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The theory of selfadjoint extensions of symmetric operators,
and more generally the theory of extensions of dual pairs, was
implemented some years ago for boundary value problems for
elliptic operators on smooth bounded domains. Recently, the
questions have been taken up again for nonsmooth domains.
In the present work we show that pseudodifferential methods
can be used to obtain a full characterization, including
Krĕın resolvent formulas, of the realizations of nonselfadjoint
second-order operators on C

3
2 +ε domains; more precisely,

we treat domains with B
3
2
p,2-smoothness and operators with

H1
q -coefficients, for suitable p > 2(n − 1) and q > n.

The advantage of the pseudodifferential boundary operator
calculus is that the operators are represented by a principal
part and a lower-order remainder, leading to regularity results;
in particular we analyze resolvents, Poisson solution operators
and Dirichlet-to-Neumann operators in this way, also in
Sobolev spaces of negative order.
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1. Introduction

The systematic theory of selfadjoint extensions of a symmetric operator in a Hilbert
space H, or more generally, adjoint pairs of extensions of a given dual pair of operators
in H, has its origin in fundamental works of Krĕın [42], Vishik [58] and Birman [18].
There have been several lines of development since then. For one thing, there are the
early works of Grubb [29–31] completing and extending the theories and giving an im-
plementation for results for boundary value problems for elliptic PDEs. Another line
has been the development by, among others, Kochubei [40], Gorbachuk and Gorbachuk
[28], Derkach and Malamud [23], Malamud and Mogilevskii [47], where the tendency
has been to incorporate the problems into studies of relations (generalizing operators),
with applications to (operator valued) ODEs; keywords in this development are boundary
triples, Weyl–Titchmarsh m-functions. More recently this has been applied to PDEs (e.g.,
Amrein and Pearson [9], Behrndt and coauthors [11–14,16], Brown, Marletta, Naboko,
and Wood [21], Kopachevskĭı and Krĕın [41], Malamud [46], Ryzhov [53]). Further ref-
erences are given in Brown, Grubb and Wood [20], where a connection between the two
lines of development is worked out.

One of the interesting aims is to establish Krĕın resolvent formulas, linking the resol-
vent of a general operator with the resolvent of a fixed reference operator by expressing
the difference in terms of operators connected to boundary conditions, encoding spectral
information.

In the applications to elliptic PDEs, Krĕın-type resolvent formulas are by now well-
established in the case of operators with smooth coefficients on smooth domains, but
there remain challenging questions about the validity in nonsmooth cases, and their
applications.

One difficulty in implementing the extension theory in nonsmooth cases lies in the
fact that one needs mapping properties of direct and inverse operators not only in the
most usual Sobolev spaces, but also in spaces of low order, even of negative order over
the boundary. Another difficulty is to arrive at a theory where ellipticity considerations
are still applicable, in the way that the operators are defined from principal symbols
plus lower-order error terms. This is important for regularity questions, as well as for
questions of spectral estimates.

Gesztesy and Mitrea have addressed the extension problem for the Laplacian on
Lipschitz domains, showing Krĕın-type resolvent formulas in [24–26] involving Robin
problems under the hypothesis that the boundary is of Hölder class C

3
2+ε. More re-

cently, they have described the selfadjoint realizations of the Laplacian in [27] (based on
the abstract theory of [29]), under a more general hypothesis of quasi-convexity, which
includes convex domains and necessitates nonstandard boundary value spaces. Posili-
cano and Raimondi gave in [51] an analysis of selfadjoint realizations of second-order
problems on C1,1-domains. Grubb treated nonselfadjoint realizations on C1,1-domains
in [34], including Neumann-type boundary conditions

χu = Cγ0u, (1.1)



Author's personal copy

H. Abels et al. / Journal of Functional Analysis 266 (2014) 4037–4100 4039

with C a differential operator of order 1, where the other mentioned works mainly treat
cases (1.1) with C of order < 1 or nonlocal. ([34] can be considered as a pilot project for
the present paper.) It should also be mentioned that Behrndt and Micheler [15] recently
have shown how a parametrization of the selfadjoint realizations of the Laplace operator
on a Lipschitz domain can be obtained by use of the theory of quasi-boundary triples
due to Behrndt et al. (cf. e.g. [12]). Compared with our results less regularity of the
boundary is needed in the analysis. But the results are restricted to the Laplacian, while
in the following we work with general second order elliptic operators. Moreover, in order
to deal with Lipschitz boundary, where the usual results on elliptic regularity might fail,
Behrndt and Micheler work with suitable more abstractly defined function spaces. In the
case that the boundary is of class C

3
2+ε for some ε > 0, their function spaces coincide

with the classical ones, which we use in the following, cf. [15, Theorem 4.10] and the
discussion below.

Our aim in this paper is to set up a construction of general extensions and resolvents
that works in L2 Sobolev spaces when the regularity of Ω is in a scale of function
spaces larger than

⋃
ε>0 C

3
2+ε, the coefficients of the elliptic operator A in another

larger scale, yet allowing the use of pseudodifferential calculi that can take ellipticity
of boundary conditions into account and give precise information on the principal parts
of the operators. We here choose to work with operators having coefficients in scales of
Sobolev spaces and their generalizations to Besov and Bessel-potential spaces, since this
allows rather precise multiplication properties, and convenient trace mapping results;
then Hölder space properties can be read off using the well-known embedding theorems.
The resulting hypothesis on ∂Ω is that it can be parametrized by functions in the
Besov space B

3
2
p,2 for some p > 2(n − 1). We note that this assumption is equivalent

to 3
2 −

n−1
p > 1, where 3

2 −
n−1
p is the regularity number of the Besov space B

3
2
p,2, which is

the scaling exponent of the highest order parts of the norms under dilations of functions.
It is the most relevant number for Sobolev embeddings, estimates of nonlinearities and
applications to nonlinear partial differential equations. We note that (locally) B

3
2
p,2 is

inbetween C1+τ and C
3
2+ε for τ = 1

2 − n−1
p > 0 and any ε > 0. But the regularity

number of B
3
2
p,2 is the same as the one of C1+τ and can be much smaller than 3

2 .
The theory of pseudodifferential boundary value problems (originating in Boutet de

Monvel [19] and further developed e.g. in the book of Grubb [33]; introductory material
is given in [35]) is well-established for operators with C∞-coefficients on C∞ domains. It
has been extended to nonsmooth cases by Abels [2], along the lines of the extension of
pseudodifferential operators on open sets in Kumano-Go and Nagase [44], Marshall [49],
Taylor [55,56]. These results have been applied to studies of the Stokes operator in Abels
[3] and Abels and Terasawa [5], which in particular imply optimal regularity results for
the instationary Stokes system, cf. Abels [4]. For applications to quasi-linear differential
equations and free boundary value problems non-smooth coefficients are essential, cf. e.g.
Abels [1] and Abels and Terasawa [6]. The present paper builds on [2] and ideas of [5]
and develops additional material.
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Our final results will be formulated for operators acting between L2 Sobolev spaces,
but along the way we also need Lp-based variants with p �= 2 for the operator- and
domain-coefficients. Here the integral exponent will be called p when we describe the
domain Ω and its boundary Σ = ∂Ω, and q when we describe the given partial differential
operators A and boundary operators and their rules of calculus. There is then an optimal
choice of how to link p and q, together with the dimension and the smoothness parameters
of the spaces where the operators act; this is expressed in Assumption 2.18.

The results in the paper have been applied in Grubb [36] to show spectral asymptotic
estimates for the boundary term in Krĕın formulas established here.

We originally intended to include 2m-order operators A with m > 1, but the coeffi-
cients in Green’s formula needed an extra, lengthy development of symbol classes that
made us postpone this to a future publication.

Plan of the paper. In Section 2, we recall the facts on Besov and Bessel-potential func-
tion spaces that we shall need, define the domains with boundary in these smoothness
classes, and establish a useful diffeomorphism property. Nonsmooth pseudodifferential
operators are recalled, with mapping- and composition-properties, and Green’s formula
for second-order nonsmooth elliptic operators A on appropriate nonsmooth domains is
established. Appendix A gives further information on pseudodifferential boundary oper-
ators (ψdbo’s) with nonsmooth coefficients, extending some results of [2] to Sm

1,δ classes.
Section 3 recalls the abstract extension theory of [29,31,20]. In Section 4 we use the ψdbo
calculus to construct the resolvent (Aγ −λ)−1 and Poisson solution operator Kλ

γ for the
Dirichlet problem in the nonsmooth situation, by localization and parameter-dependent
estimates. The construction shows that the principal part of the resolvent belongs to
the class of non-smooth pseudodifferential boundary operators, which is essential for
the subsequent analysis. Section 5 gives an extension of Green’s formula to low-order
spaces, and provides an analysis of Kλ

γ and the associated Dirichlet-to-Neumann oper-
ator Pλ

γ,χ = χKλ
γ , needed for the interpretation of the abstract theory. In particular it

is shown that the operators coincide with operators of the pseudodifferential calculi up
to lower order operators, which is one of the central results of the paper. Finally, the
interpretation is worked out in Section 6, leading to a full validity of the characterization
of the closed realizations of A in terms of boundary conditions, and including Krĕın-type
resolvent formulas for all closed realizations Ã. Section 7 gives a special analysis of the
Neumann-type boundary conditions (1.1) entering in the theory, showing in particular
that regularity of solutions holds when C − P 0

γ,χ is elliptic.

2. Basics on function spaces and operators on nonsmooth domains

2.1. Function spaces on nonsmooth domains

For convenience we here recall the definitions and properties of function spaces that
will be used throughout this paper. Proofs can be found e.g. in Triebel [57] and Bergh
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and Löfström [17]. All spaces are Banach spaces, some L2-based spaces are also Hilbert
spaces.

The usual multi-index notation for differential operators with ∂ = ∂x = (∂1, . . . , ∂n),
∂j = ∂xj

= ∂/∂xj , and D = Dx = (D1, . . . , Dn), Dj = Dxj
= −i∂/∂xj , will be

employed.
For the spaces defined over Rn, the Fourier transform F is used to define operators

such as p(Dx)u = F−1(p(ξ)Fu) (also called Op(p)u), for suitable functions p(ξ). In
particular, with 〈ξ〉 = (1 + |ξ|2)1/2, 〈Dx〉s stands for (1 − Δ)s/2. S(Rn) denotes the
Schwartz space of smooth, rapidly decreasing functions and S ′(Rn) its dual space, the
space of tempered distributions.

Function spaces. The Bessel potential space in Rn of order s ∈ R is defined for 1 < p < ∞
by

Hs
p

(
Rn

)
=
{
f ∈ S ′(Rn

)
: 〈Dx〉sf ∈ Lp

(
Rn

)}
,

normed by ‖f‖Hs
p(Rn) = ‖〈Dx〉sf‖Lp(Rn). For s = m, a non-negative integer, Hm

p (Rn)
equals the space of Lp(Rn)-functions with derivatives up to order m in Lp(Rn), also
denoted Wm

p (Rn). In the case p = 2, we omit the lower index and simply write Hs(Rn)
instead of Hs

2(Rn). We denote the sesquilinear duality pairing of u ∈ Hs(Rn) with
v ∈ H−s(Rn) by (u, v)s,−s (linear in u, conjugate linear in v).

To describe the regularity, both of domains and of operator-coefficients, we shall also
need Besov spaces Bs

p,q(Rn), where s ∈ R, 1 � p, q � ∞. These are defined by Bs
p,q(Rn) =

{f ∈ S ′(Rn): ‖f‖Bs
p,q(Rn) < ∞}, where

‖f‖Bs
p,q(Rn) =

( ∞∑
j=0

2sjq
∥∥ϕj(Dx)f

∥∥q
Lp(Rn)

) 1
q

if q < ∞,

‖f‖Bs
p,∞(Rn) = sup

j∈N0

2sj
∥∥ϕj(Dx)f

∥∥
Lp(Rn).

Here, ϕj , j ∈ N0, is a partition of unity on Rn such that suppϕ0 ⊆ {ξ ∈ Rn: |ξ| � 2} and
suppϕj ⊆ {ξ ∈ Rn: 2j−1 � |ξ| � 2j+1} if j ∈ N, chosen such that ϕj(ξ) = ϕ1(21−jξ) for
all j ∈ N, ξ ∈ Rn.

The parameter s indicates the smoothness of the functions. The second parameter
p is called the integration exponent. The third parameter q is called the summation
exponent; it measures smoothness on a finer scale than s, which can be seen by the
following simple relations:

Bs
p,1
(
Rn

)
↪→ Bs

p,q1

(
Rn

)
↪→ Bs

p,q2

(
Rn

)
↪→ Bs

p,∞
(
Rn

)
if 1 � q1 � q2 � ∞, (2.1)

Bs+ε
p,∞

(
Rn

)
↪→ Bs

p,1
(
Rn

)
, (2.2)

where s ∈ R, ε > 0, and 1 � p � ∞ are arbitrary. (The sign ↪→ indicates continu-
ous embedding.) The embeddings follow directly from the definition and the fact that
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�q1(N0) ↪→ �q2(N0) if 1 � q1 � q2 � ∞. Here, �q(N0) is the space of sequences (ak)k∈N0

such that (
∑∞

k=0 |ak|q)
1
q < ∞ in the case q < ∞ and supk∈N0 |ak| < ∞ if q = ∞,

provided with the hereby defined norm.
We recall that for p = q and s ∈ R+ \ N, Bs

p,p(Rn) equals the Sobolev–Slobodetskĭı
space W s

p (Rn), whereas for s ∈ N0, it is Hs
p(Rn) that equals W s

p (Rn). (In the following,
the H- and B-notation will be used for clarity; these scales of spaces have the best
interpolation properties.) In the case p = 2, all three spaces coincide, for general s:

Hs
(
Rn

)
= Hs

2
(
Rn

)
= Bs

2,2
(
Rn

)
= W s

2
(
Rn

)
. (2.3)

The spaces Bs
∞,∞(Rn), also denoted Cs(Rn) when s > 0 (Hölder–Zygmund spaces),

play a special role. For s ∈ R+ \ N, Bs
∞,∞(Rn) = Cs(Rn) can be identified with the

Hölder space Ck,σ(Rn), defined for k + σ = s, k ∈ N0 and σ ∈ (0, 1], and also denoted
Cs(Rn) when σ ∈ (0, 1). For s = k ∈ N, there are sharp inclusions

Ck
b

(
Rn

)
↪→ Ck−1,1(Rn

)
↪→ Ck

(
Rn

)
;

here, Ck
b (Rn) is the usual space of bounded continuous functions with bounded contin-

uous derivatives up to order k.
At this point, let us recall some interpolation results: Denoting the real and complex

interpolation functors by (., .)θ,q and (., .)[θ], respectively, we have that if s0, s1 ∈ R with
s0 �= s1, 1 � p, q0, q1, r � ∞, and s = (1 − θ)s0 + θs1, θ ∈ (0, 1), then(

Bs0
p,q0

(
Rn

)
, Bs1

p,q1

(
Rn

))
θ,r

= Bs
p,r

(
Rn

)
. (2.4)

If additionally 1
p = 1−θ

p0
+ θ

p1
for some 1 � p0, p1 � ∞ and 1

q = 1−θ
q0

+ θ
q1

, then(
Bs0

p0,q0

(
Rn

)
, Bs1

p1,q1

(
Rn

))
[θ] = Bs

p,q

(
Rn

)
, (2.5)

cf. [17, Theorem 6.4.5] or [57, Section 2.4.1 Theorem]. Using the same notation, we have
in particular for the Bessel potential spaces(

Hs0
p

(
Rn

)
, Hs1

p

(
Rn

))
θ,r

= Bs
p,r

(
Rn

)
,(

Hs0
p0

(
Rn

)
, Hs1

p1

(
Rn

))
[θ] = Hs

p

(
Rn

)
(2.6)

(cf. [17, Theorem 6.4.5]).

General embedding properties. For any 1 < p < ∞, we have the following embeddings
between Besov spaces and Bessel potential spaces:

Bs+ε
p,q1

(
Rn

)
↪→ Hs

p

(
Rn

)
↪→ Bs−ε

p,q2

(
Rn

)
for all ε > 0, 1 � q1, q2 � ∞, s ∈ R,

Bs
p,min(2,p)

(
Rn

)
↪→ Hs

p

(
Rn

)
↪→ Bs

p,max(2,p)
(
Rn

)
for all s ∈ R, (2.7)

cf. e.g. [17, Theorem 6.4.4].
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There are the following Sobolev embeddings for Bessel potential spaces:

Hs1
p1

(
Rn

)
↪→ Hs0

p0

(
Rn

)
if s1 � s0, s1 −

n

p1
� s0 −

n

p0
, (2.8)

Hs
p

(
Rn

)
↪→ Cα

(
Rn

)
if α = s− n

p
> 0, (2.9)

provided that 1 < p1 � p0 < ∞, 1 < p < ∞. In particular, Hs
p(Rn) ↪→ Lp(Rn) for s � 0.

For the Besov spaces a Sobolev-type embedding is given by

Bs1
p1,q

(
Rn

)
↪→ Bs0

p0,q

(
Rn

)
if s1 � s0 and s1 −

n

p1
� s0 −

n

p0
, (2.10)

for any 1 � q � ∞. In particular, combining this with (2.1), we get

Bs1
p1,q

(
Rn

)
↪→ Bs0

∞,q

(
Rn

)
↪→ Bs0

∞,∞
(
Rn

)
= Cs0

(
Rn

)
(2.11)

whenever s0 = s1 − n
p1

> 0. In the opposite direction, we have from (2.1) and (2.2)

Cα
(
Rn

)
= Bα

∞,∞
(
Rn

)
↪→ Bα−ε

∞,2
(
Rn

)
(2.12)

when α > 0, 0 < ε < α. We also note that

Hs1
p1

(
Rn

)
∪Bs1

p1,p1

(
Rn

)
↪→ Hs0

p0

(
Rn

)
∩Bs0

p0,p0

(
Rn

)
(2.13)

if 1 < p1 < p0 < ∞ and s1 − n
p1

� s0 − n
p0

; this can be found in [57, Section 2.8.1,
Eq. (17)].

Function spaces over subsets of Rn. The Bessel potential and Besov spaces are defined on
a domain Ω ⊂ Rn with C0,1-boundary (see Definition 2.4 below) simply by restriction:

Hs
p(Ω) =

{
f ∈ D′(Ω): f = f ′|Ω , f ′ ∈ Hs

p

(
Rn

)}
,

Bs
p,q(Ω) =

{
f ∈ D′(Ω): f = f ′|Ω , f ′ ∈ Bs

p,q

(
Rn

)}
, (2.14)

for s ∈ R and 1 � p, q � ∞. Here f ′|Ω ∈ D′(Ω) is defined by 〈f ′|Ω , ϕ〉D′(Ω),D(Ω) =
〈f, ϕ〉D′(Rn),D(Rn) for all ϕ ∈ C∞

0 (Ω), embedded in C∞
0 (Rn) by extension by zero. The

spaces are equipped with the quotient norms, e.g.,

‖f‖Bs
p,q(Ω) = inf

f ′∈Bs
p,q(Rn):f ′|Ω=f

∥∥f ′∥∥
Bs

p,q(Rn). (2.15)

In particular, Hm
p (Ω) is for m ∈ N0 and 1 < p < ∞ equal to the usual Sobolev space

Wm
p (Ω) of Lp(Ω)-functions with derivatives up to order m in Lp(Ω). We recall that there

is an extension operator EΩ which is a bounded linear operator EΩ :Wm
p (Ω) → Wm

p (Rn),
for all m ∈ N0, 1 � p � ∞, and satisfies EΩf |Ω = f for all f ∈ Wm

p (Ω). This holds
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when Ω is merely a Lipschitz domain, cf. e.g. Stein [54, Chapter VI, Section 3.2] and
trivially carries over to Hm

p (Ω) for 1 < p < ∞. Moreover, in view of the fact that Hs
p(Ω)

is a retract of Hs
p(Rn), one has that all interpolation and Sobolev embedding results for

Hs
p(Rn) are inherited by the spaces on Ω.
We shall also need the spaces

Hs
0(Ω) =

{
u ∈ Hs

(
Rn

)
: suppu ⊂ Ω

}
.

Here, Hs
0(Ω) identifies in a natural way with the dual space of H−s(Ω), for all s ∈ R,

cf. [50, Theorem 3.30]. For s integer � 0, Hs
0(Ω) equals the closure of C∞

0 (Ω) in Hs(Ω)
and is usually denoted Hs

0(Ω) (see also [50, Theorem 3.33]).

Traces. Next, let us recall the well-known trace theorems: The trace map γ0 from Rn
+

to Rn−1, defined on smooth functions with bounded support, extends by continuity to
continuous maps for s > 1

p , 1 < p < ∞, 1 � q � ∞,

γ0:Hs
p

(
Rn

+
)
→ B

s− 1
p

p,p

(
Rn−1),

γ0:Bs
p,q

(
Rn

+
)
→ B

s− 1
p

p,q

(
Rn−1).

All of these maps are surjective and have continuous right inverses.

Vector-valued Besov and Bessel potential spaces. In the following let X be a Banach
space. Then Lp(Rn;X), 1 � p < ∞, is defined as the space of strongly measurable
functions f : Rn → X with

‖f‖Lp(Rn;X) :=
(∫

Rn

∥∥f(x)
∥∥p
X
dx

) 1
p

< ∞

and L∞(Rn;X) is the space of all strongly measurable and essentially bounded functions.
Similarly, �p(N0;X), 1 � p � ∞, denotes the X-valued variant of �p(N0).

Furthermore, let S(Rn;X) be the space of smooth rapidly decreasing functions
f : Rn → X and let S ′(Rn;X) := L(S(Rn), X) denote the space of tempered X-valued
distributions. Then the X-valued variants of the Bessel potential and Besov spaces of
order s ∈ R are defined as

Hs
p

(
Rn;X

)
:=

{
f ∈ S ′(Rn;X

)
: 〈Dx〉sf ∈ Lp

(
Rn;X

)}
if 1 < p < ∞,

Bs
p,q

(
Rn;X

)
:=

{
f ∈ S ′(Rn;X

)
:
(
2sjϕj(Dx)f

)
j∈N0

∈ �q
(
N0;Lp

(
Rn;X

))}
,

where 1 � p, q � ∞. Here, p(Dx)f ∈ S ′(Rn;X) is defined by〈
p(Dx)f, ϕ

〉
=
〈
f, p(Dx)ϕ

〉
for all ϕ ∈ S

(
Rn

)
.
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We will also make use of the Banach space

BUC
(
Rn;X

)
=
{
f ∈ L∞

(
Rn;X

)
: f is uniformly continuous

}
with the supremum norm.

The properties of the function spaces discussed above for the scalar case, carry over
to the vector-valued case. For details, we refer to e.g. [10,38] (for the Bochner integral
and its properties) and to [8] (for vector-valued function spaces).

In the following we will use some special anisotropic Sobolev spaces.

Definition 2.1. Let I = (0,∞) or R, and let Ω = Rn−1 × I, with coordinates (x′, xn). For
k ∈ N0, 1 � p < ∞, set

W k
(2,p)(Ω) =

{
f ∈ L2

(
I;Lp

(
Rn−1)): ∂α

x f ∈ L2
(
I;Lp

(
Rn−1)), |α| � k

}
.

Lemma 2.2. One has for k � 1 that

W k
(2,p)(Ω) ↪→ BUC

(
I;Bk− 1

2
p,2

(
Rn−1)). (2.16)

Here, the trace mapping u 
→ u|xn=0 is surjective from W k
(2,p)(Ω) to B

k− 1
2

p,2 (Rn−1).
Namely, when g(x′) ∈ B

k− 1
2

p,2 (Rn−1), then G(x′, xn) = (e−Axng)(x′) is in W k
(2,p)(Rn

+) with
G(x′, 0) = g(x′) (where e−Axn is the semigroup generated by −A = −〈Dx′〉). G(x′, xn)
extends to a function G ∈ W k

(2,p)(Rn).

Proof. First of all,

W k
(2,p)(Ω) ↪→ L2

(
I;Hk

p

(
Rn−1)) ∩Hk

(
I;Lp

(
Rn−1)).

To obtain

L2
(
I;Hk

p

(
Rn−1)) ∩Hk

(
I;Lp

(
Rn−1)) ↪→ BUC

(
I;Bk− 1

2
p,2

(
Rn−1))

one can apply [17, Corollary 3.12.3] with ηj = 1
2 , pj = 2, j = 0, 1, a result from Lions’

trace method of real interpolation, to obtain

u|xn=0 ∈
(
Lp

(
Rn−1), Hk

p

(
Rn−1))

1− 1
2k ,2 = B

k− 1
2

p,2
(
Rn−1), (2.17)

for every u ∈ W k
(2,p)(Ω); the identity follows from (2.6). Next, this is combined with the

strong continuity of the translations (τhu)(x) = (x′, xn+h), h � 0, in L2(I;Hk
p (Rn−1))∩

Hk(I;Lp(Rn−1)) as in the proof of [8, Chapter III, Theorem 4.10.2].
For the last assertion, let As = 〈Dx′〉s, s ∈ R; here A = A1. Then

Hk
p

(
Rn−1) =

{
f ∈ Lp

(
Rn−1): 〈Dx′〉kf ∈ Lp

(
Rn−1)} =: D

(
Ak

)
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for all k ∈ N0, 1 < p < ∞, as explained in [17, Theorem 6.2.3]. Now when g is given, let
G(x′, xn) = (e−Axng)(x′) for xn � 0. Since

W k
(2,p)

(
Rn

+
)

=
⋂

0�j�k

Hj
(
0,∞;Hk−j

p

(
Rn−1)),

we have by [22, Corollary 3.5.6, Theorem 3.4.2] that AkG ∈ L2(0,∞;Lp(Rn−1)), so
G ∈ W k

(2,p)(Rn
+). Here, we use that B

k− 1
2

p,2 (Rn−1) = (Lp(Rn−1), Hk
p (Rn−1))1− 1

2k ,2, as
noted above in (2.17). G(x′, xn) is extended to a function in W k

(2,p)(Rn) by a standard
“reflection” in xn = 0, as explained e.g. in [45, Theorem I 2.2]. �

By use of this lemma we derive the following product estimate, which is essential for
the low boundary regularity that we shall allow:

Lemma 2.3. Let I,Ω and W k
(2,p)(Ω) be as in Definition 2.1. Then for every k ∈ N and

2 � p < ∞ such that k − 1
2 − n−1

p > 0 there is some Ck,p > 0 such that

‖fg‖Hk(Ω) � Ck,p‖f‖Hk(Ω)‖g‖Wk
(2,p)(Ω),

for all f ∈ Hk(Ω), g ∈ W k
(2,p)(Ω). Moreover, if k = 1 and τ = 1

2 − n−1
p , then

‖f∂xj
g‖L2(Ω) � Cp‖f‖H1−τ (Ω)‖g‖W 1

(2,p)(Ω) (2.18)

uniformly with respect to f ∈ H1(Ω), g ∈ W 1
(2,p)(Ω).

Proof. First of all

W k
(2,p)(Ω) ↪→ BUC

(
I;Bk− 1

2
p,2

(
Rn−1)) ↪→ L∞(Ω)

by (2.16); the second embedding follows from (2.11) since k− 1
2 −

n−1
p > 0. Furthermore,

Hk(Ω) ↪→ BUC
(
I;Hk− 1

2
(
Rn−1)) ↪→ BUC

(
I;Lr

(
Rn−1)), for 1

r
= 1

2 − 1
p
.

Here we apply (2.16) with p = 2 for the first embedding, and for the second embedding
we use (2.8), noting that k − 1

2 − n−1
p > 0 is equivalent to k − 1

2 − n−1
2 > −n−1

r . Next
we observe that for all |α| � k

∂α
x (fg) =

∑
0�β�α,β �=α

(
α

β

)
∂α−β
x f∂β

xg + f∂α
x g. (2.19)

Since f ∈ L∞(I;Lr) and ∂α
x g ∈ L2(I;Lp), where 1

r + 1
p = 1

2 , we have f∂α
x g ∈ L2(Ω). For

the other terms where |β| < |α| � k, we note that
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∂α−β
x f ∈ L2

(
I;Hk−|α|+|β|(Rn−1)), ∂β

xg ∈ L∞
(
I;Bk− 1

2−|β|
p,2

(
Rn−1)). (2.20)

One has in general

‖uv‖L2(Rn−1) � CM,M ′‖u‖HM (Rn−1)‖v‖BM′
p,2 (Rn−1), (2.21)

provided that M,M ′ ∈ N0 and M + M ′ − n−1
p > 0. This estimate easily follows from

the Sobolev-type embedding theorems: If M ′ − n−1
p > ε > 0, then from (2.11) we have

BM ′
p,2 (Rn−1) ↪→ Cε(Rn−1) ↪→ L∞(Rn−1) and the statement is trivial. If M ′ − n−1

p < 0,
then (2.13) implies BM ′

p,2 (Rn−1) ↪→ Lr(Rn−1) with 1
r = 1

p −
M ′

n−1 , and M +M ′ − n−1
p > 0

implies by (2.8) that HM (Rn−1) ↪→ Lr̃(Rn−1) with 1
2 = 1

r + 1
r̃ . If M ′ − n−1

p = 0, one
can choose some p̃ < p such that M +M ′ − n−1

p̃ > 0 and apply the preceding case. The
estimate is also a consequence of Hanouzet [37, Théorème 3].

Using (2.21) for products of functions as in (2.20), we obtain altogether that
∂α−β
x f∂β

xg ∈ L2(Rn−1) for all 0 � β � α, |α| � k.
Finally, if k = 1, then we have that

H1−τ (Ω) ↪→ BUC
(
I;H 1

2−τ
(
Rn−1)) ↪→ BUC

(
I;Lr

(
Rn−1)), 1

r
= 1

2 − 1
p
.

Therefore

‖f∂xj
g‖L2(Ω) � ‖f‖L∞(I;Lr)‖∂xj

g‖L2(I,Lp) � C‖f‖H1−τ (Ω)‖g‖W 1
(2,p)(Ω),

which proves the last statement. �
Domains with nonsmooth boundary. For the following, let n � 2, let M be a positive
integer, and let 1 � p, q � ∞ be such that M − 3

2 − n−1
p > 0.

Definition 2.4. Let Ω be an open subset of Rn. We say that Ω has a boundary of class
B

M− 1
2

p,q in the following three cases:
1◦ Ω = Rn

γ , where

Rn
γ =

{
x ∈ Rn: xn > γ

(
x′)}

for a function γ ∈ B
M− 1

2
p,q (Rn−1).

2◦ ∂Ω is compact, and each x ∈ ∂Ω has an open neighborhood U satisfying: For a
suitable choice of coordinates on Rn, there is a function γ(x′) ∈ B

M− 1
2

p,q (Rn−1) such that
U ∩Ω = U ∩ Rn

γ and U ∩ ∂Ω = U ∩ ∂Rn
γ .

3◦ For a large ball BR = {x ∈ Rn: |x| < R}, Ω \ BR equals Rn
+ \ BR. The points

x ∈ BR+1 ∩ ∂Ω have the property described in 2◦.
There are similar definitions with other function spaces.
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In the second case, one can cover ∂Ω by a finite set of such coordinate neighbor-
hoods U . Note that exterior domains are allowed. The third case is included in order
to show a simple case with noncompact boundary where a finite system of coordinate
neighborhoods suffices (namely finitely many U ’s covering ∂Ω ∩BR+1 and a trivial one
covering ∂Ω \ BR), to describe the smoothness structure. More general such cases can
be defined as the “admissible manifolds” in [33].

We shall work under the following general hypothesis:

Assumption 2.5. n � 2, M ∈ N, 2 � p < ∞, with

τ := M − 3
2 − n− 1

p
> 0. (2.22)

Moreover, Ω is an open subset of Rn with boundary ∂Ω of regularity B
M− 1

2
p,2 , as in

Definition 2.4.

Remark 2.6. Under Assumption 2.5, it follows from (2.11) that ∂Ω is Hölder continuous
with exponent 1 + τ (if τ /∈ N). In the converse direction, if ∂Ω is Hölder continuous
with exponent M − 1

2 + ε for some ε > 0, then in view of (2.12), ∂Ω ∈ B
M− 1

2
∞,2 . This in

turn implies ∂Ω ∈ B
M− 1

2
p,2 for every 1 � p � ∞ if Ω is of type 2◦ or 3◦ in Definition 2.4,

since L∞(U) ↪→ Lp(U) for every 1 � p � ∞ when U is bounded. In other words,

∂Ω ∈ CM− 1
2+ε =⇒ ∂Ω ∈ B

M− 1
2

p,2 =⇒ ∂Ω ∈ CM− 1
2−

n−1
p = C1+τ ,

if Ω is of type 2◦ or 3◦ and τ /∈ N.

When U and V are subsets of Rn, and F :V → U is a bijection, we denote the pull-back
mapping by F ∗:

(
F ∗u

)
(x) = u

(
F (x)

)
for x ∈ V,

(
F−1,∗v

)
(y) = v

(
F−1(y)

)
for y ∈ U,

when u is a function on U , v is a function on V . The gradient ∇u = (∂ju)nj=1 is viewed
as a column vector.

Proposition 2.7. Under Assumption 2.5, let γ ∈ B
M− 1

2
p,2 (Rn−1), and let Rn

γ = {x ∈ Rn :
xn > γ(x′)}. Then there is a C1-diffeomorphism Fγ : Rn → Rn with ∇Fγ ∈ Cτ ′(Rn)n2

for τ ′ � τ , τ ′ ∈ (0, 1
2 ) (cf. (2.22)), such that Fγ(Rn

+) = Rn
γ and F ∗

γ :Hs(Rn) → Hs(Rn)
as well as F ∗

γ :Hs(Rn
γ ) → Hs(Rn

+) for all 0 � s � M .

Proof. We begin by defining Γ (x′, xn) as the lifting of γ(x′) by the construction described
in the last statement in Lemma 2.2; then Γ ∈ WM

(2,p)(Rn). In particular, this implies that
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∇Γ ∈ L2
(
R;HM−1

p

(
Rn−1))n ∩HM−1(R;Lp

(
Rn−1))n

↪→ BUC
(
R;BM− 3

2
p,2

(
Rn−1))n ↪→ BUC

(
R;C0

b

(
Rn−1))n

in view of (2.16); we here use that B
M− 3

2
p,2 (Rn−1) ↪→ Cτ (Rn−1) ↪→ C0

b (Rn−1) since τ =
M − 3

2 − n−1
p > 0. Hence Γ ∈ C1

b (Rn). Moreover, we have from (2.10)

∇Γ ∈ H1(R;HM−2
p

(
Rn−1))n ↪→ C

1
2
(
R;HM−2

p

(
Rn−1))n.

Due to (2.8), we have HM−2
p (Rn−1) ↪→ BM−2

p,p (Rn−1) and using ∇Γ ∈ BUC (R;
B

M− 3
2

p,2 (Rn−1))n, (2.4) yields

∇Γ ∈ Cτ ′(
R;B(n−1)/p

p,1
(
Rn−1))n ↪→ Cτ ′(

R;C0
b

(
Rn−1))n,

where τ ′ = τ if 0 < τ < 1
2 and τ ′ ∈ (0, 1

2 ) is arbitrary otherwise. Here one uses the
general estimate∥∥f(t) − f(s)

∥∥
X

� C
∥∥f(t) − f(s)

∥∥1−θ

X0

∥∥f(t) − f(s)
∥∥θ
X1

� C‖f‖1−θ
BUC(R;X0)‖f‖

θ

C
1
2 (R;X1)

|t− s|θ/2

for all t, s ∈ R, where X = (X0, X1)θ,1. Thus ∇Γ ∈ Cτ ′(Rn)n. Note that similarly

WM−1
(2,p)

(
Rn

)
↪→ Cτ ′(

Rn
)
. (2.23)

Now we define, for some λ > 0,

Fγ(x) = x +
(

0
Γ (x′, λxn)

)
=
(
Fγ,k(x)

)n
k=1.

Then ∂xn
Fγ,n(x) = 1 + λ(∂xn

Γ )(x′, λxn). Hence, if λ is sufficiently small, Fγ,n(x′, ·) :
R → R is strictly increasing and surjective for every x′ ∈ Rn−1. Therefore Fγ : Rn → Rn

is a C1-diffeomorphism with Fγ(Rn
+) = Rn

γ , and ∇Fγ = (∂xj
Fγ,k)nj,k=1 (the transposed

functional matrix) is in Cτ ′(Rn)n2 .
Next let u ∈ Hk(Ω), 0 � k � M , Ω = Rn or Ω = Rn

γ . We prove F ∗
γ (u) ∈ Hk(Ω)

by mathematical induction. If k = 0, then the statement is true since Fγ is a
C1-diffeomorphism. For u ∈ H1(Ω),

∂xj

(
u
(
Fγ(x)

))
= (∇u)

(
Fγ(x)

)
· ∂xj

Fγ(x) (2.24)

where (∇u)(Fγ(x)) ∈ L2(Ω)n by the argument for k = 0 and ∂xj
Fγ(x) ∈ C0

b (Ω)n. Next
we assume that the statement is true for some 1 � k < M . Then for u ∈ Hk+1(Ω),
we have (∇u)(Fγ(x)) ∈ Hk(Ω)n by the assumption, and ∂xj

Fγ(x) ∈ WM−1
(2,p) (Ω)n ↪→
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W k
(2,pk)(Ω)n for some 2 � pk < ∞ with k − n−1

pk
− 1

2 > 0. Therefore Lemma 2.3 implies
that ∂xj

(u(Fγ(x))) ∈ Hk(Rn
+) for all j = 1, . . . , n, which implies the statement for

k + 1 � M . This proves the statement for integer 0 � k � M . For real 0 � s � M the
statement follows by interpolation. �

For the case M = 2, we specify the result in the following corollary. We use the
notation C : D =

∑n
j,k=1 cjkdjk = tr(CTD) for the “scalar product” of square matrices

C = (cjk)nj,k=1 and D = (djk)nj,k=1. ∂2u stands for the Hessian (∂xj
∂xk

u)nj,k=1, and ej is
the j-th coordinate vector written as a column.

Corollary 2.8. Let γ ∈ B
3
2
p,2(Rn−1), with 2 � p < ∞, 1

2 − n−1
p > 0, and let Rn

γ and Fγ be
as in Proposition 2.7. Then for every j, k = 1, . . . , n,

F ∗
γ∇u = Φ(x)∇F ∗

γ u, (2.25)

F ∗
γ ∂xj

∂xk
u = Φj,k(x) : ∂2F ∗

γ u + Ru,

where Φ(x) = (∇Fγ(x))−1 ∈ W 1
(2,p)(Rn

+)n2 and Φj,k(x) = Φ(x)T ejeTk Φ(x), and

R:H2−τ
(
Rn

γ

)
→ L2

(
Rn

+
)

is a bounded operator for τ = 1
2 − n−1

p .

Proof. The chain rule (2.24) gives that ∇(u(Fγ(x))) = (∇Fγ)(x)(∇u)(Fγ(x)), which
implies the first line in (2.25). In particular,

F ∗
γ ∂xj

u = eTj F
∗
γ (∇u) = eTj ΦF

∗
γ u, y

where eTj Φ is the j-th row (ϕj1 . . . ϕjn ) in Φ. Repeated use gives

F ∗
γ ∂j∂ku = eTj Φ(x)∇F ∗

γ ∂ku = eTj Φ(x)∇
(
eTk Φ(x)∇F ∗

γ u
)

= (ϕj1 . . . ϕjn )

⎛⎜⎝ ∂1
...
∂n

⎞⎟⎠
⎛⎜⎝(ϕk1 . . . ϕkn )

⎛⎜⎝ ∂1
...
∂n

⎞⎟⎠F ∗
γ u

⎞⎟⎠
=

n∑
l,m=1

ϕjl∂l
(
ϕkm∂mF ∗

γ u
)

=
n∑

l,m=1
ϕjlϕkm∂l∂mF ∗

γ u +
n∑

l,m=1
ϕjl(x)

(
∂lϕkm(x)

)
∂mF ∗

γ u
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for all u ∈ H2(Rn
γ ). Here (ϕjlϕkm)nl,m=1 equals the matrix ΦT eje

T
k Φ = Φj,k for each j, k.

This shows the second line in (2.25), where R is estimated by use of (2.18):∥∥ϕjl(x)
(
∂lϕkm(x)

)
∂mF ∗

γ u
∥∥
L2(Rn

+) � C
∥∥∂mF ∗

γ u
∥∥
H1−τ (Rn

+) � C ′‖u‖H2−τ (Rn
γ ). �

Remark 2.9. Now we can choose a covering of Ω by a system of open sets U0, . . . , UJ

with coordinate mappings such that the Uj for j = 1, . . . , J form a covering of ∂Ω, and
U0 ⊂ Ω. Here in case 2◦ of Definition 2.4, we can assume that for each 1 � j � J , Uj is
bounded, Uj ∩ Ω = Uj ∩ Rn

γj
for some γj ∈ B

M− 1
2

p,2 (Rn−1) (modulo a rotation), and the
diffeomorphism Fj ≡ Fγj

in Rn mapping Rn
+ to Rn

γj
defined by Proposition 2.7 is such

that F−1
j carries Ω ∩ Uj over to Vj = {(y′, yn): maxk<n |yk| < aj , 0 < yn < aj} and

Σ∩Uj over to {(y′, yn): maxk<n |yk| < aj , yn = 0}. In case 3◦ of Definition 2.4, the open
sets U1, . . . , UJ−1 are of this kind, and the set UJ equals {(x′, xn): |x| > R, xn > −1},
with FJ being the identity (γJ = 0). We shall denote Fj |∂Rn

+ = Fj,0, for j = 1, . . . , J .
We also introduce ηj , ψj , ϕj ∈ C∞(Rn), j = 0, . . . , J , as non-negative functions sup-

ported in Uj such that ϕ0, . . . , ϕJ is a partition of unity on Ω, and

ψj = 1 on suppϕj , ηj = 1 on suppψj , for all j = 0, . . . , J.

It is accounted for in [50] in the case of a Lipschitz boundary (and it also follows in
our case by use of the fact that Fγ defined in Proposition 2.7 is a C1-diffeomorphism),
that the surface measure dσ on ∂Rn

γ satisfies

dσ = κ
(
x′) dx′, where κ

(
x′) =

√
1 +

∣∣∇x′γ
(
x′
)∣∣2;

here κ ∈ B
M− 3

2
p,2 (Rn−1). We define

Hs
(
∂Rn

γ

)
=
{
u ∈ L2(∂Ω): F ∗

γ,0u ∈ Hs
(
Rn−1)}, when s � 0,

provided with the inherited Hilbert space norm ‖u‖Hs(∂Rn
γ ) = ‖F ∗

γ,0u‖Hs(Rn−1). Further-
more, we put as in [50], for s > 0,

‖u‖H−s(∂Rn
γ ) =

∥∥κF ∗
γ,0u

∥∥
H−s(Rn−1),

for u ∈ L2(∂Rn
γ ), and define H−s(∂Rn

γ ) as the completion of L2(∂Rn
γ ) with respect to

this norm. Then

‖u‖H−s(∂Rn
γ ) = sup

0�=v∈Hs(∂Rn
γ )

|(u, v)L2(∂Rn
γ )|

‖v‖Hs(∂Rn
γ )

for all u ∈ L2(∂Rn
γ ). Here H−s(∂Rn

γ ) is naturally identified with the dual of Hs(∂Rn
γ )

(more precisely, we hereby mean the space of conjugate linear continuous functionals as
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in [45], also called the antidual space) in such a way that the sesquilinear duality, denoted
(u, v)H−s(∂Rn

γ ),Hs(∂Rn
γ ) or (u, v)−s,s for short, coincides with the L2-scalar product when

u ∈ L2(∂Rn
γ ). We also write (u, v)−s,s as (v, u)s,−s.

Moreover, for −M + 3
2 � s < 0 we define F−1,∗

γ,0 :Hs(Rn−1) → Hs(∂Rn
γ ) by

(
F−1,∗
γ,0 v, ϕ

)
Hs(∂Rn

γ ),H−s(∂Rn
γ ) =

(
v, κF ∗

γ,0ϕ
)
Hs(Rn−1),H−s(Rn−1) for all ϕ ∈ H−s

(
∂Rn

γ

)
,

consistently with the definition of F−1,∗
γ,0 v for v ∈ L2(Rn−1). Here F−1,∗

γ,0 v ∈ Hs(∂Rn
γ ),

the dual space of H−s(∂Rn
γ ), since

∥∥κF ∗
γ,0ϕ

∥∥
H−s(Rn−1) � C‖κ‖

B
M− 3

2
p,2 (Rn−1)

∥∥F ∗
γ,0ϕ

∥∥
H−s(Rn−1) � C ′‖ϕ‖H−s(∂Rn

γ )

for all ϕ ∈ H−s(∂Rn
γ ), because of 0 < −s � M − 3

2 and (2.31) below. To incorporate the
factor κ, we also introduce the modified pull-back mappings

F̃ ∗
γ,0(u) = κF ∗

γ,0(u) for all u ∈ Hs
(
∂Rn

γ

)
, (2.26)

F̃−1,∗
γ,0 (v) = F−1,∗

γ,0 (κv) for all v ∈ Hs
(
Rn−1), (2.27)

for all 0 � s � M − 3
2 , whereby

(
F̃ ∗
γ,0(u), ϕ

)
−s,s

=
(
u, F−1,∗

γ,0 (ϕ)
)
−s,s

for all u ∈ H−s
(
∂Rn

γ

)
, ϕ ∈ Hs

(
Rn−1),(

F̃−1,∗
γ,0 (v), ϕ

)
−s,s

=
(
v, F ∗

γ,0(ϕ)
)
−s,s

for all v ∈ H−s
(
Rn−1), ϕ ∈ Hs

(
∂Rn

γ

)
,

0 � s � M − 3
2 .

Then we have altogether:

Lemma 2.10. Under the assumptions above, we have the mapping properties

F ∗
γ,0:Hs

(
∂Rn

γ

)
→ Hs

(
Rn−1), F−1,∗

γ,0 :Hs
(
Rn−1) → Hs

(
∂Rn

γ

)
if −M + 3

2 � s � M − 1
2 ,

F̃ ∗
γ,0:Hs

(
∂Rn

γ

)
→ Hs

(
Rn−1), F̃−1,∗

γ,0 :Hs
(
Rn−1) → Hs

(
∂Rn

γ

)
if −M + 1

2 � s � M − 3
2 ,

continuously, and F̃−1,∗
γ,0 is the adjoint of F ∗

γ,0, F
−1,∗
γ,0 is the adjoint of F̃ ∗

γ,0.

Now one can define Hs(∂Ω) using suitable partitions of unity, when ∂Ω is of class
B

M− 1
2

p,2 as in 2◦ and 3◦ of Definition 2.4; cf. Remark 2.9.
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Theorem 2.11. Let Ω ⊆ Rn be as in Definition 2.4. For every s ∈ (1
2 ,M ], there is a

continuous linear mapping γ0 such that γ0u = u|∂Ω for all u ∈ Hs(Ω) ∩ C0(Ω) and
γ0:Hs(Ω) → Hs− 1

2 (∂Ω) is bounded. Moreover, there is a continuous right inverse of
γ0:Hs(Ω) → Hs− 1

2 (∂Ω).

Proof. In the case Ω = Rn
γ , the statement can be reduced to the well-known correspond-

ing fact in the case of Ω = Rn
+ using Fγ established in Proposition 2.7. With the aid of

suitable partitions of unity, the general cases can be reduced to the case Ω = Rn
γ . �

We note that Gauß’s formula∫
Ω

div f(x) dx = −
∫
∂Ω

�n · f(x) dσ(x) (2.28)

is valid for any f ∈ C1(Ω)n with compact support if Ω is a Lipschitz domain. Here
�n = (n1, . . . , nn) denotes the interior normal of ∂Ω. A proof can be found e.g. in [50,
Theorem 3.34]. Because of [50, Theorems 3.29 and 3.38], (2.28) also holds true for any
f ∈ H1(Ω)n.

2.2. Pointwise multiplication and inversion

First of all, we recall the following product estimates: For every r > 0, |s| � r, and
1 � p � q < ∞ such that 1

p + 1
q � 1 and r − n

q > 0 there is some constant Cr,s,p,q > 0
such that

‖fg‖Hs
p(Rn) � Cr,s,p,q‖f‖Hr

q (Rn)‖g‖Hs
p(Rn), f ∈ Hr

q

(
Rn

)
, g ∈ Hs

p

(
Rn

)
, (2.29)

cf. e.g. Johnsen [39, Theorems 6.1 and 6.4].
Moreover, due to Hanouzet [37, Théorème 3] we have

‖fg‖Bs
p,max(q1,q2)

� Cr,s,p,p1,q1,q2‖f‖Br
p1,q1

‖g‖Bs
p,q2

(2.30)

for all f ∈ Br
p1,q1(R

n), g ∈ Bs
p,q2(R

n) provided that 1 � p � p1 � ∞, 1 � q1, q2 � ∞,
r > n

p1
, and

−r + n

(
1
p1

+ 1
p
− 1

)
+
< s � r,

see also [39, Theorem 6.6]. In particular, this implies

‖fg‖Hs(Rn) � Cs,r,p‖f‖Br
p,2(Rn)‖g‖Hs(Rn) (2.31)

for all f ∈ Br
p,2(Rn), g ∈ Hs(Rn), provided that 2 � p � ∞, r − n

p > 0 and −r < s � r.
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Concerning pointwise inversion, let X = Bs
p,q(Rn) with s > n

p , 1 � p, q � ∞ or
X = Hs

p(Rn) with s > n
p , 1 < p < ∞. Then G(f) ∈ X for all G ∈ C∞(R) and f ∈ X.

This implies that f−1 ∈ X for all f ∈ X such that |f | � c0 > 0. We refer to Runst [52]
for an overview, further results, and references.

2.3. Pseudodifferential operators with nonsmooth coefficients

Let X be a Banach space such that X ↪→ L∞(Rn).

Definition 2.12. For every m ∈ R the symbol space XSm
1,0(Rn ×Rn), n ∈ N, is the set of

all p: Rn × Rn → C such that for every α ∈ Nm
0 there is some Cα > 0 satisfying

∥∥∂α
ξ p(., ξ)

∥∥
X

� Cα〈ξ〉m−|α| for all ξ ∈ Rn.

The space XSm
cl (Rn×Rn) is the set of all p ∈ XSm

1,0(Rn×Rn), which are classical symbols
in the sense that there are pj ∈ XSm−j

1,0 (Rn × Rn), j ∈ N0 that are homogeneous with
respect to |ξ| � 1 and satisfy

p(x, ξ) −
N−1∑
j=0

pj(x, ξ) ∈ XSm−N
1,0

(
Rn × Rn

)
for all N ∈ N.

In order to define pseudodifferential operators on ∂Ω with B
M− 1

2
p,2 -regularity, we recall:

Theorem 2.13. Let p ∈ Hr
qS

m
1,0(Rn × Rn) for some 2 � q < ∞ and r > n

q . Then

p(x,Dx):Hs+m
(
Rn

)
→ Hs

(
Rn

)
for all − r < s � r

is a bounded linear operator.

The theorem follows from [49, Theorem 2.2]. We note that, if p(x, ξ) =
∑

|α|�m aα(x)ξα
for some aα ∈ Hr

q (Rn), then p(x,Dx) is a differential operator with coefficients in Hr
q (Rn)

and the statement in the theorem easily follows from the product estimate (2.29) pro-
vided that |s| � r, 2 � q < ∞ and r > n

q .
Let us recall the so-called symbol-smoothing: For every p ∈ CrSm

1,0(Rn × Rn) and
0 < δ < 1 there is a decomposition

p = p� + pb, where p� ∈ Sm
1,δ
(
Rn × Rn

)
, pb ∈ CrSm−rδ

1,δ
(
Rn × Rn

)
. (2.32)

We refer to [55, end of Section 1.3] for a proof. The definition of CrSm−rδ
1,δ (Rn × Rn) is

given in Appendix A.
In order to estimate the remainder term pb(x,Dx) we will use:
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Proposition 2.14. Let p ∈ CrSm
1,δ(Rn × Rn), m ∈ R, δ ∈ [0, 1], r > 0. Then

p(x,Dx):Hs+m
(
Rn

)
→ Hs

(
Rn

)
for all s ∈ R with −r(1 − δ) < s < r.

We refer to [48, Theorem 2.1] for a proof.
Now let ∂Ω be again of class B

M− 1
2

p,2 , where M − 3
2 − n−1

p > 0. Then we can define a
pseudodifferential operator P on ∂Ω of order m′ ∈ R and with coefficients in Hr

q (Rn−1)
for 2 � q < ∞ and r > n

q , as

Pu =
J∑

j=1
ψjF

−1,∗
j,0 pj

(
x′, Dx′

)
F ∗
j,0ϕju, (2.33)

where the pj ∈ Hr
qS

m′
1,0(Rn−1 × Rn−1), and Fj,0:Vj → Uj ⊂ ∂Ω, j = 1, . . . , J , where

Vj ⊂ Rn−1, are local charts forming an atlas of ∂Ω. Moreover, ϕj , j = 1, . . . , J is a
partition of unity on ∂Ω such that suppϕj ⊂ Uj , and the functions ψj satisfy ψj ≡ 1 on
suppϕj and have suppψj ⊂ Uj . Here we assume that at least ϕj , ψj ∈ B

M− 1
2

p,2 (∂Ω).
For later purposes we also define the modified pseudodifferential operator

P̃ u =
J∑

j=1
ψjF̃

−1,∗
j,0 pj

(
x′, Dx′

)
F ∗
j,0ϕju, (2.34)

where pj are as above and F̃−1,∗
j,0 = F̃−1,∗

γj ,0 . For these operators we have the following
slightly different continuity results:

Corollary 2.15. Let ∂Ω be of class B
M− 1

2
p,2 , M − 3

2 − n−1
p > 0, 2 � p < ∞, and let

pj ∈ Hr
qS

m′
1,0(Rn−1×Rn−1) for some 2 � q < ∞ and r > n−1

q , j = 1, . . . , J . Then with P

as in (2.33) we have for every s ∈ R such that −r < s � r, s, s+m′ ∈ [−M + 3
2 ,M − 1

2 ],

P :Hs+m′
(∂Ω) → Hs(∂Ω)

is a well-defined linear and bounded operator. Moreover, for every s ∈ R such that
−r < s � r, s ∈ [−M + 1

2 ,M − 3
2 ], s + m′ ∈ [−M + 3

2 ,M − 1
2 ] and P̃ as in (2.34) we

have:

P̃ :Hs+m′
(∂Ω) → Hs(∂Ω)

is a well-defined linear and bounded operator.

Proof. The proof follows immediately from Theorem 2.13 and Lemma 2.10 and local
charts. �
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In particular, we can define differential operators with Hr
q -coefficients in the manner

above.

Remark 2.16. We will not address the question of invariance under coordinate transfor-
mation of nonsmooth pseudodifferential operators. Therefore we will also not show that
the definition (2.33) does not depend in an essential way on the choice of the charts and
the cut-off functions ϕj , ψj .

We recall from [49, Corollary 3.4]:

Theorem 2.17. Let pj ∈ Hr
qS

mj

1,0 (Rn × Rn), mj ∈ R, j = 1, 2, 2 � q < ∞ and r > n
q .

Then for every 0 < τ � 1 with τ < r − n
q

p1(x,Dx)p2(x,Dx) − (p1p2)(x,Dx):Hs+m1+m2−τ
(
Rn

)
→ Hs

(
Rn

)
is a bounded operator provided that

s, s + m1 ∈ (−r + τ, r]. (2.35)

Note here that if the pj(x,Dx) are differential operators, then Theorem 2.17 can be
proved by elementary but lengthy estimates using Sobolev embeddings. As one conse-
quence of the theorem one has that∑

|α|,|β|�m

Dα
x

(
aα,β(x)Dβ

xu
)

=
∑

|α|,|β|�m

aα,β(x)Dα+β
x u + Ru, (2.36)

where

R:Hs+2m−τ (Ω) → Hs(Ω) if −r + τ < s � r −m (2.37)

provided that aα,β ∈ Hr
q (Ω) and Ω is a Lipschitz domain. In fact, the statement in the

case Ω = Rn follows from Theorem 2.17, and then for a general Lipschitz domain Ω one
can obtain the statement by extension to Rn.

2.4. Green’s formula for second order boundary value problems

Since the smoothness properties of the coefficients in Green’s formula for general
2m-order operators are quite complicated to analyze and would take up much space, we
shall in the present paper restrict the attention to the second-order case from here on
(expecting to take up higher-order problems elsewhere).

Consider a second order strongly elliptic operator A,

Au = −
n∑

j,k=1
∂xj

(ajk∂xk
u) +

n∑
j=1

aj∂xj
u + a0u, (2.38)
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with

Re
n∑

j,k=1
ajk(x)ξjξk � c0|ξ|2, all x ∈ Ω, ξ ∈ Rn; (2.39)

c0 > 0. We assume that the ajk and aj are in H1
q (Ω) and a0 ∈ Lq(Ω), where q � 2 and

1 − n
q > 0, and we apply the expression to u ∈ H2(Ω). In view of (2.29),

‖fg‖Hs(Ω) � Cq‖f‖H1
q (Ω)‖g‖Hs(Ω) for all |s| � 1;

hence

A:H2+s(Ω) → Hs(Ω) for all s ∈ [−2, 0]. (2.40)

Concerning the domain Ω, we assume that Ω is as in Definition 2.4 2◦ or 3◦ with
M = 2 (so ∂Ω ∈ B

3
2
p,2 and 1

2 − n−1
p > 0, in particular p > 2).

Denote ∂�n = �n · ∂, the normal derivative, where �n = (n1, . . . , nn) is the interior unit
normal on ∂Ω. We shall denote ∂τ = prτ ∂, where prτ = I − �n ⊗ �n; the “tangential
gradient”. (Here �n⊗�n is the matrix (njnk)j,k=1,...,n = �n�nT , �n used as a column vector.)
Setting ∂τ,j = ej · ∂τ , we have (at points of ∂Ω), since

∂τ,ju = ej · ∂τu = ej · ∂u− ej �n�n
T∂u = ∂xj

u− nj�n · ∂u,

that

∂xj
u = nj∂�nu + ∂τ,ju. (2.41)

When ξ ∈ Cn, we set ξτ = prτ ξ = (I − �n⊗ �n)ξ. For j ∈ N0, we define

γju :=
(
(�n · ∂x)ju

)∣∣
∂Ω

= ∂j
�nu
∣∣
∂Ω

.

By our assumptions, �n ∈ B
1
2
p,2(∂Ω)n ↪→ H

1
2
p (∂Ω)n (cf. (2.7), recall that p � 2). The

product rule (2.29) applies with r = s = 1
2 , p = q, n replaced by n − 1, to show that

H
1
2
p (∂Ω) is an algebra with respect to pointwise multiplication. The rule (2.29) also

applies with p = 2, r = 1
2 , n replaced by n− 1 and q replaced by our general p, to show

that multiplication by elements of H
1
2
p (∂Ω) preserves Hs(∂Ω) for |s| � 1

2 .
Then since γ0∂xj

:Hs(Ω) → Hs− 3
2 (∂Ω) continuously for s ∈ (3

2 , 2], γ1:Hs(Ω) →
Hs− 3

2 (∂Ω) continuously for s ∈ (3
2 , 2].

Let

a′jk(x) = akj(x), a′j(x) = aj(x), a′0(x) = a0(x) −
n∑

j=1
∂xj

aj(x)
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for all x ∈ Ω, j, k = 1, . . . , n, and let A′ denote the operator defined as in (2.38) with
ajk, aj , a0 replaced by a′jk, a

′
j , a

′
0; it is the formal adjoint of A.

It will be convenient for the following to have 1
2 − n−1

p � 1 − n
q ; this can be achieved

by replacing p by a smaller p > 2. Then we can set τ = 1
2 − n−1

p as in Assumption 2.5.
To sum up, we make the following assumption:

Assumption 2.18. n � 2, 2 < q � ∞ and 2 < p < ∞, with

1 − n

q
� 1

2 − n− 1
p

> 0; τ := 1
2 − n− 1

p
. (2.42)

The domain Ω is as in Definition 2.4 2◦ or 3◦, with boundary ∂Ω of regularity B
3
2
p,2. In

(2.38), the coefficients ajk and aj are in H1
q (Ω) and a0 ∈ Lq(Ω).

The inequalities for q and p mean that (nq ,
n−1
p ) belongs to the polygon {(x, y): 0 �

x < 1, 0 < y < 1
2 , y � x− 1

2}. All q > n and p > 2(n− 1) can occur (but not all at the
same time). Under Assumption 2.18,

B
1− 1

q
q,q (∂Ω) + B

1
2
p,2(∂Ω) ↪→ H

1
2
p (∂Ω)

by (2.13), where we also use that B
1
2
p,2 ↪→ H

1
2
p . Recall from Remark 2.6 that the boundary

regularity B
3
2
p,2 includes C

3
2+ε and is included in C1+τ .

Theorem 2.19. Under Assumption 2.18, the following Green’s formula holds:

(Au, v)Ω −
(
u,A′v

)
Ω

= (χu, γ0v)∂Ω −
(
γ0u, χ

′v
)
∂Ω

, (2.43)

for all u, v ∈ H2(Ω). Here, setting B = (ajk)nj,k=1, B′ = (a′jk)nj,k=1, and b′0 =
∑n

j=1 nja
′
j,

and defining

s0 =
n∑

j,k=1
ajk(x)njnk = �nTB�n,

A1 = b1 · ∂τ , with b1 =
(
�nTB

)
τ
, A′

1 = b′1 · ∂τ + b′0, with b′1 =
(
�nTB′)

τ
,

we have that

χ = s0γ1 + A1γ0, χ′ = s0γ1 + A′
1γ0. (2.44)

Here s0, b
′
0 ∈ H

1
2
p (∂Ω), b1, b′1 ∈ H

1
2
p (∂Ω)n.

Furthermore, s0 is invertible with s−1
0 likewise in H

1
2
p (∂Ω).
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Proof. It is well-known that when coefficients and boundary are smooth, then the Gauss
formula (2.28) implies

(Au, v)Ω −
(
u,A′v

)
Ω

= (χu, γv)∂Ω −
(
γu, χ′v

)
∂Ω

,

for all u, v ∈ H2(Ω), where

χu =
n∑

j,k=1
njγ0ajk∂xk

u,

χ′u =
n∑

j,k=1
njγ0a

′
jk∂xk

u +
n∑

j=1
njγ0a

′
ju.

Here we can write, using (2.41),

χu =
n∑

j,k=1
njajkγ0∂xk

u =
∑
k

(
�nTB

)
k
γ0(∂τ,ku + nk∂�nu)

= �nTB�nγ1u + �nTB∂τγ0u = �nTB�nγ1u +
(
�nTB

)
τ
· ∂τγ0u;

similarly,

χ′u =
n∑

j,k=1
njγ0a

′
jk∂xk

u +
n∑

j=1
nja

′
jγ0u = �nTB′�nγ1u +

(
�nTB′)

τ
· ∂τγ0u + �nT b′0γ0u.

This shows the asserted formulas in the smooth case.
The validity is extended in [50, Theorem 4.4] to the case where ajk, aj ∈ C0,1(Ω) and

a0 ∈ L∞(Ω), and Ω is a bounded Lipschitz domain. The unbounded cases in Defini-
tion 2.4 are included by adding the appropriate (trivial) coordinate charts.

The case ajk, aj ∈ H1
q (Ω), a0 ∈ Lq(Ω) can then easily be proved by first replacing

ajk, aj , and a0 by some smoothed aεjk, a
ε
j ∈ C0,1(Ω) and aε0 ∈ L∞(Ω)∩Lq(Ω) such that

aεjk →ε→0 ajk and aεj →ε→0 aj in H1
q (Ω) and aε0 → a0 in Lq(Ω) and then passing to the

limit ε → 0. For this argument one uses (2.29) with s = r = 1 and p = 2 to pass to the
limit in all terms involving ajk, a

′
jk, aj , and a′j . To pass to the limit in the term involving

a0 one uses H
n
q (Ω) ↪→ Lr(Ω) with 1

r = 1
2 − 1

q since 1
q < 1

n , which implies

‖a0u‖L2(Ω) � C‖a0‖Lq(Ω)‖u‖H n
q (Ω)

. (2.45)

Finally, since A is strongly elliptic, |s0(x)| � C > 0 for all x ∈ Ω. Then s−1
0 ∈ H

1
2
p (∂Ω)

because of the results at the end of Section 2.2. �
Note that since the coefficients in the trace operators χ and χ′ are in H

1
2
p (∂Ω), χ and

χ′ map Hs(Ω) continuously into Hs− 3
2 (∂Ω) for s ∈ (3

2 , 2].
We shall also need a result on localization of χ and χ′, and their surjectivity.



Author's personal copy

4060 H. Abels et al. / Journal of Functional Analysis 266 (2014) 4037–4100

Corollary 2.20. Let χ and χ′ be as in the preceding theorem and let U ⊂ Rn be such that
Ω ∩ U coincides with Rn

γ ∩ U (after a suitable rotation), where γ ∈ B
3
2
p,2(Rn−1). Then

there is a trace operator

t
(
x′, Dx

)
= s1

(
x′)γ0∂xn

+
∑
|α|�1

cα
(
x′)Dα

x′γ0,

where s1, cα ∈ H
1
2
p (Rn−1) for all |α| � 1, such that

χ(ψu) = ηF−1,∗
γ,0 t

(
x′, Dx

)
F ∗
γ (ψu) (2.46)

for any u ∈ H2(Ω) and ψ, η ∈ C∞
0 (U) with η ≡ 1 on suppψ. Here Fγ is the diffeomor-

phism from Proposition 2.7 and Fγ,0 = Fγ |∂Rn
+ . Moreover, s1 is invertible.

For every s ∈ (3
2 , 2] there is a continuous right-inverse of

(
χ

γ0

)
:Hs(Ω) →

Hs− 3
2 (∂Ω)
×

Hs− 1
2 (∂Ω)

;

this holds in particular with χ replaced by γ1. The analogous statements hold for χ′.

Proof. To prove the first statement, let Ω∩U coincide with Rn
γ ∩U after a suitable rota-

tion of Ω and let ψ, η ∈ C∞
0 (U) with η ≡ 1 on suppψ. Then with B as in Corollary 2.8,

s0γ1(ψu) = ηs0γ0
(
�n · ∇(ψu)

)
= ηs0γ0

(
�n · F−1,∗

γ B∇F ∗
γ (ψu)

)
= ηs0F

−1,∗
γ,0 a0γ0

(
∂xn

F ∗
γ (ψu)

)
+ ηs0F

−1,∗
γ,0 B′∇x′γ0F

∗
γ (ψu)

where a0 = (F ∗
γ,0�n) · B(x′, 0)en ∈ H

1
2
p (Rn−1) and B′ = (F ∗

γ,0�n) · B(x′, 0)(I − en ⊗ en) ∈
H

1
2
p (Rn−1). Moreover,

(
F ∗
γ,0�n

)
·
(
B
(
x′, 0

)
en
)

= 1√
1 + |∇x′γ|2

(
−∇x′γ(x′)

1

)
· 1
b(x′)

(
−∇x′γ(x′)
1 + b(x′)

)

=
√

1 + |∇x′γ|2
b(x′) + 1√

1 + |∇x′γ|2
� c > 0

where b(x′) = 1 + λ∂xn
Γ (x′, 0) ∈ [ 12 ,

3
2 ] as in the proof of Proposition 2.7. Since A is

elliptic, |s0(x)| � c0 > 0 for all x ∈ ∂Ω, too. Therefore s1 = s0F
−1,∗
γ,0 a0 ∈ H

1
2
p (∂Ω)

is invertible. It is easy to observe that A1γ0u = ηF−1,∗
γ,0

∑
|α′|�1 c

′
αDx′γ0ψu for some

c′α ∈ H
1
2
p (Rn−1). This proves the first statement.

To prove the last statement, we first note that there is a linear extension operator K

such that K:Hs− 3
2 (Rn−1) → Hs(Rn

+) for all s ∈ (3
2 , 2] and γ1Kv = v and γ0Kv = 0 for
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all v ∈ Hs− 3
2 (Rn−1). Let Fj , Fj,0, ϕj , ψj , ηj be as in Remark 2.9 for M = 2. Using K

and the coefficients s1,j in (2.46) with respect to Rn
γj

, we define

K1v =
N∑
j=1

ψjF
−1,∗
j Ks−1

1,jF
∗
j,0ϕjv.

Then γ0K1v = 0 and therefore

χK1v =
N∑
j=1

ψjF
−1,∗
j s1,jγ1Ks−1

1,jF
∗
j,0ϕjv =

N∑
j=1

ψjF
−1,∗
j s1,js

−1
1,jF

∗
j,0ϕjv = v,

where we have applied (2.46) with respect to Rn
γj

.
Now we define

K
(
v1
v2

)
= K0v2 + K1(v1 − χK0v2)

for all v1 ∈ Hs− 3
2 (∂Ω), v2 ∈ Hs− 1

2 (∂Ω), where K0:Hs− 1
2 (∂Ω) → Hs(Ω) is a right

inverse of γ0, which exists in view of Theorem 2.11. Then K is a right-inverse of
( χ
γ0

)
.

In the special case A = −Δ, χ = γ1. �
3. Extension theory

In this section we briefly recall some elements of the theory of extensions of dual pairs
established in Grubb [29] (building on works of Krein [42], Vishik [58] and Birman [18])
and its relation to M -functions shown in Brown, Grubb and Wood [20].

We start with a pair of closed, densely defined linear operators Amin, A′
min in a Hilbert

space H satisfying:

Amin ⊂
(
A′

min
)∗ = Amax, A′

min ⊂ (Amin)∗ = A′
max;

a so-called dual pair. By M we denote the set of linear operators lying between the
minimal and maximal operator:

M = {Ã | Amin ⊂ Ã ⊂ Amax}, M′ =
{
Ã′ ∣∣ A′

min ⊂ Ã′ ⊂ A′
max

}
.

Here we write Ãu as Au for any Ã, and Ã′u as A′u for any Ã′. We assume that there
exists an Aγ ∈ M with 0 ∈ �(Aγ); then A∗

γ ∈ M′ with 0 ∈ �(A∗
γ).

Denote

Z = kerAmax, Z ′ = kerA′
max,

and define the basic non-orthogonal decompositions
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D(Amax) = D(Aγ)+̇Z, denoted u = uγ + uζ = prγ u + prζ u,

D
(
A′

max
)

= D
(
A∗

γ

)
+̇Z ′, denoted v = vγ′ + vζ′ = prγ′ v + prζ′ v;

here prγ = A−1
γ Amax, prζ = I − prγ , and prγ′ = (A∗

γ)−1A′
max, prζ′ = I − prγ′ . By

prV u = uV we denote the orthogonal projection of u onto a subspace V .
The following “abstract Green’s formula” holds for u ∈ D(Amax), v ∈ D(A′

max):

(Au, v) −
(
u,A′v

)
=
(
(Au)Z′ , vζ′

)
−
(
uζ ,

(
A′v

)
Z

)
. (3.1)

It can be used to show that when Ã ∈ M and we set W = prζ′ D(Ã∗), then

{{
uζ , (Au)W

} ∣∣ u ∈ D(Ã)
}

is a graph.

Denoting the operator with this graph by T , we have:

Theorem 3.1. (See [29].) For the closed Ã ∈ M, there is a 1–1 correspondence

Ã closed ←→
{
T : V → W, closed, densely defined
with V ⊂ Z, W ⊂ Z ′, closed subspaces.

Here D(T ) = prζ D(Ã), V = D(T ), W = prζ′ D(Ã∗), and

Tuζ = (Au)W for all u ∈ D(Ã), (the defining equation). (3.2)

In this correspondence,

(i) Ã∗ corresponds similarly to T ∗ : W → V .
(ii) ker Ã = kerT ; ran Ã = ranT + (H �W ).
(iii) When Ã is invertible,

Ã−1 = A−1
γ + iV T−1 prW .

Here iV indicates the injection of V into H (it is often left out).
Now provide the operators with a spectral parameter λ, then this implies, with

Zλ = ker(Amax − λ), Z ′
λ̄

= ker
(
A′

max − λ̄
)
,

D(Amax) = D(Aγ)+̇Zλ, u = uλ
γ + uλ

ζ = prλγ u + prλζ u, etc.

Corollary 3.2. Let λ ∈ �(Aγ). For the closed Ã ∈ M, there is a 1–1 correspondence

Ã− λ ←→
{
Tλ : Vλ → Wλ̄, closed, densely defined
with Vλ ⊂ Zλ, Wλ̄ ⊂ Z ′

λ̄
, closed subspaces.
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Here D(Tλ) = prλζ D(Ã), Vλ = D(Tλ), Wλ̄ = prλ̄ζ′ D(Ã∗), and

Tλuλ
ζ =

(
(A− λ)u

)
Wλ̄

for all u ∈ D(Ã).

Moreover,

(i) ker(Ã− λ) = kerTλ; ran(Ã− λ) = ranTλ + (H �Wλ̄).
(ii) When λ ∈ �(Ã) ∩ �(Aγ),

(Ã− λ)−1 = (Aγ − λ)−1 + iVλ

(
Tλ

)−1 prWλ̄
. (3.3)

This gives a Krĕın-type resolvent formula for any closed Ã ∈ M.
The operators T and Tλ are related in the following way: Define

Eλ = I + λ(Aγ − λ)−1, Fλ = I − λA−1
γ ,

E′ λ̄ = I + λ̄
(
A∗

γ − λ̄
)−1

, F ′ λ̄ = I − λ̄
(
A∗

γ

)−1
,

then EλFλ = FλEλ = I, E′ λ̄F ′ λ̄ = F ′ λ̄E′ λ̄ = I on H. Moreover, Eλ and E′ λ̄ restrict
to homeomorphisms

Eλ
V : V ∼−→ Vλ, E′ λ̄

W : W ∼−→ Wλ̄,

with inverses denoted Fλ
V respectively F ′ λ̄

W . In particular, D(Tλ) = Eλ
V D(T ).

Theorem 3.3. Let Gλ
V,W = − prW λEλ iV ; then

(
E′ λ̄

W

)∗
TλEλ

V = T + Gλ
V,W . (3.4)

In other words, T and Tλ are related by the commutative diagram

Vλ

∼
←−−−−

Eλ
V

V

Tλ

⏐⏐� ⏐⏐�T+Gλ
V,W

Wλ̄

∼
−−−−−→(

E′ λ̄
W

)∗ W

D
(
Tλ

)
= Eλ

V D(T ). (3.5)

This is a straightforward elaboration of [31, Prop. 2.6].
It was shown in [20] how this relates to formulations in terms of M -functions. First

there is the following result in the case where V = Z, W = Z ′, i.e., prζ D(Ã) is dense in
Z and prζ′ D(Ã∗) is dense in Z ′:
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Theorem 3.4. Let Ã correspond to T : Z → Z ′ by Theorem 3.1. There is a holomorphic
operator family MÃ(λ) ∈ L(Z ′, Z) defined for λ ∈ �(Ã) by

MÃ(λ) = prζ
(
I − (Ã− λ)−1(Amax − λ)

)
A−1

γ iZ′ .

Here MÃ(λ) relates to T and Tλ by

MÃ(λ) = −
(
T + Gλ

Z,Z′
)−1 = −Fλ

Z

(
Tλ

)−1(
F ′ λ̄
Z′
)∗
, for λ ∈ �(Ã) ∩ �(Aγ). (3.6)

This is directly related to M -functions (Weyl–Titchmarsh functions) introduced by
other authors, see details and references in [20]. Moreover, the construction extends in a
natural way to all the closed Ã ∈ M, giving the following result:

Theorem 3.5. Let Ã correspond to T : V → W by Theorem 3.1. For any λ ∈ �(Ã), there
is a well-defined MÃ(λ) ∈ L(W,V ), holomorphic in λ and satisfying

(i) MÃ(λ) = prζ(I − (Ã− λ)−1(Amax − λ))A−1
γ iW .

(ii) When λ ∈ �(Ã) ∩ �(Aγ),

MÃ(λ) = −
(
T + Gλ

V,W

)−1
.

(iii) For λ ∈ �(Ã) ∩ �(Aγ), it enters in a Krĕın-type resolvent formula

(Ã− λ)−1 = (Aγ − λ)−1 − iVλ
Eλ

V MÃ(λ)
(
E′ λ̄

W

)∗ prWλ̄
. (3.7)

Other Krĕın-type resolvent formulas in a general framework of relations can be found
e.g. in Malamud and Mogilevskĭı [47, Section 5.2].

4. The resolvent construction

4.1. Realizations

The abstract extension theory in the preceding section was implemented for boundary
value problems for elliptic operators A with smooth coefficients on smooth domains
Ω in [29–31], with further results worked out in [20] on Krĕın resolvent formulas and
M -functions. Our aim in the present paper is to extend the validity to the nonsmooth
situation introduced in Section 2.4. An important ingredient in this is to show that the
Dirichlet problem for A has a resolvent and a Poisson solution operator with appropriate
mapping properties.

As Amin, A′
min, Amax and A′

max we take the operators in L2(Ω) defined by

Amin resp. A′
min = the closure of A|C∞

0 (Ω) resp. A′|C∞
0 (Ω),

Amax =
(
A′

min
)∗
, A′

max = (Amin)∗. (4.1)
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Then Amax acts like A with domain consisting of the functions u ∈ L2(Ω) such that Au,
defined weakly, is in L2(Ω). A′

max is defined similarly from A′.
By extension of the coefficients ajk, aj , to all of Rn (preserving the degree of smooth-

ness) we can extend A to a uniformly strongly elliptic operator Ae on Rn; by addition of
a constant, if necessary, we can assume that it has a positive lower bound. By a variant
of the resolvent construction described below (easier here, since there is no boundary)
we get unique solvability of the equation Aeu = f on Rn with f ∈ L2(Rn), with a solu-
tion u ∈ H2(Rn). Then the graph-norm (‖Au‖2

L2(Ω) + ‖u‖2
L2(Ω))

1
2 and the H2-norm are

equivalent on H2
0 (Ω), so

D(Amin) = H2
0 (Ω). (4.2)

As Aγ we take the Dirichlet realization of A; it is the restriction of Amax with domain

D(Aγ) = D(Amax) ∩H1
0 (Ω),

and equals the operator defined by variational theory (Lions’ version of the Lax–Milgram
lemma, the notation used here is as in [35, Chapter 12]), applied to the sesquilinear form

a(u, v) =
n∑

j,k=1
(ajkDxk

u,Dxj
v) +

(
n∑

j=1
ajiDxj

u + a0u, v

)
, (4.3)

with domain H1
0 (Ω) ⊂ L2(Ω). Aγ also has positive lower bound. The analogous operator

for A′ is its Dirichlet realization A′
γ ; it equals the adjoint of Aγ . The inequality (2.39)

implies that the principal symbol takes its values in a sector {λ ∈ C: |arg λ| � π/2− δ}
with δ > 0. The resolvent (Aγ − λ)−1 is well-defined and O(〈λ〉−1) for large |λ| on the
rays {reiη} with η ∈ (π/2 − δ, 3π/2 + δ).

The linear operators Ã with Amin ⊂ Ã ⊂ Amax are the realizations of A.
In the detailed study of the Dirichlet problem that now follows, we first treat a half-

space case by pseudodifferential methods, and then use this to treat the general case by
localization.

4.2. The halfspace case

In this subsection, we consider the case of a uniformly strongly elliptic second or-
der operator a(x,Dx) on Rn

+ in x-form (i.e., defined from
∑n

j,k=1 ajk(x)ξjξk by the
formula (A.2), not in divergence form). More precisely, we assume that a(x,Dx)u :=∑n

j,k=1 ajk(x)Dxj
Dxk

u, where ajk ∈ Cτ (Rn
+) for some 0 < τ � 1. The case of a general

domain will be treated by the help of this situation, using that H
1
2
p (Rn−1) ↪→ Cτ (Rn−1)

and W 1
(2,p)(Rn

+) ↪→ Cτ (Rn
+), where τ = 1

2 − n−1
p , cf. (2.23). For the construction of a

parametrix on Rn
+ it will be enough to use the Cτ -regularity of the coefficients.
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We define

A× :=
(
a(x,Dx)

γ0

)
:Hs+2(Rn

+
)
→

Hs
(
Rn

+
)

×
Hs+ 3

2
(
Rn−1) , (4.4)

which maps continuously for all |s| < τ , since a(x,Dx):Hs+2(Rn
+) → Hs(Rn

+) for all
|s| < τ by Proposition 2.14.

To prepare for an application of Theorem A.8, we apply order-reducing operators (cf.
Remark A.9) to reduce to Hs-preserving operators, introducing

A1 =
(
I 0
0 Λ

3
2
0

)
A×Λ−2

−,+ =
(
a(x,Dx)Λ−2

−,+

Λ
3
2
0 γ0Λ

−2
−,+

)
:Hs

(
Rn

+
)
→

Hs
(
Rn

+
)

×
Hs

(
Rn−1) , (4.5)

continuous for |s| < τ ; it is again in x-form with Cτ -smoothness in x. Since γ0 is of class
1, Λ

3
2
0 γ0Λ

−2
−,+ is of class −1 (and order −1

2 ); a(x,Dx)Λ−2
−,+ is in fact of class −2. (The

notion of class is recalled at the end of Section A.1 and extended to negative values in
Remark A.9.)

By Theorem A.8 2◦, A1 has a parametrix B0
1 in x-form, of class −1, defined from the

inverse symbol;

B0
1 =

(
R0

1 K0
1
)
:

Hs
(
Rn

+
)

×
Hs

(
Rn−1) → Hs

(
Rn

+
)
, (4.6)

continuous for |s| < τ . (We omit the class related condition s > −3
2 , since τ � 1.) In

particular, R0
1 is of order 0, and K0

1 is a Poisson operator of order 1
2 , having symbol-kernel

in CτS
− 1

2
1,0 (RN × Rn−1,S(R+)). The remainder R1 = A1B0

1 − I satisfies

R1:
Hs−θ

(
Rn

+
)

×
Hs−θ

(
Rn−1) →

Hs
(
Rn

+
)

×
Hs

(
Rn−1) , (4.7)

when 0 < θ < τ ,

−τ + θ < s < τ, s > −3
2 + θ. (4.8)

Then the equation A1B0
1 = I + R1, also written(

I 0
0 Λ

3
2
0

)
A×Λ−2

−,+B0
1 = I + R1,

implies by composition to the left with
(

I 0
0 Λ

− 3
2

0

)
and to the right with

(
I 0
0 Λ

3
2
0

)
:
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A×Λ−2
−,+B0

1

(
I 0
0 Λ

3
2
0

)
= I + R′, with R′ =

(
I 0
0 Λ

− 3
2

0

)
R1

(
I 0
0 Λ

3
2
0

)
.

Hence

B0 = Λ−2
−,+B0

1

(
I 0
0 Λ

3
2
0

)
=
(
Λ−2
−,+R

0
1 Λ−2

−,+K
0
1Λ

3
2
0
)

=
(
R0 K0 ) (4.9)

is a parametrix of the x-form operator A×, with

A×B0 = I + R′, (4.10)

B0:
Hs

(
Rn

+
)

×
Hs+ 3

2
(
Rn−1) → Hs+2(Rn

+
)
, R′:

Hs−θ
(
Rn

+
)

×
Hs+ 3

2−θ
(
Rn−1) →

Hs
(
Rn

+
)

×
Hs+ 3

2
(
Rn−1) , (4.11)

for s and θ as in (4.8).

4.3. General domains

Now we consider the situation where the domain Ω and the differential operator A are
as in Assumption 2.18. From now on, we use the notation ∂Ω = Σ. We recall that the
assumption implies that Σ is B

3
2
p,2, 1

2 − n−1
p > 0, the principal part of A is in divergence

form with H1
q (Ω)-coefficients, and τ = 1

2 − n−1
p � 1 − n

q . We have the direct operator
with A as in (2.38)

A =
(

A

γ0

)
:Hs+2(Ω) →

Hs(Ω)
×

Hs+ 3
2 (Σ)

; (4.12)

it is continuous for −3
2 < s � 0.

First we replace the differential operator A by its principal part in x-form, namely

a(x,Dx)u :=
n∑

j,k=1
ajk(x)Dxj

Dxk
u.

Then a(x,Dx) has Cτ -coefficients since H1
q (Ω) ↪→ Cτ (Ω), and we have:

A− a(x,Dx):Hs+2−θ(Ω) → Hs(Ω) (4.13)

for all −1 < s � 0 and 0 < θ < min(τ, s+ 1). This statement follows from Theorem 2.17
applied to the principal part (see also (2.36), (2.37)) and from (2.45) since n

q � 1 − τ .
Let A× be the operator obtained from A by replacing A by a(x,Dx). Then A× has

the mapping properties
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A× =
(
a(x,Dx)

γ0

)
:Hs+2(Ω) →

Hs(Ω)
×

Hs+ 3
2 (Σ)

(4.14)

continuously for |s| � 1, since a(x,Dx):Hs+2(Ω) → Hs(Ω) for all |s| � 1 in view of
(2.29) and the fact that ajk ∈ H1

q (Ω).
We shall use a system of local coordinates and cutoff functions as introduced in Re-

mark 2.9, with M = 2.
When the differential operator A is transformed to local coordinates, the principal part

of the resulting operator A is an x-form operator with Cτ -coefficients since H1
q (Rn

+) ↪→
Cτ (Rn

+). More precisely, because of Corollary 2.8,

F ∗
j a(x,Dx)F−1,∗

j = aj(x,Dx) + R,

where R:H2−τ (Rn
+) → L2(Rn

+) and

aj(x, ξ) =
n∑

k,l=1
akl

(
Fj(x)

)(
Φj(x)ξ

)α+β
,

with Φj(x) = (∇Fj(x))−1 ∈ W 1
(2,p)(Rn

+)n2
↪→ Cτ (Rn

+)n2 . Hence aj(x,Dx) has coefficients
in Cτ (Rn

+).
In each of these charts one constructs a parametrix B0

j = (R0
j K0

j ) for
(

aj(x,Dx)
γ0

)
as in Section 4.2 (the coefficients of A can be assumed to be extended to Rn

+ preserving
ellipticity); for U0 which is disjoint from the boundary one takes a parametrix R0

0 of
a(x,Dx). Then one defines B0 = (R0 K0 ) by

R0f =
J∑

j=1
ψjF

−1,∗
j R0

jF
∗
j ϕjf + ψ0R

0
0ϕ0f, (4.15)

K0g =
J∑

j=1
ψjF

−1,∗
j K0

jF
∗
j,0ϕjg (4.16)

for all f ∈ Hs(Ω), g ∈ Hs+ 3
2 (Σ), where −τ + θ < s � 0 and ϕj , ψj as in Remark 2.9.

Here we recall from (4.9) that K0
j = Λ−2

−,+k̃
0
j (x′, Dx)Λ

3
2
0 with k̃0

j ∈ CτS
− 1

2
1,0 (Rn−1 ×

Rn−1,S(R+)). Then it follows directly from the results so far that

AB0
(
f

g

)
=
(
f

g

)
+ R1

(
f

g

)
,

where

R1:
Hs−θ(Ω)

×
Hs+ 3

2−θ(Σ)
→

Hs(Ω)
×

Hs+ 3
2 (Σ)
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is a bounded operator for all θ and s ∈ R such that

0 < θ < τ, −τ + θ < s � 0. (4.17)

In the present construction, we shall actually carry a spectral parameter along, which
will be useful for discussions of invertibility and resolvents. So we now replace the origi-
nally given A by A− λ, to be studied for large λ in a sector around R−. The parameter
is taken into the order-reducing operators as well, by replacing 〈ξ〉 = (1 + |ξ|2) 1

2 by
(1 + |λ| + |ξ|2) 1

2 .
The parametrix will be of the form

B0(λ) = (R0(λ) K0(λ) ) :
Hs(Ω)

×
Hs+ 3

2 (Σ)
→ Hs+2(Ω); (4.18)

with H1
q -smoothness in x, where −τ < s � 0. The remainder maps as follows:

R(λ) = A(λ)B0(λ) − I:
Hs−θ(Ω)

×
Hs+ 3

2−θ(Σ)
→

Hs(Ω)
×

Hs+ 3
2 (Σ)

(4.19)

for s and θ as in (4.17).
In order to get hold of exact inverses, we shall use a variant of an old trick of Ag-

mon [7], which implies a useful λ-dependent estimate of the remainder. (The technique
was developed further and applied to ψdbo’s in [33], which could also be invoked here; but
in the present simple case of differential operators the trick can be used more directly.)

Consider λ on a ray outside the sector where the principal symbol
∑n

j,k=1 ajk(x)ξjξk
takes its values, i.e., we set λ = eiημ2 (μ � 0) with η ∈ (π/2− δ, 3π/2+ δ). For the study
of A− λ, introduce an extra variable t ∈ S1, and replace μ by Dt = −i∂t, letting

Â = A− eiηD2
t on Ω × S1. (4.20)

Then Â is elliptic on Ω × S1 and its Dirichlet problem is elliptic, and by the preceding
construction (carried out with local coordinates respecting the product structure),

Â =
(

Â

γ0

)
has a parametrix B̂0,

with mapping properties of B̂0 and the remainder R̂ = ÂB̂0 − I as in (4.18) and (4.19)
with Ω,Σ replaced by Ω̂ = Ω × S1, Σ̂ = Σ × S1.

For functions w of the form w(x, t) = u(x)eiμt,

Âw =
(

(A− eiημ2)w
γ0w

)
=
(

(A− λ)w
γ0w

)
,
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and similarly, the parametrix B̂0 and the remainder R̂ act on such functions like B0(λ)
and R(λ) applied in the x-coordinate.

Moreover, for w(x, t) = u(x)eiμt, u ∈ S(Rn), μ ∈ 2πZ,

‖w‖Hs(Rn×S1) �
∥∥(1 − Δ + μ2)s/2u(x)

∥∥
L2(Rn) �

∥∥(1 + |ξ|2 + μ2)s/2û(ξ)
∥∥
L2
,

with similar relations for Sobolev spaces over other sets. Norms as in the right-hand side
are called Hs,μ-norms; they were extensively used in [33], see the Appendix there for the
definition on subsets. For the parametrix B0(λ) this implies

∥∥B0(λ){f, g}
∥∥
Hs+2,μ(Ω) � cs

∥∥{f, g}∥∥
Hs,μ(Ω)×Hs+3

2 ,μ(Σ)
. (4.21)

The important observation is now that when s′ < s and w(x, t) = u(x)eiμt, then

‖w‖Hs′ (Rn×S1) �
∥∥(1 + |ξ|2 + μ2)s′/2û(ξ)

∥∥
L2

� 〈μ〉s′−s
∥∥(1 + |ξ|2 + μ2)s/2û(ξ)

∥∥
L2

� 〈μ〉s−s′‖w‖Hs(Rn×S1),

with constants independent of u and μ. Analogous estimates hold with Rn replaced by
Ω or Σ.

Applying this principle to the estimates of the remainder R̂, we find that

∥∥R(λ){f, g}
∥∥
Hs,μ(Ω)×Hs+3

2 ,μ(Σ)
� cs

∥∥{f, g}∥∥
Hs−θ,μ(Ω)×Hs+3

2−θ,μ(Σ)

� c′s〈μ〉−θ
∥∥{f, g}∥∥

Hs,μ(Ω)×Hs+3
2 ,μ(Σ)

(4.22)

for s as in (4.17), λ = eiημ2 with μ ∈ 2πN0. One way to extend the observation to
arbitrary λ on the ray, is to write λ = eiημ2 = eiη(μ0 +μ′)2 with μ0 ∈ 2πN0, μ′ ∈ [0, 2π),
and set λ0 = eiημ2

0. Using (4.21) and observing that (1+ |ξ|2 +μ2
0)t/2 � (1+ |ξ|2 +(μ0 +

μ′)2)t/2 uniformly in ξ, μ0, μ
′, by elementary inequalities, we find for

R(λ) = A(λ)B0(λ0) − I = A(λ0)B0(λ0) − I +
(
λ0 − λ

0

)
B0(λ0) (4.23)

that

∥∥R(λ){f, g}
∥∥
Hs,μ(Ω)×Hs+ 3

2 ,μ(Σ)
� c′′s

∥∥R(λ){f, g}
∥∥
Hs,μ0 (Ω)×Hs+3

2 ,μ0 (Σ)

� c′′′s
∥∥{f, g}∥∥

Hs−θ,μ0 (Ω)×Hs+3
2−θ,μ0 (Σ)

� c′′′′s

∥∥{f, g}∥∥
Hs−θ,μ(Ω)×Hs+3

2−θ,μ(Σ)
.

So (4.22) also holds for general λ, when we define B0(λ) = B0(λ0).
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For each s, consider λ = eiημ2 with μ � μ1, where μ1 is taken so large that c′s〈μ〉−θ � 1
2

for μ � μ1. Then I+R(λ) has the inverse I+R′(λ) = I+
∑

k�1(−R(λ))k (converging in
the operator norm for operators on Hs,μ(Ω)×Hs+ 3

2 ,μ(Σ)), and, by definition of B0(λ),

A(λ)B0(λ)
(
I + R′(λ)

)
= I.

This gives a right inverse

B(λ) = B0(λ) + B0(λ)R′(λ) =
(
R(λ) K(λ)

)
,

with the same Sobolev space continuity (4.21) as B0(λ), and B0(λ)R′(λ) of lower order:∥∥B0(λ)R′(λ){f, g}
∥∥
Hs+2,μ(Ω) � cs

∥∥{f, g}∥∥
Hs−θ,μ(Ω)×Hs−θ+3

2 ,μ(Σ)

� c′s〈μ〉−θ
∥∥{f, g}∥∥

Hs,μ(Ω)×Hs+3
2 ,μ(Σ)

. (4.24)

Since

A(λ)B(λ) =
(

(A− λ)R(λ) (A− λ)K(λ)
γ0R(λ) γ0K(λ)

)
=
(
I 0
0 I

)
, (4.25)

R(λ) solves

(A− λ)u = f, γ0u = 0, (4.26)

and K(λ) solves

(A− λ)u = 0, γ0u = ϕ. (4.27)

Since R(λ) maps L2(Ω) into H2(Ω) ∩ H1
0 (Ω) ⊂ D(Aγ), it must coincide with the

resolvent (Aγ − λ)−1 of Aγ defined in Section 4.1 by variational theory. The operator
K(λ) is the Poisson-type solution operator of the Dirichlet problem with zero interior
data; it is often denoted by Kλ

γ and we shall also use this notation here. The operators
have the mapping properties, for each λ = eiημ2, μ � μ1,

(Aγ − λ)−1:Hs(Ω) → Hs+2(Ω), Kλ
γ :Hs+ 3

2 (Σ) → Hs+2(Ω), (4.28)

for s satisfying (4.17).
Moreover, the mapping properties extend to all the λ for which the resolvents and

Poisson operators exist as solution operators to (4.26), (4.27), in particular to λ = 0.
For A−1

γ , this goes as follows: When u ∈ H1(Ω) and f ∈ Hs(Ω) with s < 1, f + λu

is likewise in Hs(Ω). Then Aγu = f + λu allows the conclusion u ∈ Hs+2(Ω). The
argument works for all |s| < τ . Moreover, since A−1

γ − (Aγ − λ)−1 = −λA−1
γ (Aγ − λ)−1

is of lower order than A−1
γ , A−1

γ coincides with R0(0) plus a lower order remainder.
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The Poisson operator solving (4.27) can be further described as follows: There is a right
inverse K:Hs+ 3

2 (Σ) → Hs+2(Ω) of γ0 for −3
2 < s � 0 (cf. Theorem 2.11). When we set

v = u−Kϕ, we find that v should solve

(A− λ)v = −(A− λ)Kϕ, γ0v = 0,

to which we apply the preceding results; then when λ ∈ �(Aγ),

Kλ
γ = K − (Aγ − λ)−1(A− λ)K; (4.29)

solves (4.27) uniquely. Thus Kλ
γ exists for all λ ∈ �(Aγ).

Since the formal adjoint A′ of A is similar to A (with regards to strong ellipticity and
smoothness properties of the coefficients in its divergence form), the same construction
works for the adjoint Dirichlet problem, so also here we get the mapping properties

(
A′

γ − λ̄
)−1:Hs(Ω) → Hs+2(Ω), K ′ λ̄

γ :Hs+ 3
2 (Σ) → Hs+2(Ω), (4.30)

for −τ < s � 0.
The above analysis shows moreover that

R(λ) = R0(λ) + S(λ), K(λ) = K0(λ) + S′(λ), (4.31)

where

∥∥R0(λ)
∥∥
L(Hs,μ(Ω),Hs+2,μ(Ω)),

∥∥K0(λ)
∥∥
L(Hs+ 3

2 ,μ(Σ),Hs+2,μ(Ω))
are O(1),∥∥S(λ)

∥∥
L(Hs−θ,μ(Ω),Hs+2,μ(Ω)),

∥∥S′(λ)
∥∥
L(Hs+3

2−θ,μ(Σ),Hs+2,μ(Ω))
are O(1), (4.32)∥∥S(λ)

∥∥
L(Hs,μ(Ω),Hs+2,μ(Ω)),

∥∥S′(λ)
∥∥
L(Hs+3

2 ,μ(Σ),Hs+2,μ(Ω))
are O

(
〈λ〉−θ/2),

for λ going to infinity on rays λ = eiημ2, η ∈ (π/2 − δ, 3π/2 + δ), when s, θ are as
in (4.17). Here R0(λ), K0(λ) are explicit parametrices as in (4.15)–(4.16) (modified to
depend on λ). For “stationary” norms, one has in particular

∥∥R(λ)f
∥∥
s+2 + 〈λ〉1+s/2∥∥R(λ)f

∥∥
s

� Cs min
{
‖f‖s, 〈λ〉s/2‖f‖0

}
, (4.33)∥∥K(λ)g

∥∥
s+2 + 〈λ〉1+s/2∥∥K(λ)g

∥∥
s

� C ′
s

(
‖g‖s+ 3

2
+ 〈λ〉3/4+s/2‖g‖0

)
. (4.34)

Note that ‖R(λ)‖L(L2(Ω)) is O(〈λ〉−1) on the ray.
Summing up, we have proved:

Theorem 4.1. Let Ω, τ , and A be as in Assumption 2.18 and let −τ < s � 0. Then for
λ ∈ �(Aγ), the operator



Author's personal copy

H. Abels et al. / Journal of Functional Analysis 266 (2014) 4037–4100 4073

(
A− λ

γ0

)
:Hs+2(Ω) →

Hs(Ω)
×

Hs+ 3
2 (Σ)

; (4.35)

has an inverse

(
R(λ) K(λ)

)
=
(
(Aγ − λ)−1 Kλ

γ

)
:

Hs(Ω)
×

Hs+ 3
2 (Σ)

→ Hs+2(Ω). (4.36)

On the rays λ = eiημ2 with η ∈ (π/2− δ, 3π/2 + δ) (outside the range of the principal
symbol), the inverse exists for |λ| sufficiently large. R(λ) and K(λ) have the structure
in (4.31) and satisfy estimates (4.32)–(4.34).

Similar statements hold for A′.

There is a class related condition s > −3
2 , cf. Theorem A.8 and the beginning of

Section 4, that prevents the above construction (even if τ were > 2) from defining the
Poisson operator to start in the space H− 1

2 (Σ), but that will be needed for an analysis as
in Section 3. Fortunately, it is possible to get supplementing information in other ways,
as we shall see below.

5. Dirichlet-to-Neumann operators

5.1. An extension of Green’s formula

For a general treatment of realizations of A, we need to extend the trace and Poisson
operators to low-order Sobolev spaces. We begin by establishing an extension of Green’s
formula.

For λ ∈ �(Aγ), s ∈ [0, 2], let

Zs
λ(A) =

{
u ∈ Hs(Ω)

∣∣ (A− λ)u = 0
}
; (5.1)

it is a closed subspace of Hs(Ω). It follows from Theorem 2.11 that the trace operator
γ0 is continuous:

γ0:Zs
λ(A) → Hs− 1

2 (Σ), (5.2)

for s ∈ (1
2 , 2]. Moreover, in view of the solvability properties shown in Section 4, it defines

a homeomorphism

γ0:Zs
λ(A) ∼−→ Hs− 1

2 (Σ), (5.3)

for s ∈ (2 − τ, 2], with inverse Kλ
γ = K(λ).
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As shown in Section 2.4, the trace operators γ1, χ and χ′ define continuous maps

γ1, χ, χ
′:Zs

λ(A) → Hs− 3
2 (Σ) (5.4)

for all s ∈ (3
2 , 2].

We need an extension of these mapping properties to all s ∈ [0, 2], along with an
extension of Green’s formula to u ∈ D(Amax), v ∈ H2(Ω). This is shown by the method of
Lions and Magenes [45]. Here we use the restriction operator rΩ (restricting distributions
from Rn to Ω) and the extension-by-zero operator eΩ (extending functions on Ω by zero
on Rn \Ω).

An important ingredient is the following denseness result:

Proposition 5.1. The space C∞
(0)(Ω) = rΩC

∞
0 (Rn) is dense in D(Amax) (provided with

the graph-norm).

Proof. This follows if we show that when � is a continuous antilinear (conjugate lin-
ear) functional on D(Amax) which vanishes on C∞

(0)(Ω), then � = 0. So let � be such a
functional; it can be written as

�(u) = (f, u)L2(Ω) + (g,Au)L2(Ω) (5.5)

for some f, g ∈ L2(Ω). We know that �(ϕ) = 0 for ϕ ∈ C∞
(0)(Ω). Any such ϕ is the

restriction to Ω of a function Φ ∈ C∞
0 (Rn), and in terms of such functions we have

�(rΩΦ) = (eΩf, Φ)L2(Rn) + (eΩg,AeΦ)L2(Rn) = 0, all Φ ∈ C∞
0
(
Rn

)
. (5.6)

The equations to the right in (5.6) imply, in terms of the formal adjoint A′
e on Rn,

〈
eΩf + A′

eeΩg, Φ
〉

= 0, all Φ ∈ C∞
0
(
Rn

)
,

i.e.,

eΩf + A′
eeΩg = 0, or A′

eeΩg = −eΩf, (5.7)

as distributions on Rn. Here we know that eΩg and eΩf are in L2(Rn), and the solvability
properties of A′

e then imply that eΩg ∈ H2(Rn). Since it has support in Ω, it identifies
with a function in H2

0 (Ω), i.e., g ∈ H2
0 (Ω). Then by (4.2), g is in D(A′

min). And (5.7)
implies that A′g = −f . But then, for any u ∈ D(Amax),

�(u) = (f, u)L2(Ω) + (g,Au)L2(Ω) = −
(
A′g, u

)
L2(Ω) + (g,Au)L2(Ω) = 0,

since Amax and A′
min are adjoints. �
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We shall show:

Theorem 5.2. The collected trace operator {γ0, χ}, defined on C∞
(0)(Ω), extends by con-

tinuity to a continuous mapping from D(Amax) to H− 1
2 (Σ) × H− 3

2 (Σ). Here Green’s
formula (2.43) extends to the formula

(Au, v)L2(Ω) −
(
u,A′v

)
L2(Ω) = (χu, γ0v)− 3

2 ,
3
2
−
(
γ0u, χ

′v
)
− 1

2 ,
1
2
, (5.8)

for u ∈ D(Amax), v ∈ H2(Ω).

Proof. Let u ∈ D(Amax). We want to define {γ0u, χu} as a continuous antilinear
functional on H

1
2 (Σ) × H

3
2 (Σ), depending continuously (and of course linearly) on

u ∈ D(Amax). For this we use that

(
γ0
χ′

)
:H2(Ω) →

H
3
2 (Σ)
×

H
1
2 (Σ)

has a continuous right inverse K′ =
(
K′

0 K′
1
)
,

a lifting operator, cf. Corollary 2.20. For a given ϕ = {ϕ0, ϕ1} ∈ H
1
2 (Σ) ×H

3
2 (Σ), we

set

wϕ = K′
0ϕ1 −K′

1ϕ0; then γ0wϕ = ϕ1, χ′wϕ = −ϕ0.

Now we define

�u(ϕ) = (Au,wϕ) −
(
u,A′wϕ

)
, noting that∣∣�u(ϕ)

∣∣ � C‖u‖D(Amax)‖wϕ‖H2(Ω) � C ′‖u‖D(Amax)‖ϕ‖H 1
2 (Σ)×H

3
2 (Σ)

. (5.9)

So, �u is a continuous antilinear functional on ϕ ∈ H
1
2 (Σ) × H

3
2 (Σ), hence defines an

element ψ = {ψ0, ψ1} ∈ H− 1
2 (Σ) ×H− 3

2 (Σ) such that

�u(ϕ) = (ψ0, ϕ0)− 1
2 ,

1
2

+ (ψ1, ϕ1)− 3
2 ,

3
2
. (5.10)

Moreover, it depends continuously on u ∈ D(Amax), in view of the estimates in (5.9).
If u is in C∞

(0)(Ω), the defining formula in (5.9) can be rewritten using Green’s formula
(2.43), which leads to

�u(ϕ) = (Au,wϕ) −
(
u,A′wϕ

)
= (χu, γ0wϕ) −

(
γ0u, χ

′wϕ

)
= (χu, ϕ1) + (γ0u, ϕ0)

for such u. Since ϕ0 and ϕ1 run through full Sobolev spaces, it follows by comparison with
(5.10) that ψ0 = γ0u, ψ1 = χu, when u ∈ C∞

(0)(Ω), so the functional �u is consistent with
{γ0u, χu} then. Since C∞

(0)(Ω) is dense in D(Amax), we have found the unique continuous
extension.
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Identity (5.8) is now obtained in general by extending (2.43) by continuity from u ∈
C∞

(0)(Ω), v ∈ H2(Ω). �
In particular, the validity of the mapping properties of γ0 and χ in (5.2) and (5.4)

extend to s = 0.

5.2. Poisson operators

The next step is to extend the action of the Poisson operators to low-order spaces.

Lemma 5.3. The composed operator χ′(A′
γ − λ̄)−1:L2(Ω) → H

1
2 (Σ) has as adjoint an

operator (χ′(A′
γ − λ̄)−1)∗:H− 1

2 (Σ) → L2(Ω) extending Kλ
γ (originally known to map

Hs− 1
2 (Σ) to Zs

λ(A) for s ∈ (2 − τ, 2]). Moreover, (χ′(A′
γ − λ̄)−1)∗ ranges in Z0

λ(A).

Proof. Let ϕ ∈ Hs− 1
2 (Σ) for some s ∈ (2 − τ, 2], let u = Kλ

γϕ. For any f ∈ L2(Ω), let
v = (A′

γ − λ̄)−1f . Note that (A− λ)u = 0 and γ0v = 0. Then by (5.8),

−
(
Kλ

γϕ, f
)

=
(
(A− λ)u, v

)
−
(
u,
(
A′ − λ̄

)
v
)

= −
(
γ0u, χ

′v
)
− 1

2 ,
1
2

= −
(
ϕ, χ′(A′

γ − λ̄
)−1

f
)
− 1

2 ,
1
2
.

This shows that the adjoint of χ′(A′
γ − λ̄)−1 acts like Kλ

γ on functions ϕ ∈ Hs− 1
2 (Σ),

s ∈ (2 − τ, 2].
To see that (χ′(A′

γ − λ̄)−1)∗ maps into the nullspace of A − λ, let ϕ ∈ H− 1
2 (Σ) and

let v ∈ C∞
0 (Ω). Then, using the definition of A in the weak sense,〈
(A− λ)

(
χ′(A′

γ − λ̄
)−1)∗

ϕ, v̄
〉
Ω

=
〈(
χ′(A′

γ − λ̄
)−1)∗

ϕ,
(
A′ − λ̄

)
v
〉
Ω

=
((
χ′(A′

γ − λ̄
)−1)∗

ϕ,
(
A′ − λ̄

)
v
)
L2(Ω)

=
(
ϕ, χ′(A′

γ − λ̄
)−1(

A′ − λ̄
)
v
)
− 1

2 ,
1
2

= 0,

since v ∈ C∞
0 (Ω) implies (A′

γ − λ̄)−1(A′ − λ̄)v = v (since γ0v = 0), and χ′v = 0. Thus
(A− λ)(χ′(A′

γ − λ̄)−1)∗ϕ = 0 in the weak sense, so since (χ′(A′
γ − λ̄)−1)∗ϕ ∈ L2(Ω), it

lies in Z0
λ(A). �

Since (χ′(A′
γ − λ̄)−1)∗ extends Kλ

γ and maps into Z0
λ(A), we define this to be the

operator Kλ
γ for s = 0:

Kλ
γ =

(
χ′(A′

γ − λ̄
)−1)∗:H− 1

2 (Σ) → L2(Ω). (5.11)

Theorem 5.4. Let Ω and A satisfy Assumption 2.18. The operator Kλ
γ defined in (5.11)

maps Hs− 1
2 (Σ) to Hs(Ω) continuously for 0 � s � 2. Moreover, γ0 defined in Theo-

rem 5.2 is a homeomorphism (5.3) for all s ∈ [0, 2], with Kλ
γ acting as its inverse.

There is a similar result for K ′ λ̄
γ .
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Proof. Since the composed operator is continuous:

χ′(A′
γ − λ

)−1:Hs(Ω) → Hs+ 1
2 (Σ)

for −τ < s � 0, it follows by duality that

Kλ
γ :Hs′− 1

2 (Σ) → Hs′(Ω), (5.12)

when 0 � s′ < τ (recall that τ < 1
2 , cf. (2.42)). Taking this together with the larger

values that were covered by (4.28), we find that (5.12) holds for

0 � s′ � 2; (5.13)

the intermediate values are included by interpolation. We can replace this s′ by s.
The identities

γ0K
λ
γϕ = ϕ for ϕ ∈ Hs− 1

2 (Σ), Kλ
γ γ0z = z for z ∈ Zs

λ(A),

were shown in Section 4 to hold for s ∈ (2 − τ, 2]. The first identity now extends by
continuity to H− 1

2 (Σ), since H
3
2 (Σ) is dense in this space. The second identity will

extend by continuity to Z0
λ(A), if we can prove that Z2

λ(A) is dense in Z0
λ(A). Indeed,

this follows from Proposition 5.1:
Let z ∈ Z0

λ(A). By Proposition 5.1 applied to A−λ, there is a sequence uk ∈ C∞
(0)(Ω)

such that uk → z and (A − λ)uk → 0 in L2(Ω). Then vk = (Aγ − λ)−1(A − λ)uk → 0
in H2(Ω). Let zk = uk − vk; then zk ∈ H2(Ω), (A − λ)zk = 0, and zk → z in L2(Ω).
Hence, zk is a sequence of elements of Z2

λ(A) that converges to z in Z0
λ(A), showing the

desired denseness.
Thus the identities are valid for s = 0, and hence for all s ∈ [0, 2]. In particular, Kλ

γ

maps Hs− 1
2 (Σ) bijectively onto Zs

λ(A), and γ0 maps Zs
λ(A) bijectively onto Hs− 1

2 (Σ),
for s ∈ [0, 2], as inverses of one another.

The proof in the primed situation is analogous. �
The adjoints also extend, e.g.

(
K ′ λ̄

γ

)∗:Hs
0(Ω) → Hs+ 1

2 (Σ), for − 2 � s � 0; (5.14)

recall that Hs
0(Ω) = Hs(Ω) when |s| < 1

2 .
From (4.32) we conclude moreover that when 0 � s < τ ,

∥∥χ′(A′
γ − λ̄

)−1∥∥
L(H−s,μ(Ω),H−s+1

2 ,μ(Σ))
and∥∥Kλ

γ

∥∥
L(Hs− 1

2 ,μ(Σ),Hs,μ(Ω))
are O(1), (5.15)
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for λ going to infinity on rays λ = eiημ2, η ∈ (π/2 − δ, 3π/2 + δ). In particular,∥∥Kλ
γϕ

∥∥
0 � C min

{
‖ϕ‖− 1

2
, 〈λ〉−1/4‖ϕ‖0

}
. (5.16)

We shall now analyze the structure somewhat further. It should be noted that a Pois-
son operator maps a Sobolev space over Σ to a Sobolev space over Ω; the co-restriction
of Kλ

γ mapping into Z0
λ(A) will be denoted γ−1

Zλ
further below, cf. (6.8).

Theorem 5.5. Let 0 < δ < 1, and let Ω and A satisfy Assumption 2.18.
1◦ Kλ

γ is the sum of a Poisson operator of the form

K0,λ
γ v =

J∑
j=1

ψjF
−1,∗
j Λ−2

−,+(λ)kj,λ
(
x′, Dx

)
F ∗
j,0ϕjv, (5.17)

where kj,λ has symbol-kernel k̃j,λ ∈ CτS1
1,0(Rn−1×Rn−1,S(R+)), and a remainder S(λ)

that for s ∈ (2 − τ, 2] maps Hs− 1
2−θ(Rn−1) → Hs(Rn

+), when 0 < θ < s− 2 + τ .
2◦ Kλ

γ is a generalized Poisson operator in the sense that it is the sum of a Poisson
operator of the form

K�λ
γ v =

J∑
j=1

ψjF
−1,∗
j Λ−2

−,+(λ)k�j,λ
(
x′, Dx

)
F ∗
j,0ϕjv, (5.18)

with k̃�j,λ ∈ S1
1,δ(Rn−1 × Rn−1,S(R+)), and a remainder R(λ) that for s ∈ (0, 2] maps

Hs− 1
2−ε(Rn−1) → Hs(Rn

+), for some ε = ε(s) > 0.
Here ψj , ϕj , Fj, and Fj,0 are as in Remark 2.9.
There are similar statements for the primed version K ′ λ̄

γ .

Proof. We give the proof of the statements for Kλ
γ ; the proofs for K ′ λ̄

γ are analogous.
The first statement follows from the construction in Section 4.3, applied to A − λ

and with λ-dependent order-reducing operators (where ξ is replaced by (ξ, μ), μ =
|λ| 12 ∈ R+). The composition kj,λ of the λ-dependent variant of k0

j and Λ
3
2
0 (λ) is of

order 2 and has symbol-kernel k̃j,λ in CτS1
1,0(Rn−1 × Rn−1,S(R+)) for each λ. The

mapping properties of S(λ) follow from (4.32).
For the second statement, observe that we have from 1◦ that

Kλ
γ = K0,λ

γ + S(λ), where S(λ) ∈ L
(
H

3
2−θ(Σ), H2(Ω)

)
, (5.19)

for every 0 < θ < τ . Now, applying Lemma A.7 for δ ∈ (0, 1), we obtain that K0,λ
γ =

K�λ
γ + S′(λ), where K�λ

γ is as described in (5.18) and

S′(λ):H 3
2−τδ(Σ) → H2(Ω).
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Since also Kλ
γ , K�λ

γ ∈ L(Hs− 1
2 (Σ), Hs(Ω)) for all s ∈ [0, 2], interpolation yields that for

every s ∈ (0, 2] there is some ε = ε(s) > 0 such that

Kλ
γ −K�λ

γ ∈ L
(
Hs− 1

2−ε(Σ), Hs(Ω)
)
.

This proves the theorem. �
Remark 5.6. As a technical observation we note that the above approximate Poisson
solution operators K0,λ

γ and K�λ
γ are constructed in such a way that their symbol-kernels

are smooth in (ξ′, μ) ∈ Rn
+ (outside a neighborhood of zero); this is the case of symbols

“of regularity +∞” in the sense of [33].

5.3. Dirichlet-to-Neumann operators

Finally, we shall study the composed operators Pλ
γ,χ = χKλ

γ and P ′ λ̄
γ,χ′ = χ′K ′ λ̄

γ ; often
called Dirichlet-to-Neumann operators.

It follows immediately from Theorem 5.4 that they are continuous for s ∈ [0, 2],

Pλ
γ,χ, P

′ λ̄
γ,χ′ :Hs− 1

2 (Σ) → Hs− 3
2 (Σ). (5.20)

Applying Green’s formula (5.8) to functions u, v with Au = 0, A′v = 0, we see that

(
Pλ
γ,χϕ,ψ

)
− 3

2 ,
3
2

=
(
ϕ, P ′ λ̄

γ,χ′ψ
)
− 1

2 ,
1
2

for all ϕ ∈ H− 1
2 (Σ), ψ ∈ H

3
2 (Σ), so Pλ

γ,χ and P ′ λ̄
γ,χ′ are consistent with each other’s

adjoints.

Theorem 5.7. Assumptions as in Theorem 5.5. Pλ
γ,χ maps Hs− 1

2 (Σ) continuously to
Hs− 3

2 (Σ) for s ∈ [0, 2], and satisfies:
1◦ Pλ

γ,χ is the sum of a first-order ψdo of the form

Sλv =
J∑

j=1
ηjF̃

−1,∗
j,0 Λ

− 1
2

0 sj,λ
(
x′, Dx′

)
F ∗
j,0ϕjv,

where sj,λ ∈ CτS
3
2
1,0(Rn−1 × Rn−1), and a remainder, such that for every s ∈ (2 − τ, 2],

the remainder maps Hs− 1
2−ε(Σ) continuously to Hs− 3

2 (Σ) for some ε = ε(s) > 0.
2◦ There is a pseudodifferential operator P �λ

γ,χ on Σ with symbol in S1
1,δ(Rn−1×Rn−1)

(cf. (5.21)), such that for every s ∈ (0, 2], Pλ
γ,χ is a generalized ψdo of order 1 in the

sense that it is the sum of P �λ
γ,χ and a remainder mapping Hs− 1

2−ε(Σ) continuously to
Hs− 3

2 (Σ) for some ε = ε(s) > 0. Here ε > 0 can be chosen uniformly with respect to
s ∈ [s′, 2] for every s′ ∈ (0, 2].
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3◦ There is a pseudodifferential operator P �λ1
γ,χ on Σ with symbol in S1

1,δ(Rn−1×Rn−1)
(cf. (5.23)), such that for s = 0, Pλ

γ,χ is the sum of P �λ1
γ,χ and a remainder mapping

H− 1
2 (Σ) continuously to H− 3

2+ε(Σ) for some ε > 0.
There are similar statements for P ′ λ̄

γ,χ′ ; it acts like an adjoint of Pλ
γ,χ.

Proof. The first and last statements were shown above. We shall prove statements 1◦–3◦
for Pλ

γ,χ; the treatment of P ′ λ̄
γ,χ′ is analogous.

For 1◦, we note that since Kλ
γ coincides in highest order with the approximation

(5.17), Pλ
γ,χ coincides in the highest order with

χK0,λ
γ v =

J∑
j=1

χψj(x)F−1,∗
j Λ−2

−,+kj,λ
(
x′, Dx

)
F ∗
j,0ϕjv;

here v ∈ Hs− 1
2 (Σ), s ∈ (2 − τ, 2], and k̃j,λ ∈ CτS1

1,0(Rn−1 × Rn−1,S(R+)).
Moreover, because of Corollary 2.20, for every ηj ∈ C∞

(0)(Ω) with ηj ≡ 1 on suppψj

and supp ηj ⊂ Uj we have the representation

χ
(
ψjF

−1,∗
j vj

)
= ηjs0γ1

(
ψjF

−1,∗
j vj

)
+ ηj

∑
|α|�1

cα,jD
α
x′ψjγ0F

−1,∗
j vj

= ηjF̃
−1,∗
j,0 tj

(
x′, Dx

)
vj ,

where the operators tj(x′, Dx) are differential trace operators of order 1 and class 2 on
Rn

+ (in x-form) with coefficients in H
1
2
p (Rn−1). — Note that the factor κ in the definition

of F̃−1,∗
j,0 , cf. (2.27), can be absorbed into the coefficients of tj(x′, Dx). — Now if we set

t′j,λ(x′, ξ′, Dn) = 〈(ξ′, μ)〉 1
2 tj(x′, ξ′, Dn) (where as usual μ = |λ| 12 and 〈(ξ′, μ)〉r is the

symbol of Λr
0(λ)), we have from Theorem 2.17 that

Λ
1
2
0 tj

(
x′, Dx

)
− t′j,λ

(
x′, Dx

)
:Hs−ε

(
Rn

+
)
→ Hs−2(Rn−1),

for all s, ε such that 3
2 + ε < s � 2 and 0 < ε < τ = 1

2 − n−1
p . In particular, we can

choose s = 2. Moreover, since tj(x′, Dx) is a differential trace operator, we have that

t′j,λ
(
x′, Dx

)
Λ−2
−,+ = bj,1,λ

(
x′, Dx′

)
γ1Λ

−2
−,+ + bj,0,λ

(
x′, Dx′

)
γ0Λ

−2
−,+

for some bj,k,λ ∈ H
1
2
p S

3
2−k
1,0 (Rn−1×Rn−1), k = 0, 1, which implies that t′j,λ(x′, Dx)Λ−2

−,+ =
t′′j,λ(x′, Dx) with t̃′′j,λ ∈ CτS

− 1
2

1,0 (Rn−1 × Rn−1,S(Rn−1)), since H
1
2
p (Rn−1) ↪→ Cτ (Rn−1).

(More precisely, bj,1,λ(x′, ξ′) = s0(x′)〈(ξ′, μ)〉 1
2 and bj,0,λ(x′, ξ′) =∑

|α|�1 cα,j(x′)(ξ′)α〈(ξ′, μ)〉 1
2 .) Set

sj,λ
(
x′, ξ′

)
= t′′j,λ

(
x′, ξ′, Dn

)
kj,λ

(
x′, ξ′, Dn

)
;
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it is in CτS
3
2
1,0(Rn−1 ×Rn−1). Then we can apply the composition rules for Green oper-

ators with Cτ -coefficients, cf. [2, Theorem 4.13.3], to conclude that

t′j,λ
(
x′, Dx

)
Λ−2
−,+kj,λ

(
x′, Dx

)
− sj,λ

(
x′, Dx′

)
:H 3

2−ε
(
Rn−1) → L2(Rn−1),

for some ε > 0.
Summing up, we have that

Pλ
γ,χv = χKλ

γ v =
J∑

j=1
ηjF̃

−1,∗
j,0 tj

(
x′, Dx

)
Λ−2
−,+k

λ
j

(
x′, Dx

)
F ∗
j,0ϕjv + R(λ)v

=
J∑

j=1
ηjF̃

−1,∗
j,0 Λ

− 1
2

0 sj,λ
(
x′, Dx′

)
F ∗
j,0ϕjv + R′(λ)v,

where R(λ) and R′(λ) are continuous from H
3
2−ε(Σ) to H

1
2 (Σ) for some ε > 0.

Hence, if we define

Sλv =
J∑

j=1
ηjF̃

−1,∗
j,0 Λ

− 1
2

0 sj,λ
(
x′, Dx′

)
F ∗
j,0ϕjv,

then Pλ
γ,χ − Sλ:H 3

2−ε(Σ) → H
1
2 (Σ) is a bounded operator for some ε > 0. Moreover,

because of Proposition 2.14, Sλ ∈ L(Hs− 1
2 (Σ), Hs− 3

2 (Σ)) for every s ∈ (2−τ, 2]. Finally,
interpolation yields that for every s ∈ (2 − τ, 2] there is some ε > 0 such that

Pλ
γ,χ − Sλ:Hs− 1

2−ε(Σ) → Hs− 3
2 (Σ)

is bounded. This proves the first statement.
To prove the second statement we apply symbol smoothing, cf. (A.1), to sj,λ. Then

we obtain for any 0 < δ < 1 that

sj,λ
(
x′, Dx′

)
= s�j,λ

(
x′, Dx′

)
+ sbj,λ

(
x′, Dx′

)
where s�j,λ ∈ S

3
2
1,δ(Rn−1 × Rn−1) and sbj,λ ∈ CτS

3
2−τδ

1,δ (Rn−1 × Rn−1). Hence,

Λ
− 1

2
0 sj,λ

(
x′, Dx′

)
− Λ

− 1
2

0 s�j,λ
(
x′, Dx′

)
:H 3

2−τδ
(
Rn−1) → H

1
2
(
Rn−1),

since

sbj,λ
(
x′, Dx′

)
:H 3

2−τδ
(
Rn−1) → L2(Rn−1),

by Proposition 2.14. Moreover, by the composition rules of the (smooth) Sm
1,δ-calculus,

cf. e.g. [43, Theorem 1.7, Chapter II],
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Λ
− 1

2
0 s�j,λ

(
x′, Dx′

)
= p�j,λ

(
x′, Dx′

)
for some p�j,λ ∈ S1

1,δ(Rn−1 × Rn−1). Altogether, if we define

P �λ
γ,χv =

J∑
j=1

ηjF̃
−1,∗
j,0 p�j,λ

(
x′, Dx′

)
F ∗
j,0ϕjv, (5.21)

then

Pλ
γ,χ − P �λ

γ,χ:H 3
2−ε0(Σ) → H

1
2 (Σ) (5.22)

is a bounded operator for some ε0 > 0. Since the p�j,λ are smooth symbols, we have that

Pλ
γ,χ, P

�λ
γ,χ ∈ L

(
Hs− 1

2 (Σ), Hs− 3
2 (Σ)

)
for every s ∈ [0, 2], by Proposition 2.14. Hence, interpolation implies that for every
s ∈ (0, 2] there is some ε = ε(s) > 0 such that

Pλ
γ,χ − P �λ

γ,χ:Hs− 1
2−ε(Σ) → Hs− 3

2 (Σ)

is a bounded operator. Here ε = ε0
s
2 , which shows that ε can be chosen uniformly with

respect to s ∈ [s′, 2] for every s′ ∈ (0, 2].
Finally, the case s = 0 will be treated differently. To this end let P ′ �λ̄

γ,χ′ denote the
approximation to P ′ λ̄

γ,χ′ defined analogously to (5.21). Then

Pλ
γ,χ −

(
P ′ �λ̄
γ,χ′

)∗ =
(
P ′ λ̄
γ,χ′

)∗ − (
P ′ �λ̄
γ,χ′

)∗:H− 1
2 (Σ) → H− 3

2+ε(Σ),

by (5.22) for the primed operators. Moreover, by the standard calculus for pseudo-
differential operators with Sm

1,δ-symbols,

(
P ′ �λ̄
γ,χ′

)∗
v =

J∑
j=1

ϕjF̃
−1,∗
j,0 p′ �∗j,λ

(
x′, Dx′

)
F ∗
j,0ηjv + R(λ)v

=
J∑

j=1
ηjF̃

−1,∗
j,0 p′ �∗j,λ

(
x′, Dx′

)
F ∗
j,0ϕjv + R′(λ)v

= P �λ1
γ,χ v + R′(λ)v (5.23)

for all v ∈ H− 1
2 (Σ), where p′ �∗j,λ ∈ S1

1,δ(Rn−1 × Rn−1), and R(λ) and R′(λ) are bounded
from H− 1

2 (Σ) to H− 1
2 (Σ). �
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Operators Pλ
γ,β can be defined for any trace operator β, as Pλ

γ,β = βKλ
γ . For β = γ1,

one has that Pλ
γ,γ1 = γ1K

λ
γ is elliptic (the principal symbol is invertible), cf. [7,30] (it is

also documented in Chapter 11 of [35], Exercise 11.7ff). Note that

Pλ
γ,χ = s0P

λ
γ,γ1 + A1,

where A1 is the first-order differential operator on Σ explained in Theorem 2.19. The
ellipticity of Pλ

γ,χ depends on A1, which is defined from the coefficients in the divergence
form (2.38). It should be recalled that the choice of coefficients in (2.38) is not unique
for a given operator A, see the discussion in [30]; it is shown there in the smooth case
that the choice of coefficients in (2.38) can be adapted to give any desired first-order
differential operator on Σ in the place of A1. Ellipticity of Pλ

γ,χ holds if and only if the
system {A,χ} is elliptic.

In the papers [20,34], χ is replaced by ν1 = s0γ1 in order to have an elliptic Dirichlet-
to-Neumann operator (then Green’s formula looks slightly different). However, the mod-
ified trace operator Γλ introduced further below is actually independent of the choice of
A1 (cf. Remark 6.2).

6. Boundary value problems

We shall now apply the abstract results from Section 3 to boundary value problems.
The realizations Amax, Amin and Aγ of A in H = L2(Ω) introduced in the beginning of
Section 4 have the properties described in Section 3, with the realizations A′

min, A′
max

and A′
γ of A′ representing the adjoints. Then the general constructions of Section 3 can

be applied. The operators Ã ∈ M are the general realizations of A. Note that

Z0
0 (A) = Z, Z0

0
(
A′) = Z ′, Z0

λ(A) = Zλ, Z0
λ̄

(
A′) = Z ′

λ̄
. (6.1)

For an interpretation of the correspondence between Ã and T :V → W , we need a
modified version of Green’s formula (as introduced originally in [29]). Here we use the
trace operators (in the sense of the ψdbo calculus) defined by:

Γλ = χ− Pλ
γ,χγ0, Γ ′ λ̄ = χ′ − P ′ λ̄

γ,χ′γ0 (6.2)

for λ ∈ �(Aγ); we call them the reduced Neumann trace operators.

Theorem 6.1. The trace operators Γλ and Γ ′ λ̄ map D(Amax) respectively D(A′
max) con-

tinuously onto H
1
2 (Σ), and satisfy

Γ 0 = χA−1
γ Amax, Γ ′ 0 = χ′(A∗

γ

)−1
A′

max, (6.3)

Γλ = χ(Aγ − λ)−1(Amax − λ), Γ ′ λ̄ = χ′(A∗
γ − λ̄

)−1(
A′

max − λ̄
)
. (6.4)

In particular, Γ 0 vanishes on Z, etc.
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With these trace operators there is a modified Green’s formula valid for all u ∈
D(Amax), v ∈ D(A′

max):

(Au, v)Ω −
(
u,A′v

)
Ω

=
(
Γ 0u, γ0v

)
1
2 ,− 1

2
−
(
γ0u, Γ

′ 0v
)
− 1

2 ,
1
2
; (6.5)

in particular,

(Au,w)Ω =
(
Γ 0u, γ0w

)
1
2 ,− 1

2
, when w ∈ Z ′. (6.6)

Similarly, for all u ∈ D(Amax), v ∈ D(A′
max),(

(A− λ)u, v
)
Ω
−
(
u,
(
A′ − λ̄

)
v
)
Ω

=
(
Γλu, γ0v

)
1
2 ,− 1

2
−
(
γ0u, Γ

′ λ̄v
)
− 1

2 ,
1
2
, (6.7)

which is also equal to (Au, v)Ω − (u,A′v)Ω.

Proof. With the preparations we have made, this goes exactly as in the smooth case [29];
we give some details for the convenience of the reader. Take λ = 0. Writing u = uγ +uζ ,
where uγ = A−1

γ Amaxu and uζ ∈ Z, we have that γ0u = γ0uζ , and uζ = K0
γγ0u. Then

Γ 0u = χu− P 0
γ,χγ0u = χu− P 0

γ,χγ0uζ = χu− χuζ = χuγ = χA−1
γ Amaxu.

This shows (6.3), and since A−1
γ Amax is surjective from D(Amax) to D(Aγ), and χ is

surjective from D(Aγ) = H2(Ω) ∩ H1
0 (Ω) to H

1
2 (Σ), we get the surjectiveness from

D(Amax) to H
1
2 (Σ). (The continuity is with respect to the graph-norm on D(Amax).)

Let u ∈ D(Amax), v ∈ D(A′
max). Then, using the fact that (Auγ , vγ′)−(uγ , A

′vγ′) = 0,
and using the extended Green’s formula (5.8), we find

(Au, v) −
(
u,A′v

)
= (Auγ , vγ′ + vζ′) −

(
uγ + uζ , A

′vγ′
)

= (Auγ , vζ′) −
(
uζ , A

′vγ′
)

= (Auγ , vζ′) −
(
uγ , A

′vζ′
)

+ (Auζ , vγ′) −
(
uζ , A

′vγ′
)

= (χuγ , γ0vζ′) 1
2 ,− 1

2
−
(
γ0uγ , χ

′vζ′
)

3
2 ,− 3

2
+ (χuζ , γ0vγ′)− 3

2 ,
3
2
−
(
γ0uζ , χ

′vγ′
)
− 1

2 ,
1
2

= (χuγ , γ0v) 1
2 ,− 1

2
−
(
γ0u, χ

′vγ′
)
− 1

2 ,
1
2

=
(
Γ 0u, γ0v

)
1
2 ,− 1

2
−
(
γ0u, Γ

′ 0v
)
− 1

2 ,
1
2
.

This shows (6.5); (6.6) is a special case. The proof for general λ is similar. �
Remark 6.2. Note that when χ = s0γ1 + A1γ0, then

Γλ = χ− Pλ
γ,χγ0 = s0γ1 + A1γ0 −

(
Pλ
γ,s0γ1 −A1

)
γ0 = s0γ1 − Pλ

γ,s0γ1 ;

so in fact Γλ is independent of the choice of coefficient of γ0 in χ (cf. (2.44)).
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By composition with suitable isometries (order-reducing operators), (6.5) can be
turned into a formula with L2-scalar products over the boundary, but since this leads to
more overloaded formulas, we shall not pursue that line of thought here.

We denote by γZλ
the restriction of γ0 to a mapping from Zλ (closed subspace of

L2(Ω)) to H− 1
2 (Σ); its adjoint γ∗

Zλ
goes from H

1
2 (Σ) to Zλ:

γZλ
:Zλ

∼−→ H− 1
2 (Σ), with adjoint γ∗

Zλ
:H 1

2 (Σ) ∼−→ Zλ. (6.8)

The inverse γ−1
Zλ

gives by composition with iZλ
the Poisson operator Kλ

γ :

Kλ
γ = iZλ

γ−1
Zλ

:H− 1
2 (Σ) → L2(Ω).

There is a similar notation for the primed operators. When λ = 0, this index can be left
out.

For the study of general realizations Ã of A, the homeomorphisms (6.8) make it
possible to translate the characterization in terms of operators T :V → W in Section 3
into a characterization in terms of operators L over the boundary.

First let λ = 0. For V ⊂ Z, W ⊂ Z ′, let X = γ0V , Y = γ0W , with the notation for
the restrictions of γ0 to homeomorphisms:

γV :V ∼−→ X, γW :W ∼−→ Y. (6.9)

The map γV :V ∼−→ X has the adjoint γ∗
V :X∗ ∼−→ V . Here X∗ denotes the antidual

space of X, with a duality coinciding with the scalar product in L2(Σ) when applied
to elements that come from L2(Σ). The duality is written (ψ,ϕ)X∗,X . We also write
(ψ,ϕ)X∗,X = (ϕ,ψ)X,X∗ . Similar conventions are applied to Y .

When A is replaced by A−λ for λ ∈ �(Aγ), we use a similar notation where Z, Z ′, V
and W are replaced by Zλ, Z ′

λ̄
, Vλ, Wλ̄. Since γ0E

λz = γ0z (cf. Section 3), the mapping
defined by γ0 on Vλ has the same range space X as when λ = 0. Similarly, the mapping
defined by γ0 on Wλ̄ has the range space Y for all λ. So γ0 defines homeomorphisms

γVλ
:Vλ

∼−→ X, γWλ̄
:Wλ̄

∼−→ Y, (6.10)

For λ ∈ �(Aγ), we denote

Kλ
γ,X = iVλ

γ−1
Vλ

:X → Vλ ↪→ H, K ′ λ̄
γ,Y = iWλ̄

γ−1
Wλ̄

:Y → Wλ̄ ↪→ H. (6.11)

Now a given T :V → W is carried over to a closed, densely defined operator L:X → Y ∗

by the definition

L =
(
γ−1
W

)∗
Tγ−1

V , D(L) = γV D(T ); (6.12)

it is expressed in the diagram
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V
∼

−−−−→
γV

X

T

⏐⏐� ⏐⏐�L

W
∼

−−−−→(
γ−1
W

)∗ Y ∗

(6.13)

When Ã corresponds to T :V → W and L:X → Y ∗, we can write

(Tuζ , w) =
(
Tγ−1

V γ0u, γ
−1
W γ0w

)
= (Lγ0u, γ0w)Y ∗,Y , all u ∈ D(Ã), w ∈ W. (6.14)

The formula (Au)W = Tuζ in (3.2) is then in view of (6.6) turned into(
Γ 0u, γ0w

)
1
2 ,− 1

2
= (Lγ0u, γ0w)Y ∗,Y , all w ∈ W,

or, since γ0 maps W bijectively onto Y ,(
Γ 0u, ϕ

)
1
2 ,− 1

2
= (Lγ0u, ϕ)Y ∗,Y for all ϕ ∈ Y. (6.15)

To simplify the notation, note that the injection iY :Y → H− 1
2 (Σ) has as adjoint the

mapping i∗Y :H 1
2 (Σ) → Y ∗ that sends a functional ψ on H− 1

2 (Σ) over into a functional
i∗Y ψ on Y by: (

i∗Y ψ,ϕ
)
Y ∗,Y

= (ψ,ϕ) 1
2 ,− 1

2
for all ϕ ∈ Y. (6.16)

With this notation (also indicated in [31] after (5.23)), (6.15) may be rewritten as

i∗Y Γ 0u = Lγ0u,

or, when we use that Γ 0 = χ− P 0
γ,χγ0,

i∗Y χu =
(
L + i∗Y P 0

γ,χ

)
γ0u. (6.17)

We have then obtained:

Theorem 6.3. For a closed operator Ã ∈ M, the following statements (i) and (ii) are
equivalent:

(i) Ã corresponds to T :V → W as in Section 3.
(ii) D(Ã) consists of the functions u ∈ D(Amax) that satisfy the boundary condition

γ0u ∈ D(L), i∗Y χu =
(
L + i∗Y P 0

γ,χ

)
γ0u. (6.18)

Here T :V → W and L:X → Y ∗ are defined from one another as described in
(6.9)–(6.13).
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Note that when Y is the full space H− 1
2 (Σ), iY ∗ is superfluous, and (6.18) takes the

form

γ0u ∈ D(L), χu =
(
L + P 0

γ,χ

)
γ0u. (6.19)

The whole construction can be carried out with A replaced by A−λ, when λ ∈ �(Aγ).
We define Lλ from Tλ as in (6.12)–(6.13) with T :V → W replaced by Tλ:Vλ → Wλ̄ and
use of (6.10); here Lλ maps from X to Y ∗;

Lλ =
(
γ−1
Wλ̄

)∗
Tλγ−1

Vλ
, D

(
Lλ

)
= γVλ

D(T ) = D(L). (6.20)

This can be expressed in the following diagram, where we also take (3.5) into account:

V
∼

−−−−→
Eλ

V

Vλ

∼
−−−−→

γVλ

X

T+Gλ
V,W

⏐⏐� Tλ

⏐⏐� ⏐⏐�Lλ

W
∼

−−−−−→(
F ′ λ̄

W

)∗ Wλ̄

∼
−−−−−−→(

γ∗
W

λ̄

)−1
Y ∗

Here the horizontal homeomorphisms compose as

γVλ
Eλ

V = γV ,
(
γ∗
Wλ̄

)−1(
F ′ λ̄
W

)∗ =
(
γ∗
W

)−1
, (6.21)

so

Lλ =
(
γ∗
W

)−1(
T + Gλ

V,W

)
γ−1
V . (6.22)

In this λ-dependent situation, Theorem 6.3 takes the form:

Theorem 6.4. Let λ ∈ �(Aγ). For a closed operator Ã ∈ M, the following statements (i)
and (ii) are equivalent:

(i) Ã− λ corresponds to Tλ:Vλ → Wλ̄ as in Section 3.
(ii) D(Ã) consists of the functions u ∈ D(Amax) such that

γ0u ∈ D(L), i∗Y χu =
(
Lλ + i∗Y Pλ

γ,χ

)
γ0u. (6.23)

Observe that since the boundary conditions (6.18) and (6.23) define the same realiza-
tion, we obtain moreover the information that

(
Lλ + i∗Y Pλ

γ,χ

)
γ0u =

(
L + i∗Y P 0

γ,χ

)
γ0u, for γ0u ∈ D(L) = D

(
Lλ

)
,
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i.e.,

Lλ = L + i∗Y
(
P 0
γ,χ − Pλ

γ,χ

)
on D(L) = D

(
Lλ

)
. (6.24)

Note also that in view of (6.12) and (6.22),

Lλ = L +
(
γ∗
W

)−1
Gλ

V,W γ−1
V on D(L).

This has the particular consequence:

i∗Y
(
P 0
γ,χ − Pλ

γ,χ

)
=
(
γ∗
W

)−1
Gλ

V,W γ−1
V on D(L). (6.25)

Since the last statement will hold for fixed choices of V,W,X, Y , regardless of how the
operator L is chosen (it can e.g. be taken as the zero operator), we conclude that

i∗Y
(
P 0
γ,χ − Pλ

γ,χ

)
iX =

(
γ∗
W

)−1
Gλ

V,W γ−1
V , (6.26)

as bounded operators from X to Y ∗. In particular, in the case X = Y = H− 1
2 (Σ):

P 0
γ,χ − Pλ

γ,χ =
(
γ∗
Z′
)−1

Gλ
Z,Z′γ−1

Z ; (6.27)

bounded operators from H− 1
2 (Σ) to H

1
2 (Σ).

We can now connect the description with M -functions and establish Krĕın-type re-
solvent formulas. (The following formulation differs slightly from that in [20] using
order-reducing operators carrying H± 1

2 (Σ) over to L2(Σ) and orthogonal projections.)

Theorem 6.5. Let Ã correspond to T :V → W , carried over to L:X → Y ∗, whereby Ã

represents the boundary condition (6.18), as well as (6.23) when λ ∈ �(Aγ).

(i) For λ ∈ �(Aγ), L and Lλ satisfy (6.24), where P 0
γ,χ − Pλ

γ,χ ∈ L(H− 1
2 (Σ), H 1

2 (Σ)).
The relations to Gλ

V,W are as described in (6.26), (6.27).
(ii) For λ ∈ �(Ã), there is a related M -function ∈ L(Y ∗, X):

ML(λ) = γ0
(
I − (Ã− λ)−1(Amax − λ)

)
A−1

γ iW γ∗
W .

(iii) For λ ∈ �(Ã) ∩ �(Aγ),

ML(λ) = −
(
L + i∗Y

(
P 0
γ,χ − Pλ

γ,χ

)
iX
)−1 = −

(
Lλ

)−1
.

(iv) For λ ∈ �(Aγ) (recall (6.11)),

ker(Ã− λ) = Kλ
γ,X kerLλ,

ran(Ã− λ) = γ∗
Wλ̄

ranLλ + H �Wλ̄. (6.28)
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(v) For λ ∈ �(Ã) ∩ �(Aγ) there is a Krĕın-type resolvent formula:

(Ã− λ)−1 = (Aγ − λ)−1 − iVλ
γ−1
Vλ

ML(λ)
(
γ∗
Wλ̄

)−1 prWλ̄

= (Aγ − λ)−1 −Kλ
γ,XML(λ)

(
K ′ λ̄

γ,Y

)∗ (6.29)

= (Aγ − λ)−1 + Kλ
γ,X

(
Lλ

)−1(
K ′ λ̄

γ,Y

)∗
.

Proof. Statement (i) was accounted for before the theorem.
In (ii), the M -function ML(λ) is obtained from MÃ(λ) in Theorem 3.5(i) by compo-

sition to the right with γ∗
W and to the left with γV :

ML(λ) = γV MÃ(λ)γ∗
W = γV prζ

(
I − (Ã− λ)−1(Amax − λ)

)
A−1

γ iW γ∗
W

= γ0
(
I − (Ã− λ)−1(Amax − λ)

)
A−1

γ iW γ∗
W . (6.30)

Statement (iii) follows from Theorem 3.5 (ii) in a similar way.
For (iv), we use the homeomorphism properties of γVλ

and γWλ̄
and their adjoints.

For (v), we calculate the last term in (3.7), using (6.30):

− iVλ
Eλ

V MÃ(λ)
(
E′ λ̄

W

)∗ prWλ̄
= − iVλ

Eλ
V γ

−1
V ML(λ)

(
γ∗
W

)−1(
E′ λ̄

W

)∗ prWλ̄

= − iVλ
γ−1
Vλ

ML(λ)
(
γ−1
Wλ̄

)∗ prWλ̄

= −Kλ
γ,XML(λ)

(
K ′ λ̄

γ,Y

)∗;
cf. (6.21) and (6.11). �

Hereby, Krĕın-type resolvent formulas are established for all closed realizations of A
in the present nonsmooth case.

In the cases where X and Y differ from H− 1
2 (Σ), the formulas are quite different from

those established in [27] for selfadjoint realizations of the Laplacian, where an M -function
acting between full boundary Sobolev spaces is used (if the domain is C

3
2+ε).

7. Neumann-type conditions

The case where X = Y = H− 1
2 (Σ), i.e., V = Z, W = Z ′, is particularly interesting

for applications of the theory. Here the boundary condition has the form in (6.19) and
we say that Ã represents a Neumann-type condition (this includes the information that
D(L) is a dense subset of H− 1

2 (Σ)). It may be written

χu = Cγ0u, with C = L + P 0
γ,χ, D(C) = D(L). (7.1)
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An interesting case is where C acts like a differential operator (or pseudodifferential
operator) of order 1. In the differential operator case we can assume, to match the
smoothness properties of s0 and A1 in Green’s formula, that

C = c ·Dτ + c0, where c = (c1, . . . , cn), cj ∈ H
1
2
p (Σ) for j = 0, 1, . . . , n. (7.2)

As a ψdo C we can take an operator constructed from local first-order pieces as in (2.34)
with H

1
2
q S1

1,0-symbols.
Then L acts as a pseudodifferential operator of order 1,

L = C − P 0
γ,χ;

cf. Theorem 5.7 for the properties of P 0
γ,χ.

It should be noted that L is determined in a precise way from Ã as an operator from
D(L) ⊂ H− 1

2 (Σ) to H
1
2 (Σ); it is generally unbounded from H− 1

2 (Σ) to H
1
2 (Σ) since it

is of order 1.
In the study of boundary conditions, the situation is sometimes set up in a slightly

different way:
It is C that is given as a first-order operator, and we define Ã as the restriction of

Amax with domain

D(Ã) =
{
u ∈ D(Amax)

∣∣ χu = Cγ0u
}
. (7.3)

Note that for the H2(Ω)-functions satisfying χu = Cγ0u, the Dirichlet data γ0u fill out
the space H

3
2 (Σ), since {γ0, χ} is surjective from H2(Ω) to H

3
2 (Σ) × H

1
2 (Σ). When

u ∈ D(Ã),

Lγ0u = Γ 0u = χu− P 0
γ,χγ0u =

(
C − P 0

γ,χ

)
γ0u,

so necessarily γ0u belongs to the subset of H− 1
2 (Σ) that is mapped by C − P 0

γ,χ into
H

1
2 (Σ). When u lies there, it moreover has to satisfy Γ 0u = (C − P 0

γ,χ)γ0u, in order to
belong to D(Ã). This shows:

Lemma 7.1. Let C be a first-order operator on Σ as described above and define the
realization Ã by (7.3). Then L is the operator acting like C − P 0

γ,χ with domain

D(L) =
{
ϕ ∈ H− 1

2 (Σ)
∣∣ (C − P 0

γ,χ

)
ϕ ∈ H

1
2 (Σ)

}
.

D(L) contains H
3
2 (Σ), hence is dense in H− 1

2 (Σ).

In the λ-dependent setting,

Lλ acts like C − Pλ
γ,χ with D

(
Lλ

)
= D(L).
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Further information can be obtained in the elliptic case. This is the case where the
model operator, defined from the principal symbols at each (x′, ξ′) in local coordinates,
is invertible:

(
a0(x′, 0, ξ′, Dn)

χ0(x′, ξ′, Dn) − c0(x′, ξ′)γ0

)
:H2(R+) ∼−→

L2(R+)
×
C

,

for all x′, all |ξ′| � 1. Using the various reductions introduced above on this one-
dimensional level, we find that L has the principal symbol

l0
(
x′, ξ′

)
= c0

(
x′, ξ′

)
− p0(x′, ξ′

)
,

where c0(x′, ξ′) and p0(x′, ξ′) are the principal symbols of C and P 0
γ,χ; moreover, el-

lipticity holds if and only if l0(x′, ξ′) �= 0 for |ξ′| � 1. These considerations take place
pointwise in x′ regardless of smoothness with respect to x′.

Theorem 7.2. For a given first-order pseudodifferential operator C as described above,
let Ã be defined by (7.3). Assume that C − P 0

γ,χ is elliptic. Then D(L) = H
3
2 (Σ), and

D(Ã) ⊂ H2(Ω).

Proof. Let ϕ ∈ D(L); then we know to begin with that ϕ ∈ H− 1
2 (Σ) and (C−P 0

γ,χ)ϕ ∈
H

1
2 (Σ). It follows from Theorem 5.7 3◦ that (C −P 0

γ,χ)ϕ = (C −P �01
γ,χ)ϕ+ψ, where ψ ∈

H− 3
2+ε(Σ). This together with (C−P 0

γ,χ)ϕ ∈ H
1
2 (Σ) implies (C−P �01

γ,χ)ϕ ∈ H− 3
2+ε(Σ).

Here C − P �01
γ,χ is defined as in (5.21), constructed from localized pieces with elliptic

smooth ψdo symbols, and it follows by use of a parametrix in each localization that
ϕ ∈ H− 1

2+ε(Σ). (Details on cutoffs and partitions of unity in parametrix constructions
can e.g. be found in [35], Section 8.2.)

Next, let s′ = −3
2 + ε. By Theorem 5.7 2◦ there is an ε′ > 0 such that P 0

γ,χ −
P �0
γ,χ is continuous from Hs− 1

2−ε′(Σ) to Hs− 3
2 (Σ) for all s ∈ [s′, 2]. In a similar way

as in the preceding construction, one finds by use of a parametrix of C − P �0
γ,χ that

(C − P 0
γ,χ)ϕ ∈ H

1
2 (Σ) together with ϕ ∈ Hs− 1

2−ε′(Σ) imply ϕ ∈ Hs− 1
2 (Σ), when s ∈

[s′, 2]. Starting from s = s′−ε′ and applying the argument successively with s = s′+kε′,
k = −1, 0, 1, 2, . . ., we reach the conclusion ϕ ∈ H

3
2 (Σ) in finitely many steps.

Since we know from Lemma 7.1 that D(L) ⊃ H
3
2 (Σ), this shows that D(L) = H

3
2 (Σ).

Now any u ∈ D(Ã) satisfies γ0u ∈ H
3
2 (Σ), so it follows from our knowledge of the

Dirichlet problem that u ∈ H2(Ω). �
We also have:

Theorem 7.3. For a given first-order differential or pseudodifferential operator C as de-
scribed around (7.2), let Ã be defined by (7.3). If there is a λ ∈ �(Ã) ∩ �(Aγ) such that
(Ã− λ)−1 is continuous from L2(Ω) to H2(Ω), then D(L) = H

3
2 (Σ).
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In this case, there is a Krĕın resolvent formula for λ ∈ �(Ã) ∩ �(Aγ):

(Ã− λ)−1 = (Aγ − λ)−1 + Kλ
γ

(
Lλ

)−1(
K ′ λ̄

γ

)∗
, (7.4)

where the operators Lλ and Kλ
γ are a ψdo and a Poisson operator, respectively, belonging

to the nonsmooth calculus, acting on H
3
2 (Σ) (the case s = 2 in Theorems 5.5 and 5.7).

Proof. According to Theorem 6.5(ii), ML(λ) has the form

ML(λ) = γ0
(
I − (Ã− λ)−1(Amax − λ)

)
A−1

γ iZ′ γ∗
Z′ .

Here the mapping property of (Ã−λ)−1 assures that I − (Ã−λ)−1(Amax −λ) preserves
H2(Ω), which implies that ML(λ) maps H 1

2 (Σ) continuously into H
3
2 (Σ). Moreover, by

(iii), −ML(λ) is the inverse of Lλ, whose domain contains H
3
2 (Σ) by Lemma 7.1. Then

the domain must equal H 3
2 (Σ). Since D(L) = D(Lλ), it follows that also D(L) = H

3
2 (Σ).

The next statement follows from the definition of L, and the last statement is a
consequence of the fact that D(L) = H

3
2 (Σ). �

This theorem includes general Neumann-type boundary conditions with C of order
1 in the discussion, where earlier treatments such as [51] and [24] had conditions of
compactness relative to order 1 or lower order than 1 in the picture (Robin conditions).
[25] has a somewhat more general class of nonlocal operators C, also used in [27], for
selfadjoint realizations of A = −Δ.

As a sufficient condition for the validity of the assumptions in Theorem 7.3 we can
mention parameter-ellipticity of the system {A− λ, χ−Cγ0} on a ray in C in the sense
of [33], when C is a differential operator (7.2). Here one can construct the resolvent in an
exact way for large λ on the ray, using Agmon’s trick in this situation in the same way
as in the resolvent construction for Aγ we described above; this is also accounted for at
the end of [34]. (It is used that C − Pλ

γ,χ has “regularity ν = +∞”, cf. Remark 5.6.) We
can denote Ã = Aχ−Cγ0 in these cases. The case C = 0 (the oblique Neumann problem)
satisfies the hypothesis for rays reiη with η ∈ (π/2 − δ′, 3π/2 + δ′), some δ′ > 0, when
the sesquilinear form a(u, v) satisfies

Re a(u, u) � c1‖u‖2
1 − k‖u‖2

0, u ∈ H1(Ω), (7.5)

with c1 > 0. It defines the realization Aχ.
If A is symmetric, Aγ is selfadjoint (and then Ã will be selfadjoint if and only if X = Y

and L:X → X∗ is selfadjoint, cf. [29]). If, moreover, a(u, u) is real for u ∈ H1(Ω) and
satisfies (7.5), Aχ will be selfadjoint with domain in H2(Ω).

The preceding choices of L are the most natural ones in connection with applications
to physical problems. One can of course more generally choose L abstractly to be of a
convenient form and derive C from it as in (7.1).
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Besides the Krĕın-type resolvent formulas, there are many other applications of the
characterization of realizations in terms of the operators L. Let us mention numerical
range estimates and lower bounds, and coerciveness estimates, as e.g. in [30], and spectral
asymptotics estimates as e.g. in [31], for the smooth case. Both papers are followed up in
the recent literature with further developments. Spectral asymptotic formulas (Weyl-type
spectral estimates) have been worked out in Grubb [36] for the boundary term in the
Krĕın formula (7.4), and show the expected appearance of the boundary dimension n−1.

Appendix A. Pseudodifferential boundary value problems with nonsmooth coefficients

A.1. Definitions, symbol smoothing

Definition A.1. Let X be a Banach space and let Xτ = Cτ or Xτ = Cτ . The symbol space
XτSm

1,δ(Rn ×Rn;X), τ > 0, δ ∈ [0, 1], m ∈ R, is the set of all functions p: Rn ×Rn → X

that are smooth with respect to ξ and are in Xτ with respect to x satisfying the estimates∥∥Dα
ξ D

β
xp(., ξ)

∥∥
L∞(Rn;X) � Cα,β〈ξ〉m−|α|+δ|β|,∥∥Dα

ξ p(., ξ)
∥∥
Xτ (Rn;X) � Cα〈ξ〉m−|α|+δτ ,

and if X = Cτ additionally∥∥Dα
ξ p(., ξ)

∥∥
Cj(Rn;X) � Cα〈ξ〉m−|α|+δj for all j ∈ N0, j � [τ ],

for all α ∈ Nn
0 and |β| � [τ ].

Obviously,
⋂

τ>0 C
τSm

1,δ(Rn × Rn;X) coincides with the usual Hörmander class
Sm

1,δ(Rn × Rn;X) in the vector-valued variant.
In particular, we are interested in the case δ = 0, where we simply say that the symbols

(and operators) have Xτ -smoothness in x. But we need the classes CτSm
1,δ with δ > 0

when working with the technique called symbol smoothing: If p ∈ CτSm
1,δ(Rn × Rn;X),

δ ∈ [0, 1), then for every γ ∈ (δ, 1) there is a decomposition p = p# + pb with

p# ∈ Sm
1,γ
(
Rn × Rn;X

)
, pb ∈ CτS

m−(γ−δ)τ
1,γ

(
Rn × Rn;X

)
, (A.1)

cf. [55, Eq. (1.3.21)]. We note that the proofs in [55] are formulated for scalar symbols
only; but they still hold in the X-valued setting since they are based on direct estimates.

In the case where X = L(X0, X1) is the space of all bounded linear operators A:X0 →
X1 for some Banach spaces X0 and X1, we define the pseudodifferential operator with
symbol p ∈ CτSm

1,0(Rn × Rn;L(X0, X1)) by

p(x,Dx)u = OP(p)u =
∫

Rn

eix·ξp(x, ξ)û(ξ) đξ for u ∈ S
(
Rn;X0

)
, (A.2)
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where đξ := (2π)−ndξ. — An operator defined from a symbol p(x, ξ) by formula
(A.2) is said to be “in x-form” in contrast to more general formulas, e.g. where
û(ξ) =

∫
e−iy·ξu(y) dy is inserted, and p is allowed to depend also on y. Compositions

often lead to more general formulas.

Proposition A.2. Let 1 < q < ∞ and let p ∈ CrSm
1,δ(Rn × Rn;L(H0, H1)), m ∈ R,

δ ∈ [0, 1], r > 0, where H0 and H1 are Hilbert spaces. Then p(x,Dx) is continuous

p(x,Dx):Hs+m
q

(
Rn;H0

)
→ Hs

q

(
Rn;H1

)
for all s ∈ R with −r(1 − δ) < s < r.

Proof. The proposition is an operator-valued variant of [55, Proposition 2.1.D]. As indi-
cated in [3, Appendix] the proof given in [55] directly carries over to the present setting
by using the Mihlin multiplier theorem in the L(H0, H1)-valued version, where it is
essential that H0 and H1 are Hilbert spaces. �

We denote by S(R+) the space of restrictions to R+ of functions in S(R).

Definition A.3. The space CτSd
1,δ(RN × Rn−1,S(R+)), d ∈ R, n,N ∈ N, consists of all

functions f̃(x, ξ′, yn), which are smooth in (ξ′, yn) ∈ Rn−1 × R+, are in Cτ (RN ) with
respect to x, and satisfy

sup
x′∈RN

∥∥yln∂l′

yn
Dα

ξ′ f̃
(
x′, ξ′, .

)∥∥
L2

yn
(R+) � Cα,l,l′

〈
ξ′
〉d+ 1

2−l+l′−|α|
, (A.3)

∥∥yln∂l′

yn
Dα

ξ′ f̃
(
., ξ′, .

)∥∥
Cτ (RN ;L2

yn
(R+)) � Cα,l,l′

〈
ξ′
〉d+ 1

2−l+l′−|α|+|δ|τ (A.4)

for all α ∈ Nn−1
0 , l, l′ ∈ N0. Moreover, we define Sm

1,δ(Rn−1 × Rn−1;S(R+)) :=⋂
k∈N CkSm

1,δ(Rn−1 × Rn−1;S(R+)).

Now we define an Sm
1,δ-variant of the Poisson operators with nonsmooth coefficients

as studied in [2].

Definition A.4. Let k̃ = k̃(x′, ξ′, yn) ∈ CτSd−1
1,δ (Rn−1 × Rn−1,S(R+)), d ∈ R, 0 � δ < 1,

τ > 0. Then we define the Poisson operator of order d by

k
(
x′, Dx

)
v = F−1

ξ′ 
→x′
[
k̃
(
x′, ξ′, xn

)
v̂
(
ξ′
)]
, v ∈ S

(
Rn−1),

where the Fourier transform is applied in the x′-variables. k̃ is called a Poisson symbol-
kernel of order d. The associated boundary symbol operator k(x′, ξ′, Dn) ∈ L(C,S(R+))
is defined by (

k
(
x′, ξ′, Dn

)
v
)
(xn) = k̃

(
x′, ξ′, xn

)
v for all xn � 0, v ∈ C.
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Theorem A.5. Let k̃ = k̃(x′, ξ′, yn) ∈ CτSd−1
1,δ (Rn−1 × Rn−1,S(R+)), d ∈ R, 0 � δ < 1.

Then k(x′, Dx) extends to a bounded operator

k
(
x′, Dx

)
:Hs+d− 1

2
(
Rn−1) → Hs

(
Rn

+
)

(A.5)

for every −(1−δ)τ < s < τ . In particular, (A.5) holds for every s ∈ R if k̃ ∈ Sd−1
1,δ (Rn−1×

Rn−1,S(R+)).

Proof. From the symbol estimates one easily derives that

k
(
x′, ξ′, Dn

)
∈ CτS

d− 1
2+s

1,δ
(
Rn−1 × Rn−1;L

(
C, Hs

(
Rn

+
)))

for every s � 0, cf. [2, Proof of Lemma 4.5] for details. Hence Proposition A.2 implies
that

k
(
x′, Dx

)
:Hs+d− 1

2
(
Rn−1) → Hs

(
Rn−1;L2(R+)

)
is a bounded operator for every −(1− δ)τ < s < τ . If s � 0, then Hs(Rn−1;L2(R+)) ↪→
Hs(Rn

+) and the theorem is proved. In the case s � 0, Proposition A.2 additionally
implies that

k
(
x′, Dx

)
:Hs+d− 1

2
(
Rn−1) → L2(Rn−1;Hs(R+)

)
is a bounded operator for every s � 0. Since

Hs
(
Rn

+
)

= Hs
(
Rn−1;L2(R+)

)
∩ L2(Rn−1;Hs(R+)

)
if s � 0,

the theorem is also obtained in this case. �
Remark A.6. One can easily modify the arguments in the proof of [2, Theorem 4.8] to
even get that

k
(
x′, Dx

)
:Bs+d− 1

2
p,p

(
Rn−1) → Hs

p

(
Rn

+
)

is bounded for every −(1 − δ)τ < s < τ and 1 < p < ∞.

We note that f̃ ∈ CτSd
1,δ(Rn−1 × Rn−1;S(R+)) if and only if

xl
n∂

l′

xn
f
(
x′, ξ′, Dn

)
∈ CτS

d+ 1
2−l+l′

1,δ
(
Rn−1 × Rn−1;L

(
L2(R+)

))
for all l, l′ ∈ N0,

where (xl
n∂

l′
xn
f(x′, ξ′, Dn)v)(xn) = xl

n∂
l′
xn
f̃(x′, ξ′, xn)v for all v ∈ C, xn � 0. Hence,

applying symbol smoothing with respect to (x′, ξ′), we obtain that f̃ = f̃ � + f̃ b, where

f̃ � ∈ Sm
1,δ
(
Rn−1 × Rn−1;S(R+)

)
, f̃ b ∈ CτSm−τδ

1,δ
(
Rn−1 × Rn−1;S(R+)

)
,
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which can be proved the same way as e.g. [55, Prop. 1.3.E]. As a consequence we derive
directly from Theorem A.5:

Lemma A.7. Let k̃ = k̃(x′, ξ′, yn) ∈ CτSd−1
1,0 (Rn−1 × Rn−1,S(R+)), d ∈ R, 0 < δ < 1.

Then k(x′, Dx) = k�(x′, Dx) + kb(x′, Dx), where

k̃� ∈ Sm
1,δ
(
Rn−1 × Rn−1;S(R+)

)
, k̃b ∈ CτSm−τδ

1,δ
(
Rn−1 × Rn−1;S(R+)

)
.

In particular, we have that

k
(
x′, Dx

)
− k�

(
x′, Dx

)
:Hs+d−δτ− 1

2
(
Rn−1) → Hs

(
Rn

+
)

for every −(1 − δ)τ < s < τ , and k�(x′, Dx) ∈ L(Hs+d− 1
2 (Rn−1), Hs(Rn

+)) for every
s ∈ R.

Let us recall the definition of trace operators from [2]: A trace operator of order m ∈ R
and class r ∈ N0 with Cτ -coefficients (in x-form) is defined as

t
(
x′, Dx

)
f =

r−1∑
j=0

sj
(
x′, Dx′

)
γjf + t0

(
x′, Dx

)
f,

t0
(
x′, Dx

)
f = F−1

ξ′ 
→x′

[ ∞∫
0

t̃0
(
x′, ξ′, yn

)
f́
(
ξ′, yn

)
dyn

]
,

where t̃0 ∈ CτSm
1,0(Rn−1 × Rn−1,S(R+)), sj ∈ CτSm−j

1,0 (Rn−1 × Rn−1), j = 0, . . . , r− 1,
f́(ξ′, xn) = Fx′ 
→ξ′ [f(., xn)] (a partial Fourier transform) and γjf = ∂j

nf |xn=0. The asso-
ciated boundary symbol operator t(x′, ξ′, Dn) is defined by applying the above definition
to f ∈ S(R+) for every fixed x′, ξ′ ∈ Rn−1. Since γj is well-defined on Hk(R+) (k ∈ N0) if
and only if k > j, the boundary symbol operators of class r are those that are well-defined
on Hr(R+) for all (x′, ξ′).

In particular, t(x′, Dx) is called a differential trace operator of order m and class r

with Cτ -coefficients if t0 ≡ 0 and the sj(x′, ξ′) are polynomials in ξ′.
For the precise definitions of singular Green and Green operators of order m and class

r with Cτ -coefficients (in x-form) as well as the definition of the (global) transmission
condition for p ∈ CτSm

1,0(Rn × Rn), m ∈ Z, we refer to [2]. The precise definitions are
not important for our considerations in the present paper.

A.2. A parametrix result

Theorem A.8. 1◦ Let

A =
(
P+ + G

T

)
,
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where P+ is the truncation to Rn
+ of a zero-order ψdo satisfying the transmission con-

dition at xn = 0, G is a zero-order singular Green operator, such that P+ + G is of
class r ∈ Z, and T is a trace operator of order −1

2 and class r, all in x-form with
Cτ -smoothness in x. Then A maps continuously

A =
(
P+ + G

T

)
:Hs

(
Rn

+
)
→

Hs
(
Rn

+
)

×
Hs

(
Rn−1) , (A.6)

when

(i) |s| < τ ,
(ii) s > r − 1

2 (class restriction).

2◦ Let A be as in 1◦, and polyhomogeneous and uniformly elliptic with principal sym-
bol a0. Then the operator B0 with symbol (a0)−1,

B0 =
(
R0 K0 ),

with R0 of order 0 and class r (being the sum of a truncated ψdo and a singular Green
operator), K0 a Poisson operator of order 1

2 , all in x-form with Cτ -smoothness in x,
satisfies that B0 is continuous in the opposite direction of A, and R = AB0 − I is
continuous:

R:
Hs−θ

(
Rn

+
)

×
Hs−θ

(
Rn−1) →

Hs
(
Rn

+
)

×
Hs

(
Rn−1) , (A.7)

when

(i) −τ + θ < s < τ ;
(ii) s− θ > r − 1

2 (class restriction).

Proof. The first part of the theorem follows from [2, Theorem 1.1 and 1.2]. The second
part of the theorem essentially follows from [2, Theorem 6.4] with the only difference
that there is an additional restriction |s− 1

2 | < τ . This comes from the fact that for the
parametrix construction there, the trace operator is reduced to order m = 0 (the same
order as the order of P+ and G). But when we take the trace operator to be of order
−1

2 , the proof of [2, Theorem 6.4] applies to the present situation and the restriction
|s− 1

2 | < τ is not needed. �
B0 is called a parametrix of A.
A more general version than the above is quoted in [34, Theorem 6.3].
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Remark A.9. To make the above theorem useful for systems where the elements have
other orders we need the so-called “order-reducing operators”. There are two types, one
acting over the domain and one acting over the boundary:

Λr
−,+ = OP

(
λr
−(ξ)

)
+:Ht

(
Rn

+
) ∼−→ Ht−r

(
Rn

+
)
, (A.8)

Λs
0 = OP′(〈ξ′〉s):Ht

(
Rn−1) ∼−→ Ht−s

(
Rn−1), all t ∈ R,

r ∈ Z and s ∈ R, with inverses Λ−r
−,+ respectively Λ−s

0 . Here λr
− is the “minus-symbol”

defined in [32, Prop. 4.2] as a refinement of (〈ξ′〉 − iξn)r. Composition of an operator in
x-form with an order-reducing operator to the right gives an operator in x-form (since
the order-reducing operator acts on the symbol level essentially as a multiplication by an
x-independent symbol). Composition with the order-reducing operator to the left gives
a more complicated expression when applied to an x-form operator.

It should be noted that when e.g. S = s(x′, Dx′) is a ψdo of order m on Rn−1 with
Cτ -smoothness, then it maps Hs+m(Rn−1) → Hs(Rn−1) for |s| < τ , so by (A.8),

Λr
0S:Hs+m

(
Rn−1) → Hs−r

(
Rn−1) for − τ < s < τ. (A.9)

The composition rule Theorem 2.17 (in a version for Cτ -smooth symbols) shows that
Λr

0S can be written as the sum of an operator in the calculus OP′(〈ξ′〉rs(x′, ξ′)) in x-form
and a remainder, such that the sum maps Hs′+m+r(Rn

+) → Hs′(Rn
+) for −τ < s′ < τ ;

this gives a mapping property like in (A.9) but with a shifted interval −τ +r < s < τ+r.
This extends the applicability, but one has to keep in mind that the new decomposition
produces different operators; Λr

0S is not in x-form but is an operator in x-form composed
to the left with Λr

0, not equal to OP′(〈ξ′〉rs(x′, ξ′)).
The operators Λr

−,+ allow an extension of the class concept for trace operators to
negative values: When T = T0Λ

−k
−,+, where T0 is of class 0 and k ∈ N0, T is said to be

of class −k. Then the boundary symbol operator is well-defined on H−k(R+). There is
a similar concept for operators P+ + G. More details on operators of negative class can
be found in [2, Section 5.4], [32], or [33]. With this extension, Theorem A.8 is valid for
r ∈ Z.
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[41] N.D. Kopachevskĭı, S.G. Krĕın, Abstract Green formula for a triple of Hilbert spaces, abstract

boundary value and spectral problems, Ukr. Math. Bull. 1 (1) (2004) 77–105.
[42] M.G. Krein, The theory of self-adjoint extensions of semi-bounded Hermitian transformations and

its applications. I, Mat. Sb. (N.S.) 20 (62) (1947) 431–495.
[43] H. Kumano-Go, Pseudo-Differential Operators, MIT Press, Cambridge, Massachusetts, London,

1974.
[44] H. Kumano-Go, M. Nagase, Pseudo-differential operators with non-regular symbols and applica-

tions, Funkcial. Ekvac. 21 (1978) 151–192.
[45] J.L. Lions, E. Magenes, Problèmes aux limites non homogènes et applications, 1, Éditions Dunod,

Paris, 1968.
[46] M.M. Malamud, Spectral theory of elliptic operators in exterior domains, Russ. J. Math. Phys. 17

(2010) 96–125.
[47] M.M. Malamud, V.I. Mogilevskii, Krein type formula for canonical resolvents of dual pairs of linear

relations, Methods Funct. Anal. Topology 8 (4) (2002) 72–100.
[48] J. Marschall, Pseudo-differential operators with nonregular symbols of the class Sm

ρ,δ, Comm. Partial
Differential Equations 12 (8) (1987) 921–965.

[49] J. Marschall, Pseudodifferential operators with coefficients in Sobolev spaces, Trans. Amer. Math.
Soc. 307 (1) (1988) 335–361.

[50] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University
Press, Cambridge, 2000.

[51] A. Posilicano, L. Raimondi, Krein’s resolvent formula for self-adjoint extensions of symmetric second
order elliptic differential operators, J. Phys. A 42 (2009) 015204, 11 pp.

[52] T. Runst, Mapping properties of nonlinear operators in spaces of Triebel–Lizorkin and Besov type,
Anal. Math. 12 (4) (1986) 313–346.

[53] V. Ryzhov, A general boundary value problem and its Weyl function, Opuscula Math. 27 (2) (2007)
305.

[54] E. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press,
Princeton, 1970.

[55] M.E. Taylor, Pseudodifferential Operators and Nonlinear PDE, Birkhäuser, 1991.
[56] M.E. Taylor, Tools for PDE, Math. Surveys Monogr., American Mathematical Society, 2000.
[57] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland Publishing

Company, Amsterdam, New York, Oxford, 1978.
[58] M.I. Vishik, On General Boundary Problems for Elliptic Differential Equations, translated by V.I.

Filippenko Amer. Math. Soc. Transl. Ser. 2, vol. 24, 1952, pp. 107–172.


