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1 Introduction

There is a long history of interaction between operator algebras and dynam-
ical systems. At the core of this interaction are constructions of operator
algebras which have that in common that they replace dynamical behavior
by something static at the prize of non-commutativity.

This interaction is asymmetric, but mutually beneficial. There is much
left to learn about the universe of so-called C∗-algebras, and examples with
an origin in dynamics have proven to be important and amenable test cases,
as they often come with extra structure provided by our understanding of
the underlying dynamical system.

In the other direction, methods and strategies from C∗-algebras have been
successfully translated to dynamical systems. One of the most prominent
examples of this transport of ideas is the Bratteli-Vershik model for Cantor
minimal systems. I shall try to give an overview here of an equally important
area of contact, that of classification of dynamical systems up to various
coarse equivalences.

1.1 Overview

My main ambition is to make sense of the diagram
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I will rather carefully explain two important constructions which in an invari-
ant fashion associates C∗-algebras to certain dynamical systems. Of course,
since operator algebras come with more structure than dynamical systems,
the direct gain in using such objects as invariants is limited. However, doing
so offers access to the quite developed structure and classification theory for
C∗-algebras. We shall focus on the so-called K-theory which associates an
ordered Abelian group to any C∗-algebra.

Since all diagonal maps are invariant, so are the horizontal maps, and it
is often possible to a posteriori prove directly that the pairing of dynamical
systems and ordered Abelian groups thus obtained is invariant up to various
coarse equivalence relations. In some cases, the invariants thus obtained have
been well known. But in most cases, what is naturally obtained by taking
this detour over operator algebras has been quite different in nature from the
known invariants.

1.2 Acknowledgments

I wish to thank the organizers of the Ecole pluri-thématique de théorie er-
godique, in particular Yves Lacroix, for giving me the opportunity to attend
this very inspiring meeting and to give the two lectures on which these notes
are based.

The exposition of the construction of the C∗-algebras by Matsumoto
draws heavily on ideas by my former PhD student Toke M. Carlsen, see
[Car04a] and the associated thesis defense slides. I am very grateful to Dr.
Carlsen for letting me borrow his point of view, and for supplying construc-
tive criticism of a first version of these notes. I also wish to thank the referee
for his carefully prepared comments which have eradicated a embarrasingly

2



high number of minor errors which would have been very disturbing for the
reader.

2 External and universal origins of C∗-algebras

A C∗-algebra is ususally defined as a normed ∗-algebra subject to a (rather
long) list of axioms, see for example [Ped79, 1.1.1], but as a consequence of
the representation theorem of Gelfand, Naimark and Segal (see [Ped79, 3.3]),
we may – and will – choose an external definition as follows:

Definition 2.1 A C∗-algebra is a closed ∗-subalgebra of the set B(H) of
bounded operators on a Hilbert space H.

The operations inherited from B(H) to a C∗-algebra are the pointwise
linear operations S+T and λS, the composition ST , adjunction S∗, and the
operator norm ‖S‖. A ∗-homomorphism between C∗-algebras A and B is a
map φ : A −→ B which is linear, multiplicative and ∗-preserving.

We shall not venture into the basic properties of C∗-algebras and their
morphisms, but to illustrate the inherent rigidity of these objects, let us note

Proposition 2.2 [cf. [Ped79, 1.5.7]] For any ∗-homomorphism φ : A −→ B
we have

‖φ(a)‖ ≤ ‖a‖ a ∈ A

and if φ is injective we further get

‖φ(a)‖ = ‖a‖ a ∈ A

The first part of the result explains why we do not have to require explic-
itly that morphisms are continuous, but in a sense the second part is more
surprising, stating as it does that any ∗-monomorphism is an isometry. This
observation is a basis for a collection of rigidity results about C∗-algebras,
saying for instance that there is at most one way to equip a given ∗-algebra
as a C∗-algebra.

This is an important technical prerequisite for coding mathematical struc-
ture in terms of C∗-algebras. Our philosophical basis for wishing to do so
it that it is often much easier to work with whole algebras than individual
operators. The most basic examples of this phenomenon will be well known:
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Example 2.3 [Commutative C∗-algebras] Let Ω be a (second countable)
compact Hausdorff space. There exists a Radon measure µ such that

C(Ω) = {f : Ω −→ C | f is continuous}
can be realized as a C∗-algebra by multiplication operators Mf ∈ B(L2(Ω, µ))
acting by

Mfg = fg, g ∈ L2(Ω, µ)

Example 2.4 [Spectral theory] Let T denote a normal (i.e. TT ∗ = T ∗T )
operator on B(H). The smallest C∗-algebra containing T is ∗-isomorphic to
C(sp(T )), the C∗-algebra of continuous functions on

sp(T ) = {λ ∈ C | λI − T is not invertible }

2.1 Reduced crossed products

Let (Ω, φ) denote an invertible topological system; Ω compact Hausdorff and
φ a homeomorphism. We pick an invariant probability measure µ on Ω and
work in the Hilbert space L2(Ω, µ). In B(L2(Ω, µ)) we define operators U
and Mf , for each f ∈ C(Ω), by

Ug = g ◦ φ−1 g ∈ L2(Ω, µ)

Mfg = fg g ∈ L2(Ω, µ)

It is worthwhile to note

UU∗ − 1 = 0 U∗U − 1 = 0 (1)

MfMg −Mfg = 0 MfMg −MgMf = 0 (2)

M∗
f −Mf = 0 (3)

UMfU
∗ −Mf◦φ−1 = 0 (4)

which is easily seen by evaluating on the dense set of continuous functions in
L2(Ω, µ); for instance

UMfg = (fg) ◦ φ−1 = (f ◦ φ−1)(g ◦ φ−1) = Mf◦φ−1Ug

The smallest C∗-algebra containing U and Mf for all continuous f is
denoted the reduced crossed product of (Ω, φ, µ) or sometimes

C(Ω) oφ,µ,red Z
However, this object in general depends on the choice of µ and is hence
not a good invariant for the system itself. We shall subsequently refine the
construction, to achieve something which is, in Section 2.3.

4



2.2 Reduced Matsumoto algebras

Let us now specialize to the case of a symbolic dynamical system given as a
closed, shift invariant subspace X of aZ, where the alphabet a is a finite set
with discrete topology, and aZ is equipped with the product topology and
the shift map σ((xn)) = (xn+1). We will need to work with one-sided shift
spaces as well, and will do so through the restriction map

π+ : aZ −→ aN0

and set X+ = π+(X). We let `2(X+) be a (not necessarily separable) Hilbert
space with orthonormal basis {ex | x ∈ X+} and define, for each a ∈ a, the
operator Sa ∈ B(`2(X+)) by

Saex =

{
eax ax ∈ X+

0 otherwise

This is possible because one easily sees that Sa defines a norm-decreasing
map on span{ex | x ∈ X+}.

We have

S∗aex =

{
ey x = ay

0 otherwise

so

SaS
∗
aex =

{
ex x = ay

0 otherwise
S∗aSaex =

{
ex ax ∈ X+

0 otherwise

If we let
Sa1...an = Sa1 . . . San

with Sε = 1, where ε denotes the empty word, and let

C(u|v) = {ux ∈ X+ | vx ∈ X+},

then as proved above for {u, v} = {ε, a} we get

SuS
∗
vSvS

∗
u = Projspan{ex|x∈C(u|v)}
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We get

a ∈ a =⇒ SaS
∗
aSa − Sa = 0 (5)

C(u|v)−
n⋂
i=1

C(ui|vi) = 0 =⇒ SuS
∗
vSvS

∗
u −

n∏
i=1

Sui
S∗vi
Svi
S∗ui

= 0 (6)

C(u|v)−
n⊔
i=1

C(ui|vi) = 0 =⇒ SuS
∗
vSvS

∗
u −

n∑
i=1

Sui
S∗vi
Svi
S∗ui

= 0 (7)

with “
⊔

” denoting disjoint unions.

Definition 2.5 The smallest C∗-algebra containing all the operators Sa, a ∈
a is denoted

OX,red

This C∗-algebra was introduced by Carlsen and Matsumoto in [CM04] as a
reduced variant of the C∗-algebras considered earlier by Matsumoto.

Example 2.6 Consider the golden mean shift Xgm consisting of all sequences
(xn)n∈Z where for all n, xnxn+1 6= 11. We have C(ε|0) = X+

gm, C(ε|1) = C(0|ε)
and C(0|ε) t C(1|ε) = X+

gm, so we get from (5)–(7) that

S∗0S0 = 1 (8)

S∗1S1 = S0S
∗
0 (9)

S0S
∗
0 + S1S

∗
1 = 1 (10)

2.3 Universal C∗-algebras

It follows by the work of Cuntz and Krieger ([CK80]) that all unital C∗-
algebras generated by elements S0 and S1 satisfying (8)–(10) are mutually
∗-isomorphic. We thus, in this way, arrive at a universal C∗-model for the
golden mean shift. However, such canonically universal relations are too rare
for us to restrict our attention to this case. We shall instead explain how to
define an explicitly universal C∗-algebra from such relations. A good general
source for this is [Lor97].

A set of relations in some (not necessarily finite) set of generators G =
{gi}i∈I is a (not necessary finite) collection of equations

R = {pj(gij1 , . . . , gijnj
, g∗ij1 , . . . , g

∗
ijnj

) = 0}j∈J
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where the pj’s are all polynomials in 2nj free variables (this restriction is
not necessary, as noted in [EL99]). A representation of these generators in a
C∗-algebra A is a map G : I −→ A such that

pj(G(ij1), . . . , G(ijnj
), G(ij1)

∗, . . . , G(ijnj
)∗) = 0

for all j ∈ J . The set of all representations of 〈G|R〉 we will denote by
Rep〈G|R〉.

Whenever there is a generator named “1” we shall tacitly impose the
relations

1x− x = 0 x1− x = 0

for all generators x.

Example 2.7 We are going to consider the following examples of generators
and relations:

G00 = {x}, R00 = {x− x∗ = 0}
G0 = {y}, R0 = {yy∗ = 0}

GProj = {p}, RProj = {p∗ − p = 0, p2 − p = 0}
Gφ = {U} ∪ {Tf | f ∈ C(Ω)} ∪ {0}, Rφ = {(1)–(4)}

GX = {Sa | a ∈ a} ∪ {1}, RX = {(5)–(7)}

To each set of generators and relations we may try to associate a C∗-
algebra C∗〈G | R〉 with the universal property indicated by

I

G0

��

G

((QQQQQQQQQQQQQQQQQ

C∗〈G | R〉
∃!ψ

//______ A

(11)

i.e., that every representation of 〈G|R〉 factors uniquely through the given
canonical representation G0 through the ∗-homomorphism ψ.

The theory of universal objects in C∗-algebras theory differs significantly
from general universal algebra by the lack of free objects. Indeed, sup-
pose that I = {i0} and R = ∅ in the diagram above. By Proposition 2.2,
‖G0(i0)‖ ≥ ‖G(i0)‖ for each G ∈ Rep〈G | ∅〉, and since any x in any C∗-
algebra A induces such a representation, such a G0(i0) can not exist.
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We hence have to restrict our attention to relations which are bounded in
the sense that any representation of them has a uniformly bounded norm.
For such relations, this object exists and is unique. However, because of the
inherent rigidity of C∗-algebras, A will be trivial in many cases. We have:

Proposition 2.8 There is a nonzero C∗-algebra C∗〈G | R〉 with the univer-
sal property (11) precisely when

∀i ∈ I : supG∈Rep〈G,R〉 ‖G(i)‖ <∞
∃i ∈ I : supG∈Rep〈G,R〉 ‖G(i)‖ > 0

Example 2.9 If x satisfies x = x∗, so does λx for any real λ. Thus there is
no bound of the norm of G(x) in a representation of 〈G00|R00〉, and as above,
C∗〈G00|R00〉 does not exist. If y satisfies yy∗ = 0 then by the C∗-identity
[Ped79, 1.1.1]

‖yy∗‖ = ‖y‖2

we have y = 0. Thus as indicated by Proposition 2.8, C∗〈G0|R0〉 = 0.
For any representation G of 〈GProj | RProj〉 we have, again by the C∗-

identity, that ‖G(p)‖ ∈ {0, 1}. The element 1 ∈ B(C) is a non-trivial rep-
resentation of the relations. Thus C∗〈GProj|RProj〉 6= 0. In fact, one may
identify the universal C∗-algebra as C.

Our work in Sections 2.1 and 2.2 showed that there are nontrivial repre-
sentations of the relations (1)–(4) and (5)–(7). It is further possible to prove
by spectral considerations that any representation of the generators 1, U and
Sa has norm at most one, and that any representation of the generators Mf

has norm at most ‖f‖∞. Thus the following definitions are meaningful and
nontrivial:

Definition 2.10 [Crossed product, cf. [Dav96]] C(Ω) oφ Z = C∗〈Gφ|Rφ〉

Definition 2.11 [Matsumoto algebra, cf. [Mat97], [CM04]]OX = C∗〈GX |RX〉

Remark 2.12 It is possible to associate crossed products to actions on any
Abelian group. For instance, an action of Z/nZ can be successfully modelled
by adding the relation Un = 1 to Rφ.
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We clearly have, by the universal properties,

C(Ω) oφ Z −→ C(Ω) oφ,µ,red Z
OX −→ OX,red

The first type of map is almost never a ∗-isomorphism, but it is possible to
refine our construction of a concrete representation of the relations (1)–(4)
to a so-called regular representation which identifies C(Ω) oφ Z canonically
as an algebra of operators.

Our claims concerning the golden mean shift at the beginning of Section
2.3 show that the second type of map is a ∗-isomorphism in this case. It is
possible (cf. [CM04]) to give general criteria for when this happens.

We have reached our goal of associating a C∗-algebra to a dynamical
system in an invariant way:

Proposition 2.13 If (Ω, φ) is conjugate to (Ω̃, φ̃), then

C(Ω) oφ Z ' C(Ω̃) oeφ Z

Proof: Assume that the conjugacy is induced by χ : Ω −→ Ω̃. If then
Tf , U ∈ B(H) is a representation of 〈Gφ|Rφ〉, then with

T̃g = Tg◦χ Ũ = U

we get a representation of 〈Geφ|Reφ〉. For instance,

Ũ T̃gŨ
∗ = UTg◦χU

∗ = Tg◦χ◦φ−1 = Tg◦eφ−1◦χ = T̃g◦eφ−1

�
We will postpone a discussion of invariance of OX to Section 3.1 below.

3 K-theory and internal characterization of

C∗-algebras

Instead of trying to describe C∗-algebras by the external or universal means
of the previous section, it can be very useful to think of C∗-algebras, when
possible, as constructed from a short list of basic examples of C∗-algebras
using a number of basic operations.
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Two of the most important constructions yield from a C∗-algebra A the
new matrix C∗-algebra

Mn(A)

consisting of n× n-matrices with entries in A and operations equalling stan-
dard matrix multiplication and ∗-transposition in A. This is an algebra of
operators on Hn when A is an algebra of operators on H. Similarly, for Ω
some compact Hausdorff space, we have the C∗-algebra

C(Ω, A)

consisting of continuous A-valued functions with pointwise operations. This
is an algebra of operators on the Hilbert space{

f : Ω −→ H

∣∣∣∣∫
Ω

‖f‖2dµ <∞
}

where A is an algebra of operators on H and µ is an appropriately chosen
Radon measure on Ω.

The direct sum of two C∗-algebras A and B – acting on the Hilbert spaces
H and K – is also a C∗-algebra A ⊕ B acting on the Hilbert space H ⊕ K.
If we have an increasing sequence (An)

∞
n=1 of C∗-algebras, all acting on the

same Hilbert space H, then we can consider
⋃∞
n=1Ai ⊂ B(H), but since this

will in general fail to be closed, we need to consider

∞⋃
n=1

Ai ⊂ B(H),

to get a C∗-algebra. The latter construction can in fact be extended to the
case of a general system

A1
φ1 // A2

φ2 // A3
φ3 // · · ·

by the construction of inductive limits (see e.g. [RLL00, 6.2]), but we shall
not go into this here.

Combining two of these ideas we arrive at

A∞ =
⋃
n≥1

Mn(A)
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with Mn(A) embedded into Mn+1(A) at the top left corner. Again, this is
not a C∗-algebra since it is not complete, but taking its closure, we get a
C∗-algebra called

A⊗K

which is. It is possible ([Was94]) to make sense out of the tensor product
notation in a much more general setting, but we shall not attempt to do so
here. Suffice it to say that with A = C we get the C∗-algebra of compact
operators on a separable Hilbert space and that one may think of A⊗K as
infinite A-valued matrices with decaying entries, just like one could do for
compact operators.

3.1 K-theory

There is a functor K0 mapping the category of C∗-algebras and ∗-homomor-
phisms to the category of Abelian groups and group homomorphisms. The
construction is somewhat complicated – we recommend sources [Bla86] and
[RLL00] – but shall attempt here to give a rough sketch. The orthogonal
projections (cf. RProj from Example 2.7) form a semigroup

V (A) =
[
{p ∈ A∞ | p = p∗ = p2},⊕

]
/ ∼

where

p⊕ q =

[
p 0
0 q

]
and p ∼ q ∈ A∞ when there exists v ∈ A∞ such that

vv∗ = p v∗v = q.

By the standard (Grothendieck) construction, V (A) is made into an Abelian
group, which we denote K0(A), by forming formal differences

[p]− [q]

of elements from V (A). However, we will keep track of V (A) by denoting
by K0(A)+ the set of elements which may be represented as [p] = [p] − [0]
for some p ∈ Proj(A∞). This is a cone inside K0(A), so that one may
consider K0(A) as an ordered group. Since a ∗-homomorphism φ : A −→ B
preserves projections (it preserves the relations RProj), it induces a positive
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group homomorphism φ∗ : K0(A) −→ K0(B). Thus K0(A), considered as an
ordered group, is an invariant for C∗-algebras.

It is essential to note, however, that the positive elements do not neces-
sarily generate the group, and that it is possible that elements x, other than
0, have the property that ±x ∈ K0(A)+. We shall use the space-efficient,
but somewhat nonstandard, notation “G ⊇ H” to specify an ordered group
G with G+ = H. For a unital C∗-algebra A one often wants to keep track of
the distinguished element [1] ∈ K0(A) defined as the class of the unit.

Example 3.1

(1) [K0(Mn(C)), [1]] = [Z ⊇ N0, n]

(2)

[K0(C(Sn)), [1]] =

{
[Z ⊇ N0, 1] n odd

[Z2 ⊇ An, (1, 0)] n even

where An can only be partially specified by

({0, . . . , n− 1} × {0}) ∪ ({n, . . . } × Z) ⊆ An ⊆ N0 × Z

(3) If dim(Ω) = 0

[K0(C(Ω)), [1]] = [C(Ω,Z) ⊇ C(Ω,N0), 1]

It is rather humbling to note that (unless there has been a recent de-
velopment in algebraic topology that I am not aware of) we do not know
exacly what the order on something as fundamental as K0(C(Sn)) is for all
n. Somewhat counterintuitively, this is only a minor problem for the theory,
as the partial information given in (2) above is often sufficient to analyze the
simple or real rank zero C∗-algebras that one is often lead to consider.

One may define another functor K1(−) with the property that

K0(C(S1, A)) = K0(A)⊕K1(A)

We shall not go into this construction here; suffice it to say that because of
the phenomenon Bott periodicity ([RLL00, 11]) there is no K2(−), or rather,
it is the same as K0(−). Thus the long exact sequences in this theory become
periodic of order six. Of main importance in this context is:
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Theorem 3.2 [Pimser-Voiculescu ([PV80])] There is an exact sequence

K0(C(Ω))
id−φ∗ // K0(C(Ω)) // K0(C(Ω) oφ Z)

��
K1(C(Ω) oφ Z)

OO

K1(C(Ω))oo K1(C(Ω))
id−φ∗

oo

In the case of minimal actions on zero-dimensional spaces we get an even
finer result:

Theorem 3.3 [[Put90], [BH96]] If φ acts minimally on Ω with dim Ω = 0
then

K0(C(Ω) oφ Z) =

[
C(Ω,Z)

Im(id−φ∗)
⊇ C(Ω,N0)

Im(id−φ∗)

]
Theorem 3.4 [[Mat98], [Mat01]]

K0(OX) =
spanZ{1C(u|v)}

Im(Id−λ)

where
λ(f)(x) =

∑
σ+(y)=x

f(y),

σ+ : X+ −→ X+ being the shift map.

Note that this last result does not specify K0(OX) as an ordered group;
only as a group.

In the special case where X above is a shift of finite type, K0(OX) be-
comes a well-known invariant for such shifts, namely the Bowen-Franks group
denoted BF (·) ([BF77],[LM95]) defined by considering such shift spaces as
egde shift spaces such as

and
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with adjacency matrices

A =


1 1 0 0
0 0 1 1
1 1 1 1
1 1 1 1

 and B = [3].

Indeed,

K0(OXA
) = BF (XA) = Z4/(Id−At)Z4 ' Z/2

K0(OXB
) = BF (XB) = Z2/(Id−Bt)Z2 ' Z/2

One may prove that the order structure is trivial in the sense that every
element in K0(OXA

) and K0(OXB
) is positive.

This computation sheds light on the invariance problem for Matsumoto
algebras mentioned above. Since the class of the unit is represented by
(1, 1, 1, 1) + (Id−At)Z4 and (1) + (Id−Bt)Z, respectively, we get that

(K0(OXA
), [1A]) ' (Z/2, 1) 6' (Z/2, 0) ' (K0(OXB), [1B])

so OXA
and OXB

are not isomorphic, and we have seen that the map X 7→ OX

fails to be conjucacy invariant. This is in fact not so surprising given the focus
on one-sided shift spaces in the definition of Matsumoto algebras, and the
example given above is just the first textbook example (from [Kit98]) of a
pair of graphs yielding two-sided shift spaces which are conjugate, for which
the one-sided shift spaces are not conjugate.

There is a general principle in classification theory for C∗-algebras, based
on

Proposition 3.5 For any C∗-algebra A, K0(A⊗K) = K0(A)

and the observation that A⊗K has no unit, which indicates that when two
(ordered) groups K0(A) and K0(B) are the same in a way not preserving
the unit, so that A 6' B, one may try instead to establish so-called stable
isomorphism: A⊗K ' B ⊗K. This does the trick:

Theorem 3.6 [Carlsen] If X and Y are conjugate shift spaces, then

OX ⊗K ' OY ⊗K

The result above is not easy to prove in full generality. The proof which
is going to appear in [Car] draws on deep facts from both symbolic dynamics
(Nasu bipartite codes, [Nas86]) and operator algebras (Morita equivalence,
[Bro77]).
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3.2 Classification

As noted in Example 3.1, [K0(C(S1)), [1]] = [K0(C(S3)), [1]], and in general,
one cannot hope that K-theory is a complete invariant for C∗-algebras up to
∗-isomorphism. The classification theory for C∗-algebras is concerned with
finding large classes of C∗-algebras C for which this invariant, or variations
of it, is complete. Such results have historically been centered around classes
of C∗-algebras given as unions or inductive limits of C∗algebras of the form

Mn1(A1)⊕ · · · ⊕Mnm(Am)

where the C∗-algebras Ai come from a short list. The defining examples,
both classified by Elliott ([Ell76], [Ell93]) are the AF (approximately finite)
algebras obtained by requiring that Ai = C for all i, and the real rank zero
AT (approximately toral) algebras obtained by requiring that Ai = C(S1).
The blueprint for such classification results is

[K0(A), [1A], . . . ] ' [K0(B), [1B], . . . ]
A,B ∈ C

}
⇒ A ' B

or
[K0(A), . . . ] ' [K0(B), . . . ]

A,B ∈ C

}
⇒ A⊗K ' B ⊗K

where one must adjust the elliptical parts of the invariant to the considered
classes C. Note how the second version corresponds to the principle explained
around Proposition 3.5. For AF algebras, the ordered group K0(A) is itself
a complete invariant. For AT algebras, one needs to add K1(−) and define
an ordered group structure on K0(A)⊕K1(A). An overview of the status of
classification of C∗-algebras appears in [Rør02] and [Lin01].

For this to bear relevance for operator algebras associated to dynamical
systems we hence need to establish that such algebras fall in classifiable
classes, so that the diagram above becomes

15



� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �� � � � � �

� �� �� �� �

Dynamical
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K 0

C*−algebras

The defining example of this strategy is that of the irrational rotation.
We consider Ω = S1 acted upon by φθ; the rotation by an irrational angle θ.
We have by an easy application of Theorem 3.2 that K0(C(Ω) oφθ

Z) = Z2

as a group, but to identify the ordered group requires a deeper analysis of
the C∗-algebra, yielding (cf. [Rie81])

K0(C(Ω) oφθ
Z) = [Z + θZ ⊇ (Z + θZ) ∩ R+]

It turns out ([EE93]) that for suitably chosen pi, qi we get

C(Ω) oφθ
Z =

∞⋃
i=1

Mpi
(C(S1))⊕Mqi(C(S1))

which is manifestly in the class of AT algebras of real rank zero, classified in
[Ell93].

A result by Lin and Phillips ([LP]) is a recent breakthrough on a gener-
alization of this result to a more general setting. It takes as a starting point
the strategy of proof in the following theorem, which is of great relevance to
the theme in the remaining part of these notes.

Theorem 3.7 [Putnam [Put90]] If (Ω, φ) is a Cantor minimal system then
C(Ω) oφ Z is an AT algebra of real rank zero.

Because of this result, the crossed products end up in the classifiable
class in [Ell93], leading to the following crucial result. Two shift spaces X
and Y are orbit equivalent if there is a homeomorphism F : X −→ Y with
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the property that F (orbit(x)) = orbit(F (x)) for all x. In this case, there are
maps n : X −→ Z and m : Y −→ Z such that

F (σm(x)(x)) = σ(F (x)) F (σ(x)) = σn(x)(F (x))

for all x ∈ X. We say that X and Y are strong orbit equivalent when m,n
can be chosen discontinuous only at one point each.

Theorem 3.8 [[GPS95]] The following are equivalent

(i) (Ω, φ) is strong orbit equivalent to (Ω̃, φ̃)

(ii) [K0(C(Ω) oφ Z), [1]] ' [K0(C(Ω̃) oeφ Z), [1]]

(iii) C(Ω) oφ Z ' C(Ω̃) oeφ Z

As decribed in [GPS95], it is possible to adjust the invariant K0(C(Ω)oφ

Z) to achieve a complete invariant for the perhaps more natural notion of
orbit equivalence as well.

4 A comparison

4.1 Substitutional dynamical systems

We have thus far worked with two different ways of associating C∗-algebras
to dynamical systems. One way, the crossed product, is available for any
action, and is particularly tractable when the action is minimal on a Cantor
set. The other way, the Matsumoto algebra, is only available for shift spaces.

We are going to compare the constructions and the information they carry
on the dynamics in the case of substitutional dynamical systems [Que87],
[Fog02]. Starting with a map

τ : a −→ a].

we associate a shift space Xτ consisting of all biinfinite words for which any
finite subword is a subword of τn(a) for some n ∈ N and a ∈ a. One associates
(cf. [DHS99]) to any substitution τ the abelianization matrix which is the
|a| × |a|-matrix AAAτ given by

(AAAτ )a,b = #[b, τ(a)].
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As usual, one focuses on the primitive (i.e., AAAτ is primitive) and aperiodic
(i.e., Xτ is infinite) substitutions. A main accomplishment in [DHS99] is the
description of K0(C(Xτ ) oσ Z) as a stationary inductive limit with matrices
for the connecting maps read off directly from the substitution:

Theorem 4.1 [[DHS99], Theorem 22(i)] Let τ be a primitive, aperiodic and
proper substitution. There is an order isomorphism

K0(C(Xτ ) oσ Z) ' lim
−→

(Z|a|,AAAτ )

where each Z|a| is ordered by

(xa) ≥ 0 ⇐⇒ ∀a ∈ a : xa ≥ 0.

A substitution τ is proper if for some τ ′ : a −→ a] ∪ {ε},

∃n ∈ N∃l, r ∈ a∀a ∈ a : τn(a) = lτ ′(a)r.

In [DHS99, Proposition 20, Lemma 21] an algorithmic way is given for passing
from a primitive and aperiodic substitution τ ′ to a primitive, aperiodic and
proper substitution τ such that Xτ ′ ' Xτ , so asking for this property in the
theorem is not a restriction.

With this result in hand, it can be shown that strong orbit equivalence
is decidable among primitive and aperiodic substitutions, cf. [BJKR01].

In general, as one would expect from the difference between their defining
relations (1)–(4) and (5)–(7), the C∗-algebras associated to a shift space as
a crossed product and associated to a shift space as a Matsumoto algebra
are completely unrelated objects. For instance, the Matsumoto algebra as-
sociated to an irreducible shift of finite type is simple, whereas the crossed
product has infinitely many ideals.

However, as explained in the work by Carlsen ([Car04b], [Car04a]) it is
possible to understand Matsumoto algebras as a kind of crossed products
over non-invertible systems. Thus the following observation, which is the
starting point of our comparison in the case considered, is a consequence of
the fact that the difference between one- and twosided substitutional systems
is limited:

Theorem 4.2 [Carlsen, [Car04b]] Let τ be a primitive and aperiodic sub-
stitution. There is a surjective ∗-homomorphism

ρ : OXτ
−→ C(Xτ ) oσ Z,
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To understand the interrelation between OXτ
and C(Xτ ) oσ Z, we need

to invoke a well-known concept from substitutional dynamics, that of special
words.

We say (cf. [HZ01]) that y ∈ Xτ is left special if there exists y′ ∈ Xτ such
that

y−1 6= y′−1 π+(y) = π+(y′).

If there exist an n and an M such that xm = yn+m for all m > M then we
say that x and y are right shift tail equivalent and write x ∼r y.

By [Que87, p. 107] and [BL97, Theorem 3.9], there is a finite, but nonzero,
number of left special words in Xτ . Thus the number nτ of right shift tail
equivalence classes of left special words in Xτ , and the nτ -vector pτ with each
entry one less than the number of representative in each such equivalence
class are defined. Further, by a method described in [CE] and [CE04a] these
numbers are computable by a procedure which also generates an nτ × |a|-
matrix BBBτ for a class of so-called basic substitutions. We get:

Theorem 4.3 Let τ be a basic substitution. There is a group isomorphism

K0(Xτ) ' lim
−→

(
Z|a| ⊕ Znτ/pτZ,

[
AAAτ 0
BBBτ IdIdId

])
.

where each Z|a| ⊕ Znτ/pτZ is ordered by

(xa, yi + pZ) ≥ 0 ⇐⇒ ∀a ∈ a : xa ≥ 0.

Again, there is an algorithmic way of passing from any aperiodic and
primitive substitution to one which is basic and flow equivalent to it, so that
the result above can be used to compute the ordered Matsumoto K0-group
of any aperiodic and primitive substitution.

The notion of flow equivalence among two-sided shift spaces is of impor-
tance here. This notion is defined using the suspension flow space of (X, σ)
defined as SX = (X×R)/∼ where the equivalence relation ∼ is generated by
requiring that (x, t+1) ∼ (σ(x), t). Equipped with the quotient topology, we
get a compact space with a continuous flow consisting of a family of maps
(φt) defined by φt([x, s]) = [x, s + t]. We say that two shift spaces X and X′

are flow equivalent and write X ∼=f X′ if a homeomorphism F : SX −→ SX′

exists with the property that for every x ∈ SX there is a monotonically
increasing map fx : R −→ R such that

F (φt(x)) = φ′fx(t)(F (x)).
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In words, F takes flow orbits to flow orbits in an orientation-preserving way.
One may prove that both C∗-algebras OXτ

⊗K and C(Xτ ) oσ Z⊗K are
invariants of Xτ up to flow equivalence. Hence also the ordered groups

K0(OXτ
) K0(C(Xτ ) oσ Z)

are flow invariants, and one can prove using Proposition 4.2 that K0(OXτ
)

contains K0(C(Xτ ) oσ Z). The following example shows that K0(OXτ
) is a

strictly finer invariant among the two:

Remark 4.4 We consider

τ(a) = dbdbaaaaaddddddbbbbbbcccabd

τ(b) = d11b10cccca10bdbbbddddbbbbccaadd

τ(c) = dbdbaaaacddddddbbbbbbcaacbd

τ(d) = d11b10cccca10dddddbd31b39c12a24dddddbbbbccaadd

where “•i” is just an abbreviation of the concatenation of i instances of “•”.
Computations using our program [CE02], cf. [CE], show that this substi-

tution is aperiodic, elementary and basic with nτ = 2,pτ = (1, 1) and

BBBτ =

[
10 13 4 12
6 8 2 8

]
.

Now consider the opposite substitution τ−1 with τ−1(•) equalling τ(•) read
from right to left. By definition, AAAτ = AAAτ−1 so that by Theorem 4.1,

K0(C(Xτ ) oσ Z) ' K0(C(Xτ ′) oσ Z)

as ordered groups. But for τ−1 we get nτ−1 = 2, pτ−1 = (1, 1), and

BBBτ−1 =

[
2 7 2 7
2 7 2 7

]
It is elementary (but cumbersome, cf. [CE04b]) to show that

K0(OXτ
) 6' K0(OXτ−1 )

We have chosen the example so that no other flow invariant known to
us can tell the flow equivalence classes of Xτ and Xτ−1 apart. Surely shorter
examples could be found – the repeated letters are only used to get compu-
tationally convenient invariants.
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Comparing to Theorem 3.8, one is now lead to the following open ques-
tions, with which I will conclude:

(i) Are the C∗-algebras OXτ
classifiable by ordered K-theory?

(ii) Which relation on the spaces Xτ is induced by isomorphism of the as-
sociated ordered K-groups?

(iii) Which relation on the spaces Xτ is induced by stable ∗-isomorphism of
the associated C∗-algebras?

It is possible to prove that there exist non-flow equivalent substitutions
whose ordered K0-groups are isomorphic. But I can not say at present
whether this indicates that the C∗-algebras are not classifiable, or that the
relation induced by stable ∗-isomorphism on the substitutional systems is
much coarser than flow equivalence. Work is needed to realize in dynamical
terms the meaning of stable isomorphism of Matsumoto algebras.

References

[BF77] R. Bowen and J. Franks, Homology for zero-dimensional nonwan-
dering sets, Ann. Math. (2) 106 (1977), no. 1, 73–92.

[BH96] M. Boyle and D. Handelman, Orbit equivalence, flow equivalence
and ordered cohomology, Israel J. Math. 95 (1996), 169–210.

[BJKR01] O. Bratteli, P. Jørgensen, K.H. Kim, and F. Roush, Decidability
of the isomorphism problem for stationary AF-algebras and the
associated ordered simple dimension groups, 2001, pp. 1625–1655.

[BL97] M. Boyle and D. Lind, Exponential subdynamics, Trans. Amer.
Math. Soc. 349 (1997), 55–102.

[Bla86] B. Blackadar, K-theory for operator algebras, Math. Sci. Research
Inst. Publ., vol. 5, Springer-Verlag, New York, 1986.

[Bro77] L.G. Brown, Stable isomorphism of hereditary subalgebras of C∗-
algebras, Pacific J. Math. 71 (1977), no. 2, 335–348.

21



[Car] T.M. Carlsen, A faithful representation of the C∗-algebra associ-
ated to a shift space, in preparation, will appear on www.math.ku.

dk/~toke.

[Car04a] , Operator algebraic applications in symbolic dynamics,
Ph.D. thesis, Copenhagen University, 2004.

[Car04b] T.M. Carlsen, Symbolic dynamics, partial dynamical systems,
Boolean algebras and C∗-algebras generated by partial isometries,
preprint, available from www.math.ku.dk/~toke, 2004.

[CE] T.M. Carlsen and S. Eilers, A graph approach to computing non-
determinacy in substitutional dynamical systems, submitted for
publication, www.math.ku.dk/~eilers/papers/cei.

[CE02] , Java applet, www.math.ku.dk/~eilers/papers/cei,
2002.

[CE04a] , Matsumoto K-groups associated to certain shift spaces,
submitted for publication, available from www.math.ku.dk/

~eilers/papers/ceiii, 2004.

[CE04b] , Ordered K-groups associated to substitutional dynamics,
submitted for publication, Mittag-Leffler Institute preprint 16,
2004.

[CK80] J. Cuntz and W. Krieger, A class of C∗-algebras and topological
markov chains, Invent. Math. 56 (1980), 251–268.

[CM04] T.M. Carlsen and K. Matsumoto, Some remarks on the C∗-
algebras associated with subshifts, Math. Scand. 90 (2004), 145–
160.

[Dav96] K.R. Davidson, C∗-algebras by example, Fields Institute Mono-
graphs, vol. 6, American Mathematical Society, Providence, RI,
1996.

[DHS99] F. Durand, B. Host, and C. Skau, Substitutional dynamical sys-
tems, Bratteli diagrams and dimension groups, Ergodic Theory
Dynam. Systems 19 (1999), no. 4, 953–993.

22

www.math.ku.dk/~toke
www.math.ku.dk/~toke
www.math.ku.dk/~toke
www.math.ku.dk/~eilers/papers/cei
www.math.ku.dk/~eilers/papers/cei
www.math.ku.dk/~eilers/papers/ceiii
www.math.ku.dk/~eilers/papers/ceiii


[EE93] G.A. Elliott and D.E. Evans, The structure of the irrational rota-
tion C∗-algebra, Ann. of Math. 138 (1993), 477–501.

[EL99] S. Eilers and T.A. Loring, Computing contingencies for stable re-
lations, Internat. J. Math. 10 (1999), 301–326.

[Ell76] G.A. Elliott, On the classification of inductive limits of sequences
of semisimple finite-dimensional algebras, J. Algebra 38 (1976),
no. 1, 29–44.

[Ell93] G.A. Elliott, On the classification of C∗-algebras of real rank zero,
J. Reine Angew. Math. 443 (1993), 179–219.

[Fog02] N.P. Fogg, Substitutions in dynamics, arithmetics and combina-
torics, Lecture Notes in Mathematics, vol. 1794, Springer-Verlag,
Heidelberg, 2002.

[GPS95] T. Giordano, I.F. Putnam, and C.F. Skau, Topological orbit equiv-
alence and C∗-crossed products, J. Reine Angew. Math. 469
(1995), 51–111.

[HZ01] C. Holton and L. Q. Zamboni, Directed graphs and substitutions,
Theory Comput. Syst. 34 (2001), no. 6, 545–564.

[Kit98] B.P. Kitchens, Symbolic dynamics, Springer-Verlag, Berlin, 1998,
One-sided, two-sided and countable state Markov shifts.

[Lin01] H. Lin, An introduction to the classification of amenable C∗-
algebras, World Scientific Publishing Co. Inc., River Edge, NJ,
2001.

[LM95] D. Lind and B. Marcus, An introduction to symbolic dynamics
and coding, Cambridge University Press, Cambridge, 1995.

[Lor97] T.A. Loring, Lifting solutions to perturbing problems in C∗-
algebras, Fields Institute Monographs, vol. 8, American Mathe-
matical Society, Providence, RI, 1997.

[LP] H. Lin and N.C. Phillips, Crossed products by minimal homeo-
morphisms, Preprint, math.OA/0408291.

23



[Mat97] K. Matsumoto, On C∗-algebras associated with subshifts, Internat.
J. Math. 8 (1997), no. 3, 357–374.

[Mat98] , K-theory for C∗-algebras associated with subshifts, Math.
Scand. 82 (1998), no. 2, 237–255.

[Mat01] , Bowen-Franks groups for subshifts and Ext-groups for
C∗-algebras, K-Theory 23 (2001), no. 1, 67–104.

[Nas86] M. Nasu, Topological conjugacy for sofic systems, Ergodic Theory
Dynam. Systems 6 (1986), no. 2, 265–280.

[Ped79] G.K. Pedersen, C∗-algebras and their automorphism groups, Aca-
demic Press, London, 1979.

[Put90] I.F. Putnam, On the topological stable rank of certain transfor-
mation group C∗-algebras, Ergodic Theory Dynam. Systems 10
(1990), no. 1, 197–207.

[PV80] M. Pimsner and D. Voiculescu, Exact sequences for K-groups and
Ext-groups of certain cross-product C∗-algebras, J. Operator The-
ory 4 (1980), no. 1, 93–118.
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