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1. Introduction

There exists an extensive literature on inequalities for special functions. In particular, many authors
published numerous interesting inequalities for Euler’s gamma function:

Γ(x) =
∫ ∞

0
e−ttx−1dt (x > 0),

its logarithmic derivative, known as digamma or psi function:

(1.1) ψ(x) =
Γ′(x)
Γ(x)

= −γ +
∫ ∞

0

e−t − e−xt

1− e−t
dt (x > 0; γ = Euler’s constant),

and the polygamma functions:

(1.2) ψ(n)(x) = (−1)n+1

∫ ∞

0
e−xt

tn

1− e−t
dt (x > 0; n = 1, 2, ...).

We refer to the survey paper [24] and the references given therein. Bustoz & Ismail [15], Ismail,
Lorch & Muldoon [27], and other researchers proved that certain inequalities for these functions
follow from monotonicity and limit properties of functions, which involve Γ, ψ, or ψ(n). And,
remarkably, often such functions are not only decreasing or convex, but even completely monotonic.
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We recall that a function f : (0,∞) → R is said to be completely monotonic, if f has derivatives of
all orders and satisfies

(1.3) (−1)nf (n)(x) ≥ 0 for all x > 0 and n = 0, 1, 2, ....

Dubourdieu [21] pointed out that if a non-constant function f is completely monotonic, then strict
inequality holds in (1.3). It is known (Bernstein’s Theorem) that f is completely monotonic if and
only if

f(x) =
∫ ∞

0
e−xtdµ(t),

where µ is a nonnegative measure on [0,∞) such that the integral converges for all x > 0. See [44,
p. 161].

Completely monotonic functions appear naturally in various fields, like, for example, probability
theory and potential theory. The main properties of these functions are given in [44, Chapter IV].
We also refer to [5], where a detailed list of references on completely monotonic functions can be
found.

It is the aim of this paper to provide several new classes of completely monotonic functions. The
functions we study have in common that they are defined in terms of gamma, digamma, and
polygamma functions. In the next section we collect some lemmas. Our monotonicity theorems
are stated and proved in sections 3 and 4. And, finally, in section 5 we show that one of our
monotonicity results can be applied to establish a new Bonse-type inequality for prime numbers.

2. Lemmas

The formulas given in Lemma 2.1 and Lemma 2.2 (as well as many more) can be found, for example,
in [1, Chapter 6], [7, Chapter 1], and [22, Chapter I].

Lemma 2.1. For all x > 0 we have

(2.1) log Γ(x) =
∫ ∞

0

[
(x− 1)e−t − e−t − e−xt

1− e−t

]dt
t
,

(2.2) ψ(x)− log x =
∫ ∞

0
e−xt

(1
t
− 1

1− e−t

)
dt,

(2.3) ψ(n)(x+ 1) = ψ(n)(x) + (−1)n
n!
xn+1

(n = 0, 1, ...),

(2.4) (−1)n+1ψ(n)(x) = n!
∞∑
k=0

1
(x+ k)n+1

(n = 1, 2, ...).

Lemma 2.2. We have for x→∞:

(2.5) log Γ(x) ∼ (x− 1/2) log x− x+
1
2

log(2π) +
1

12x
+ ...,

(2.6) ψ(x) ∼ log x− 1
2x
− 1

12x2
+ ...,

(2.7) (−1)n+1ψ(n)(x) ∼ (n− 1)!
xn

+
n!

2xn+1
+ ... (n = 1, 2, ...).
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The following monotonicity theorem is proved in [4].

Lemma 2.3. Let n be a natural number and c be a real number. The function x 7→ xc|ψ(n)(x)| is
strictly decreasing on (0,∞) if and only if c ≤ n.

The first part of the next lemma is well-known. The second part can be proved by applying Leibniz’
rule and induction. And, a proof for the third part is given in [9, p. 66] and [12, p. 83].

Lemma 2.4. (i) The sum, the product, and the pointwise limit of completely monotonic functions
are also completely monotonic.
(ii) Let h : (0,∞) → (0,∞). If (− log h)′ is completely monotonic, then h is also completely
monotonic.
(iii) Let f : (0,∞) → R and g : (0,∞) → (0,∞). If f and g′ are completely monotonic, then
x 7→ f(g(x)) is also completely monotonic.

The following inequality for completely monotonic functions is due to Kimberling [30].

Lemma 2.5. Let f : [0,∞) → (0, 1] be continuous. If f is completely monotonic, then

(2.8) f(x)f(y) ≤ f(x+ y) (x, y ≥ 0).

Let a, b ∈ R and 0 < u, v ∈ R. The family of Gini means is defined by

(2.9) Ga,b(u, v) =
(ua + va

ub + vb

)1/(a−b)
(a 6= b)

and

(2.10) Ga,a(u, v) = exp
(ua log u+ va log v

ua + va

)
.

For (a, b) = (1, 0) we get the arithmetic, for (a, b) = (0, 0) the geometric, and for (a, b) = (0,−1)
the harmonic means of u and v. In [18] the authors offer a solution of the comparison problem for
Gini means. For our purposes the following inequality is helpful.

Lemma 2.6. Let a, b, r, s be real numbers with

r + s ≤ a+ b, min(r, s) ≤ min(a, b), and min(a, b, r, s) ≥ 0.

Then we have for all x, y > 0:

Gr,s(x, y) ≤ Ga,b(x, y).

Further, we need a Petrović-type inequality for the function x 7→ 1/[e1/x − 1].

Lemma 2.7. Let σ(x) = 1/[e1/x − 1]. Then we have for all bk > 0 (k = 1, ...,m):

(2.11)
m∑
k=1

σ(bk)− σ
( m∑
k=1

bk

)
+
m− 1

2
≥ 0.
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Proof. We denote the expression on the left-hand side of (2.11) by Sm and establish Sm ≥ 0 by
induction on m. We have S1 = 0. The representation

x4[e1/x − 1]3e−1/xσ′′(x) = 1 + 2x+ (1− 2x)e1/x =
∞∑
k=2

k − 1
(k + 1)!

x−k

implies that σ′ is strictly increasing on (0,∞). Let y > 0 be fixed. We define for x > 0:

Λ(x) = σ(x) + σ(y)− σ(x+ y) +
1
2
.

Then
Λ′(x) = σ′(x)− σ′(x+ y) < 0

and
Λ(x) > σ(y) +

1
2

+ lim
s→∞

[σ(s)− σ(s+ y)].

Since
lim
s→∞

[σ(s)− σ(s+ y)]

= lim
t→0

1
t

[ t

et − 1
− (1 + ty)

t/(1 + ty)
exp(t/(1 + ty))− 1

]
= −y,

we obtain

Λ(x) > σ(y) +
1
2
− y =

1
2(e1/y − 1)

∞∑
k=2

k − 1
(k + 1)!

y−k > 0.

This proves S2 ≥ 0. Now, let Sm ≥ 0. Then we get

Sm+1 = Sm + σ(bm+1) + σ
( m∑
k=1

bk

)
− σ

(
bm+1 +

m∑
k=1

bk

)
+

1
2
≥ Sm ≥ 0.

This completes the proof of Lemma 2.7. �

As usual, we denote by pn the n-th prime number and by π(n) the number of primes not exceeding
n. Further, θ denotes Tchebyschef’s theta function defined by θ(pn) =

∑n
k=1 log pk. The next

lemma is given in [35].

Lemma 2.8. For all integers n ≥ 59 we have

log pn+1 < log n+ log log n+
log log n− 0.4

log n
.

Proofs for the following inequalities can be found in [37] and [38].

Lemma 2.9. For all integers n ≥ 20 we have

n(log n+ log log n− 3/2) < pn < n(log n+ log log n− 1/2).

Lemma 2.10. For all integers n ≥ 3 we have

n
(
log n+ log log n− 1 +

log log n− 2.1454
log n

)
≤ θ(pn),

and for all n ≥ 126 we have

θ(pn) ≤ n
(
log n+ log log n− 1 +

log log n− 1.9185
log n

)
.
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Lemma 2.11. For all integers n ≥ 59 we have
n

log n

(
1 +

1
2 log n

)
< π(n).

The book [32] contains many more inequalities for π(n) and other arithmetical functions.

3. Gamma function

The generalized multinomial coefficient is defined for real numbers r1, . . . , rm with rk > −1 (k =
1, . . . ,m) and r1 + . . .+ rm > −1 by(

r1 + . . .+ rm
r1, . . . , rm

)
=

Γ(r1 + . . .+ rm + 1)
Γ(r1 + 1) · · · Γ(rm + 1)

.

Further, we define for positive real numbers a1, . . . , am and x:

∆(a1, . . . , am;x) =
ssx+1/2

(2πx)(m−1)/2
∏m
k=1 a

akx+1/2
k

with s =
m∑
k=1

ak.

In [16] it is proved that for all integers k > 2 the sequence m 7→ ∆(k − 1, 1;m)/
(
km
m

)
is decreasing

for m = 1, 2, . . .. Recently, Clark & Ismail [17] presented a substantial extension. They established
that the function

(3.1) J(a1, . . . , am;x) = ∆(a1, . . . , am;x)
/((a1 + . . .+ am)x

a1x, . . . , amx

)
(ak > 0; k = 1, . . . ,m)

is decreasing on (0,∞) with respect to x and converges to 1 as x → ∞. We show that this result
can be generalized.

Theorem 3.1. The function x 7→ J(a1, . . . , am;x), as defined in (3.1), is completely monotonic.

Proof. From Lemma 2.4 (ii) we conclude that it suffices to show that

φ(x) = (− log J(x))′

= −
m∑
k=1

akψ(akx+ 1) + sψ(sx+ 1) +
m− 1

2x
− s log s+

m∑
k=1

ak log ak

is completely monotonic. In [17] it is proved that J is decreasing on (0,∞), so that we obtain
φ(x) = −J ′(x)/J(x) ≥ 0 for x > 0. Let n ≥ 1 be an integer. Then we get for x > 0:

(−1)nφ(n)(x) =
m∑
k=1

an+1
k |ψ(n)(akx+ 1)| − sn+1|ψ(n)(sx+ 1)|+ (m− 1)n!

2xn+1
.

Using (1.2) and

(3.2)
1
xr

=
1

Γ(r)

∫ ∞

0
e−xttr−1dt (x > 0; r > 0),

we obtain

(−1)nφ(n)(x) =
∫ ∞

0
e−xttn

[ m∑
k=1

σ(ak/t)− σ
( m∑
k=1

ak/t
)
+
m− 1

2

]
dt,

where σ(x) = 1/[e1/x − 1]. Applying Lemma 2.7 we conclude that (−1)nφ(n)(x) ≥ 0. �
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In 1985, Kershaw & Laforgia [29] investigated the monotonicity of the function

(3.3) ga(x) = xa
(
Γ(1 + 1/x)

)x (a ∈ R)

for a = 0 and a = 1. They proved that g0 and 1/g1 are decreasing on (0,∞). We ask for all real
parameters a and b such that ga and 1/gb are completely monotonic. The final result depends on
the following concepts.

An important subclass of completely monotonic functions consists of the Stieltjes transforms defined
as the class of functions f : (0,∞) → R of the form

f(x) = a+
∫ ∞

0

dµ(t)
x+ t

,

where a ≥ 0 and µ is a nonnegative measure on [0,∞) with
∫
dµ(t)/(1 + t) < ∞; see [9]. These

functions play a significant role in the theory of generalized gamma convolutions introduced by
Thorin, cf. [41], [42], [13] as well as in recent work [5], [10].

A Stieltjes transform as above obviously has a holomorphic extension to the cut plane A = C \
(−∞, 0] by the same formula, and for z = x+ iy ∈ A we find

Im f(z) = −
∫ ∞

0

y dµ(t)
(x+ t)2 + y2

,

so Im f(z) ≤ 0 for Im z > 0.

In the Addenda and Problems in [2, p. 127] it is stated that if a function F is holomorphic in the
cut plane A, and satisfies ImF (z) ≤ 0 for Im z > 0 and F (x) ≥ 0 for x > 0, then F is a Stieltjes
transform. A proof is written out in [8]. This is closely related to the theory of Pick functions, see
[20], which are holomorphic functions F in the upper half-plane with ImF (z) ≥ 0 for Im z > 0.

Theorem 3.2. Let ga be the function defined in (3.3). Then, ga is completely monotonic if and
only if a ≤ 0. And, 1/gb is completely monotonic if and only if b ≥ 1. Furthermore, g0 and 1/g1
are Stieltjes transforms.

Proof. We have for x > 0:

(3.4) g′a(x) =
ga(x)
x

[a+ u(x)],

where
u(x) = x log Γ(1 + 1/x)− ψ(1 + 1/x).

If ga is completely monotonic, then (3.4) and limx→∞ u(x) = 0 imply that a ≤ 0.
Next, let a ≤ 0. Since x 7→ xa is completely monotonic, we conclude from Lemma 2.4 (i) and the
identity ga(x) = xag0(x) that it suffices to show that g0 is completely monotonic. We prove below
the stronger result that it is a Stieltjes transform, but we prove first the complete monotonicity
directly. Differentiation gives

(− log g0(x))′ = −u(x)
x

= v(x), say.

Using (2.3) and (2.4) we obtain

(3.5) −v′(x) =
1
x
w(x),

where

w(x) = −1 +
1
x2
ψ′(1/x) =

∞∑
k=1

1
(1 + kx)2

.
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This implies that w is completely monotonic, so that Lemma 2.4 (i) and (3.5) yield that −v′ is also
completely monotonic. Since v(x) ≥ limt→∞ v(t) = 0 for x > 0, we conclude from Lemma 2.4 (ii)
that g0 is completely monotonic.
Next, let 1/gb be completely monotonic. Then we get for x > 0:( 1

gb(x)

)′
= − 1

xgb(x)
[b+ u(x)] ≤ 0,

Applying (2.5) and (2.6) we obtain limx→0 u(x) = −1, which implies b ≥ 1.
Conversely, if b ≥ 1 the complete monotonicity of 1/gb follows immediately from that of 1/g1, and
we shall establish the stronger result that g0 and 1/g1 are Stieltjes transforms.

It is a classical result about Stieltjes transforms, that if ϕ is a Stieltjes transform not identically
zero, then 1/(xϕ(x)) is again a Stieltjes transform, see [8], [28], [36], so it is sufficient to prove that
g0 is a Stieltjes transform.

In [11] it is proved that

h(z) =
log Γ(z + 1)

z
, z ∈ C \ (−∞,−1]

is a Pick function with the integral representation

c+
∫ −1

−∞

(
1

t− z
− t

t2 + 1

)
M(t) dt,

where

c = −γ +
∞∑
k=1

(
1
k
− arctan

1
k

)
= −0.30164...

and M : R → [0,∞) is defined as M(t) = 0 for t ≥ −1 and

M(t) =
k − 1
−t

for t ∈ [−k,−k + 1), k = 2, 3, . . . .

Note that 1/2 ≤ M(t) ≤ 1 for t ≤ −1. We also point out that h has a removable singularity for
z = 0 with value ψ(1) = −γ and for the derivative of h we find

h′(x) =
∫ ∞

1

M(−t)
(x+ t)2

dt,

which shows that h is increasing on (−1,∞) with a completely monotonic derivative (on (0,∞)).

We find

Im
log Γ(z + 1)

z
=
∫ −1

−∞

y

(t− x)2 + y2
M(t) dt, z = x+ iy, y > 0,

and hence

0 < Im
log Γ(z + 1)

z
<

∫ −1

−∞

y

(t− x)2 + y2
dt =

∫ −1−x

−∞

y

u2 + y2
du < π.

Therefore, also z 7→ (Γ(z + 1))1/z is a Pick function because the sign of its imaginary part is
determined by

sin
(

Im
log Γ(z + 1)

z

)
,

which is non-negative. Since the transformation z 7→ 1/z maps the upper half-plane into the lower
half-plane and vice versa, a Pick function composed with 1/z has negative imaginary part in the
upper half-plane, and it follows that (Γ(1 + 1/z))z is a Stieltjes transform. �



8 SOME CLASSES OF COMPLETELY MONOTONIC FUNCTIONS, II

Remark. By a result going back to Hirsch [26], if ϕ is a Stieltjes transform not identically zero,
then 1/ϕ(1/x) is again a Stieltjes transform. For a proof see also [8]. It follows by Theorem 3.2
that (Γ(1+x))−1/x and (Γ(1+x))1/x/x are Stieltjes transforms. Like above it is easy to prove that
xa(Γ(1 + x))−1/x is completely monotonic if and only if a ≤ 0 and (Γ(1 + x))1/x/xa is completely
monotonic if and only if a ≥ 1.

Inspired by Stirling’s formula, Muldoon [33] studied the monotonicity behaviour of the function

(3.6) Ha,b(x) = [xa(e/x)xΓ(x)]b (a, b ∈ R; b 6= 0).

He proved in 1978: if a ≤ 1/2 and b > 0, then Ha,b is completely monotonic. Moreover, he used
this theorem to present an interesting characterization of the gamma function via the notation of
complete monotonicity. In 1986, Ismail, Lorch & Muldoon [27] showed: if a ≥ 1 and b = −1, then
Ha,b is completely monotonic. Our next theorem complements these results.

Theorem 3.3. Let Ha,b be the function defined in (3.6). Then, Ha,b is completely monotonic if
and only if either a ≤ 1/2 and b > 0 or a ≥ 1 and b < 0.

Proof. First, we assume that Ha,b is completely monotonic. Then we get for x > 0:

(3.7) x(logHa,b(x))′ = b[a+ x(ψ(x)− log x)] ≤ 0.

From (2.3) and (2.6) we obtain

lim
x→0

x[ψ(x)− log x] = −1 and lim
x→∞

x[ψ(x)− log x] = −1/2,

so that (3.7) gives that either a ≤ 1/2 and b > 0 or a ≥ 1 and b < 0.

To show that Ha,b is completely monotonic we use Lemma 2.4 (ii). Differentiation yields for x > 0:

(− logHa,b(x))′ = −b[a/x+ ψ(x)− log x] = τa,b(x), say.

Applying (2.2) and (3.2) we get for n ≥ 0:

(−1)nτ (n)
a,b (x) = −b

∫ ∞

0
e−xttnρa(t)dt,

where
ρa(t) = a+

1
t
− 1

1− e−t
.

Let t > 0. For a ≥ 1 we have

ρa(t) ≥ ρ1(t) =
et − 1− t

t(et − 1)
> 0,

and for a ≤ 1/2 we obtain

−ρa(t) ≥ −ρ1/2(t) =

( ∞∑
k=2

k − 1
2(k + 1)!

tk

)
/(et − 1) > 0.

This implies that τa,b and Ha,b are completely monotonic. �

Many authors extensively investigated various inequalities and monotonicity properties of the ratio
Γ(x+ a)/Γ(x+ b) and related expressions. We define

(3.8) Qa,b(x) =
(Γ(x+ a+ 1))1/(x+a)

(Γ(x+ b+ 1))1/(x+b)
(0 ≤ a, b ∈ R).
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In 1989, Sándor [39] established that Q1,0 is decreasing on (1,∞). We now provide an extension of
this result.

Theorem 3.4. Let Qa,b be defined in (3.8). If c > 0 is a real number, then x 7→ (Qa,b(x))c is
completely monotonic if and only if a ≥ b.

Proof. Let a ≥ b ≥ 0 and c > 0. We define

η(x) = (− log (Qa,b(x))c)′.

Let n ≥ 0 be an integer. Differentiation gives for x > 0:

(3.9)
1
c
(−1)nη(n)(x) = (−1)nδ(n)(x+ b)− (−1)nδ(n)(x+ a),

where
δ(x) =

(1
x

log Γ(x+ 1)
)′ = 1

x
ψ(x+ 1)− 1

x2
log Γ(x+ 1).

Using (2.1) we get

−δ′(x) = 2
∫ ∞

0

t2

et − 1
χ(xt)dt,

where
χ(x) =

1
x3
− e−x

( 1
2x

+
1
x2

+
1
x3

)
.

Applying (3.2) we obtain

χ(x) =
1
2

∫ ∞

0
e−xtt2dt− 1

2

∫ ∞

0
e−x(t+1)dt

−
∫ ∞

0
e−x(t+1)tdt− 1

2

∫ ∞

0
e−x(t+1)t2dt =

1
2

∫ 1

0
e−xtt2dt.

Thus, we get for x > 0:

(−1)nχ(n)(x) =
1
2

∫ 1

0
e−xttn+2dt,

which leads to

(3.10) (−1)n+1δ(n+1)(x) =
∫ ∞

0

tn+2

et − 1

∫ 1

0
e−xtssn+2dsdt > 0.

This implies that x 7→ (−1)nδ(n)(x) is decreasing on (0,∞), so that (3.9) implies that η is completely
monotonic.
Next, we assume that (Qa,b)c is completely monotonic. Then we get for x > 0:

(3.11) (log (Qa,b(x))c)′ = c[δ(x+ a)− δ(x+ b)] ≤ 0.

From (3.10) we conclude that δ is strictly decreasing on (0,∞), so that (3.11) gives a ≥ b. �

Remark. The function logQa,b (a ≥ b ≥ 0) is completely monotonic. In fact, using the integral
representation of the Pick function h(z) = (1/z) log Γ(z + 1), we find with the notation above that

δ(x) = h′(x) =
∫ ∞

1

M(−t)
(x+ t)2

dt

is completely monotonic, and therefore

logQa,b(x) = h(x+ a)− h(x+ b)
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=
∫ −1

−∞

(
1

t− x− a
− 1
t− x− b

)
M(t) dt =

∫ ∞

1

a− b

(a+ x+ t)(b+ x+ t)
M(−t) dt,

showing that logQa,b is completely monotonic for a ≥ b. From this formula we get another proof
that (Qa,b)c is completely monotonic for every c > 0 because

(Qa,b(x))c = exp(c logQa,b(x)) =
∞∑
k=0

ck

k!
(logQa,b(x))k

is completely monotonic by Lemma 2.4 (i).

Corollary. Let a and b be real numbers with a > b ≥ 0. Then we have for all x, y ≥ 0:

(3.12) λa,b ≤
Qa,b(x+ y)

Qa,b(x)Qa,b(y)
< νa,b,

with the best possible constants

(3.13) λa,b =
(Γ(b+ 1))1/b

(Γ(a+ 1))1/a
and νa,b = 1.

Proof. Applying Theorem 3.4 and the asymptotic formula (2.5) it follows that Qa,b is strictly de-
creasing on [0,∞) with limx→∞Qa,b(x) = 1. Therefore, we obtain for x, y ≥ 0:

Qa,b(x+ y)
Qa,b(x)

1
Qa,b(y)

< 1.

This proves the right-hand side of (3.12) with νa,b = 1. And, since x 7→ Qa,b(x)/Qa,b(0) satisfies the
assumption of Lemma 2.5, we conclude from (2.8) that the left-hand side of (3.12) is valid with λa,b
as given in (3.13). If x = 0, then equality holds in the first inequality of (3.12). Further, we have

lim
y→∞

lim
x→∞

Qa,b(x+ y)
Qa,b(x)Qa,b(y)

= 1.

Hence, the constant bounds in (3.13) are both best possible. �

Remark. Since Qa,b (a 6= b) is strictly monotonic on [0,∞), we obtain: if a, b are integers with
a > b ≥ 0, then the diophantine equation

(3.14) ((k + a)!)(k+b)(n+a)(n+b)((n+ b)!)(n+a)(k+a)(k+b)

= ((n+ a)!)(n+b)(k+a)(k+b)((k + b)!)(k+a)(n+a)(n+b) (0 ≤ k, n ∈ Z)
has only the trivial solution k = n. This extends a result due to Sándor [40], who studied the
equation (3.14) for the special case a = 1, b = 0.

In 1997, Merkle [31] proved that x 7→ (Γ(x))2/Γ(2x) is log-convex on (0,∞). By the duplication
formula of Legendre this statement is equivalent to Γ(x)/Γ(x + 1/2) being log-convex for x > 0.
However, the quotient Γ(x)/Γ(x+a) is completely monotonic for a ≥ 0 and in particular log-convex
on (0,∞). By Lemma 2.4 (ii) it is enough to prove that ψ(x+ a)− ψ(x) is completely monotonic,
which follows from (1.1). See also Theorem 4.3 below.

The result of Merkle is also a special case of the following theorem.

Theorem 3.5. Let a, b, α, β be real numbers with a > b > 0. The function x 7→ (Γ(ax))α/(Γ(bx))β

is completely monotonic if and only if α ≤ 0 and αa = βb.
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Proof. Let

y(x) =
(Γ(ax))α

(Γ(bx))β
and z(x) = (log y(x))′ = αaψ(ax)− βbψ(bx).

We suppose that y is completely monotonic. Then y is also log-convex; see [23]. Thus, z is non-
positive and increasing on (0,∞). We have the representation

z(x) = αa[ψ(ax)− log (ax)]− βb[ψ(bx)− log(bx)] + αa log a− βb log b+ (αa− βb) log x.

Applying (2.6) we get: if αa − βb > 0, then limx→∞ z(x) = ∞. And, if αa − βb < 0, then
limx→∞ z(x) = −∞. Hence, αa− βb = 0. This leads to

z(x) = αa[ψ(ax)− log (ax)− ψ(bx) + log(bx) + log (a/b)]

and limx→∞ z(x) = αa log (a/b) ≤ 0. Thus, α ≤ 0.
Conversely, let α ≤ 0 and αa = βb. It suffices to show that −z is completely monotonic. Let

ω(x) = ψ(ax)− ψ(bx) and κ(x) = xn|ψ(n)(x)| (n ∈ N).

Applying Lemma 2.3 we get for x > 0:

xn(−1)nω(n)(x) = κ(bx)− κ(ax) > 0.

In particular, ω is decreasing, so that we obtain

ω(x) ≥ lim
t→∞

ω(t) = log(a/b) > 0 (x > 0).

Thus, ω is completely monotonic. The identity −z(x) = −αaω(x) reveals that −z is also completely
monotonic. �

Remark. There do not exist real numbers α, β (with α 6= β) such that qα,β(x) = Γ(xα)/Γ(xβ) is
completely monotonic. We assume (for a contradiction) that qα,β is completely monotonic. Since
q′α,β(1) = (β − α)γ, where γ = 0.5772... denotes Euler’s constant, we get β < α. If β < 0 = α or
β = 0 < α, then q′α,β attains positive values on (0,∞). And, if β < 0 < α, then limx→0 qα,β(x) = 0.
Next, let β > 0. From (log qα,β(x))′ ≤ 0 we obtain

0 <
α

β
≤ xβ−α

ψ(xβ)
ψ(xα)

(x large).

This contradicts limx→∞ xβ−αψ(xβ)/ψ(xα) = 0. And, if α < 0, then

xβ−α
ψ(xβ)
ψ(xα)

≤ α

β
(x small),

which is false since limx→0 x
β−αψ(xβ)/ψ(xα) = ∞.

Let

(3.15) Pa,b(u, v;x) =
Γ(x+ u)
Γ(x+ v)

exp[(v − u)ψ(x+Ga,b(u, v))] (a, b ∈ R; 0 < u, v ∈ R),

where Ga,b(u, v) denotes the family of Gini means defined in (2.9) and (2.10). Bustoz & Ismail [15]
proved that x 7→ P1,0(s, 1;x) (0 < s < 1) is completely monotonic. We determine all Gini means
such that the function given in (3.15) is completely monotonic.

Theorem 3.6. The function x 7→ Pa,b(u, v;x), as defined in (3.15), is completely monotonic for all
u, v ∈ R with v > u > 0 if and only if a+ b ≥ 1 and min(a, b) ≥ 0.
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Proof. Let P (x) = Pa,b(u, v;x). We may suppose that a ≥ b. First, we assume that P is completely
monotonic for all u, v ∈ R with v > u > 0. Then we get for x > 0:

0 ≥ P ′(x)
P (x)

= ψ(x+ u)− ψ(x+ v) + (v − u)ψ′(x+Ga,b(u, v)) = Λa,b(u, v;x), say.

We have

Λa,b(u, v;x)
∣∣∣
u=v

=
∂

∂u
Λa,b(u, v;x)

∣∣∣
u=v

=
∂2

∂u2
Λa,b(u, v;x)

∣∣∣
u=v

= 0.

This leads to

0 ≤ ∂3

∂u3
Λa,b(u, v;x)

∣∣∣
u=v

=
3ψ′′(x+ v)

4v

[
1− a− b+

vψ′′′(x+ v)
3ψ′′(x+ v)

]
.

The formulas (2.4) and (2.7) yield ψ′′ < 0 and limx→∞ ψ′′′(x)/ψ′′(x) = 0, so that we obtain a+b ≥ 1.
Next, let b < 0. Since P is decreasing on (0,∞) with limx→∞ P (x) = 1, we get

(3.16) P (x) ≥ 1 for x > 0 and v > u > 0.

We have

lim
u→0

Ga,b(u, v) = 0 and lim
x→0

evψ(x)

x
= 0.

This leads to

lim
x→0

lim
u→0

P (x) = 0,

which contradicts (3.16). Hence, b ≥ 0.
Conversely, let a ≥ b ≥ 0, a+ b ≥ 1, v > u > 0, and x > 0. From (1.1) and (1.2) we get

(3.17) (− logP (x))′ =
∫ ∞

0
e−xt

1
1− e−t

Θa,b(u, v; t)dt,

where

Θa,b(u, v; t) = e−ut − e−vt − (v − u)t exp[−tGa,b(u, v)].

Applying Lemma 2.6 with r = 1 and s = 0 we obtain for v > u > 0:

Ga,b(u, v) ≥ G1,0(u, v) =
u+ v

2
.

Thus,

(3.18) Θa,b(u, v; t) ≥ Θ1,0(u, v; t)

= 2e−(u+v)t/2
[
sinh

(v − u)t
2

− (v − u)t
2

]
> 0 (t > 0).

From (3.17) and (3.18) we conclude that P is completely monotonic. �

Remark. In [15] it is proved that x 7→ 1/P0,0(s, 1;x) (0 < s < 1) is strictly decreasing on (0,∞).
It remains an open problem to determine all real parameters a and b such that x 7→ 1/Pa,b(u, v;x)
is completely monotonic for all u, v ∈ R with v > u > 0.
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4. Digamma and polygamma functions

The digamma function is strictly increasing from −∞ to ∞ on (0,∞), in contrast to |ψ(n)| =
(−1)n+1ψ(n) (n ∈ N) which is completely monotonic. However, as we prove now, under certain
conditions for the parameters ak and bk the linear combination

∑m
k=1 akψ(bkx) is completely mono-

tonic.

Theorem 4.1. Let ak and bk (k = 1, ...,m) be real numbers such that a1 ≥ ... ≥ am and b1 ≥ ... ≥
bm > 0. The function x 7→

∑m
k=1 akψ(bkx) is completely monotonic if and only if

∑m
k=1 ak = 0 and∑m

k=1 ak log bk ≥ 0.

Proof. Let χ(x) =
∑m

k=1 akψ(bkx). First, we show: if
∑m

k=1 ak = 0 and
∑m

k=1 ak log bk ≥ 0, then χ
is completely monotonic. Let n ≥ 1 be an integer and x > 0. Then (1.2) leads to

(4.1) (−1)nχ(n)(x) =
m∑
k=1

akb
n
k(−1)nψ(n)(bkx) = −

∫ ∞

0
e−xttn−1

m∑
k=1

akη(t/bk)dt,

where η(x) = x/[1− e−x]. Since η′(x) = e−x(1− e−x)−2[ex− 1− x] > 0 for x > 0, we conclude that
η is increasing on (0,∞). Hence, we have a1 ≥ ... ≥ am and η(t/b1) ≤ ... ≤ η(t/bm) (t > 0), so that
Tchebyschef’s inequality (see [25, p. 43]) yields

(4.2)
m∑
k=1

akη(t/bk) ≤
1
m

m∑
k=1

ak

m∑
k=1

akη(t/bk) = 0 (t > 0).

From (4.1) and (4.2) we obtain (−1)nχ(n)(x) ≥ 0 for n ≥ 1 and x > 0. It remains to show that χ
is non-negative. We have

χ(x) =
m∑
k=1

ak[ψ(bkx)− log (bkx)] +
m∑
k=1

ak log bk.

From (2.6) we get limx→∞ χ(x) =
∑m

k=1 ak log bk ≥ 0. Since χ is decreasing it follows that χ(x) ≥ 0
for x > 0.
Conversely, let χ be completely monotonic. Then we obtain for x > 0:

(4.3) 0 ≤ χ(x) =
m∑
k=1

ak[ψ(bkx)− log (bkx)] +
m∑
k=1

ak log bk +
m∑
k=1

ak log x

and

(4.4) xχ′(x) =
m∑
k=1

akbkxψ
′(bkx) ≤ 0.

Using (2.6) we conclude from (4.3) that
∑m

k=1 ak ≥ 0; and since limx→∞ xψ′(x) = 1, we get from
(4.4) that

∑m
k=1 ak ≤ 0. Thus,

∑m
k=1 ak = 0. Applying (2.6) again we obtain from (4.3) that∑m,

k=1 ak log bk ≥ 0. This completes the proof of Theorem 4.1. �

Our next theorem has been motivated by the asymptotic formulas (2.6) and (2.7). Let

(4.5) λa,b(x) = ψ(x+ a)− log (x+ b) (0 ≤ a, b ∈ R)

and

(4.6) µa,b(x) = |ψ(n)(x+ a)| − (n− 1)!
(x+ b)n

(0 ≤ a, b ∈ R; n ∈ N).
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We determine all parameters a and b such that these functions are completely monotonic.

Theorem 4.2. Let λa,b and µa,b be defined in (4.5) and (4.6), respectively.
(i) The function λa,b is completely monotonic if and only if a − b ≥ 1/2. And, −λa,b is completely
monotonic if and only if a− b ≤ 0.
(ii) The function µa,b is completely monotonic if and only if a − b ≤ 0. And, −µa,b is completely
monotonic if and only if a− b ≥ 1/2.

Proof. Since the proofs of (i) and (ii) are very similar, we only establish the first part. Let λa,b be
completely monotonic. From λ′a,b(x) ≤ 0 we obtain for x > 0:

b− a ≤ 1
ψ′(x+ a)

− (x+ a).

Using (2.7) we get limt→∞ 1/ψ′(t)− t = −1/2. Thus, b− a ≤ −1/2.
Next, let a− b ≥ 1/2. Differentiation gives for x > 0:

(4.7) −λ′a,b(x) =
∫ ∞

0
e−xt∆a,b(t)dt,

where

∆a,b(t) = e−bt − te−at

1− e−t
.

Since

∆a,b(t) ≥ ∆a,a−1/2(t) =
2e−at

1− e−t

[
sinh

t

2
− t

2

]
> 0 (t > 0),

we conclude that −λ′a,b is completely monotonic. We have λa,b(x) ≥ limt→∞ λa,b(t) = 0 for x > 0.
This implies that λa,b is also completely monotonic.
We assume that −λa,b is completely monotonic. Then λ′a,b is also completely monotonic, so that
(4.7) yields ∆a,b(t) ≤ 0 for all t > 0. This leads to

b− a ≥ log (1− e−t)− log t
t

= δ(t), say.

Since limt→∞ δ(t) = 0, we get b− a ≥ 0.
Conversely, let a− b ≤ 0. Then we have for t > 0:

∆a,b(t) ≤ ∆a,a(t) =
e−at

1− e−t
[1− t− e−t] < 0.

so that (4.7) implies that λ′a,b is completely monotonic. Since λa,b(x) ≤ limt→∞ λa,b(t) = 0 for
x > 0, we conclude that −λa,b is also completely monotonic. �

We study now the complete monotonicity of certain differences of digamma and polygamma func-
tions.

Theorem 4.3. Let n ≥ 0 be an integer and let α, a, b be real numbers with a, b > 0 and a 6= b.
The function x 7→ (−1)nxα[ψ(n)(x+ a)− ψ(n)(x+ b)] is completely monotonic if and only if α ≤ 0
and a > b.

Proof. We define

(4.8) Wα(x) = (−1)nxα[ψ(n)(x+ a)− ψ(n)(x+ b)].
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First, we suppose that Wα is completely monotonic. Since −ψ and |ψ(n)| (n ≥ 1) are strictly
decreasing on (0,∞), we conclude from Wα(x) ≥ 0 for x > 0 that a > b. Next, let α > 0. Then,
Wα(0) = 0, so that W ′

α(x) ≤ 0 ≤ Wα(x) (x > 0) implies Wα ≡ 0. This leads to a = b. Thus, we
have α ≤ 0.
Conversely, let α ≤ 0 and a > b. Using (1.1) and (1.2) we obtain

(4.9) W0(x) =
∫ ∞

0
e−xttn

e−bt − e−at

1− e−t
dt.

Thus, W0 is completely monotonic. Applying Lemma 2.4 (i) we conclude from Wα(x) = xαW0(x)
that Wα is also completely monotonic. �

Remarks. (1) A function u : (0,∞) → R is called star-shaped, if

(4.10) u(εx) ≤ εu(x) for all x > 0 and ε ∈ (0, 1).

And, if

(4.11) u(x) + u(y) < u(x+ y) for all x, y > 0,

then u is said to be strictly superadditive. If (4.11) holds with ‘≤’ instead of ‘<’, then u is called
superadditive. It is easy to show that a star-shaped function is also superadditive. Trimble, Wells
& Wright [43] investigated a subclass of completely monotonic functions. They proved: let

v(x) =
∫ ∞

0
e−xtφ(t)dt,

where the integral converges for x > 0 and φ is a non-constant function, which is non-negative and
increasing on (0,∞). Then 1/v is star-shaped and strictly superadditive.
Let Wα be the function defined in (4.8). If n ≥ 0, α ≤ −1, a > b > 0, then (3.2), (4.9), and the
convolution theorem for Laplace transforms yield

Wα(x) =
∫ ∞

0
e−xtφ(t)dt,

where

φ(t) =
1

Γ(−α)

∫ t

0
sn(t− s)−α−1 e

−bs − e−as

1− e−s
ds

is non-constant, non-negative, and increasing on (0,∞). This implies that (4.10) and (4.11) hold
with u = 1/Wα.
(2) The following companion of Theorem 4.3 is valid. The function

Fn(x) = (−1)n[ψ(n)(1 + 1/(1 + x))− ψ(n)(1− 1/(1 + x))] (0 ≤ n ∈ Z)

is completely monotonic. To prove this we apply (1.1) and (1.2) to get the formula

Fn(x) = 2
∫ ∞

0

tn

et − 1
sinh(

t

x+ 1
) dt,

which shows the assertion. In fact, using the power series expansion of sinh it is clear that
sinh(t/(x+ 1)) is a completely monotonic function of x for each t > 0.

In 1999, Palumbo [34] published an elegant inequality for the polygamma functions. He proved that

ψ(n)(x)ψ(n)(x+ y + z)− ψ(n)(x+ y)ψ(n)(x+ z) ≥ 0

holds for all integers n ≥ 1 and all positive real numbers x, y, z. The following theorem provides an
extension of this result.
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Theorem 4.4. Let n be a natural number and let a1, a2, b1, b2 be non-negative real numbers such
that max (a1, a2) ≥ max (b1, b2). The function

(4.12) x 7→ ψ(n)(x+ a1)ψ(n)(x+ a2)− ψ(n)(x+ b1)ψ(n)(x+ b2)

is completely monotonic if and only if a1 + a2 ≤ b1 + b2.

Proof. We assume that a1 ≥ a2 ≥ 0, b1 ≥ b2 ≥ 0, and a1 ≥ b1. Let K be the function defined in
(4.12). First, we prove: if a1 + a2 ≤ b1 + b2, then K is completely monotonic. Using (1.2) and the
convolution theorem for Laplace transforms we get

(4.13) K(x) =
1
2

∫ ∞

0
e−xt

∫ t

0

sn(t− s)n

(1− e−s)(1− e−(t−s))

×[Λ(a1, a2; s, t)− Λ(b1, b2; s, t)]dsdt,
where

Λ(u, v; s, t) = e−(t−s)u−sv + e−su−(t−s)v.

Let 0 ≤ s ≤ t. Partial differentiation yields
∂

∂b2
Λ(b1, b2; s, t) = −se−(t−s)b1−sb2 − (t− s)e−sb1−(t−s)b2 ≤ 0.

Since b2 ≥ a1 + a2 − b1, we obtain

(4.14) Λ(b1, b2; s, t) ≤ Λ(b1, a1 + a2 − b1; s, t)

= e(2s−t)b1−s(a1+a2) + e(t−2s)b1−(t−s)(a1+a2) = Θ(a1, a2; b1; s, t), say.
We have 2b1 ≥ a1 + a2, so that we get

∂

∂b1
Θ(a1, a2; b1; s, t)

= (2s− t)e(t−2s)b1+(s−t)(a1+a2)[e(2s−t)[2b1−(a1+a2)] − 1] ≥ 0.
This leads to

(4.15) Θ(a1, a2; b1; s, t) ≤ Θ(a1, a2; a1; s, t) = Λ(a1, a2; s, t).

From (4.14) and (4.15) we obtain

Λ(a1, a2; s, t)− Λ(b1, b2; s, t) ≥ 0 (0 ≤ s ≤ t),

so that (4.13) implies that K is completely monotonic.
Next, let K be completely monotonic. We define τa(x) = |ψ(n)(x + a)| − (n − 1)!/(x + a)n. Then
we get

K(x) = τa1(x)τa2(x)− τb1(x)τb2(x)

+(n− 1)!
( τa1(x)

(x+ a2)n
+

τa2(x)
(x+ a1)n

− τb1(x)
(x+ b2)n

− τb2(x)
(x+ b1)n

)
+((n− 1)!)2

( 1
(x+ a1)n(x+ a2)n

− 1
(x+ b1)n(x+ b2)n

)
.

Using the limit relations

lim
x→∞

xn+1τa(x) =
1
2
n! (a > 0)

and
lim
x→∞

x2n+1
( 1

(x+ a1)n(x+ a2)n
− 1

(x+ b1)n(x+ b2)n
)

= n(b1 + b2 − a1 − a2),
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we obtain
0 ≤ lim

x→∞
x2n+1K(x) = (n− 1)!n!(b1 + b2 − a1 − a2).

This leads to b1 + b2 ≥ a1 + a2. �

Remark. Applying Lemma 2.4 (i) and (iii) we get for all integers n ≥ 1: if a = 1, b ∈ N, or
0 ≤ a ≤ 1, b = 1, then x 7→ |ψ(n)(xa)|b is completely monotonic. We ask for all positive integers n
and real numbers a, b such that this function is completely monotonic.

5. Prime numbers

If Ha,b denotes the function defined in (3.6), then we conclude from Theorem 3.3:

(logH1,−1(x))′ < 0 and (logH1/2,1(x))
′ < 0 (x > 0),

or, equivalently,

(5.1) log x− 1
x
< ψ(x) < log x− 1

2x
(x > 0).

Proofs for (5.1) are also given in [3], [6], and [19]. In [19] the authors provide a statistical application
of (5.1). We show that (5.1) plays a role in the proof of a new number theoretic inequality involving
the digamma function and prime numbers.

In 1907, Bonse [14] presented two inequalities, which compare the product of the first n primes with
powers of the (n+ 1)-th prime number:

(5.2) p2
n+1 < p1p2 · · · pn (n ≥ 4) and p3

n+1 < p1p2 · · · pn (n ≥ 5).

Further inequalities of this type can be found in the monograph [32, p. 246]. It is natural to look
for refinements of (5.2) by replacing the exponents 2 and 3 by expressions which depend on n. The
following elegant sharpening of (5.2) was established by Panaitopol [35] in 2000:

(5.3) p
n−π(n)
n+1 < p1p2 · · · pn (n ≥ 2).

It might be a bit surprising that the digamma function can be used to improve (5.3) for all n ≥ 11.

Theorem 5.1. Let α be a real number. The inequality

(5.4) p
n(1−α/ψ(n))
n+1 < p1p2 · · · pn

holds for all integers n ≥ 2 if and only if α ≥ 1.

Proof. Inequality (5.4) is equivalent to

(5.5) 0 <
1
n
θ(pn)−

(
1− α

ψ(n)

)
log pn+1 = fα(n), say.

Here, θ denotes the Tchebyschef function defined in section 2. Let α ≥ 1 and n ≥ 89. Applying the
second inequality of (5.1) and Lemmas 2.8 and 2.10 we obtain

(5.6) fα(n) ≥ f1(n) ≥ log n+ log log n− 1 +
log log n− 2.1454

log n

−
(
1− 1

log n− 1/(2n)

)(
log n+ log log n+

log log n− 0.4
log n

)
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=
ng(log n) + 5000 log n+ 8727

5000(log n)(2n log n− 1)
,

where
g(x) = x(104 log x− 17454) + 103(10 log x− 4).

The function g is strictly increasing on (0,∞). Since g(log n) ≥ g(log 89) = 69.90..., we conclude
from (5.6) that f1(n) > 0 for n ≥ 89. A direct calculation reveals that f1(n) is positive for
n = 2, 3, ..., 88, too. This implies that inequality (5.5) is valid for all real numbers α ≥ 1 and all
integers n ≥ 2.

Next, we assume that (5.4) holds for all n ≥ 2. Then we obtain

(5.7) α ≥ ψ(n)
(
1− θ(pn)

n log pn+1

)
≥ ψ(n)

(
1− θ(pn)

n log pn

)
= a(n)b(n)[c(n)− d(n)],

where

a(n) =
ψ(n)
log n

, b(n) =
log n
log pn

, c(n) = log pn − log n− log log n, d(n) =
θ(pn)
n

− log n− log log n.

Using (5.1) and Lemmas 2.9 and 2.10 we get the limit relations

(5.8) lim
n→∞

a(n) = 1, lim
n→∞

b(n) = 1, lim
n→∞

c(n) = 0, lim
n→∞

d(n) = −1.

From (5.7) and (5.8) we conclude that α ≥ 1. �

Remark. Let
h(n) = π(n)− n

ψ(n)
.

Applying the left-hand side of (5.1) and Lemma 2.11 we obtain for n ≥ 59:
h(n)
n

>
1

log n
+

1
2(log n)2

− 1
log n− 1/n

=
(n− 2) log n− 1

2(log n)2(n log n− 1)
> 0.

A simple calculation gives that h(n) > 0 is also true for n = 7, 8 and n = 11, 12, ..., 58. This implies
that (5.4) with α = 1 improves inequality (5.3) for all n ≥ 11.
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[14] H. Bonse, “Über eine bekannte Eigenschaft der Zahl 30 und ihre Verallgemeinerung,” Arch. Math. Phys. 12
(1907), 292–295.

[15] J. Bustoz and M.E.H. Ismail, “On gamma function inequalities,” Math. Comp. 47 (1986), 659–667.
[16] E.R. Canfield, “Problem 10310,” Amer. Math. Monthly 100 (1993), 499; 103 (1996), 431–432.
[17] W.E. Clark and M.E.H. Ismail, “Inequalities involving gamma and psi functions,” Anal. Appl. 1 (2003), 129–140.
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