On powers of Stieltjes moment sequences, I

Christian Berg

May 25, 2004

Abstract

For a Bernstein function f the sequence $s_n = f(1) \dots f(n)$ is a Stieltjes moment sequence with the property that all powers s_n^c , c > 0 are again Stieltjes moment sequences. We prove that s_n^c is Stieltjes determinate for $c \leq 2$, but it can be indeterminate for c > 2 as is shown by the moment sequence $(n!)^c$, corresponding to the Bernstein function f(s) = s. Nevertheless there always exists a unique product convolution semigroup $(\rho_c)_{c>0}$ such that ρ_c has moments s_n^c . We apply the indeterminacy of $(n!)^c$ for c > 2 to prove that the distribution of the product of p independent identically distributed normal random variables is indeterminate if and only if $p \geq 3$.

2000 *Mathematics Subject Classification*: primary 44A60; secondary 60E07. Keywords: moment sequence, infinitely divisible distribution.

1 Introduction and main results

The starting point of this paper is Theorem 1.6 below, proved in [6]. We shall prove that the border c = 2 in this theorem is best possible by proving that the sequence $(n!)^c$ becomes indeterminate as a Stieltjes moment sequence when c > 2. The proof is given in section 2. It uses that $(n + 1)^{c(n+1)}$ is indeterminate for c > 2. Since this sequence is derived from the Bernstein function $f(s) = s(1 + 1/s)^{s+1}$, also this more complicated Bernstein function illustrates the sharpness of Theorem 1.6.

The result about $(n!)^c$ implies the following: If X_1, \ldots, X_p are independent identically distributed random variables with exponential distribution, then the distribution of the product $X_1 \cdot \ldots \cdot X_p$ is determinate for $p \leq 2$ but indeterminate for $p \geq 3$. In section 3 we establish a similar result about the product of independent identically distributed normal random variables, thereby answering a question by A. DasGupta.

In his fundamental memoir [26] Stieltjes characterized sequences of the form

$$s_n = \int_0^\infty x^n \, d\mu(x),\tag{1}$$

where μ is a non-negative measure on $[0, \infty[$, by certain quadratic forms being non-negative. These sequences are now called Stieltjes moment sequences. They are called normalized if $s_0 = 1$. A Stieltjes moment sequence is called *S*-determinate, if there is only one measure μ on $[0, \infty[$ such that (1) holds; otherwise it is called *S*-indeterminate. In the latter case there are also solutions μ to (1), which are not supported by $[0, \infty[$, i.e. solutions to the corresponding Hamburger moment problem.

Later Hausdorff, cf. [18], characterized the Stieltjes moment sequences for which the measure is concentrated on the unit interval [0, 1] by complete monotonicity. Both results can be found in [1],[23], [30] or in [4]. A Hausdorff moment sequence

$$a_n = \int_0^1 x^n \, d\mu(x), \ n = 0, 1, 2, \dots,$$
(2)

is either non-vanishing (i.e. $a_n \neq 0$ for all n) or of the form $a_n = c\delta_{0n}$ with $c \geq 0$, where (δ_{0n}) is the sequence (1, 0, 0, ...). The latter corresponds to the Dirac measure δ_0 with mass 1 concentrated at 0.

The main result in [6] is the following construction of Stieltjes moment sequences from Hausdorff moment sequences:

Theorem 1.1 Let (a_n) be a non-vanishing Hausdorff moment sequence. Then (s_n) defined by $s_0 = 1$ and $s_n = 1/(a_1 \cdot \ldots \cdot a_n)$ for $n \ge 1$ is a normalized Stieltjes moment sequence.

This result generalizes and unifies results of various authors, cf. [12], [13], [28].

A statement similar to Theorem 1.1 is contained in [20, Theorem 3.3], but the proof given is erroneous. The inequality used to prove Theorem 3.2 in [20] is not valid, and therefore the result of Boas cannot be applied. In fact, the result of Boas hinted to cannot yield the desired result because it says that if a sequence (s_n) increases so rapidly that $s_n \geq (ns_{n-1})^n$, then (s_n) is a Stieltjes moment sequence. A measure having these moments must have unbounded support, but at the same time Theorem 3.1 in [20] states that it has bounded support.

Remark 1.2 A variant of Theorem 1.1 is that also (t_n) defined by $t_0 = 1, t_n = 1/(a_0 \cdot \ldots \cdot a_{n-1}), n \ge 1$, is a normalized Stieltjes moment sequence. This follows from the proof in [6].

Since non-vanishing Hausdorff moment sequences roughly speaking can be interpolated by completely monotonic functions we also have the following variant of Theorem 1.1, cf. [6]:

Theorem 1.3 Let φ be a non-zero completely monotonic function. Then (s_n) defined by $s_0 = 1$ and $s_n = 1/(\varphi(1) \cdot \ldots \cdot \varphi(n))$ for $n \ge 1$ is a normalized Stieltjes moment sequence.

We recall that a function $\varphi :]0, \infty[\mapsto [0, \infty[$ is called *completely monotonic*, if it is C^{∞} and $(-1)^k \varphi^{(k)}(s) \ge 0$ for $s > 0, k = 0, 1, \ldots$ By the Theorem of Bernstein we have

$$\varphi(s) = \int_0^\infty e^{-sx} \, d\alpha(x) = \mathcal{L}\alpha(s), \tag{3}$$

where α a non-negative measure on $[0, \infty]$ and \mathcal{L} denotes Laplace transformation.

As an example of Theorem 1.3 the completely monotonic function $\varphi(s) = \exp(-cs), c > 0$ leads to the Stieltjes moment sequence

$$s_n = \exp(c\binom{n+1}{2}),\tag{4}$$

which is S-indeterminate. The moments are closely related to the moments of the log-normal distribution. A recent treatment of this moment problem can be found in [14].

We are going to discuss a special case of Theorem 1.3 related to convolution semigroups. Let $(\eta_t)_{t>0}$ be a convolution semigroup of sub-probabilities on $[0, \infty[$ with Laplace exponent or Bernstein function f given by

$$\int_0^\infty e^{-sx} \, d\eta_t(x) = e^{-tf(s)}, \ s > 0,$$

cf. [7], [10]. We recall that f has the integral representation

$$f(s) = a + bs + \int_0^\infty (1 - e^{-sx}) \, d\nu(x), \tag{5}$$

where $a, b \ge 0$ and the Lévy measure ν on $]0, \infty[$ satisfies the integrability condition $\int x/(1+x) d\nu(x) < \infty$. Note that $\eta_t([0,\infty[) = \exp(-at))$, so that $(\eta_t)_{t>0}$ consists of probabilities if and only if a = 0.

In the following we shall exclude the Bernstein function identically equal to zero, which corresponds to the convolution semigroup $\eta_t = \delta_0, t > 0$.

It is well-known and easy to see that f(s)/s and 1/f(s) are completely monotonic functions, when f is a non-zero Bernstein function, viz. the Laplace transforms of the following measures

$$\lambda = b\delta_0 + (a + \nu(]x, \infty[)) dY(x), \quad \kappa = \int_0^\infty \eta_t dt, \tag{6}$$

where Y denotes Lebesgue measure on $]0, \infty[$.

These two completely monotonic functions lead to the following known results as special cases of Theorem 1.3:

Corollary 1.4 ([12],[13],[28]). Let f be a non-zero Bernstein function. Then $s_0 = 1, s_n = n!/(f(1) \cdot \ldots \cdot f(n))$ for $n \ge 1$ is a Stieltjes moment sequence of a uniquely determined probability measure I_f on $[0, \infty[$.

Corollary 1.5 ([11]). Let f be a non-zero Bernstein function. Then $s_0 = 1$, $s_n = f(1) \cdot \ldots \cdot f(n)$ for $n \ge 1$ is a Stieltjes moment sequence of a uniquely determined probability measure ρ_f on $[0, \infty[$.

Notice that the determinacy statements in the two corollaries cannot be deduced from Theorem 1.3 because of example (4). The S-determinacy is an easy consequence of Carleman's Criterion, cf. [6].

In [11] Bertoin and Yor remarked that the S-determinacy leads to a factorization of moments and distributions

$$n! = [n!/(f(1) \cdot \ldots \cdot f(n))][f(1) \cdot \ldots \cdot f(n)], \quad \exp(-x) \, dY(x) = I_f \diamond \rho_f. \tag{7}$$

Here \diamond denotes product convolution of measures on $[0, \infty[$. The product convolution $\mu \diamond \nu$ of two measures μ and ν on $[0, \infty[$ is defined as the image measure of $\mu \otimes \nu$ under the product mapping $s, t \mapsto st$. The second equation follows from the first since the *n*'th moment of the product convolution is the product of the *n*'th moments of the factors. Therefore the product convolution has the same moments as the exponential distribution, which is determinate.

Note that the second equation in (7) implies that neither I_f nor ρ_f has mass at zero.

The following result is an extension of Corollary 1.5.

Theorem 1.6 Let f be a non-zero Bernstein function and let c > 0 be arbitrary. Then $s_0 = 1, s_n = (f(1) \cdot \ldots \cdot f(n))^c$ for $n \ge 1$ is a Stieltjes moment sequence, which is S-determinate for $c \le 2$.

Proof: It suffices to show that $1/f^c$ is completely monotonic, which follows since more generally $\varphi(f(s))$ is completely monotonic when φ is so, cf. [7]. Here we use the completely monotonic function $\varphi(s) = s^{-c}$. (One can also see that $1/f^c$ is the Laplace transform of the measure

$$\frac{1}{\Gamma(c)} \int_0^\infty t^{c-1} \eta_t \, dt,$$

which is the c'th convolution power of the potential kernel κ of the semigroup $(\eta_t)_{t>0}$ defined in (6).)

Let us define $s_{n,c} = (f(1) \cdot ... \cdot f(n))^c$ for c > 0, n > 0 while $s_{0,c} = 1$.

To see the S-determinacy for $c \leq 2$ we notice that $f(s) \leq f(1)s, s \geq 1$ because f(s)/s is decreasing. Therefore $s_{n,c} \leq (f(1)^n n!)^c$, so by Stirling's formula

$$\sqrt[2n]{s_{n,c}} \le f(1)^{c/2} (n!)^{c/(2n)} \sim (f(1)n/e)^{c/2},$$

which shows the the divergence of the series

$$\sum_{n=0}^{\infty} 1/\sqrt[2n]{s_{n,c}}$$

for $c \leq 2$. The Criterion of Carleman implies the S-determinacy of $s_{n,c}$. \Box

Remark 1.7 M. Yor asked the question if c = 2 is best possible as border for Sdeterminacy in Theorem 1.6. In this paper we show that this is true. In fact, for the moment sequence $s_n = n!$ of the exponential distribution, corresponding to the Bernstein function f(s) = s, we show in Section 2 that $(n!)^c$ is S-indeterminate for c > 2.

The notion of an infinitely divisible probability measure has been studied for arbitrary locally compact groups, cf. [19]. In accordance with the general definition we say that a probability ρ on $]0, \infty[$ is infinitely divisible on the multiplicative group of positive real numbers, if it has p'th product convolution roots for any natural number p, i.e. if there exists a probability $\tau(p)$ on $]0, \infty[$ such that $(\tau(p))^{\diamond p} = \rho$. This condition implies the existence of a unique family $(\rho_c)_{c>0}$ of probabilities on $]0, \infty[$ such that $\rho_c \diamond \rho_d = \rho_{c+d}, \rho_1 = \rho$ and $\lim_{c\to 0} \rho_c = \delta_1$ (weakly), which we call a product convolution semigroup. It is a (continuous) convolution semigroup in the abstract sense of [7] or [19]. A p'th root $\tau(p)$ is unique and one defines $\rho_{1/p} = \tau(p), \rho_{m/p} = (\tau(p))^{\diamond m}, m = 1, 2, \ldots$ Finally ρ_c is defined by continuity when c > 0 is irrational.

The family of image measures $(\log(\rho_c))$ under the log-function is a convolution semigroup of infinitely divisible measures in the ordinary sense on the real line considered as an additive group.

Theorem 1.6 leads to the following result.

Theorem 1.8 Let f be a non-zero Bernstein function. The uniquely determined measure $\rho = \rho_f$ with moments $s_n = f(1) \cdot \ldots \cdot f(n)$ is infinitely divisible with respect to the product convolution. The unique product convolution semigroup $(\rho_c)_{c>0}$ with $\rho_1 = \rho$ has the moments

$$\int_0^\infty x^n \, d\rho_c(x) = (f(1) \cdot \ldots \cdot f(n))^c, \quad c > 0, n = 0, 1, \dots$$
(8)

Proof:

Let ρ denote the unique measure on $[0, \infty[$, the moment sequence of which is $s_n = f(1) \cdot \ldots \cdot f(n)$. It follows by (7) that $\rho(\{0\}) = 0$, so ρ is indeed a measure on $]0, \infty[$. It is enough to prove that for each $p \in \mathbb{N}$ there exists a probability $\tau(p)$ on $]0, \infty[$ such that the p'th convolution power $(\tau(p))^{\diamond p}$ is equal to ρ , cf. [19]. By Theorem 1.6 there exists a unique probability $\tau(p)$ on $[0, \infty[$ with moment sequence $(s_n^{1/p})$. It follows that the moment sequence of $(\tau(p))^{\diamond p}$ is (s_n) . By S-determinacy of (s_n) we get $\rho = (\tau(p))^{\diamond p}$, and by this equation $\tau(p)$ can have no mass at 0, since ρ has no mass at 0. Let $(\rho_c)_{c>0}$ be the unique product convolution semigroup with $\rho_1 = \rho$. For a rational number c = m/p > 0 it is known that $\rho_c = (\tau(p))^{\diamond m}$ and it follows that (8) holds for such c. The equation (8) for arbitrary c > 0 follows by continuity. \Box

It is interesting to examine whether also the first factor I_f of (7) is infinitely divisible with respect to the product convolution. This is true by Theorem 1.8 if s/f(s) is a Bernstein function. In [29, Theorem 3.3] Urbanik has given a necessary and sufficient condition, which can be rephrased as condition (ii) in the next result.

Theorem 1.9 Let f be a non-zero Bernstein function with f(0) = 0. The following conditions are equivalent

- (i) I_f given by (7) is infinitely divisible for the product convolution,
- (ii) $\log(s+1) \log f(s+1) + \log f(1)$ is a Bernstein function,
- (iii) 1/s f'(s)/f(s) is completely monotonic,
- (iv) $[\nu(]x,\infty[)Y-x\nu] * \kappa \ge 0.$

Proof: The equivalence of (i) and (ii) is a combination of the Theorems 2.3 and 3.3 in [29].

Note that $f(s+1)/(s+1) \leq f(1)$ so the function in (ii) is nonnegative. Therefore it is a Bernstein function if and only if its derivative

$$\frac{1}{s+1} - \frac{f'(s+1)}{f(s+1)} \tag{9}$$

is completely monotonic. By (5) and (6) with a = 0 we have the following Laplace transforms

$$f'(s) = \mathcal{L}(b\delta_0 + x\nu)(s), \quad \frac{1}{f(s)} = \mathcal{L}\kappa(s),$$

so (9) is the Laplace transform of

$$e^{-x}Y - [e^{-x}(b\delta_0 + x\nu)] * [e^{-x}\kappa] = e^{-x}[Y - (b\delta_0 + x\nu) * \kappa].$$

It follows that (9) is completely monotonic if and only if

$$Y - (b\delta_0 + x\nu) * \kappa \ge 0,$$

which is equivalent to (iii). Finally, since $Y = \lambda * \kappa$ by (6), we get that (iii) and (iv) are equivalent. \Box

Define \mathcal{B}^* as the set of non-zero Bernstein functions f with f(0) = 0 for which I_f is infinitely divisible for the product convolution. We shall use condition (iii) to prove some sufficient conditions for f to belong to \mathcal{B}^* .

Theorem 1.10 (a) If φ is a Stieltjes transform

$$\varphi(s) = a + \int_0^\infty \frac{d\sigma(x)}{x+s}$$

satisfying $\varphi(0) = \infty$ ($a \ge 0, \sigma \ge 0$), then $f = 1/\varphi \in \mathcal{B}^*$. (b) If $f, g \in \mathcal{B}^*$ then $f \circ g \in \mathcal{B}^*$. *Proof:* (a) The reciprocal of a Stieltjes transform is always a Bernstein function, cf. [7, Prop. 14.11] or [8, Prop. 1.3]. We get

$$\frac{1}{s} - \frac{f'(s)}{f(s)} = \frac{1}{s} + \frac{\varphi'(s)}{\varphi(s)} = \left(a + \int_0^\infty \frac{x \, d\sigma(x)}{(x+s)^2}\right) \frac{1}{s\varphi(s)},$$

which is completely monotonic as product of two completely monotonic functions. The second factor $1/(s\varphi(s))$ is completely monotonic because it is again a Stieltjes transform, cf.[22].

(b) The result is due to Urbanik [29, Theorem 3.5] and follows from the identity

$$\frac{1}{s} - \frac{(f \circ g)'}{f \circ g} = \frac{1}{s} - \frac{g'}{g} + \left(\frac{1}{g} - \frac{f' \circ g}{f \circ g}\right)g',$$

because $\Phi \circ g$ is completely monotonic when Φ if is so. \Box

2 The Stieltjes moment sequence $(n!)^c$

In this section we shall prove that the constant c = 2 of Theorem 1.6 is best possible, cf. Remark 1.7. The Bernstein function f(s) = s leads to the moment sequence of the heading, and since the exponential distribution with density $\exp(-x)$ on the half-line has the moments n!, Theorem 1.8 yields the existence of a uniquely determined product convolution semigroup $(e_c)_{c>0}$ such that $de_1(x) = \exp(-x) dY(x)$.

From (8) we know that

$$\int_0^\infty x^n \, de_c(x) = (n!)^c, \quad c > 0, n = 0, 1, \dots$$
 (10)

The S-indeterminacy of e_c for c > 2 is formulated in Theorem 2.5 below. The proof consists of a series of preliminary results, some of which are of independent interest. We shall start by calculating the Mellin transform of the measures e_c .

Lemma 2.1 For $z \in \mathbb{C}$, Re z > -1 we have

$$\int_0^\infty t^z \, de_c(t) = \Gamma(1+z)^c, \quad c > 0.$$
(11)

Proof: We define $\log \Gamma(z)$ in the cut plane $\mathcal{A} = \mathbb{C} \setminus [-\infty, 0]$ as the branch which vanishes at z = 1, and we use it to define $\Gamma(z)^c$. We next define the functions $\psi_n(z)$ for $z \in \mathcal{A}$ and $n = 1, 2, ..., \infty$ by

$$\psi_n(z) = \text{Log}(z) + \gamma z + \sum_{k=1}^n (\text{Log}(1 + z/k) - z/k),$$

where γ is Euler's constant, and Log is the principal logarithm in \mathcal{A} . From Weierstrass' product expansion we have

$$\Gamma(z)^c = \exp(-c\psi_{\infty}(z)), \quad c > 0, z \in \mathcal{A}.$$

We first prove that $\psi_n(1 + ix)$ is a continuous negative definite function for $x \in \mathbb{R}$ and for each $n \geq 1$, where we use a terminology from potential theory and harmonic analysis, cf. [7],[4]. Letting $n \to \infty$ we get that $\psi_{\infty}(1 + ix) = -\log \Gamma(1 + ix)$ is a continuous negative definite function. We have

$$\psi_n(1) = \gamma + \log(n+1) - \sum_{k=1}^n \frac{1}{k} > 0,$$

(note that $n \to \sum_{k=1}^{n} \frac{1}{k} - \log(n+1)$ is completely alternating with limit γ , cf. [4, p. 139]), and

$$\psi_n(1+ix) = \psi_n(1) + i(\gamma - \sum_{k=1}^n \frac{1}{k})x + \sum_{k=1}^{n+1} \text{Log}(1+ix/k),$$

which shows that ψ_n is negative definite since *iax* is negative definite for $a \in \mathbb{R}$ and $\log(1+s)$ is a Bernstein function, cf. [7, p.69]. This shows that there exists a product convolution semigroup $(\tau_c)_{c>0}$ of probabilities on $]0, \infty[$ such that

$$\int_0^\infty t^{ix} d\tau_c(t) = \exp(-c\psi_\infty(1+ix)) = \Gamma(1+ix)^c, \quad x \in \mathbb{R}.$$

For c = 1 this equation shows that $\tau_1 = e_1$, since their Mellin transforms are equal. By the uniqueness of a convolution semigroup, for which the measure for c = 1 is given, we conclude that $e_c = \tau_c$ for all c > 0. We have now proved (11) for $z \in i\mathbb{R}$. Since both sides of the equation are continuous functions in the closed right half-plane and holomorphic in the open half-plane, we see that (11) holds for $\operatorname{Re} z \ge 0$. However, $\Gamma(1+z)^c$ is holomorphic for $\operatorname{Re} z > -1$ and e_c is a positive measure, so by a classical result (going back to Landau for Dirichlet series, see [30, p.58]) the integral must converge for $\operatorname{Re} z > -1$ and (11) holds for these values of z. \Box

Remark 2.2 By the inversion formula for the Fourier or Mellin transformation it follows that e_c has a smooth nonnegative density (with respect to Y, Lebesgue measure on $]0, \infty[$ and also denoted e_c). It is given as

$$e_c(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} t^{ix-1} \Gamma(1-ix)^c \, dx.$$

By the Riemann-Lebesgue Lemma $te_c(t) \to 0$ for $t \to 0$ and for $t \to \infty$. For c = 2 it can be given in a closed form as

$$e_2(t) = \int_0^\infty \exp(-x - t/x) \frac{dx}{x} = 2K_0(\sqrt{t}),$$

where K_0 is the modified Bessel function. As far as we know the densities $e_c(t)$ for $c \neq 1, 2$ can not be expressed in a closed form by means of classical special functions.

The formula

$$e_{c+1}(t) = \int_0^\infty \exp(-t/x)e_c(x)\frac{dx}{x}, \quad c > 0$$

shows that e_c is completely monotonic for $c \ge 1$. In particular e_c is infinitely divisible for the additive structure for $c \ge 1$ by the Goldie-Steutel Theorem.

The densities e_c have also been studied in [28], and it is proved that they are not infinitely divisible for the additive structure if c < 1.

To prove that e_c is S-indeterminate for c > 2 one can in principle apply the Krein integral criterion (see below), but this will require knowledge about the asymptotic behaviour of the densities e_c , which seems to be a difficult task. We shall instead exploit knowledge about the *stable distribution of index* 1, thus avoiding the asymptotic analysis.

In a recent paper Alzer and Berg proved the following, cf. [2, Theorem 3]:

The functions $p(s) = e - (1 + 1/s)^s$ and $q(s) = (1 + 1/s)^{s+1} - e$ are Stieltjes transforms with the representations (s > 0)

$$p(s) = \frac{1}{s+1} + \int_0^1 \frac{g(x)}{1-x} \frac{dx}{x+s}, \quad q(s) = \frac{1}{s} + \int_0^1 \frac{g(x)}{x} \frac{dx}{x+s}, \tag{12}$$

and in particular they are completely monotonic. Here g(x) is given by

$$g(x) = \frac{1}{\pi} x^{x} (1-x)^{1-x} \sin(\pi x) \quad (0 \le x \le 1).$$
(13)

From these results we shall construct 3 Bernstein functions $f_{\alpha}, f_{\beta}, f_{\gamma}$. The corresponding product convolution semigroups according to Theorem 1.8 will be denoted $(\alpha_c)_{c>0}, (\beta_c)_{c>0}, (\gamma_c)_{c>0}$.

The function $f_{\alpha}(s) = (1+1/s)^s$ is a Bernstein function because $f'_{\alpha}(s) = -p'(s)$ is completely monotonic. We have

$$f_{\alpha}(1) \cdot \ldots \cdot f_{\alpha}(n) = (n+1)^n/n!$$

and

$$\int_{0}^{\infty} t^{n} d\alpha_{c}(t) = \left((n+1)^{n} / n! \right)^{c}, \quad c > 0, n = 0, 1, \dots$$
(14)

The function $(1 + 1/s)^{s+1} = e + q(s)$ is a Stieltjes transform by (12). Therefore $f_{\beta}(s) = (1 + 1/s)^{-s-1}$ is a Bernstein function, because the reciprocal of a Stieltjes transform is always a Bernstein function, cf. [7, Prop. 14.11] or [8, Prop. 1.3]. We have

$$f_{\beta}(1) \cdot \ldots \cdot f_{\beta}(n) = n!/(n+1)^{n+1}$$

and

$$\int_0^\infty t^n \, d\beta_c(t) = \left((n!)/(n+1)^{n+1} \right)^c, \quad c > 0, n = 0, 1, \dots$$
 (15)

From (12) we get that

$$f_{\gamma}(s) = s(1+1/s)^{s+1} = 1 + es + \int_0^1 \frac{s}{x+s} \frac{g(x)}{x} \, dx, \tag{16}$$

showing that f_{γ} is a Bernstein function. We have

$$f_{\gamma}(1)\cdot\ldots\cdot f_{\gamma}(n) = (n+1)^{n+1}$$

and

$$\int_0^\infty t^n \, d\gamma_c(t) = (n+1)^{c(n+1)}, \quad c > 0, n = 0, 1, \dots$$
(17)

Lemma 2.3 For c > 0 the measures α_c and β_c are concentrated on $]0, e^c[$ and $]0, e^{-c}[$ respectively. Their Mellin transforms are

$$\int_{0}^{e^{c}} t^{z} \, d\alpha_{c}(t) = \left((z+1)^{z} / \Gamma(z+1) \right)^{c}, \quad Re\, z > -1, c > 0, \tag{18}$$

$$\int_{0}^{e^{-c}} t^{z} d\beta_{c}(t) = \left(\Gamma(z+1)/(z+1)^{z+1} \right)^{c}, \quad Re\, z > -1, c > 0.$$
(19)

Proof: The digamma function $\Psi(s) = \Gamma'(s)/\Gamma(s)$ satisfies [17, 8.361,8]

$$\Psi(s) - \log(s) = \int_0^\infty e^{-sx} \left(\frac{1}{x} - \frac{1}{1 - e^{-x}}\right) dx, \quad s > 0.$$
 (20)

Adding $1/s = \int_0^\infty e^{-sx} dx$, replacing s by s + 1 and integrating with respect to s yields (s > 0)

$$f_0(s) = \log \Gamma(s+1) - s \log(s+1) + s = \int_0^\infty (1 - e^{-sx}) \left(\frac{1}{x} - \frac{1}{e^x - 1}\right) \frac{e^{-x}}{x} dx.$$
(21)

It follows that f_0 is a Bernstein function so there exists a uniquely determined convolution semigroup $(\eta_c)_{c>0}$ of probabilities on $[0, \infty]$ such that

$$\int_0^\infty e^{-sy} \, d\eta_c(y) = e^{-cf_0(s)}, \quad s, c > 0.$$
(22)

Since $f_0(s) \to \infty$ for $s \to \infty$ we have $\eta_c(\{0\}) = 0$ for each c > 0. The shifted family $(\eta_c * \delta_{-c})_{c>0}$ is a convolution semigroup of probabilities on \mathbb{R} such that $\eta_c * \delta_{-c}$ is concentrated on $] - c, \infty[$ with Fourier transform

$$\int e^{-ixy} d\eta_c * \delta_{-c}(y) = \exp(-c(f_0(ix) - ix)) = \left((ix+1)^{ix}/\Gamma(ix+1)\right)^c, \quad x \in \mathbb{R}.$$
(23)

The image measures of $(\eta_c * \delta_{-c})_{c>0}$ under $\exp(-y)$ form a product convolution semigroup $(\tilde{\alpha}_c)_{c>0}$ such that $\tilde{\alpha}_c$ is concentrated on $]0, e^c[$ and

$$\int t^{ix} d\tilde{\alpha}_c(t) = \left((ix+1)^{ix} / \Gamma(ix+1) \right)^c, \quad x \in \mathbb{R}, c > 0.$$
(24)

Since the function $((z+1)^z/\Gamma(z+1))^c$ is holomorphic in $\operatorname{Re} z > -1$, it follows from [30, p.58] that

$$\int_0^{e^-} t^\sigma \, d\tilde{\alpha}_c(t) < \infty \text{ for } \sigma > -1$$

and that

$$\int_{0}^{e^{c}} t^{z} d\tilde{\alpha}_{c}(t) = \left((z+1)^{z} / \Gamma(z+1) \right)^{c}, \quad \text{Re}\, z > -1.$$

In particular $\tilde{\alpha}_c$ has the moments (14) of α_c , hence $\tilde{\alpha}_c = \alpha_c$. This shows the first part of the lemma.

Replacing s by s + 1 in (20) and integrating leads to

$$f_1(s) = (s+1)\log(s+1) - s - \log\Gamma(s+1) = \int_0^\infty (1 - e^{-sx}) \left(\frac{1}{1 - e^{-x}} - \frac{1}{x}\right) \frac{e^{-x}}{x} dx$$

which is a Bernstein function such that $f_1(s) \to \infty$ for $s \to \infty$. Like above this gives a product convolution semigroup $(\tilde{\beta}_c)_{c>0}$ such that $\tilde{\beta}_c$ is concentrated on $]0, e^{-c}[$ and

$$\int_{0}^{e^{-c}} t^{z} d\tilde{\beta}_{c}(t) = \left(\Gamma(z+1)/(z+1)^{z+1} \right)^{c}, \quad \text{Re}\, z > -1$$

Finally $\tilde{\beta}_c = \beta_c$ because they have the same moments. \Box

For the last of the three Bernstein functions f_{γ} we have the following result.

Theorem 2.4 The Mellin transform of the measure γ_c is given by

$$\int_0^\infty t^z \, d\gamma_c(t) = (z+1)^{c(z+1)}, \quad Re\, z > -1, \tag{25}$$

and $\gamma_c = g_c(\log t) dt$, where $(g_c)_{c>0}$ are the densities of the stable semigroup of index 1 given by the Fourier integral

$$g_c(x) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{ix\xi - c\psi(\xi)} d\xi, \quad x \in \mathbb{R},$$

and

$$\psi(\xi) = \frac{\pi}{2} |\xi| + i\xi \log |\xi|, \quad \xi \in \mathbb{R}$$

is the corresponding negative definite function. The moment sequence

$$s_n = (n+1)^{c(n+1)} \tag{26}$$

is S-determinate for $c \leq 2$, S-indeterminate for c > 2.

Proof: The study of stable distributions is a classical subject, and we refer to Zolotarev's monograph [31] for detailed information.

It is well-known that

$$e^{cz \operatorname{Log} z} = \int_{-\infty}^{\infty} e^{zx} g_c(x) \, dx, \quad \operatorname{Re} z \ge 0$$

(for details see e.g. [4, p. 218]), in particular

$$n^{nc} = \int_0^\infty t^n g_c(\log t) / t \, dt, \quad n = 0, 1, \dots$$

Since the measures $(g_c(\log t) dt)_{c>0}$ form a product convolution semigroup with the same moments as $(\gamma_c)_{c>0}$, and since the moments are S-determinate for $c \leq 2$ by Theorem 1.6, the measures are equal for $c \leq 2$ hence for all c by Theorem 1.8.

To see that the moment sequence (26) is indeterminate for c > 2 we make use of the criterion of Krein, according to which the density $g_c(\log t)$ is indeterminate provided

$$\int_{0}^{\infty} \frac{\log g_c(\log t^2)}{1+t^2} \, dt > -\infty.$$
(27)

Using the asymptotic behaviour of g_c at $\pm \infty$ one can prove that (27) holds precisely if c > 2. This has been carried out by Pakes in [20]. The criterion of Krein is discussed e.g. in [27].

For the convenience of the reader we shall outline the main points in the proof that (27) holds precisely when c > 2.

We have to examine for which c > 0

$$\int_{-\infty}^{\infty} \frac{\log g_c(x)}{\cosh(x/2)} \, dx > -\infty.$$
(28)

A simple computation yields

$$g_c(x) = \frac{1}{c}g_1(\frac{x}{c} + \log c),$$

and with the notation used in Zolotarev [31, Theorem C.3, p. 12] we have

$$g_1(x) = g_B(x, 1, -1),$$

i.e. the parameters in [31] are $(\alpha, \beta, \gamma, \lambda) = (1, -1, 0, 1)$. According to [31, p. 99] we have

$$g_B(x, 1, -1) \sim \frac{1}{\sqrt{2\pi}} \exp(\frac{x-1}{2} - e^{x-1}), \quad x \to \infty,$$
 (29)

a result due to Skorokhod [24].

Using that $g_B(-x, \alpha, \beta) = g_B(x, \alpha, -\beta)$, cf. [31, p. 65], we find

$$g_c(-x) = \frac{1}{c}g_B(\frac{x}{c} - \log c, 1, 1),$$

and the asymptotic behaviour of $g_B(x, 1, 1)$ is

$$g_B(x,1,1) \sim x^{-2}, \quad x \to \infty,$$
 (30)

cf. [31, p. 101]. (Note that the polynomial $P_1(\log x) = \pi$.) From (29) and (30) we find

$$g_c(x) \sim \frac{1}{\sqrt{2\pi}c} \exp\left\{\frac{1}{2}(x/c + \log c - 1) - \exp(x/c + \log c - 1)\right\}, \quad x \to \infty$$
$$g_c(-x) \sim \frac{1}{c(x/c - \log c)^2}, \quad x \to \infty.$$

From this we see that integrability at $-\infty$ in (28) holds for all c > 0, while integrability at ∞ holds if and only if c > 2. \Box

Combining the previous results we get:

Theorem 2.5 The Stieltjes moment sequence $(n!)^c$ is S-determinate for $0 < c \le 2$ and S-indeterminate for c > 2. It admits the factorization as Stieltjes moment sequences for each c > 0

$$(n!)^{c} = [(n+1)^{c(n+1)}][(n!/(n+1)^{n+1})^{c}],$$
(31)

which corresponds to the factorization of measures $e_c = \gamma_c \diamond \beta_c$.

Proof: The equation $e_c = \gamma_c \diamond \beta_c$ holds because the two sides of the equation have the same Mellin transform. Since the moment sequence (26) is S-indeterminate for c > 2, it follows by Lemma 2.2 in [6] that (31) is S-indeterminate.

Remark 2.6 There is a factorization similar to (31) namely

$$(n+1)^{cn} = [((n+1)^n/n!)^c][(n!)^c].$$
(32)

To find the corresponding factorization of measures, we consider the Bernstein function $f_{\delta}(s) = s/(s+1)$, which by Theorem 1.6 and Theorem 1.8 leads to the moments $(n+1)^{-c}$ and the product convolution semigroup $(\mu_c)_{c>0}$ given by

$$\mu_c = \frac{\log^{c-1}(1/t)}{\Gamma(c)} \mathbf{1}_{]0,1[}(t) \, dt.$$
(33)

We have $\gamma_c \diamond \mu_c = \alpha_c \diamond e_c$, which is verified by calculating the Mellin transforms.

Remark 2.7 Let X be a random variable with exponential distribution. Then the distribution of X^c has the moment sequence $\Gamma(nc+1)$ which is determinate for $c \leq 2$ and indeterminate for c > 2, cf.[21],[27]. This result follows easily from the theorems of Carleman and Krein. Note that c = 2 is the border in this case as well as in Theorem 2.5. **Remark 2.8** It is interesting to note that the closely related moment sequence $n^n/(n+1)!$ appears in recent work by Dykema and Haagerup, cf. [15],[16]. Formula (18) can be written

$$\int_0^{e^c} t^z \, d\alpha_c(t) = ((z+1)^{z+1} / \Gamma(z+2))^c,$$

so we may let $z \to -1^+$ to get

$$\int_0^{e^c} \frac{1}{t} \, d\alpha_c(t) = 1.$$

Therefore $((1/t)\alpha_c)_{c>0}$ is a product convolution semigroup with moments

$$s_n((1/t)\alpha_c) = (n^n/n!)^c,$$

and using (33) we see that

$$s_n((1/t)\alpha_c \diamond \mu_c) = (n^n/(n+1)!)^c.$$

Dykema and Haagerup proves that the density $\varphi :]0, e[\to [0, \infty[$ of $(1/t)\alpha_1 \diamond \mu_1$ is given by

$$\varphi\left((\sin(v)/v)\exp(v\cot v)\right) = (1/\pi)\sin(v)\exp(-v\cot v), \quad 0 < v < \pi.$$

Example 2.9 It follows also from [2] that $f(s) = (1 + s)^{1+1/s}$ and $f(s) = (1 + s)^{-1/s}$ are Bernstein functions. This leads to the following Stieltjes moment sequences via Theorem 1.6:

$$\left((n+1)!\prod_{k=1}^{n}(1+k)^{1/k}\right)^{c}$$
 and $\left(\prod_{k=1}^{n}(1+k)^{1/k}\right)^{-c}$,

where c > 0.

3 Indeterminacy of products of normal random variables

Let X be a normal random variable with density $(1/\sqrt{\pi}) \exp(-x^2)$. In [3] it was proved that the distribution of X^3 is indeterminate, by exhibiting a family of distributions with the same moments as X^3 . Since one has an explicit formula for the density of X^3 , it is also possible to establish the result using the criterion of Krein, cf. [27]. For an extension of the result in [3] see the paper by Slud [25]. We shall use Theorem 2.5 to answer a question by A. DasGupta about indeterminacy of the distribution of the product of 3 independent identically distributed normal random variables. The density d of the distribution is given as the integral

$$d(x) = (1/\sqrt{\pi})^3 \int_0^\infty \int_0^\infty \exp\left(-u - \frac{v}{u} - \frac{x^2}{v}\right) \frac{du \, dv}{uv}.$$
 (34)

In principle one can prove the indeterminacy of d using Krein's criterion provided one knows the asymptotic behaviour of d. We avoid this method and obtain the following result using what we have proved about the semigroup $(e_c)_{c>0}$.

Theorem 3.1 Let X_1, X_2, \ldots, X_p be p independent identically distributed normal random variables as above. The distribution of the product $X_1X_2 \cdot \ldots \cdot X_p$ is determinate for $p \leq 2$ and indeterminate for $p \geq 3$.

Proof: For a symmetric measure μ on \mathbb{R} we let $\psi(\mu)$ denote the image measure on $[0, \infty)$ of μ under $\psi(x) = x^2$, i.e.

$$\int_0^\infty f \, d\psi(\mu) = \int_{-\infty}^\infty f(x^2) \, d\mu(x).$$

It is well-known that μ is determinate for the corresponding Hamburger moment problem if and only if $\psi(\mu)$ is S-determinate. For a generalization to rotation invariant measures on \mathbb{R}^n see [9].

For measures μ_1, \ldots, μ_p on \mathbb{R} the product convolution $\mu_1 \diamond \cdots \diamond \mu_p$ is defined as the image measure of the product measure $\mu_1 \otimes \cdots \otimes \mu_p$ on \mathbb{R}^p under $(x_1, \ldots, x_p) \rightarrow x_1 \cdots x_p$ of \mathbb{R}^p to \mathbb{R} . If μ_1, \ldots, μ_p are the distributions of independent random variables X_1, \ldots, X_p , then $\mu_1 \diamond \cdots \diamond \mu_p$ is the distribution of the random variable $X_1 \cdots X_p$.

If $|x|\mu$ denotes the measure with density |x| with respect to μ we have

$$(|x|\mu_1) \diamond \cdots \diamond (|x|\mu_p) = |x|(\mu_1 \diamond \cdots \diamond \mu_p).$$
(35)

Note that if μ_1, \ldots, μ_p are symmetric, then $\mu_1 \diamond \cdots \diamond \mu_p$ is symmetric and

$$\psi(\mu_1 \diamond \cdots \diamond \mu_p) = \psi(\mu_1) \diamond \cdots \diamond \psi(\mu_p). \tag{36}$$

The distribution of $X_1 \cdot \ldots \cdot X_p$ is the product convolution

$$\tau_p = \left((1/\sqrt{\pi})e^{-x^2} \, dx \right)^{\diamond p}$$

with the moment sequence

$$s_{2n}(\tau_p) = \left(\frac{\Gamma(n+\frac{1}{2})}{\sqrt{\pi}}\right)^p, \quad s_{2n+1}(\tau_p) = 0.$$

Therefore

$$\sum_{n=0}^{\infty} \frac{1}{\sqrt[2^n]{s_{2n}(\tau_p)}} = \infty$$
(37)

if and only if $p \leq 2$. By Carleman's Criterion τ_p is determinate for $p \leq 2$, but since the divergence of the series in (37) is only sufficient for determinacy, we cannot conclude the indeterminacy for $p \geq 3$. We shall obtain the indeterminacy by comparison with the product convolution semigroup $(e_c)_{c>0}$.

It is clear that τ_p is absolutely continuous with respect to Lebesgue measure, and its density is given by a (p-1)-fold integral generalizing the density (34). Since $\psi(|x|e^{-x^2} dx) = e_1$ we get by (35) and (36)

$$e_p = e_1^{\diamond p} = \psi\left(|x|(e^{-x^2} dx)^{\diamond p}\right) = \psi(\pi^{p/2}|x|\tau_p),$$

which by Theorem 2.5 shows that $\pi^{p/2}|x|\tau_p$ is indeterminate. Since $2|x| \leq 1 + x^2$ we get that $(1 + x^2)\tau_p$ is indeterminate. We claim that this implies that τ_p itself is indeterminate for otherwise $\operatorname{ind}_i(\tau_p) = 0$, i.e. the index of determinacy of τ_p at z = i is zero, cf. [5]. However measures with finite index of determinacy are discrete by the main theorem of [5], and this contradicts the absolute continuity of τ_p . \Box

Acknowledgement The author wants to thank A. DasGupta and M. Yor for valuable correspondence.

References

- [1] Akhiezer, N.I.(1965). The Classical Moment Problem and Some Related Questions in Analysis, English translation, Oliver and Boyd, Edinburgh.
- [2] Alzer, H., Berg, C. (2002). Some Classes of Completely Monotonic Functions. Ann. Acad. Sci. Fenn. Math. 27, 445–460.
- [3] Berg, C. (1988). The cube of a normal distribution is indeterminate. Ann. Prob. 16, 910–913.
- [4] Berg, C., Christensen, J.P.R., and Ressel, P. (1984). Harmonic analysis on semigroups. Theory of positive definite and related functions. Graduate Texts in Mathematics vol. 100. Springer-Verlag, Berlin-Heidelberg-New York.
- [5] Berg, C., Durán, A.J. (1995). The index of determinacy for measures and the ℓ²-norm of orthonormal polynomials. Trans. A.M.S. 347, 2795–2811.
- [6] Berg, C., Durán, A.J. (2004). A transformation from Hausdorff to Stieltjes moment sequences. *Ark. Mat.* (to appear).

- [7] Berg, C., Forst, G. (1975). *Potential theory on locally compact abelian* groups, Springer-Verlag, Berlin-Heidelberg-New York.
- [8] Berg, C., Pedersen, H.L. (2001). A completely monotone function related to the Gamma function. J. Comp. Appl. Math. 133, 219–230.
- [9] Berg, C., Thill, M. (1991). Rotation invariant moment problems. Acta Math. 167, 207–227.
- [10] Bertoin, J. (1996). Lévy processes, Cambridge University Press, Cambridge.
- [11] Bertoin, J., Yor, M. (2001). On subordinators, self-similar Markov processes and some factorizations of the exponential variable. *Elect. Comm. in Probab.* 6, 95–106.
- [12] Carmona, P., Petit, F., and Yor, M. (1994). Sur les fonctionelles exponentielles de certains processus de Lévy. *Stochastics and Stochastics Reports* 47, 71–101.
- [13] Carmona, P., Petit. F., and Yor, M. (1997). On the distribution and asymptotic results for exponential functionals of Levy processes. In Yor, M. (ed.), *Exponential functionals and principal values related to Brownian motion*, Biblioteca de la Revista Matemática Iberoamericana, Madrid, pp. 73–121.
- [14] Christiansen, J.S. (2003). The moment problem associated with the Stieltjes-Wigert polynomials. J. Math. Anal. Appl. 277, 218–245.
- [15] Dykema, K., Haagerup, U. (200?). DT-operators and decomposability of Voiculescu's circular operator. Amer. J. Math. (to appear).
- [16] Dykema, K., Haagerup, U. (200?). Invariant subspaces of the quasinilpotent DT-operator. J. Funct. Anal. (to appear).
- [17] Gradshteyn, I.S., Ryzhik, I.M. (2000). Table of Integrals, Series and Products. Sixth Edition, Academic Press, San Diego.
- [18] Hausdorff, F. (1923). Momentprobleme f
 ür ein endliches Intervall. Math. Z. 16, 220–248.
- [19] Heyer, H. (1977). Probability measures on locally compact groups, Springer Verlag, Berlin-Heidelberg-New York.
- [20] Pakes, A.G. (1997). Characterization by invariance under length-biasing and random scaling. J. Statist. Plann. Inference 63, 285–310.
- [21] Pakes, A.G., Khattree, R. (1992). Length-biasing, characterization of laws and the moment problem. Austral. J. Statist. 34, 307–322.

- [22] Reuter, G.E.H. (1956). Über eine Volterrasche Integralgleichung mit totalmonotonem Kern. Arch. Math. 7, 59–66.
- [23] Shohat, J., Tamarkin, J.D. (1950). The Problem of Moments, revised edition, American Mathematical Society, Providence.
- [24] Skorokhod, A.V. (1954). Asymptotic formulas for stable distribution laws. Dokl. Akad. Nauk SSSR 98, 731–734; English transl. (1961), Selected Transl. Math. Statist. and Probab., Vol. 1, Amer. Math. Soc., Providence, R. I.
- [25] Slud, E.V. (1993). The moment problem for polynomial forms in normal random variables. Ann. Prob. 21, 2200–2214.
- [26] Stieltjes, T.J. (1894,1895). Recherches sur les fractions continues. Annales de la Faculté des Sciences de Toulouse 8, 1–122, 9, 5–47.
- [27] Stoyanov, J. (2000). Krein condition in probabilistic moment problems. Bernoulli 6(5), 939–949.
- [28] Urbanik, K. (1992). Functionals on transient stochastic processes with independent increments. *Studia Math.* 103, 299–315.
- [29] Urbanik, K. (1995). Infinite divisibility of some functionals on stochastic processes. Probab. Math. Statist. 15, 493–513.
- [30] Widder, D.V. (1941). *The Laplace Transform*, Princeton University Press, Princeton.
- [31] Zolotarev, V.M. (1986). One-dimensional Stable Distributions, Amer. Math. Soc., Providence, R. I., (Russian edition 1983).

C. Berg, Department of Mathematics, University of Copenhagen, Universitetsparken 5, DK-2100, Denmark; Email: berg@math.ku.dk