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Definitions

Baker's map

101110100101001111100 - - -



Definitions
Irrational rotation

0001000100100010010001000 - - -



Definitions

Symbolic dynamics

Let a be a finite set and equip a” with the product topology based
on the discrete topology on a.

Definition

A shift space is a subset X of aZ which is closed and closed under
the shift map

c:a” —a o((x;)) = (xi41)

Definition

| \

A shift space is irreducible if some forward orbit {¢"(z) | n € N}
is dense.

A\




Definitions
3 constructions

’ Name ‘ Input ‘ Description Example ‘

XW) T List of words W | Sequences not W = {11}
containing  words
from W

€2
Xa Graph G Infinite paths on G | e1 (e e
e3

1
L4 | Labelled graph A | Infinite pathson A | 0 C o e
0




Definitions

Forbidden word shifts

Let W be a set of finite words on a.

XW) is the shift space {z € a? |Vi < j:z; -2, € W}

v

Example

With a = {0,1} and W = {11} the shift space X(") contains
elements such as

---01000010001000100001010101001001000100010 - - -

Lemma

For any shift space X, X = XW) where W is chosen as the
complement of the language

,C(X):{$ZZE]|$EX,Z<]}




Definitions

Edge shifts

Let a graph G = (V, E,r, s) be given with
@ Vertices V
e Edges E enumerated {ey,...e,}

@ Range and source maps r,s: E — V.

X¢ is the shift space X(W) with alphabet E and

W = {eiej | r(e;) # s(ej)} )

€2

With G = e C . C e , Xi contains elements such as

€3

c+ - €1€1€2€3€2€3€9€3€L1€2€3€L2€3€1€9€3€L2€3E€1€1€1€1€1€1€Q "+ *

\




Labelled edge shifts

Convention

A labelled graph A = (V, E,r, s,a,\) is given by an underlying
graph (V, E,r,s) and a labelling map A : E — a

| \

Definition
We denote by X 4 the edge shift associated to the underlying graph
of A and by

A Xy — a?

the labelling map induced by A. The shift defined by A is
La = A(Xa).

A\




Labelled edge shifts

1
With A= o C ° C e the shift space X4 contains elements
0

such as

---01000010001000100001010101001001000100010 - - -
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Conjugacy

Definition
Let X Ca?and Y Cb% ¢: X — Y is the (m,n) sliding block
code given by a map

$: gttt L p

when

Lemma

The following are equivalent:

@ ¢ is continuous and shift-commuting
@ ¢ is a sliding block code

Definition
X and Y are conjugate when there is a bijective sliding block code
¢: X =Y




With A as above,
1

€2
)\. elC.W. - 0\/.\__,/.
€3

becomes a conjugacy. Indeed, the labelling map is always a (0,0)
sliding block code induced by A. And in this case it has a (1,0)
block inverse i given by

00 — ey 01 — eg 10 — e3
For instance,

poA(---eregezerererezeseq ... ) =
wu(---010000100...) =

© 1 €2€3€1€1€1€2€3€] ...



Shifts of finite type

A shift space is a shift of finite type (SFT) if it has the form X(W)
with W finite.

v
Lemma

The following are equivalent:
e X isan SFT
@ X ~ Xg for some graph G




Conjugacy
Sofic shifts

Definition

A shift space is sofic if there is a surjective sliding block code
¢:Y — X with Y an SFT.

Lemma

The following are equivalent:

e X s sofic

@ X ~ L4 for some labelled graph A

When X is irreducible and sofic, there is a unique labelled graph A
with fewest possible vertices and each pair of edges emanating
from the same vertex distinctly labelled, such that X ~ L 4. A is
called the Fischer cover of X.
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Classification

Classification

The classification problem

Let X and Y be shift spaces finitely presented by objects A and B,
respectively. Determine in terms of A and B when X and Y are
conjugate.

The SFT classification problem

Let X and Y be irreducible shifts of finite type given by graphs G
and H, respectively. Determine in terms of G and H when X and
Y are conjugate.







Classification

Theorem (Williams)

Let X and Xg be two irreducible SFTs given by graphs with
adjacency matrices A and B, respectively. The following conditions
are equivalent.

(i) Xg and Xy are conjugate.

(ii) There exist nonnegative integral matrices D; and E; with

A= DoEy,EyDy = D1Er,--- ,ExD, =B

Arsenal of invariants

| A\

Real numbers (entropy), power series (zeta function), ordered
abelian groups (Dimension group), finitely generated abelian
groups (Bowen-Franks groups), C*-algebras (Cuntz-Krieger
algebra),. ..

A
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4 examples
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Flow equivalence
Symbol expansion

Fix a € a and * € a and define 77 : % — (a U {*})Z as the map
inserting a x after each a:

- - - babbbaba - - - — ---ba %~ bbba x ba x - - -

Definition

The “a +— ax" symbol expansion of a shift space X is the shift
space Xgax = 1n(X).




Flow equivalence

Flow equivalence

Associated to any shift space there is a suspension flow given by
product topology on

X xR

SX = (z,t) ~ (o(z),t + 1)

Definition

X and Y are flow equivalent (written X ~¢. Y) when SX and
SY are homeomorphic in a way preserving direction in R.

Theorem (Parry-Sullivan)

Flow equivalence is the coarsest equivalence relation containing
conjugacy and X ~ Xq_qx




Flow equivalence

Flow classification

If X ~¢. Y and X is SFT, sofic or irreducible, then so is'Y .

The flow classification problem

Let X and Y be shifts finitely presented by objects A and B,
respectively. Determine in terms of A and B when X and Y are
flow equivalent.

| A

The SFT flow classification problem

Let X and Y be irreducible shifts of finite type given by graphs G
and H, respectively. Determine in terms of G and H when X and
Y are flow equivalent.
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Flow classification
Flow classifcication of SFTs

Theorem (Franks)

Let Xg and Xy be two irreducible SFTs given by graphs with
adjacency matrices A and B, respectively. The following conditions
are equivalent.
(i) XG Efe XH
(ii)
zm/1-A)z"™ ~7"/(1 - B)Z"

and

sgndet(1 — A) = sgndet(1 — B)
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Flow classification
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Flow classification
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Flow classification
Flow classification of sofics

Let X and Y be two irreducible sofic shifts and let A, B be their
Fischer covers. The following conditions are equivalent.

(i) X =fe Y
(i) SX4—> SXp

S)\A\L lS)\B

SLg—~Slg




Flow classification
Multiplicity set

Definition

With a given map A : X4 — L4 we set

La = feelal W '{apl>1}

Xa = AHLa)

and restrict \ to

X:Xq— Ly

0

1 —
With A = OCOCO and B = 1COCO we get Ly =0
0 0

and Lg = {0°°}.




Flow classification

Theorem (Boyle-Carlsen-E)

Let X and Y be two irreducible sofic shift spaces with Fischer
covers A and B, respectively, and assume that X 4 and Xp are
both closed. Then X and Y are flow equivalent exactly when the
following conditions hold:

(1) X.A =fe XB
(2)  SX4—= 5Xz
si}i J{Sié




Flow classification
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Flow classification
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