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1. The fractional Laplacian

The fractional Laplacian (−∆)a, 0 < a < 1, is currently of great interest
in probability, finance, mathematical physics and differential geometry. It
is a pseudodifferential operator (ψdo) of order 2a :

(−∆)au = Op(|ξ|2a)u = F−1(|ξ|2aû(ξ)), û(ξ) = Fu =

∫
Rn

e−ix·ξu(x) dx .

An example is the Dirichlet-to-Neumann operator for the Laplacian on
Rn × R+, equal to c(−∆)

1
2 .

Strangely, ψdo methods have not been used much for these operators
recently. Caffarelli and Silvestre CPDE ’07 showed that (−∆)a is the
Dirichlet-to-Neumann operator for the degenerate elliptic equation

∇x,y · (y a∇x,yv(x , y)) = 0 on Rn × R+,

with Dirichlet data v(x , 0) and Neumann data y a∂yv(x , y)|y=0; this
allows an analysis via local (differential) operators. Also integral operator
methods and potential theory are used. Moreover, nonlinear questions
involving (−∆)a are studied.
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Let Ω ⊂ Rn, smooth bounded. Definitions on Ω are not obvious, since
(−∆)a is nonlocal. We shall use the notation (omitting p when p = 2)

Hs
p(Rn) = {u ∈ S ′(Rn) | F−1(〈ξ〉s û) ∈ Lp(Rn)},

Ḣs
p(Ω) = {u ∈ Hs

p(Rn) | supp u ⊂ Ω}, H
s

p(Ω) = r+Hs
p(Rn).

Here 〈ξ〉 = (1 + |ξ|2)
1
2 ; r+ restricts to Ω, e+ extends by zero on {Ω. (The

notation with Ḣ and H stems from Hörmander’s books ’63 and ’85.)

There are several ways to define a homogeneous Dirichlet problem for
(−∆)a on Ω:

One way is to consider the operator r+(−∆)a|C∞0 (Ω) in L2(Ω). It is
positive symmetric, and we can take its Friedrichs extension (−∆)aDir,
positive selfadjoint in L2(Ω). Since the domain of the associated
sesquilinear form equals Ḣa(Ω), the domain of the Friedrichs extension is

D((−∆)aDir) = {u ∈ Ḣa(Ω) | r+(−∆)au ∈ L2(Ω)}.

This is called the restricted Dirichlet fractional Laplacian.

Another choice is the spectral Dirichlet fractional Laplacian (−∆Dir)
a

defined by spectral theory in L2(Ω); here the domain is the interpolation

space between H
2
(Ω) ∩ Ḣ1(Ω) and L2(Ω). This is a subset of H

2a
(Ω),

well-known from Lions-Magenes ’68, Seeley ’71 and ’72.
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From now on we consider the restricted fractional Laplacian.
It is easy to see that D((−∆)aDir) = Ḣ2a(Ω) for a < 1

2 , but for a ≥ 1
2 , the

domain has not been precisely described until recently. It equals a space

Ha(2a)(Ω) introduced by Hörmander, not a subset of H
2a

(Ω) for a ≥ 1
2 .

Let (−∆)aDiru = f . Ros-Oton and Serra (arXiv 2012) showed, when Ω is
C 1,1, that

f ∈ L∞(Ω) =⇒ u ∈ daCα(Ω), d(x) = dist(x , ∂Ω),

for some α > 0. (With a slight improvement on α if f is more smooth.)
They stated that they did not know of other results on boundary
regularity for (−∆)aDir in the literature.

However, this can be much improved by a method developed from a
lecture note of Hörmander at IAS Princeton ’65. In fact we can show (G
arXiv ’13 and ’14)

f ∈ L∞(Ω) =⇒ u ∈ daC a(Ω), a 6= 1
2 , (1)

f ∈ C t(Ω) =⇒ u ∈ daC a+t(Ω), for t > 0, a + t, 2a + t /∈ N. (2)

In the exceptional cases, ε is subtracted from the Hölder exponent.
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2. Pseudodifferential methods

Recall that a function p(x , ξ) ∈ C∞(R2n) is called a classical symbol
when it is expanded in a series of functions pj(x , ξ) homogeneous of
degree m − j in ξ for |ξ| ≥ 1 (here the order m ∈ C).
It defines the operator P = P(x ,D) = Op(p(x , ξ)) by

(Pu)(x) = F−1(p(x , ξ)û(ξ)).

P is elliptic when the principal symbol p0 is invertible.

Boutet de Monvel ’66, ’71, introduced a calculus of boundary value
problems for ψdo’s on Ω ⊂ Rn, when P has the so-called transmission
property, and m is integer (this excludes (−∆)a).

Hörmander presented in the lecture note ’65 and in his book ’85 (with
different notation):

Definition 1. Let d(x) > 0 on Ω, d ∈ C∞(Ω), proportional to
dist(x , ∂Ω) near ∂Ω.
For Reµ > −1, Eµ(Ω) consists of the functions u of the form

u(x) =

{
d(x)µv(x) for x ∈ Ω, with v ∈ C∞(Ω),

0 for x ∈ {Ω.
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Generalized to Reµ ≤ −1 by taking distribution derivatives.

Definition 2. A classical ψdo of order m ∈ C is said to have the
µ-transmission property at ∂Ω (for short: to be of type µ), when

∂βx ∂
α
ξ pj(x ,−N) = eπi(m−2µ−j−|α|)∂βx ∂

α
ξ pj(x ,N),

for all indices; here x ∈ ∂Ω and N denotes the interior normal at x.

It is a kind of twisted symmetry condition on the normal N to Ω. Boutet
de Monvel’s transmission property is the case µ = 0, m ∈ Z.

(−∆)a fits in; it has order m = 2a and even parity, therefore µ = a.

With these definitions, Hörmander showed:

Theorem 3. r+P maps Eµ(Ω) into C∞(Ω) if and only if the symbol
has the µ-transmission property for x ∈ ∂Ω.

The Princeton ’65 lecture note contains much more, namely a solvability
theory in L2 Sobolev spaces for operators of type µ, which in addition
have a certain factorization property of the principal symbol.
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3. Solvability with homogeneous boundary conditions

The starting point was some Doklady notes by Vishik and Eskin ’64,
based on a factorization property of (scalar) ψdo symbols. Let us define:

Definition 4. P (of order m) has the factorization index µ0 when, in
local coordinates where Ω is replaced by Rn

+ with coordinates (x ′, xn),

p0(x ′, 0, ξ′, ξn) = p−(x ′, ξ′, ξn)p+(x ′, ξ′, ξn),

with p± homogeneous in ξ of degrees µ0 resp. m − µ0, and p± extending
to {Im ξn ≶ 0} analytically in ξn.

Here Op(p±(x ′, ξ)) on Rn preserve support in Rn

+ resp. Rn

−.

There is always such a factorization at each x ′ but we here study the
case where µ0 is constant in x ′.

Example: For (−∆)a on Rn (of order m = 2a) we have

|ξ|2a = (|ξ′|2 + ξ2
n)a = (|ξ′| − iξn)a(|ξ′|+ iξn)a,

so that p± = (|ξ′| ± iξn)a, and the factorization index is a.

The operators Ξµ± = Op((〈ξ′〉 ± iξn)µ) play a great role in the theory.
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Based on the factorization, Vishik and Eskin showed in ’64 (extended to
Lp by Shargorodsky ’94, 1 < p <∞, 1/p′ = 1− 1/p):

Theorem 5. When P is elliptic of order m and has the factorization
index µ0, then

r+P : Ḣs
p(Ω)→ H

s−Re m

p (Ω)

is a Fredholm operator for Reµ0 − 1/p′ < s < Reµ0 + 1/p.

Note that s runs in a small interval ] Reµ0 − 1/p′,Reµ0 + 1/p[ . The
problem was then to find the correct solution space for higher s.
For this, Hörmander introduced for p = 2 a particular space combining
the Ḣ and the H definitions:

Definition 6. For µ ∈ C and s > Reµ− 1/p′, the space H
µ(s)
p (Rn

+) is
defined by

Hµ(s)
p (Rn

+) = Ξ−µ+ e+H
s−Reµ

p (Rn
+).

Here H
µ(s)
p (Rn

+) ⊂ S ′(Rn), supported in Rn

+. Note the jump at xn = 0 in

e+H
s−Reµ

p (Rn
+).
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Proposition 7. Let s > Reµ− 1/p′. Then

Ξ−µ+ e+ : H
s−Reµ

p (Rn
+)→ Hµ(s)

p (Rn

+) has the inverse

r+Ξµ+ : Hµ(s)
p (Rn

+)→ H
s−Reµ

p (Rn
+),

and H
µ(s)
p (Rn

+) is a Banach space with the norm

‖u‖µ(s) = ‖r+Ξµ+u‖Hs−Re µ
p (Rn

+)
.

One has that H
µ(s)
p (Rn

+) ⊃ Ḣs
p(Rn

+), and elements of H
µ(s)
p (Rn

+) are
locally in Hs

p on Rn
+, but they are not in general Hs

p up to the boundary.
The definition generalizes to Ω ⊂ Rn by use of local coordinates.

These are Hörmander’s µ-spaces, very important since they turn out to
be the correct solution spaces.

The spaces H
µ(s)
p replace the Eµ in a Sobolev space context, in fact one

has:

Proposition 8. Let Ω be compact, and let s > Reµ− 1/p′. Then

Eµ(Ω) ⊂ Hµ(s)
p (Ω) densely, and

⋂
s
Hµ(s)

p (Ω) = Eµ(Ω).
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We can now state the basic theorems:

Theorem 9. When P is of order m and type µ, r+P maps H
µ(s)
p (Ω)

continuously into H
s−Re m

p (Ω) for all s > Reµ− 1/p′.

Theorem 10. Let P be elliptic of order m, with factorization index µ0,
and of type µ0 (mod 1). Let s > Reµ0 − 1/p′. The homogeneous
Dirichlet problem

r+Pu = f , supp u ⊂ Ω,

considered for u ∈ Ḣ
Reµ0−1/p′+ε
p (Ω), satifies:

f ∈ H
s−Re m

p (Ω) =⇒ u ∈ Hµ0(s)
p (Ω).

Moreover, the mapping

r+P : Hµ0(s)
p (Ω)→ H

s−Re m

p (Ω) (4)

is Fredholm.

The proofs in Hörmander’s 1965 notes (for p = 2) are long and difficult.
One of the difficulties is that the Ξµ± are not truly ψdo’s in n variables,
the derivatives of the symbols (〈ξ′〉 ± iξn)µ do not decrease for |ξ| → ∞
in the required way.
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More recently we have found (G ’90) a modified choice of symbol that

gives true ψdo’s Λ
(µ)
± with the same holomorphic extension properties for

Im ξn ≶ 0; they can be used instead of Ξµ±, also for p 6= 2.
This allows a reduction of some of the considerations to cases where the
Boutet de Monvel calculus (extended to Hs

p in G ’90) can be made useful.

In fact, when we for Theorem 9 introduce

Q = Λ
(µ0−m)
− PΛ

(−µ0)
+ ,

we get a ψdo of order 0 and type 0, with factorization index 0; then

r+Pu = f , with supp u ⊂ Ω,

can be transformed to the equation

r+Qv = g , where v = Λ
(µ0)
+ u, g = r+Λ

(µ0−m)
− e+f .

A closer analysis shows that Q+ = r+Qe+ is elliptic in the Boutet de
Monvel calculus without extra trace or Poisson operators, so using a
parametrix of it we can construct a parametrix for the original problem.
This leads to the regularity of solutions and Fredholm property for all
s > Reµ0 − 1/p′.
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Since
⋂

sH
µ(s)
p (Ω) = Eµ(Ω), and

⋂
sH

s−Re m

p (Ω) = C∞(Ω), one finds as a
corollary when s →∞:

Corollary 11. Let P and u be as in Theorem 9. If r+Pu ∈ C∞(Ω), then
u ∈ Eµ0 (Ω). Moreover, the mapping

r+P : Eµ0 (Ω)→ C∞(Ω)

is Fredholm.

One can furthermore show that the finite dimensional kernel and cokernel
(a complement of the range) of the mapping in Corollary 11 serve as
kernel and cokernel also in the mappings for other spaces in Theorem 10.

NB! The functions in Eµ0 have the behavior u(x) = d(x)µ0v(x) at ∂Ω
with v ∈ C∞(Ω); they are not in C∞ themselves, when µ0 /∈ N0 !

• The spaces H
µ(s)
p (Ω) are in general very different for different µ.

However, for M ∈ N, there is the inclusion H
(µ+M)(s)
p (Ω) ⊂ H

µ(s)
p (Ω).

• The results extend to Triebel-Lizorkin spaces F s
p,q and Besov spaces

Bs
p,q (using Johnsen ’96). In particular they extend to the

Hölder-Zygmund spaces Bs
∞,∞, also denoted C s

∗ , and equal to the Hölder
spaces C s when s ∈ R+ \N. This leads to the regularity results in Hölder
spaces mentioned at the start.

• The results extend to strongly elliptic systems.
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4. Boundary values

On Eµ(Rn

+) = xµn C
∞(Rn

+) we have by Taylor expansion when M ≥ 1:

u(x) = xµn u0(x ′) + xµ+1
n u1(x ′) + · · ·+ xµ+M−1

n uM−1(x ′) + xµ+M
n vM(x),

where xµ+M
n vM(x) ∈ Eµ+M(Rn

+). Here, with γjv = (∂jxnv)|xn=0,

uj = cjγj(x
−µ
n u), denoted γµ,ju.

The definition can be extended by continuity to H
µ(s)
p (Rn

+) for sufficiently
large s:

Theorem 12. For s > Reµ+ M − 1/p′,

%µ,M = {γµ,0, . . . , γµ,M−1} : Hµ(s)
p (Rn

+)→
∏

j<M
Bs−Reµ−j−1/p
p (Rn−1).

The mapping is surjective, with kernel H
(µ+M)(s)
p (Rn

+).

A similar statement holds for Ω, with xn replaced by d(x).
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In other words, there is a bijection

%µ,M : Hµ(s)
p (Ω)/H(µ+M)(s)

p (Ω)
∼→

∏
j<M

Bs−Reµ−j−1/p
p (∂Ω).

Recall from Theorem 10 the Fredholm map

r+P : Hµ0(s)
p (Ω)→ H

s−Re m

p (Ω).

Taking µ = µ0 −M (so that H
µ(s)
p /H

(µ+M)(s)
p = H

(µ0−M)(s)
p /H

µ0(s)
p ), we

put the two maps together and find for s > Reµ0 − 1/p′:

Corollary 13. For each M ∈ N, there is a Fredholm map:

{r+P, %µ0−M,M} : H(µ0−M)(s)
p (Ω)→ H

s−Re m

p (Ω)×
∏

j<M
Bs−Reµ0+M−j−1/p
p (∂Ω).

(Typical vector space idea!)
In Hölder-Zygmund spaces, we get the Fredholm map for s > Reµ0 − 1,

{r+P, %µ0−M,M} : C
(µ0−M)(s)
∗ (Ω)→ C

s−Re m

∗ (Ω)×
∏

j<M
C s−Reµ0+M−j
∗ (∂Ω).

The maps represent nonhomogeneous Dirichlet problems.
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The example Pa = (−∆)a. Here µ0 = a. The first nonhomogeneous
boundary condition comes in for M = 1, i.e., µ = a− 1,
%a−1,1u = γa−1,0u = c0γ0(d1−au). Then we find bijectiveness of

{r+Pa, γa−1,0} : H(a−1)(s)
p (Ω)

∼→ H
s−2a

p (Ω)× Bs−a+1−1/p
p (∂Ω)

{r+Pa, γa−1,0} : C
(a−1)(s)
∗ (Ω)

∼→ C
s−2a

∗ (Ω)× C s−a+1
∗ (∂Ω). (5)

This solves the nonhomogeneous Dirichlet problem

r+Pau = f in Ω, supp u ⊂ Ω, γa−1,0u = ϕ.

The domains can be described further by
Theorem 14.

Hµ(s)
p (Ω) ⊂ e+d(x)µH

s−Reµ

p (Ω) + Ḣs (−ε)
p (Ω), if s > Reµ+ 1/p,

C
µ(s)
∗ (Ω) ⊂ e+d(x)µC

s−Reµ

∗ (Ω) + Ċ
s (−ε)
∗ (Ω), if s > Reµ,

where (−ε) is active for s − Reµ ∈ 1/p + N resp. N.

For solutions by (5) this means that u = e+da−1u0 + u1, with
u0 ∈ C s−a+1(Ω) and u1 ∈ Ċ s(Ω). Here da−1u0 6= 0 when ϕ 6= 0, and it
blows up at ∂Ω.
A related observation was made by Abatangelo arXiv ’13.
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When ϕ = 0, we get the homogeneous Dirichlet problem considered

earlier, having unique solutions in H
a(s)
p (Ω) resp. C

a(s)
∗ (Ω), not blowing

up at ∂Ω but containing a factor da.

• It is also possible to define a nonhomogeneous Neumann problem

r+Pau = f in Ω, supp u ⊂ Ω, γa−1,1u ≡ c1γ1(d1−au) = ψ.

It is Fredholm solvable in similar spaces, and has a blow-up of the
solutions at ∂Ω.

• The preceding boundary conditions are local, even though they are
associated with a nonlocal ψdo.

• There also exist nonlocal boundary conditions. As a natural example,
consider the problem

r+Pu = f on Ω, γ0Bu = ϕ at ∂Ω,

where B is a ψdo. Here we can show that if B is of the same type µ as
P, and is of order µ+integer, then there are principal symbol criteria for
well-posedness. (Here we use a reduction to a problem in the Boutet de
Monvel calculus.)

• There is also another type of nonlocal “boundary condition” that
interests the probability people, in the form of integral conditions
reaching out into {Ω.
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5. Some spectral results

One of the advantages of this systematic theory is that it allows
variable-coefficient operators. For example, all that is said above for
Pa = (−∆)a holds also when −∆ is replaced by a strongly elliptic second
order differential operator A with C∞-coefficients, except that the
bijectiveness is replaced by the Fredholm property.

In the following, let Pa be this more general Aa, and let Pa,Dir be the
L2-realization of r+Pa with domain Ha(2a)(Ω); then

Pa,Dir : Ha(2a)(Ω)→ L2(Ω) is Fredholm.

It is known in the case Pa = (−∆)a that there is a spectral asymptotic
formula

sj(Pa,Dir)j
−2a/n → C (Pa,Dir) for j →∞. (7)

Theorem 15. For A second-order strongly elliptic, the Dirichlet
realization of Pa = Aa satisfies (7).

In the proof, one uses a parametrix for Pa,Dir composed of order-reducing
operators and operators in the Boutet de Monvel calculus, applying
spectral results for truncated ψdo’s and singular Green operators.
Related questions were considered recently by Frank and Geisinger.
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Another case where the new calculus leads to improvements is in
applications where the Dirichlet-to-Neumann operator PDN enters. Recall
that for a symmetric second-order strongly elliptic differential operator A
with smooth coefficients on a bounded domain Ω, PDN is the map from
γ0u to the conormal derivative νAu when u solves Au = 0 in Ω.
It is a first-order elliptic ψdo on the manifold Σ = ∂Ω, and we can show
that it satisfies:

Theorem 16 PDN is principally of type 1
2 with factorization index 1

2 .

This can be used e.g. to improve the knowledge of the “mixed problem”,
where Σ = Σ+ ∪ Σ− (a smooth partition), and Amix is the realization of
A in L2(Ω) with domain

D(Amix) = {u ∈ H
1
(Ω) | u ∈ L2(Ω), γ0u = 0 on Σ−, νAu = 0 on Σ+}.

It is known that D(Amix) ⊂ H
3
2−ε(Ω) only for ε > 0. Now PDN,Σ+ enters

in a detailed description of the structure, and we can show how the

elements lying outside of H
3
2 (Ω) look. Moreover:

Theorem 17.

µj((Amix)−1 − (ADir)
−1)j2/(n−1) → C (PDN,Σ+), for j →∞.
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