
RECURSIVE AND COMPUTABLE FUNCTIONS

0. Preliminary set-theoretic notions

Before we begin, let us introduce the following convenient definitions from set theory1: We let

0 “ H, and in general the natural number n is defined to be

n “ t0, . . . , n´ 1u.

So in particular, 1 “ t0u “ tHu, 2 “ t0, 1u “ tH, tHuu, 3 “ t0, 1, 2u, etc. We let

ω “ t0, 1, 2, . . . , n, . . .u,

that is, ω is the set of non-negative integers. The set ω is often denoted by N or N0 in other math

classes.

Ordered tuples of elements are denotes pa1, . . . , anq or xa1, . . . , any. The unusual-looking angled

parenthesis are used as an alternative simply to avoid a possible future confusion with the (rounded)

parenthesis that are part of our formal language.

If A1, . . . , An are sets (n of them), then recall that the Cartesian product is defined as

A1 ˆ ¨ ¨ ¨ ˆAn “ txa1, . . . , any : a1 P A1, . . . , an P Anu,

that is, the Cartesian product A1 ˆ ¨ ¨ ¨ ˆ An consists of all n-tuples xa1, . . . , any where ai P Ai for

all 1 ď i ď n. For a set A we let An denote the n-fold Cartesian product of A with itself. A1 is of

course just A, and so we naturally identify a P A with xay.

In this course, a relation is a subset R of some (finite) Cartesian product of sets. To be precise,

an n-ary relation is a subset R Ď A1ˆ ¨ ¨ ¨ ˆAn of some n-fold cartesian product. One often writes

Rpx1, . . . , xnq rather than xx1, . . . , xny P R; if this is the case then we say that x1, . . . , xn are related

by R or that R holds of xx1, . . . xny. If R Ď An for some fixed set A, then we call R an n-ary

relation on A.

Let A be a set. A sequence of length n P ω in A is a function s : nÑ A. It is natural to identify

An with the set ts : nÑ A : s is a functionu. We let

Aăω “
ď

nPω

An;

that is, Aăω is the set the set of all finite sequences in A. For s P Aăω, we let `hpsq “ dompsq, the

length of s.

For any function f : B Ñ A, where B and A are some sets, and a subset B0 Ď B, we let

f æB0 denote the restriction of f to B0, that is, f æB0 is the function with domain B0 defined by

pf æB0qpxq “ fpxq for all x P B0.

1Until further notice, we will use sets näıvely in this course, that is, sets are treated just like they are in other

math course you’ve taken.

1

2 LECTURE 1: RECURSIVE AND COMPUTABLE FUNCTIONS

1. Recursion theory

1.1. Background. What does it mean for a function f : ω Ñ ω to be computable? This is a hard

question to answer. Intuitively, it should mean something like this: There is a fixed procedure

(given by a finite description of some sort), such that given a natural number n, one can carry out

this procedure in a finite amount of time with input n, and determine fpnq.

For instance, most people feel that the function fpxq “ x2 ` x` 1 is computable, because given

n, we first compute n2 by adding n to itself n times (which requires further subtasks, perhaps),

and then we add n to it, and then we add 1, and this is the answer, fpnq. Of course, one must

investigate why it is we believe that adding n to itself n times is a computable task, etc., which

leads one to go back to how we were taught to add numbers in elementary school. At any rate,

everyone believes this function f is computable.

Several attempts have been made to formalize the notion of a computable function. Two such

are Church’s Lambda calculus, and Turing’s Turing machines. A third possibility is the notion of

a recursive function, given below. It turns out that all these approaches define the same concept

(though they look rather different), which is seen as evidence that they all correctly formalize the

(same) intuitive concept of a computable function.

1.2. Primitive recursive functions. We now describe a class of certain functions of the form

f : ωn Ñ ω, where n is allowed to range over ω. These functions are supposed to be intuitively

computable. The following gets us started.

Definition 1.1. The class of elementary functions consists of:

(1) The successor function S : ω Ñ ω, defined by Spxq “ x` 1.

(2) The projection functions, defined for each n ě 1 and 1 ď i ď n by Ini px1, . . . , xnq “ xi.

(3) All constant functions, i.e. c : ωn Ñ ω where cpx1, . . . , xnq “ k for some k P ω, indepen-

dently of x1, . . . , xn.

We make the convention that any function f : ω0 Ñ ω is to be thought of as a constant function

(taking some fixed value in ω). Alternatively, a function f : ω0 Ñ ω may be thought of as an

element of ω.

The class of primitive recursive functions will be built from the elementary functions using two

function construction “schemes”.

Composition scheme. Given h : ωm Ñ ω and g1, . . . , gm : ωk Ñ ω, we may define a new

function f : ωk Ñ ω by

fpx1, . . . , xkq “ hpg1px1, . . . , xkq, g2px1, . . . , xkq, . . . , gmpx1, . . . , xkqq.

Primitive recursion scheme. Given k ě 1, and functions h : ωk´1 Ñ ω, g : ωk`1 Ñ ω, we

can define a new function f : ωk Ñ ω by letting

fp0, x2, . . . , xkq “ hpx2, . . . , xkq

and

fpx1 ` 1, x2, . . . , xkq “ gpx1, fpx1, . . . , xkq, x2, . . . , xkq

Note that here the convention that 0-ary functions are constant functions is handy, since it allows

us to treat the case k “ 1 elegantly and uniformly with the case k ą 1.

LECTURE 1: RECURSIVE AND COMPUTABLE FUNCTIONS 3

Definition 1.2. The class of primitive recursive functions is the smallest class of functions which

contains the elementary functions and which is closed under the composition scheme and the

primitive recursion scheme.

A more descriptive way of defining the class of primitive recursive functions is the following: A

function f is primitive recursive if only if there is a finite sequence f1, . . . , fn of functions with

fn “ f , and where each fi is either elementary, or obtained by applying one of the schemes to

functions that comes before fi on the list.

Exercise 1. Check these two formulations of the definition are in fact equivalent!

Example 1.3. Addition is primitive recursive. More precisely, what this means is that the function

f : ωˆω Ñ ω defined by fpm,nq “ m`n is recursive. To see this, first use the composition scheme

on I3
2 and S to see that the function gpm,u, nq “ u` 1 is primitive recursive. This follows because

g “ SpI3
2 pm,u, nqq. Next use the recursion scheme on the function h “ I1

1 and g to obtain that the

function defined by fp0, nq “ hpnq and fpm` 1, nq “ gpm, fpm,nq, nq is primitive recursive. Now

an easy induction on m, using that fpm` 1, nq “ fpm,nq ` 1, shows that for each fixed n we have

fpm,nq “ m` n. This proves that addition is primitive recursive.

Exercise 2. Prove that multiplication is primitive recursive, i.e., that the function fpm,nq “ m ¨n

is primitive recursive.

Example 1.4. The factorial function fpnq “ n! is primitive recursive. Informally, this can be seen

from the recursive definition of the factorial, which is how it is usually introduced: fp0q “ 1, and

fpn ` 1q “ pn ` 1q ¨ fpnq. Formally, we must “build” this function from elementary functions (or

other functions already known to be primitive recursive) using only the two previous schemes. Use

the primitive recursion scheme as follows: Let h : ω0 Ñ ω be the function which is constant 1, and

let g : ω2 Ñ ω be the function gpm,nq “ Spmq ¨ n. By the previous exercise (and the composition

scheme), g is primitive recursive. By the primitive recursion scheme the function f : ω Ñ ω defined

by fp0q “ h “ 1 and fpn ` 1q “ gpn, fpnqq “ Spnq ¨ fpnq is primitive recursive. It is clear that

fpnq “ n!. (Formally, you could prove that this is so by induction.)

Example 1.5. There is no primitive recursive function f : ω2 Ñ ω which is universal in the sense

that for every primitive recursive g : ω Ñ ω, there is m P ω such that gpnq “ fpm,nq for all n.

Indeed, if f was such a function then define

g∆pnq “ Spfpn, nqq.

Then the composition scheme would ensure that g∆ would be primitive recursive, and so there

would be some m P ω such that fpm,nq “ g∆pnq for all n. But this means that

fpm,mq “ g∆pmq “ Spfpm,mqq “ fpm,mq ` 1,

a contradiction.

Example 1.6. The function sg : ω Ñ ω defined by

sgpnq “

#

0 if n “ 0

1 otherwise

4 LECTURE 1: RECURSIVE AND COMPUTABLE FUNCTIONS

is primitive recursive. Indeed, let sgp0q “ 0, and in general sgpn ` 1q “ 1. More explicitly, we let

h : ω0 Ñ ω take the value 0 and we let g : ω2 Ñ ω be the constant function with value 1. Both are

elementary as they are constant functions, so we may apply the recursion scheme to them. The

equations of the recursion scheme now become fp0q “ 0 and fpn` 1q “ 1 for all n P ω, so f “ sg

is a recursive function.

Exercise 3. Show that the function

predpnq “

#

n´ 1 if n ą 0

0 otherwise

is primitive recursive.

Exercise 4. Show that every eventually constant function is primitive recursive (a function f : ω Ñ

ω is eventually constant if there are n and k such that for all n̄ ě n, we have fpn̄q “ k).

Exercise 5. Show that the function “monus”, defined by

n´m “

#

n´m if n ą m

0 otherwise,

is primitive recursive.

Proposition 1.7. (1) If f : ωn Ñ ω is primitive recursive and m ě n, then the function

f̃px1, . . . , xmq “ fpx1, . . . , xnq

is primitive recursive.

(2) If f : ωn Ñ ω is primitive recursive and σ : n Ñ n is a permutation (i.e., bijection of n

onto itself), then

fσpx1, . . . , xnq “ pxσp0q, . . . , xσpn´1qq

is primitive recursive.

(3) If f : ωn`1 Ñ ω is primitive recursive, then so are the functions

fΣpx1, . . . , xn, zq “
ÿ

yăz

fpx1, . . . , xn, yq

(where we make fΣpx1, . . . , xn, 0q “ 0 by convention) and

fΠpx1, . . . , xn, zq “
ź

yăz

fpx1, . . . , xn, yq

(where fΠpx1, . . . , xn, 0q “ 1 by convention).

Proof. (1) By the composition scheme,

f̃px1, . . . , xmq “ fpIm1 px1, . . . , xmq, . . . , I
m
n px1, . . . , xmqq

is primitive recursive when f is.

(2) Exercise.

(3) For simplicity, let’s do it for n “ 1. Let apx, zq “ x`z, which we know is primitive recursive.

Let gpz, u, xq “ apfpx, zq, uq, which is primitive recursive (why?). Then let fΣpx, 0q “ 1, and

fΣpx, z ` 1q “ gpz, fΣpx, zq, xq,

LECTURE 1: RECURSIVE AND COMPUTABLE FUNCTIONS 5

so that fΣ is recursive by the primitive recursion scheme.

Showing that fΠ is primitive recursive is left as an exercise. �

Definition 1.8. A set (relation) R Ď ωn is primitive recursive just in case the characteristic

function

1Rpx1, . . . , xnq “

#

1 if xx1, . . . , xny P R

0 otherwise.

is primitive recursive.

Example 1.9. The relation

ă“ txm,ny P ω2 : m ă nu

is primitive recursive. Namely, 1ăpm,nq “ sgpn´mq.

Recall that the notation Rpx1, . . . , xnq means exactly the same as xx1, . . . , xny P R.

Proposition 1.10. Suppose A,B,R Ď ωn, n ą 0, are primitive recursive sets (relations). Then:

(1) A Y B and A X B are primitive recursive. So is Rc, where Rc “ ωnzR, i.e. the relation

defined by

xx1, . . . xny P R
c ðñ xx1, . . . xny R R.

(2) For any m ě n, the relation R̃ P ωm defined by

txx1, . . . , xmy P R̃ : px1, . . . , xnq P Ru

is primitive recursive.

(3) The sets

RD
ă

“ txx1, . . . , xny P ω
n : pDz ă xnqRpx1, . . . , zqu

R@
ă

“ txx1, . . . , xny P ω
n : p@z ă xnqRpx1, . . . , zqu

are primitive recursive.

Note: (1) says that the primitive recursive relations are closed under basic set theoretic opera-

tions; (3) says that the primitive recursive relations are closed under “bounded quantification”.

Proof. (1) 1AXBpx1, . . . , xnq “ 1Apx1, . . . , xnq ¨ 1Bpx1, . . . , xnq, and

1AYB “ sgp1Apx1, . . . , xnq ` 1Bpx1, . . . , xnqq,

1Rcpx1, . . . , xnq “ 1 ´ 1Rpx1, . . . , xnq.

(2) Exercise.

(3) We have

1RDă px1, . . . , xnq “ sgp
ÿ

zăxn

1Rpx1, . . . , xn´1, zqq,

and checking that R@
ă

is primitive recursive is left as an exercise. �

6 LECTURE 1: RECURSIVE AND COMPUTABLE FUNCTIONS

1.3. Recursive functions. While the class of primitive recursive functions is indeed very large,

and, as it will turn out, essentially sufficient for our purposes, it isn’t quite big enough to capture

all reasonably computable functions. We obtain a larger class of functions, called the recursive

functions, by adding one more scheme to the mix.

µ-operator scheme. If g : ωk`1 Ñ ω is a function for which it holds that

p@x1, . . . , xn P ωqpDy P ωqgpy, x1, . . . , xnq “ 0

then we may form a new function f : ωn Ñ ω by

fpx1 . . . , xnq “ µyrgpy, x1, . . . , xnq “ 0s

where µyr...s means “the least y such that r...s”.

Definition 1.11. The class of recursive functions is the smallest class of functions which contains

the elementary functions, and which is closed under the composition scheme, the primitive recursion

scheme, and the µ-operator scheme.

Some people would refer to this class as the total recursive functions (to distinguish them from

yet another class, the so-called partial recursive functions, which we will not define). In this course,

we shall just call them the recursive functions.

Note that all primitive recursive functions are recursive. An alternative description of the class

of recursive functions is: A function f is recursive iff there is a finite list f1, . . . , fn, where f “ fn,

and where each element on the list is either an elementary function, or obtained by applying one

of the three schemes to functions appearing earlier on the list.

There are recursive functions that are not primitive recursive, but that is a story for another

day.

Definition 1.12. (1) A relation R Ď ωn is recursive iff its characteristic function

1Rpx1, . . . , xnq “

#

1 if xx1, . . . , xny P R

0 otherwise

is recursive.

(2) A set A Ď ω is recursively enumerable if there is a recursive function f : ω Ñ ω with

ranpfq “ A.

Computable vs. recursive functions. All recursive functions are computable (in the intuitive

sense). This can be seen by induction: All elementary functions are clearly computable; if a function

is formed by one of the schemes from computable functions, then it is also computable (if you don’t

see it, go back and re-read the schemes and convince yourself.)

In 1936, American logician Alonzo Church (1903–1995) introduced a class of computable func-

tions in a different way, using what he called λ-calculus. It turns out that the class of recursive

functions and the class of functions defined using λ-calculus are the same. They are also the same

as the class of Turing computable functions, introduced by Alan Turing (1912–1954) in 1936 using

an idealized notion of a computer. Church hypothesized the following:

LECTURE 1: RECURSIVE AND COMPUTABLE FUNCTIONS 7

Church’s thesis. The class of intuitively computable function on the natural numbers corresponds

exactly to the class of recursive functions.

This claim cannot be proved, since the notion of intuitively computable function is not a math-

ematical notion, but rather an intuitive idea. Church’s thesis could potentially be disproved by

giving and example of an intuitively computable function which is not recursive, but no-one has

ever succeeded in doing so. Rather, the vast majority of mathematicians familiar with mathematical

logic believe Church’s thesis to be true.

2. Additional exercises

Exercise 6. Show that the function Epk, nq “ kn is primitive recursive. (Here k0 “ 1 always.)

Exercise 7. Let k P ω. Prove that the functions maxk : ωk Ñ ω and mink : ωk Ñ ω defined by

maxkpx1, . . . , xkq “ the largest of x1, . . . , xk

and

minkpx1, . . . , xkq “ the smallest of x1, . . . , xk

are primitive recursive.

Hint: Use induction on k. The case k “ 1 is trivial (why?) and irrelevant, so concentrate on the

case k “ 2.

Exercise 8. Show that if P Ď ωk is a primitive recursive set2 then so is the complement, ωkzP .

Exercise 9. Prove the “definition by cases” theorem:

Theorem. Let P1, . . . , Pm Ď ωk be primitive recursive subsets of ωk for some (fixed) k, and let

f1, . . . , fm`1 : ωk Ñ ω be primitive recursive. Suppose P1, . . . , Pk are disjoint. Then

fpxq “

$

’

’

’

’

’

&

’

’

’

’

’

%

f1pxq if x P P1

...
...

fmpxq if x P Pm

fm`1pxq otherwise.

is primitive recursive.

Hint: Multiplying fi with 1Pi looks promising.

Exercise 10. Prove that if f : ωk Ñ ω is primitive recursive, then the graph of f , defined by

graphpfq “ tpx1, . . . , xk, yq P ω
k`1 : fpx1, . . . , xkq “ yu,

is primitive recursive as a subset of ωk`1.

Exercise 11. Show that the relation Div Ď ω2 defined by

Divpm,nq ðñ m divides n

is primitive recursive.

2Recall that this just means that the characteristic functions 1P is primitive recursive.

8 LECTURE 1: RECURSIVE AND COMPUTABLE FUNCTIONS

Hint: Consider the relation

R “ tpm,n, kq P ω3 : m ¨ k “ nu.

Argue that this relation is recursive (see exercise 5), and use bounded existential quantification on

the last coordinate. From there you can easily express 1Div a composition of functions.

Exercise 12. Show that the set

Prime “ tn P ω : n is a prime numberu

is primitive recursive.

The following problem is a bit harder, and should be viewed as a challenge.

Bonus problem. Let pi be the pi ` 1q’th prime, i.e., p0 “ 2, p1 “ 3, p2 “ 5, etc. Show that the

function fpiq “ pi is primitive recursive.

