Approximate homogeneity is not a local property
Approximate homogeneity is not a local property
- Authors: Marius Dadarlat and Søren Eilers.
- Date: October 1997.
- Status: Appeared in Journal für die Reine und Angewandte
Mathematik 507 (1999) 1-14.
- Pages: 16.
- Abstract:
It is shown that the AH algebras satisfy a certain
splitting property at the level of K-theory with torsion coefficients.
The splitting property is used to prove the following:
- There are locally homogeneous C*-algebras which are not AH algebras.
- The class of AH algebras is not closed under countable inductive
limits.
- There are real rank zero split quasidiagonal extensions of AH algebras
which are not AH algebras
- Reference list: HTML,
postscript.
- Inverse reference list: HTML,
postscript.
- Remarks:
- Access opportunities:
- From de Gruyter [pdf & ps]
here
(access from subscribing campuses only)
- Request a reprint by e-mail here.
eilers@math.ku.dk/October
30, 1997