
LECTURE 10: AXIOMATIC SET THEORY PART 2

Before we begin. A very good question came up after the previous lecture...

Question: In the beginning of the course, we used näıve set theory when defining

some basic notions of logic, for instance, we used it to define the set FormulapLq for

a language.

Now that we are trying to formalize set theory using our notions from first order

logic, are we not engaging in a form of circular reasoning?

The answer is “yes”: We are indeed risking that our definitions become circular. Our axioms of

set theory are syntactical entities from first order logic, which in their own definition seemingly rely

on principles of (näıve) set theory. Because of this, we must insist that the definition of terms and

formulas in tPu, the Language Of Set Theory, is done using our book’s original definition, which

does not appeal to set theory. This definition doesn’t use set theory, only some basic ideas about

being able to form strings of symbols. We also need to accept the induction principle for terms

and formulas, and some version of definition by recursion on terms and formulas (so that we can

define what it means for a variable to be free), as part of our “metatheory”. However, once that is

done, then the circularity is avoided. (A lot more could be said about this concern, but since this

is a math course and not a philosophy course we won’t.)
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1.1. Justifications of the remaining axioms.

4. Pairing: Let x and y be sets. There is some stage s at which both x and y have been formed.

Since Vs is formed into a set at stage s ` 1, and x, y P Vs, there is a set to which both x and y

belong, namely Vs.

6. Replacement: Let ϕ be a formula as in the statement of the Axiom Schema of Replacement.

For each x P z, let sx be the stage at which the unique y satisfying ϕpx, y, z, w1, . . . , wnq is formed.

The collection of all these sx is no larger than z, and so “absolute infinity” demands the existence

of a stage s later than all the sx. Then Vs works for u in the statement of the axiom.

8. Power Set: If x is formed at stage s and z Ď x, then z Ď Vs, and so z P Vs`1. Since Vs`1

becomes a set at stage s` 2, we can use Vs`1 as a witness to the Power Set Axiom.

9. Choice: If x is formed at stage s and x consists of non- pairwise disjoint sets, then we are

looking for a z which may as well be a subcollection of Upxq Ď Vs. What we have to do is convince

ourselves that such a subcollection exists...
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Remark 1.1. (1) Arguing for (or against) Choice on the basis of the iterative concept of set is

probably hopeless. If we believe choice to be true for the informal notion of collections, then the

above justification succeeds. As we will see in the coming lectures, the picture of the set theoretic

universe suggested by the iterative concept turns out to be an accurate description (on a formal

level) of the universe that just axioms 0–8 describe. Furthermore, assuming that the axiom system

0–8 is consistent, not only can it be shown that so is the system consisting of all the axioms 0–9,

but it can also be shown that axioms 0–8 plus the negation of Choice is consistent. (The proof of

these “relative consistency” results is quite difficult and would be the topic of a separate course.)

(2) The formal version of the notion of a “stage” will be that of an ordinal number, which we

introduce below. It turns out (in lecture 11) that there is a first infinite ordinal s (which will be

called ω in the formal theory), and so it would not make sense to talk about stage s´ 1, since any

stage previous to s is a finite stage (ordinal), and the successor stage of a finite stage is finite. This

is the reason we avoided using s´ 1 in our justifications of the axioms.

1.2. Cartesian products, functions, relations. The ordered pair px, yq of sets x and y is

ttxu, tx, yuu. Note that

px, yq “ pz, wq ðñ px “ z ^ y “ wq.

There is a formula ϕpz, x, yq in the formal language that expresses the fact that z “ px, yq. (This

is part of the mandatory homework assignment 2.)

The Cartesian product of uˆ v of sets u and v is tpx, yq : x P u^ y P vu, but we don’t know yet

if this exists as a set. The next theorem says it does.

Theorem 1.2. uˆ v always exists.

We give two proofs: One uses Power Set, but not Replacement, and the other uses Replacement

but not Power Set.

Proof 1. Let u and v be given, and let x P u and y P v. Note that txu and tx, yu are subsets of

uY v, and so px, yq “ ttxu, tx, yuu is a subset of PpuY vq. So every pair px, yq with x P u and y P v

is an element of PpPpuY vqq. Finally,

uˆ v “ tz P PpPpuY vqq : Dx P uDy P v ϕu,

where ϕ is the formula expressing z “ px, yq (see 11 lines above), exists by Comprehension. �

Proof 2. Let ϕpz, x, yq be a formula expressing that z “ px, yq (see 12 lines above). Fix x P u. Then

for each y P v there is a unique z such that ϕpz, x, yq, and so the set

wx “ tz : pDyqϕpx, y, zqu

exists by Replacement, for each x. There is a formula ψpw, x, yq expressing the fact that w “ wx

(see exercise below), and so by another use of Replacement, the set

a “ twx : x P uu

exists. Now uˆ v “ Upaq. �
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Exercise 1. Write down the formula ψ needed in the previous proof (feel free to use abbreviations).

Definition 1.3. 0. A (binary) relation is a set of ordered pairs. We often write xry instead of

px, yq P r.

1. A relation r is wellfounded if

@xpx ‰ HÑ Dy P x@z P xpz, yq R r.

2. A relation r is a linear ordering of a set x just in case r Ď x ˆ x, and r linearly orders x in

the strict sense. That is, r is transitive, irreflexive, and satisfied the trichotomy

@x@ypxry _ x “ y _ yrxq.

3. A wellfounded linear ordering of a set x is called a wellordering of x. More generally, we say

that r wellorders x if r X xˆ x is a wellordering of x.

4. A function is a relation f such that

@x@y1@y2pppx, y1q P f ^ px, y2q P fq Ñ y1 “ y2q.

5. The notions injective, surjective, bijective, domain and range are defined as usual. The

notation f : xÑ y means that f is a function with domain x and range Ď y.

Example 1.4. Let u be a set, and let

P æu “ tpz, yq P uˆ u : z P yu.

Then Foundation says that P æu is wellfounded (for any u).

Definition 1.5. 0. A set x is transitive if Upxq Ď x. In other words, x is transitive if every element

of an element of x is an element of x.

1. A set x is an ordinal number if

(a) x is transitive; and

(b) P æx wellorders x.

Remark 1.6. Foundation implies that (b) above is equivalent with the assertion that P æx linearly

orders x.

Theorem 1.7. Let x and y be ordinal numbers. Then

x P y _ x “ y _ y P x.

Proof. This is Problem 2 of the second mandatory assignment. �
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