Classifying graph C*-algebras

Søren Eilers
eilers@math.ku.dk

Department of Mathematical Sciences
University of Copenhagen

NBFAS 05.03.10
Program

1. Preamble
2. Graph algebras
3. Ideals and K-theory
4. Conjecture
5. Partial verification
Finitely many ideals

Observation (cf. Jordan-Hölder)

When the C^*-algebra A has finitely many ideals a finite decomposition series

$$0 = I_0 \triangleleft I_1 \triangleleft \cdots \triangleleft I_n = A, \quad l_j/I_{j-1} \text{ simple}$$

exists with $(l_1/I_0, l_2/l_1, \ldots, l_n/l_{n-1})$ unique up to isomorphism and permutation.

Of course, the decomposition series does \textbf{not} determine A. But suppose the l_j/I_{j-1} are all classifiable by K-theory, is the same then true for A?
B(H): A C*-algebra with one non-trivial ideal

K is AF

The compacts form an AF algebra, i.e. for any finite set a_1, \ldots, a_ℓ and $\epsilon > 0$ there is a finite-dimensional algebra $F \subseteq K$ with $\|a_i - f_i\| < \epsilon$ for some $f_i \in F$.

B(H)/K is purely infinite

The Calkin algebra is purely infinite, i.e. for any $x, y \in B(H)/K$ with $x \neq 0$ there exist elements a, b such that

$$y = axb$$
Further properties

Real rank zero

\(\mathcal{B}(H), K \) and \(\mathcal{B}(H)/K \) have real rank zero, i.e. for any self-adjoint element \(a \) and any \(\epsilon > 0 \) there is a self-adjoint element \(f \) with finite spectrum such that \(\|a - f\| < \epsilon \).

Separability and nuclearity

\(K \) is separable and nuclear. Neither of \(\mathcal{B}(H) \) and \(\mathcal{B}(H)/K \) are.
Any countable graph $G = (E^0, E^1)$ defines a C^*-algebra $C^*(G)$ given as a universal C^*-algebra by projections $\{p_v : v \in E^0\}$ and partial isometries $\{s_e : e \in E^1\}$ subject to the Cuntz-Krieger relations:

1. $p_v p_w = 0$ when $v \neq w$
2. $(s_e s_e^*)(s_f s_f^*) = 0$ when $e \neq f$
3. $s_e s_e = p_{r(e)}$ and $s_e s_e^* \leq p_{s(e)}$
4. $p_v = \sum_{s(e) = v} s_e s_e^*$ for every v with $0 < |\{e | s(e) = v\}| < \infty$.

Singular vertices

When $\{e | s(e) = v\} = \emptyset$ we say that v is a sink. When $|\{e | s(e) = v\}| = \infty$ we say that v is an infinite emitter. In either case, we say that v is singular.
For which pairs of graphs do we have

$$C^*(G) \otimes K \simeq C^*(H) \otimes K?$$
Subcase: AF

Theorem (Kumjian-Pask-Raeburn)

\[C^*(G) \text{ is AF precisely when } G \text{ has no cycles, i.e. is a forest. } \]
Subsubcase: Finite forest

Theorem

The following are equivalent for finite forests G and H

1. $C^*(G) \otimes K \simeq C^*(H) \otimes K$
2. G and H have the same number of leaves
Subsubcase: A matroid tree

Consider the case where $G = G[n_i]$ is given by a sequence of integers n_i describing an infinite tree

$$
\bullet \xrightarrow{n_1} \bullet \xrightarrow{n_2} \bullet \xrightarrow{n_3} \bullet \xrightarrow{n_4} \ldots
$$

Theorem

The following are equivalent

1. $C^*(G[n_i]) \otimes \mathbb{K} \simeq C^*(G[m_i]) \otimes \mathbb{K}$
2. $\exists j : x \mid \prod_{i=1}^{j} n_i \iff \exists j : x \mid \prod_{i=1}^{j} m_i$
Subcase: Purely infinite

Theorem (Cuntz-Krieger, an Huef-Raeburn)

When G is a finite and strongly connected graph then the following are equivalent

1. $C^*(G)$ has finitely many ideals
2. $C^*(G)$ is simple
3. $C^*(G)$ has real rank zero
4. $C^*(G)$ is purely infinite
5. G is not a cycle
Theorem (Franks, Cuntz, Rørdam)

The relation induced on the class of finite and strongly connected graphs by stable isomorphism of the associated graph C^*-algebra is the smallest equivalence relation containing

<table>
<thead>
<tr>
<th>Edge expansion</th>
<th>$\bullet \rightarrow \bullet \quad \sim \rightarrow \quad \bullet \rightarrow \circ \rightarrow \bullet$</th>
</tr>
</thead>
<tbody>
<tr>
<td>State splitting</td>
<td>$\bullet \rightarrow \bullet \quad \sim \rightarrow \quad \bullet \rightarrow \circ \xrightarrow{\sim} \bullet$</td>
</tr>
<tr>
<td>Cuntz splice</td>
<td>$\bullet \quad \sim \rightarrow \quad \bullet \xleftarrow{\sim} \circ \xrightarrow{\sim} \bullet$</td>
</tr>
</tbody>
</table>
A graph C^*-algebra is separable and nuclear.

Theorem (Kumjian-Pask-Raeburn)

A simple graph C^*-algebra is either AF or purely infinite.

Theorem (Elliott, Kirchberg-Phillips)

$K_*(-)$ is a complete invariant for stable isomorphism of graph C^*-algebras which are simple, or AF.
Theorem (Hong-Szymański)

$C^*(G)$ has real rank zero precisely when no cycle in G is unique.

Corollary

If $C^*(G)$ has finitely many ideals, then $C^*(G)$ has real rank zero.
Sets of vertices

Hereditary

\[F^0 \subseteq E^0 \text{ is } \textbf{hereditary} \text{ when } s(e) \in F^0 \Rightarrow r(e) \in F^0 \]

Saturated

\[F^0 \subseteq E^0 \text{ is } \textbf{saturated} \text{ when for any non-singular } v \not\in F^0 \text{ there is an edge } e \text{ with } r(e) = v, s(e) \not\in F^0. \]

Breaking vertex

An infinite emitter \(v \) is a \textbf{breaking vertex} for \(F^0 \) if

\[0 < \left| \{ e \in E^1 \mid r(e) = v, s(e) \not\in F^0 \} \right| < \infty \]
Ideal structure

Theorem

When $C^(G)$ has real rank zero there is a one-to-one correspondance between the ideals of $C^*(G)$ and pairs (F^0, B^0) chosen such that*

- F^0 is hereditary
- F^0 is saturated
- B^0 is a set of breaking vertices for F^0

Theorem

The ideal corresponding to (F^0, \emptyset) is stably isomorphic to $C^(H)$ where H is the subgraph of G with F^0 as vertex set.*
Color coding

<table>
<thead>
<tr>
<th>G</th>
<th>$C^*(G)$</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cofinal tree</td>
<td>Simple AF algebra</td>
<td></td>
</tr>
<tr>
<td>Finite, strongly connected graph (not a cycle)</td>
<td>Simple Cuntz-Krieger algebra</td>
<td></td>
</tr>
<tr>
<td>Graph with a cycle, no unique cycles, and only trivial hereditary and saturated subsets</td>
<td>Simple purely infinite algebra</td>
<td></td>
</tr>
</tbody>
</table>
When G is presented by an adjacency matrix in block form

$$\begin{bmatrix} A & \alpha \\ * & * \end{bmatrix}$$

with singular vertices in the last row and column blocks, then

$$K_0(C^*(G)) = \text{cok} \begin{bmatrix} A^t - 1 \\ \alpha^t \end{bmatrix} \quad K_1(C^*(G)) = \text{ker} \begin{bmatrix} A^t - 1 \\ \alpha^t \end{bmatrix}$$
The following are equivalent for finite forests G and H

- $C^*(G) \otimes K \simeq C^*(H) \otimes K$
- G and H have the same number of leaves

K-theory

\[K_0(C^*(G)) = \mathbb{Z}^{\#\text{leaves}} \quad K_1(C^*(G)) = 0 \]
Subsubcase: A matroid tree

Consider the case where $G = G[n_i]$ is given by a sequence of integers n_i describing an infinite tree

$$
\bullet \overset{n_1}{\longrightarrow} \bullet \overset{n_2}{\longrightarrow} \bullet \overset{n_3}{\longrightarrow} \bullet \overset{n_4}{\longrightarrow} \cdots
$$

Theorem

- $C^*(G[n_i]) \otimes K \simeq C^*(G[m_i]) \otimes K$
- $\exists j : x | \prod_{i=1}^{j} n_i \iff \exists j : x | \prod_{i=1}^{j} m_i$

K-theory

$$
K_0(C^*(G[n_i])) = \lim(\mathbb{Z} \overset{n_1}{\longrightarrow} \mathbb{Z} \overset{n_2}{\longrightarrow} \mathbb{Z} \overset{n_2}{\longrightarrow} \cdots)
$$

$$
K_1(C^*(G[n_i])) = 0
$$
Theorem (Franks, Cuntz, Rørdam)

The relation induced on the class of finite and strongly connected graphs by stable isomorphism of the associated graph C^*-algebra is the smallest equivalence relation containing

<table>
<thead>
<tr>
<th>Edge expansion</th>
<th>$\bullet \rightarrow \bullet \quad \sim \rightarrow \bullet \rightarrow \circ \rightarrow \bullet$</th>
</tr>
</thead>
<tbody>
<tr>
<td>State splitting</td>
<td></td>
</tr>
<tr>
<td>Cuntz splice</td>
<td>$\bullet \sim \rightarrow \bullet \rightleftharpoons \circ \rightleftharpoons \circ$</td>
</tr>
</tbody>
</table>

K-theory

\[
K_0(C^*(G_A)) = \text{cok}(A^t - 1) \\
K_1(C^*(G_A)) = \text{ker}(A^t - 1) = \text{cok}(A^t - 1) / \text{tor}(\text{cok}(A^t - 1))
\]
<table>
<thead>
<tr>
<th>G</th>
<th>$K_0(G)$</th>
<th>$K_0(G)_+$</th>
<th>Ideals</th>
</tr>
</thead>
<tbody>
<tr>
<td>· → · → · → ·</td>
<td>\mathbb{Z}^2</td>
<td>${(x, y) \mid x \geq 0, y \geq 0}$</td>
<td></td>
</tr>
<tr>
<td>· → · → · → ·</td>
<td>\mathbb{Z}^2</td>
<td>${(x, y) \mid x + \frac{\sqrt{5}-1}{2}y \geq 0}$</td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>$K_0(G)$</td>
<td>$K_0(G)_+$</td>
<td>Ideals</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>------------</td>
<td>--------</td>
</tr>
<tr>
<td></td>
<td>\mathbb{Z}^2</td>
<td>\mathbb{Z}^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>\mathbb{Z}^2</td>
<td>\mathbb{Z}^2</td>
<td></td>
</tr>
</tbody>
</table>

Preamble

Graph algebras

Ideals and K-theory

Conjecture

Partial verification
Theorem (Drinen-Tomforde, Carlsen-E-Tomforde)

For $C^*(G)$ given by

\[
\begin{bmatrix}
A & \alpha & 0 & 0 \\
* & * & 0 & 0 \\
X & \xi & B & \beta \\
* & * & * & * \\
\end{bmatrix}
\]

the six-term exact sequence in K-theory becomes

\[
\begin{array}{cccc}
\text{cok} \begin{bmatrix} A^t - 1 \\ \alpha^t \end{bmatrix} & \xrightarrow{I} & \text{cok} \begin{bmatrix} A^t - 1 & X^t \\ \alpha^t & \xi^t \\ 0 & B^t - 1 \end{bmatrix} & \xrightarrow{P} & \text{cok} \begin{bmatrix} B^t - 1 \\ \beta^t \end{bmatrix} \\
\text{ker} \begin{bmatrix} B^t - 1 \\ \beta^t \end{bmatrix} & \xleftarrow{P} & \text{ker} \begin{bmatrix} A^t - 1 & X^t \\ \alpha^t & \xi^t \\ 0 & B^t - 1 \end{bmatrix} & \xleftarrow{I} & \text{ker} \begin{bmatrix} A^t - 1 \\ \alpha^t \end{bmatrix} \\
\end{array}
\]
Filtrated K-theory

$\mathcal{K}(A)$:

The collection of all six term exact sequences

$$
\begin{array}{c}
K_0(J/I) \rightarrow K_0(K/I) \rightarrow K_0(K/J) \\
\uparrow \\
K_1(K/J) \leftarrow K_1(K/I) \leftarrow K_1(J/I)
\end{array}
\quad
\text{whenever } I \triangleleft J \triangleleft K \triangleleft A.
$$

Remark

Each subquotient may occur several times, in which case the K-groups of the various six-term exact sequences are identified. Thus the invariant is also called the “K-web”.
Theorem (Restorff)

When G and H are finite graphs with no unique cycles, no sinks, and no sources, then the following are equivalent

- $C^*(G) \otimes K \simeq C^*(H) \otimes K$
- $\mathcal{K}(C^*(G)) \simeq \mathcal{K}(C^*(H))$
Fundamental question

\[\mathcal{K}(A)_+ : \]

As above, but with each \(K_0 \)-group

\[K_0(J/I) \rightarrow K_0(K/I) \rightarrow K_0(K/J) \]

considered as an **ordered** group.

Working conjecture

\(\mathcal{K}(\cdot)_+ \) is a complete invariant for stable isomorphism of all graph \(C^* \)-algebras with finitely many ideals.
One ideal

Theorem (E-Tomforde)

\[\mathcal{R}(-)_+: \]

\[K_0(I) \longrightarrow K_0(A) \longrightarrow K_0(A/I) \]

\[K_1(A/I) \leftarrow K_1(A) \leftarrow K_1(I) \]

is a complete invariant up to stable isomorphism for the class of graph algebras with precisely one non-trivial ideal.
Theorem (Kirchberg)

Any $\alpha \in KK_X(A, B)^{-1}$ induces a stable isomorphism between A and B when these are (non-simply) purely infinite and nuclear with $\text{Prim}(A) = \text{Prim}(B) = X$.

Theorem (Meyer-Nest)

When A, B are in the bootstrap class and $\text{p.dim}(\mathcal{R}(A)) \leq 1$ we have a UCT

$$0 \rightarrow \text{Ext}(\mathcal{R}(A), \mathcal{R}(B)) \rightarrow KK_X(A, B) \rightarrow \text{Hom}(\mathcal{R}(A), \mathcal{R}(B)) \rightarrow 0$$
Corollary (Meyer-Nest, Köhler-NN)

\(K(\cdot) \) is a complete invariant for purely infinite graph algebras of the form
Problem

For a certain purely infinite C^*-algebra A with 7 ideals, $\text{p.dim}(\mathcal{R}(A)) > 1$. Consequently, $\mathcal{R}(-)$ is not a complete invariant for all nuclear, purely infinite C^*-algebras in the bootstrap class with real rank zero.

However, the K-theory of this example is not obtainable by graph algebras.
Theorem (E-Restorff-Ruiz)

\(\mathcal{R}(-)_+ \) is a complete invariant for the class of graph algebras with finite linear ideal lattices of the form:

\[
\begin{array}{cccccc}
\bullet & \leftarrow & \cdots & \leftarrow & \bullet & \leftarrow \cdots \\
\end{array}
\]

\[
\begin{array}{cccccc}
\bullet & \leftarrow & \cdots & \leftarrow & \bullet & \leftarrow \cdots \\
\end{array}
\]

Theorem (E-Restorff-Ruiz)

\(\mathcal{R}(-)_+ \) is a complete invariant for the class of graph algebras with finite linear ideal lattices when for all subquotients we have

\[
\begin{align*}
K_0(I_j/I_{j-1}) &= \mathbb{Z}^k \\
K_1(I_j/I_{j-1}) &= 0
\end{align*}
\]