Flow equivalence of shift spaces (and their C^*-algebras), I

Søren Eilers
eilers@math.ku.dk

Department of Mathematical Sciences
University of Copenhagen

18.01.11
Content

1. Definitions
2. Conjugacy
3. Classification
4. Flow equivalence
5. Flow classification
Outline

1. Definitions
2. Conjugacy
3. Classification
4. Flow equivalence
5. Flow classification
Baker’s map

\[b(x, y) = \left(2x - \text{floor}(2x), \frac{y + \text{floor}(2x)}{2} \right) \]

\[
\text{seq}(\text{floor}(2 \cdot b(n)(0.243453, 0.7232)[1]), n=0..20); \\
0, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 1
\]

\[
\alpha := 1.74565; r(n) = (\log(2 + n/10) \cos(\alpha n), \log(2 + n/10) \sin(\alpha n))
\]

\[
101110100101001111100 \ldots
\]
Irrational rotation

\[r := \frac{n}{\log 2 C_1} \]

\[00010001001000100100010001000100010001000100010001000100010001000 \cdots \]
Let α be a finite set and equip $\alpha^\mathbb{Z}$ with the product topology based on the discrete topology on α.

Definition

A **shift space** is a subset X of $\alpha^\mathbb{Z}$ which is closed and closed under the **shift map**

$$\sigma : \alpha^\mathbb{Z} \rightarrow \alpha^\mathbb{Z}, \quad \sigma((x_i)) = (x_{i+1})$$

Definition

A shift space is **irreducible** if some forward orbit $\{\sigma^n(x) \mid n \in \mathbb{N}\}$ is dense.
3 constructions

<table>
<thead>
<tr>
<th>Name</th>
<th>Input</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>$X(W)$</td>
<td>List of words W</td>
<td>Sequences not containing words from W</td>
<td>$W = {11}$</td>
</tr>
<tr>
<td>X_G</td>
<td>Graph G</td>
<td>Infinite paths on G</td>
<td>$e_1 \circlearrowleft \bullet \quad \quad e_2 \quad e_3 \circlearrowright \bullet$</td>
</tr>
<tr>
<td>L_A</td>
<td>Labelled graph A</td>
<td>Infinite paths on A</td>
<td>$0 \circlearrowleft \bullet \quad \quad 1 \quad \quad 0 \circlearrowright \bullet$</td>
</tr>
</tbody>
</table>
Forbidden word shifts

Let W be a set of finite words on α.

Definition

$X(W)$ is the shift space $\{x \in \alpha^\mathbb{Z} \mid \forall i < j : x_i \cdots x_j \not\in W\}$

Example

With $\alpha = \{0, 1\}$ and $W = \{11\}$ the shift space $X(W)$ contains elements such as

\[\cdots 01000010001000100001010101001001000100010 \cdots\]

Lemma

For any shift space X, $X = X(W)$ where W is chosen as the complement of the language

$$\mathcal{L}(X) = \{x_i \cdots x_j \mid x \in X, i < j\}$$
Edge shifts

Let a graph $G = (V, E, r, s)$ be given with

- Vertices V
- Edges E enumerated $\{e_1, \ldots, e_n\}$
- Range and source maps $r, s : E \to V$.

Definition

X_G is the shift space $X^{(W)}$ with alphabet E and

$$W = \{e_i e_j \mid r(e_i) \neq s(e_j)\}$$

Example

With $G = e_1 \xrightarrow{e_2} \bullet \xrightarrow{e_3} \bullet$, X_G contains elements such as

$$\cdots e_1 e_1 e_2 e_3 e_2 e_3 e_2 e_3 e_1 e_2 e_3 e_2 e_3 e_1 e_1 e_1 e_1 e_1 e_1 e_2 \cdots$$
Labelled edge shifts

Convention

A labelled graph $\mathcal{A} = (V, E, r, s, a, \lambda)$ is given by an underlying graph (V, E, r, s) and a labelling map $\Lambda : E \to a$

Definition

We denote by $X_{\mathcal{A}}$ the edge shift associated to the underlying graph of \mathcal{A} and by

$$\lambda : X_{\mathcal{A}} \to a^\mathbb{Z}$$

the labelling map induced by Λ. The shift defined by \mathcal{A} is $L_{\mathcal{A}} = \lambda(X_{\mathcal{A}})$.
Labelled edge shifts

Example

With $\mathcal{A} = \begin{array}{c} 0 \\ \circ \\ 0 \end{array}$, the shift space $X_{\mathcal{A}}$ contains elements such as

\[\cdots 01000010001000100001010101010010010001000100010 \cdots \]
Definition

Let $X \subseteq \mathbb{a}^\mathbb{Z}$ and $Y \subseteq \mathbb{b}^\mathbb{Z}$. $\phi : X \rightarrow Y$ is the (m, n) sliding block code given by a map

$$\Phi : \mathbb{a}^{n+1+m} \rightarrow \mathbb{b}$$

when

$$\phi(x)_i = \Phi(x_{i-m} \cdots x_{i+n})$$

Lemma

The following are equivalent:

- ϕ is continuous and shift-commuting
- ϕ is a sliding block code

Definition

X and Y are conjugate when there is a bijective sliding block code $\phi : X \rightarrow Y$
With \mathcal{A} as above,

$$
\begin{align*}
\lambda : & \begin{array}{c}
\bullet \\
\longrightarrow
\end{array}
\begin{array}{c}
e_1 \\
e_2 \\
e_3 \\
e_1
\end{array}
\begin{array}{c}
\bullet \\
\longrightarrow
\end{array} \\
\begin{array}{c}
\bullet \\
\longrightarrow
\end{array}
\begin{array}{c}
0 \\
1 \\
0
\end{array}
\begin{array}{c}
\bullet \\
\longrightarrow
\end{array}
\begin{array}{c}
0 \\
1 \\
0
\end{array}
\begin{array}{c}
\bullet
\end{array}
\end{align*}
$$

becomes a conjugacy. Indeed, the labelling map is always a $(0, 0)$ sliding block code induced by Λ. And in this case it has a $(1, 0)$ block inverse μ given by

$$
\begin{align*}
00 & \mapsto e_1 \\
01 & \mapsto e_2 \\
10 & \mapsto e_3
\end{align*}
$$

For instance,

$$
\begin{align*}
\mu \circ \lambda(\cdots e_1 e_2 e_3 e_1 e_1 e_1 e_2 e_3 e_1 \cdots) &= \\
\mu(\cdots 010000100 \cdots) &= \\
\cdots e_2 e_3 e_1 e_1 e_1 e_2 e_3 e_1 \cdots
\end{align*}
$$
A shift space is a *shift of finite type (SFT)* if it has the form $X^{(W)}$ with W finite.

Lemma

The following are equivalent:

- X is an SFT
- $X \simeq X_G$ for some graph G
Sofic shifts

Definition
A shift space is sofic if there is a surjective sliding block code \(\phi : Y \to X \) with \(Y \) an SFT.

Lemma
The following are equivalent:
- \(X \) is sofic
- \(X \cong L_A \) for some labelled graph \(A \)

Theorem
When \(X \) is irreducible and sofic, there is a unique labelled graph \(A \) with fewest possible vertices and each pair of edges emanating from the same vertex distinctly labelled, such that \(X \cong L_A \). \(A \) is called the Fischer cover of \(X \).
Outline

1. Definitions
2. Conjugacy
3. **Classification**
4. Flow equivalence
5. Flow classification
Classification

The classification problem
Let X and Y be shift spaces finitely presented by objects A and B, respectively. Determine in terms of A and B when X and Y are conjugate.

The SFT classification problem
Let X and Y be irreducible shifts of finite type given by graphs G and H, respectively. Determine in terms of G and H when X and Y are conjugate.
State splitting

\[
\begin{bmatrix}
2 & 1 \\
2 & 0
\end{bmatrix}
=
\begin{bmatrix}
2 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 0 \\
1 & 0
\end{bmatrix}
\]

\[
\begin{bmatrix}
2 & 0 & 1 \\
2 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
=
\begin{bmatrix}
1 & 0 \\
1 & 0 \\
0 & 1
\end{bmatrix}
\begin{bmatrix}
2 & 0 & 1 \\
1 & 1 & 0
\end{bmatrix}
\]
Theorem (Williams)

Let X_G and X_H be two irreducible SFTs given by graphs with adjacency matrices A and B, respectively. The following conditions are equivalent.

(i) X_G and X_H are conjugate.

(ii) There exist nonnegative integral matrices D_i and E_i with

$$A = D_0E_0, E_0D_0 = D_1E_1, \ldots, E_nD_n = B$$

Arsenal of invariants

Real numbers (entropy), power series (zeta function), ordered abelian groups (Dimension group), finitely generated abelian groups (Bowen-Franks groups), C^*-algebras (Cuntz-Krieger algebra),...
4 examples

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>$h(X_G)$</th>
<th>$BF(X_G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\begin{bmatrix} 2 & 2 \ 2 & 2 \end{bmatrix}$</td>
<td></td>
<td>4</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>$\begin{bmatrix} 3 & 1 \ 3 & 1 \end{bmatrix}$</td>
<td></td>
<td>4</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>$\begin{bmatrix} 1 & 1 \ 3 & 2 \end{bmatrix}$</td>
<td></td>
<td>$\frac{3+\sqrt{13}}{2}$</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>$\begin{bmatrix} 2 & 2 \ 1 & 3 \end{bmatrix}$</td>
<td></td>
<td>4</td>
<td>$(\mathbb{Z}, 0)$</td>
</tr>
</tbody>
</table>
4 examples

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>$h(X_G)$</th>
<th>$BF(X_G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>[\begin{bmatrix} 2 & 2 \ 2 & 2 \end{bmatrix}]</td>
<td>[\begin{array}{c} \bigcirc \bullet \bigcirc \bullet \bigcirc \end{array}]</td>
<td>4</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>[\begin{bmatrix} 3 & 1 \ 3 & 1 \end{bmatrix}]</td>
<td>[\begin{array}{c} \bigcirc \bullet \bigcirc \bullet \bigcirc \end{array}]</td>
<td>4</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>[\begin{bmatrix} 1 & 1 \ 3 & 2 \end{bmatrix}]</td>
<td>[\begin{array}{c} \bigcirc \bullet \bigcirc \bullet \bigcirc \end{array}]</td>
<td>$\frac{3+\sqrt{13}}{2}$</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>[\begin{bmatrix} 2 & 2 \ 1 & 3 \end{bmatrix}]</td>
<td>[\begin{array}{c} \bigcirc \bullet \bigcirc \bullet \bigcirc \end{array}]</td>
<td>4</td>
<td>$(\mathbb{Z}, 0)$</td>
</tr>
</tbody>
</table>
Outline

1. Definitions
2. Conjugacy
3. Classification
4. Flow equivalence
5. Flow classification
Fix $a \in \mathfrak{a}$ and $\star \not\in \mathfrak{a}$ and define $\eta : \mathfrak{a}^\mathbb{Z} \rightarrow (\mathfrak{a} \cup \{\star\})^\mathbb{Z}$ as the map inserting a \star after each a:

$$
\cdots babbbaba \cdots \quad \mapsto \quad \cdots ba \star bbba \star ba \star \cdots
$$

Definition

The “$a \mapsto a\star$” symbol expansion of a shift space X is the shift space $X_{a \mapsto a\star} = \eta(X)$.

Definitions | Conjugacy | Classification | Flow equivalence | Flow classification
Flow equivalence

Associated to any shift space there is a **suspension flow** given by product topology on

\[SX = \frac{X \times \mathbb{R}}{(x, t) \sim (\sigma(x), t + 1)} \]

Definition

\(X \) and \(Y \) are **flow equivalent** (written \(X \simeq_{fe} Y \)) when \(SX \) and \(SY \) are homeomorphic in a way preserving direction in \(\mathbb{R} \).

Theorem (Parry-Sullivan)

Flow equivalence is the coarsest equivalence relation containing conjugacy and \(X \sim X_{a\rightarrow a^*} \)
Flow classification

Lemma

If $X \simeq_{fe} Y$ and X is SFT, sofic or irreducible, then so is Y.

The flow classification problem

Let X and Y be shifts finitely presented by objects A and B, respectively. Determine in terms of A and B when X and Y are flow equivalent.

The SFT flow classification problem

Let X and Y be irreducible shifts of finite type given by graphs G and H, respectively. Determine in terms of G and H when X and Y are flow equivalent.
Outline

1. Definitions
2. Conjugacy
3. Classification
4. Flow equivalence
5. Flow classification
Flow classification of SFTs

Theorem (Franks)

Let X_G and X_H be two irreducible SFTs given by graphs with adjacency matrices A and B, respectively. The following conditions are equivalent.

(i) $X_G \simeq_{fe} X_H$

(ii) $\mathbb{Z}^m / (1 - A)\mathbb{Z}^m \simeq \mathbb{Z}^n / (1 - B)\mathbb{Z}^n$

and

\[\text{sgn det}(1 - A) = \text{sgn det}(1 - B) \]
4 examples

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>$BF(X_G)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\begin{pmatrix} 2 & 2 \ 2 & 2 \end{pmatrix}$</td>
<td>$\begin{tikzpicture} \node (a) at (0,0) {\bullet}; \node (b) at (1,0) {\bullet}; \node (c) at (1,1) {\bullet}; \draw (a) to[out=30,in=150] (b); \draw (b) to[out=300,in=210] (c); \draw (c) to[out=300,in=210] (a); \end{tikzpicture}$</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 3 & 1 \ 3 & 1 \end{pmatrix}$</td>
<td>$\begin{tikzpicture} \node (a) at (0,0) {\bullet}; \node (b) at (1,0) {\bullet}; \node (c) at (1,1) {\bullet}; \draw (a) to[out=30,in=150] (b); \draw (b) to[out=300,in=210] (c); \draw (c) to[out=300,in=210] (a); \end{tikzpicture}$</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 1 & 1 \ 3 & 2 \end{pmatrix}$</td>
<td>$\begin{tikzpicture} \node (a) at (0,0) {\bullet}; \node (b) at (1,0) {\bullet}; \node (c) at (1,1) {\bullet}; \draw (a) to[out=30,in=150] (b); \draw (b) to[out=300,in=210] (c); \draw (c) to[out=300,in=210] (a); \end{tikzpicture}$</td>
<td>$(\mathbb{Z}_3, -)$</td>
</tr>
<tr>
<td>$\begin{pmatrix} 2 & 2 \ 1 & 3 \end{pmatrix}$</td>
<td>$\begin{tikzpicture} \node (a) at (0,0) {\bullet}; \node (b) at (1,0) {\bullet}; \node (c) at (1,1) {\bullet}; \draw (a) to[out=30,in=150] (b); \draw (b) to[out=300,in=210] (c); \draw (c) to[out=300,in=210] (a); \end{tikzpicture}$</td>
<td>$(\mathbb{Z}, 0)$</td>
</tr>
</tbody>
</table>
4 examples

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>$BF(X_G)$</th>
</tr>
</thead>
</table>
| \[
\begin{pmatrix}
2 & 2 \\
2 & 2 \\
3 & 1 \\
3 & 1 \\
1 & 1 \\
3 & 2 \\
\end{pmatrix}
\] | \[
\begin{array}{c}
\circlearrowleft \bullet \\
\end{array}
\] | \[
(Z_3, -) \\
(Z_3, -) \\
(Z_3, -) \\
\] |
| \[
\begin{pmatrix}
2 & 2 \\
1 & 3 \\
\end{pmatrix}
\] | \[
\begin{array}{c}
\circlearrowleft \bullet \\
\circlearrowleft \bullet \\
\end{array}
\] | \[
(Z, 0) \\
\] |
Flow classification of sofics

Theorem

Let X and Y be two irreducible sofic shifts and let A, B be their Fischer covers. The following conditions are equivalent.

(i) $X \simeq_{fe} Y$

(ii) $S\lambda_A \sim^+ \rightarrow S\lambda_B$

\[SL_A \sim^+ \rightarrow SL_B \]
Definition

With a given map $\lambda : \mathcal{X}_A \to \mathcal{L}_A$ we set

$$
\tilde{\mathcal{L}}_A = \{ x \in \mathcal{L}_A \mid |\lambda^{-1}\{\{x\}\}| > 1 \} \\
\tilde{\mathcal{X}}_A = \lambda^{-1}(\tilde{\mathcal{L}}_A)
$$

and restrict λ to

$$\tilde{\lambda} : \tilde{\mathcal{X}}_A \to \tilde{\mathcal{L}}_A$$

Example

With $\mathcal{A} = \begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}$ and $\mathcal{B} = \begin{array}{cc}
0 & 0 \\
0 & 0
\end{array}$ we get $\tilde{\mathcal{L}}_A = \emptyset$ and $\tilde{\mathcal{L}}_B = \{0^\infty\}$.
Theorem (Boyle-Carlsen-E)

Let X and Y be two irreducible sofic shift spaces with Fischer covers A and B, respectively, and assume that $\tilde{X_A}$ and $\tilde{X_B}$ are both closed. Then X and Y are flow equivalent exactly when the following conditions hold:

1. $X_A \simeq_{fe} X_B$
2. $\tilde{SX_A} \sim_+ \tilde{S X_B}$

$$
\begin{align*}
S\tilde{\lambda}_A & \sim_+ S\tilde{\lambda}_B \\
S\tilde{L}_A & \sim_+ S\tilde{L}_B
\end{align*}
$$
\[\lambda : X_A \rightarrow L_A \]
Definitions

Conjugacy

Classification

Flow equivalence

Flow classification

<table>
<thead>
<tr>
<th>λ : X_A → L_A</th>
<th>(\tilde{\lambda} : \tilde{X}_A \rightarrow \tilde{L}_A)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>