⊗ v�(k) (1.1)

to the whole space. As we have seen before, we also have an action of the group GL(V ) on

V ⊗k by extending

g.(v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk) = (g.v1 ⊗ ⋅ ⋅ ⋅ ⊗ g.vk) (1.2)

linearly. Note that clearly for any � ∈ Sk and any g ∈ GL(V ), the actions in Equation (1.1)

and Equation (1.2) commute. Using this observation, we can construct two submodules of

V ⊗k for the action of GL(V ). A more in-depth discussion of the following definitions and

facts can be found in [Lan12, Section 2.6].

Definition 1.2.11. Let V be a finite-dimensional, complex vector space and k ∈ N. We

define the symmetric subspace as

Sk
(V ) = {T ∈ V ⊗k ∶ �T = T for all � ∈Sk} ⊂ U

⊗k
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and the antisymmetric subspace as

�
k
(V ) = {T ∈ V ⊗k ∶ �T = sgn(�)T for all � ∈Sk} ⊂ V

⊗k.

Clearly, the two spaces in Definition 1.2.11 are submodules of V ⊗k under the action of GL(V ).

It turns out that they are irreducible.

The projection in V ⊗k onto the subspace Sk
(V ) in V ⊗k is given by the map

v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk � v1 . . . vk ∶=
1

k!
�

�∈Sk

v�(1) ⊗ ⋅ ⋅ ⋅ ⊗ v�(k).

It is well-known that, for e1, . . . , ev a basis of V , the set {ei1 . . . eik ∶ i1 ≤ ⋅ ⋅ ⋅ ≤ ik} is a basis of

Sk(V ). Consequently, the symmetric subspace has dimension �v+k−1
k
�.

The situation is similar for the antisymmetric subspace: Here, the projection onto �k
(V ) is

given by

v1 ⊗ ⋅ ⋅ ⋅ ⊗ vk � v1 ∧ ⋅ ⋅ ⋅ ∧ vk ∶=
1

k!
�

�∈Sk

sgn(�)v�(1) ⊗ ⋅ ⋅ ⋅ ⊗ v�(k).

Moreover, the set {ei1 ∧ ⋅ ⋅ ⋅ ∧ eik ∶ i1 < ⋅ ⋅ ⋅ < ik} is a basis of �k
(V ). Consequently, this space

has dimension �v
k
�. In particular, this space is trivial for k ≥ v + 1.

For k = 2, the submodules defined in Definition 1.2.11 are in fact all submodules that one

can find in V ⊗2, in other words, V ⊗2 = S2
(V )⊕�2

(V ). While for k ≥ 3 this is not true any

longer, the following still holds. The following result is classical and well-known, for a proof

see, for example, [Kra85, Appendix II.5, Theorem 4].

Theorem 1.2.12. Every finite-dimensional representation of GL(V ) decomposes as a direct

sum of irreducible representations of GL(V ). The same holds for SL(V ) and products of the

form �k

i=1GL(Vi).

Remark 1.2.13. In the language of linear algebraic groups, Theorem 1.2.12 says that any

general linear group is “ reductive”.

Remark 1.2.14. Let, for example, G = GL(V ) act on a space W and let W = �iWi be a

decomposition of W into irreducible submodules. Then, using Theorem 1.2.10, we observe

that any irreducible G-module U appears exactly dim(HomG(U,W ))-many times in the de-

composition.

1.3 Lower bounding rank and border rank

We have seen in Example 1.1.3 that upper bounds on the minimal length of tensor (border)

rank decompositions correspond to more e�cient (approximate) algorithms to compute bi-

linear maps. More generally, they promise more succinct descriptions of tensors. Lower
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bounds, on the other hand, are important as they provide barriers to e�ciency. A large

amount of research has been done to find methods to lower bound the minimal size of tensor

rank and tensor border rank decompositions. In this section, we explain examples of such

methods that will be important throughout. The most basic technique of lower bounding

rank and border rank is simple and comes from the flattening maps that we have already

seen in Definition 1.1.12.

Lemma 1.3.1. For T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk and any S ⊂ [k], the rank of the associated flattening

map lower bounds R(T ).

It is clear that for three-party tensors T ∈ U1⊗U2⊗U3, the best lower bound on the border rank

of T coming from Lemma 1.3.1 is max{u1,u2,u3}. Comparing this with Remark 1.1.6, where

we saw that there are tensors with border rank which grows quadratically in the dimensions

of the tensor factors, this is not very satisfying. A more involved method to lower bound

tensor rank is the so-called substitution method. The technique of substituting variables to

find lower bounds on computational complexity was originally introduced in [Pan66] and

further developed in [Win70]. This method has been reformulated and applied in various

places. We will use a formulation similar to the one presented in [AFT11].

Theorem 1.3.2. Let T ∈ U1 ⊗U2 ⊗U3. Fixing a basis e1 . . . eu1 of U1 we can write

T =
u1

�

i=1
ei ⊗Mi

for matrices Mi ∈ U2⊗U3. Assume that M1 ≠ 0. For any complex numbers �2, . . . ,�u1 , define

T̂ (�2, . . . ,�u1) =

u1

�

j=2
ej ⊗ (Mj − �jM1).

Then, there exist �2, . . . ,�u1 ∈ C such that

R(T̂ (�2, . . . ,�u1)) ≤ R(T ) − 1.

If the matrix M1 has rank 1, then, for all �2, . . . ,�u1 it holds that

R(T̂ (�2, . . . ,�u1)) ≥ R(T ) − 1.

Consequently, if M1 has rank 1, we always find �2, . . . ,�u1 such that

R(T̂ (�2, . . . ,�u1)) = R(T ) − 1.

Proof. The proof is identical to the proof of Theorem 4.3.8 ([CGLS22, Theorem 4.11]), which

we will present later.
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Again, it is clear that the substitution method can only provide lower bounds that are linear

in the dimensions of the tensor factors.

Example 1.3.3. An example for which the substitution method works well is the W -tensor

from Example 1.1.7. Recall that there, the space W (U∗1 ) is spanned by

M1 =
�

�

0 1

1 0

�

�
,M2 =

�

�

1 0

0 0

�

�
.

Since M2 has rank 1, we can find � such that

R(e1 ⊗
�

�

� 1

1 0

�

�
) = R(W ) − 1. (1.3)

But clearly, for any choice of �, the quantity in Equation (1.3) is greater or equal to 2.

Consequently, R(W ) ≥ 3, and since W is given as a sum of three rank-1 tensors, equality

holds.

To lower bound border rank, one often uses generalizations of Lemma 1.3.1. This has been

done, for example, in [CJZ18, Section 4].

Proposition 1.3.4. Let F ∶ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk →X ⊗ Y be a linear map and let

r0 =max{rank(F (u1 ⊗ ⋅ ⋅ ⋅ ⊗ uk)) ∶ u1 ∈ U1, . . . , uk ∈ Uk}

be the maximal rank of the image of a rank-1 tensor. Then,

R(T ) ≥
rank(F (T ))

r0
.

Such a map F is called a generalized flattening.

It has been shown in [EGOW17, Section 4] that lower bounds on tensor border rank from

generalized flattenings can be at most linear in the local dimensions. We will now review

the so-called Koszul flattenings introduced in [LO11] based on ideas from [Str83] which are

special cases of generalized flattenings. Roughly speaking, they are modified versions of the

standard flattenings from Lemma 1.3.1 with a little twist involving the antisymmetric space

we have seen in Definition 1.2.11. We refer to [Lan12, Chapters 3 & 7] for a more in-depth

discussion of these concepts in relation to algebraic geometry and representation theory and

only discuss how to obtain specific lower bounds on border rank using Koszul flattenings.

Definition 1.3.5. Let T ∈ U1 ⊗U2 ⊗U3 and let k be a natural number. The map

T ∧k
U1
∶ ��

k
U1�⊗U∗2 → ��k+1

U1�⊗U3
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which is the composition of the induced linear map T ∶ U∗2 → U1 ⊗ U3 with the projection

�
k U1 ⊗U1 → �

k+1U1, is called a (k-th) Koszul flattening of T .

For example, let dim(U1) = 3 and k = 2. Here, we interpret T (U∗1 ) as a space of u2 × u3

matrices spanned by

M1 = T (e
∗
1), M2 = T (e

∗
2), M3 = T (e

∗
3).

Then, choosing bases appropriately, the linear map T ∧2
U1

is represented by the matrix

T ∧2
U1
=

�

�
�
�

�

M2 −M1 0

M1 0 M3

0 −M3 −M2

�

�
�
�

�

. (1.4)

In general, if T = e1 ⊗M1 + ⋅ ⋅ ⋅+ eu1 ⊗Mu1 , we always can think of T ∧k
U1

as a �u1

k
�× �

u1

k+1� block
matrix where the blocks are of the form ±Mi for some i = 1, . . . ,u1.

The following proposition, which is the specialization of Proposition 1.3.4 to Koszul flatten-

ings, is the key to using Koszul flattenings for lower bounding border rank.

Proposition 1.3.6. For a simple tensor T = u1 ⊗ u2 ⊗ u3, the map T ∧k
U1

has rank �2k
k
�.

Consequently, R(T ) ≥ r implies that the rank of T ∧k
U1

is at most r�2k
k
�, in other words,

R(T ) ≥
�
�
�
�
�
�

rank(T ∧2
U1
)

�
2k
k
�

�
�
�
�
�
�

.

For a proof of this result, we refer to [Lan17, Section 2.4.2]. Here, the reader can also find an

in-depth discussion on the best choice of k and why a similar construction using the symmetric

instead of the antisymmetric subspace does not yield better lower bounds on tensor rank.

Let us see an example of how to show lower bounds on border rank using Koszul flattenings.

Consider the Bini tensor

TBini = e11 ⊗ (e11 ⊗ e11 + e12 ⊗ e21) + e12 ⊗ (e11 ⊗ e12 + e12 ⊗ e22) + e21 ⊗ (e21 ⊗ e11 + e22 ⊗ e21)

The Bini tensor was introduced in [BCLR79] and corresponds to the bilinear map calculating

three entries of the product of two 2 × 2 matrices. Note that the rank of each of the three

flattening maps of the Bini tensor is at most 4. Using Koszul flattenings, one can show the

border rank of the Bini tensor is at least 5. Indeed, plugging the three matrices

M1 =

�

�
�
�
�
�

�

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

,M2 =

�

�
�
�
�
�

�

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

�

�
�
�
�
�

�

,M3 =

�

�
�
�
�
�

�

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�
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spanning TBini(U
∗
1 ) into the block matrix in Equation (1.4) yields a matrix of rank 9. Con-

sequently, this implies

R(TBini) ≥ �
9

2
� = 5

by Proposition 1.3.6.

Remark 1.3.7. All methods we have seen can only provide lower bounds linear in the di-

mensions of the tensor factors for three-party tensors. In fact, there are no methods known

which go beyond linear lower bounds. The largest known border rank tensor can be found

in [LM19].

1.4 Tensor network representations

We have seen that in the context of algebraic complexity theory, tensor rank decompositions

are a natural way to break up a tensor into smaller building blocks. Another way of con-

structing tensors in a systematic way is the tensor network ansatz. Loosely speaking, we

“build” a tensor T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk from k “smaller” tensors according to the geometry of a

graph.

Definition 1.4.1. Let � = (V,E) be a directed graph and consider weight functions

m ∶ E → N, n ∶ V → N.

A tensor network state associated with the graph � and the weight functions m and n is a

tensor

T ∈ �
v∈V Cn(v)

that arises by choosing for each v ∈ V a tensor

Tv ∈
�

�
�

e=(v,x)
Cm(e)�

�
⊗
�

�
�

e=(x,v)
(Cm(e)

)
∗�
�
⊗Cn(v).

and contracting the tensors Tv over the edges of �.

Here, contracting tensors T ∈ U ⊗V and S ∈ V ∗⊗W is essentially the operation ¬ resulting

from linearly extending

¬
∶ (U ⊗ V ) × (V ∗ ⊗W )→ U ⊗W, (ei ⊗ ej)

¬
(e∗

k
⊗ el) = �jkei ⊗ el.

We will sometimes write T NS(�,m,n) for the set of tensor network states associated with

�, m and n.

Remark 1.4.2. The edge weights m(e) for e ∈ E are often called the virtual dimensions

or bond dimensions. In the context of many-body physics, the bond dimension m(e) is

a parameter with which we can control the entanglement between the particles at the two
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Ti

mi−1 mi

ni

(a) A tensor Ti.

T1 . . .T2 Tk

mk m1

n1

m2

n2

mk−1 mk

nk

(b) A matrix product state with periodic
boundary conditions.

Figure 1.4: A building block for a tensor network state and a matrix product state with
periodic boundary conditions: In Figure 1.4(a), we show how one visually depicts a tensor
Ti ∈ (Cmi−1)∗ ⊗ Cni ⊗ Cmi . Contracting k of these fundamental building blocks along the
edges of a cyclic graph yields a matrix product state on k parties as depicted in Figure 1.4(b).

vertices that the edge connects. The weights n(v) are frequently called physical dimensions

and are the number of degrees of freedom that the particle at vertex v has. Also, note that

in physics literature, the contraction is often done by defining an inner product. In this way,

one can avoid dealing with directed graphs and dual spaces at the incoming edges.

Prominent examples of tensor network states are the so-called matrix product states with

periodic boundary conditions. For that, consider a graph �k with vertex set {1, . . . , k} and

edges (i, j) whenever j = i ⊕ 1 where ⊕ denotes addition modulo k. Fix some physical

dimensions ni = n(i) and bond dimensions mi = m(i, i ⊕ 1). Then, a matrix product state

arises by picking tensors

Ti ∈ (Cmi−1)∗ ⊗Cmi ⊗Cni for i = 1, . . . , k

and building a k-party tensor from it according to the recipe in Definition 1.4.1. For a

visualization, see Figure 1.4. The name matrix product state comes from the following well-

known and simple technical result.

Lemma 1.4.3. A tensor T ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk is a matrix product state for the graph �k if and

only if for each j = 1, . . . , k there are matrices

Mj,i ∈ Cmj−1×mj for i = 1, . . . ,vj

such that

T =
v1...vk

�

i1...ik=1
tr(M1,i1 . . .Mk,ik)ei1 ⊗ ⋅ ⋅ ⋅ ⊗ eik .

In Section 1.1, we have seen that tensor rank decompositions are just special cases of the

restriction preorder on tensors. In fact, tensor network states also fit into the framework of

restriction of tensors. While we could characterize tensor rank-r tensors as restrictions of

the unit tensor �r�, we need to construct an alternative for tensor network states. We can

construct this tensor from the respective graph.
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= � �

Figure 1.5: Construction of the graph tensor for the graph �3: For each edge, we take a unit
tensor between the two vertices that the edge connects. Grouping together the spaces at the
same vertex yields a three-party tensor. A simple calculation shows that the graph tensor
T�,m = �m1,m2,m3� = �1,1,m3� � �1,m2,1� � �m1,1,1� is the matrix multiplication tensor.

Definition 1.4.4. Let � = (V,E) be a graph together with a weight function m ∶ E → N and

assume �V � = k. We construct the graph tensor associated with � and m as follows. For each

edge e = {v1, v2} ∈ E, define the k-party tensor

Te = �m(e)�2 ⊗ �

v∈V �{v1,v2}
e0 ∈ Cm(e)

⊗Cm(e)
⊗ �

v∈V �{v1,v2}
C

where each party of the tensor is associated with a vertex of �. Grouping together the parties

at the same vertex for all v ∈ V , we can interpret

T�,m =�
e∈E

Te ∈H1 ⊗ ⋅ ⋅ ⋅ ⊗Hk

as a k-party tensor where for each i = 1, . . . , k, we let Hi =�e∶v∈eCm(e).

For the graph �3, this construction yields a familiar tensor. In fact, it is not hard to see

that the resulting graph tensor is just the matrix multiplication tensor �m1,m2,m3�. We

visualize the construction of the graph tensor for this particular example in Figure 1.5.

Using the graph tensor, we can now give an equivalent characterization of tensor network

states in terms of restriction. We omit the proof which is straightforward.

Proposition 1.4.5. Let � = (V,E) be a directed graph together with associated weight func-

tions m ∶ E → N and n ∶ V → N. Assume, V = {1, . . . , k} and fix spaces Vi of dimension

dim(Vi) = n(i). A tensor T ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk is a tensor network state for �, m and n if and

only if the associated graph tensor restricts to T , that is, T�,m ≥ T .

Remark 1.4.6. It has been first observed in [LQY11] that the set T NS(�,m,n) is in general

not closed if the graph contains cycles. Taking the Zariski or, equivalently, the Euclidean

closure, one obtains

T NS(�,m,n) = {T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk ∶ T�,m � T}.

It turns out that the study of T NS(�,m,n) can lead to more e�cient algorithms by ex-

tending the ansatz class one optimizes over from the set of tensor network states to its clo-

sure [CGFW21].
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1.5 Stabilizer states and the simulation of quantum cir-

cuits

In this section (as well as in Chapter 5), we will switch notation and use Greek letters like  

and � instead of T and S for tensors. In that way, we match the standard notation in this

area. We also mention that in the context of this section, it will be important to consider

tensors that are normalized with respect to the Euclidean inner product induced by a choice of

bases. Hence, Greek letters may be used as an indicator that we are dealing with a normalized

tensor. Moreover, we will refer in this section (as well as in Chapter 5) to normalized tensors

as quantum states. We saw that such normalized tensors  ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk can describe the

joint state of a quantum system made up of k particles. In that way, tensor decompositions

can give insight into the physical processes going on in quantum circuits. One important way

of decomposing tensors that is especially relevant for the simulation of quantum circuits is

via so-called stabilizer rank decompositions. In this section, all physical systems will be built

up from a number of qubits, that is, we will consider only quantum states  ∈ (C2
)
⊗k where

all of the tensor factors are two-dimensional. For each of the copies of C2, we fix a basis

e0, e1. We refer to this basis as the computational basis. The following way of expressing

computational basis vectors in (C2
)
⊗k will be handy.

Definition 1.5.1. For a vector x ∈ Fk

2 , write ex ∶= ex1 ⊗ ⋅ ⋅ ⋅ ⊗ exk ∈ (C2
)
⊗k.

Recall the Pauli matrices

X =
�

�

0 1

1 0

�

�
, Y =

�

�

0 −i

i 0

�

�
, Z =

�

�

1 0

0 −1

�

�
.

For any k, we define the k-qubit Pauli group Pk as the group generated by all unitaries of

the form A1 ⊗ ⋅ ⋅ ⋅ ⊗ Ak for Ai ∈ {X,Y,Z}. Denoting by Uk the set of unitary operators on

(C2
)
⊗k, we define Ck to be the normalizer of Pk in Uk, that is,

Ck = {U ∈ Uk ∶ UPU †
∈ Pk for all P ∈ Pk}.

Recall that a quantum circuit is a diagram specifying a unitary by applying unitaries on

subsystems (so-called gates) in a fixed order to an input state  ∈ (C2
)
⊗k. A circuit applying

a unitary U to a quantum state  is depicted in the following way:

 � U⋮ ⋮

Frequently used gates are the one-qubit gates

H =
1
√
2

�

�

1 1

1 −1

�

�
and S =

�

�

1 0

0 i

�

�

21



as well as the two-qubit CNOT -gate

●
=

�

�
�
�
�
�

�

1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

�

�
�
�
�
�

�

.

It turns out that these gates are in the Cli↵ord group and that all Cli↵ord unitaries – up

to a global phase – can be constructed from quantum circuits built from H, S, and CNOT

gates. Hence, we will call these three gates the Cli↵ord gates. States that can be produced

by applying these gates to a computational basis state are called stabilizer states.

Definition 1.5.2. A quantum state  ∈ (C2
)
⊗k is a stabilizer state if it is of the form

C(e0 ⊗ ⋅ ⋅ ⋅ ⊗ e0) for some C ∈ Ck.

We have the following characterization of stabilizer states [DDM03, VdN10].

Proposition 1.5.3. A quantum state  is a stabilizer state if and only there is an a�ne sub-

space A ⊂ Fk

2 , a linear form l ∶ Fk

2 → F2, a quadratic form q ∶ Fk

2 → F2 and some (normalizing)

constant c ∈ C such that

 = c ⋅ �
x∈A

il(x) ⋅ (−1)q(x) ⋅ ex.

We observe that – up to a normalizing prefactor – all coe�cients of a stabilizer state in the

computational basis are in {0,±1,±i}. Note also that all computational basis vectors ex for

x ∈ Fk

2 are stabilizer states, in other words, the set of stabilizer states spans (C2
)
⊗k. In

particular, every quantum state  can be written as a linear combination of stabilizer states.

This motivates the following definition.

Definition 1.5.4. For  ∈ (C2
)
⊗k, we define the stabilizer rank of  as the minimal r such

that

 =
r

�

i=1
ci�i

for some ci ∈ C and stabilizer states �i. We denote the stabilizer rank of  by �( ).

It turns out that adding one particular additional gate to the set {H,S,CNOT} makes this

gate set universal, that is, any unitary can be approximated arbitrarily well with a circuit

built from this extended gate set. The gate is the so-called T -gate

T =
1
√
2

�

�

1 0

0 ei
⇡
4

�

�
.

We only mention briefly that using a trick called magic state injection, one can relate the

simulation cost of a circuit built from Cli↵ord gates and k T -gates to the stabilizer rank of
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T⊗k where T = 1√
2
(e0 + e

i
⇡
4 e1), and refer for details to Appendix 5.A. We mention briefly

that for the simulation of quantum circuits, it is often enough to consider an approximate

version of stabilizer rank.

Definition 1.5.5. Fix � > 0 and a quantum state  ∈ (C2
)
⊗k. The �-approximate stabilizer

rank of  is given by

��( ) =min{�(�) ∶ � ∈ (C2
)
⊗k quantum state with ��� − �� ≤ �}.
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Chapter 2

Transforming entanglement

structures

In this chapter, we will study the conversion between entanglement structures. Intuitively,

an entanglement structure results from “putting” tensors on a hypergraph and grouping to-

gether parties at the same vertex. Entanglement structures have been investigated before:

In [CLVW20], the authors find more e�cient tensor network representations from degenera-

tions of the single tensors from which the entanglement structures are built. In [MGSC18],

the authors investigate under which conditions acting in a translationally invariant manner

on entanglement structures yields an equivalent entanglement structure. In this chapter, we

investigate entanglement structures from a slightly di↵erent angle. We are particularly inter-

ested in the extent to which one entanglement structure can be transformed into another via

restriction or degeneration, even if the single plaquette tensors from which the entanglement

structures are built cannot be transformed in this way.

We will develop a formal language enabling us to discuss and highlight the subtleties of this

question. On the one hand, we will do so by constructing specific, non-trivial examples. On

the other hand, we will develop powerful tools to find obstructions to the conversion between

entanglement structures yielding a deeper understanding of the multipartite entanglement

properties of entanglement structures.

Closely related to this setup is the question of how to calculate the tensor rank of an en-

tanglement structure. We make a first step in this direction and answer an open question

in [CF18] by calculating the rank of two copies of the W -tensor put on every possible two-

plaquette hypergraph. We also show a more general result about the stabilizers of so-called

tree hypergraphs, leading us to the conjecture that the rank of entanglement structures on

such graphs does not di↵er from the rank of disconnected entanglement structures.
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2.1 Overview

The starting point of this chapter is the characterization of tensor network states in Propo-

sition 1.4.5. There, we have seen that tensor network states associated with a graph � and

a weight function m can be seen as restrictions of the graph tensor T�,m. The graph tensor

was essentially constructed by putting two-party tensors on the edges of the graph. In this

chapter, we study a natural generalization of this ansatz where – instead of a graph � – we

pick a hypergraph H. Now, instead of putting two-party tensors on the edges, we can asso-

ciate with every k-vertex hyperedge a k-party tensor. We will call a tensor constructed from

a hypergraph H by “putting” tensors from a suitable family of tensors T = (t1, . . . , tn) on the

hyperedges an entanglement structure which we will denote by TH . For this overview sec-

tion, we will stick to this rough intuition and refer for a more precise mathematical definition

to Section 2.2.

In this chapter, we will study three questions about entanglement structures.

(1) Do there exist a hypergraph H and suitable families of tensors T = (t1, . . . , tn) and

S = (s1, . . . , sn) such that for all i = 1, . . . , n, it holds that ti �≥ si, but for the resulting

entanglement structures, it holds that TH ≥ SH?

(2) Under which conditions on the hypergraph resp. the families of tensors are such examples

impossible?

(3) What is the tensor rank of an entanglement structure R(TH) for a hypergraph H and a

suitable family of tensors T?

In points (1) and (2), we ask under which conditions TH ≥ SH resp. TH � SH can hold.

Examples for similar phenomena have been constructed before: Already since [Str69] we

know examples where both t �≥ s and t�2 ≥ s�2 hold, see also [CJZ18, Example 3] for a

discussion. Motivated by the most frequently used tensor network approaches like matrix

product states that we saw in Section 1.4 and generalizations like projected entangled pair

states (PEPS), we are more interested in the setup where the hypergraph describes a “1D-”

or “2D-structure”, see Figure 2.1 for an illustration.

(a) A strip of plaquettes. (b) A regular lattice. (c) A kagome lattice with tri-
angle plaquettes.

Figure 2.1: Three di↵erent types of hypergraphs. The strip graph (Figure 2.1(a)) reflects a
1D-structure, whereas the regular rectangular lattice (Figure 2.1(b)) and the kagome lattice
(Figure 2.1(c)) reflect 2D-structures.
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2.1.1 Constructions and Obstructions

In Section 2.3, we will demonstrate several examples of the conversion between entanglement

structures. More precisely, we will find examples for a hypergraph H and tensors t and s

with t �≥ s such that the entanglement structure TH obtained from putting a copy of t on

each of the hyperedges of H restricts to the entanglement structure SH constructed in the

same way from copies of s. To do so, we will use the teleportation technique introduced

in Example 1.1.10 and results about the border subrank of matrix multiplication tensors

from [CLVW20]. The hypergraphs in these examples will be the so-called ring graph and the

so-called strip graph, respectively. Visualizations of these graphs can be found in Figure 2.3

and Figure 2.4.

After we have found concrete examples, we will derive obstructions to the conversion between

entanglement structures in Section 2.4. The first kind of obstruction comes from the geometry

of the hypergraph: We will see that certain modifications of the graph preserve restriction.

Using this, we will, for a wide range of hypergraphs H, find that a restriction TH ≥ SH for

any families of tensors T = (t1, . . . , tn) and S = (s1, . . . , sn) already implies ti ≥ si for all

i = 1, . . . , n.

In Section 2.4.2, we then go on and relate the conversion between entanglement structures to

the notion of asymptotic restriction. Recall, that for tensors t and s, we say that t restricts

asymptotically to s and write t � s if t�n+o(n) ≥ s�n for all n ∈ N. When all hyperedges of the

hypergraph H have the same number of vertices and the geometry of H allows us to “fold”

the hyperedges on top of each other, we will see that for families of tensors T = (t, . . . , t) and

S = (s, . . . , s) which just contain copies of symmetric tensors t and s, respectively, TH ≥ SH

implies t � s.

We generalize this idea in Section 2.4.3 and demonstrate how one can use the so-called

asymptotic spectral points which were introduced in [Str86, Str88], and the so-called quantum

functionals introduced in [CVZ18] to find further obstructions for the conversion between

entanglement structures.

2.1.2 Tensor rank of entanglement structures

In Section 2.5, we study tensor ranks of entanglement structures. Note that it is easy to see

that if an entanglement structure TH is built from a family of tensors T = (t1, . . . , tn), then

the rank of TH is at most R(t1⊗⋅ ⋅ ⋅⊗tn). It has been noticed that for the Kronecker product,

which, in principle, can be considered an entanglement structure, there are examples where

the tensor rank of TH is strictly less than R(t1 ⊗ ⋅ ⋅ ⋅ ⊗ tn). In particular, it has been shown

in [YCGD10] that for the W -tensor from Example 1.1.7, the tensor rank of W �W equals

7, whereas in [CF18], it has been shown that R(W ⊗W ) = 8. In [CF18], it has been posed

as an open question what the tensor rank of other entanglement structures built from two

copies of the W -tensor is. We will refine the method from [CF18] to calculate these tensor

ranks for all possible entanglement structures.
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2.2 Structured hypergraphs

In order to formally argue about entanglement structures, we will develop a precise, mathe-

matical terminology tailored to describe entanglement structures in this section. The central

notion is that of a structured hypergraph.

Definition 2.2.1. A structured hypergraph H = (W,E,V,m) consists of the following data:

(♣) A set of vertices W .

(♡) A set of (hyper)edges E. Each hyperedge e ∈ E is an ordered tuple of elements in W .

We require that each w ∈W can be a coordinate of at most one edge e ∈ E.

(♠) A set of structure vertices V .

(♢) A structure map m∶W → V .

We will frequently abuse notation and write w ∈ e for some w ∈W and e ∈ E such that w is

a coordinate of e. More generally, we will often write e for the set of coordinates of e. If not

otherwise specified, we will assume that the structure map cannot map two vertices that lie

on the same edge to the same structure vertex to avoid pathological examples.

Example 2.2.2. To see an example of a structured hypergraph, consider the diamond graph

H = (W,E,V,m) given by the following data:

(♣) W = {w1,w2,w3,w
′
2,w

′
3,w4}

(♡) E = {e1 = (w1,w2,w3), e2 = (w
′
2,w

′
3,w4)}

(♠) V = {v1, v2, v3, v4}

(♢) m∶w(′)
i
� vi for i = 1, . . . ,4

We visualize the diamond graph in Figure 2.2(b). A similarly structured hypergraph is the

butterfly graph. It only di↵ers from the diamond graph in the way that w2 and w′2 cor-

respond to di↵erent structure vertices. A visualization of the butterfly graph can be found

in Figure 2.2(a).

Let H be a structured hypergraph, and for e ∈ E define l(e) to be the length of the tuple e.

Let T = (t(e) ∶ e ∈ E) be a tuple of tensors where t(e) ∈ �w∈eUw is a l(e)-party tensor for

each edge e ∈ E. In this case, we say the family of tensors T fits the shape of H. Define the

tensor TH = �e∈E t(e) associated to H and T . We say that the i’th party lies at vertex wj

where wj is the i’th coordinate of e. We define the associated entanglement structure TH by

grouping together all parties lying at vertices that get mapped to the same structure vertex

under m. Let us illustrate this for the diamond graph.
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(c) The folded diamond graph.

Figure 2.2: Some examples of structured hypergraphs. In Figure 2.2(a), we illustrate the
butterfly graph. In Figure 2.2(b), we show the diamond graph. In Figure 2.2(c), we illustrate
the folded diamond graph resulting from the structure-modifying map in Example 2.2.4.

Example 2.2.3. (Continuing Example 2.2.2) Every tuple T = (t1, t2) of three-party tensors

t1 ∈ Uw1 ⊗ Uw2 ⊗ Uw3 and t2 ∈ Uw′2 ⊗ Uw′3 ⊗ Uw4 fits the shape of the diamond graph H. The

corresponding graph tensor is then

t1 ⊗ t2 ∈ Uw1 ⊗Uw2 ⊗Uw3 ⊗Uw′2 ⊗Uw′3 ⊗Uw4 .

The associated entanglement structure will be a four-party tensor

TH ∈ Uw1 ⊗ (Uw2 ⊗Uw′2)⊗ (Uw3 ⊗Uw′3)⊗Uw4

because w2 and w′2 resp. w3 and w′3 get mapped to the same structure vertex v2 resp. v3 under

the structure map m.

Take a structured hypergraph H = (W,E,V,m). We call a surjective map µ∶V → U a

structure-modifying map for H. The map µ induces a new structured hypergraph which we

will denote by µ.H = (W,E,U,µ○m) whose set of structure vertices is U and whose structure

map is µ ○m.

Example 2.2.4. (Continuing Example 2.2.3) We can fold the two hyperedges of the diamond

graph on top of each other. This can be done via

µ∶V → {u1, u2, u3},

v1 � u1, v2 � u2, v3 � u3, v4 � u1.

This does precisely what visually corresponds to folding the two hyperedges on top of each

other. A visualization can be found in Figure 2.2(c).

Motivated by Example 2.2.4, we say that a structured hypergraphH = (W,E,V,m) is foldable

if l(e) = k for all e ∈ E and if there is a structure-modifying map µ ∶ V → {1, . . . , k} such that

(µ ○m)�e is bijective for all e ∈ E. It is clear that such a map folds the edges of H on top of

each other, and we will refer to such a structure-modifying map as a folding. We emphasize
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that for a structured hypergraph, there can be inequivalent structure-modifying maps that

are foldings.

For a structured hypergraph H = (W,E,V,m), we call a sequence

(w1,1,w1,2, e1, . . . , en−1,wn,1,wn,2)

a path if for all i = 1, . . . , n, the vertices wi,1 and wi,2 have the same structure vertex, that is,

m(wi,1) =m(wi,2), and for all i = 1, . . . , n − 1 we have wi,2,wi+1,1 ∈ ei.

For an edge e ∈ E, we say that e is contained in a cycle if there are w, w̃ ∈ e such that there

is a path from w to w̃ in H � {e} = (W,E � {e}, V,m). We call a hypergraph connected if for

any pair of vertices, there is a path containing both.

For w ∈ e for some edge e, we define the a�x a(w) of w as the set of vertices that can be

contained in a path containing w but not containing e. It is clear from the definition that e is

contained in a cycle in H if and only if there are w and w̃ both in e such that w̃ is contained

in the a�x a(w) of w. That is, if e is not contained in a cycle and H is connected, W is a

disjoint union of a�xes W = �w∈e a(w) of the vertices in e.

We finish this section by mentioning that the Kronecker product and the tensor product we

have seen in Section 1.1 are special cases of entanglement structures: The Kronecker product

is the folded version of the diamond graph that we saw in Example 2.2.4. The tensor product

of two tensors can be constructed as an entanglement structure by giving each vertex its own

structure vertex.

2.3 Constructions

In this section, we will give several explicit constructions to highlight how subtle the question

of conversion between entanglement structures is. Our examples are natural generalizations

of matrix product states, namely, the ring graph (see Figure 2.3) and the strip graph (see Fig-

ure 2.4).

2.3.1 Entanglement structures on a ring

Our first examples are obtained by placing copies of the same tensor on the plaquettes of the

ring graph.

Definition 2.3.1. The ring graph on n plaquettes Hn is the structured hypergraph constructed

from the following data.

(♣) The set of vertices is given by Wn = {wi,j ∶ i = 1, . . . , n, j = 1 . . . ,4}.

(♡) The set of hyperedges is En = {e1, . . . , en} where ei = (wi,1, . . . ,wi,4).
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(♠) The set Vn of structure vertices is some set of cardinality 2n.

(♢) The structure map mn ∶Wn → Vn is a surjective map such that mn(i,1) =mn(i⊕ 1,4)

and mn(i,2) = mn(i ⊕ 1,3) for all i = 1, . . . , n where ⊕ is addition modulo n. This

defines m uniquely up to permutations of elements of V .

We visualize the ring graph H4 in Figure 2.3.

w1,4

w1,1

w1,3

w1,2

e1

w2,4 w2,1

w2,3 w2,2

e2

w4,4w4,1

w4,3w4,2

e4

w3,4

w3,1

w3,3

w3,2

e3

Figure 2.3: An example of a ring graph on 4 plaquettes.

We record a first and simple construction that has already been introduced in [MGSC18].

Example 2.3.2. In this example, we construct the single tensors as graph tensors as in Def-

inition 1.4.4. Let �1 = ({1,2,3,4},{(3,4)}) and �2 = ({1,2,3,4},{(1,2)}). Consider edge

weight functions m1 and m2, respectively, such that m1({3,4}) = m2({1,2}) = f for some

f ∈ N. Define

t = T�1,m1 = f , s = T�2,m2 = f .

It is clear that t � s, but for the ring graph Hn, it is obvious that the entanglement structures

THn and SHn are equivalent under restriction where T = (t, . . . , t) and S = (s, . . . , s).

The following example is more interesting. In particular, the resulting entanglement struc-

tures will not be equivalent.

Example 2.3.3. Again, we construct tensors as graph tensors. For that, define two graphs

�1 = ({1,2,3,4},{(1,2), (2,3), (3,4)}) and �2 = ({1,2,3,4},{(3,4), (4,1)}). For the edge

weights, let g ≥ 2, h ≥ 2, u ≥ g and f = gh − 1 be natural numbers and define

m1((1,2)) =m1((3,4)) = f, m1((2,3)) = u, m2((3,4)) = h, m2((4,1)) = g.

Define tensors t and s via

t = T�1,m1 =

u

f f , s = T�2,m2 =

g

h
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and consider flattening maps of these tensors. Interpreting the tensors t and s as bipartite

tensors by grouping the second, third, and fourth party together, we see that t �≥ s since gh > f .

For T = (t ∶ e ∈ E) and S = (s ∶ e ∈ E), it is clear that t and s fit the shape of Hn. We can

use a teleportation argument as in Example 1.1.10 to see that, in fact, TH ≥ SH : Noting that

f2
≥ g2h, we see that

TH =

u

f f ff

u u

. . . . . . ≥

g

g2h g2h

g g

. . . . . . ≥

g

h h

g g

. . . . . . = SH .

Using similar ideas, we can also construct examples for degeneration by using a fact about

the border subrank of the matrix multiplication tensor from [CLVW20].

Example 2.3.4. Let d ∈ N and define three graphs �i with associated edge weight functions

mi for i = 1,2,3, all with vertex set V = {1,2,3,4}.

• �1 = (V,{(1,2), (2,3), (3,4), (4,1)}), m1 ≡ d.

• �2 = (V,{(2,3), (3,4), (4,1)}), m2((3,4)) = d
2 and m2((2,3)) =m2((4,1)) = d.

• �3 = (V,{(1,2), (2,3), (3,4)}), m3((1,2)) =m3((3,4)) = �d
3
2 � and m3((2,3)) = d

2.

With that, consider the three graph tensors

t = T�1,m1 =

d

d d

d

, s = T�2,m2 =

d

d

d2 , s̃ = T�3,m3 =

d2

�d
3
2 ��d

3
2 � .

It has been shown that t � ��d
2

2 �� for all d ∈ N [CLVW20, Section 5.2]. Hence, we know that

(t, . . . , t)Hn � (��
d2

2
��, . . . , ��

d2

2
��)Hn

where Hn is again the ring graph on n plaquettes. On the other hand, a flattening argument

shows that s �� ��d
2

2 �� and for d su�ciently large, s̃ �� ��d
2

2 ��. Similar to Example 2.3.2, we get

(s, . . . , s)Hn ≥ (t, . . . , t)Hn � (��
d2

2
��, . . . , ��

d2

2
��)Hn .

By applying the same teleportation trick as in Example 2.3.3, we also obtain

(s̃, . . . , s̃)Hn ≥ (t, . . . , t)Hn � (��
d2

2
��, . . . , ��

d2

2
��)Hn .
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Figure 2.4: A strip graph. Each edge contains 12 vertices.

2.3.2 Entanglement structure on a strip

It is clear that all constructions in Section 2.3.1 crucially rely on the “periodic boundary

conditions” of the graph. In this section, we will see an example of the conversion between

entanglement structures on a strip graph which does not rely on periodic boundary conditions.

Definition 2.3.5. The strip graph Hn = (Wn,En, Vn,mn) is defined by the following data.

(♣) The set of vertices is Wn = {wi,j ∶ i = 1, . . . , n, j = 1, . . . ,12}.

(♡) The set of hyperedges is En = {e1, . . . , en}, where ei = (wi,1, . . . ,wi,12) for i = 1, . . . , n.

(♠) The set of structure vertices is a set of cardinality �Vn� = 12 + 8(n − 1).

(♢) The structure map is a surjective map mn ∶W → V such that for all i = 1, . . . , n − 1, it

holds that

mn(wi,11) =mn(wi+1,2), . . . ,mn(wi,8) =m(wi+1,5).

We visualize the strip graph in Figure 2.4.

As in Section 2.3.1, we will construct graph tensors to put on the single hyperedges of the

graph.

Example 2.3.6. Let p be a natural number and define V = {1, . . . ,12}. Define a graph

�1 = (V,E1) where

E1 = {(1,2), (1,8), (2,3), (2,10), (4,7), (5,6), (7,9), (11,12)}.

Define a second graph �2 = (V,E2) with E2 = {(7,8)}. Define constant weight functions

m1 ≡ p and m2 ≡ p. With this, define the graph tensors

t = T�1,m1 = , s = T�2,m2 =
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and let T = (t, . . . , t) and S = (s, . . . , s). Since t is a simple tensor when considered as a

bipartite tensor

t ∈ (H1 ⊗H2 ⊗H3 ⊗H8 ⊗H10)⊗ (H4 ⊗H5 ⊗H6 ⊗H7 ⊗H9 ⊗H11 ⊗H12),

and s is not, it is clear that t �≥ s. On the other hand, we can apply a similar teleportation

trick as in Example 2.3.3 to see that for any n, it holds that THn ≥ SHn .

2.4 Obstructions

Our results in Section 2.3 demonstrate that conversion between entanglement structures is

a subtle topic. We want to find criteria under which the conversion between entanglement

structures is impossible. Since we have seen that only looking at the single tensors that

are to be put on the hyperedges of the graph does, in general, not su�ce, we will start

in Section 2.4.1 by showing for a large number of special hypergraphs that the conversion

between entanglement structures is equivalent to the conversion between each of the single

tensors. We then go on in Section 2.4.2 and relate the conversion between entanglement

structures to the well-studied notion of asymptotic restriction as well as, in Section 2.4.3, to

the so-called quantum functionals.

2.4.1 Obstructions from the geometry of the graph

To find obstructions from the geometry of the hypergraph, we first observe the following,

easy fact without proof.

Lemma 2.4.1. Let H = (W,E,V,m) be a hypergraph and µ∶V → U be a structure-modifying

map. Moreover, let T = (t(e) ∶ e ∈ E) and S = (s(e) ∶ e ∈ E) be two families of tensors fitting

the shape of H. Then, TH ≥ SH implies Tµ.H ≥ Sµ.H . The same holds when we replace all

restrictions with degenerations.

Intuitively this means that operations like folding the hypergraph and grouping together

parties preserve both restriction and degeneration.

Example 2.4.2 (Bipartitioning). Let U have two elements and take a structure-modifying

map µ ∶ V → U . Then, Lemma 2.4.1 implies that if TH restricts resp. degenerates to another

entanglement structure SH (or, more generally, to any tensor S), then TH must also restrict

resp. degenerate to SH seen as bipartite tensors by grouping the parties into two groups (note

that every bipartition can be realized by such a map µ). In particular, the flattening rank over

any bipartition of TH must be greater than that of SH . This rank can be deduced easily from

the structure of the graph, and the single tensors t(e) resp. s(e) and gives a first obstruction

which is easy to compute. Note that this is nothing but Lemma 1.3.1 applied to TH and SH .

34



Next, we observe that we can drop hyperedges under certain conditions. Here, it will be

useful to deviate for a moment from our convention that vertices contained in the same edge

cannot map to the same structure vertex.

Lemma 2.4.3. Let H = (W,E,V,m) be a hypergraph and consider two families of tensors

T = (t(e) ∶ e ∈ E) and S = (s(e) ∶ e ∈ E) fitting the shape of H. Assume further that for some

edge e0 ∈ E, all coordinates of e0 map to the same structure vertex v. Then, TH ≥ SH implies

(T � {t(e0)})H�{e0} ≥ (S � {s(e0)})H�{e0}.

Proof. We can use the local map at v to achieve

(T � {t(e0)})H�{e0} ≥ TH ≥ SH ≥ (S � {s(e0)})H�{e0}.

We are now ready to state the following implication of Lemma 2.4.1 and Lemma 2.4.3.

Corollary 2.4.4. Let H = (W,E,V,m) be a hypergraph and let e0 ∈ E be an edge that is not

contained in a cycle. Assume furthermore that all vertices in e0 map to di↵erent structure

vertices under m. Let T = (t(e) ∶ e ∈ E) and S = (s(e) ∶ e ∈ E) be two families of tensors

fitting the shape of H. Then, TH ≥ SH implies t(e0) ≥ s(e0).

Proof. Define a structure-modifying map µ∶W � {w ∈ e0} by mapping a vertex v to the

unique vertex w such that v ∈ a(w) is in the a�x of w. By Lemma 2.4.1, Tµ.H ≥ Sµ.H . By

assumption, it holds that for all edges e ≠ e0, all its coordinates map to the same structure

vertex in µ.H. With that, we can remove all edges except e0 from the graph preserving the

restriction using Lemma 2.4.3, which implies t(e0) ≥ s(e0).

We finish this discussion by giving an example for graphs where Lemma 2.4.3 is applicable.

Definition 2.4.5. We say that a structured hypergraph H = (W,E,V,m) with E = {e1, . . . , en}

is a tree if no edge is contained in a cycle.

We visualize the concept of a tree in Figure 2.5.

Corollary 2.4.6. Let H = (W,V,E,m) be a tree and consider T = (t(e) ∶ e ∈ E) and

S = (s(e) ∶ e ∈ E) fitting the shape of H. Then, TH ≥ SH holds if and only if t(e) ≥ s(e) for

all e ∈ E. The same statement holds when we replace all restrictions with degenerations.

Proof. By definition, it is clear that a tree contains no cycles. In particular, no edge is

contained in a cycle. Hence, applying Corollary 2.4.4 finishes the proof.
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(a) A tree. (b) A hypergraph that is not a tree.

Figure 2.5: A tree in Figure 2.5(a) and a graph that is not a tree in Figure 2.5(b).

2.4.2 Folding and the asymptotic restriction of tensors

We now go on to derive further obstructions to the conversion between entanglement struc-

tures by relating it to the concept of asymptotic restriction of tensors.

Definition 2.4.7. For k-party tensors t and s, we say that t restricts asymptotically to s

and write t � s if we have t�n+o(n) ≥ s�n for all n ∈ N.

Let H be foldable and define families of tensors T = (t(e) ∶ e ∈ E) and S = (s(e) ∶ e ∈ E)

where all t(e) are the same, and similar for the s(e). Denote by µ a structure-modifying map

folding H onto one hyperedge. We notice that if t and s are symmetric under permuting

the indices of the tensors, that is, in the notation of Section 1.3, t ∈ Sk
(U) and s ∈ Sk

(V )

for some spaces U and V , then TH ≥ SH implies t��E� = Tµ.H ≥ Sµ.H = s
��E�. Again, we refer

to Figure 2.2(c) for a visualization. In particular, we get t � s. The same argument holds

even when we only assume TH � SH . Hence, we have proved the following.

Proposition 2.4.8. Let H = (W,E,V,m) be a foldable hypergraph where every edge consists

of k vertices, and let t, s be symmetric tensors such that t �� s. Then, TH �� SH where T and

S are families consisting of �E� copies of t resp. s.

For example, it has been shown in [CVZ18] that the W -tensor does not asymptotically re-

strict to the unit tensor �2�, that is, W �� �2�. Hence, for any foldable hypergraph where

every edge consists of three vertices, we know that the entanglement structure arising from

putting W -tensors on each of the edges cannot restrict to the same entanglement structure

with unit tensors instead of W -tensors. We note that the other direction holds as well.

In Proposition 4.3.9, we will see a proof for the well-known fact that for no n ∈ N, it holds

that �2��n ≥ W�n. Hence, by the discussion before Proposition 2.4.8, there is no foldable

hypergraph such that the entanglement structure arising from putting copies of �2� on it

restricts to the same structure built from W -tensors. In summary, we see that entangle-

ment structures built from unit tensors and W -tensors, respectively, on foldable graphs are

incomparable under restriction.
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2.4.3 Quantum functionals

In this section, we will demonstrate how one can use quantum functionals, which are impor-

tant tools in the study of asymptotic entanglement conversion introduced in [CVZ18] to find

obstructions for the conversion between entanglement structures. For fixed k, call X (k) the

set of all functions

f ∶ {k-party tensors}→ R≥0
that satisfy all of the following four conditions:

1. f is monotone under restriction, that is, t ≥ s implies f(t) ≥ f(s).

2. f is normalized on the unit tensor, that is, f(�r�) = r.

3. f is multiplicative under the Kronecker product, that is, f(t � s) = f(t)f(s) for all t

and s.

4. f is additive under the direct sum, that is, f(t⊕ s) = f(t) + f(s) for all t and s.

Then, X (k) is usually referred to as the asymptotic spectrum of tensors, and a function

f ∈ X (k) is called a point in the asymptotic spectrum. The points in the asymptotic spectrum

of tensors play an important role in the study of asymptotic restriction.

Theorem 2.4.9 ([Str86, Str88]). Let t ∈ U1⊗ ⋅ ⋅ ⋅⊗Uk and s ∈ V1⊗ ⋅ ⋅ ⋅⊗Vk be k-party tensors.

Then, t � s if and only if f(t) ≥ f(s) for all f ∈ X (k).

All bipartite flattening ranks are examples of asymptotic spectral points. In [CVZ18], many

more spectral points called quantum functionals were constructed.

Definition 2.4.10. Let t ∈ U1⊗⋅ ⋅ ⋅⊗Uk and consider a probability distribution ✓ = (✓1, . . . , ✓k).

We define the quantum functional associated with ✓ to be F✓ = 2
E✓ where

E✓1,...,✓k(t) = sup
t�t′

k

�

i=1
✓iH(t

(i)
).

Here, t(i) is the matrix obtained by tracing out all but the i’th system from tt∗ (where we,

for a moment, interpret t as a column vector) and H(t(i)) = tr(t(i) log�t(i)�) denotes the von

Neumann entropy.

In fact, the quantum functionals give non-trivial examples of asymptotic spectral points.

Theorem 2.4.11 ([CVZ18]). For any probability distribution ✓ = (✓1, . . . , ✓k), the quantum

functional F✓ is a point in the asymptotic spectrum of k-party tensors.

Note that the maps F✓ can also be used to rule out asymptotic restrictions in the case where

the ✓i are any non-negative, real numbers that do not necessarily sum to 1. We will later

also use quantum functionals for non-normalized ✓.
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Example 2.4.12. We already used that the W -tensor does not asymptotically restrict to �2�.

This was shown in [CVZ18] by showing that F(1�3,1�3,1�3)(�2�) > F(1�3,1�3,1�3)(W ).

In fact, we can apply the quantum functionals more directly to obtain obstructions for the

conversion between entanglement structures.

Theorem 2.4.13. Let H = (W,E,V,m) be a structured hypergraph and T = (te ∶ e ∈ E) and

S = (se ∶ e ∈ E) be families of tensors fitting the shape of H. Moreover, let ✓ = (✓1, . . . , ✓�W �)
be a probability distribution. Then, TH � SH implies

�

e∈E
F(✓m(v)∶v∈e)(te) ≥�

e∈E
F(✓m(v)∶v∈e)(se).

Proof. This is an immediate consequence of the fact that the quantum functionals are mul-

tiplicative under taking the Kronecker product.

In particular, Theorem 2.4.13 can be used to reprove that entanglement structures built from

W -tensors and unit tensors �2�, respectively, are incomparable, see Example 2.4.12. Note

that, unlike the results in Section 2.4.2, Theorem 2.4.11 does not require all hyperedges to

comprise the same number of vertices. In particular, it does not require the hypergraph to

be foldable.

2.5 Tensor rank of entanglement structures

In this section, we ask for the minimal size of rank decompositions of entanglement structures.

In Section 2.5.1, we calculate the rank of a specific entanglement structure arising from

putting two copies of the W -tensor on any possible two-edge hypergraph. In Section 2.5.2,

we calculate the stabilizer group of entanglement structures where the underlying hypergraph

is a tree.

2.5.1 Tensor rank of two copies of the W -tensor

Let H = (W,V,E,m) be a hypergraph and let T = (t1, . . . , tk) a family of tensors fitting the

shape of H. It is interesting to ask about the rank of the entanglement structure R(TH).

The following observation is immediate.

Lemma 2.5.1. For H = (W,V,E,m) any hypergraph and T = (t1, . . . , tk) a family of tensors

fitting the shape of H, it holds that

R(TH) ≤ R(t1 ⊗ ⋅ ⋅ ⋅ ⊗ tk) ≤ R(t1) . . .R(tk). (2.1)

We ask under which conditions the inequalities in Equation (2.1) can be strict. Again, it is

already known that both inequalities can be strict.
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(a) The tensor W5.
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(b) The tensor W4.

Figure 2.6: Illustrations of the tensors W5 in Figure 2.6(a) and W4 in Figure 2.6(b).

Example 2.5.2. Consider the W -tensor. Recall from Example 1.3.3 that R(W ) = 3 and

consequently, R(W )2 = 9. It has been shown in [CJZ18] that R(W ⊗W ) ≤ 8 and in [CF18]

that equality holds. Moreover, it has been shown in [YCGD10] that R(W �W ) = 7. Since we

have seen that the Kronecker product of tensors can be realized as an entanglement structure,

this provides an example where all inequalities in Equation (2.1) are strict.

In this section, we consider two setups that are intermediate to W ⊗W and W �W . Consider

hypergraphs �1 and �2 where �1 is the butterfly graph and �2 the diamond graph as we

defined them in Example 2.2.2. We will write W5 = (W,W )�1 and W4 = (W,W )�2 . In other

words, let U1, . . . , U6 be two-dimensional and consider two copies of W ∈ U1 ⊗ U2 ⊗ U3 and

W ∈ U4 ⊗U5 ⊗U6. The tensor W5 is now W ⊗W considered as an element of

U1 ⊗U2 ⊗ (U3 ⊗U4)⊗U5 ⊗U6

and W4 is the same tensor considered as an element of U1 ⊗ (U2 ⊗U5)⊗ (U3 ⊗U4)⊗U6. We

illustrate these tensors in Figure 2.6. We will now calculate the rank of both W4 and W5.

Proposition 2.5.3. It holds that R(W4) = R(W5) = 8.

Proof. Since 8 = R(W ⊗W ) ≥ R(W5) ≥ R(W4), it su�ces to show that R(W4) = 8. Assume

that there is a decomposition

W4 =

7

�

j=1
u1,j ⊗ u25,j ⊗ u34,j ⊗ u6,j (2.2)

where u25,j ∈ U2⊗U5 and u34,j ∈ U3⊗U4. Note that (e∗2⊗e∗2)2,5W4 ≠ 0 where (e∗2⊗e∗2)2,5 acts

as the linear functional e∗2 on U2 and U5 and as an identity on the remaining spaces. Hence,

we can without loss of generality assume that (e∗2 ⊗ e∗2)u25,7 = 1. With that,

u25,7 = ae1 ⊗ e1 + be1 ⊗ e2 + ce2 ⊗ e1 + e2 ⊗ e2

for some coe�cients a, b, c ∈ C.
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Note that the W -tensor has symmetries: Defining the linear transformation

Ap ∶ C2
→ C2, e1 � e1, e2 � e2 + pe1

we have that (A↵ ⊗A� ⊗A�)W =W for all ↵,� and � such that ↵ + � + � = 0. Applying the

map id1 ⊗ (A−b)2 ⊗ (Ab)3 ⊗ id4 ⊗ (A−c)5 ⊗ (Ac)6 to the decomposition in Equation (2.2), we

see that there is a decomposition

W4 =

7

�

j=1
v1,j ⊗ v25,j ⊗ v34,j ⊗ v6,j (2.3)

such that v25,7 = a
′e1 ⊗ e1 + e2 ⊗ e2 for some a′ ∈ C.

Note that W4 has additional symmetries. Define for any q ∈ C the linear transformation

Bq ∶ �C2
⊗C2

�→ �C2
⊗C2

� ,e1 ⊗ e1 � e1 ⊗ e1,

e1 ⊗ e2 � e1 ⊗ e2,

e2 ⊗ e1 � e2 ⊗ e1,

e2 ⊗ e2 � e2 ⊗ e2 + qe1 ⊗ e1.

One easily checks that

(id⊗B25,q ⊗B34,−q ⊗ id)W4 =W4. (2.4)

Applying Equation (2.4) with q = −a′ to the rank-7 decomposition in Equation (2.3) trans-

forms it into a decomposition

W4 =

7

�

j=1
w1,j ⊗w25,j ⊗w34,j ⊗w6,j (2.5)

with w25,7 = e2 ⊗ e2. With that, the remainder of the proof is identical to the proof that the

rank of W ⊗W is 8 in [CF18]:

Applying the projectors (e∗1)2 and (e∗1)5 to the rank-7 decomposition of W4 yields rank-6

decompositions of

(e∗1)2W4 =M ⊗W =
6

�

j=1
w1,j ⊗ (e

∗
1 ⊗ id)w25,j ⊗w34,j ⊗w6j ∈ U1 ⊗ (U3 ⊗U4)⊗U5 ⊗U6,

(e∗1)5W4 =W ⊗N =
6

�

j=1
w1j ⊗ (id⊗ e∗1)w25,j ⊗w34,j ⊗w6j ∈ U1 ⊗U2 ⊗ (U3 ⊗U4)⊗U6.

where M = N = e1 ⊗ e2 + e2 ⊗ e1 is a rank-2 matrix. It is easy to verify using the substitution

method from Theorem 1.3.2 thatW⊗N , considered as an element of U1⊗(U2⊗U6)⊗(U3⊗U4),

has rank 6. Defining

N = {w1,j ⊗w34,j for j = 1, . . . ,6},
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it follows that the set N is linearly independent. Consider moreover the set

M = {(e∗1 ⊗ id)w25,j ⊗w6,j for j = 1, . . . ,6}.

It is clear that all elements of M are simple tensors and span W (U∗4 ). Hence, M must

contain at least three linearly independent vectors.

View the tensor M ⊗W ∈ (U1 ⊗U3 ⊗U4)⊗ (U5 ⊗U6) as a bipartite tensor. On the one hand,

we can write

M ⊗W = (M ⊗ e1)⊗ (e1 ⊗ e2 + e2 ⊗ e1) + (M ⊗ e2)⊗ e1 ⊗ e1.

Consequently, viewed as a bipartite tensor, M ⊗W has rank at most 2. On the other hand,

the preceding discussion implies that

M ⊗W =
6

�

j=1
nj ⊗mj

where nj = w1,j ⊗w34,j are the elements of N and mj = (e
∗
1 ⊗ id)w25,j ⊗w6,j are the elements

of M. Since the mj are linearly independent, and at least three of the nj are linearly

independent, this tensor must have rank at least 3 – a contradiction.

2.5.2 Stabilizers of entanglement structures

We will now turn our attention to the stabilizer group of entanglement structures. Writing

G = GL(U1) × ⋅ ⋅ ⋅ ×GL(Uk), recall the definition

StabG(t) = {(A1, . . . ,Ak) ∈ G ∶ (A1 ⊗ ⋅ ⋅ ⋅ ⊗Ak)t = t}

for the group of stabilizers in G of a tensor t ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Uk from Definition 1.2.3.

Let H be a hypergraph and T = (t1, . . . , tk) be a family of tensors fitting the shape of H. It is

clear that if Ai is a stabilizer of ti for all i = 1, . . . , k, then �
k

i=1Ai grouped according to the

structure vertices is a stabilizer of TH . In the proof of Proposition 2.5.3, we have seen that

entanglement structures can have stabilizers that do not arise in this way. In this section, we

will see that for tree hypergraphs, all stabilizers arise in this way.

Let t ∈ U1 ⊗ U2 ⊗ U3 and s ∈ U4 ⊗ U5 ⊗ U6. To simplify the notation, we will write t1s for

the entanglement structure that arises by putting t and s on a butterfly graph, that is, t⊗ s

considered as an element of U1 ⊗U2 ⊗ (U3 ⊗U4)⊗U5 ⊗U6. We record the following result.

Proposition 2.5.4. Let t, t̃ ∈ U1 ⊗U2 ⊗U3 and s, s̃ ∈ U4 ⊗U5 ⊗U6 be concise and consider a

linear map M ∶ U3⊗U4 → U3⊗U4 such that (id⊗ id⊗M ⊗ id⊗ id)t1s = t̃1s̃. Then, there are

M1 ∈ GL(U3) and M2 ∈ GL(U4) such that M =M1 ⊗M2.

41



Proof. Pick bases e1, . . . , eu3 and e1, . . . , eu4 of U3 and U4. Note that we can think of t and s

as bipartite tensors

t =
u3

�

j=1
⇢j ⊗ ej ∈ (U1 ⊗U2)⊗U3, s =

u4

�

k=1
ek ⊗ �k ∈ U4 ⊗ (U5 ⊗U6).

By conciseness we know that the sets {⇢j , j = 1, . . . ,u3} and {�k, k = 1, . . . ,u4} are linearly

independent. Define the linear functionals ⇢∗
j
for j = 1, . . . ,w such that ⇢∗

j
(⇢i) = �ij and

similarly, �∗
k
with �∗

k
(�i) = �ik.

Let now M ∶ U3 ⊗ U4 → U3 ⊗ U4 be a map with M34t1s = t̃1s̃ where we write M34 for

id⊗ id⊗M ⊗ id⊗ id. Clearly, M34 commutes with ⇢∗
j
⊗ id⊗ �∗

k
for any j, k in the sense that

(⇢∗
j
⊗ id⊗ �∗

k
)M34 =M(⇢

∗
j
⊗ id⊗ �∗

k
). Hence,

M(ej ⊗ fk) =M(⇢
∗
j
⊗ id⊗ �∗

k
)t1s =

(⇢∗
j
⊗ id⊗ �∗

k
)M34t1s =

(⇢∗
j
⊗ id⊗ �∗

k
)t̃1s̃ = ⇢∗

j
t̃⊗ �∗

k
s̃.

In other words, defining M1 and M2 via M1(ej) = ⇢
∗
j
t̃ and M2(ek) = �

∗
k
s̃, respectively, we see

that M =M1 ⊗M2.

Applying Proposition 2.5.4 yields insights into the stabilizers of tensors of the form t1s.

Corollary 2.5.5. Say, (A1 ⊗A2 ⊗M ⊗A5 ⊗A6)t1s = t1s for some concise tensors t and s.

Then, M is of the form M1 ⊗M2.

Proof. Note that the maps A1,A2,A5, and A6 must be invertible by conciseness of the tensors.

The claim now follows immediately from Proposition 2.5.4 by choosing t̃ = (A−11 ⊗A−12 ⊗ id)t

and s̃ = (id⊗A−15 ⊗A−16 )s.

Our proof did not use that the tensors t and s were three-party tensors. The same holds for

any number of parties, that is, s ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗Um and t ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vn for any m and n which

“touch” in only one party. From this, one easily gets the following stronger result.

Corollary 2.5.6. Tensors on a tree hypergraph only have the product of stabilizers of the

single tensors as stabilizers.

This leads us to the following conjecture, compare also the discussion in Example 1.2.5.

Conjecture 2.5.7. Let H = (V,W,E,m) be a tree and T = (t1, . . . , tk) a family of tensors

fitting the shape of H. Then,

R(TH) = R(t1 ⊗ ⋅ ⋅ ⋅ ⊗ tk).
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Chapter 3

Quantum max-flow in the bridge

graph

The quantum max-flow introduced in [CFW10] quantifies the maximal possible entanglement

between two regions of a tensor network for a fixed graph and fixed bond dimensions. Under-

standing the quantum max-flow provides valuable insights into the entanglement properties

of the physical states one can obtain from such tensor networks.

Some progress in understanding this quantity was achieved in the past: In [CFS+16], the
authors relate the quantum max-flow to the classical max-flow of a graph and introduce

the notion of quantum min-cut which is the information-theoretic analog of the classical

min-cut in graph theory [EFS56, FF56]. They show that the quantum max-flow is always

bounded from above by the quantum min-cut and demonstrate for a few examples with fixed,

small bond dimensions that the inequality can be sharp. In [GLW18], families of examples

presenting big separations between quantum max-flow and quantum min-cut were given, but

computing the quantum max-flow exactly seemed out of reach. Moreover, it was shown

in [Has17] that asymptotically, quantum min-cut and quantum max-flow are the same.

In this chapter, we study this problem for a specific graph, which we call the bridge graph.

We relate the problem of computing the quantum max-flow in the bridge graph to the theory

of prehomogeneous tensor spaces and the representation theory of quivers which allows us to

exactly compute the quantum max-flow in the bridge graph for essentially all choices of bond

dimensions.

This chapter is a partly modified version of [GLS22].
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3.1 Overview

In this chapter, we focus on tensor network representations. Understanding properties of

tensor network states from the point of view of geometry and information theory provides

valuable insights into the physical states that they define. However, usually, quantities asso-

ciated with tensor network states are di�cult to compute. One such quantity is the quantum

max-flow which was introduced in [CFW10] in the context of the positivity of certain tensor

operators. The quantummax-flow is an information-theoretic version of the classical max-flow

of a graph, and the exact definition will be given in Section 3.2.1. Informally, given the data

of a tensor network � = (V,E) with bond dimensions m, and two disjoint subsets S,T ⊆ V of

the set of vertices of �, the associated quantum max-flow, denoted QMaxFlow(�,m,S,T ),

is the maximum possible rank across the bipartition (S,T ) of a tensor arising as a tensor

network state associated with � and m.

In [CFS+16], the authors relate the quantum max-flow to the notion of quantum min-

cut, denoted QMinCut(�,m,S,T ), that is, the information-theoretic analog of the classi-

cal min-cut in graph theory [EFS56, FF56], see Section 3.2.1. They prove the inequality

QMaxFlow(�,m,S,T ) ≤ QMinCut(�,m,S,T ) for all instances of �, m, S and T and con-

struct examples where this inequality is strict. They highlight connections between the quan-

tum max-flow and entropy of entanglement as well as the quantum satisfiability problem and

suggest further connections to spin systems in condensed matter and quantum gravity. Fur-

ther progress was achieved in [GLW18] where the authors construct families of examples

where the gap between the quantum min-cut and the quantum max-flow can be arbitrar-

ily large. In [Has17], Hastings showed that asymptotically, quantum min-cut and quantum

max-flow are the same.

As of today, the exact value of the quantum max-flow was computed only in a limited number

of cases with small fixed bond dimensions, and computing the quantum max-flow exactly for

a given graph seemed out of reach. In this chapter, we study this problem for a specific

graph, the bridge graph in Figure 3.1.

The study of the quantum max-flow in the bridge graph has two interesting connections to

other areas that we briefly outline.

Figure 3.1: The bridge graph.
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In the representation theory of quivers, the value of the quantum max-flow reveals the exis-

tence (or the nonexistence) of certain covariants for the so-called Kronecker quiver. Quiver

representation theory is the main tool used in the study of the invariant theory of families

of matrices [DM21], which has, among others, applications in the study of matrix product

states [MS19, DMS22]. In fact, the invariant theory of the Kronecker quiver is the main tool

used in the proof of Theorem 3.3.13, where we rely on the existence of certain invariants

introduced in [Sch91] and studied in [DZ01, SV01, DM17].

The second connection we briefly mention is the one to algebraic statistics and the study

of maximum likelihood estimation, a widely used method to determine the free parame-

ters of a probability distribution that best explains given data. In this context, the max-

imum likelihood threshold is the smallest sample size allowing one to completely recon-

struct the model from the given sample, see, for example, [DKH21]. The existence of a

maximum likelihood threshold has strong connections with classical invariant theory, as

explained in [AKRS21, DM21]. In particular, [DM21, DMW22] study invariant theoretic

properties of matrix and tensor spaces in the context of maximum likelihood estimation.

Moreover, [AKRS21] studies the maximum likelihood threshold in relation to the cut-and-

paste rank introduced in [BD06]. In the case of matrices, the cut-and-paste rank is exactly

the quantum max-flow on the bridge graph. In particular, the results of this chapter can be

read in terms of cut-and-paste rank.

3.1.1 The quantum max-flow and the bridge graph: summary of the

results

Associate to the bridge graph of Figure 3.1 bond dimensions a, b,w, a′, b′ on the edges and

consider the two disjoint subsets S and T of the vertices as depicted in Figure 3.2.

b′ a′

ba

w

S T

� ∶

Figure 3.2: The bridge graph with bond dimensions a, b,w, b′, a′, set of sources S and set of
targets T .

Fix vector spaces A,B,A′,B′,W of dimension a, b, a′, b′,w respectively. A flow map on the

bridge graph is defined as follows. Let T ∈ A ⊗ B ⊗W and T ′ ∈ A′ ⊗ B′ ⊗W ∗ be tensors.

Pictorially one can think of them as placed on the top and bottom central vertex of the

bridge graph, with the “legs” corresponding to the three edges incident to each vertex. Let
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FT,T ′ ∈ A⊗B⊗A′⊗B′ be the tensor obtained by contracting the factor W of T with the factor

W ∗ of T ′. Note that this is up to change of bases on the spaces A,B,A′,B′ exactly a tensor

network state in the sense of Definition 1.4.1. We explain this in more detail in Lemma 3.2.3.

The tensor FT,T ′ can be regarded as a linear map FT,T ′ ∶ (A ⊗ B′)∗ → (B ⊗ A′), namely a

bipartite tensor between the vertices in S and the vertices in T . The quantum flow associated

with T and T ′ is the rank of this linear map. The quantum max-flow is the maximum possible

value of rank(FT,T ′) as T and T ′ vary in the respective space. We write

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

=max
�
��
�
��
�

rank(FT,T ′) ∶
T ∈ A⊗B ⊗W

T ′ ∈ A′ ⊗B′ ⊗W ∗
�
��
�
��
�

.

Note that quantum max-flow in the bridge graph is symmetric, in the sense that

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMaxFlow
�

�

�

b a

a′ b′
w

�

�

�

.

Moreover, if a ≤ b and b′ ≤ a′, then the quantum max-flow in the bridge graph is ab′ which
coincides with the quantum min-cut that will be introduced in Section 3.2.1. Hence, we will

restrict our analysis to the case a ≤ b and a′ ≤ b′.

The constant �w =
w+√w2−4

2 will play a crucial role in the behavior of the quantum max-flow.

In order to summarize our results, we consider a partition of the set {(a, b) ∈ N2
∶ b ≥ a} into

five regions:

a
b

wa = b

�wa = b

(w − 1)a = b

�w−1a = b

a = b

Yw

Xw

Ww

Vw

Uw

Yw = {(a, b) ∶ wa ≤ b}

Xw = {(a, b) ∶ �wa < b < wa}

Ww = {(a, b) ∶ (w − 1)a ≤ b ≤ �wa}

Vw = {(a, b) ∶ �w−1a < b < (w − 1)a}

Uw = {(a, b) ∶ a ≤ b ≤ �w−1a}

Note that Xw = Vw+1 and Uw ∪Vw ∪Ww = Uw+1. Moreover, W2 = U3 = {(a, a) ∶ a ∈ N}
and U2,V2 = �. Using this notation, we now record the main results of this chapter.
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Theorem 3.1.1. The quantum max-flow in the bridge graph

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

is given by the value specified in Table 3.1. In particular,

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

holds except possibly in the cases marked with �,♣,♢. More precisely, the following holds.

(�) Let (a, b), (a′, b′) ∈Uw ∪Vw ∪Ww. If (a, b) = q(a′, b′) for some q ∈ Q, then

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

= ab′ = a′b.

(♣) Let (a, b), (a′, b′) ∈Ww. If depth(a, b) ≥ depth(a′, b′), then

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

= ab′,

where depth denotes the castling depth defined in Definition 3.3.5.

(♢) Let (a, b), (a′, b′) ∈Xw. Write

a = z(w)p ↵ + z(w)
p+1�, b = z(w)

p+1↵ + z(w)p+2�
a′ = z(w)

p′ ↵′ + z(w)
p′+1�′, b′ = z(w)

p′+1↵′ + z(w)p′+2�′,

as described in Lemma 3.2.13. Then,

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

=

�
�����
�
�����
�

ab′ if p′ > p,
ab′ − �↵′ if p = p′,
a′b if p′ < p.

In particular, we have a full characterization of the quantum max-flow in the bridge graph

for symmetric bond dimension, that is, in the case (a, b) = (a′, b′).

Corollary 3.1.2. Let w,a, b ≥ 1.

• If (a, b) ∈Uw ∪Vw ∪Ww, then

QMaxFlow
�

�

a b

b a

w
�

�
= ab.

47



(a, b)

Uw Vw Ww Xw Yw

Uw � ab′ ab′ ab′ ab′
Vw a′b � ab′ ab′ ab′

(a′, b′) Ww a′b a′b ♣+� ab′ ab′
Xw a′b a′b a′b ♢ ab′
Yw a′b a′b a′b a′b aa′w

Table 3.1: The quantum max-flow in the bridge graph with bond dimension a, b, a′, b′,w. The
orange cases are solved in Theorem 3.3.6. The cyan-colored cases are solved in Theorem 3.3.7.
The purple cases are solved in Theorem 3.3.8, the precise formulation of ♢ can be found
in Theorem 3.1.1. The green cases are solved in Corollary 3.3.9.
The case marked with ♣ is partly solved in Theorem 3.3.10. The cases marked with� are
partly solved in Theorem 3.3.13. A precise formulation of the results is in Theorem 3.1.1.

• If (a, b) ∈Xw, let ↵,�, p be such that

a = z(w)
p

↵ + z(w)
p+1� b = z(w)

p+1↵ + z(w)p+2�

as in Lemma 3.2.13. Then,

QMaxFlow
�

�

a b

b a

w
�

�
= ab − ↵�.

• If (a, b) ∈Yw, then

QMaxFlow
�

�

a b

b a

w
�

�
= wa2.

Theorem 3.1.1 is almost complete. The cases that remain open lie in the regions marked with

� in Table 3.1. We conjecture that the result can be extended in full generality.

Conjecture 3.1.3. Let (a, b), (a′, b′) ∈Uw ∪Vw ∪Ww. Then,

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

=min{ab′, a′b} .

In Section 3.3.4, we prove a reduction argument allowing one to deduce Conjecture 3.1.3 for

any w ∈ N from the case w = 3.
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3.1.2 Quantum max-flow and castling transform

A key ingredient in the proof of the results described in Section 3.1.1 is that the quantum

max-flow is easy to control under the so-called castling transform. The castling transform

was introduced in [SK77] in the study of prehomogeneous tensor spaces. In general, it defines

a correspondence between orbits in tensor spaces under particular group actions. We refer

to Section 3.2.2 for the precise definition. In the framework of the castling transform, we will

prove the following result:

Theorem 3.1.4. Let a, b, a′, b′,w be natural numbers such that a ≤ bw and a′ ≤ b′w. Then,

ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= b(b′w − a′) −QMaxFlow
�

�

�

b bw − a

b′w − a′ b′
w

�

�

�

.

Moreover, if we have b ≤ aw and b′ ≤ a′w, then we also have

a ⋅ b′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= (wa − b)a′ −QMaxFlow
�

�

�

wa − b a

a′ wa′ − b′
w

�

�

�

.

Let us briefly outline how Theorem 3.1.4 helps to calculate the quantum max-flow in the

bridge graph. For a detailed discussion, we refer to Section 3.3. On a high level, we use The-

orem 3.1.4 to reduce calculating the quantum max-flow in the bridge graph to one of the

following two easy cases:

(i) For b ≥ aw, that is, (a, b) ∈Yw, it holds that

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

=min{ab′, aa′w}.

(ii) For a ≤ b and b′ ≤ a′, it holds that

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= ab′.

For pairs of natural numbers, we say that (a, b) and (ã, b̃) are castling equivalent if (a, b) can

be transformed into (ã, b̃) by a number of operations (a, b)� (wa−b, a) or (a, b)� (b,wb−a).

We show in Lemma 3.3.4 that every pair (a, b) ∈ Xw is castling equivalent to a pair in Yw.

Consequently, we can apply Theorem 3.1.4 multiple times and use (i) to calculate the quantum

max-flow. This procedure is applied in the proofs of Theorem 3.3.7 and Theorem 3.3.8. We

also show in Lemma 3.3.4 that a pair (a, b) ∈ Uw ∪Vw ∪Ww is always castling equivalent

to a pair (ã, b̃) where ã > b̃. This – in many cases – reduces calculating the quantum max-
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flow in the bridge graph to the easier case (ii). This procedure is applied in the proofs

of Theorem 3.3.7, Corollary 3.3.9, and Theorem 3.3.10.

3.2 Preliminaries

In this section, we provide the exact definition of the quantum max-flow for a general graph,

and we prove an alternative description in the case of the bridge graph. Moreover, we intro-

duce the castling framework and describe the connections to the theory of prehomogeneous

tensor spaces that will be useful in the proofs of the main results.

3.2.1 The quantum min-cut/max-flow problem

Let � = (V,E) be a graph and consider an assignment of bond dimensions m ∶ E → N
defining the data for a graph tensor as in Definition 1.4.4. Let S,T ⊆ V be two disjoint

subsets. For v ∈ S ∪ T , set n(v) = ∏e∋v m(e) and for v ∉ S ∪ T , set n(v) = 1 yielding

an assignment n of physical dimensions. Now, every element T ∈ T NS(�,m,n) can be

regarded as a bipartite tensor T ∈ ��v∈S Cn(v)
�⊗ ��v∈T Cn(v)

�, or equivalently a linear map

FT ∶ �v∈S Cn(v)∗
→ �v∈T Cn(v). The quantum max-flow of (�,m) relative to the subsets

S,T is the maximum possible rank of this bipartite tensor, namely

QMaxFlow(�,m;S,T ) =max�rank(FT ) ∶ T ∈ T NS(�,m,n)�.

A cut of � relative to the sets S,T is a partition V = A�B of V with S ⊆ A and T ⊆ B. The

quantum capacity of a cut is

qcap(A,B) = �{v1,v2}∈E
v1∈A,v2∈B

m({v1v2}).

The quantum min-cut of (�,m) relative to the sets S,T is

QMinCut(�,m;S,T ) =min�qcap(A,B) ∶ S ⊆ A,T ⊆ B,A ∩B = ��. (3.1)

Remark 3.2.1. The quantum min-cut can alternatively be defined as the minimal possible

rank of a flattening map as defined in Definition 1.1.12: Every choice of A and B induces a

flattening for the graph tensor T�,m. The quantum capacity of this cut is just the rank of the

induced flattening map.

We state two immediate but crucial properties of the quantum min-cut and the quantum max-

flow. They were first stated in [CFS+16] and are immediate consequences of the definition.

Proposition 3.2.2. For every network � with bond dimensions m, the following holds:

• QMaxFlow(�,m;S,T ) ≤ QMinCut(�,m;S,T ).
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• The set of T ∈ T NS(�,m,n) such that rank(FT ) = QMaxFlow(�,m;S,T ) is a dense

and Zariski-open subset of T NS(�,m,n).

In general, computing the quantum max-flow is not trivial. In fact, in most cases, even

proving a separation between quantum max-flow and quantum min-cut is challenging. We

want to compute QMinCut(�,m;S,T ) and QMaxFlow(�,m;S,T ) in the case of the bridge

graph

b′ a′

ba

w

S T

� ∶

for integers a, b,w, b′, a′. For the four vertices of degree 1, the local tensors Tv in the definition

of the tensor network state have no e↵ect. This yields the following immediate result

Lemma 3.2.3. Let m = (a, b,w, b′, a′) be bond dimensions on the bridge graph. Let n be the

physical dimensions induced by the choice of S and T as before. Write A = Ca and similarly

for B,W,B′,A′. Then, regarded as a subset of A⊗B ⊗A′ ⊗B′,

T NS(�,m,n) = {T ¬ T ′ ∈ A⊗B ⊗A′ ⊗B′ ∶ T ∈ A⊗B ⊗W, T ′ ∈ A′ ⊗B′ ⊗W ∗
}

where ¬ ∶ W ⊗W ∗
→ C is the tensor contraction as described in Section 1.4. Writing

FT,T ′ = T ¬ T ′ ∶ (A⊗B′)∗ → A′⊗B for the tensor network state interpreted as a linear map,

we have

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

=max
�
��
�
��
�

rank(FT,T ′) ∶
T ∈ A⊗B ⊗W,

T ′ ∈ A′ ⊗B′ ⊗W ∗
�
��
�
��
�

.

The quantum max-flow in the bridge graph can be characterized only using linear algebra: Fix

a basis e1, . . . , ew of W with dual basis e∗1, . . . , e∗w. For T ∈ A⊗B⊗W , the slices T (e∗
j
) ∈ A⊗B

can be regarded as matrices of size a × b. Similarly for T ′ ∈ A′ ⊗ B′ ⊗W ∗, the elements

T ′(ej) ∈ A′ ⊗B′ can be regarded as matrices of size b′ × a′. Then, the linear map

FT,T ′ ∶ (A⊗B′)∗ → A′ ⊗B

is represented by the matrix T (e∗1)�T ′(e1)+�+T (e∗w)�T ′(ew). As T and T ′ are arbitrary,

we obtain the following characterization.
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a b

b′ a′
w

(a) The graph �1 with bond dimensions m1.

r

(b) The graph �2 with bond dimensions m2 ≡ r.
Figure 3.3: The two graphs �1 and �2 with associated bond dimensions. The quantum
max-flow in the bridge graph specifies the maximal possible r such that T�1,m1 ≥ T�2,m2 for
m2 ≡ r.

Lemma 3.2.4. The quantum max-flow in the bridge graph satisfies

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

=max
�
��
�
��
�

rank(
w

�

i=1
Mi �Ni) ∶

M1 . . .Mw matrices of size a × b,

N1 . . .Nw matrices of size b′ × a′
�
��
�
��
�

.

We can also characterize the quantum max-flow in the bridge graph using the language

presented in Section 1.4. For that, consider the two graphs �1 and �2 with bond dimensions

m1 and m2, respectively, as depicted in Figure 3.3. Then the following is immediate.

Lemma 3.2.5. The quantum max-flow in the bridge graph satisfies

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

=max{r ∶ T�1,m1 ≥ T�2,m2 for m2 ≡ r}

where the bond dimensions m1 are specified as in Figure 3.3(a).

3.2.2 Pehomogeneous tensor spaces and the castling transform

Motivated by Proposition 3.2.2, we will now review some facts from the theory of prehomo-

geneous tensor spaces. We will only present a small part of this theory and restrict ourselves

to the results that we will use in this thesis. For a general introduction to the representation

theory of linear algebraic groups, we refer to [Bor91]. Prehomogeneous tensor spaces have

been studied extensively in, for example, [SK77, Kim02, Man13, Ven19, DMW22]. We start

by defining the main concept of this section.

Definition 3.2.6. Let G be a linear algebraic group acting on a vector space V . The space V

is prehomogeneous for the action of G if the action has a dense orbit, that is, if there exists

v ∈ V such that G.v = V .

Recall that Theorem 1.2.4 ensures that if an orbit is dense in the Zariski topology, then it

is also dense in the Euclidean topology. In particular, if V is prehomogeneous for the action

of G and the orbit of v ∈ V dense, then G.v is Zariski-open in V and consequently dense in

the Euclidean topology. Moreover, it is unique, and it coincides with the orbit of any generic

element.
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Note that if a group G acts on a vector space V , then this induces an action on the dual

space V ∗ via g.f(−) = f(g−1.−) for all g ∈ G and f ∈ V ∗. This is often called the contragre-

dient action or dual action. For general linear groups over the complex numbers (or more

generally, for so-called reductive groups), prehomogeneity carries over to the contragredient

action [Kim02, Propositions 2.21 & 7.40].

Theorem 3.2.7. Let G = �k

i=1GL(Vi) be a product of general linear groups and W any

finite-dimensional vector space. Consider the natural action of G on a space V =�k

i=1 Vi⊗W .

Then V is prehomogeneous for the action of G if and only if V ∗ is prehomogeneous for the

contragredient action of G.

In this section, we are interested in tensor spaces Ca
⊗ Cb

⊗ Cw which are prehomogeneous

for the action of GL(Ca
)×GL(Cb

) on the first two factors. A fundamental ingredient in the

theory of prehomogeneous spaces is the notion of castling transform, introduced in [SK77] and

extensively used in the geometric study of prehomogeneous tensor spaces, see, e.g., [Man13,

Ven19, DMW22]. To present the proof of the castling transform, it is handy to introduce the

Grassmanian of m-planes.

Let Gr(m,V ) ⊂ �m V be the Grassmannian of m-planes in V , that is, the set of v1 ∧ ⋅ ⋅ ⋅ ∧ vm

such that v1 . . . vm are linearly independent. Up to scalar prefactors, we can identify the

element v1∧⋅ ⋅ ⋅∧vm with the m-dimensional space E it spans. Note that if a group G acts on

V , then it also acts on Gr(m,V ) by mapping E = span(v1 . . . vm) to g.E = span(g.v1 . . . g.vm).

Similarly, the action of G on V induces an action on Gr(m,V ∗) by using the contragredient

action. We note that Grassmanians, in general, are not vector spaces. However, one can,

in a natural way, give them the structure of an algebraic variety, see, for example [Lan17,

Section 2.3.3]. The following simple observation lies at the core of the castling transform.

Lemma 3.2.8. Let V be a vector space of dimension v and m ≤ v. There is a natural

bijective map Gr(m,V ) → G(v −m,V ∗) mapping E � E⊥. Moreover, if G acts on V , then

this map commutes with the group action, that is, g.E⊥ = (g.E)⊥.

With that, we are ready to state the result called castling transform which will be an impor-

tant tool throughout this thesis.

Theorem 3.2.9. Let G be a linear algebraic group acting on a vector space V of dimension

v and let m ∈ N. Then the space V ⊗Cm is prehomogeneous for the action of G×GL(Cm
) if

and only if V ∗ ⊗Cv−m is prehomogeneous for the action of G ×GL(Cv−m
).

Proof. Fix a basis e1 . . . em of Cm and let ⌦ ⊂ V ⊗Cm be the subset of elements of the form

T = e1⊗M1+ ⋅ ⋅ ⋅+em⊗Mm such that the Mi are linearly independent. Consider the surjective,

Zariski-continuous map � ∶ ⌦→ Gr(m,V ), T � span(M1 . . .Mm) commuting with the action

of G. If the orbit of an element v ∈ V is dense, then the orbit of �(v) must be dense as well.

On the other hand, it is clear that GL(Cm
) acts transitively on �−1(E) for all E in Gr(k,E).
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Hence, prehomogeneity of the action of G on Gr(m,V ) implies prehomogeneity of V under

G ×GL(Cm
).

Using Lemma 3.2.8 and applying the same line of arguments to G(v − m,V ∗) yields the

claim.

Corollary 3.2.10. Let b ≤ aw. The space Ca
⊗Cb

⊗Cw is prehomogeneous for the action of

GL(Ca
)⊗GL(Cb

) if and only if the space Cwa−b
⊗Ca

⊗Cw is prehomogeneous for the action

of GL(Cwa−b
)⊗GL(Ca

).

Proof. This is a direct consequence of Theorem 3.2.7 and Theorem 3.2.9.

In fact, one can use Corollary 3.2.10 to derive a condition that only depends on the involved

dimensions. For that, define �w =
w+√w2−4

2 for every w ≥ 2. The central result of this section

is the following.

Proposition 3.2.11. Let w ≥ 2 and let a, b be integers such that �wa < b. Then, Ca
⊗Cb
⊗Cw

has a dense (GL(Ca
) ×GL(Cb

))-orbit.

In preparation to prove Proposition 3.2.11, we need to introduce some technical results. First,

note that we have �2 = 1, �w ∈ (w − 1,w) for w ≥ 3 and �−1
w
=

w−√w2−4
2 . In particular, �w and

�−1
w

are the two roots of the equation �2 −w� + 1 = 0. For every w ≥ 2, define recursively the

generalized Fibonacci sequence

z(w)0 = 0, z(w)1 = 1, z(w)
p+1 = w ⋅ z(w)p

− z(w)
p−1 .

By resolving the recursion, one obtains

z(2)
p
= p, z(w)

p
=
�p
w
− �−p

w
√
w2 − 4

for w ≠ 2.

We record an immediate fact, which will be useful multiple times throughout:

Lemma 3.2.12. For every w ≥ 2 and p ≥ 0, we have

det
�

�

z(w)
p+1 z(w)

p+2
z(w)p z(w)

p+1
�

�
= z(w)

p+1
2
− z(w)

p+2 ⋅ z(w)p
= 1.

Proof. The proof is by induction on p. If p = 0, then

det
�

�

z(w)
p+1 z(w)

p+2
z(w)p z(w)

p+1
�

�
= det

�

�

1 w

0 1

�

�
= 1.
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If p ≥ 1, we have

det
�

�

z(w)
p+1 z(w)

p+2
z(w)p z(w)

p+1
�

�
=z(w)

p+1
2
− z(w)

p+2 ⋅ z(w)p
=

(w ⋅ z(w)
p
− z(w)

p−1)z(w)p+1 − (w ⋅ z(w)p+1 − z(w)p
)z(w)

p
=

w ⋅ z(w)
p
⋅ z(w)

p+1 − z(w)p−1 ⋅ z(w)p+1 −w ⋅ z(w)p+1 ⋅ z(w)p
+ z(w)

p

2
=

z(w)
p

2
− z(w)

p−1 ⋅ z(w)p+1 = 1.

We also prove the following technical result, which appears in [Kac80] without proof.

Lemma 3.2.13. Let w ≥ 2 and let a, b ∈ N with �wa < b ≤ wa. Then there exist unique

↵,� ≥ 0, � ≠ 0, and p ≥ 1 such that

a = z(w)
p

↵ + z(w)
p+1�

b = z(w)
p+1↵ + z(w)p+2�.

Proof. In the case w = 2, we have z(w)p = p, and the result is straightforward.

Consider the case w > 2. Define recursively the sequence

c0 = b, c1 = a, cs = wcs−1 − cs−2.

We show by induction that cs > �wcs+1, which in particular implies that cs is strictly decreas-

ing because �w > 1. The hypothesis guarantees this is true for s = 0. If s ≥ 1, the induction

hypothesis guarantees cs−1 > �wcs so that

�wcs−1 > �2wcs = (w�w − 1)cs = w�wcs − cs

and therefore cs > �w(wcs − cs−1) = �wcs+1, as desired.

Since cs is strictly decreasing, there exists s∗ ≥ 0 such that cs∗+1 ≤ 0. Define � = cs∗ and

↵ = cs∗−1 −wcs∗ = −cs∗+1. In particular, � > 0 and ↵ ≥ 0. An immediate induction argument

shows

cs∗−` = ↵z(w)`
+ �z(w)

`+1 .
Clearly, this is true if ` = 0,1. If ` ≥ 2, we have

cs∗−` = wcs∗−`−1 − cs∗−`−2 =
= w �↵z(w)

`−1 + �z(w)`
� − �↵z(w)

`−2 + �z(w)`−1 � =
= ↵ �(wz(w)

`−1 − z(w)`−2 � + � �wz(w)`
− z(w)

`−1 � = ↵z(w)`
+ �z(w)

`+1 .
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Setting p = s∗ − 1, we obtain

b = c0 = cs∗−(p+1) = ↵z(w)p+1 + �z(w)p+2
a = c1 = cs∗−p = ↵z(w)p

+ �z(w)
p+1 .

This shows the existence of ↵,� and p as desired.

To show uniqueness, suppose

a = ↵′z(w)
p′ + �

′z(w)
p′+1

b = ↵′z(w)
p′+1 + �′z(w)p′+2

for some p′, ↵′ ≥ 0 and �′ > 0. We first show that p = p′ must hold. Assume by contradiction

p ≠ p′ and without loss of generality consider the case p′ > p, equivalent to the condition

p′ ≥ p + 1. With a similar induction argument as before, we observe that for s ≤ p′ + 1,

cs = ↵
′z(w)

p′−(s−1) + �′z(w)p′+1−(s−1).

By assumption, this is true for s = 0,1. For s ≥ 2, we observe that

cs = wcs−1 − cs−2
= w �↵′z(w)

p′−(s−2) + �′z(w)p′+1−(s−2)� − �↵′z(w)p′−(s−3) + �′z(w)p′+1−(s−3)�
= ↵′z(w)

p′−(s−1) + �′z(w)p′+1−(s−1)
In particular, setting s = s∗ + 1 = p, we obtain

0 ≥ cs∗+1 = ↵′z(w)p′−s∗ + �′z(w)p′+1−s∗
= ↵′z(w)

p′−p−1 + �′z(w)p′−p.

By assumption, �′ > 0 and ↵, z(w)
p′−p−1 ≥ 0. Therefore, cs∗+1 ≤ 0 implies that z(w)

p′−p = 0, that is

p = p′. This contradicts the condition p′ ≥ p + 1. Therefore, we deduce p = p′.

Since p = p′, we have that (↵,�) and (↵′,�′) satisfy

�

�

b

a

�

�
=
�

�

z(w)
p+1 z(w)

p+2
z(w)p z(w)

p+1
�

�

�

�

↵

�

�

�
=
�

�

z(w)
p+1 z(w)

p+2
z(w)p z(w)

p+1
�

�

�

�

↵′
�′
�

�
.

By Lemma 3.2.12, we deduce (↵,�) = (↵′,�′).

Lemma 3.2.12 and Lemma 3.2.13 allow us to show that the tensor space Ca
⊗ Cb

⊗ Cw is

prehomogeneous for the action of GL(Ca
) ×GL(Cb

) whenever �wa < b.
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Proof of Proposition 3.2.11. First, assume that b ≥ wa. Considering the space Cb
⊗(Ca

⊗Cw
)

as a space of b×aw matrices, it is clear that any full rank matrix has a dense orbit under the

action of GL(Cb
). In particular, the space is GL(Ca

) ×GL(Cb
)-prehomogeneous.

Now, take any b ≥ �wa and write

a = z(w)
p

↵ + z(w)
p+1�, b = z(w)

p+1↵ + z(w)p+2�

as in Lemma 3.2.13.

By appying Corollary 3.2.10 recursively p times, we see that Ca
⊗Cb

⊗Cw is prehomogeneous

for GL(Ca
)×GL(Cb

) if and only if Ca
′
⊗Cb

′
⊗Cw is prehomogeneous for GL(Ca

′
)×GL(Cb

′
)

where

a′ = z(w)0 ↵ + z(w)1 � = �

b′ = z(w)1 ↵ + z(w)2 � = ↵ +w�.

Observing that b′ ≥ wa′ finishes the proof.

Remark 3.2.14. The proof of Proposition 3.2.11 gives a recursive way of constructing ele-

ments with dense orbit in Ca
⊗Cb

⊗Cw by choosing a full rank matrix in Ca
′
⊗Cb

′
⊗Cw and

applying Lemma 3.2.8. We note that we do not know about a closed formula for an element

with dense orbit in Ca
⊗Cb

⊗Cw for general �wa ≤ b when w ≥ 3.

3.2.3 Representation theory of quivers and invariants

The quantum max-flow in the bridge graph is related to the representation theory of the

Kronecker quiver. We refer to [DW17] for a comprehensive exposition of the representation

theory of quivers. We will outline a series of results from [Sch91, DZ01, DW00] which will

be crucial for certain cases of the quantum max-flow in the bridge graph.

Definition 3.2.15. A quiver is a finite directed graph Q = (Q0,Q1, t, s), where Q0 is the

set of vertices and Q1 is the set of arrows. Here, the t and s are maps specifying the source

resp. target of an arrow e, that is, s(e) = i and t(e) = j for an arrow e = (i, j).

Example 3.2.16. The Kronecker quiver Kw is the quiver that has two vertices ↵ and � and

w arrows from ↵ to �. In other words, s(e) = ↵ and t(e) = � for all arrows e. See Figure 3.4

for a visualization.

↵ �
Kw ∶

1

⋮

w

Figure 3.4: The Kronecker quiver Kw.
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Quivers are often used to study several linear maps simultaneously. This is done by intro-

ducing representations of quivers.

Definition 3.2.17. A representation of a quiver Q is a pair V = ((Vi)i∈Q0 , (Ve)e∈Q1). For

each i ∈ Q0, Vi is a finite-dimensional vector space and if e = (i, j) is an arrow in Q1 from

vertex i to vertex j, then Ve ∶ Vi → Vj is a linear map. We associate to a quiver representation

V its dimension vector v = dimV = (dimVi)i∈Q0 .

For a quiver Q with fixed dimension vector v, its space of representations is

R(Q,v) = �
e∈Q1

Hom(Vs(e), Vt(e))

where dim(Vi) = vi.

Example 3.2.18. For a, b ≥ 1, the space of representations of Kw with dimension vector

(a, b) can be identified with the space of w-tuples of linear maps Ca
→ Cb, in other words,

R(Kw, (a, b)) ≅ A ⊗B ⊗W with dimA = a, dimB = b and dimW = w. For a fixed basis of

e1, . . . , ew of W ∗, the linear map on the arrow j is T (ej) ∈ A⊗B.

Let Q be a quiver and v a dimension vector of Q. The group GL(v) = �i∈Q0
GL(Cvi) acts

on the space of representations of Q with dimension vector v: Let V = ((Vi)i∈Q0 , (Ve)e∈Q1)

be such a representation. Then g = (gi)i∈Q0 acts on it by simultaneous basis change, that is,

(V, g)� ((Vi)i∈Q0 , (gs(e)Veg
−1
t(e))e∈Q1).

In particular, �i∈Q0
GL(Cvi) acts on the coordinate ring of R(Q,v), that is, the set of

polynomials on R(Q,v): If f ∈ C[R(Q,v)] is a polynomial, then g ∈ �i∈Q0
GL(Cvi) acts via

g.f(−) = f(g−1.−).

Definition 3.2.19. Let Q be a quiver with dimension vector v. The ring of invariants I(Q,v)

for the quiver Q with respect to v is the set of f ∈ C[R(Q,v)] invariant under the action

of any g ∈ �i∈Q0
GL(Cvi). Its ring of semi-invariants SI(Q,v) is the ring of polynomial

functions invariant under the natural action of any g ∈ �i∈Q0
SL(Cvi).

Most of the time we will be interested in semi-invariants. It is clear that the action of

�i∈Q0
SL(Cvi) does not change the degree of a monomial. Consequently, SI(Q,v) is a graded

ring

SI(Q,v) =�
�∈NSI(Q,v)[�]

where SI(Q,v)[�] is the component of degree �. The ring of semi-invariants for the Kronecker

quiver is directly related to the quantum max-flow problem.
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Example 3.2.20. For the Kronecker quiver Kw, one can construct a semi-invariant in the

following way. Recall that R(Kw, (a, b)) ≅ A ⊗B ⊗W . Pick spaces B′ and A′ and matrices

Z1 . . . Zw ∈ B
′
⊗A′ such that for the dimension of the space, it holds that ab′ = a′b. Then,

T � det(T (e∗1)⊗Z1 + ⋅ ⋅ ⋅ + T (e
∗
w
)⊗Zw)

is a semi-invariant for the action of GL(A) × GL(B). This invariant is either the zero

polynomial or a semi-invariant of homogeneous degree � = ab′ = a′b, that is, an element of

SI(Q,v)[�].

The following result is a special case of [SV01, Theorem 2.3] to Kronecker quivers and shows

that the semi-invariants in Example 3.2.20 are essentially all.

Proposition 3.2.21. Let w ≥ 3 and let (a, b) be a dimension vector for the Kronecker quiver

Kw. Then, SI(Kw, (a, b))
[�] is spanned by the polynomials on A⊗B ⊗W of the form

T � det(T (e∗1) �Z1 +� + T (e
∗
w
) �Zw)

where T ∈ A⊗B ⊗W , and Z1, . . . , Zw are matrices of size b1 × a1 such that � = ab1 = ba1. In

particular, if SI(Kw, (a, b))
[�]
≠ 0, then � is a multiple of lcm(a, b).

We will next recall a result from [DW00, Theorem 3], see also [DW17, Theorem 10.7.8].

Proposition 3.2.22. Let w ≥ 3 and let (a, b) be a dimension vector for the Kronecker quiver

Kw. Let SI(Kw, (a, b))
[�] be the component of the ring of semi-invariants SI(Kw, (a, b)) of

degree �. Then, SI(Kw, (a, b))
[�]
≠ 0 for some � implies SI(Kw, (a, b))

[lcm(a,b)]
≠ 0.

Proof sketch: The proof follows from [DW00, Theorem 3], see also [DW17, Theorem 10.7.8].

Write � = ab1 = a1b for uniquely determined a1, b1. In particular, there exists �1 such that

a1 = �1a2 and b1 = �1b2 where a2 =
a

gcd(a,b) and b2 =
b

gcd(a,b) .

To match the notation from [DW00] and [DW17], recall that as a representation of GL(v),

the ring of semi-invariants decomposes into weight spaces

SI(Q,v) = �
�∈ZQ0

SI(Q,v)�

where

SI(Q,v)� = {f ∈R(Q,v) ∶ g.f = �
i∈Q0

det(gi)
�if for all g ∈ GL(v)},

see [DW17, Section 10] for an in-depth discussion. Using Proposition 3.2.21, we see that

SI(Kw, (a, b))
[�]
= SI(Kw, (a, b))� for � = (b1, a1). In [DW00, Theorem 3], the authors show

that the set

⌃(Q,v) = {� ∶ SI(Q,v)� ≠ 0}
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is saturated, that is, if n� ∈ ⌃(Q,v) for any n ∈ N, then also � ∈ ⌃(Q,v). Consequently,

if SI(Kw, (a, b))� ≠ 0, then also SI(Kw, (a, b))�2 ≠ 0 must hold. Passing to the degrees, this

guarantees SI(Kw, (a, b))
[�2] ≠ 0, where �2 = ab2 = a2b = lcm(a, b).

3.3 The quantum max-flow in the bridge graph

In this section, we will compute the quantum max-flow for the bridge graph for a wide range

of parameters. In Section 3.3.1, we characterize the behavior of the quantum max-flow under

the castling transform. This yields the main result of this section, Theorem 3.3.1, which will

allow us to deduce the results which we summarized in the Table 3.1 and Theorem 3.1.1.

3.3.1 The castling transform and the quantum max-flow

The quantum max-flow behaves well under the castling transform in the following sense.

Theorem 3.3.1. Let a, b, a′, b′,w be natural numbers such that a ≤ bw and a′ ≤ b′w. Then,

ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= b(b′w − a′) −QMaxFlow
�

�

�

b bw − a

b′w − a′ b′
w

�

�

�

.

Moreover, if we have b ≤ aw and b′ ≤ a′w, then we also have

ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= (wa − b)a′ −QMaxFlow
�

�

�

wa − b a

a′ wa′ − b′
w

�

�

�

.

In the following, assume a ≤ bw and a′ ≤ b′w. Given (E,E′) ∈ Gr(a,B⊗W )×Gr(a′,B′⊗W ∗
),

consider the linear map F 1
E,E′ defined by

F 1
E,E′ ∶ E ⊗B′∗ → [E′ ⊗B∗]∗

e⊗ �′ � (e′ ⊗ � � �(e) ¬ �′(e′)),

and extended by linearity.

Proposition 3.3.2. Let a ≤ bw and a′ ≤ b′w and let T ∈ A⊗B ⊗W and T ′ ∈ A′ ⊗B′ ⊗W ∗
be such that the induced maps

T ∶A∗ → B ⊗W and T ′∶A′∗ → B′ ⊗W ∗

are injective. Write ET = im(T ∶ A
∗
→ B ⊗W ), ET ′ = im(T ∶ A′∗ → B′ ⊗W ∗

). Then,

rank(FT,T ′) = rank(F 1
ET ,ET ′ )
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and

dimker(FT,T ′) = dimker(F 1
ET ,ET ′ ).

Proof. Fixing bases, it is straightforward to verify that both linear maps can be represented

by the same ab′ × ba′–matrix

�

w

�

k=1
Ti1,i2,kT

′
j1,j2,k

�

(a,b′),(b,a′)

(i1,j2),(i2,j1)=(1,1),(1,1)
labeled by double indices. This clearly implies the claim.

The following result shows that the construction of the map F 1
E,E′ is, in some sense, equi-

variant under castling.

Theorem 3.3.3. For a ≤ bw and a′ ≤ b′w let (E,E′) ∈ Gr(a,B ⊗W ) ×Gr(a′,B′ ⊗W ∗
), so

that (E′⊥,E⊥) ∈ Gr(b′w − a′,B′∗ ⊗W ) ×Gr(bw − a,B∗ ⊗W ∗
). Then,

ker(F 1
E,E′) = ker(F 1

E⊥,E′⊥
t
),

regarded as a subspace of (B ⊗W )⊗B′∗ ≅ B ⊗ (W ∗
⊗B′)∗.

Proof. Notice F 1
E⊥,E′⊥ ∶ E⊥⊗B′ → [E′⊥⊗B]∗, so F 1

E⊥,E′⊥
t
∶ E′⊥⊗B → [E⊥⊗B′]∗. In particular,

the domain E ⊗B′∗ of F 1
E,E′ and the domain E′⊥ ⊗B of F 1

E⊥,E′⊥
t
can both be regarded as

subspaces of (B ⊗W )⊗B′∗ ≅ (B′ ⊗W ∗
)
∗
⊗B.

Let ✓ ∈ ker(F 1
E,E′) ⊆ (B⊗W )⊗B′∗. First, we show that ✓ ∈ E′⊥⊗B regarded as a subspace of

(B′⊗W ∗
)
∗
⊗B. Indeed, since ✓ ∈ ker(F 1

E,E′), the element F 1
E,E′(✓) ∈ [E′⊗B∗]∗ is identically

0 as a map F 1
E,E′(✓) ∶ E′ ⊗B∗ → C. Since F 1

E,E′(✓) is defined by the contraction of ✓ against

the elements of E′ ⊗B∗, we deduce ✓ ∈ (E′ ⊗B∗)⊥ = E′⊥ ⊗B. In particular F 1
E⊥,E′⊥

t
is well

defined on ✓.

Now observe F 1
E⊥,E′⊥

t
(✓) = 0. Indeed, F 1

E⊥,E′⊥
t
(✓) ∈ [E⊥⊗B′]∗ is the map E⊥⊗B′ → C defined

by contraction of ✓ against the elements of E⊥⊗B′. By assumption ✓ ∈ E⊗B′∗ = (E⊥⊗B′)⊥,
hence this contraction is identically 0.

This shows the inclusion ker(F 1
E,E′) ⊆ ker(F 1

E⊥,E′⊥
t
). Reversing the roles of (E,E′) with

(E⊥,E′⊥), one has the other inclusion, hence equality.

Theorem 3.3.3 allows us to prove the main result of this section, namely Theorem 3.3.1.

Proof of Theorem 3.3.1. Let a ≤ bw. It is clear that we can choose tensors T ∈ A ⊗B ⊗W

and T ′ ∈ A′ ⊗B′ ⊗W ∗ with the property that they maximize the quantum flow and that the

flattening maps

T ∶A∗ → B ⊗W and T ′∶A′∗ → B′ ⊗W ∗
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are injective. This can be seen from the fact that these are open conditions in the Zariski

topology. By Proposition 3.3.2 and Theorem 3.3.3, we obtain

ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= dim(ker(FT,T ′))

= dim(ker(F 1
ET ,ET ′ ))

= dim(ker((F 1
E
⊥
T ,E

⊥
T ′ )

t
))

= dim(ker(FS,S′)) ≥ b(b′w − a′) −QMaxFlow
�

�

�

b bw − a

b′w − a′ b′
w

�

�

�

where the tensors S ∈ B∗ ⊗ Cbw−a
⊗W ∗ and S′ ∈ Cb

′
w−a′

⊗B′∗ ⊗W are chosen so that the

image of their flattening maps are E⊥
T

and E⊥
T ′ , respectively. The same argument, in the

opposite direction, yields equality.

Now, assume b ≤ wa and b′ ≤ wa′. Set x = wa− b, y = a, x′ = wa′ − b′ and y′ = a′ so that x ≤ wy

and x′ ≤ wy′. Then, we obtain

(wa − b)a′ −QMaxFlow
�

�

�

wa − b a

a′ wa′ − b′
w

�

�

�

= xy′ −QMaxFlow
�

�

�

x y

y′ x′
w
�

�

�

=

y(y′w − x′) −QMaxFlow
�

�

�

y yw − x

y′w − x′ y′
w

�

�

�

= ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

.

3.3.2 Calculating the quantum max-flow

Theorem 3.3.1 enables us to calculate the quantum max-flow in a wide range of cases. In this

section, we compute the max-flow in a series of results: Theorem 3.3.6, Theorem 3.3.7, The-

orem 3.3.8, and Corollary 3.3.9. These are obtained via arithmetic arguments: starting from

pairs (a, b), (a′, b′), one reduces via castling to “easier pairs” and obtains the result using The-

orem 3.3.1. More precisely, we will use the following observations about the behavior of tuples

(a, b) under castling operations which we visualize in Figure 3.5.

Lemma 3.3.4. Recall the regions Uw,Vw,Ww,Xw and Yw from Section 3.1 and consider

a tuple (a, b) ∈ N2. As long as anw ≥ bn, define recursively

(a0, b0) = (a, b), (an+1, bn+1) = (wan − bn, an). (3.2)

(a) Let (a, b) ∈ Yw. Then, (b, bw − a) ∈ Xw, that is, with one castling step, we move to the

region Xw.

(b) Let (a, b) ∈Xw and write

a = z(w)
p

↵ + z(w)
p+1�, b = z(w)p+1↵ + z(w)p+2�.
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as in Lemma 3.2.13. Then, for all n = 1, . . . , p − 1, we have (an, bn) ∈ Xw as well as

(ap, bp) ∈Yw. That is, with p castling steps, we reach Yw and stay until then in Xw.

(c) Let (a, b) ∈Ww and consider the recursive sequence in Equation (3.2). Then, for some

n ∈ N, we have (an, bn) ∈Uw ∪Vw. Moreover, we have (b, bw − a) ∈Ww, in other words,

castling “in the other direction” lets us stay in Ww.

(d) Let (a, b) ∈Uw ∪Vw. Then, (b,wb − a) ∈Ww and (a,wa − b) ∈Uw ∪Vw. In particular,

for w ≥ 4 and (a, b) ∈ Vw, it holds (a,wa − b) ∈Uw and similarly, for (a, b) ∈ Uw, it holds

(a,wa − b) ∈Vw.

For any fixed w, we say that two pairs (a, b) and (a′, b′) are castling equivalent if there is a

sequence as in Equation (3.2) with (a0, b0) = (a, b) and (an, bn) = (a
′, b′).

Proof. Note that in all cases, a ≠ 0. Start with (a) and let (a, b) ∈Yw. Then, bw − a < bw as

well as (w − �w)b ≥ (w
2
−w�w)a ≥ a which shows (bw − a, b) ∈Xw. For (b), we observe that

if (a, b) ∈Xw can be written as

a = z(w)
p

↵ + z(w)
p+1�, b = z(w)p+1↵ + z(w)p+2�

as in Lemma 3.2.13, then wa−b = z(w)
p−1↵+z(w)p � and a = z(w)p ↵+z(w)

p+1�. Since z(w)i
≠ 0 as long as

i ≠ 0, the claim follows by applying this observation p times. For (c), assume (a, b) ∈Ww. We

have a = (�ww−�
2
w
)a = �w(wa−�wa) < �w(wa−b) and wa−b ≤ wa−(w−1)a = a, in other words,

(wa − b, a) ∈ Uw ∪Vw ∪Ww. Moreover, we see that, by assumption, the second coordinate

strictly decreases in the castling step, that is, a < b. This guarantees that the sequence cannot

stay inWw forever and, in particular, that there is an n such that (an, bn) ∈Uw∪Vw. Finally,

for (a, b) ∈ Uw ∪Vw, we clearly have (w − 1)b = wb − b ≤ wb − a. From (a) and (b), we know

that (b,wb−a) �∈Xw∪Yw and therefore, (b,wb−a) ∈Ww. Moreover, if w ≥ 4 and (a, b) ∈Vw,

we have a = wa−(w−1)a ≤ wa− b as well as wa− b ≤ wa−�w−1a = (w−�w−1)a ≤ �w−1a where

the last inequality follows from the fact �w−1 ≥ w − 2. The case (a, b) ∈ Uw is similar. This

finishes (d).

Definition 3.3.5. Let (a, b) ∈ Uw ∪Vw ∪Ww and consider the sequence (an, bn) in Equa-

tion (3.2). Call the minimal n0 such that (an0 , bn0) ∈ Uw ∪Vw the castling depth of (a, b),

denoted depth(a, b).

The existence of such a minimal n0 is guaranteed by Lemma 3.3.4. In particular, for all

(a, b) ∈Uw ∪Vw, we have depth(a, b) = 0.

We will now calculate the quantum max-flow in the bridge graph. We start with the easiest

case when (a, b) ∈Yw, that is, b ≥ aw. This corresponds to the orange cells in Table 3.1.
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a
b

wa = b

�wa = b

(w − 1)a = b

�w−1a = b

a = b

Yw

Xw

Vw

Uw

U
′
w

V
′
w

X
′
w

Y
′
w

W
′
w

Ww

Figure 3.5: The regions Uw,Vw,Ww,Xw and Yw with their counterparts “on the other
side” of the line a = b. In purple, we visualize the cases (a) and (b) in Lemma 3.3.4: Any pair
in Yw castles directly to the Xw region. For any pair in the Xw region, we eventually land
in the Yw region by castling. Cases (c) and (d) are visualized in green. Here, we see that
any pair in Ww castles eventually to a pair in Uw ∪Vw and then “flips side” to U

′
w
∪V

′
w
.

Theorem 3.3.6. Let a, b, a′, b′,w be natural numbers such that aw ≤ b. We have

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

=

�
��
�
��
�

ab′ if (a′, b′) ∉Yw,

aa′w if (a′, b′) ∈Yw.

In other words, if T and T ′ are tensors realizing the quantum max-flow, the resulting linear

map FT,T ′ has a no kernel if b′ ≤ a′w and a kernel of dimension a ⋅ (b′ − a′w) if b′ ≥ a′w.

Proof. Let T be a tensor such that the map T ∶ (A ⊗W )∗ → B is injective. If (a′, b′) ∉ Yw,

let T ′ be a tensor such that the map T ′ ∶ B′∗ →W ∗
⊗A′ is injective. If (a′, b′) ∈ Yw, let T

′
be a tensor such that the map T ′ ∶ B′∗ →W ∗

⊗A′ is surjective. In both cases, we obtain the

desired result.

Next we consider the case (a, b) ∈Ww ∪Xw and (a′, b′) ∈ Uw ∪Vw, corresponding to the

cyan cells in Table 3.1.

Theorem 3.3.7. Let (a, b) ∈Ww ∪Xw and (a′, b′) ∈Uw ∪Vw, that is, (w−1)a ≤ b ≤ wa and

a′ ≤ b′ ≤ (w − 1)a′. Then, we have

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

= ab′.
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Proof. Since ab′ ≤ aa′(w − 1) ≤ ba′, it is clear the quantum min-cut, in this case, is ab′.
Moreover since b ≤ aw and b′ ≤ a′w, we can apply Theorem 3.3.1 yielding

ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= (wa − b)a′ −QMaxFlow
�

�

�

wa − b a

a′ wa′ − b′
w

�

�

�

. (3.3)

We notice that wa−b ≤ wa−(w−1)a = a and wa′−b′ ≥ wa′−(w−1)a′ = a′ (see also Figure 3.5).

This guarantees that the quantum max-flow with bond dimensions (wa−b, a) and (wa′−b′, a′)
equals (wa − b)a′. In particular, the right-hand side of Equation (3.3) is 0, showing that the

left-hand side is 0, as well. This concludes the proof.

Let us turn our attention to the case (a, b) ∈Xw. This is the most delicate case and the only

one where we can prove the existence of sets of bond dimensions for which the quantum max-

flow is strictly smaller than the quantum min-cut. From Theorem 3.3.7, we already know the

quantum max-flow for (a′, b′) ∈Uw ∪Vw. From Theorem 3.3.6, we know the quantum max-

flow when (a′, b′) ∈ Yw. The following result provides an answer when (a′, b′) ∈Ww ∪Xw.

These are the purple cases of Table 3.1.

Theorem 3.3.8. Let (a, b) ∈Xw, that is, �wa < b ≤ wa, and write

a = z(w)
p

↵ + z(w)
p+1�, b = z(w)

p+1↵ + z(w)p+2�

as in Lemma 3.2.13.

1. If (a′, b′) ∈Ww, then

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

= ab′.

2. If (a′, b′) ∈Xw, write

a′ = z(w)
p′ ↵′ + z(w)

p′+1�′, b′ = z(w)
p′+1↵′ + z(w)p′+2�′.

Then,

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

=

�
�����
�
�����
�

ab′ if p′ > p,
ab′ − �↵′ if p = p′,
a′b if p′ < p.
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Proof. Consider the sequence (an, bn) in Equation (3.2) consisting of castling equivalent pairs

and define a similar sequence (a′
n
, b′

n
). We know that ap = � and bp = ↵+w�. If (a

′, b′) ∈Ww,

we certainly have b′
p
≤ wa′

p
and consequently

ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= apb
′
p
−QMaxFlow

�

�
�

�

ap bp

b′
p

a′
p

w

�

�
�

�

= 0

by Theorem 3.3.6. This shows the first claim.

Now, let (a′, b′) ∈Xw and assume first that p′ > p. By Lemma 3.3.4, we see that in this case,

wa′
p
≥ b′

p
holds. The same argument as for (a′, b′) ∈Ww finishes this case. We note that the

case p′ < p follows by symmetry.

Finally, assume (a′, b′) ∈Xw and p = p′. In this case, applying Theorem 3.3.1 p times yields

ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= �(↵′ +w�′) −QMaxFlow
�

�

�

� ↵ +w�

↵′ +w�′ �′
w

�

�

�

= �↵′

where the last equality is Theorem 3.3.6. This finishes the proof.

We conclude this section with an immediate consequence of the previous results, which allows

us to compute the quantum max-flow when (a, b) ∈Vw and (a′, b′) ∈Uw. These are the green

cases of Table 3.1.

Corollary 3.3.9. Let (a, b) ∈Vw and (a′, b′) ∈Uw. Then,

QMaxFlow
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a b

b′ a′
w
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�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

= ab′.

Proof. SinceVw =Xw−1 andUw =Uw−1∪Vw−1∪Ww−1, the result follows from Theorem 3.3.7

and Theorem 3.3.8 applied to the case w − 1.

3.3.3 Partial solution of the remaining cases

In this section, we see a series of partial results that cover a great number of cases in which

(a, b) and (a′, b′) are both in Ww, in Vw or in Uw.

Our first observation is that for pairs with di↵erent castling depths as defined in Defini-

tion 3.3.5, the quantum max-flow and the quantum min-cut in the bridge graph coincide.

Theorem 3.3.10. Let (a, b), (a′, b′) ∈Ww be such that depth(a, b) > depth(a′, b′). Then,

QMaxFlow
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a b
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= QMinCut
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a b
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w

�
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Proof. Let p = depth(a′, b′). We apply iteratively Theorem 3.3.1 to obtain

ab′ −QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= apb
′
p
−QMaxFlow

�

�
�

�

ap bp

b′
p

a′
p

w

�

�
�

�

.

By assumption, (ap, bp) ∈Ww and (a′
p
, b′

p
) ∈ Uw ∪Vw. By Theorem 3.3.7, we deduce that

the right-hand side of the equation above is 0. So is the left-hand side, which provides the

assertion.

We can also calculate the quantum max-flow for some instances of (a, b) and (a′, b′) where
both have the same castling depth by generalizing Corollary 3.3.9.

Lemma 3.3.11. Fix a, b,w, a′, b′ such that (a, b), (a′, b′) ∈ Uw and let w ∈ {2, . . . ,w − 1}.

Assume that aw ≤ b and a′w ≥ b′. Then,

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

= ab′. (3.4)

Proof. It follows from Theorem 3.3.6 that Equation (3.4) holds even when we replace the

bridge width w by w. This implies the claim.

For example, recall the recursively defined sequence (an, bn) in Equation (3.2) and define

(a′, b′) = (a,wa − b). It is clear that depth(an, bn) = depth(a
′
n
, b′

n
) for all n ∈ N. It turns out

that we can calculate the quantum max-flow for these pairs.

Corollary 3.3.12. Let w be even, (a, b) ∈ Uw ∪Vw and consider (an, bn) and (a
′
n
, b′

n
) as

before. Then,

QMaxFlow
�
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�
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b′
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a′
n

w
�

�

�

= QMinCut
�

�

�

an bn

b′
n

a′
n

w
�

�

�

=min(anb
′
n
, a′

n
bn).

Proof. Using Theorem 3.3.1 it is clear that it su�ces to show the claim for n = 0. There,

both pairs are in Uw ∪ Vw. Assuming w

2 a ≤ b, that is, aw − b ≤ w

2 a, the claim is ex-

actly Lemma 3.3.11. The case w

2 a ≥ b follows by symmetry.

We conclude this section with a result that determines the quantum max-flow for proportional

pairs of bond dimensions in the region Uw ∪Vw ∪Ww.

Theorem 3.3.13. Let w ≥ 3 and let (a, b), (a′, b′) ∈Uw ∪Vw ∪Ww and suppose there exists

q ∈ Q with (a, b) = q(a′, b′). Then,

QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

= QMinCut
�

�

�

a b

b′ a′
w

�

�

�

= ab′.
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Proof. The hypothesis guarantees dim(A⊗B′) = dim(B ⊗A′). In particular, the statement

is equivalent to the fact that for some T ∈ A⊗B ⊗W and T ′ ∈ A′ ⊗B′ ⊗W ∗, the flow map

FT,T ′ has nonzero determinant.

If (a, b) ∈ Uw ∪ Vw ∪Ww, a generic tensor T ∈ A ⊗ B ⊗W is semistable for the action

of GL(A) ⊗GL(B) in the sense of geometric invariant theory, see, for example, [AKRS21,

Theorem 4.1 & Corollary 4.10], [DKH21, DMW22, Proposition 1.3], or [DM21, Theorem 1.2].

In particular, semistability of generic elements guarantees that the ring of invariants

C[A⊗B ⊗W ]SL(A)×SL(B)

is nontrivial. By the discussion of Section 3.2.3, this ring of invariants coincides with

SI(Kw, (a, b)). By Proposition 3.2.21 together with Proposition 3.2.22, this ring has non-

trivial elements in degree ab′ and they arise as determinants

det(T (e1) �Z1 +� + T (ew) �Zw)

for certain, generic enough, matrices Zj of size b′ × a′. Regarding the w-tuple (Z1, . . . , Zw)

as a tensor in A′ ⊗B′ ⊗W ∗, we see that T (e1)�Z1 +� + T (ew)�Zw can be identified with

the flow map FT,T ′ . Since this determinant is nonzero for generic enough T and Z1, . . . , Zw,

we conclude that FT,T ′ has full rank. This yields the desired result.

3.3.4 Conjectural behavior of the quantum max-flow in the bridge

graph

We expect the quantum max-flow to be always equal to the quantum min-cut with the only

exception discussed in case ♢ of Theorem 3.1.1, which was analyzed in Theorem 3.3.8. This

has been proved for a large number of cases, as shown in Table 3.1. When both (a, b) and

(a′, b′) belong to Uw, Vw or Ww and the results of Section 3.3.3 do not apply, calculating

the quantum max-flow remains an open problem. We propose the following conjecture.

Conjecture 3.3.14. For all (a, b), (a′, b′) ∈Uw ∪Vw ∪Ww such that ab′ ≤ a′b we have that
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a b

b′ a′
w
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�

= QMinCut
�

�

�

a b

b′ a′
w

�
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= ab′.

In this section, we prove a reduction result showing that Conjecture 3.3.14 is equivalent to

its specialization to the case w = 3.

Conjecture 3.3.15. Let w = 3 and (a, b), (a′, b′) ∈U3 ∪V3 ∪W3 such that ab′ ≤ a′b. Then,

QMinCut
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a b
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b′ a′
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�
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It is clear that Conjecture 3.3.14 implies Conjecture 3.3.15.

Using Lemma 3.3.4, one can reduce the computation of the max-flow for pairs in Vw and

Ww to pairs in Uw. This is recorded in the following result.

Lemma 3.3.16. Let w ≥ 4. If, for all (a, b), (a′, b′) ∈Uw,

QMinCut
�

�

�

a b

b′ a′
w

�

�

�

= QMaxFlow
�

�

�

a b

b′ a′
w

�

�

�

=min{a′b, ab′}, (3.5)

then Equation (3.5) also holds for all (a, b), (a′, b′) ∈Uw ∪Vw ∪Ww.

Proof. The case (a, b) ∈ Uw ∪Vw and (a′, b′) ∈ Ww follows fom Theorem 3.3.7, the case

(a, b) ∈ Uw and (a′, b′) ∈ Vw from Corollary 3.3.9. Let (a, b), (a′, b′) ∈ Vw. Then, using (d)

from Lemma 3.3.4, we see that by castling once we reduce to the case (a, b), (a′, b′) ∈ Uw.

So assume (a, b), (a′, b′) ∈ Ww. If they have di↵erent castling depth, the case is solved

by Theorem 3.3.10. Else, we can castle both pairs simultaneously to Uw ∪Vw and the claim

follows by the preceding discussion.

We can now easily complete the proof of the equivalence between Conjecture 3.3.15 and Con-

jecture 3.3.14.

Proposition 3.3.17. If
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holds for all (a, b), (a′, b′) ∈U3 ∪V3 ∪W3, then
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= QMaxFlow
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a b

b′ a′
w

�

�

�

holds for all (a, b), (a′, b′) ∈Uw ∪Vw ∪Ww.

Proof. We use induction on w. The case w = 3 coincides with the hypothesis of the claim.

Suppose w ≥ 4. Let (a, b), (a′, b′) ∈Uw ∪Vw ∪Ww. By Lemma 3.3.16, it su�ces to consider

the case (a, b), (a′, b′) ∈Uw. Now, Uw =Uw−1∪Vw−1∪Ww−1. Therefore the statement holds

by the induction hypothesis. This concludes the proof.
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3.A Pedestrian-style proofs for the bridge 2 case

When w = 2, the regions U2,V2 are empty and the region W2 reduces to cases where a = b.

Therefore, the only interesting behavior, in this case, is for (a, b), (a′, b′) ∈X2. This is covered

by Theorem 3.3.8 whose proof relies on the castling transform and on Theorem 3.3.1. In this

appendix, we propose two alternative proofs for this specific case, which do not rely on

castling transform. A deep understanding of this initial case might provide insights on how

to obtain a proof for the w = 3 case of Conjecture 3.3.15 and in turn of Conjecture 3.3.14.

The first proof that we present in Appendix 3.A.1 relies on the fact that when w = 2, we

know explicit examples of tensors T ∈ Ca
⊗Cb

⊗C2 having a dense GL(Ca
) ×GL(Cb

)-orbit.

This relies on the Kronecker classification of matrix pencils [Gan59, Chapter XIII], and more

precisely on the results of [Pok86].

The second proof presented in Appendix 3.A.2 is a variation of the first one, where the explicit

calculation of the rank of certain maps relies on the representation theory of GL(C2
).

3.A.1 A proof using explicit tensors with dense orbit

The main tool for this section is the following result by Pokrzywa [Pok86]. Recall that z(2)p = p

for all p ∈ N.

Lemma 3.A.1. Let (a, b) ∈X2, in other words, a < b ≤ 2a. Write

a = p↵ + (p + 1)�

b = (p + 1)↵ + (p + 2)�

as in Lemma 3.2.13. Let T ∈ Ca
⊗ Cb

⊗ C2 be regarded as a 2-dimensional subspace of

Ca
⊗Cb

≅Mata×b via

T ((C2
)
∗
) = {(id↵ �Rp(⇠1, ⇠2)⊕ (id� �Rp+1(⇠1, ⇠2)) ∶ ⇠1, ⇠2 ∈ C}

where

Rp(⇠1, ⇠2) =

�
�
�
�
�
�
�
�
�
�
�

⇠1 ⇠2

⇠1 ⇠2

� �

⇠1 ⇠2

�
�
�
�
�
�
�
�
�
�
�

∈ Cp
⊗Cp+1

and id↵ is an ↵×↵ identity matrix. Then the (GLa×GLb)-orbit of T is dense in Ca
⊗Cb
⊗C2.

The proof of Lemma 3.A.1 can be obtained by computing directly the stabilizer of the tensor

T in GL(Ca
) ×GL(Cb

) and using Proposition 1.2.7. The direct sum structure allows one to

reduce to the case ↵ = 0, � = 1, for which the calculation is straightforward, see e.g. [CGL+21,
Theorem 4.1].
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Lemma 3.A.1, together with semicontinuity of matrix rank, guarantees that the quantum

max-flow in the bridge graph equals the rank of the flow map for tensors T,T ′ having dense

orbit. The rest of this section performs the calculation of this rank.

Fix (a, b), (a′, b′) ∈X2 and write

a = p↵ + (p + 1)�, b = (p + 1)↵ + (p + 2)�

a′ = p′↵′ + (p′ + 1)�′, b′ = (p′ + 1)↵′ + (p′ + 2)�′,

as in Lemma 3.2.13. Let T ∈ Ca
⊗Cb

⊗C2 and T ′ ∈ Cb
′
⊗Ca

′
⊗C2 be the tensors described

in Lemma 3.A.1.

Fix a basis e1, . . . , ek of Ck for any k. For j = 1,2, let Mj = T (e
∗
j
) ∈ Ca

⊗Cb, and similarly,

M ′
j
= T ′(e∗

j
) ∈ Cb

′
⊗Ca

′
. By Lemma 3.2.4, we have

FT,T ′ =M1 �M
′
1 +M2 �M

′
2.

A direct calculation shows

M1 = id↵ �Rp(1,0)⊕ id� �Rp+1(1,0),
M2 = id↵ �Rp(0,1)⊕ id� �Rp+1(0,1),
M ′

1 = id↵ �Rq(1,0)
t
⊕ id� �Rq+1(1,0)t,

M ′
2 = id↵ �Rq(0,1)

t
⊕ id� �Rq+1(0,1)t.

After reordering the Kronecker factors, we obtain that FT,T ′ can be represented in diagonal

block form with

↵↵′ blocks Rp(1,0) �Rq(1,0)
t
+Rp(0,1) �Rq(0,1)

t,

↵�′ blocks Rp(1,0) �Rq+1(1,0)t +Rp(0,1) �Rq+1(0,1)t,
�↵′ blocks Rp+1(1,0) �Rq(1,0)

t
+Rp+1(0,1) �Rq(0,1)

t,

��′ blocks Rp+1(1,0) �Rq+1(1,0)t +Rp+1(0,1) �Rq+1(0,1)t.

Consequently, the rank of FT,T ′ coincides with the sum of the ranks of these blocks.

Define

Kx,y = Rx(1,0) �Ry(1,0)
t
+Rx(0,1) �Ry(0,1)

t
∈ (Cx

⊗Cy+1
)⊗ (Cx+1

⊗Cy
).

The four block types appearing in FT,T ′ are Kp,p′ , Kp,p′+1, Kp+1,p′ and Kp+1,p′+1.

71



Consider Kx,y as a linear map Kx,y ∶Cx
⊗Cy+1

→ Cx+1
⊗Cy. On the basis vector, it acts as

follows:

Kx,y(ei ⊗ ej) =

�
������
�
������
�

ei ⊗ ej j = 1

ei ⊗ ej + ei+1 ⊗ ej−1, 2 ≤ j ≤ y

ei+1 ⊗ ej−1 j = y + 1.

Denote by Uc the subspace of Cx
⊗Cy+1 spanned by the basis vectors ei⊗ej with i+ j = c+1,

and by Vc the analogous subspace of Cx+1
⊗Cy. The map Kx,y maps Uc to Vc. The matrix

of Kx,y restricted to Uc has a simple structure with 1’s on two diagonals. Depending on the

relation between x, y and c we have the following 4 cases.

�
����������
�
����������
�

rankKx,y �Uc = dim(Uc) = dim(Vc) = c, if c ≤ x, c ≤ y,

rankKx,y �Uc = dim(Uc) = x, dim(Vc) = y + 1, if x < c ≤ y,

rankKx,y �Uc = dim(Vc) = y, dim(Uc) = y + 1, if y < c ≤ x,

rankKx,y �Uc = dim(Uc) = dim(Vc) = x + y + 1 − c, if c > x, c > y.

If x ≤ y, then rank(Kx,y �Uc) = dim(Uc) for all c and, therefore,

rankKx,y =�
c

dim(Uc) = x(y + 1).

Similarly, if x ≥ y, then rankKx,y = y(x + 1).

With these considerations, we can now compute rank(FT,T ′). Clearly, if p < q, then p+ 1 ≤ q.

Consequently, all appearing maps Kx,y have rank x(y + 1) and we obtain

rankFT,T ′ = ↵↵′ rankKp,p′ + ↵�′ rankKp,p′+1 + �↵′ rankKp+1,p′ + ��′ rankKp+1,p′+1
= ↵↵′p(p′ + 1) + ↵�′p(p′ + 2) + �↵′(p + 1)(p′ + 1) + ��′(p + 1)(p′ + 2) = ab′.

This shows that if p < p′, then the quantum max-flow equals the quantum min-cut, and both

are ab′. Similarly, if p > p′, the quantum max-flow and quantum min-cut coincide and are

equal to a′b.

If p = q, we calculate the rank of FT,T ′ as

rankFT,T ′ = ↵↵′ rankKp,p′ + ↵�′ rankKp,p′+1 + �↵′ rankKp+1,p′ + ��′ rankKp+1,p′+1
= ↵↵′p(p′ + 1) + ↵�′p(p′ + 2) + �↵′(p + 2)p′ + ��′(p + 1)(p′ + 2).

This quantity di↵ers from

ab′ = ↵↵′p(p′ + 1) + ↵�′p(p′ + 2) + �↵′(p + 1)(p′ + 1) + ��′(p + 1)(p′ + 2)
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by (p − p′ + 1)�↵′ = �↵′. Hence, we have reproduced the result in Theorem 3.3.8

QMaxFlow
�

�

�

a b

b′ a′
2

�

�

�

=

�
������
�
������
�

ab′ if p < p′,
ab′ − �↵′ if p = p′,
a′b if p > p′.

3.A.2 Bridge 2 via representation theory

One can also use representation theory of GL(C2
) to perform the rank calculation in Ap-

pendix 3.A.1. Most of the presented theory follows [Lan17, Section 8.1]. We mention that

this idea in principle lets us calculate quantum max-flows for higher bridge dimensions in

particular cases.

For a vector space V , recall the symmetric and antisymmetric subspaces from Section 1.2.

Let V be a finite-dimensional vector space with v = dimV and fix a basis e1, . . . , ev of V and

a corresponding dual basis x1, . . . , xv of V ∗. The space Sd
(V ∗) can be identified with the

space of homogeneous polynomials of degree d on V . The basis elements x1, . . . , xv can be

thought as coordinates on V . In a similar way, Sk
(V ) can be thought of as the space of order

k di↵erential operators (with constant coe�cients) via the natural contraction map

Sd
(V ∗)⊗ Sk

(V )→ Sd−k
(V ∗)

f ⊗ ei1 . . . eik �
@kf

@xi1�@xik

for any d ≥ k.

The group GL(V ) acts on V ⊗d and its elements can be represented as matrices in the fixed

basis. Let T be the abelian subgroup of invertible diagonal matrices (called a torus) and B

be the subgroup of invertible upper triangular matrices (called the Borel subgroup). A tensor

v ∈ V ⊗d is a weight vector with weight (p1, . . . , pv) if for all elements in T, one has

�

�
�
�

�

t1

�

tv

�

�
�
�

�

v = tp1

1 . . . tpv
v v.

Moreover, v is a highest weight vector if B preserves the line through v. In this case, the

weight (p1 . . . pv) is called a highest weight.

Two irreducible representations of GL(V ) are isomorphic if and only if they have the same

highest weight, that is, contain a highest weight vector for the same highest weight. The

irreducible representations appearing in the tensor algebra V ⊗ = �∞d=0 V ⊗d are labeled by

Young diagrams or, equivalently, by tuples of natural numbers ⇡ = (p1, . . . , pk) with pi ≤ pi+1
where k ≤ v. Write S⇡(V ) for the irreducible representation corresponding to ⇡. Moreover,

S⇡(V ) is an irreducible representation appearing in V ⊗d if and only if p1 + ⋅ ⋅ ⋅ + pk = d. Let
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⇡′ = (q1 . . . qp1) be the conjugate Young diagram to ⇡, that is the Young diagram whose i-th

column has pi boxes. Then,

(e1 ∧ ⋅ ⋅ ⋅ ∧ eq1)⊗ ⋅ ⋅ ⋅ ⊗ (e1 ∧ ⋅ ⋅ ⋅ ∧ eqp1 ) ∈ V
⊗d

is a highest weight vector of highest weight ⇡ in V ⊗d.

We have seen in Theorem 1.2.12 that every finite-dimensional representation of GL(V ) splits

into a direct sum of irreducible representations. The Pieri formula controls which irreducible

representations appear in S⇡(V ) ⊗ Sd
(V ). For a proof of the Pieri formula, see, for exam-

ple, [RG10, Corollary 9.2.4].

Theorem 3.A.2. The representation S⇡(V )⊗ Sd
(V ) decomposes into irreducible represen-

tations of GL(V ) as

S⇡(V )⊗ Sd
(V ) =�

µ

Sµ(V )

where the direct sum ranges over Young diagrams µ obtained by adding d boxes to ⇡ with no

two boxes added to the same column. In particular, this decomposition is multiplicity free.

For example, let W be a 2-dimensional space and consider the action of GL(W ∗
) on the

space Sk
(W ∗

)⊗ Sm
(W ∗

) with k ≥m. By Pieri’s formula, this decomposes as

Sk
(W ∗

)⊗ Sm
(W ∗

) =

m

�
r=0S(k+r,m−r)(W

∗
),

because the Young diagram (k+r,m−r) is obtained by adding m boxes to the Young diagram

(k), with r boxes in the first row and m − r boxes in the second row.

Define hr

k,m
= (x0y1 −x1y0)

m−rxk−m+r
0 yr0. Identify elements of Sk

(W ∗
)⊗Sm

(W ∗
) as polyno-

mials in the variables x0, x1, y0, y1 which are bi-homogeneous of bi-degree (k,m) in the two

sets of variables {x0, x1},{y0, y1}. In particular, hr

k,m
is an element of Sk

(W ∗
) ⊗ Sm

(W ∗
).

One can verify that this is, in fact, a highest weight vector for highest weight (k + r,m − r).

Similarly, for k ≤m, the Pieri formula gives

Sk
(W ∗

)⊗ Sm
(W ∗

) =

m

�
r=0S(m+r,k−r)(W

∗
).

Define h′r
k,m
= (x0y1 − x1y0)

k−rxm−k+r
0 yr0, which turns out to be a highest weight vector in

S(m+r,k−r)(W ∗
) in Sk

(W ∗
)⊗ Sm

(W ∗
).

In the study of the bridge graph, with w = 2, we may interpret the spaces A,B,A′,B′ as
representations for the group GL(W ∗

). Suppose preliminarily dim(A) = p+1, dim(B) = p+2,

dim(A′) = p′ + 1 and dim(B′) = p′ + 2, and consider

A ≅ Sp
(W ), B ≅ Sp+1

(W ∗
), A′ ≅ Sp

′
(W ∗

), B′ ≅ Sp
′+1
(W ).
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By Schur’s lemma, there is an (up to scaling) unique GL(W ∗
)-equivariant projection

Sp
(W ∗

)⊗W ∗
→ Sp+1

(W ∗
),

see Theorem 1.2.10 and Remark 1.2.14. This corresponds to a tensor T ∈ A ⊗ B ⊗W that

can be interpreted as the multiplication map T (`⊗ g) = `g.

By Pieri’s formula, W ∗
⊗ Sp

′
(W ∗

) contains a copy of Sp
′+1
(W ∗

). By Schur’s Lemma, there

is a unique, up to scaling, GL(W ∗
)-equivariant embedding Sp

′+1
(W ∗

)→W ∗
⊗Sp

′
(W ∗

). Let

T ′ ∈ A′ ⊗B′ ⊗W ∗ be the tensor corresponding to this embedding, regarded as an element of

Sp
′
(W ∗

)⊗ Sp
′+1
(W )⊗W ∗. This map is called polarization in [Lan12, Section 2.6.4] and is

explicitly given by T ′(f) = x0 ⊗
@

@x0
f + x1 ⊗

@

@x1
f .

The flow map FT,T ′ in the bridge graph with this choice of T and T ′ is

FT,T ′ ∶ Sp
(W ∗

)⊗ Sp
′+1
(W ∗

)→ Sp+1
(W ∗

)⊗ Sp
′
(W ∗

)

f ⊗ g � ∑i=0,1f ⋅ xi ⋅
@

@yi
g

(3.6)

where, again, the tensor product of two symmetric powers is interpreted as a space of bi-

homogeneous polynomials.

Using Pieri’s formula and Schur’s Lemma, we compute the rank of this map for every choice

of p and p′.

Lemma 3.A.3. The flow map FT,T ′ from Equation (3.6) is GL(W ∗
)-equivariant. Moreover,

the map is injective if p ≤ p′ and surjective if p ≥ p′. In particular, FT,T ′ is an isomorphism

if and only if p = p′.

Proof. Since the maps defined by T and T ′ are GL(W ∗
)-equivariant, the flow map FT,T ′ is

as well. Suppose p ≤ p′. By Pieri’s formula, the domain is

Sp
(W ∗

)⊗ Sp
′+1
(W ∗

) =

p

�
r=0S(p′+1+i,p−i)(W

∗
).

Since the decomposition is multiplicity free, by Schur’s Lemma, it su�ces to check that the

highest weight vectors of the domain are not mapped to 0. The highest weight vectors of the

domain are h′r
p,p′+1 ∈ S(p′+1+r,p−r)(W ∗

) ⊂ Sp
(W ∗

)⊗ Sp
′+1
(W ∗

).

It is easy to verify that FT,T ′(h′rp,p′+1) is a nonzero multiple of hr

p+1,p′ . This guarantees that

FT,T ′ is injective.

If p ≥ p′, the same calculation can be performed to show that the transpose map F t
T,T ′ is

injective. Hence FT,T ′ is surjective.
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We conclude that if p = p′, FT,T ′ is an isomorphism. On the other hand, if p ≠ p′, domain

and codomain do not have the same dimension, hence the map is not an isomorphism.

To calculate the quantum max-flow for general bond dimensions a, b, a′ and b′, we use the

same method as in Appendix 3.A.1. Write

a = p↵ +( p + 1)�, b = (p + 1)↵ + (p + 2)�

a′ = p′↵′ + (p′ + 1)�′, b′ = (p′ + 1)↵′ + (p′ + 2)�′,

and assume without loss p ≤ p′. We can define tensors in A ⊗ B ⊗W resp. A′ ⊗ B′ ⊗W ∗
as block tensors where the block elements are the distinguished tensors T and T ′ defined
before. Now, using Lemma 3.A.3, one can repeat the same calculation as in Appendix 3.A.1

to calculate the quantum max-flow.
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Chapter 4

Partial degeneration of tensors

In this chapter, we shed light on a variation of the notions of restriction and degeneration.

Recall that tensor restriction was defined as a transformation of the tensors by local linear

maps on its tensor factors. Degeneration, on the other hand, was defined as a transformation

where the local linear maps may vary along a curve, and the resulting tensor is expressed as

a limit along this curve. We also saw that for two tensor factors, these notions are equivalent,

whereas for three tensor factors, they are not (see Example 1.1.7 and Example 1.3.3). It is

therefore natural to define partial degeneration, a special version of degeneration where one

of the local linear maps is constant, whereas the others vary along a curve.

We will use this chapter to study this novel notion in detail. Motivated by algebraic complex-

ity, quantum entanglement, and tensor networks, we present constructions based on matrix

multiplication tensors and find examples by making a connection to the theory of preho-

mogeneous tensor spaces. We also highlight the subtleties of this new notion by showing

obstruction and classification results for the unit tensor.

Moreover, we study the notion of aided rank, a natural generalization of tensor rank. It turns

out that the existence of partial degenerations gives strong upper bounds on the aided rank

of the tensor, which in turn allows one to turn degenerations into restrictions. In particular,

we present several examples based on the W-tensor and the Coppersmith-Winograd-tensors,

where lower bounds on aided rank provide obstructions to the existence of certain partial

degenerations.

This chapter is a partly modified version of [CGLS22].

77



4.1 Overview

This chapter consists of two parts. In the first part (Section 4.2), we introduce the notion

of partial degeneration and show that restriction, partial degeneration, and degeneration are

mutually inequivalent notions. To show a separation between the notions of restriction and

partial degeneration, we present a number of constructions based on tensors motivated by

algebraic complexity theory and tensor networks. We also draw a connection to the theory

of prehomogeneous tensor spaces which allows us to derive further examples manifesting this

separation. To show a separation between partial degenerations and degenerations, we prove

a no-go result for the unit tensor which moreover allows us to classify certain families of

partial degenerations.

In the second part (Section 4.3), we introduce the notion of aided restriction, which is per-

formed on a version of the tensor augmented via an aiding matrix. This raises the question

of how large the rank of such an aiding matrix should be in order to allow certain restric-

tions. We study upper and lower bounds, highlighting the role of degeneration and partial

degeneration.

4.1.1 Partial degeneration

In Section 4.2, we introduce and study the notion of partial degeneration: For three-party

tensors T ∈ U1 ⊗ U2 ⊗ U3 and S ∈ V1 ⊗ V2 ⊗ V3, we say that T partially degenerates to S,

and write T � S, if T degenerates to S where the degeneration map A1(✏) = A1 can be

chosen constant in ✏. Analogous notions can be defined by assuming that A2(✏) or A3(✏)

are constant. For simplicity, we will always assume that this map is the first one. Hence, we

have T � S if and only if there are linear maps A1,A2(✏) and A3(✏), with A2(✏) and A3(✏)

depending polynomially in ✏ such that lim✏→0
1
✏d
(A1⊗A2(✏)⊗A3(✏))T = S for some d. As in

the case of degeneration, we sometimes write T �e
d
S to keep track of the approximation and

error degrees. We point out that allowing only one of the three maps to depend on ✏ provides

a notion of degeneration which is equivalent to restriction, see Remark 4.2.2. A priori, it

is unclear whether the notion of partial degeneration is indeed non-trivial, or whether one

might always reduce a degeneration to a partial degeneration or a partial degeneration to

a restriction. We will show this is not the case. We point out that an example of partial

degeneration has been known since [Str87], and it was used to achieve a breakthrough result

in the study of the complexity of matrix multiplication: the tensor

Strq =
q−1
�

i=1
ei ⊗ eq ⊗ ei + ei ⊗ ei ⊗ eq ∈ Cq−1

⊗Cq
⊗Cq (4.1)

has tensor rank equal to 2q − 2, but it is a partial degeneration of �q�.

In this chapter, we study partial degenerations in depth. In Section 4.2, we construct various

families of examples of honest partial degenerations. We also study the question under which
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circumstances partial degenerations cannot exist and provide a no-go result for the unit

tensor.

In Section 4.2.3, we construct a family of partial degenerations of the matrix multiplication

tensor. Let �m,n, p� be the matrix multiplication tensor associated with the bilinear map

multiplying an m×n matrix with an n×p matrix. To construct a family of partial degenera-

tions of the matrix multiplication tensor �2,2,2�, the challenge is to show that these are not

actually restrictions of �2,2,2�. To see this, we resort to the notion of tensor compressibility

in the sense of [LM18].

In Section 4.2.4, we study the notion of partial degeneration in the setting of prehomogeneous

tensor spaces where we can find many more examples of honest partial degenerations. Recall

the notion of prehomogeneity from Section 3.2.2 and consider the action of GL(U2)×GL(U3)

on U1⊗U2⊗U3. If this action is prehomogeneous , with the tensor T having a dense orbit, then

every tensor in U1 ⊗U2 ⊗U3 is a partial degeneration of T . As we have seen in Section 3.2.2,

the prehomogeneity of the action is determined by simple arithmetic relations among the

dimensions of the tensor factors. In Section 4.2.4, we provide examples of tensors that cannot

be a restriction of a tensor with dense orbit for every instance where the space U1 ⊗U2 ⊗U3

is prehomogeneous under the action of GL(U2)×GL(U3). We emphasize that while it is well

understood under which conditions U1 ⊗ U2 ⊗ U3 is prehomogeneous, there are, in general,

no closed formulas for elements having a dense orbit. If dim(U1) = 2, that is, in the case of

matrix pencils, explicit elements with closed orbit are known, see, e.g., [Gan59, Chapter XIII]

and [Pok86]. In Section 4.2.4, we use these examples to provide explicit partial degenerations

for matrix pencils.

In Section 4.2.5, we study situations in which partial degenerations cannot occur. More

precisely, we show that every partial degeneration of the unit tensor �r� to a concise tensor

T ∈ U1 ⊗ U2 ⊗ U3 with dim(U1) = r can be reduced to a restriction. We use this result to

show that for dim(U1) = r − 1, tensors as in Equation (4.1) are essentially all honest partial

degenerations that can occur.

Note that the constructed examples, together with the no-go result for the unit tensor, shows

that restriction, partial degeneration, and degeneration are, in fact, three di↵erent notions.

4.1.2 Aided restriction and aided rank

The starting point of the second part of this chapter is the fact that any degeneration can be

turned into a restriction using interpolation. It is known that if T �d S, then T � �d + 1� ≥ S.

In Section 4.3, we study the case where the supporting tensor is a matrix instead of a unit

tensor. More precisely, for a tensor T ∈ U1 ⊗U2 ⊗U3, define

T �p = T � �1,1, p� ∈ U1 ⊗ (U2 ⊗Cp
)⊗ (U3 ⊗Cp

).
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In Lemma 4.3.2, we show that if T � S then there exists a p such that T �p ≥ S. We call

�1,1, p� the aiding matrix and p the rank of the aiding matrix. It is interesting to ask how

large the rank of the aiding matrix has to be.

In Section 4.3.1, we provide upper bounds on this rank in the case of partial degenerations.

In particular, we show that for partial degenerations of approximation degree d and error

degree e, the rank of the aiding matrix can be chosen to be min{d+1, e+1}, in other words, if

T �e
d
S then T �d+1 ≥ S and T �e+1 ≥ S. Even more strikingly, we show that if T ∈ U1⊗U2⊗U3,

where the space U1 ⊗U2 ⊗U3 is prehomogeneous under the action of GL(U2)×GL(U3), and

if the orbit of T is dense, then T �2 ≥ S for any other tensor S ∈ U1 ⊗U2 ⊗U3.

It turns out that these findings are in strong contrast to the case of degenerations that are

not partial degenerations. To see this, we develop in Section 4.3.2 a method to lower bound

the minimal possible rank of an aiding matrix. This relies on a variant of the substitution

method from [AFT11], see Theorem 1.3.2. For that, we define in Section 4.3.2 the notion of

aided rank as

R�p
(T ) =min{r ∶ �r��p ≥ T}.

When p = 1, this reduces to the notion of tensor rank [Lan17, Proposition 5.1.2.1]. We show

that one can generalize the substitution method to give lower bounds on aided rank and

on the minimal possible rank of an aiding matrix for several examples of degeneration. For

example, for the degeneration

�2k� �W�k (4.2)

we show that R�2k−1
(W�k

) ≥ 2k + 1. In other words, the minimal rank p of an aiding

matrix turning the degeneration in Equation (4.2) into a restriction is 2k. Note that for

this example, the no-go result for partial degenerations (Proposition 4.2.10) gives that the

degeneration cannot be realized as a partial degeneration.

4.2 Partial degeneration

In this section, we introduce and study the notion of partial degeneration, a natural inter-

mediate notion of restriction and degeneration. In Section 4.2.1, we will define partial de-

generation. After that, we review in Section 4.2.2 a known example of partial degeneration.

In Section 4.2.3, we will recall a property of tensors called compressibility and demonstrate

with an example how this can be used to rule out restriction. We will see more examples

in Section 4.2.4 using the theory of matrix pencils. Finally, in Section 4.2.5, we will study

situations where no honest partial degeneration exists.

4.2.1 Definition and motivation

The main concept of this section is the following special version of degeneration, intermediate

between restriction and fully general degeneration.
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Definition 4.2.1. Let T ∈ U1 ⊗ U2 ⊗ U3 and S ∈ V1 ⊗ V2 ⊗ V3 be tensors. We say that T

degenerates partially to S and write T � S if there is a linear map A1∶U1 → V1 and linear

maps A2(✏),A3(✏) with entries in the polynomial ring C[✏] such that

(A1 ⊗A2(✏)⊗A3(✏))T = ✏
dS + ✏d+1S1 + ⋅ ⋅ ⋅ + ✏

d+eSe.

We sometimes write T �e
d
S to keep track of d and e. We call a partial degeneration T � S

an honest partial degeneration if T does not restrict to S.

It is clear that every restriction is a partial degeneration and every partial degeneration is a

degeneration. This raises the following two questions:

(1) Can every partial degeneration T � S be realized as a restriction T ≥ S?

(2) Can every degeneration T � S be realized as a partial degeneration T � S?

We point out that only allowing one of the three linear maps to depend on ✏ provides the

same notion as restriction.

Remark 4.2.2. Let T ∈ U1 ⊗ U2 ⊗ U3, S ∈ V1 ⊗ V2 ⊗ V3 be tensors and suppose there are

linear maps A1,A2,A3(✏) with Ai ∶ Ui → Vi, and A3(✏) depending polynomially in ✏ such

that S = lim✏→0
1
✏d
((A1 ⊗ A2 ⊗ A3(✏))T ). Then S is a restriction of T . To see this, write

A3(✏) = ✏
dA3,d +�+ ✏

d+eA3,e with A3,j ∶ U3 → V3. It is immediate that S = (A1⊗A2⊗A3,d)T .

This expresses S as a restriction of T .

In Section 4.2.2, Section 4.2.3 and Section 4.2.4, we will see families of examples demonstrating

that the answer to the question in (1) is no. In Section 4.2.5, we will see that the answer to

question (2) is also no.

4.2.2 Strassen’s tensor

In [Str87], a first example of a partial degeneration was found: Let U1 ≅ Cq−1 and U2 ≅ U3 ≅ Cq

and consider the tensor

Strq =
q−1
�

i=1
ei ⊗ ei ⊗ eq + ei ⊗ eq ⊗ ei ∈ U1 ⊗U2 ⊗U3.

Using the substitution method, it is not hard to see that this tensor has rank 2q − 2. On the

other hand, it is a partial degeneration of the unit tensor �q� via

✏Strq =
q−1
�

i=1
ei ⊗ (eq + ✏ei)⊗ (eq + ✏ei) − �

q−1
�

i=1
ei�⊗ eq ⊗ eq +O(✏

2
).

In Section 4.2.5, we will show that these are essentially all partial degenerations of �r� that

can be found in U1 ⊗U2 ⊗U3 with dimU1 = r − 1.
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0

Figure 4.1: Visualization of an (a1, a2, a3)-compressible tensor: This large u1 × u2 × u3-cube
is the tensor T ∈ U1 ⊗ U2 ⊗ U3. The entries of T – specified in some fixed basis – can be
written in the cells of this cube. The smaller, red a1 × a2 × a3-cube depicts a block of size
a1 × a2 × a3 where each entry of T equals zero. By choosing the linear maps as projectors
onto the last u1 − a1 resp. u2 − a2 resp. u3 − a3 coordinates, we see that each such tensor is
(a1, a2, a3)-compressible.

4.2.3 Compressibility of tensors and matrix multiplication

In this section, we will find a family of examples of partial degeneration of the 2 × 2-matrix

multiplication tensor. Note that one challenge of finding an honest partial degeneration is to

show that this partial degeneration is actually not a restriction. To achieve that, we recall

the notion of compressibility introduced in [LM18].

Definition 4.2.3. A tensor T ∈ U1 ⊗ U2 ⊗ U3 is (a1, a2, a3)-compressible if there are linear

maps Ai ∶ Ui → Ui of rank ai such that (A1 ⊗A2 ⊗A3)T = 0.

Equivalently, T is (a1, a2, a3)-compressible if there are bases of the spaces U1, U2 and U3

such that in these bases, Ti1,i2,i3 = 0 for all ij ≥ dim(Uj) − aj . We visualize the concept of

an (a1, a2, a3)-compressible tensor in Figure 4.1. The following technical result will become

handy later.

Lemma 4.2.4. Let T ∈ U1⊗U2⊗U3 and S ∈ V1⊗V2⊗V3. Let T ≥ S and let S be concise. More-

over, assume that S is (a1, a2, a3)-compressible. Then, T is also (a1, a2, a3)-compressible.

Proof. By assumption, there are maps Ai with rank ai such that (A1 ⊗ A2 ⊗ A3)T = 0.

As S is concise, the restriction maps Mi must be surjective where S = (M1 ⊗M2 ⊗M3)T .

Therefore, the maps A1M1,A2M2 and A3M3 also have rank a1, a2 and a3, respectively. Since

(A1M1 ⊗A2M2 ⊗A3M3)T = (A1 ⊗A2 ⊗A3)S = 0 the claim follows.

Lemma 4.2.4 can be used to exclude restrictions T ≥ S if T is less compressible than S. An

example of a tensor that is not “very compressible” is the matrix multiplication tensor.

Lemma 4.2.5. The 2 × 2 matrix multiplication tensor �2,2,2� is not (2,3,3)-compressible.
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Proof. Note that any 4 × 4 matrix M = (M(u,v),(x,y))2u,v,x,y=1 (labeled by double indices)

induces a linear endomorphism of the space of 2 × 2 matrices via

M ∶ x�M.x = (M.x)2
i,j=1, (M.x)i,j = �

k,l=1,2
M(i,j),(k,l)xk,l.

Recall that �2,2,2� corresponds to calculating the four bilinear forms zj,i = xi1y1j +xi2y2j for

i, j = 1,2, that is, the entries of (x ⋅ y)T where the entries of x and y are indeterminates.

Let S = (A1⊗A2⊗A3)�2,2,2� be a restriction of the two-by-two matrix multiplication tensor.

Interpreting A1,A2 and A3 as 4×4 matrices, an easy calculation shows that the four bilinear

forms corresponding to the tensor S are the four entries of the transpose of

A3. ((A1.x) ⋅ (A2.y)) . (4.3)

Now, let the rank of A1 and A2 be at least 3 and the rank of A3 be at least 2. It is clear that

the space of all A1.x for x ∈M2×2 is at least three-dimensional (the same holds for A2). It is

well-known that every subspace of M2×2 of dimension at least 3 must contain an invertible

matrix. Choosing x0 ∈M2×2 such that A1.x0 is invertible, we see that the space of matrices

of the form (A1.x0) ⋅(A2.y) for y ∈M2×2 contains three linearly independent matrices. Hence,

since we assumed that A3 has rank at least 2, we see that Equation (4.3) cannot be identical

zero. This finishes the proof.

The following technical result is a simple generalization of Proposition 1.4.5 and will help us

to construct partial degenerations of the matrix multiplication tensor.

Lemma 4.2.6. Let V1, V2, V3 be vector spaces with dimensions v1,v2,v3 and consider a tensor

S ∈ V1 ⊗V2 ⊗V3. Then, we have �m,n, p� � S if and only if there are a natural number d and

matrices

↵1(✏), . . . ,↵v1(✏) ∈ C[✏]m×n, �1(✏), . . . ,�v2(✏) ∈ C[✏]n×p, �1(✏), . . . ,�v3(✏) ∈ C[✏]p×m (4.4)

such that ✏dSi,j,k = tr(↵i(✏)�j(✏)�k(✏)) +O(✏
d+1
).

Moreover, if the matrices ↵1(✏), . . . ,↵v1(✏) can be chosen constant in ✏ we have T � S. If all

matrices in Equation (4.4) can be chosen constant in ✏, we have �m,n, p� ≥ S.

With this, we are now ready to find honest partial degenerations of �2,2,2�.

Proposition 4.2.7. Every concise tensor S ∈ C3
⊗ C4

⊗ C4 that is (3,3,3)-compressible is

an honest partial degeneration of �2,2,2�.
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Proof. Fixing bases, we can write our tensor S as

S =
3,4,4

�

i,j,k=1
Si,j,kei ⊗ ej ⊗ ek

such that Si,j,k = 0 whenever both j and k are greater or equal than 2. From Lemma 4.2.6,

it su�ces to find 2 × 2 matrices

↵1, . . . ,↵3 ∈ Cm×n, �1(✏), . . . ,�4(✏) ∈ C[✏]n×p, �1(✏), . . . ,�4(✏) ∈ C[✏]p×m

such that

✏Si,j,k = tr(↵i�j�k) +O(✏
2
). (4.5)

Choosing matrices

↵1 =
�

�

1 0

0 −1

�

�
�1 =

�

�

✏(S1,1,1 − 1) + 1 S2,1,1

S3,1,1 1

�

�
�1 =

�

�

✏ + 1 0

0 1

�

�

↵2 =
�

�

0 0

1 0

�

�
�2 =

�

�

✏S1,2,1 ✏S2,2,1

✏S3,2,1 0

�

�
�2 =

�

�

✏S1,1,2 ✏S2,1,2

✏S3,1,2 0

�

�

↵3 =
�

�

0 1

0 0

�

�
�3 =

�

�

✏S1,3,1 ✏S2,3,1

✏S3,3,1 0

�

�
�3 =

�

�

✏S1,1,3 ✏S2,1,3

✏S3,1,3 0

�

�

�4 =
�

�

0 ✏S2,4,1

✏S3,4,1 −✏S1,4,1

�

�
�4 =

�

�

0 ✏S2,1,4

✏S3,1,4 −✏S1,1,4

�

�
,

one easily verifies that Equation (4.5) is fullfilled.

Since S is concise and is (3,3,3)-compressible we conclude with Lemma 4.2.4 and Lemma 4.2.5

that S is an honest partial degeneration of �2,2,2�.

Remark 4.2.8. Lemma 4.2.5 implies that no concise tensor which is (2,3,3)-compressible is

a restriction of �2,2,2�. One might ask if Proposition 4.2.7 still holds if we relax the condition

on S to being (2,3,3)-compressible. This turns out to be not true: In fact, it has been shown

that the set of all degenerations of �2,2,2� in C3
⊗ C4

⊗ C4 has dimension 31 [BLG21]. A

simple calculation – the code for which can be found in Appendix 4.A – shows that the orbit

closure of a generic element of C3
⊗C4

⊗C4 which is (2,3,3)-compressible has dimension at

least 37.
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4.2.4 Prehomogeneous spaces

In this section, we will see more examples of partial degenerations by making a connection to

the theory of prehomogeneous tensor spaces which we reviewed in Section 3.2.2. Recall that

we saw in Proposition 3.2.11 that one can read o↵ the dimensions u1,u2,u3 of the involved

spaces if U1 ⊗ U2 ⊗ U3 is prehomogeneous under the action of GL(U2) ×GL(U3): Defining

�u1 = (u1+
�

u21 − 4)�2 we saw that the space is prehomogeneous whenever u3 > �u1u2. Hence,

for any choices of u1,u2,u3 satisfying this condition there is an element T ∈ U1⊗U2⊗U3 such

that for all S ∈ U1 ⊗ U2 ⊗ U3 it holds T � S. To show that there exists S which is not a

restriction of T , we will use Lemma 1.2.6.

Theorem 4.2.9. Let U1, U2, U3 have dimensions u1,u2,u3 such that �u1u2 < u3 < u1u2.

Then, there exist tensors T,S ∈ U1 ⊗U2 ⊗U3 such that T � S, but T �≥ S.

Proof. We know from Proposition 3.2.11 that the space U1⊗U2⊗U3 is prehomogeneous under

GL(U2)×GL(U3). Let T be a tensor in the dense GL(U2)×GL(U3)-orbit, so that T � S for

every S ∈ U1 ⊗U2 ⊗U3.

Let p = u1u2 − u3. Note that u1 − 1 ≤ �u1 < u1, so �u1u2 < u3 < u1u2 implies that 0 < p < u2.

Define the tensor S ∈ U1 ⊗U2 ⊗U3 as

S =
u1−1
�

i=1
ei ⊗
�

�

u2

�

j=1
ej ⊗ e(i−1)u2+j

�

�
+ eu1 ⊗

�

�

u2−p
�

j=1
ej ⊗ e(u1−1)u2+j

�

�

It is not hard to see that the tensor S is concise.

We will now show that T and S lie in di↵erent GL(U1) × GL(U2) × GL(U3)-orbits and

use Lemma 1.2.6. For that, we will compute the dimensions of these orbits. We denote

G = GL(U1) ×GL(U2) ×GL(U3).

For T we have U1 ⊗ U2 ⊗ U3 ⊃ G ⋅ T ⊃ [GL(U2) ×GL(U3)] ⋅ T = U1 ⊗ U2 ⊗ U3, which implies

G ⋅ T = U1 ⊗U2 ⊗U3 and dim(G ⋅ T ) = u1u2u3.

For S, the dimension of the orbit G ⋅S can be found as dim(G ⋅S) = dim(G)−dim(StabG(S))

(see Proposition 1.2.7). The stabilizer StabG(S) is isomorphic to P (1,u1) × P (u2 − p,u2)

where P (a, b) ⊂ GLb is the parabolic group preserving a subspace of dimension a. Indeed, let

Si ∈ U2 ⊗U3 be the slices of S corresponding to the standard basis, that is, S = ∑u1
i=1 ei ⊗ Si.

Note that rank(Si) = u2 for i < u1 and rank(Su1) = u2 − p. Moreover, a nonzero linear

combination ∑u1
i=1 ↵iSi has rank u2 − p if and only if ↵i = 0 for i ≤ u1 − 1. It follows that

(A⊗B ⊗C)S = S, then A preserves the one-dimensional subspace span(eu1). Therefore, we

have au1,u1(B⊗C)Su1 = Su1 and it follows that B preserves the (u1−p)-dimensional subspace

span(e1, . . . , eu2−p+1), which is the image of Su1 considered as a linear map U∗3 → U2. Now,

given A and B which preserve the required subspaces, the map C such that (A⊗B⊗C)S = S
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always exists and is unique. To prove this, note that S considered as a linear map U∗3 → U1⊗U2

is an isomorphism between U∗3 and the subspace

(span(e1, . . . , eu1−1)⊗U2 ⊕ span(eu1)⊗ span(e1, . . . , eu2−p+1)) ⊂ U1 ⊗U2.

With this, we see that there is a unique choice for the map C which is the contragredient

map to A⊗B restricted to this subspace.

From the description of StabG(S) it follows that

dim(StabG(S)) = (u
2
1 − u1 + 1) + (u

2
2 − p(u2 − p))

and

dim(G ⋅ S) = u23 + (u1 − 1) + p(u2 − p) = u3(u1u2 − p) + (u1 − 1) + p(u2 − p) =

u1u2u3 − p(u3 − u2) + u1 − 1 − p
2
< u1u2u3 − u3 + u2 + u1 − 2 < u1u2u3.

The last inequality holds because u2 cannot be equal to 1 under the assumptions of the

theorem, and thus, u3 ≥ (u1 − 1)u2 > u1 − 2 + u2.

It follows that the orbits of T and S are distinct and thus, T �≥ S by Lemma 1.2.6.

We have seen that one, in principle, can recursively construct elements with dense orbit,

see Remark 3.2.14. This, in principle, enables us to construct explicit examples of partial

degenerations in Theorem 4.2.9. A closed formula for elements of U1 ⊗ U2 ⊗ U3 that have

dense orbit, on the other hand, is not known. To see more concrete examples of partial de-

generations, we now focus on tensors T ∈ C2
⊗Cm

⊗Cn. Clearly, this space is prehomogeneous

for GL(Cm
)×GL(Cn

) whenever m ≠ n. Fixing as basis e1, e2 of C2, we can write our tensor

as T = e1 ⊗ T1 + e2 ⊗ T2 where T1, T2 ∈ Cm
⊗Cn can be thought of as m × n matrices. In that

way, our tensor is uniquely specified by a tuple of matrices [T1, T2], which one often calls the

matrix pencil associated with T . We have seen an explicit formula of the dense orbit in this

setup in Lemma 3.A.1. By exchanging columns and rows, we see that the tensor associated

with the matrix pencil [I1, I2], where

I1 =

�

�
�
�
�
�
�
�
�

�

1 0 0 . . . 0 0 . . . 0

0 1 0 . . . 0 0 . . . 0

0 0 1 . . . 0 0 . . . 0

⋮ ⋮ ⋮ � ⋮ ⋮ � ⋮

0 0 0 . . . 1 0 . . . 0

�

�
�
�
�
�
�
�
�

�

, I2 =

�

�
�
�
�
�
�
�
�

�

0 . . . 0 1 0 0 . . . 0

0 . . . 0 0 1 0 . . . 0

0 . . . 0 0 0 1 . . . 0

⋮ � ⋮ ⋮ ⋮ ⋮ � ⋮

0 . . . 0 0 0 0 . . . 1

�

�
�
�
�
�
�
�
�

�

(4.6)
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has a dense orbit. Letting now, for example, n = m + 1, we know from the proof of Theo-

rem 4.2.9 that the pencil

S1 =

�

�
�
�
�
�
�
�
�

�

1 0 0 . . . 0 0

0 1 0 . . . 0 0

0 0 1 . . . 0 0

⋮ ⋮ ⋮ � ⋮ ⋮

0 0 0 . . . 1 0

�

�
�
�
�
�
�
�
�

�

, S2 =

�

�
�
�
�
�
�
�
�

�

0 . . . 0 1

0 . . . 0 0

0 . . . 0 0

⋮ � ⋮ ⋮

0 . . . 0 0

�

�
�
�
�
�
�
�
�

�

is an honest partial degeneration of the dense orbit element in Equation (4.6).

4.2.5 A no-go result for the unit tensor

In this section, we will see that under certain circumstances, partial degenerations do not exist

even when degenerations do. We first show that there are no proper partial degenerations

of the unit tensor if the constant map has full rank. Note that the rank condition on the

constant map cannot be dropped: Already in Section 4.2.2, we saw an example of an honest

partial degeneration where the constant map has rank r − 1. We will use our no-go result to

prove a classification result for this setup.

Proposition 4.2.10. Let S ∈ V1 ⊗ V2 ⊗ V3 be any tensor. If �r� � S via degeneration maps

A1,A2(✏) and A3(✏) where the constant map A1 is of full rank r then �r� ≥ S.

Proof. It is clear that we can assume dim(V1) = r and that A1 is invertible.

Assume

S = lim
✏→0
(id⊗A2(✏)⊗A3(✏))�r�

is a degeneration where the first map is the identity. That is, we have

S = e1 ⊗M1 + . . . er ⊗Mr (4.7)

where Mi = lim✏→0A2(✏)ei ⊗A3(✏)ei. Hence, it is clear that for all i, Mi must be a rank 1

matrix as the limit of rank 1 matrices. However, a tensor of the form in Equation (4.7) where

the Mi are rank 1 is a restriction of �r�.

Now, let S = lim✏→0(A1 ⊗A2(✏)⊗A3(✏))�r� be any partial degeneration of �r�. From before,

we know that S̃ = (A−11 ⊗ id ⊗ id)S = lim✏→0(id ⊗ A2(✏) ⊗ A3(✏))�r� is a restriction of �d�.

Hence, the same holds for S = (A1 ⊗ id⊗ id)S̃. This finishes the proof.

Remark 4.2.11. We note that the result in Proposition 4.2.10 does not apply to degenera-

tions. Proposition 4.2.10 in particular says that if V1 has dimension r and S ∈ V1⊗V2⊗V3 is

concise we cannot have an honest partial degeneration �r� � S (else the constant map would

be invertible by conciseness of S). However, for example, the unit tensor �2� does not restrict

but degenerates to W = e1⊗e1⊗e2+e1⊗e2⊗e1+e2⊗e1⊗e1 which is concise in the same space
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as �2� (see Example 1.1.7 and Example 1.3.3). Hence, W is an honest degeneration of �2�

but not a partial degeneration. We note that the same holds for the degenerations �2k� �W�k
for all k.

It is clear that one cannot drop the condition that A1 has full rank: in Section 4.2.2, we saw

that Strassen’s tensor Strr is an example of a partial degeneration of �r� where A1 has rank

r − 1. In fact, we can use Proposition 4.2.10 to prove the following characterization of all

partial degenerations of �r� where the constant map has rank r − 1.

Proposition 4.2.12. Let T ∈ U1 ⊗U2 ⊗U3 with dimU1 = r − 1 be a concise tensor such that

�r� � T and �r� �≥ T . Then, for some q such that 3 ≤ q ≤ r, the tensor T decomposes as

T = Sq +Xr−q

where Strq ≥ Sq and �r − q� ≥Xr−q.

Proof. Suppose �r� � T via a partial degeneration

lim
✏→0

1

✏d
(A1 ⊗A2(✏)⊗A3(✏))�r� = T ∈ U1 ⊗U2 ⊗U3.

Since T is concise, the map A1 has rank equal to dimU1 = r−1. Note that A1 can be factored

as A1 = AMqDP where A∶Cr−1
→ U1 is invertible, Mq ∶Cr

→ Cr−1 is defined as

Mq ∶

�
���
�
���
�

ei � ei for 1 ≤ i ≤ r − 1,

er � e1 + ⋅ ⋅ ⋅ + eq−1

with 1 ≤ q ≤ r, D∶Cr
→ Cr is diagonal, and P ∶Cr

→ Cr is a permutation matrix. Indeed,

suppose ⇡ ∈Sr is a permutation such that A1e⇡(1), . . .A1e⇡(r−1) are linearly independent and

A1e⇡(r) = �1A1e1 + ⋅ ⋅ ⋅ + �q−1A1eq−1 with nonzero �1, . . . ,�q−1. Defining A∶ ei � �iA1e⇡(i),
D = diag(�−11 , . . . ,�−1

q−1,1, . . . ,1), and P the permutation matrix corresponding to ⇡−1, we get
the required factorization.

Note that (DP ⊗ id ⊗ id)�r� = (id ⊗ DP −1 ⊗ P −1)�r�. Now, we can rearrange the partial

degeneration (A1 ⊗A2(✏)⊗A3(✏))�r� as

(A1 ⊗A2(✏)⊗A3(✏))�r� = (A⊗ id⊗ id)(id⊗A2(")DP −1 ⊗A3(")P
−1
)(Mq ⊗ id⊗ id)�r�.

This means that if �r� � T , then up to a change of basis T is a partial degeneration of

(Mq ⊗ id⊗ id)�r� =
q−1
�

i=1
ei ⊗ (ei ⊗ ei + er ⊗ er) +

r−1
�

i=q
ei ⊗ ei ⊗ ei

with an identity map on the first factor.
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Define Hq = ∑
q−1
i=1 ei⊗(ei⊗ei+eq⊗eq) ∈ Cq−1

⊗Cq
⊗Cq. We have (Mq⊗id⊗id)�r� =Hq+�r−q�.

Using Proposition 4.2.10, we see that T = Sq +Xr−q where Sq is a partial degeneration of Hq

and Xr−q is a restriction of �r − q�. It remains to analyze partial degenerations of Hq.

So, consider a partial degeneration

Sq = lim
✏→0

1

✏d
(id⊗B(✏)⊗C(✏))Hq.

Define bi(✏) = B(✏)ei and ci(✏) = C(✏)ei. Suppose bq(✏) = bq,µ✏
µ
+ bq,µ+1✏µ+1 + . . . After a

basis change, we may assume bq,µ = eq. Define

E(✏)∶

�
���
�
���
�

ei � ei, i < q,

eq � ✏−µbq(✏).

We have lim✏→0E(✏) = id, so by changingB(✏) to E(✏)−1B(✏) we obtain a partial degeneration

for the same tensor Sq with bq(✏) = ✏
µeq. Using the same argument, we can assume without

loss of generality that cq(✏) = −✏
⌫eq. In this situation, we have

Sq = lim
✏→0

1

✏d
(id⊗B(✏)⊗C(✏))Hp =

q−1
�

i=1
ei ⊗ �

1

✏d
bi(✏)⊗ ci(✏) − ✏

µ+⌫−deq ⊗ eq� .

In case µ + ⌫ > d, we clearly have

Sq = lim
✏→0

q

�

i=1
ei ⊗ �

1

✏d
bi(✏)⊗ ci(✏)� .

In this case, Sq is a partial degeneration of �q − 1� and by Proposition 4.2.10, we can choose

the bi(✏) and ci(✏) constant in ✏ and obtain �q − 1� ≥ Sq which yields T ≤ �r − 1� ≤ �r�.

If µ + ⌫ < d, we must have

bi(✏) = ✏
�eq + b̃i(✏)

ci(✏) = ✏
⌧eq + c̃i(✏)

with � + ⌧ = µ + ⌫ so that

Sq = lim
✏→0

1

✏d

q−1
�

i=1
ei ⊗ �✏

� b̃i(✏)⊗ eq + ✏
⌧eq ⊗ c̃i(✏)� .

For each i = 1, . . . , q − 1, the limit

eiSq = lim
✏→0

1

✏d
�✏� b̃i(✏)⊗ eq + ✏

⌧eq ⊗ c̃i(✏)�

must exist and is of the form bi ⊗ eq + eq ⊗ ci for some bi ∈ U2 and ci ∈ U3. Consequently,

Sq = ∑
q−1
i=1 ei ⊗ (bi ⊗ eq + eq ⊗ ci) is a restriction of Strq.
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Finally, consider the case � + µ = d. Here it holds that

Sq = lim
✏→0

q−1
�

i=1
ei ⊗ �

1

✏d
bi(✏)⊗ ci(✏) − ✏

�+µ−deq ⊗ eq� =

= lim
✏→0

1

✏d

q−1
�

i=1
ei ⊗ (bi(✏)⊗ ci(✏)) − �

q−1
�

i=1
ei�⊗ eq ⊗ eq

In this case, Sq is a partial degeneration of �q�, and applying Proposition 4.2.10, we see that

�q� ≥ Sq and �r� ≥ T .

We obtain that the only case where �r� �≥ T is when T = Sq + Xr−q with Sq ≤ Strq and

Xr−q ≤ �r − q� for some q such that 1 ≤ q ≤ r. We can exclude cases q = 1 and q = 2 because

in these cases Strq ≤ �q�.

4.3 Aided restriction and aided rank

A related notion to partial degeneration is the notion of aided rank which we will introduce

in Section 4.3.1. In Section 4.3.2, we will present a generalization of the method to lower

bound rank in [AFT11] and use it in Section 4.3.3 to calculate the aided rank for tensor

powers of the W -tensor.

4.3.1 Aided restriction and interpolation

In this section, we will introduce the notion of aided rank and show its relation to partial

degeneration. For any tensor T ∈ U1 ⊗U2 ⊗U3 recall the notation

T �p = T � �1,1, p� = T p

from Example 1.1.10.

Recall the following interpolation result, which is based on ideas introduced in [BCLR79].

Theorem 4.3.1. Let T ∈ U1 ⊗ U2 ⊗ U3 and S ∈ V1 ⊗ V2 ⊗ V3 such that T �e
d
S. Then,

T � �e + 1� ≥ S and T � �2d + 1� ≥ S .

We start by observing that one can use a unit matrix instead of a unit tensor to interpolate

degenerations. We use notation from matrix multiplication in order to write this matrix as

�1,1, p� where p is the rank of the unit matrix.

Lemma 4.3.2. Consider tensors T ∈ U1 ⊗U2 ⊗U3 and S ∈ V1 ⊗ V2 ⊗ V3 and assume T � S.

Then,

T �u3v3 ≥ S.
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T u3 ⋅ v3 � T u3 v3 ≥
T

v3 ≥
S

v3 ≥ S

Figure 4.2: A visualization of the proof of Lemma 4.3.2: For the matrix multiplication tensor
it holds that �1,1,u3v3� = �1,1,u3�� �1,1,v3�. Using the supporting matrix �1,1,u3�, we can
teleport the third party to the second party and view T as a two-party tensor. After that,
T ≥ S and T � S are equivalent. Again, using �1,1,v3�, we can recover the three-party version
of S.

Proof. The proof uses the teleportation trick Example 1.1.10, and we visualize the steps of

this proof in Figure 4.2. Using the teleportation trick we observe that T �u3 ≥ T̃ where the

tensor T̃ ∈ U1 ⊗ (U2 ⊗ U3) ⊗C is T considered as a two-party tensor. We can also interpret

S as bipartite tensor S̃ ∈ V1 ⊗ (V2 ⊗ V3)⊗C and, by assumption, know T̃ � S̃. In fact, since

degeneration and restriction are equivalent for tensors on two factors, we have T̃ ≥ S̃. Now,

applying the teleportation trick again, it is not hard to see that S̃�v3 ≥ S. Here, we teleport

the third party of S which, when we consider S̃, at the second party back to the third party.

After all,

T �(u3⋅v3) = (T �u3)
�v3
≥ T̃ �v3 ≥ S̃�v3 ≥ S

which finishes the proof.

The main question we ask is for a degeneration T � S, how big must p be such that T �p ≥ S.
We will find that the minimal rank of an aiding matrix necessary to turn a degeneration into

a restriction can be chosen drastically smaller if the degeneration is a partial degeneration.

On the other hand, we will calculate p precisely for the degeneration �2k� � W�k where we

know from Proposition 4.2.10 that no partial degeneration exists. As it will turn out, here,

the minimal p di↵ers from the naive bound in Lemma 4.3.2 only by a factor of 1
2 . To simplify

further discussions, let us introduce the following notation.

Definition 4.3.3. Let S ∈ V1 ⊗ V2 ⊗ V3 and fix p ≥ 1. We define the aided rank of S as

R�p
(S) =min{r∶ �r� �p ≥ S}.

Clearly, we have R�1
(S) = R(S). Lemma 4.3.2 shows that R(S) = r implies that there is some

q such that R�p
(S) = r. To find better bounds on the minimal p, we now show a variation

of Theorem 4.3.1.

Proposition 4.3.4. Let T ∈ U1 ⊗U2 ⊗U3 and S ∈ V1 ⊗ V2 ⊗ V3 and assume T �e
d
S. Then,

T �d+1 ≥ S and T �e+1 ≥ S.
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Proof. Say, the partial degeneration is given by

(A1 ⊗A2(✏)⊗A3(✏))T = ✏
dS +

e

�

i=1
✏d+iSi. (4.8)

Note that we can discard powers of ✏ higher than d and write

A2(✏) =
d

�

i=0
✏iA2,i, A3(✏) =

d

�

i=0
✏iA3,i.

We then observe

S = A1 ⊗ �

d

�

i=0
A2,i ⊗A3,d−i�T

and therefore

A1 ⊗ �

d

�

i=0
A2,i ⊗ e∗

i
�⊗ �

d

�

i=0
A3,d−i ⊗ e∗

i
�T �d+1 = S

which shows T �d+1 ≥ S.

In order to see T �e+1 ≥ S, note that for ✏ > 0, we can rewrite Equation (4.8) as

�A1 ⊗ (A2(✏)�✏
d
)⊗A3(✏)�T = S + ✏S1 + ⋅ ⋅ ⋅ + ✏

eSe =∶ q(✏).

Using Langrangian interpolation, we can pick ↵0, . . . ,↵e ≠ 0 such that

q(✏) =
e

�

j=0
q(↵j)�

m≠j
✏ − ↵m

↵j − ↵m

.

By writing µj ∶=∏m≠j ↵m

↵m−↵j
, we therefore get S = q(0) = q(↵0)µ0 + ⋅ ⋅ ⋅ + q(↵e)µe. Note that

the q(↵j) are all restrictions of T where the first restriction map can be chosen to be A1.

With that,

S = q(0) =
�

�
A1 ⊗ (

e

�

j=0
µj

↵d

j

A2(↵j)⊗ e∗
j
)⊗ (

e

�

j=0
A3(↵j)⊗ e∗

j
)
�

�
T �e+1

which finishes the proof.

In particular, we can exclude partial degeneration with a certain degeneration degree if we

can lower bound the aided rank of a tensor. Note that in the case of prehomogeneous spaces,

we can find an even better bound.

Proposition 4.3.5. Assume that U1 ⊗ U2 ⊗ U3 is prehomogeneous under the action of

GL(U2) ×GL(U3) and let T be an element with dense orbit. Then, for all S ∈ U1 ⊗ U2 ⊗ U3

it holds that

T �2 ≥ S.

92



Proof. Consider the a�ne degree-1 curve L parametrized by L(✏) = T + ✏(S − T ). It is clear

that both T and S lie on L. Clearly, the linear span of any two distinct points on L contains

all points on L. The orbit of T is open in U1⊗U2⊗U3. Therefore, the intersection of L and the

complement of the orbit of T is a closed subset of L, that is, a finite collection of points. In

particular, there exists a second point T̃ in the orbit of T on L. Writing T̃ = (id⊗M2⊗M3)T ,

and S = �T + µT̃ , we observe

[id⊗ (�id⊗ e∗1 + µM2 ⊗ e∗2)⊗ (id⊗ e∗1 +M3 ⊗ e∗2)]T �2 = S

which proves the claim.

Note that Proposition 4.3.5 supports the intuition that in the case of partial degenerations,

the minimal aiding rank q turning it into a restriction is small. In Section 4.2.4 we saw that

whenever T ∈ U1 ⊗ U2 ⊗ U3 has a dense orbit under the action of GL(U2) ×GL(U3) it holds

for all S ∈ U1 ⊗U2 ⊗U3 that T � S.

4.3.2 A substitution method for aided rank

In this section, we will give a method to calculate aided ranks precisely. Our method builds

on a known method from [AFT11] which we recalled in Theorem 1.3.2. We will use it to

calculate aided ranks of powers of the W -tensor. We start by mentioning the following easy

technical fact without proof.

Lemma 4.3.6. Let V be a vector space and U be a finite-dimensional subspace of dimension

u of V . If U is contained in the span of vectors u1, . . . , uu, then all ui must be elements of

U .

The second lemma gives a useful characterization of restrictions of �n��p in terms of flattenings

and is a simple generalization of [Lan12, Theorem 3.1.1.1].

Lemma 4.3.7. Let S ∈ V1 ⊗ V2 ⊗ V3 be any tensor and fix some natural number p. Then we

have

R�p
(S) =min{r ∶ S (V ∗1 ) ⊆ V2 ⊗ V3 spanned by r matrices of rank ≤ p}.

Proof. If �r��p ≥ S we can write S = a1 ⊗N1 + ⋅ ⋅ ⋅+ ar ⊗Nr for matrices Ni of rank at most p,

in other words, S(V ∗1 ) is spanned by r matrices N1, . . . ,Nr of rank at most p.

On the other hand, assume S(V ∗1 ) = span(N1, . . . ,Nr) for matrices Ni of rank at most p.

Fixing a basis of V1, the tensor S is given by S = ∑v1
i=1 ei⊗Mi where Mi = S(e

∗
i
). Since S(V ∗1 )

is spanned by the Nj for j = 1, . . . , r, we can find coe�cients �ij such that Mi = ∑
r

j=1 �ijNj

for all i = 1, . . . ,v1. Hence,

S =
r

�

j=1
�

v1

�

i=1
�i,jei�⊗Nj .

Noticing that this is a restriction of �r� �p finishes the proof.
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We can use Lemma 4.3.7 to generalize the substitution method we saw in Theorem 1.3.2.

Theorem 4.3.8. Let S ∈ V1 ⊗ V2 ⊗ V3 and say, dim(V1) = v1. Fixing a basis e1, . . . , ev1 of

V1, we write

S =
v1

�

i=1
ei ⊗Mi

for matrices Mi ∈ V2 ⊗ V3 and assume M1 ≠ 0. Moreover, for complex numbers �2, . . . ,�v1

define

Ŝ(�2, . . . ,�v1) =

v1

�

j=2
ej ⊗ (Mj − �jM1).

Then, the following hold.

(i) There exist �2, . . . ,�v1 ∈ C such that

R�p
(Ŝ(�2, . . . ,�v1)) ≤ R

�p
(S) − 1.

(ii) Assume that M1 has rank at most p. Then, for all �2, . . . ,�v1

R�p
(Ŝ(�2, . . . ,�v1)) ≥ R

�p
(S) − 1.

Hence, if M1 has rank at most p, we always find �2, . . . ,�v1 such that

R�p
(Ŝ(�2, . . . ,�v1)) = R

�p
(S) − 1.

Proof. Let r = R�p
(T ), that is, S(V ∗1 ) is contained in the span of r matrices of rank at most

p. Denote these matrices by X1, . . . ,Xr and write

Mi =

r

�

j=1
µi,jXj for i = 1, . . . ,v1.

Without loss of generality, assume that µ1,1 ≠ 0 and set �i =
µ1,i

µ1,1
. We easily see that

Ŝ(�2, . . . ,�a)(V
∗
1 ) ⊂ span(X2, . . . ,Xr), and therefore

R�p
(Ŝ(�2, . . . ,�v1)) ≤ R

�p
(S) − 1.

That shows the first claim.

On the other hand, if M1 has rank at most p and Y1, . . . , Ys span Ŝ(�2, . . . ,�v1), then clearly

M1, Y1, . . . , Ys will span S(V ∗1 ), which shows the second claim.

In the next section, we will see how one can use Theorem 4.3.8 to calculate aided ranks.
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4.3.3 Aided rank of Kronecker powers of the W -tensor

Let V1, V2 and V3 be two-dimensional with fixed bases e1, e2. In this section, we will use the

method developed in Section 4.3.2 to calculate the aided rank of powers of the W -tensor

W = e1 ⊗ e1 ⊗ e2 + e1 ⊗ e2 ⊗ e1 + e2 ⊗ e1 ⊗ e1 ∈ V1 ⊗ V2 ⊗ V3.

The main result of this section is the following.

Proposition 4.3.9. For the k’th Kronecker power of the W tensor W�k
∈ V ⊗k1 ⊗V ⊗k2 ⊗V ⊗k3

it holds that

R�p
(W�k

)

�
���
�
���
�

= 2k if p ≥ 2k

> 2k if p < 2k.

Proof. It is also clear that for any r < 2k, �r��p �≥ W�k. On the other hand, W (V ∗1 ) is the

span of e1⊗ e2 + e2⊗ e1 and e1⊗ e1, in other words, R�2
(W ) = 2. Consequently, we know that

�2k� �2
k

≥W�k for all k, in other words, R�2k
(W�k

) ≤ 2k.

We will now use Theorem 4.3.8 to show that �2k� �2
k−1
� W�k which will finish the proof.

One can verify that – thinking of the elements of V ⊗k2 ⊗V ⊗k3 as 2k ×2k matrices – all matrices

in W�k
((V ⊗k1 )

∗
) are of the form

�

�
�
�

�

∗ x0

. .
.

x0 0

�

�
�
�

�

. (4.9)

That is, all matrices in W�k
((V ⊗k1 )

∗
) have the same entry x0 in all antidiagonal entries

and zeros in all entries below the antidiagonal. Now, assume for some p that �2k��p ≥W�k.
By Lemma 4.3.7, there are matrices Ni of rank at most p such that

W�k
�(V ⊗k1 )

∗
� ⊆ �N1, . . . ,N2k�. (4.10)

As W�k is concise, W�k
�V ⊗k1 )

∗
� has dimension 2k. Therefore, by Lemma 4.3.6, the Ni

are elements of W�k
�(V ⊗k1 )

∗
�. We observe that a matrix of the form Equation (4.9) with

x0 ≠ 0 has full rank 2k. That is, if the matrices Ni have rank p < 2k and are elements

of W�k
�(V ⊗k1 )

∗
�, their span only contains matrices with zeros on the antidiagonal. That

is, Equation (4.10) cannot be satisfied if all Ni have rank at most p < 2k, that is,

�2k��p �W�k if p < 2k.

In other words, R�p
(W�k

) > 2k for p < 2k.

In particular, we see that the minimal rank of an aiding matrix turning the degeneration

�2k� �W�k into a restriction di↵ers from the bound in Lemma 4.3.2 only by a factor of 1
2 .
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4.A Code for Remark 4.2.8

The following Macaulay2 [GS] code gives a lower bound of 37 on the dimension of the orbit
of a generic tensor in C3

⊗C4
⊗C4 which is (2,3,3)-compressible. This code is an adjustment

of code that can be found at https://fulges.github.io/code/BDG-DimensionTNS.html.

V_1 = QQ[v_(1,1)..v_(1,3)]

V_2 = QQ[v_(2,1)..v_(2,4)]

V_3 = QQ[v_(3,1)..v_(3,4)]

W_1 = QQ[w_(1,1)..w_(1,3)]

W_2 = QQ[w_(2,1)..w_(2,4)]

W_3 = QQ[w_(3,1)..w_(3,4)]

ALL = V_1**V_2**V_3**W_1**W_2**W_3

M_1 = sub(random(QQ^4,QQ^4),ALL)

M_2 = mutableMatrix(ALL,4,4)

M_3 = mutableMatrix(ALL,4,4)

for i from 0 to 3 do(

M_2_(0,i)=random(QQ);

M_2_(i,0)=random(QQ);

M_3_(0,i)=random(QQ);

M_3_(i,0)=random(QQ);

)

M_2 = matrix M_2

M_3 = matrix M_3

T = 0

for i from 1 to a do(

for j from 1 to b do(

for k from 1 to c do(

T = T + M_i_(j-1,k-1)*w_(1,i)*w_(2,j)*w_(3,k);

);

);

)--T is now (2,3,3)-compressible with random entries

-- a random point in Hom(W1,V1) + Hom(W2,V2) + Hom(W3,V3)

-- the rank of the differential of the parametrization map at randHom

-- will provide a lower bound on dim of the orbit closure of our tensor

randHom =flatten flatten apply(3,j->

toList apply(1..di_(j+1),i ->w_(j+1,i)=>sub(random(1,V_(j+1)),ALL)))

-- compute the image of the differential

-- LL will be a list of elements of multidegree (1,1,1),

-- which are to be interpreted as elements of V1 \otimes V2 \otimes V3

-- generating the image of the differential of the parametrization map

LL = flatten for i from 1 to 3 list (

ww = sub(vars(W_i),ALL);

vv = sub(vars(V_i),ALL);

flatten entries (sub( (vv ** diff(ww,Tused)),randHom)));

minGen = mingens (ideal LL);

orbitdim = numcols(minGen) --37
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4.B Partial degenerations of the unit tensor

We have seen in Proposition 4.2.10 that the unit tensor �r� does not admit partial degenera-

tions where the constant map A1 is full rank. However, we also saw that in the case that A1

has rank r − 1 there are honest partial degenerations which we classify in Proposition 4.2.12.

In this appendix, we see that also in the realm of matrix pencils, examples exist. For that,

we consider for simplicity only matrix pencils in C2
⊗ Cm

⊗ Cm+1. Recall that the matrix

pencil T given in Equation (4.6) has a dense orbit under the action of GLm ×GLm+1. It is

well known (see, for example, [Lan12, Theorem 3.11.1.1]) that this pencil has rank m+1. On

the other hand, it is known that the maximal rank of a tensor in C2
⊗Cm

⊗Cm+1 is �3m2 �.

Hence, we can find tensors S in C2
⊗ Cm

⊗ Cm+1 with �m + 1� ≥ T � S, R(S) > m + 1 and

consequently �m + 1� � S but �m + 1� � S.

To see an explicit example, let us construct for every m a matrix pencil of rank greater or

equal to m+1 to which �m� degenerates partially. For this, we recall the following well-known

result about the rank of matrix pencils [Gri78, Já79].

Proposition 4.B.1. Consider p1 × q1 matrices T ′1, T ′2 and p2 × q2 matrices T ′′1 , T ′′2 . Let

T ′ be the tensor corresponding to the matrix pencil [T ′1, T ′2] and similar for T ′′ and write

T ∈ C2
⊗Cp1+p2 ⊗Cq1+q2 for the tensor corresponding to the matrix pencil

�
�
�
�
�
�

�

�

T ′1
T ′′1
�

�
,
�

�

T ′2
T ′′2
�

�

�
�
�
�
�
�

.

Then, it holds that

R(T ) = R(T ′) +R(T ′′).

We will now construct a partial degeneration of �m� and will show using Proposition 4.B.1

that it has rank at least m + 1. Applying the linear map

A1 ∶ U → C2, ek � e1 + ke2

we see that �m� restricts to the tensor corresponding to the matrix pencil [idm,diag(1, . . . ,m)].

Since the matrix

M =

�

�
�
�
�
�
�
�
�

�

1 1

2 1

� �

m − 1 1

m

�

�
�
�
�
�
�
�
�

�

has m di↵erent eigenvalues 1, . . . ,m, we deduce that also the tensor associated with the

matrix pencil [idm,M] is a restriction of �m�.
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For any 1 < k <m define Sk,m to be the tensor corresponding to the matrix pencil

�
�
�
�
�
�
�
�

�

�
�
�

�

�idk−1, 0� 0

0
�

�

0

idm−k
�

�

�

�
�
�

�

,
�

�

J1 0

0 J2

�

�

�
�
�
�
�
�
�
�

. (4.11)

where

J1 =

�

�
�
�

�

1 1

� �

k − 1 1

�

�
�
�

�

, J2 =

�

�
�
�
�
�
�
�
�

�

1

k + 1 1

� �

m − 1 1

m

�

�
�
�
�
�
�
�
�

�

One verifies that applying the degeneration maps

A2(✏) = diag(1, . . . ,1
����������������������

k

, ✏, . . . , ✏
������������������
m−k

), A3(✏) = diag(✏, . . . ✏
�
k+1

,1, . . . ,1
����������������������
m−k−1

)

the tensor corresponding to the matrix pencil [idk,diag(1, . . . ,m)] results in ✏Sk,m +O(✏
2
).

In particular, �m� � Sk,m.

From Proposition 4.B.1, we know that

R(Sk,m) = R(S
1
k,m
) +R(S2

k,m
) (4.12)

where S1
k,m

corresponds to [(idk−1,0), J1]) and S2
k,m

to [�0 idm−k�
t
, J2], respectively. Using

flattenings, one can now verify that the two pencils in Equation (4.12) have ranks k and

m − k + 1, respectively, which shows R(Sk,m) ≥m + 1. Hence, it is not a restriction of �m�.

4.C The aided rank of the Coppersmith-Winograd-tensor

In this appendix, we demonstrate with further examples how to calculate aided rank us-

ing Theorem 4.3.8. In particular, we are going to calculate the aided ranks of the Coppersmith-

Winograd-tensors (CW-tensors). The study of these tensors was a crucial tool in the break-

through result [CW87] bounding the exponent of matrix multiplication ! from above by

2.376.

Definition 4.C.1. Let V1 ≅ V2 ≅ V3 ≅ Cq+2 and fix a basis e0, . . . , eq+1. The q’th CW-tensor

is the tensor

TCW,q =

q

�

i=1
e0 ⊗ ei ⊗ ei + eq+1 ⊗ e0 ⊗ e0+
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q

�

j=1
ej ⊗ e0 ⊗ ej + e0 ⊗ eq+1 ⊗ e0+

q

�

k=1
ek ⊗ ek ⊗ e0 + e0 ⊗ e0 ⊗ eq+1 ∈ V1 ⊗ V2 ⊗ V3.

We want to calculate R�p
(TCW,q) for any p and q.

Proposition 4.C.2. For p ≥ 2, the p-aided rank of the q’th Coppersmith-Winograd-tensor is

given by

R�p
(TCW,q) = q + 1 + �

q + 2

p
� .

Proof. Writing

M(x0, . . . , xq+1) =

�

�
�
�
�
�
�
�
�

�

xq+1 x1 . . . xq x0

x1 x0

⋮ �

xq x0

x0 0

�

�
�
�
�
�
�
�
�

�

we have TCW,q(V
∗
1 ) = {M(x0, . . . xq+1) ∶ x0, . . . xq+1 ∈ C}. Note that TCW,q is concise. Hence,

we have R�p
(TCW,q) ≥ q + 2 for any p ∈ N. Moreover, it is clear that R�p

(TCW,q) ≤ q + 2

whenever p ≥ q + 2 which gives R�p
(TCW,q) = q + 2 for all p ≥ q + 2.

For p ≤ q + 1, we will use Theorem 4.3.8.

Say, p ≥ 2. Interpreting V2 ⊗ V3 as space of (q + 2) × (q + 2) matrices, we have

TCW,q =

q+1
�

i=0
ei ⊗M(xi = 1, xj = 0 for i ≠ j),

The matrix M(0, . . . ,0,1) has rank 1, hence we can find �(1)0 , . . . ,�(1)q using Theorem 4.3.8

such that

T (1)
CW,q

=

q

�

i=0
ei ⊗ �M(xi = 1, xj = 0 for i ≠ j) − �(1)

i
M(0, . . . ,0,1)�

����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=∶M(1)(xi=1,xj=0 for i≠j)
satisfies

R�p
(T (1)

CW,q
) = R�p

(TCW,q) − 1.

Note that the matrices M (1)
(x0, . . . xq) have the form

M (1)
(x0, . . . , xq) =

�

�
�
�
�
�
�
�
�

�

∗ x1 . . . xq x0

x1 x0

⋮ �

xq x0

x0 0

�

�
�
�
�
�
�
�
�

�

.
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Still, M (1)
(0, . . . ,0,1) has only non-zero entries in the first column or in the first row. That

is, it has rank less than or equal to p, hence we can apply Theorem 4.3.8 again and obtain

�(2)0 , . . . ,�(2)q such that

T (2)
CW,q

=

q−1
�

i=0
exi ⊗ �M

(1)
(xi = 1, xj = 0 for i ≠ j) − �(2)

i
M (1)

(0, . . . ,0,1)�
���������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=∶M(2)(xi=1,xj=0 for i≠j)

satisfies

R�p
(T (2)

CW,q
) = R�p

(T (1)
CW,q

) − 1.

Again, we see that the elements of T (2)
CW,q

(V ∗1 ) have the form

M (2)
(x0, . . . , xq−1) =

�

�
�
�
�
�
�
�
�

�

∗ x1 . . . ∗ x0

x1 x0

⋮ �

∗ x0

x0 0

�

�
�
�
�
�
�
�
�

�

Repeating this procedure q + 2 times leads to

T (q+1)
CW,q

= e0 ⊗ �M
(q)
(1,0) − �(q+1)M (q)

(0,1)�
�����������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������=∶M(q+1)

.

with

M (q+1)
=

�

�
�
�
�
�
�
�
�

�

∗ ∗ . . . ∗ 1

∗ 1

⋮ �

∗ 1

1 0

�

�
�
�
�
�
�
�
�

�

.

By Theorem 4.3.8 we reduced the aided rank by exactly 1 in each step yielding

R�p
(T (q+1)

CW,q
) = R�p

(T (q)
CW,q

) − 1 = ⋅ ⋅ ⋅ = R�p
(TCW,q) − (q + 1).

As M (q+1) has rank q + 2 it follows R�p
(T (q+1)

CW,q
) = �

q+2
p
� . and with that

R�p
(TCW,q) = q + 1 + �

q + 2

p
� .

We can also find the following upper bound on the aided rank of T�2
CW,q

.
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Proposition 4.C.3. It holds that

R�p2

(T�2
CW,q

) ≤ q2 + 4q + 3 + �
(q + 2)2

p2
� .

In particular, there there are choices of m, p and q such that both �m��p � TCW,q and

(�m��p)�2 ≥ (TCW,q)
�2 hold.

Proof. Let us write

N(x0, . . . , xq+1, y0, . . . , yq+1) =

�

�
�
�
�
�
�
�
�

�

xq+1 ⋅M(y) x1 ⋅M(y) . . . xq ⋅M(y) x0 ⋅M(y)

x1 ⋅M(y) x0 ⋅M(y)

⋮ �

xq ⋅M(y) x0 ⋅M(y)

x0 ⋅M(y) 0

�

�
�
�
�
�
�
�
�

�

where the matrices M(y) are as in the proof of Proposition 4.C.2 given by

M(y) =M(y0, . . . , yq+1) =

�

�
�
�
�
�
�
�
�

�

yq+1 y1 . . . yq y0

y1 y0

⋮ �

yq y0

y0 0

�

�
�
�
�
�
�
�
�

�

.

With this, we have

(TCW,q)
�2
=

q+1
�

i,j=0
(ei ⊗ ej)⊗N(xi = 1, yj = 1).

and consequently,

(TCW,q)
�2
(�V ⊗21 �

∗
) = {N(x, y) ∶ x, y ∈ Cq+2

}.

The rank of the matrix N(x, y) depends on these vectors x and y.

(i) If x = y = e0, the matrix N(x, y) has rank (q + 2)2.

(ii) If x = e0 and y = eq+1 or if x = eq+1 and y = e0, the matrix N(x, y) has rank q + 2.

(iii) If x = e0 and y ∈ {e1, . . . , eq} or if x ∈ {e1, . . . , eq} and y = e0 the matrix N(x, y) has rank

2(q + 2).

(iv) If x = eq+1 and y ∈ {e1, . . . , eq} or if x ∈ {e1, . . . , eq} and y = eq+1 the matrix N(x, y) has

rank 2.

(v) If x = y = eq+1, the matrix N(x, y) has rank 1.

(vi) If x ∈ {e1, . . . , eq} and y ∈ {e1, . . . , eq} the matrix N(x, y) has rank 4.
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Hence, to generate (TCW,q)
�2
(A∗), we need to generate one matrix of rank 1, 2q matrices

of rank 2, q2 matrices of rank 4, two matrices of rank q + 2, 2q matrices of rank 2(q + 2) and

one matrix of rank (q + 2)2. Assuming p2 ≥ 2(q + 2), we will need at most

q2 + 4q + 3 + �
(q + 2)2

p2
�

matrices of rank p2 to generate (TCW,q)
�2
(�V ⊗21 �

∗
). In other words,

R�p2

(T�2
CW,q

) ≤ q2 + 4q + 3 + �
(q + 2)2

p2
� (4.13)

To find m,p and q such that �m��p � TCW,q but �m2
�
�p2

≥ (TCW,q)
�2, we choose p and q such

that � q+2
p+1� < � q+2p � and m = q + 1 + � q+2

p
�. By construction, we have �m��p � TCW,q. We have

found an example whenever

q2 + 4q + 3 + �
(q + 2)2

p2
� ≤ �q + 1 + �

q + 2

p + 1
��

2

.

To see an explicit example, pick q = 11 and p = 6. We have

R�6
(TCW,11) = 11 + 1 + �

11 + 2

6
� = 15

R�7
(TCW,11) = 11 + 1 + �

11 + 2

7
� = 14,

that is, �14��7 ≥ TCW,11 but �14��6 � TCW,11. From Equation (4.13), we get

R�62
(T�2

CW,11) ≤ 11
2
+ 4 ⋅ 11 + 3 + �

132

62
� = 173 ≤ 142 = 196.

That gives

��14��6��2 = �196��36 ≥ �173��36 ≥ T�2
CW,11.

4.D Catalysis with an EPR pair

The observations in this chapter are closely related to the question of so-called catalytic

restrictions and catalytic degenerations. In [CCD+10], the authors find examples of tensors

T ∈ U1 ⊗ ⋅ ⋅ ⋅ ⊗ Uk and S ∈ V1 ⊗ ⋅ ⋅ ⋅ ⊗ Vk with T �≥ S such that there exists some other tensor

H ∈W1 ⊗ ⋅ ⋅ ⋅ ⊗Wk with T �H ≥ S �H. This phenomenon is called catalytic restriction, the

tensor H is called catalyst. Note that the set of k-party tensors together with restriction

is a preordered semiring. It has been shown later that the example in [CCD+10] can be

generalized to preordered semirings fulfilling certain properties [Fri20, Theorem 7.15].
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We raise the question if an honest catalytic entanglement conversion is possible where the

catalyst H is only an aiding matrix. In other words, we ask if we can find T ∈ U1 ⊗ U2 ⊗ U3

and S ∈ V1 ⊗ V2 ⊗ V3 such that T �≥ S, but for some p, T �p ≥ S�p. We are also interested in a

similar question replacing restriction with degeneration.

In this appendix, we present some partial progress on that question. In particular, we will

construct non-trivial examples that are reminiscent of catalysis with an aiding matrix by

refining the rank resp. border rank decompositions of the matrix multiplication tensor and

the Bini tensor. Recall the following celebrated result by Strassen [Str69].

Theorem 4.D.1. The rank of the matrix multiplication tensor �2,2,2� is 7.

Proof. Recall that

�2,2,2�((C2
⊗C2

)
∗
) = span(N1,N2,N3,N4)

where the Ni can be interpreted as matrices

N1 =

�

�
�
�
�
�

�

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

,N2 =

�

�
�
�
�
�

�

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

�

�
�
�
�
�

�

,N3 =

�

�
�
�
�
�

�

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

,N4 =

�

�
�
�
�
�

�

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

�

�
�
�
�
�

�

.

Defining the 7 rank-1 matrices

M1 =

�

�
�
�
�
�

�

1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1

�

�
�
�
�
�

�

,M2 =

�

�
�
�
�
�

�

0 0 0 0

0 1 0 −1

0 0 0 0

0 1 0 −1

�

�
�
�
�
�

�

,M3 =

�

�
�
�
�
�

�

0 0 1 1

0 0 0 0

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

,

M4 =

�

�
�
�
�
�

�

0 0 0 0

0 0 0 0

0 0 0 0

1 1 0 0

�

�
�
�
�
�

�

,M5 =

�

�
�
�
�
�

�

−1 0 1 0

0 0 0 0

−1 0 1 0

0 0 0 0

�

�
�
�
�
�

�

,M6 =

�

�
�
�
�
�

�

0 0 0 −1

0 0 0 1

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

,

M7 =

�

�
�
�
�
�

�

0 0 0 0

0 0 0 0

1 0 0 0

−1 0 0 0

�

�
�
�
�
�

�

103



one verifies easily that

M1 +M2 −M4 +M6 = N1

M4 +M7 = N2

M3 +M6 = N3

M1 −M3 +M5 +M7 = N4.

(4.14)

Hence, �2,2,2�((C2
⊗C2

)
∗
) is spanned by seven rank-1 matrices which shows that the rank

of matrix multiplication is at most 7. The lower bound is involved and was first shown

in [Lan04]. For a more modern proof using a technique called border apolarity, we refer

to [CHL19].

We will also need the following result about the Bini tensor [BLR80].

Theorem 4.D.2. The border rank of the Bini tensor is 5, in other words, R(TBini) = 5.

Proof. For the Bini tensor, TBini((C3
)
∗
) is spanned by the three matrices

N1 =

�

�
�
�
�
�

�

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

,N2 =

�

�
�
�
�
�

�

0 0 0 0

0 0 0 0

1 0 0 0

0 1 0 0

�

�
�
�
�
�

�

,N3 =

�

�
�
�
�
�

�

0 0 1 0

0 0 0 1

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

.

Consider the following border rank decomposition: For ✏ > 0, define the matrices

L1 =

�

�
�
�
�
�

�

0 0 0 0

0 1 0 ✏

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

, L2 =

�

�
�
�
�
�

�

−1 0 0 0

0 0 0 0

✏ 0 0 0

0 0 0 0

�

�
�
�
�
�

�

, L3 =

�

�
�
�
�
�

�

0 1 0 0

0 1 0 0

0 0 0 0

0 ✏ 0 0

�

�
�
�
�
�

�

,

L4 =

�

�
�
�
�
�

�

−1 1 ✏ 0

0 0 0 0

0 0 0 0

0 0 0 0

�

�
�
�
�
�

�

, L5 =

�

�
�
�
�
�

�

0 1 ✏ 0

0 0 0 0

0 0 0 0

0 ✏ ✏2 0

�

�
�
�
�
�

�

They are rank 1 and we have

✏L1 −✏L2 = ✏N1 +O(✏
2
)

L2 −L4 +L5 = ✏N2 +O(✏
2
)

L1 −L3 +L5 = ✏N3 +O(✏
2
)

which shows that R(TBini) ≤ 5. From the discussion after Proposition 1.3.6, we know that

the border rank of the Bini must be at least 5 and we conclude.
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We will now refine these two constructions and derive restrictions and degenerations that are

reminiscent of catalysis.

Proposition 4.D.3. For the matrix multiplication tensor it holds that �6��3 ≥ �2,2,2��2 and

�6��4 ≥ �2,2,2��3. For the Bini tensor, we have �4��5 � T �3
Bini

.

Proof. We start by showing �6��3 ≥ �2,2,2��2. The space �2,2,2��2((C2
⊗ C2

)
∗
) is spanned

by matrices

⌫1 =
�

�

N1

N1

�

�
, ⌫2 =

�

�

N2

N2

�

�
, ⌫3 =

�

�

N3

N3

�

�
, ⌫4 =

�

�

N4

N4

�

�
.

Consider the following matrices which are constructed blockwise from the matrices of Strassen’s

algorithm:

µ2 =
�

�

M2 +M1

M2

�

�
, µ3 =

�

�

M3

M3

�

�
, µ4 =

�

�

M4

M4 −M1

�

�
,

µ5 =
�

�

M5 +M1

M5

�

�
, µ6 =

�

�

M6

M6

�

�
, µ7 =

�

�

M7

M7 +M1

�

�
.

Clearly, these matrices all have rank at most 3. Moreover, it is easy to see from Equa-

tion (4.14) that

µ2 −µ4 +µ6 = ⌫1

µ4 +µ7 = ⌫2

µ3 +µ6 = ⌫3

−µ3 +µ5 +µ7 = ⌫4.

Applying a similar trick, we can also show �6��4 ≥ �2,2,2��3 = �2,2,6�. Here, we need to

consider the space �2,2,2��3((C2
⊗C2

)
∗
) which is spanned by

⌫1 =

�

�
�
�

�

N1

N1

N1

�

�
�
�

�

, ⌫2 =

�

�
�
�

�

N2

N2

N2

�

�
�
�

�

, ⌫3 =

�

�
�
�

�

N3

N3

N3

�

�
�
�

�

, ⌫4 =

�

�
�
�

�

N4

N4

N4

�

�
�
�

�

.

Again, we define the block matrices which this time are of rank ≤ 4

µ2 =

�

�
�
�

�

M2 +M1

M2

M2

�

�
�
�

�

, µ3 =

�

�
�
�

�

M3

M3

M3 −M1

�

�
�
�

�

, µ4 =

�

�
�
�

�

M4

M4 −M1

M4

�

�
�
�

�

,

µ5 =

�

�
�
�

�

M5 +M1

M5

M5

�

�
�
�

�

, µ6 =

�

�
�
�

�

M6

M6

M6 +M1

�

�
�
�

�

, µ7 =

�

�
�
�

�

M7

M7 +M1

M7

�

�
�
�

�

.
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From Equation (4.14), we see

µ2 −µ4 +µ6 = ⌫1

µ4 +µ7 = ⌫2

µ3 +µ6 = ⌫3

−µ3 +µ5 +µ7 = ⌫4

which shows that �2��4 ≥ �2,2,2��3.

Finally, we want to show that �4��5 ≥ T �3
Bini

. With that, we see that for

�1 =

�

�
�
�

�

L1 +L5

L1 +L5

L1

�

�
�
�

�

, �2 =

�

�
�
�

�

L2 +L5

L2 +L5

L2

�

�
�
�

�

,

�3 =

�

�
�
�

�

L3

L3

L3 −L5

�

�
�
�

�

, �4 =

�

�
�
�

�

L4

L4

L4 −L5

�

�
�
�

�

we have
✏�1 −✏�2 = ✏⌫1 +O(✏

2
)

�2 −�4 = ✏⌫2 +O(✏
2
)

�1 −�3 = ✏⌫3 +O(✏
2
)

which in particular implies �4��5 ≥ T �3
Bini

.

We will now show two results indicating that it is unlikely to actually find explicit, provable

examples of catalysis with an aiding matrix as catalyst. Indeed, finding an example requires

us to find tensors T and S such that T �≥ S resp. T �� S. For T being a unit tensor, this is

equivalent to showing rank resp. border rank lower bounds. Only few methods to show lower

bounds are known and the next two results show that well-known methods to show rank and

border rank lower bounds actually “lift” to the catalytic setting.

Proposition 4.D.4. Let T ∈ U1 ⊗ U2 ⊗ U3 be a tensor such that R(T ) ≥ r holds by the

substitution method. Then, R�p
(T �p) ≥ r holds. In particular, for all p ≥ 1 it holds that

�r − 1��p � t�p.

Proof. Comparing Theorem 1.3.2 with Theorem 4.3.8 we see that we can step by step obtain

the same lower bound on p-aided rank using the aided rank substitution method in Theo-

rem 4.3.8 that was obtained for the rank of T .

Also, the Koszul flattenings that we introduced in Section 1.3 lift to the aided setup.
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Proposition 4.D.5. Let T ∈ U1 ⊗ U2 ⊗ U3 and consider a Koszul flattening T ∧k
U1

. It holds

that

rank((T �p)∧k
U1
) = p ⋅ rank(T ∧k

U1
).

In particular, the the border rank lower bound R(T ) ≥ � r�u1
k
� � lifts to R(T �p) ≥ � pr�u1

k
� � ≥ p� r�u1

k
� �.

Proof. Write T = e1 ⊗M1 + ⋅ ⋅ ⋅ + eu1 ⊗Mu1 are think of M1, . . . ,Mu1 as matrices. As we

have seen in Section 1.3 the linear map T ∧k
U1

can be represented by a matrix which has block

structure with the blocks being the Mi. Since T �p(U∗1 ) is spanned by the matrices

�

�
�
�

�

M1

�

M1

�

�
�
�

�

, . . . ,

�

�
�
�

�

Mu1

�

Mu1

�

�
�
�

�

we see that by permuting rows and columns we can transform (T �p)∧k
U1

into a block-diagonal

matrix, the p diagonal blocks being the matrix representing T ∧k
U1

. This finishes the proof.

In particular, this implies that for the Bini tensor, we will not find an example �4��p ≥ T �p
Bini

.

The techniques to prove that matrix multiplication has border rank 7 go far beyond Koszul

flattenings, see [Lan04, CHL19]. We do not know if they lift to the catalytic setup.
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Chapter 5

New techniques for bounding

stabilizer rank

In this final chapter, we introduce and discuss yet another way of decomposing tensors mo-

tivated by the task of simulating quantum circuits built from Cli↵ord+T gates using the

Gottesman-Knill theorem. In this specific setup, the relevant way of decomposing tensors is

via so-called stabilizer rank decompositions. We call the minimal length of a stabilizer rank

decomposition of a tensor its stabilizer rank. It turns out that the e�ciency of this simulation

technique scales polynomially in the stabilizer rank of tensor powers of the so-called T -state.

Upper and lower bounds on the stabilizer rank can provide more e�cient algorithms and

barriers for such, respectively. Yet, before [LS22], only few methods to lower bound stabilizer

rank have been known [BSS16, PSV22]. In this chapter, we will see how one can apply

techniques from number theory to investigate stabilizer rank. In particular, we will construct

tensors with maximal possible stabilizer rank and see alternate proofs of the best-known

asymptotic lower bounds on stabilizer rank and approximate stabilizer rank of tensor powers

of the T -state. Using basic facts from algebra will also construct non-trivial examples of

tensors with multiplicative stabilizer rank under the tensor product.

Warning: In this chapter, we will denote tensors using greek letters like  and �. In

the context of this chapter, we will denote by T the so-called T -state, which is given by

T = 1√
2
(e0 + e

⇡
4 e1). Note that we used the letter T for any choice of tensors in Chapter 3

and Chapter 4. Di↵erent than in Chapter 2, Chapter 3 and Chapter 4, it will be important

to consider normalized tensors where the norm comes naturally from the Euclidean inner

product induced by a choice of computational bases. We will use the term quantum state to

refer to a normalized tensor.

This chapter is a partly modified version of [LS22]. Parts of this chapter also appear in

Benjamin Lovitz’s Ph.D. thesis [Lov22].
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5.1 Overview

It is of great practical importance to determine the classical simulation cost of quantum

computations. Indeed, lower bounds on the simulation cost indicate quantum speedups,

while upper bounds can help us to understand the limitations of quantum computation.

Among many proposals for constructing a universal quantum computer like, for example,

measurement-based and adiabatic quantum computation [RB01, RBB03, AL18], one of the

earliest and still one of the most promising is the quantum circuit approach. Here, the

quantum circuits are constructed from a universal gate set like, for example, the so-called

Cli↵ord+T gate set consisting of the gates H,S and CNOT as well as the T -gate which we

have introduced in Section 1.5 [DP89, BBC+95, BMP+99]. While it has been shown that

circuits built from Cli↵ord gates only can be simulated e�ciently using the Gottesman-Knill

theorem, this does not hold once we allow for T -gates in addition. The stabilizer rank is a

useful barometer for the computational cost of classically simulating such quantum circuits

under the stabilizer formalism [BSS16]. A stabilizer state is a quantum state in the orbit of

a computational basis state under the action of the Cli↵ord group. For a quantum state  ,

we define its stabilizer rank, denoted �( ), to be the smallest integer r for which  can be

written as a linear combination of r stabilizer states. The stabilizer rank is motivated by

the fact that the classical simulation cost of a quantum circuit that applies Cli↵ord gates

to a computational basis state and measures in computational basis under current state-of-

the-art simulation protocols scales polynomially in the number of Cli↵ord gates and �( )

(see Appendix 5.A, and [BSS16, BG16, BBC+19, QPG21]). For a real number � > 0, the

�-approximate stabilizer rank, ��( ), is defined as the minimum stabilizer rank over all quan-

tum states that are �-close to  , and similarly quantifies the classical simulation cost of

approximating the application of Cli↵ord gates and computational basis measurements to  

under the stabilizer formalism.

Despite the practical importance of the stabilizer rank, few techniques are known for bounding

this quantity [BSS16, PSV22]. In this chapter, we analyze stabilizer rank from a number-

theoretic perspective which, in particular, will provide us with lower bounds on the stabilizer

rank of copies of the T -state.

5.1.1 Lower bounds on stabilizer rank and approximate stabilizer

rank

We start in Section 5.2 by refining a number-theoretic theorem of Moulton to prove lower

bounds on stabilizer rank and approximate stabilizer rank [Mou01].

Definition 5.1.1. Let [n] = {1, . . . , n} when n is a positive integer. For integers q ≥ 2 and

r ≥ 1, and tuples of non-zero complex numbers

↵ = (↵1, . . . ,↵q) ∈ Cq

� = (�1, . . . ,�r) ∈ Cr,
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we say that � is a subset-sum representation of ↵ if, for all i ∈ [q], there exists a subset

Ri ⊆ [r] for which ∑j∈Ri
�j = ↵i. We refer to the integer r as the length of the subset-sum

representation � ∈ Cr.

It is interesting to ask for a fixed tuple ↵ for the minimal possible length of a subset-sum

representation. To find examples of tuples that require subset sum representations with large

length, the following property will be useful.

Definition 5.1.2. For an integer 2 ≤ p ≤ q, we say that ↵ ∈ Cq has an exponentially increasing

subsequence of length p if there exists i1, . . . , ip ∈ [q] for which

�↵ij+1 � ≥ 2�↵ij � for all j ∈ [p].

Moulton showed that any subset-sum representation of a q-tuple containing the subsequence

(1,2,4, . . . ,2p−1) has length at least p� log2 p [Mou01]. We will refine this result in Theo-

rem 5.2.1 and prove that the same bound holds for any q-tuple that contains an exponentially

increasing subsequence of length p.

Since stabilizer states have coordinates in {0,±1,±i} in the computational basis (see Propo-

sition 1.5.3), any decomposition of a state  into a superposition of r stabilizer states can be

converted into a subset-sum representation of length 4r of the coordinates of  . Using that,

we will show in Theorem 5.2.4 that if the coordinates of  contain an exponentially increasing

subsequence of length p, then �( ) ≥ p�(4 log2 p). In particular, since T is Cli↵ord-equivalent

to the H-state H ∝ e0 +
1√
2−1e1, and the coordinates of H⊗n contain an exponentially in-

creasing subsequence of length n+1, we obtain �(T⊗n) ≥ n+1
4 log2(n+1) . More generally, we prove

in Theorem 5.2.4 that �( ⊗n) = ⌦(n� log2 n) for any non-stabilizer qubit state  .

We further use Theorem 5.2.1, along with standard concentration inequalities for the binomial

distribution, to prove in Theorem 5.2.8 that for any non-stabilizer qubit state  , there exists

a constant � > 0 for which it holds that ��( 
⊗n
) ≥
√
n�(2 log2 n) for all n ≥ 2.

We note that similar results have been obtained in [PSV22]: Here, the authors prove that

�(T⊗n) ≥ n�100, and that there exists � > 0 for which ��(T
⊗n
) = ⌦(

√
n� log2 n) [PSV22].

Asymptotically, our bounds match theirs up to a log factor, and we suggest that our proof

technique is much simpler. While both of our bounds follow quite quickly from our refine-

ment of Moulton’s theorem mentioned above, the two bounds in [PSV22] use two di↵erent

approaches from the analysis of boolean functions and complexity theory: For their lower

bound on �(T⊗n), they analyze directional derivatives of quadratic polynomials, and for

their lower bound on ��(T
⊗n
), they use Razborov-Smolensky low-degree polynomial approx-

imations and correlation bounds against the majority function [Raz87, Smo87, Smo93]. It is

interesting that the vastly di↵erent approaches of ours and [PSV22] yield such similar results.

As a further application of our refinement of Moulton’s theorem, we explicitly construct a se-

quence of n-qubit product states  ⊗n for which it holds that �( ⊗n) ≥ 2n

4n and ��( 
⊗n
) = O(1)
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for any � > 0, simply by writing down a product state with exponentially increasing coordi-

nate amplitudes. Using di↵erent techniques, we construct in Proposition 5.2.13 a sequence

of n-qubit product states  ⊗n for which �( ⊗n) = 2n (the largest possible) and ��( 
⊗n
) = 1

(the smallest possible). It is interesting to compare this situation to tensor rank and tensor

border rank: For example, we have seen that there must exist tensors in (Cd
)
⊗3 with border

rank scaling quadratically in d, see Remark 1.1.6. On the other hand, all methods we have

seen (and, in fact, all known methods, see Remark 1.3.7) to lower bound tensor rank and

tensor border rank can only prove linear lower bounds.

5.1.2 States with multiplicative stabilizer rank under the tensor

product

It is a standard fact that the stabilizer rank is sub-multiplicative under the tensor product,

i.e., �( ⊗ ) ≤ �( )2 for any quantum state  [Qas21, Section 2.1.3]. In [Qas21, Section 4.4],

it was remarked that there are no known examples of quantum states  of stabilizer rank

greater than one for which equality holds. In Section 5.3, we explicitly construct two-qubit

states  for which �( ) = 2 and �( ⊗  ) = 4. This is the smallest possible example of such

a state, since for any single-qubit state � it holds that �(�⊗ �) ≤ 3.

5.2 Lower bounds on stabilizer rank and approximate

stabilizer rank

In this section, we will present a method to lower bound stabilizer rank using a result from

number theory. In Section 5.2.1, we will refine a result of Moulton about the minimal length

of a subset-sum representation of a tuple containing a long exponentially increasing sequence.

We then use our refinement in Section 5.2.2 to prove lower bounds on the stabilizer rank of

quantum states whose coordinates contain a long exponentially increasing subsequence. As an

application, we will see that �( ⊗n) = ⌦(n� log2 n) for any non-stabilizer qubit state  which,

in particular, gives a strong lower bound on the stabilizer rank of n copies of the T state. We

finally combine this technique in Section 5.2.3 with a standard concentration inequality to see

that for any non-stabilizer qubit state  , there exists � > 0 for which ��( 
⊗n
) ≥
√
n�(2 log2 n)

for all n ∈ N. Moreover, our techniques will allow us to construct in Section 5.2.4 states in

(C2
)
⊗n with stabilizer rank exponential in n.

5.2.1 A refinement of Moulton’s theorem

The following refinement of [Mou01, Theorem 1] will be used throughout this chapter.

Theorem 5.2.1. Let 2 ≤ p ≤ q be integers, and let ↵ ∈ Cq be a q-tuple of non-zero complex

numbers. If ↵ contains an exponentially increasing subsequence of length p, then any subset-

sum representation of ↵ has length at least p� log2(p).
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Proof. It su�ces to consider the case p = q and 2�↵i� ≤ �↵i+1� for all i ∈ [q − 1]. Let � ∈ Cr

be a subset-sum representation of ↵. Then for each i ∈ [q], there exists ci ∈ {0,1}
r such that

↵i = �
tci Suppose that, for some u1, . . . , uq, v1, . . . , vq ∈ {0,1}, we have

q

�

i=1
uici =

q

�

i=1
vici.

Applying �t to both sides gives

q

�

i=1
ui↵i =

q

�

i=1
vi↵i.

It follows that ui = vi for all i ∈ [q]. Indeed, it su�ces to prove that �↵i+1� > �↵1 + ⋅ ⋅ ⋅ + ↵i� for

all i ∈ [q − 1], which in turn can be easily verified by an inductive argument. By assumption,

�↵2� > �↵1�, and by induction,

�↵1 + ⋅ ⋅ ⋅ + ↵i� ≤ �↵1 + ⋅ ⋅ ⋅ + ↵i−1� + �↵i� < 2�↵i� ≤ �↵i+1�.

The remainder of the proof is identical to that of [Mou01]. There are at most 2q − 1 choices

of u1, . . . , uq ∈ {0,1}, excluding the case u1 = ⋅ ⋅ ⋅ = uq = 1. For each of these choices, the

sum ∑
q

i=1 uici can take one of qr −1 possible values in {0,1, . . . , q −1}×r (note that the vector

(q − 1, q − 1, . . . , q − 1)t is excluded since the ui are not all equal to 1). Since each choice of

u1, . . . , uq yields a di↵erent vector, we must have qr − 1 ≥ 2q − 1, i.e. r ≥ q� log2(q).

5.2.2 Lower bounds on stabilizer rank

In this section, we use Theorem 5.2.1 to prove lower bounds on stabilizer rank. For that, we

record the following technical results.

Lemma 5.2.2. Let  ∈ (C2
)
⊗n be any quantum state and C a Cli↵ord unitary. Then, we

have �( ) = �(C ) and ��( ) = ��(C ) for all � > 0.

Proof. If  ∈ span(�1, . . . ,�r) is contained in the span of stabilizer states �1, . . . ,�r, then C 

is contained in the span of the stabilizer states C�1, . . . , C�r, that is, �( ) ≥ �(C ). Applying

the same argument with C−1 proves the other direction. Observing that the Cli↵ord unitary

C preserves the norm finishes the proof.

To apply Theorem 5.2.1, the following technical result will be helpful.

Lemma 5.2.3. Let  ∈ C2 not be a stabilizer state. Then, there is a Cli↵ord unitary C such

that

C ∝
1

�

1 + �↵�2
(e0 + ↵e1)

with �↵� > 1.
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Proof. Clearly,

 ∝
1

�

1 + ���2
(e0 + �e1)

for some �. We note that for ��� > 1, the result follows with C being the identity. For

��� < 1, the result holds with C = X. It remains to consider the case ��� = 1. Note that for

� ∈ {0,±1,±i}, the tensor  would be a stabilizer state. Else, one easily verifies that the claim

of the lemma holds for either C =H or C =HX.

Theorem 5.2.4. Let p ≥ 2 be an integer, and let  ∈ (C2
)
⊗n be a quantum state. If the

coordinates of  contain an exponentially increasing subsequence of length p, then we have

�( ) ≥ p�(4 log2 p).

Proof. Let r = �( ), let x1, . . . , xp ∈ Fn

2 be such that � xi � ≤ 2� xi+1 � for all i ∈ [p − 1], and

let ↵ = ( x1 , . . . , xp) ∈ Cp. Without loss of generality, there exist complex numbers ci and

(unnormalized) stabilizer states �i for i ∈ [r] such that for all i ∈ [r], every coordinate of �i

is an element of {0,±1,±i}, and  = ∑r

i=1 ci�i. Let

S = (�1, . . . ,�r) ∈ {0,±1,±i}
{0,1}n×r

be a matrix whose columns are the �i and

c = (c1, . . . , cr) ∈ Cr,

so that Sc =  . In particular, there exists a p × r submatrix T of S for which Tc = ↵. Let

T1, T2, T3, T4 ∈ {0,1}
p×r be such that

T = T1 − T2 + i(T3 − T4).

Then

(T1, T2, T3, T4)(c,−c, ic,−ic)
t
= Tc = ↵,

so (c,−c, ic,−ic) is a subset-sum representation of ↵ of length 4r. It follows from Theo-

rem 5.2.1 that 4r ≥ p�(log2 p). This completes the proof.

Theorem 5.2.4 also implies the following lower bound on �(T⊗n), and more generally, on

�( ⊗n) for any non-stabilizer qubit state  .

Corollary 5.2.5. For any state  ∈ (Cs
)
⊗n that is not a stabilizer state, �( ⊗n) = ⌦(n� log2 n).

In particular,

�(T⊗n) ≥ n + 1

4 log2(n + 1)
.
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Proof. Since  is not a stabilizer state, we can assume by Lemma 5.2.2 and Lemma 5.2.3 that

 = 1�
1+�↵�2 (e0 +↵e1) with �↵� > 1. Consequently, there exists k ∈ N for which �↵�k ≥ 2. (When

 = T , we can take k = 1.) Now observe that the complex numbers 1,↵k,↵2k, . . . ,↵�n�k�k all

appear as coordinates of  ⊗n. By Theorem 5.2.4, it follows that

�( ⊗n) ≥ �n�k� + 1

4 log2(�n�k� + 1)
.

This completes the proof.

5.2.3 Lower bounds on approximate stabilizer rank

In this section, we want to apply Theorem 5.2.1 to obtain lower bounds on approximate

stabilizer rank of states of the form  ⊗n for non-stabilizer states  ∈ C2. To do so, we will

apply the De Moivre-Laplace Theorem. For a proof and a more in-depth discussion of the De

Moivre-Laplace Theorem, we refer to [Fel91, Section VII, Theorem 1] and [PSV22, Claim 4.6].

Theorem 5.2.6. Let p ∈ [0,1] and C ≥ 0. Then, there exists c > 0 such that

�
n

k
�pn−k(1 − p)k ≥ c

√
n

(5.1)

for all k ∈ [pn − C�
√
n�, pn + C�

√
n�] and for all n ∈ N. The quantity c might depend on p

and C, but it is independent of n.

Remark 5.2.7. Say, we conduct n independent experiments where in each experiment, we

get outcome “1” with probability p, and outcome “0” with probability 1 − p. The binomial

distribution B(n, p) describes the probability of seeing k instances of “1” for k = 0, . . . , n.

This probability is exactly the quantity in Equation (5.1). In this context, Theorem 5.2.6

essentially says that the binomial distribution B(n, p) is heavily concentrated on an interval

[pn −O(
√
n), pn +O(

√
n)].

We can apply Theorem 5.2.6 and recover an exponentially increasing subsequence of length
√
n in the coordinates of any quantum state su�ciently close to  ⊗n where  is not a stabilizer

state.

Theorem 5.2.8. For any non-stabilizer qubit state  ∈ (C2
)
⊗n, there exists a constant � > 0

such that, for every integer n ≥ 2,

��( 
⊗n
) ≥

√
n

2 log2 n
.

Proof. We know from Lemma 5.2.3 that we can assume  = 1�
1+�↵�2 (e0+↵e1) for some �↵� > 1.

Let � = 1�
1+�↵�2 and � = ↵�

1+�↵�2 , so that  = �e0 + �e1.
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Let l ∈ N be the smallest integer for which �↵�l > 2, and let � = 2�↵�l . If  = T , then we can

take ↵ = 1√
2−1 and l = 1. Let

I = {q ∈ [n] ∶ ���2n − l�
√
n� ≤ q ≤ ���2n + l�

√
n�}

be the set of integers in the interval [���2n − l�
√
n�, ���2n + l�

√
n�]. Note that �I � ≥ 2l

√
n.

By Theorem 5.2.6, there exists a constant c̃ > 0 (which may depend on �↵�, but does not

depend on n) for which

�
n

q
���n−q�q �2 ≥ c̃�√n

for all q ∈ I. Let

c = �
1 − �

1 + �
�

2

c̃,

so that

�
1 − �

1 + �
�

2

�
n

q
���n−q�q �2 ≥ c�√n (5.2)

for all q ∈ I. Note that c only depends on �↵�.

For � ∈ (C2
)
⊗n a quantum state, define S ⊂ I to be the set of q ∈ I such that for all x ∈ Fn

2

of Hamming weight �x� = q, it holds that

� ⊗n
x
− �x� ≥ �

1 − �

1 + �
� ���n−q ���q. (5.3)

With that,

� ⊗n − ��2 ≥ �
q∈S
�
n

q
��

1 − �

1 + �
�

2

��n−q�q �2 ≥ �S� c√
n
. (5.4)

Define � =
√
cl and assume � ⊗n −�� < �. With that, Equation (5.4) implies �S� ≤ l

√
n. Since

�I � ≥ 2l
√
n, we obtain �I � S� ≥ l

√
n. By definition we can find for each q ∈ I �S some xq ∈ Fn

2

with �xq � = q such that

� ⊗n
xq
− �xq � ≤ �

1 − �

1 + �
� ���n−q ���q. (5.5)

Let now q, q′ ∈ I � S with q < q′ and pick xq, xq′ as in Equation (5.5). Then,

��xq′ �
��xq �

=

��xq′ −  
⊗n
xq′ +  xq′ �

��xq −  
⊗n
xq
+ xq �
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≥

� xq′ � − ��xq′ −  
⊗n
xq′ �

� xq � + ��xq − 
⊗n
xq
�

≥

(1 − 1−�
1+�)��n−q′�q′ �

(1 + 1−�
1+�)��n−q�q �

= ��↵�q
′−q,

where the second line is the triangle inequality, the third line follows from Equation (5.5)

and the fact that � x� = ��
n−�x�� �x�� for all x ∈ Fn

2 , and the fourth from the definition of �, �

and �, respectively. In particular, if q′ − q ≥ l, then
��xq′ ���xq � ≥ 2. Since �I � S� ≥ l�

√
n�, there

exists a subset Q ⊆ I � S of size �Q� ≥
√
n for which q′ − q ≥ l for all q, q′ ∈ Q with q < q′. In

particular, we see that � must have an exponentially increasing subsequence of length
√
n in

its coordinates. By Theorem 5.2.4,

�(�) ≥

√
n

2 log2(n)
.

This completes the proof.

5.2.4 Product states with exponential stabilizer rank and constant

approximate stabilizer rank

Recall that, up to global phase, there are only finitely many stabilizer states in (C2
)
⊗n.

In other words, there is a finite set S of stabilizer states such that for all stabilizer states

� ∈ (C2
)
⊗n there is some �̃ ∈ S with � ∝ �̃. This, in particular, implies the following simple

observation.

Lemma 5.2.9. For all r < 2n the set of quantum states  ∈ (C2
)
⊗n with �( ) ≤ r is a finite

union of proper linear subspaces of (C2
)
⊗n. In particular, a generic quantum state in (C2

)
⊗n

has stabilizer rank 2n.

Let  ∈ (C2
)
⊗n be a state with stabilizer rank 1, e.g.,  = e⊗n0 . By Lemma 5.2.9, any �-ball

around  will contain states with stabilizer rank 2n, that is, for any � > 0, there exist examples

of states with maximal possible stabilizer rank and minimal possible �-approximate stabilizer

rank. In this section, we will explicitly construct examples of quantum states with maximal

possible stabilizer rank. In Lemma 5.2.10, we use Theorem 5.2.4 to provide a simple proof

that a particular sequence of product states has stabilizer rank at least 2n

4n and �-approximate

stabilizer rank O(1). In Proposition 5.2.13, we use independent, field-theoretic techniques

to construct a di↵erent sequence of product states of stabilizer rank 2n and �-approximate

stabilizer rank 1. The following lemma will allow us to upper-bound the �-approximate

stabilizer rank of product states with exponentially increasing coordinates.
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Lemma 5.2.10. Let � > 0 be a positive real number. For a complex number ✓ ∈ C and natural

number n ∈ N, let

 ✓

n
=

�

�
�
��

�✓�2 − 1

�✓�2
n+1
− 1

n

�
i=1(e0 + ✓

2i−1e1) ∈ (C2
)
⊗n.

If �✓� > 1, then ��( 
✓

n
) = O(1). Furthermore, there exists a positive real number �� > 0 such

that for any ✓ ∈ C with �✓� > ��, it holds that ��( 
✓

n
) = 1 for all n ∈ N.

Proof. For each i ∈ {0,1, . . . ,2n − 1}, let

ci =
i

�

j=0
�✓�2j =

�✓�2i+2 − 1
�✓�2 − 1

, (5.6)

and observe that for any positive integer k, the tensor �✓
n,k
∈ (C2

)
⊗n obtained by setting all

but the k largest coordinates of  ✓

n
to zero satisfies

� ✓

n
−

�✓
n,k

��✓
n,k
�

�

2

= �
1

√
c2n−1

2n−1
�

i=0
✓iei −

1
√
c2n−1 − c2n−k−1

2n−1
�

i=2n−k
✓iei�

2

=
c2n−k−1
c2n−1 + �

1
√
c2n−1 −

1
√
c2n−1 − c2n−k−1 �

2

(c2n−1 − c2n−k−1)

=
c2n−k−1
c2n−1 + �

�

1 −
c2n−k−1
c2n−1 − 1�

2

,

=
�✓�−2k − �✓�−2n+1

1 − �✓�−2n+1 +

�
�
�
�
�
�
�

�

�
�
��

1 − �✓�−2k
1 − �✓�−2n+1 − 1

�
�
�
�
�
�
�

2

, (5.7)

where we have re-indexed the computational basis of (C2
)
⊗n as e0, . . . , e2n−1 for clarity in

this proof. Since �✓� > 1, the quantity Equation (5.7) can be set to less than �2 by appropriate

choice of k = O(1). Since �(�✓
n,k
) ≤ k, this shows that ��( 

✓

n
) = O(1). It is clear that we can

set k = 1 if �✓� is large enough. This completes the proof.

Note that, using Theorem 5.2.4 and Lemma 5.2.10, we can easily find a sequence of product

states of stabilizer rank at least 2n

4n and �-approximate stabilizer rank O(1).

Corollary 5.2.11. For any n ∈ N, let

 n =

�

3

42n − 1

n

�
i=1(e0 + 2

2i−1e1) ∈ (C2
)
⊗n (5.8)

be a quantum state. Then �( n) ≥
2n

4n and for any constant � > 0, ��( n) = O(1).
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Proof. For each n, the coordinates of  n form an exponentially increasing sequence of length

2n. It follows from Theorem 5.2.4 that �( n) ≥
2n

4n . The bound ��( n) = O(1) follows

from Lemma 5.2.10.

We can also apply field-theoretic techniques to construct a sequence of product states of

stabilizer rank 2n and �-approximate stabilizer rank 1. For that, recall the following basic

notions from field theory.

Definition 5.2.12. Let ✓ ∈ C be a complex number and K ⊂ C be a subfield. We call ✓

algebraic (over K) if it is the root of a polynomial with coe�cients in K. The minimal

possible degree of such a polynomial is called the degree of ✓. If there is no such polynomial,

we call ✓ transcendental over K.

It is clear that if ✓ ∈ C has degree n over K, then the set {1, . . . , ✓n−1} is linearly independent

over K, that is, spanK(1, . . . , ✓
n−1
) has dimension n as a K-vector space. We will be mostly

interested in the case K = Q and K = Q(i).

Proposition 5.2.13. Let � > 0 be a positive real number. If ✓ ∈ C is a complex number of

degree at least 2n over Q(i), then the state

 ✓

n
=

�

�
�
��

�✓�2 − 1

�✓�2
n+1
− 1

n

�
i=1(e0 + ✓

2i−1e1) ∈ (C2
)
⊗n

has stabilizer rank �( ✓

n
) = 2n. If it furthermore holds that �✓� > 1, then ��( 

✓

n
) = O(1).

Finally, there exists a positive real number �� such that for every ✓ ∈ C of degree at least 2n

over Q(i) for which �✓� > ��, it holds that �( ✓

n
) = 2n and ��( 

✓

n
) = 1.

Proof. Note that the coordinates of  ✓

n
are (up to the normalization factor) 1, ✓, . . . , ✓2

n−1.
By the degree assumption on ✓, the coordinates of  ✓

n
are linearly independent over Q(i). Let

 ✓

n
= ∑

r

i=1 ci�i be a stabilizer decomposition of  ✓

n
, where �i is a stabilizer state and ci ∈ C

for each i ∈ [r]. Since the coordinates of each �i are contained in Q(i), it follows that

spanQ(i){c1, . . . , cr} ⊇ {1, ✓, . . . , ✓2
n−1
}, (5.9)

so r ≥ 2n. This proves that �( ✓

n
) = 2n. The remaining statements follow from Lemma 5.2.10.

For example, to obtain a product state with stabilizer rank 2n and approximate stabilizer rank

O(1), one can choose any transcendental number ✓ ∈ C, e.g., the circumference-to-diameter

ratio ⇡. Note also that there are ✓ ∈ C with �✓� = 1 such that Proposition 5.2.13 applies. It is

worth mentioning that in this case, the coordinates of  ✓

n
contain no exponentially increasing

sequence, that is, Theorem 5.2.4 does not yield an immediate lower bound on �( ✓

n
).
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5.3 States with multiplicative stabilizer rank under the

tensor product

It is a standard fact that the stabilizer rank is sub-multiplicative under the tensor product,

in other words, �( ⊗ ) ≤ �( )2 for any quantum state  [Qas21, Section 2.1.3]. In [Qas21,

Section 4.4], it was remarked that there are no known examples of quantum states  – that

are not stabilizer states – for which equality holds. In this section, we explicitly construct

two-qubit states  for which �( ) = 2 and �( ⊗  ) = 4. The following observation tells us

that our example is, in that sense, minimal.

Lemma 5.3.1. For every quantum state  ∈ C2, we have �( ⊗2) ≤ 3. In particular, the

stabilizer rank of  is multiplicative if and only if  ∈ C2 is a stabilizer state, that is, �( ) = 1.

Proof. For a state  ∝ e0 +↵e1, it holds that  
⊗2
∝ e00 +↵(e01 + e10)+↵

2e11. This is already

a stabilizer rank decomposition of length 3.

For two-qubit quantum states, on the other hand, we can find examples where the stabilizer

rank is multiplicative. For that, the following simple lemma will be helpful.

Lemma 5.3.2. Consider the subsets

S0 = {0000}, S1 = {x ∈ F4
2 ∶ �x� = 1}, S2 = {0101,0110,1001,1010}

of F4
2 and let S = S0 ∪ S1 ∪ S2. Then, S does not contain an a�ne subspace of cardinality

larger than 4, and S0 ∪ S1 does not contain an a�ne subspace of cardinality larger than 2.

Proof. Note that the cardinality of an a�ne subspace in F4
2 is a power of 2. Assume A ⊂ S is

an a�ne subspace of cardinality 8. Then, it must contain at least three elements of S1 and,

consequently, an element of Hamming weight 3 – a contradiction. Similarly, if B ⊂ S0 ∪S1 is

an a�ne subspace with four elements, it must contain an element with Hamming weight at

least 2 – also a contradiction.

Equipped with Lemma 5.3.2, we are ready to construct quantum states with multiplicative

stabilizer rank.

Theorem 5.3.3. Consider the quantum state

 ↵ =
1

�

1 + 2�↵�2
(e00 + ↵(e01 + e10)) ∈ (C2

)
⊗2 (5.10)

where ↵ ∈ C× is a non-zero complex number. Then �( ↵) = 2, and for all but finitely many

↵, it holds that �( ⊗2
↵
) = 4. In particular, �( ⊗2

↵
) = 4 if ↵ is transcendental over Q.
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Proof. By definition, it is clear that  ↵ has stabilizer rank �( ↵) = 2.

Now, assume that

 ⊗2
↵
∝ (e00 + ↵(e01 + e10))

⊗2
= e00 + ↵

�

�
�

x∶�x�=1
ex
�

�
+ ↵2
(e01 + e10)

⊗2

has stabilizer rank at most 3. From the standard form of stabilizer states (Proposition 1.5.3),

we know that there are a�ne subspaces A↵

1 ,A
↵

2 ,A
↵

3 as well as Z4-valued functions f↵, g↵, h↵

and coe�cients �↵,�↵,�↵ ∈ C such that

(e00 + ↵(e01 + e10))
⊗2
= �↵( �

x∈A↵
1

if↵(x)ex) + �↵( �
x∈A↵

2

ig↵(x)ex) + �↵( �
x∈A↵

3

ih↵(x)ex). (5.11)

In particular, for any such ↵ ∈ C×, we can find aij ∈ {0,±1,±i} such that

A

�

�
�
�

�

�↵

�↵

�↵

�

�
�
�

�

=

�

�
�
�

�

1

↵

↵2

�

�
�
�

�

. (5.12)

where A is the matrix with entries aij . We will now show that for any choice of the aij , there

are only finitely many ↵ such that there exist �↵,�↵,�↵ satisfying Equation (5.12). Since

the ↵ij are taken from a finite set, this will imply that for only finitely many ↵, the quantum

state  ⊗2
↵

has stabilizer rank 3.

First, assume that we chose the aij in a way such that A is singular. Consequently, we can find

a non-zero vector µ ∈ Q(i)3 such that µtA = 0. Applying that to both sides of Equation (5.12)

yields

µ0 + µ1↵ + µ2↵
2
= 0.

Therefore there are at most two possible choices for ↵ for any such choice of the aij . Since

the µj are in Q(i), any such choice of ↵ must be algebraic over Q(i).

Now, assume that A is non-singular. In that case, Equation (5.12) can be read as

�

�
�
�

�

�↵

�↵

�↵

�

�
�
�

�

= A−1
�

�
�
�

�

1

↵

↵2

�

�
�
�

�

.

In particular, �↵, �↵ and �↵ are linearly independent polynomials in Q(i)[↵]. Recall the sets
S0, S1, S2 from Lemma 5.3.2. The set S = S0 ∪ S1 ∪ S2 is exactly the set of x ∈ F4

2 such that

 ⊗2
↵

has a non-zero coe�cient for ex. If there exists x ∈ A1 � S, then

if↵(x)�↵ + ��↵ + ��↵ = 0 (5.13)
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is a non-trivial polynomial equation that ↵ has to satisfy. Here, � is a placeholder for

some elements in {0,±1,±i}. Hence, in that case, there are only finitely many ↵ such that

�( ⊗2
↵
) = 3 can hold. Also note that the polynomial in Equation (5.13) is in Q(i)[↵]. Hence,

all ↵ satisfying Equation (5.13) must be algebraic over Q(i).

By symmetry, it remains to consider the case where Aj ⊂ S for all j = 1,2,3. Assume that

there exists x ∈ A1 ∩ S2 and y ∈ S2 �A1. In that case, Equation (5.11) implies that

if(x)�↵+ � �↵ + ��↵ = ↵2

� �↵ + ��↵ = ↵
2,

where we again write � as a placeholder for elements of {0,±1,±i}. In particular, subtracting

the two equations yields a non-zero polynomial in Q(i)[↵], of which ↵ is a zero. Again, this

can only hold for finitely many ↵ which are algebraic over Q(i). By symmetry, the same

holds for A2 and A3.

Finally, consider the case where for all j = 1,2,3 it holds that either Aj = S2 or Aj ∩ S2 = �.

If two of the Aj ’s are equal to S2, the third space would need to contain at least five elements

contradicting Lemma 5.3.2. Hence, we can assume without loss of generality that A1 = S2 and

A2 ∩S2 = A3 ∩S2 = �. But then, A2 and A3 must have cardinality at most 2 by Lemma 5.3.2

since they are a�ne spaces contained in S0 ∪S1. This is a contradiction to A2 ∪A3 ⊃ S0 ∪S1

since �S0 ∪ S1� = 5.

Summarizing, we have seen that �( ⊗2
↵
) = 3 can only hold for finitely many ↵. Moreover,

we have seen that in all such cases, ↵ must be algebraic over Q(i). Noticing that since the

imaginary unit i is algebraic over Q any ↵ ∈ C is algebraic over Q if and only if it is algebraic

over Q(i) finishes the proof.

5.A Motivation behind stabilizer rank

In this appendix, we will motivate the definition of stabilizer rank in more depth and explain

how it relates to the simulation cost of quantum circuits. In particular, we will review in

detail how the stabilizer rank of a quantum state quantifies the classical simulation cost

of applying Cli↵ord gates and computational basis measurements to that state and review

how the stabilizer rank of n copies of the so-called T -state quantifies the simulation cost of

Cli↵ord+T circuits utilizing n T -gates. We use the standard graphical notation for quantum

circuits which we already saw in Section 1.5: Fixing some natural numbers m ≤ k, we depict

with

122



 

�
������������
�
������������
�

U

⋮ ⋮

⋮

(5.14)

a circuit applying a k-qubit unitary U to an input state  ∈ (C2
)
⊗k and measuring an output

register consisting of m qubits in computational basis. Without loss of generality, we will

always take the first m qubits as output register. In the following, the number of qubits in a

circuit as in Equation (5.14) will always be k, and the number of measured qubits m unless

specified di↵erently.

Let us start by recalling some basic notions of the simulation of quantum circuits. Simulating

a quantum circuit as in Equation (5.14) with a k-qubit input state  weakly means to draw

m classical bits according to the output distribution of the circuit. Simulating the circuit

strongly, on the other hand, means to be able to compute the probability of a bitstring

x1 . . . xm being the output of the circuit. By Born’s rule, this probability is given by

P (x1 . . . xm) =  
∗U †
�⇧x1...xm ⊗ 1

⊗k−m
2 �U 

where ⇧x1...xm is the orthogonal projection onto span{ex1 ⊗ ⋅ ⋅ ⋅ ⊗ exm}.

Another standard notion of simulation is the so-called ✏-strong simulation. For a bitstring

x1 . . . xm, the task is to approximate the output probability P (x1, . . . , xm) up to relative error

✏. More precisely, fix a relative error ✏. Given a bitstring x1 . . . xm, we then want to get an

output ⇠ such that

(1 − ✏)P (x1 . . . xm) ≤ ⇠ ≤ (1 + ✏)P (x1 . . . xm)

where P is the output distribution of the circuit.

Recall the (a�ne) Cli↵ord gates H,S, and CNOT from Section 1.5. We will later also need

the controlled Z gate defined via

CZ = (12 ⊗H)CNOT (12 ⊗H) =

�

�
�
�
�
�

�

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 −1

�

�
�
�
�
�

�

.

The Cli↵ord unitaries U ∈ Ck are exactly those unitaries composed from H,S,CNOT, and

global phase gates only. As done in Section 1.5, one can equivalently define the group Ck as

the normalizer of the k-qubit Pauli group Pk (also defined in Section 1.5 ): Conjugating a

Pauli unitary with a Cli↵ord unitary yields another Pauli unitary [Got97].
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As a consequence of this fact, we can work very e�ciently on certain quantum states using

the stabilizer formalism, which was introduced in [Got97]. We will now briefly recall some

basics about the stabilizer formalism and refer the reader to [NC00] for an in-depth discussion

and detailed proofs. To start, note that e⊗k0 is, up to global phase, the unique quantum state

invariant under applying (or stabilized by) Zi for all i ∈ [k], where Zi is the tensor product

of a Pauli Z on the i’th qubit with identities on all other qubits. In fact, one can show

that if P1, . . . , Pk are independent Pauli unitaries (that is, none of them is a product of

the others), and the group generated by them does not contain −1⊗k2 , then there exists up

to global phase a unique state � stabilized by P1, . . . , Pk (see [NC00, Chapter 10.5.1] for

details). It turns out that if a state � can be uniquely specified as above, the same holds

for the state resulting from applying a Cli↵ord unitary U to �: In fact, one can show that

the Pauli unitaries UP1U
†, . . . , UPkU

† are independent again, do not generate −1⊗k2 and it

is easy to see that they stabilize U� (see [NC00, Chapter 10.5.2] for details). Conversely, for

every state of the form Ue⊗k0 , there are k independent Paulis stabilizing it, see [Gro06] for

a proof. Summarizing, we see that the states of the form � = Ue⊗k0 for a Cli↵ord unitary U

are precisely the ones uniquely specified up to global phase by k independent Pauli operators

stabilizing it. This explains why we defined a stabilizer state as a state of the form Ue⊗k0

where U is a Cli↵ord unitary in Section 1.5.

The celebrated Gottesman-Knill theorem states that a circuit as in Equation (5.14) where

U is a Cli↵ord unitary can be simulated e�ciently if the input state is a stabilizer state

� ∈ (C2
)
⊗k.

Theorem 5.A.1 (Gottesman, Knill [Got98]). Let � be a k-qubit stabilizer state specified

by k independent Paulis that stabilize it. A quantum circuit U composed only from Cli↵ord

gates acting on � followed by measuring an output register consisting of m ≤ k qubits in the

computational basis can be e�ciently simulated both strongly and weakly. More precisely,

the complexity of simulating the quantum computation scales quadratically in the number of

qubits and linearly in the number of Cli↵ord gates and measurements applied.

A proof of Theorem 5.A.1 can be found in [NC00, Section 10.5.4]. We mention that one

essentially has to update the Pauli stabilizers gate-by-gate, which yields k independent Paulis

stabilizing U�. One can read in detail in [NC00, Section 10.5.3] how one can then e�ciently

obtain the outcome probabilities from this. It is also worth mentioning that the theorem holds

more generally if we measure any observable from the Pauli group, not only for measuring in

the computational basis.

Note that if a quantum state � ∈ (C2
)
⊗k is stabilized by a Pauli unitary P , all states of the

form ei✓� for ✓ ∈ R are also stabilized by P . While a global phase does not influence the

outcome probabilities of computational basis measurements, it changes the amplitudes of the

state. This means that Theorem 5.A.1, as stated above, does not let us calculate amplitudes

but only outcome probabilities. In [BBC+19], the authors describe a way of keeping track of

the global phase: They define a classical data format for stabilizer states which they call the
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CH-form. We now briefly describe their approach and refer to [BBC+19] for more details.

Another in-depth discussion can be found in [Qas21, Section 2.1.4] from where we also borrow

our notation. Essentially, one can show that every stabilizer state � is of the form

� = �(w,U,h, s) = wUH(h)(es1 ⊗ ⋅ ⋅ ⋅ ⊗ esk)

where w ∈ C, s, h ∈ Fk

2 and U is a Cli↵ord unitary composed from gates CNOT,CZ and S

only. The unitary H(h) is a tensor product of H gates acting on the qubits i such that hi = 1

and 12 elsewhere. As in the proof of Theorem 5.A.1, one can now simulate a circuit built from

Cli↵ord gates only by updating w,U,h and s gate-by-gate. The authors show in [BBC+19]
that this update can be done with computational cost at most quadratic in k: Updating

the CH form after applying a global phase has constant computational cost, a CNOT , CZ,

or S has linear cost in k, and a Hadamard gate has quadratic cost in k. Moreover, they

show that given a stabilizer state � ∈ (C2
)
⊗k in CH-form, one can calculate the amplitude

(e∗
x1
⊗ ⋅ ⋅ ⋅ ⊗ e∗

xk
)� with computational cost quadratic in the number of qubits. Here, we again

used the notation e∗
x
for the dual of ex. Consequently, one can calculate the overlap

�(w,U,h, s)∗�(w′, U ′, h′, s′) = w ⋅w′ ⋅ (e∗
s1
⊗ ⋅ ⋅ ⋅ ⊗ e∗

sk
)H(h)U †�(w′, U ′, h′, s′)

of two stabilizer states given in CH-form with computational cost at most cubic in the number

of qubits by first updating the CH-form of H(h)U †�(w′, U ′, h′, s′) and then calculating the

overlap with (es1 ⊗ ⋅ ⋅ ⋅ ⊗ esk). Finally, for a stabilizer state �(w,U,h, s) given in CH-form,

an integer m ≤ k, and an orthogonal projector ⇧x1,...,xm onto span{ex1 ⊗ ⋅ ⋅ ⋅ ⊗ exm} for some

bitstring x1 . . . xm, one can calculate the CH-form of the stabilizer state

�⇧x1,...,xm ⊗ 1
⊗k−m
2 ��(w,U,h, s)

with computational cost quadratic in k.

With that, we can now understand the importance of the stabilizer rank as a measure of the

computational cost of strong simulation of quantum circuits with general input states. Say,

we want to strongly simulate a quantum circuit as in Equation (5.14) where  is a k-qubit

quantum state and U is a Cli↵ord unitary. Say furthermore that we can decompose

 =
r

�

i=1
ci�i (5.15)

where the �i are stabilizer states each specified in CH-form and the ci are complex numbers.

Given a bitstring x1, . . . , xm, we want to calculate

P (x1, . . . , xm) =  
∗U †
(⇧x1,...,xm ⊗ 1)U =

r

�

i,j=1
ci ⋅ cj ⋅ �

∗
i
U †
�⇧x1,...,xm ⊗ 1

⊗k−m
2 �U�j .

We can do so by first updating the CH-form of U�i and (⇧x1,...,xm ⊗1
⊗k−m
2 )U�j followed by

calculating r2 overlaps between stabilizer states. Since for each of the summands, the compu-
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tational cost is linear in the number of gates of which U is composed and cubic in the number

of qubits, the whole cost is cubic in the number of qubits, linear in the number of Cli↵ord

gates and quadratic in the number of terms r appearing in the stabilizer decomposition.

As already done in Section 1.5, we call the minimal r such that there exists a decomposition

as in equation Equation (5.15) the stabilizer rank of  and denote it �( ). It follows that

lower bounds on �( ) imply lower bounds on the complexity of simulating a circuit of the

form Equation (5.14) using the approach we have just described. On the other hand, finding

upper bounds on �( ) by providing a decomposition as in Equation (5.15) can give us better

simulation algorithms for circuits of the form Equation (5.14).

For a discussion of a weak simulation protocol and an ✏-strong simulation protocol making

use of stabilizer rank decompositions, see [BBC+19, Section 4]. We mention that there,

the authors deduce that the computational cost of weak simulation scales linearly in the

approximate stabilizer rank of  and polynomially in the number of qubits and the number

of gates applied and that the cost of ✏-strong simulation scales linearly in the exact stabilizer

rank of  and polynomially in the number of qubits and the number of gates applied.

As an application of the connection between the stabilizer rank of a state  and the classical

simulation cost of applying Cli↵ord circuits and computational basis measurements to  , we

will now see how low-rank stabilizer decompositions of n copies of the so-called T -state can

also be used to simulate circuits built from a universal gate set. This strategy has been used,

for instance, in [BG16]. For simplicity, we will only consider the case where all qubits in the

circuit in Equation (5.14) are measured in computational basis, that is, the size m of the

output register is equal to the number of qubits k.

Recall that a gate set G is called universal if every unitary U on k qubits can be approximated

arbitrarily well by unitaries UG composed solely of gates in G. It is well-known that the set

of Cli↵ord gates is not universal, but, together with the so-called T -gate

T =
�

�

1 0

0 ei
⇡
4

�

�
,

they form a universal gate set [BMP+99].

Under the assumption that our quantum device can only prepare a computational basis state

e⊗k0 , apply Cli↵ord+T operations and measure the qubits in computational basis, the T -gates

appear, by the preceding discussion, to be responsible for the potential superiority of the

quantum device. It is therefore an interesting question how e�ciently we can simulate a

quantum computation on k qubits which, in addition to Cli↵ord gates, uses n single-qubit

T -gates.
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A standard way of approaching this question is via the study of magic state injection [BK05].

For this, we note that for the magic state T = 1√
2
�e0 + e

i
⇡
4 e1�, applying a T -gate to any qubit

state  is the same as applying the circuit

 ● S

T

(5.16)

where the double wire denotes a classical control : The S gate on the first system is applied

if and only if the outcome of the computational basis measurement on the second system is

1. Therefore, any k-qubit quantum circuit

Ve⊗k0

�
��
�
��
�

⋮ ⋮

(5.17)

where V is composed of Cli↵ord gates and n T -gates, can be implemented with a circuit

composed from Cli↵ord gates and classical controls acting on the state e⊗k0 ⊗ T⊗n by replac-

ing each T -gate with the gadget in Equation (5.16). By postselecting outcomes 0 for each

measurement on a T -state in this circuit, we see that

V e⊗k0 = 2
n�2
�1⊗k ⊗ (e∗0)⊗n�U �e⊗k0 ⊗ T⊗n�

where U is composed of Cli↵ord gates only (more precisely, the Cli↵ord gates from V plus

an additional CNOT gate for each injected T -state).

With that, it follows that the probability of outcome x1, . . . , xk in the circuit in Equa-

tion (5.17) is given by �px1...xk �
2, where

px1,...,xk = �e
∗
x1
⊗ ⋅ ⋅ ⋅ ⊗ e∗

xk
�V e⊗k0

= 2n�2 �e∗
x1
⊗ ⋅ ⋅ ⋅ ⊗ e∗

xk
⊗ (e∗0)⊗n�U �(e0)⊗k ⊗ T⊗n� . (5.18)

Note that if there are stabilizer states �1, . . . ,�r and complex numbers c1, . . . , cr ∈ C such

that  = ∑r

i=1 ci�i, then the quantity in Equation (5.18) decomposes by linearity as

px1...xk = 2
n�2 r

�

i=1
ci �e

∗
x1
⊗ ⋅ ⋅ ⋅ ⊗ e∗

xk
⊗ (e∗0)⊗n�U �(e0)⊗k ⊗ �i� . (5.19)

All summands in Equation (5.19) can be calculated e�ciently using the CH-form as discussed

before: They are amplitudes of the outcome of a quantum circuit composed of Cli↵ord gates

acting on a stabilizer state.
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Summarizing, we saw that every stabilizer decomposition of T⊗n yields a way to strongly

simulate Cli↵ord+T circuits consisting of n T -gates. The complexity of this simulation scales

linearly in the number of terms appearing in the stabilizer decomposition and polynomially

in all other parameters. With this, it follows that finding decompositions of T⊗n into few

stabilizer states can reduce the complexity of simulating such circuits. Lower bounds on

�(T⊗n), on the other hand, translate directly into lower bounds on the cost of simulating

quantum circuits using these methods, namely, stabilizer decompositions and CH-forms.
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[Blä13] M. Bläser. Fast Matrix Multiplication. Number 5 in Graduate Surveys. Theory
of Computing Library, 2013. doi:10.4086/toc.gs.2013.005.

[BLG21] A. Bernardi, C. De Lazzari, and F. Gesmundo. Dimension of Tensor Net-
work Varieties. Comm. Cont. Math., page 2250059, 2021. doi:10.1142/
S0219199722500596.

[BLR80] D. Bini, G. Lotti, and F. Romani. Approximate Solutions for the Bilinear
Form Computational Problem. SIAM Journal on Computing, 9(4):692–697,
1980. doi:10.1137/0209053.

[BMP+99] P. O. Boykin, T. Mor, M. Pulver, V. Roychowdhury, and F. Vatan. On
universal and fault-tolerant quantum computing: A novel basis and a new
constructive proof of universality for Shor’s basis. In Proceedings of the
40th Annual Symposium on Foundations of Computer Science, 1999. doi:
10.1109/SFFCS.1999.814621.

[Bor91] A. Borel. Linear Algebraic Groups. Graduate Texts in Mathematics. Springer,
New York, 1991. doi:10.1007/978-1-4612-0941-6.

[BSS16] S. Bravyi, G. Smith, and J.A. Smolin. Trading classical and quantum compu-
tational resources. Phys. Rev. X, 6:021043, 2016. doi:10.1103/PhysRevX.6.
021043.

[CCD+10] L. Chen, E. Chitambar, R. Duan, Z. Ji, and A. Winter. Tensor rank and
stochastic entanglement catalysis for multipartite pure states. Phys. Rev. Lett.,
105:200501, 2010. doi:10.1103/PhysRevLett.105.200501.

[CDS08] E. Chitambar, R. Duan, and Y. Shi. Tripartite entanglement transforma-
tions and tensor rank. Phys. Rev. Lett., 101:140502, 2008. doi:10.1103/
PhysRevLett.101.140502.

[CdTP06] M. F. Cornelio and A. F. R. de Toledo Piza. Classification of tripartite en-
tanglement with one qubit. Phys. Rev. A, 73:032314, 2006. doi:10.1103/
PhysRevA.73.032314.

[CF18] L. Chen and S. Friedland. The tensor rank of tensor product of two three-

130

https://doi.org/10.1007/978-3-662-03338-8
https://doi.org/10.1007/s00209-006-0008-0
https://doi.org/10.1007/s00209-006-0008-0
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1103/PhysRevLett.116.250501
https://doi.org/10.1007/BF02575865
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.1103/PhysRevA.71.022316
https://doi.org/10.4086/toc.gs.2013.005
https://doi.org/10.1142/S0219199722500596
https://doi.org/10.1142/S0219199722500596
https://doi.org/10.1137/0209053
https://doi.org/10.1109/SFFCS.1999.814621
https://doi.org/10.1109/SFFCS.1999.814621
https://doi.org/10.1007/978-1-4612-0941-6
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevX.6.021043
https://doi.org/10.1103/PhysRevLett.105.200501
https://doi.org/10.1103/PhysRevLett.101.140502
https://doi.org/10.1103/PhysRevLett.101.140502
https://doi.org/10.1103/PhysRevA.73.032314
https://doi.org/10.1103/PhysRevA.73.032314


qubit w states is eight. Linear Algebra and its Applications, 543:1–16, 2018.
doi:10.1016/j.laa.2017.12.015.

[CFS+16] S. X. Cui, M. H. Freedman, O. Sattath, R. Stong, and G. Minton. Quan-
tum max-flow/min-cut. J. Math. Phys., 57(6):062206, 2016. doi:10.1063/1.
4954231.

[CFTZ22] M. Christandl, O. Fawzi, H. Ta, and J. Zuiddam. Larger Corner-Free Sets from
Combinatorial Degenerations. In 13th Innovations in Theoretical Computer
Science Conference, volume 215, page 48:1–48:20, 2022. doi:10.4230/LIPIcs.
ITCS.2022.48.

[CFW10] D. Calegari, M. Freedman, and K. Walker. Positivity of the universal pairing
in 3 dimensions. Journal of the American Mathematical Society, 23:107–188,
2010. doi:10.1090/S0894-0347-09-00642-0.

[CGFW21] M. Christandl, F. Gesmundo, D. Stilck França, and A. H. Werner. Optimization
at the boundary of the tensor network variety. Phys. Rev. B, 103(19):195139,
2021. doi:10.1103/PhysRevB.103.195139.

[CGL+21] A. Conner, F. Gesmundo, J. M. Landsberg, E. Ventura, and Y. Wang. Towards
a geometric approach to Strassen’s asymptotic rank conjecture. Collect. Math.,
72(1):63–86, 2021. doi:10.1007/s13348-020-00280-8.

[CGLS22] M. Christandl, F. Gesmundo, V. Lysikov, and V. Ste↵an. Partial degeneration
of tensors. arXiv preprint, math.AG/arXiv:2212.14095, 2022. doi:10.48550/
arXiv.2212.14095.

[CHL19] A. Conner, A. Harper, and J. M. Landsberg. New lower bounds for matrix
multiplication and the 3x3 determinant. arXiv preprint, math.AG/1911.07981,
2019. doi:10.48550/arxiv.1911.07981.

[CJZ18] M. Christandl, A. K. Jensen, and J. Zuiddam. Tensor rank is not multiplicative
under the tensor product. Linear Algebra and its Applications, 543:125–139,
2018. doi:10.1016/j.laa.2017.12.020.

[CKN+16] G. Kin-Lic Chan, A. Keselman, N. Nakatani, Z. Li, and S. R. White. Matrix
product operators, matrix product states, and ab initio density matrix renor-
malization group algorithms. The Journal of Chemical Physics, 145(1):014102,
2016. doi:10.1063/1.4955108.

[CLVW20] M. Christandl, A. Lucia, P. Vrana, and A. H. Werner. Tensor network repre-
sentations from the geometry of entangled states. SciPost Phys., 9:42, 2020.
doi:10.21468/SciPostPhys.9.3.042.

[CMS10] E. Chitambar, C. A. Miller, and Y. Shi. Matrix pencils and entanglement
classification. Journal of Mathematical Physics, 51(7):072205, 2010. doi:10.
1063/1.3459069.

[CS11] G. K.-L. Chan and S. Sharma. The Density Matrix Renormalization Group
in Quantum Chemistry. Annual Review of Physical Chemistry, 62(1):465–481,
2011. doi:10.1146/annurev-physchem-032210-103338.

[CVZ18] M. Christandl, P. Vrana, and J. Zuiddam. Universal points in the asymptotic

131

https://doi.org/10.1016/j.laa.2017.12.015
https://doi.org/10.1063/1.4954231
https://doi.org/10.1063/1.4954231
https://doi.org/10.4230/LIPIcs.ITCS.2022.48
https://doi.org/10.4230/LIPIcs.ITCS.2022.48
https://doi.org/10.1090/S0894-0347-09-00642-0
https://doi.org/10.1103/PhysRevB.103.195139
https://doi.org/10.1007/s13348-020-00280-8
https://doi.org/10.48550/arXiv.2212.14095
https://doi.org/10.48550/arXiv.2212.14095
https://doi.org/10.48550/arxiv.1911.07981
https://doi.org/10.1016/j.laa.2017.12.020
https://doi.org/10.1063/1.4955108
https://doi.org/10.21468/SciPostPhys.9.3.042
https://doi.org/10.1063/1.3459069
https://doi.org/10.1063/1.3459069
https://doi.org/10.1146/annurev-physchem-032210-103338


spectrum of tensors. New York, NY, USA, 2018. Association for Computing
Machinery. doi:10.1145/3188745.3188766.

[CW81] D. Coppersmith and S. Winograd. On the asymptotic complexity of matrix
multiplication. In 22nd Annual Symposium on Foundations of Computer Sci-
ence (sfcs 1981), pages 82–90, 1981. doi:10.1109/SFCS.1981.27.

[CW87] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pro-
gressions. In Proceedings of the Nineteenth Annual ACM Symposium on Theory
of Computing, page 1–6, 1987. doi:10.1145/28395.28396.

[CWZ21] S. Cheng, L. Wang, and P. Zhang. Supervised learning with projected entangled
pair states. Phys. Rev. B, 103(12):125117, 2021. doi:10.1103/PhysRevB.103.
125117.

[DDM03] J. Dehaene and B. De Moor. Cli↵ord group, stabilizer states, and linear and
quadratic operations over GF(2). Phys. Rev. A, 68:042318, 2003. doi:10.
1103/PhysRevA.68.042318.

[DKH21] M. Drton, S. Kuriki, and P. Ho↵. Existence and uniqueness of the Kronecker co-
variance MLE. Ann. Stat., 49(5):2721–2754, 2021. doi:10.1214/21-AOS2052.

[DM17] H. Derksen and V. Makam. Polynomial degree bounds for matrix semi-
invariants. Adv. Math., 310:44–63, 2017. doi:10.1016/j.aim.2017.01.018.

[DM21] H. Derksen and V. Makam. Maximum Likelihood Estimation for Matrix Normal
Models via Quiver Representations. SIAM J. Appl. Alg. Geom., 5(2):338–365,
2021. doi:10.1137/20M1369348.

[DMS22] C. De Lazzari, H. J. Motwani, and T. Seynnaeve. The linear span of uniform
matrix product states. SIGMA, 18:099 – 117, 2022. doi:10.3842/SIGMA.2022.
099.

[DMW22] H. Derksen, V. Makam, and M. Walter. Maximum likelihood estimation for
tensor normal models via castling transforms. Forum of Mathematics, Sigma,
10:e50, 2022. doi:10.1017/fms.2022.37.

[DP89] D. E. Deutsch and R. Penrose. Quantum computational networks. Proceed-
ings of the Royal Society of London. A. Mathematical and Physical Sciences,
425(1868):73–90, 1989. doi:10.1098/rspa.1989.0099.

[DVC00] W. Dür, G. Vidal, and J. I. Cirac. Three qubits can be entangled in two
inequivalent ways. Phys. Rev. A, 62:062314, 2000. doi:10.1103/PhysRevA.
62.062314.

[DW00] H. Derksen and J. Weyman. Semi-invariants of quivers and saturation for
Littlewood-Richardson coe�cients. J. AMS, 13(3):467–479, 2000. doi:10.
1090/S0894-0347-00-00331-3.

[DW17] H. Derksen and J. Weyman. An introduction to quiver representations, volume
184 of Graduate Studies in Mathematics. AMS, Providence, 2017. doi:10.
1090/gsm/184.

[DZ01] M. Domokos and A. N. Zubkov. Semi-invariants of quivers as determinants.
Transform. Groups, 6(1):9–24, 2001. doi:10.1007/BF01236060.

132

https://doi.org/10.1145/3188745.3188766
https://doi.org/10.1109/SFCS.1981.27
https://doi.org/10.1145/28395.28396
https://doi.org/10.1103/PhysRevB.103.125117
https://doi.org/10.1103/PhysRevB.103.125117
https://doi.org/10.1103/PhysRevA.68.042318
https://doi.org/10.1103/PhysRevA.68.042318
https://doi.org/10.1214/21-AOS2052
https://doi.org/10.1016/j.aim.2017.01.018
https://doi.org/10.1137/20M1369348
https://doi.org/10.3842/SIGMA.2022.099
https://doi.org/10.3842/SIGMA.2022.099
https://doi.org/10.1017/fms.2022.37
https://doi.org/10.1098/rspa.1989.0099
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1103/PhysRevA.62.062314
https://doi.org/10.1090/S0894-0347-00-00331-3
https://doi.org/10.1090/S0894-0347-00-00331-3
https://doi.org/10.1090/gsm/184
https://doi.org/10.1090/gsm/184
https://doi.org/10.1007/BF01236060


[EB01] J. Eisert and H. J. Briegel. Schmidt measure as a tool for quantifying multipar-
ticle entanglement. Phys. Rev. A, 64:022306, 2001. doi:10.1103/PhysRevA.
64.022306.

[ECP10] J. Eisert, M. Cramer, and M. B. Plenio. Colloquium: Area laws for the entangle-
ment entropy. Rev. Mod. Phys., 82:277–306, 2010. doi:10.1103/RevModPhys.
82.277.

[EFS56] P. Elias, A. Feinstein, and C. Shannon. A note on the maximum flow through a
network. IRE Transactions on Information Theory, 2(4):117–119, 1956. doi:
10.1109/TIT.1956.1056816.

[EG17] J. Ellenberg and D. Gijswijt. On large subsets of Fn

q
with no three-term

arithmetic progression. Annals of Mathematics, 185(1):339 – 343, 2017. doi:
10.4007/annals.2017.185.1.8.

[EGOW17] K. Efremenko, A. Garg, R. Oliveira, and A. Wigderson. Barriers for rank
methods in arithmetic complexity. arXiv preprint, cs.CC/1710.09502, 2017.
doi:10.48550/arxiv.1710.09502.

[EPR35] A. Einstein, B. Podolsky, and N. Rosen. Can quantum-mechanical description
of physical reality be considered complete? Phys. Rev., 47:777–780, 1935.
doi:10.1103/PhysRev.47.777.

[Eve17] O. Evenbly. Hyperinvariant Tensor Networks and Holography. Phys. Rev. Lett.,
119:141602, 2017. doi:10.1103/PhysRevLett.119.141602.

[Fel91] W. Feller. An Introduction to Probability Theory and Its Applications, volume 1.
John Wiley and Sons, third edition, 1991.

[FF56] L. R. Ford and D. R. Fulkerson. Maximal Flow Through a Network. Canadian
Journal of Mathematics, 8:399–404, 1956. doi:10.4153/CJM-1956-045-5.

[FH91] W. Fulton and J. Harris. Representation Theory: a First Course, volume 129
of Graduate Texts in Mathematics. Springer, New York, 1991. doi:10.1007/
978-1-4612-0979-9.

[FNW92] M. Fannes, B. Nachtergaele, and R. F. Werner. Finitely correlated states on
quantum spin chains. Communications in Mathematical Physics, 144(3):443–
490, 1992. URL: https://doi.org/10.1007%2Fbf02099178.

[Fri20] T. Fritz. Abstract vergleichsstellensätze for preordered semifields and semirings
I. arXiv preprint, math.RA/2003.13835, 2020. doi:10.48550/arXiv.2003.
13835.

[FSC+18] E. S. Fried, N. P. D. Sawaya, Y. Cao, I. D. Kivlichan, J. Romero, and
A. Aspuru-Guzik. qTorch: The quantum tensor contraction handler. PloS
one, 13(12):e0208510, 2018. doi:10.1371/journal.pone.0208510.

[Gan59] F. R. Gantmacher. The theory of matrices. Vols. 1, 2. Chelsea Publishing Co.,
New York, 1959.

[GLS22] F. Gesmundo, V. Lysikov, and V. Ste↵an. Quantum max-flow in the bridge
graph. arXiv preprint, quant-ph/2212.09794, 2022. doi:10.48550/arXiv.
2212.09794.

133

https://doi.org/10.1103/PhysRevA.64.022306
https://doi.org/10.1103/PhysRevA.64.022306
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1103/RevModPhys.82.277
https://doi.org/10.1109/TIT.1956.1056816
https://doi.org/10.1109/TIT.1956.1056816
https://doi.org/10.4007/annals.2017.185.1.8
https://doi.org/10.4007/annals.2017.185.1.8
https://doi.org/10.48550/arxiv.1710.09502
https://doi.org/10.1103/PhysRev.47.777
https://doi.org/10.1103/PhysRevLett.119.141602
https://doi.org/10.4153/CJM-1956-045-5
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1007/978-1-4612-0979-9
https://doi.org/10.1007%2Fbf02099178
https://doi.org/10.48550/arXiv.2003.13835
https://doi.org/10.48550/arXiv.2003.13835
https://doi.org/10.1371/journal.pone.0208510
https://doi.org/10.48550/arXiv.2212.09794
https://doi.org/10.48550/arXiv.2212.09794


[GLW18] F. Gesmundo, J. M. Landsberg, and M. Walter. Matrix product states and the
quantum max-flow/min-cut conjectures. J. Math. Phys., 55(10):102205, 2018.
doi:10.1063/1.5026985.

[Got97] D. Gottesman. Stabilizer codes and quantum error correction. PhD thesis,
California Institute of Technology, 1997.

[Got98] D. Gottesman. The Heisenberg representation of quantum computers. In 22nd
International Colloquium on Group Theoretical Methods in Physics, pages 32–
43, 1998. arXiv:quant-ph/9807006.

[Gri78] D. Grigoriev. Multiplicative complexity of a pair of bilinear forms and of the
polynomial multiplication. In MFCS, volume 64 of Lecture Notes in Computer
Science, page 250–256. Springer, 1978. doi:10.1007/3-540-08921-7_72.

[Gro06] D. Gross. Hudson’s theorem for finite-dimensional quantum systems. Journal
of Mathematical Physics, 47(12):122107, 2006. doi:10.1063/1.2393152.

[GS] D. R. Grayson and M. E. Stillman. Macaulay2, a software system for research
in algebraic geometry - v.1.17.1. Available at http://www.math.uiuc.edu/
Macaulay2/.

[Has07] M. B. Hastings. An area law for one-dimensional quantum systems. Journal of
Statistical Mechanics: Theory and Experiment, 2007(08):P08024, 2007. doi:
10.1088/1742-5468/2007/08/p08024.

[Has17] M. B. Hastings. The Asymptotics of Quantum Max-Flow Min-Cut. Comm. in
Math. Ph., 351(1):387–418, 2017. doi:10.1007/s00220-016-2791-8.

[HEB04] M. Hein, J. Eisert, and H. J. Briegel. Multiparty entanglement in graph states.
Phys. Rev. A, 69:062311, 2004. doi:10.1103/PhysRevA.69.062311.

[Hil93] D. Hilbert. Ueber die vollen invariantensysteme. Mathematische Annalen,
42:313–373, 1893. URL: http://eudml.org/doc/157652.

[HNQ+16] P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter, and Z. Yang. Holo-
graphic duality from random tensor networks. Journal of High Energy Physics,
2016(11), 2016. doi:10.1007/JHEP11(2016)009.

[HP18] J. Hauschild and F. Pollmann. E�cient numerical simulations with Tensor
Networks: Tensor Network Python (TeNPy). SciPost Physics Lecture Notes,
2018. doi:10.21468/SciPostPhysLectNotes.5.
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