MOMENT FORMULAS FOR
THE QUASI-NILPOTENT DT-OPERATOR

LARS AAGAARD AND UFFE HAAGERUP!

ABSTRACT. Let T be the quasi-nilpotent DT-operator. By use of
Voiculescu’s amalgamated R-transform we compute the momets
of (T'— A\1)*(T — A1) where A € C, and the Brown-measure of
T + /€Y, where Y is a circular element x-free from 7T for € > 0.
Moreover we give a new proof of Sniady’s formula for the moments
7(((T*)*T*)") for k,n € N.

1. INTRODUCTION

The quasi-nilpotent DT-operator 7" was introduced by Dykema and
the second author in [4]. It can be described as the limit in *-moments
for n — oo, of random matrices of the form

0 tip2 - tig
7 — | 0 :

: t . tnfl,n

0 --- 0 0

where {R(%;;), 3(tij) }1<icj<n is a set of n(n—1) independent identically
distributed Gaussian random variables with mean 0 and variance =-.

2n
More precisely, 7" is an element in a finite von Neumann algebra, M,
with a faithful normal tracial state, 7, such that for all s, s9,...,s; €

{1’ *}’
(1-1) T(T51Ts2 e Tsk) — ,}EEO E[trn((T(’n))Sl(T(’n))SQ L. (T(n))sk)]’

where tr, is the normalized trace on M, (C). Moreover the pair

(T,W*(T)) is uniquely determined up to *-isomorphism by (1.1). The
quasi-nilpotent DT-operator can be realized as an element in the free
group factor, L(IFy), in the following way (cf. [4, Sect. 4]): Let (Dy, X)
be a pair of free selfadjoint elements in a tracial W*-probability space

t The second named author is affiliated with MaPhySto - A network in Mathem-
atical Physics and Stochastics, which is funded by a grant from the Danish National
Research Foundation.
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(M,7), such that dup,(t) = 1p,;(t)dt and X is semi-circular dis-
tributed, i.e. dux(t) = 5=v4—t21_gg(t)dt. Then W*(Dp, X) =~
W*(Do)  W*(X) ~ L(F,). Put

2N

Ty =Y pniXan,

j=1
for N =1,2,..., where

pvg = i, 3(Do)s - awy = 14 (Do),
for j = 1,2,...,2Y. Then (Ty)%_, converges in norm to an oper-
ator T € W*(Dy, X), and the x-moments of T are given by (1.1), i.e.
T is a realization of the quasi-nilpotent DT-operator. In the nota-
tion of [4, Sect. 4], T = UT(X, ), where A : L*®[0,1] — W*(Dy) is
the *-isomorphism given by A(f) = f(Dy) for f € L*([0,1]). In the
following we put D = W*(Dy) ~ L*([0,1]) and let Ep denote the
trace-preserving conditional expectation of W*(Dy, X') onto D.

In this paper we apply Voiculescu’s R-transform with amalgamation
to compute various *-moments of 7" and of operators closely related
to T. First we compute in section 3 moments and the scalar valued
R-transform of (T — A1)*(T — A1) for A € C. The specialized case of
A = 0 was treated in [4] by more complicated methods. In section 4 we
consider the operator

T + €Y,

where Y is a circular operator x-free from 7" and ¢ > 0. By random
matrix considerations it is easily seen, that if 77 and 75 are two quasi-
nilpotent DT-operators, which are x-free with respect to amalgamation
over the same diagonal, D, then T++/€Y” has the same *-distribution as
S = \/aT, +/bTy, when a = 1+ € and b = € (cf. [1]). We use this fact
to prove, that the Brown measure of 7'+ /€Y is equal to the uniform
distribution on the closed disc B(0,log(1+1)~2) in the complex plane.
Moreover we show, that the spectrum of 7'+ /€Y is equal to this disc,
and that T + /€Y is not a DT-operator for any € > 0.
In [4] it was conjectured, that

nnk

(1.2) T(((T*)*T*)") = ok +1)!

for n,k € N. This formula was proved by Sniady in [9]. Sniady’s
proof of (1.2) is based on Speicher’s combinatorial approach to free
probability with amalgamation from [11|. The key step in the proof of
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(1.2) was to establish a recursion formula for the D-valued moments,
(1.3) Ep (((T*)*T™)")

for each fixed & € N. Sniady’s recursion formula for the D-valued
moments (1.3), was later used by Dykema and the second author to
prove, that
W*(T) = W*(Dy, X) ~ L(IFy)

and that 7" admits a one parameter family of non-trivial hyperinvariant
subspaces (cf. [5]). In section 5 and section 6 of this paper we give
a new proof of Sniady’s recursion formula for the D-valued moments
(1.3), which at the same time gives a new proof of (1.2). The new proof
is based on Voiculescu’s R-transform with respect to amalgamation over
Mok (D), the algebra of 2k x 2k matrices over D.

2. PRELIMINARIES

In this section we give a few preliminaries on amalgamated probab-
ility theory. Let A be a unital Banach algebra, and let B be a Banach-
sub-algebra containing the unit of A. Then a map, £ : A — B, is a
conditional expectation if
(a) Eg is linear,

(b) Eg preserves the unit i.e. Fg(1) =1
(c) and Ep has the B, B bi-module property i.e. Eg(biabs) = bjabs
for all by,by € B and a € A.

If B, A and Ep are as above we say that (B C A, Eg) is a B-
probability space. If ¢ : A — C is a state on A which respects Eg,
ie. 7 =710 Eg, we say that (B C A, E3) is compatible to the (non-
amalgamated) free probability space (A, ¢).

If (B C A, E3) is a B-probability space and a € A is a fixed variable,
we define the amalgamated Cauchy transform of a by

Ga(b) = Ex((b— a)™Y).

for b € B and b — a € B;,,. The Cauchy transform is 1-1 in
{b € Biny| ||b7}|| < €} for € sufficiently small and Voiculescu’s amalgam-
ated R-transform [13] is now defined for a € A by

(2.1) Ra(b) =G5 V() = b,

a

for b being an invertible element of B suitably close to zero. It turns
out that this definition coincides on invertible element with Speicher’s
definition of the amalgamated R-transform (cf. [11, Th. 4.1.2] and [2]);

(2.2) Ra(b) = Z k2 (a ®p ba g - - @3 ba).
n=1
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We will need the following useful lemma for solving equations in-
volving the amalgamated R-transform and Cauchy-transform.

Lemma 2.1. Let (B C A, Eg) be a B-probability space, and let a € A.
Then there exists § > 0 such that if b € B is invertible, ||b]| < 6, [p| >
and

R (b) +b7" = pla
then b= G2(uly).

Proof. Let § = m and define g,(b) = G2 (b~ !). By [2, Prop. 2.3] we
1

know that g, maps B(0, Tl
containing B(0, m) and furthermore that

(-1) L. 2\
95 (B0, rrka)ine) € B0, 1220
By definition we know that
REG) = G2V B) + 57 = (7 B) b7
s0 if R,(b) +b~' = ply then

pla=g" ) —bt+b = (g(g’l)(b))_

) bijectively onto a neighboorhood of zero

1

and thus

(2.3 A0 = 1

If || > $ then especially ﬁ < m S0 il A is in the bijective domain
of g4, so applying g, on both sides of (2.3) we get exactly

G7(u1a) = ga(;14) = b

since also ||b|| < m O

If a € Ais arandom variable in the B-probability space (B C A, Eg),
then following Speicher we define a to be B-Gaussian [11, Def 4.2.3] if
only B-cumulants of length 2 survive. From (2.2) it follows that in this
case the R-transform has a particularly simple form, namely,

(2.4) Ra(b) = K2 (a @3 ba) = FEg(aba).

In the following theorem (which is probably not a new one we just
could not find a proper reference) concerning cumulants we have adop-
ted the notation of Speicher from [11].

Lemma 2.2. Let N € N and let (B C A, Eg) be a B-probability space.
Then (My(B) C My(A), En,(s)) is a My (B)-probability space with
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cumulants determined by the following formula:
kNP (M1 @ a1) @ury(m) - Buiy(®) (M @ an))
= (my---my) ®/£?f(a1 Rp - Qp ay)
when my,...,m, € My(C) and a4,...,a, € A.
We have of course made the identification My (A) = My(C) ® A.
Proof. Since My (C) C My(B) we observe that

R VB (M1 ® a1) @riy(8) -+~ Orty(®) (M ® an))
=((my---my) ®1)

To finish the proof we claim that

(2.5) KXVBN((1® a1) @uy(s) - Omy(n) (1@ an)) =
1® K2 (a1 @3 - ®p ).

The case n = 1 is obvious since

Iy ® 67(1) = 1y ® Bs(a1) = By (1@ 1) = 51" P (1@ ar).
Now assume that the claim is true for 1,2,...,n—1. Then (2.5) has an

obvious extension to noncrossing partions of length less than or equal
ton — 1. Hence

In @k (a1 @p - Dp ap)
=Iy®FEg(ar-a,)— Y. 1®kr (11 ®p - ®pay)

TENC(n),m#1l,
= By ) (1 Quiy(s) 1+ an)
- Z VBN (1@ ar) @uiy(m) - @) (1 ® an))
TENC(n),m#1,
=k PN((1® a1) @ury(®) -+ Bry () (1 ® an)).

By induction this proves the lemma. ]

Assume that M contains a pair (Dy, X) of 7-free selfadjoint elements
such that dup,(t) = 1jo,17(t)dt and X is a semicircular distributed. Put
D = W*(Dy). Then X : L*(]0,1]) — D given by

A(f) = f(Do),
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for f € L>(]0,1]) is a *-isomorphism of L*([0,1]) onto D and

To)\(f):/o F(t)dt, £e ([0, 1]).

We will identify D with L>([0,1]) and thus consider elements of D as
functions. As explained in the introduction, we can realize the quasi-
nilpotent DT-operator as the operator 7" = UT(X, ) in W*(D,, X) =~
L(Fy).

Define for f € D ~ L*>(]0,1])

(26) (L*()(x) = / “f(dt and (L(f)(x) = / f(t)dt.

From the appendix of [5] it follows that (7,7*) is a D-Gaussian pair
and that the covariances of (7, T*) are given by the following lemma

Lemma 2.3. |5, Appendix| Let f € D. Then
En(TfT*)=L(f) and Ep(T*fT)= L*(f)

3. MOMENTS AND R-TRANSFORM OF (17— A1)*(T — A1)

Let T be the quasi-diagonal DT-operator and define

= 0 7~
(3 %)

Since (T,T*) is a D-Gaussian pair, it follows from lemma 2.2, that
cumulants of the form

kP (M1 ® a1) Busy(p) * ** Bnty(p) (M ® )

vanishes when n # 2, my,ma,...,m, € My(C) and ay,as,...,a, €
{T,T*}. Hence by the linearity of rp>",

KIHMQ(D)(T Q M, (D) T QMy(D) ** * RMa(D) T) =0

when n # 2, i.e. T is a My(D)-Gaussian element in My (M) under the
conditional expectation Ejz,(p) : Ma(M) — Ms(D) given by

B (an ag)><E@(a11) ED(au))_

a21 Q22 Eﬂ)(am) Eﬂ)(am)
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Since T is My (D)-Gaussian the R-transform of T is by (2.4) the linear
mapping My (D) — My (D) given by

:Ri]\j[z(‘D)(Z) = EMQ(D) (TZT)
—E o T* 211 *12 0o T
= M(D) T 0 Z221 299 T 0

- B T*ZQQT 0
= L My(D) 0 T2, T*

_ E:D (T* ZQQT) 0
o 0 ED (T211 T*)

_ L*(Zgg) 0
0 L(ZH) )
For A\ € C, we put T, — 71,1 and define
- (0 T{\ _+ (0 Al
= (TA 0) =T <A1 0)

Since </\01 )E)l) € My(D) we have by M,(D)-freeness that the R-

transform is additive [11, Th. 4.1.22] i.e.

M)\ _ pMa(D) [0 ALY _ [L*(222) =\l
R (2) =R (/\1 0)‘( Al L(z))

One easily checks, that if § € C, 6 # 0, § # —# and p € C is one
of the two solutions to

2= (11 APo)
0_ 9

then

211 = uo.ea(z—l)
(3.1) 12 = =0

291 — —Xo

299 = poe 7%

is a solution to

Here z is the variable for the function in D = L*°([0, 1]). In particular
z12 and z9; are constant operators. If ¢ — 0 then |u| — oo and
||z|| = 0, so by lemma 2.1 there exists p > 0 such that |o| < p implies

Gil\fiz(’D)(uh) _ (le 212> ’

291 222
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where (2i5)ije1,2) is given by (3.1) and
eo'
p==+ ;(1 + [A20).

On the other hand the Cauchy-transform of T in pl, is

211 212\ _ ~M3(D)
(20 22) = e
~1
_ pl 0Y) (0 Tx
ul =T !
= Eu(p) ((—T)\ ul/\) )

2 Ta(p°l — TXT)y) p(p?l — ThTY)
Thus
211 = NED((le - T;TA)_l)
z12 = Ep (T3 (11 — ThT3) ™)
201 = Ep(Ta(p1 = T3T) )
222 = pEp((p?1 — ThT) ™)
Combining (3.1) and (3.2) we have
En((121 - T{Ty) ™) = gesteD
Ep(Ty (01 - TZTY)™)
Ep(Ty(421 — TyTH) V) = — Ao
Ep((?1 = TI3)™") =

(3.2)

(3.3)

We can now compute the R-transform of 73T, (wrt. C) from (3.3) and
the defining equality for p?.

o -1 1
tr ((e—(l + |A%0)1 — T;\‘T,\) ) = / oe’@ Ddg
o 0

= [ea(zfl)](l) =1- ef".

Thus
G (e—(1 + |A|20)> =1-e"°
ATA o

1.e.
1

1—e©

C —0 _ea 2
:RT;TA(l_e )—;(1+‘)\| o) —
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for o in a neighboorhood of zero. Substituting z = 1 — ™7 we get
o= —log(l —2), so

1
(1—2)log(1—2)

Hence we have proved the following extension of [4, Theorem 8.7(b)]:

R (2) = - (1~ [APlog(1 - 2)) - -

Theorem 3.1. Let T be the quasinilpotent DT-operator. Let A € C
and put T\ =T — Al. Then
1 1 A2

¢ - _ _
ez (2) = (I1—-2)log(l—2) =z 1z z

for z in some neighborhood of 0.

We next determine the D-valued (resp. C-valued) moments of T5T)
for all A € C. The special case A = 0 was treated in [9, Theorem 5]
(resp. [4, Theorem 8.7(a)]) by different methods.

Theorem 3.2. Let A € C and let T, Ty, be as in theorem 3.1

(a) Let Qn be the sequence of polynomials on R uniquely determined
by the following recursion formula

o(z) =1,
-4 {gn(ﬂ)(x): NPQu(+1) + 7 Quly + Dy forn> 1.
Then
Ep(TyT))")(z) = Qu(z), z€][0,1], neN.
(b)

* n - nk n 2n—2k
T((T)\T/\) ) = (]i' + 1)' k |)‘| , NE N.
k=0 )

Proof. By (3.3), we have

(3.5) Ep((£(1+ |A2o)1 = T{Ty) ™) = ge™™)
for 0 € B(0, p) \ {0} for some p > 0. Put
o

P(o) = (1+ o) ° € C\ {-p=}

Since 1(0) = 0 and +'(0) = 1, ¢ has an analytic invers /("1 defined
in a neighborhood B(0,d) of 0, and we can choose § > 0, such that
Y 1(B(0,6)) € B(0, p). By (3.5)

Ep((31 =TT ™) = gt (g)e? " 0D
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for t € B(0,6) \ {0}. By power series expansion of the left hand side,
we get

(3.6) 3 En((TET)") = ) ()e? ™ 06D

n=0

for t € B(0,0"), where 0 < ¢’ < § and where the LHS of (3.6) is abso-
lutely convergent in the Banach space L*°([0, 1]). Hence by Cauchy’s
integral formulas

1 [ D () OE-D
. En(TIT))") = —
(37 H(RD)) = 5 [ 0

as a Banach space integral in L*°([0, 1]), where C' = 9dB(0,r) with
positive orientation and 0 < r < ¢'. For each fixed z € R

£ s D (1)e¥ VB

is an analytic function in B(0,6’) which is 0 for ¢ = 0. Hence the
function has a power series expansion of the form

o

(3.8) 1/)(—1) (t)eqp(fl)(t)(m—l) — Z Qn(m)tn+1

n=0

for t € B(0,¢'), where the numbers (Q,(z)), are given by

dt.

1 /¢<—1>(t)ew<—1><t><w—n
C

tn—|—2

(3.9) @n(z) =

o7

In particular the @),,’s are continuous functions of x € R. Substituting
o =1(t) in (3.8) we get

for o € B(0, '), where p' € (0, p). Put

Ro(l’) =0
Roi1(z) = APQn(z + 1) + [ Qn(z)dy, n>0.
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Then

o0

Z Rn($)¢(0)n+1 = (o) (1 + ZRnH (m)¢(a)n+1>

n=0

= (o) (1 + AP (Z Qn(z + 1)) +/0$ (ZQn(y+ 1)) dy)

n+0 n+0

— 1 A 2 0T ; ayd

w(o)( + |A|“oe +/0 oe y)

= (o) (|AP o+ 1)e” = 06D =3 " Qu(2)1h(0)""
n=0

for all o € B(0, p'). Since 1(B(0, p')) is an open neighborhood of 0 in
C, it follows that R,(x) = Q,(z) for alln € N and all z € R.

Hence (Q,())$2, is the sequence of polynomials given by the re-
cursive formula (3.4). Moreover by (3.7) and (3.9), Ep((T5X13)") = Qn
as functions in L*([0, 1]). This proves (a).

(b) By (3.7), we have

27 J¢

Note that C' = ¢(C) is a positively oriented simple path around 0.
Hence by the substitution ¢ = (o), we get

T(TXT\)") = % . wq({;(;zug(l—e_”)da

1 1 1 d
fd - - 1 _ A 0 d
27i /C, n+ 1¢(o)rtt da( e 7)do
_ 1 / 1 0 7d
= ri(n+ 1) Jo w(o)t 7
1 1 no (1 2 _\n+1
_ L[ bt
n+1\27 Jo ontl

1 no(q )\2 n+1
= Res ( = (1+ A0 ,0
n+1 ontl

where the second equation is obtained by partial integration and the
last equality is obtained by the Residue theorem.
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The above Residue is equal to the coefficient of 6™ in the Power series
expansion of

ena(l + |)\‘20_)—1 — (Z (n;)k) (Z (nj’[’) (‘)\|20_)z> )

Hence

1 - nk n 2n—2k
_n+1§(k+1)!<k)"\| '
O

4. SPECTRUM AND BROWN-MEASURE OF T + /eY

Let T be the quasinilpotent DT-operator and let Y be a circular
operator x-free from 7. In this section we will show, that

_ 1
o(T + eY) = B(o, \/W)

and that the Brown-measure pp gy is equal to the uniform distri-

bution on B (O ——L__ ), ie. it has constant density w.r.t. the
’ \/log(1+%))’

Lebesque measure on this disk.

Theorem 4.1. For every e > 0

— 1
4.1 o(T ++eY)=B{0, .
(4.) T+ V) = B(0, 5
Proof. The result can be obtained by the method of Biane and Lehner
[3, Section 5]. Let a € C\ {0}. Since o(T") = {0} we can write

al = (T +Ve)Y =ve(71-Y(al =T)7")(al = T).

Hence

(4.2) a ¢ o(T+eY)iff

iﬁ ¢ o(Y(al - T)).

NG

Let Y = UH be the polar decomposition of Y. Then Y (a1 —T)"! =
UH(al-T) ', where U is *-free from H(a1—T) '. Hence Y (al-T) !
is R-diagonal. Moreover, since 0 ¢ o(Y'), Y (al —T)~! is not invertible,
so by |7, Prop. 4.6.(ii)]

(4.3) o(Y(al =T)™") = B(0,]|Y (a1 = T)7"|,)-
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By *-freeness of Y and (al — T)~! we have

(44) |[Y(al=T) M5 = IV]3 || (a1 = T) ]}

= a1 =7l =

o0 Tn

n=0

2

Applying now [4, lemma 7.2] to D =1 and A = X and p = &, we get

o0 Tn
2

n=0

2

ROR

Hence by (4.4)
1

V(a1 = exp( )
Thus for a € C\ {0} we get by (4.2) and (4.3)
0 ¢ o(T+/e¥) o % ¢o(Y(al—T)Y)
®i>exp(i)—1¢)\a|> ! :
Ve jal? log(1+ <)

_ R 1 . .
Hence (T ++/¢Y)U {0} = B (O, m) Since o(T + /€Y) is

closed it follows that (T + /¢Y) = B (0, m> . O

In order to compute the Brown measure of T+ /€Y, we first observe
that 7"+ /€Y has the same x-distribution as

S = /aT, + \/BTQ*

when 77 and 75 are two D-free quasidiagonal operators and a =1+ ¢
and b = € [1]. We next compute the Brown measure of S for all values
of a,b € (0,00).

Lemma 4.2. Let ug be the Brown measure of an operator () in a tracial
W*-probability space (M, tr). Let r > 0 and assume that pg(0B(0,7)) =
0. Then

noB0,) = =5 tim 3 ([ (@0 +a1) Q)
0B(0,r)

T a—0t

where Q) = @ — A1 for A € C.
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Proof. Let A : M — [0,00) be the Fuglede-Kadison determinant on
M, and put L()\) = log A(Q,) and

Lo(\) = log A(Q3Qx + al)'/?) = tr(log(@AQwal))

for A € C. ,

Put \; = R\, Ay = 3\ and let V? = 6‘9/\2 a,\2 denote the Laplace
operator on C. Then by [6, Section 2| V2La > 0 and for each a > 0,
the measure

1

(4.5) Lo = 2—V2La(/\)d)\1d)\2
m

is a probability measure on C. Moreover

(4.6) lim pio = p1

in the Weak* topology on Prob(C). Also from [6, Section 2| the gradient
(:2-, 22-) of L, is given by

A1’ Oz
(4.7) SLa() = —R((@a(@3@r ) )
(4.8) ai/\QLa(/\) = —S(tr(Q\(@@x +al) )
By (4.6)

lim / odjte = / ody
a—0 C C

for all ¢ € Cy(C). Since 1p(,y is the limit of an increasing sequence
(6n)22, of Cy(C)-functions with 0 < ¢, < 1 for all n € N it follows
that

po(B(0,7)) = hm qbnd,uQ

= lim (hm/(/ﬁndua) < hm <11m1nf/ B(O,r d,ua>
n—o0 a—0

mmf,ua(B(O, 7))

Writing 1, as the limit of a decreasing sequence (t,)52; of Co(C)-
functions, with 0 < 9, < 1, one gets in the same way

NQ(E(O’ T)) > lim sup ,ua(E(Oa T))

a—0

Hence if (1o(0B(0,r)) = 0 we have
lim sup 1 (B(0,7)) < po(B(0,7)) <lim inf 110(B(0,7)),
a—0 a—
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and therefore
o (B(0, 1)) = lim o (B(0, 7).
Using (4.5) together with Green’s theorem applied to the vector-field
(

(PaaQa): _%7%) we get
1
ta(B(0,7)) = — / V2Lo(AN)dAd ),
27 Jo,)
1 Qs 0P,
= — = dArdA
27 J 0 (8/\1 8)\2> s
1
= o_ Pad)\1+Qad)\2
27 Jap(or)
1 oL oL
= — — =24\ 2\
o7 Josomy O T O

1 oL oL
= S| — i) (d) idA
N (27T /BB(O,T) (5)\1 13}\2) (@A 2)>

By (4.7) and (4.8)

oL, .0L, . . 1%
— i< = —tr(QA(Q3Qx + al)™T) = —tr((QQx + 1) 7' Q3).
8A1 a)\Z
Hence
1
na(BO.0) =8 (5 [ u((@0n+a1) *ga))
T JoB(o,r)
which completes the proof of the lemma. ]

Let S = v/aTy + VbTy with 0 < b < a. Since ¢S and S have the
same *-distribution for all ¢ € T, the Brown measure ug of S is rotation
invariant (i.e. invariant under the transformation z — cz, z € C when
lc| = 1). Hence by lemma 4.2 we can compute pg, if we can determine

tr((SxSx + o1)7'S5)

for all A € C, where S\, = S — A1, and for all « in some interval of the
form (0, ap). This can be done by minor modifications of the methods

used in section 3:
Put
& (0 S
5-(g )
Then there exists a 6 > 0 (depending on a,b and ) such that when

|z]] < & and |u| > 5 the equality

(4.9) Rg/f(m (2) + 271 = ply
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implies that

(410) = =G (1)
iy (Pl =S58 S5(u21 - 818y
= (id® Ep) <SA(N21 _ S;S)\)fl ,Ul(,u21 — S,\S;)*l .

= 0 S*
Moreover, S = (S 0

is a D-Gaussian set. Hence for z = (z;;); -, € Ms(D),

> is My(D)-Gaussian by lemma 2.2 since (71, T3, 15, T%)

ng/Iz(@)(Z) = EMz(D)(SZS') = (ED(S 225) 0 ) .

0 E'D(SZHS*)

Using that (71, 77) and (T3, T) have the same D-distribution as (7', T%)
and that (77, 77) and (T3, Ty) are two D-free sets, we get

Ep(S*222S) = (aLl”+bL)(222)
Ep(Sz1158") = (aL+bL*)(2z11),

where L(f) : z — le f(y)dy and L*(f) : z — [ f(y)dy for f € D.

& & 0 Al .
Since S\, =S5 — ()\1 0 ) it follows that
RM(D) (2) = (aL + bL*)(z92) —\l
S Al (CLL* + bL) (211) '

Thus (4.10) becomes

pul 0
(4.11) (0 u1>
— (G,L + bL*)Zgg —X]_ + 1 222 —Z212
Al (aL* + bL)(211) det(z) \—221 211 )~

In analogy with section 3, we look for solutions z;; € D = L*°[0, 1]
of the form

(412) 211 12 _ C11 exp(ax) C12 ’
Z2921 929 Co1 Co2 exp(—afv)
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where 0 € C and ¢ = ?1 ?2 € GL(2,C). It is easy to check that
21 C22

(4.12) is a solution to (4.11) if the following 5 conditions are fulfilled:

det(c) = c 2
a —
o
ar = ae”u— b
o\
Gz = T a—b
oA
B
_ op
G2 = a—be°

The first of these conditions is consistent with the remaining 4 if and
only if
(o1 PN _ o
(ae” —b)(a—be=°) (a—b)2 a—b
which is equivalent to
(ae® — b)(a — be™%)(a — b+ a|A]?)
o(a—b)?

(4.13) p? =

Put
a—>b

) a
0p := — min {W,log(g)} .

Then for 0y < o < 0, the right hand side of (4.13) is negative. Let
in this case p(o) denote the solution to (4.13) with positive imaginary
part, i.e.

ae?/? — be=o/?

(4.14) w(o) =im\/a—b+a|)\|2

for oy < 0 < 0. Then with

_ oplo) oA
U= e b 2=

oA _ opulo)
e — R —

the matrix z(o) = (?1 ?2> given by (4.12) is a solution to
21 22

Rﬂgfzw)(z(a)) + z(0) ™t = ply.
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By (4.14) lim,_,- |p(0)| = oo and lim, - |opu(o)| = 0 and therefore
lim, so- [12(2)]] = 0.

Hence for some o1 € (0, 0) we have [p(0)| > 5 and ||z(0)|| > 6 when
o € (01,0) where § > 0 is the number described in connection with
(4.9). Thus

(4.15) 2(0) = G (o)1)

for o € (01,0). But since both 0 — 2(¢) and o — (o) are analytic
functions (of the real variable o) it follows that (4.15) holds for all
o € (09,0). Note that o — —iu(o) is a continuous strictly positive
function on (o, 0), and

lim (—ip(o)) = +o0 lim (—ip(o)) = 0.

o—0~ 0’—)0’3_

Hence for every fixed real number « > 0 we can chose o € (09, 0), such
that

—ip(o) = Ve
Thus by (4.10) and (4.15)

oA
a—>b

E@(S;(—Oll — S)\S;)il) = 2(0')12 = —
which is a constant function in L*°[0, 1]. Hence
A
tr(S5(SxS; + al)™!) = %

from which

or?

a —

/ (S5 (S35 + a1)~1)dA = 2ri
dB(0,r)

when oy < 0 < 0, where as before g = — min {%, log(%) }

Now a — 0 corresponds to o — of . Hence

1
lim (——%/ tr(Sx(S\S3 + al)_l)d/\)
9B(0,r)

a—0t 2T
2 log (2
S - —l—min{l,r2 Og(b) }
a—2>
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Obeserve that S;(S\S; + al)™! = (5;S) + a1)7'S;. Thus by lemma
4.2 we have for all but countably many r > 0, that
2log (%)

a ey TS \/“—T
,US(B(O,T')) — min {LT-QM} — log(E) ‘
a=b 17 r> a—b
log(%)

Since the right hand side is a continuous function of r, the formula actu-
ally holds for all » > 0. This together with the rotation invariance of ug

shows, that 11g is equal to the uniform distribution on B (0, a—b ) ,

tog ()

1

i.e. has constant density % Oa_b on this ball, and vanishes outside the
ball. Putting a =1+ € and b = € we get in particular

Theorem 4.3. The Brown measure of T++/€Y is equal to the uniform
distribution on F(O, L

V/1og(1+e~1) ) '

The Brown mesure of 7'+ /€Y can be used to give an upper bound
of the microstate entropy of 7'+ /€Y. By [8] we have for S € M

(4.16) x(5) < /C/Clog |21 — 2o|dps(21)dps(22) + g + log(m+/20dg)

where g is the Brown measure of S on C and odg is the off-diagonality
of S defined by

(4.17) odg = T(SS*) — / 22dpus(2).
C
Lemma 4.4. For R > 0 we have

I:= / / log |21 — z2|dz1dzs = 7*(R*log R — 1)
B(0,R) J B(O,R)

Proof. Polar substitution in I gives

R (R q o '
I:= 47r2/ / (2—/ log |1 — e193|d0) rdrsds.
0o Jo T Jo

Let 0 < s < r. z +— log|r — zs| is the real value of the complex

holomorphic function z +— Log(r — zs), where Log is the principal

branch of the complex logarithm, so z — log|r — zs| is a harmonic

function in B(0,Z). By the mean value property of harmonic functions
1 2w

o ), log |r — €s|df = log(r),
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so symmetry in r and s reduces [ to

R R
I:= 47r2/ / max{log(r), log(s)}rdrsds
o Jo

ZSW{AR(Lngmam)nh

R
= 47‘(’2/0 r’log(r)dr = m*R*(log(R) — 1).

Theorem 4.5.

1 1
(4.18) Xx(T ++eY) < —3 log(log(1 +¢7")) — Yl log 7

g (142 — L
2 %8 ¢ log(1+¢1) /)"

Proof. Let vg be the uniform distribution on B(0, R). Since vg has
constant density (mR?)~! on B(0, R), we have by lemma 4.4

1
//log |z1 — zo|dvr(z1)dvr(z2) = logR — —.
cJe 4

The Brown measure of S = T + /€Y is us = vg with R = log(1 +

e1)~2, and
1 2
Ods /‘|dl/R——+€—R?

Hence by (4.16)
1 1
X(T ++VeY) <logR — i log 7 + 3 log(1 + 2¢ — R?).

This proves (4.18). O

In [1] the first author proved that the microstate-free analog, 63(7),
of the free entropy dimension is equal to 2. From Theorem 4.5 one gets
only the trivial estimate of the free entropy dimension &y(7"), namely

(4.19) 5o(T) < 2+ lim X+ V20Y)

= 2.
50+ | log d|

If T+ /€Y was a DT-operator for all € > 0 then by [8] equality would
hold in (4.18), and hence also in (4.19). In the rest of this section, we
prove that unfortunately 7 + /€Y is not a DT-operator for any e > 0.
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If R= D+ T isaDT(u,1) operator it follows from [4, lemma 7.2]
that for [\ < ||R| ™,

2
1
= F (exp (Z NN N (R, 1) — 1)) ,
2 k=1

where M, (k,1) = [,z 2 dug(2).
If thus pp is the uniform distribution on a disk with radius d then

Rn

M,,(k,1)=0
when k # | and

1
ok, k / z|**dz
My (k. k) = —5 B(O,d)l |

omr /d 2k+1d 2 7'2k+2 T d?k
= — r r=— —
& |, Z|2kr2), k+1

2

for £ € N. Thus

o0

> (D +1)"

n=0

(4.20)

d
- 2(k+1) _
TP [ (Z'A' k+1) 1]

= e (% (~log(1 - d2|A|2)))

=#[< —AP)yE 1]

If instead D + ¢T" is a DT (up, ¢) operator with pp being the uniform
distribution on a disc of radius d then

D+cl'=c¢D'+7T)

where D' now has the uniform distribution on B(0, ), so from (4.20)
we obtain

00 2
(421) > XD+
n=0 2
oo 2 1 2
S e D'+ 1) = (1—d’M\?) @ —1].
e \ 2\
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Lemma 4.6. Let a > b > 0 and let S = \/aT, + VbTy where T\ and
Ty are two D-free quasidiagonal DT-operators. Then

2

s 1 ele=DRA” _q 1
Ansm| = M < —.
nz::o , AP —beltIN I1S11*

Proof. Let F,(z) = Ep((S*)"S™) forn € Nand z € [0,1]. Fort < H51||2
define the D-valued function

o0

(4.22) F(t,z) =Y _ Fy(a)t".

n=0
By Speicher’s cumulant formula we have by D-Gaussianity of S that
Fy=EBp((S)"S™) = Y r7 ((57)%*" @5 5%2")
TeNC(2n)
— H2® (S* R ED((S*)n_lsn_l)S)
= (aL* +bL)(Ep((S*)"'S" ")) = (aL* + bL)(F,_,),

so we get the following recursive algorithm for determining the F},’s.

Fy(z)=1
F,(z) = aL*(F,_1)(z) + bL(F,1)(z), =z €[0,1]’

where L*(f) : & — [5 f(y)dy and L(f) : z — le f(y)dy. Observe that

d d

=) ad L () = ),

|
=
=
~—
&
|

and that
F,(0) = aL*(F,_1)(0) + bL(F,,_1)(0) = b/1 Fo 1(z)dz = br(F_1)

for n > 1. Using (4.22) we have the following differential equation and
initial condition in x

LF(t,z) = (a—D)tF(t,z), z€][0,1]

F(t,0) = f(1),
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where the function f is given by

Ft) = F(t,0) = 3 Fa(0)t

_1+bz</ dx)
:1+bt/ (ZFn 1 (z)t" l)d

=1+btr(F(t,-))
We thus have the unique solution
(4.23) F(t,z) = f(t)el* ",

where we can now use (4.23) and the initial condition to find the func-
tion f.

f) =1 +bt/1F(t, 2)dz

1 (a—b)t _
:1+bt[ f(@) e(a—b)m] :l—i—bf(t)(e abt 1).

(a —b)t 0 —b

Hence
a—>b

f(t) = 0 — bela byt

so that
B (a b)e(a b)tx
F(ta )_ a — bela—b)
Now observe that
S*| =7 (F(A? )

1 1 eledA® _ 1
— 2 —
—/0 F(|A] z)dz = A2 a — be(@-b)?
O

Theorem 4.7. The operator T + /€Y is not a DT-operator.
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Proof. By substituting @ =1 + € and b = € in lemma 4.6 we have

? 1 e

\ T AP THe— e

(4.24)

i AT +VeY)"

for all A in a neighborhood of 0. If T+ /€Y is a DT-operator, then
by Theorem 4.3 and (4.21), there exists a ¢ > 0, such that when d =

log(1 + %)_%

o0

> AT + VeY)"

n=0

2
1 e2
. = — ]__2 2_7_1
(4.25) 2 e (- nE 1)

for all A in a neighborhood of 0. Consider the two analytic functions,

e’ —1
fs) = 14+€—eces’
o) = 5 (a-e9F-1)

which are both defined in the complex disc U = B(0,log(1 + %)_%).
By (4.24) and (4.25) f(s) = g¢(s) for s in some real interval of the
form (0,6) and hence f(s) = g(s) for all s € U. Moreover f has a
meromorphic extension to the full complex plane with a simple pole at
so = log(1 + %) Hence g also has a meromorphic extension to the full
complex plane with a simple pole at log(1 + %) = d 2. This implies
¢ = d. In this case
1
9(s) = = (1= )™ = 1)

which is analytic in C \ {so}. However f has infinitely many poles,
namely

1
sp = log <1+;) +p2m, p€ 7.

Since the meromorphic extensions of f and ¢ must coincide, we have
reached a contradiction. Therefore T'+ /€Y is not a DT-operator. [

5. SNIADY’S MOMENT FORMULAS. THE CASE k = 2.

Let k£ € N be fixed, and let (P )22, be the sequence of polynomials
defined recursively by

(5.1) PY)(2) = Py (2 +1), n=1,2,...,
) _
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where P,glr)l denotes the [’th derivative of P;,. As in the previous sec-

tions, T denotes the quasinilpotent DT operator. Sniady’s main results
from [9] are:

Theorem 5.1. [9, Theorem 5 and Theorem 7]
(a) For all k,n € N:

(5.2) Ep ((T**T*)") () = Pyn(z), =z €[0,1].
(b) For all k,n € N:
(5.3) T ((T)*T*)") = (kb + 1)1

Actually Sniady considers Eq, ((T*(T*)*)") instead of Ep (((T*)*T*)"),
but it is easily seen, that Theorem 5.1 (a) is equivalent to |9, Theorem
5|, by the simple change of variable z — 1 — z.

Sniady’s proof of Theorem 5.1 is a very technical combinatorial proof.
In this and the following section we will give an analytical proof of
Theorem 5.1 based on Voiculescu’s R-transform with amalgamation.

As in [5, (2.11)] we put

pz) = ~Wo(-2),  z€C\[%00),

where W, is the principal branch of Lambert’s W-function. Then p is
the principal branch of the inverse function of z +— ze™?. We shall need
the following result from [5, Prop. 4.2].

Lemma 5.2. |5, Prop. 4.2| Let (Py,)2, be a sequence of polynomials
gwen by (5.1). Put fors€C, |s| <l andj=1,... .k

27rj
11 .ali(s)’ 0< < 1
(55) Yj (S) = ) 173 0y (s)—a; (s) ‘$| e
k? s=0.
Then
(5.6) Z(ks nkPkn Z’}/J
n=0

for allz € R and all s € B(0,1).

The case k = 1 of theorem 5.1 is the special case A = 0 of theorem
3.2. To illustrate our method of proof of theorem 5.1 for & > 2, we first
consider the case k = 2.
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Define T € M,(A) by

o OO

T =

*

co o
oo oo
N

coo

Then ||T|| = ||T|| = v/e. (cf. [4, Corollary 8.11]) For p € C, |u| < < we
let z = z(y), denote the Cauchy transform of T at fi = Pl a) wrt.
amalgamation over M, (D) i.e.

z = Fp ((ﬂ — T)_1> :

Clearly
N 00 ~ 3 ~ [e%e) N
(57) (,LNI, _ T)fl — ZlulfnflTn — (Z ,U,ann> (Z u4nT4n) )
n=0 n=0 n=0
By direct computation
0 0 (T2 o0
~9 0 0 0 TT*
"= T 0 0 0 ’
0 T*T 0 0
0 (T*°T 0 0
” 0 0 T o
0 0 0 T%7*
T*T? 0 0 0
and
(T*°T? 0 0 0
M_| 0 T@PT 0 0
=1 o 0 TXT? 0
0 0 0 T*T?T*

Hence using the fact that the expectation Fp of a monomial in 7" and
T* vanishes unless T" and T™ occur the same number of times, we get
from (5.7) that z is of the form

211 0 0 0
0 299 0 294
0 0 233 0
0 249 0 244

(5.8) z=
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where 211, 292, 224, 233, 242, 244 € D are given by

211 v IED((l N_4(T*)2T2) )7
2929 v 1ED((l K 4T(T*) 1)~ 1)’
z33 = p 'Ep((1—p 'THT*)?*)™),
244 = IED((l 74T*T2T*)71),
2 = pOEp(T(1— N (T7)°T%)7'T),
24 p 3 Ep (T*(1 — p *T*(T*)*) 7).

For the last 2 identities, we have used, that
A(l—=nBA) '=(1-nAB) A

for A,B € A and n € C whenever both sides of this equality are
welldefined.

By lemma 2.1, we know, that there exists a § > 0 such that when
w € My(D)iny and p € C satisfies ||w]| < 6, || > 5 and

(5.9) RPN w) + w™h = plagya

then w = Epr,) (& — T)™") = 2. In particular
wi = zn = p (1= (TP,

Hence, if we can find a suitable solution to (5.8) for all 4 € C in a
neighborhood of oo, we can find Eq(((T%)*T?)") for n = 1,2,... by
determining the power series expansion of wy; as a function of p*

Since (T',T*) is a D-Gaussian pair by |5, Appendix| it follows from
lemma 2.2 that

H£44(:D)((m1 ® a1) @umy(p) - By (Mn ® ay)) =0

when n # 2, mqy,ma,...,m, € My(C) and ay, as, ...,a, € {T,T*}. By
definition

T = (621 + 632) T + (643 + 614) RT"

Ma(D) , it follows that

so by linearity of kn
HS/M(D)(T’ ®M4(’D) v ®M4(’D) T) =0

when n # 2 i.e. T is My(D)-Gaussian.
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Hence using (2.4) we get

RTAP(@) (’U}) _ ,{éWAL(D) (T ®M4('D) ’LUT) = EM4(D) (TWT)

T*w42T 0 Thk’ll)447—w< 0

— E 0 0 0 TwnT*
M) T, T 0 Twy,T* 0
0 T ’U]33T 0 0

for w = (’U)ij)i,jzl,_“,;; € M4(®)
Since En (T fT) = Ep(T* fT*) = 0, and En(T*fT) = L*(f), Ep(TfT*) =
L(f) for f € L*°([0,1]), we have:

L* (UJ42) 0 0 0

My (D) _ 0 0 0 L(U]l]_)
Ry w) = 0 0 L(wyw) O
0 L (’UJ33) 0 0

for w € M4(D). By (5.8) we only have to consider w of the form

W11 0 0 0
0 wyp 0 wy
0 0 W33 0
0 wa 0 wu

For w € My(D)iny of the form (5.10), (5.9) reduces to the three equa-
tions

(5.10) w=

L*(wg) + == = plop

w11

—1
0 L(w1) Waz Way

(5.11) n = 1laneo

L*(ws3) 0 Wiy Wi Ma (D)

L(wey) + -— ulop

w33

Definition 5.3. Let f € C([0,1]). We call (f(-™)! _, for the succesive
antiderivatives of f if

%(f(_n)) = 0" forn =2,3,....1

and q
(=Y =

Lemma 5.4. Let f € C%([0,1]) and let fC and f=2) be the succesive
antiderivatives of f for which

(i) fCO(1) =0, fOI()=p’
Assume further, that
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(i) f(0) = p* and fV(0) = 0.

(111) For all x € [0,1],

while

Then w1, waa, W33, Was, Wag, Wae € C([0,1]) given by

(wn:f
eV f
y y N f o fo
22 = Wy = — 72
Jran fEU o f
) f f(l)
W24 = 2 72
(5.12) ! Z
W
Wiz = “p3
f o
f
e — 12 fOf®
33 =H O g p
\ £
is a solution to (5.11). Moreover
‘f(_l) f
1 (1
(5.13) i R / 2f
Wao  Waq 7 f

29
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and
(L(wy) = —fCY
f(—2) f(—l)
(-1)
L(woy) = pu — ﬁ%
(5.14) !
L*(wa) = pu— 5
L*(ws3) = —MQL
fen
f f(l)
\

Proof. Assume w11, Wag, W33, Waa, Waq, Wao 18 given by (5.12). Then (5.13)
follows immediately. Note that for f € C([0, 1]), the functions g = L(f)
and h = L*(f) are characterized by

g0 =—f and g(1)=0
RY =f and h(0) = 0.
Hence (5.14) is equivalent to (5.15) and (5.16) below.

)
%f(fl) = wn

(5.15) .

(5.16) ) fED() =0, 0 =p
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Now, (5.16) is trivial from (i) and (ii). Next we prove (5.15): Clearly

d d (1)
af(fl) = f = W11 and a(—%) = ];_2 = Wy2-
Moreover
f(—2) f(—l)
d ‘f‘” f
(5.17) E(f>
(-2) (-=2)  p(-1) (-1)
! ‘jfc“) o =100 T 1 )
IE N
and
(-1) (-1)
d(  fO ff f{” ~ ]}“) f{” o
@(f(—l) f >_ SO
£ £
(1)
f ‘ f{n jcc(a) 1
= — f(il) f 3 —Ew?,?,
‘ ;oW

Hence (5.15) holds. It remains to be proved that w1, weg, W33, W4, Was, Wyo
is a solution to (5.11). By (5.12) and (5.14), we have

: Vo (oY 1o

Moreover by (5.12) and (5.13)

-1
Wa2 Wa4 _ 1 Wae  —W24
Wy2 W44 WooW4q — WosWyeo \ — W42 Wa2

p A
=2 go
lu’ f(fl) f /J’
f f(l)

which proves that the first and the second inequality in (5.11).
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By (5.12) and (5.14),

‘ O e
fO R D o
— L = =
’LU33(,LL (w24)) f(_l) f 2 f(_l) f 2
f o fo ffo
where
W[ 0| [y gz |FTV Y

‘7:‘ {n f(z) ‘f<—1) g —‘f {1) =fIfe0 f L

AR ARl f o r Foof0 @
Hence by (iii), 0 = 0. Therefore ws3(x) # 0 for all x € [0,1] and
a3 = p — L(wyy), proving the last equality in (5.11). O

Lemma 5.5. Let a;(s),v;(s) for j = 1,2 be as in lemma 5.2 for k = 2,

i.e. a1(0) = a(0) =0, 71(0) = 12(0) = 5 and for 0 < |s| < e ':

ai(s) =p(s),  as(s)=p(—s),
a;(s) _ as(s)

o) o YT Gm —a)

7(s) =

Let p € C, |pu] > /e, put s = u~2 and

2
1
(5.18) i) = 2@, cer
K\
L (5 2)
(5.19) @) = — i45) o2 ) 4 e R
2 ;%‘(8)
L (5 )
5.20 (g = — 15) pajwe | 5 e R
(5.20) @) = 4 ;%(5)2
Then
(i) fU, f&2 are succesively antiderivatives of f,
(5.21) FEV) =0, FCD(1) = 4B
and

(5.22) F0)=p~", FO(0) =0.
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(ii) The following asymptotic formulas holds for |u| — oco:
[P = P +0ow™
f@) = (z=pt +0(u)
fl@) = p ' +0(™)
fO@) = ap®+0(u?)
@) = ap®+0(u?)
where the error estimates holds uniformly in x on a compact subset
mn R.
(#ii) There exists o > +/e such that the restriction of f to [0, 1] satis-
fies all the conditions in lemma 5.4, when |p| > po.

Proof. Clearly fC1 and f(=2) are succesively antiderivatives of f and

F0) = =) =

2
2
fO0) = =3 a(s)n(s) =0.
To prove (5.21), note first, that since p : C\ [¢,00) — C is a branch of
the inverse function of z — ze™%, we have

1

p(w)e P®) = w, |w| < =

e

and therefore
e2aj(5) — CMJ'(S)

2 j=1,2
Since s? = ™%, it follows that
(5.23) Dz +1) = pif(z), zeR
(5.24) ffY+1) = p*fO), reR
(5.25) flz+1) = p*fP), zeR

In particular
fO20) = ) =4
FE) = ptf(0) =0,
By the proof of [5, Prop. 4.2], oj(s) and p;(s) are continuous functions

of s € B(0, %) Hence, regarding f as a function of p,
2

lim (sf () = D % (0)e? @7 = 1

—00
lual =
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where the limit holds uniformly in z on compact subsets of R. Hence
by (5.25) f@(x) = O(u~®) as |u| — oo uniformly in  on compact
subsets of R. By (5.22),

(5:20 @ = [ o0
0
(5.27) fa) = wt [ s
0
which implies, that f(z) = O(u~°) and
(5.28) flz)=p"1+ 0™

uniformly in  on compact subsets of R.

Using again (5.25), (5.26) and (5.27), we get
fO%) = p+0u?)
fOz) = zp®+0(u™).

By (5.21)

ﬂﬂu>=t[}ma
) = w [

Hence by (5.28),

f@) = (@—1p "t +0(u™)
f@) = B+ 0™
where all estimates holds uniformly on compact subsets of R. This
proves (ii).
By (i), £, f(=? coinside with the succesive antiderivatives of f con-
sidered in lemma 5.4 and f(0) = ', f((0) = 0.
Moreover, by (ii),

fl@) = p ' 4+0u™)
‘f(l)(x) f(z)
fl@)  fO()

where the error terms holds uniformly in x € [0, 1]. Hence there exists
to > +/e, such that

= p+ 0™

D(x T
f(z) # 0 and ‘ff(:r() ) f{l()(i)‘ #0



THE QUASI-NILPOTENT DT-OPERATOR 35

for all z € [0,1]. Moreover by the matrix factorization

fC @) fCO(2) f(o)
(5:29) | fCV()  flz)  fO(x)
flx)  fO) ()
— ( 2a11(s) 2a21(s) ) (411((3262%(3)3; 0 > (1 201 (s) 4a1(s)?>
4a1(s)? 4asa(s)? 0 m@%em(s)m 1 209(s) 4as(s)?
it follows, that the matrix on the left hand side has rank less than or
equal to 2, i.e.
fO ) fC2) (o)
fO%) f@) D) =0
fl)  fO) ()
for z € [0,1]. Hence f satisfies all the conditions in lemma 5.4, when
1l > po. U

Proof of Theorem 5.1 in the case k = 2: By lemma 2.1 there exists a
d > 0, such that when w € M, (D), and p € C satisfies ||w]| < 9, |u| >

1
5 and

(5.30) R (w) +w = gy
then w = Ep((fi — T)~!). In particular
(5.31) win = p Ep((1— p (T T%) ),

Let € C,|pu| > /e, put s = zp~2 and

=1 (S0

for z € [0,1] as in lemma 5.5. By lemma 5.5 (iii) there exists a uy > /e,
such that when |u| > o, then f satisfies all the requirements af lemma
5.4. Hence by lemma 5.4, the matrix w € My(D) given by (5.10) and
(5.12) is a solution to (5.30). Moreover by the asymptotic formulas in
lemma 5.5 (ii),

2(g) FED(g , B
oo | = o
(@) flo . B
‘ff($() ) ;I((ZU)) = —p "+ O(/J' )a
L
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Hence by (5.12) and the asymptotic formulas for f(-9 f and f', we
have
1 -5

wy = p +0(p”),

Wy = wa=p + O,

wy = (1—2)p™> +0(u™),

Wiy = fUM_3 + O(N_S);

wy = p + 0,

where all the error estimates holds uniformly in z € [0, 1]. Hence, there
exists p1 > max{suo, 3}, such that when || > y; then |Jw| < §, and
hence

w = Euoy (i — ).
By (5.12), wi; = f. Hence by (5.31) and (5.18)

2

Ep((1— p {(T)°T?) ")(2) = pf(@) = ) ()

i=1
_1,-2 1, -2
where s = ;% i.e. for [s| < su; 7,

2

Ep((1— (28)*(T*)’T*) " )(x) = D _ v(s)e” )

j=1
and therefore
(532) Z 28 2nE T* 2T2 Z,Y 2a] s)z
7=0

Hence by lemma 5.2 and by the uniqueness of the power series expan-
sions of analytic functions, we have

En(((T")"T*)")(2) = Pan(2)

for n € N and = € [0,1]. This proves theorem 5.1(a) in the case k£ = 2.
Theorem 5.1 (b) also follows from (5.32) by integrating the right hand
side of (5.32) from 0 to 1 with respect to z (cf. [5, remark 4.3]). O

6. SNIADY’S MOMENT FORMULAS. THE GENERAL CASE.

The above proof of Theorem 5.1 in the case k = 2 can fairly easily
be generalized to all k£ > 2 (Recall that the case £ = 1 is contained in
theorem 3.2).
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Let k > 2 and define T € My, (A) by

k
T=) (T®e€j1;+T ®erijriess)
j=1

where the indices are computed modulo 2k, such that egy1,0r = €1,2-
For u € C, |u| < ﬁ, we put 1 = plog and
2 =2(1) = By (o) (2 —T)7).

Then only the diagonal entries 211, . . ., 29% 21 and the off-diagonal entries
299ky 73,2k—1, - - -, #2k,2 Can be non-zero. Moreover,

o = pT B ((1 = p7(T)FTH) 7).

The operator T is My, (D)-Gaussian, and repeating the arguments for
k = 2, we get that for w € My (D), the matrix

(6.1) u = RAT/I%(D) (w)
can have at most 2k non-zero entries, namely the entries
uy; = L7 (ka,2)
U2 = L (w2k—1,3)
(6.2) Uktok = L (Wrki1p41)
Uk+1,k+1 = L(wk,k—l—Z)
Ug ko = L(wi 1x43)
Uz ok = L(w1,1)-

By lemma 2.1 there exists a 6 > 0 (depending on k), such that if
w € Mag(D)iny, ||w|| < 6, € C, |u| > 5 and
(6.3) RPN (W) + w™! = pd g ),
then
w =2 = By (2 —T)7Y).
In particular
wiy = B (1 — (179 ),

Next we construct an explicit solution to (6.3). By the above remarks
on z, it is sufficient to consider those w € Mok (D)ny for which only the
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entries 211,..., 22 and 2ok, 232k—1, - - -, 22,2 Can be non-zero. For
such w, (6.3) can by (6.1) and (6.2) be reduced to the k + 1 identities:
(6.4)

( L*(wok,2) + w%l = plp

0 L(wj+1,2k+1-5) Wt 24j Watjok—j \ 7L _
9 (L*(w2k—17j,j+3) 0 + (W2k—j,2+j wwc—j,zk—j) - N1M2(®)=

i=0,1,....k—2,

| L(wWkkt2) + = plp.

Wh+1,k+1

Definition 6.1. For j € NU {0} and g € C%*2 we let A;(g) denote
the determinant

] g(l) . - g(])
n .-
— |9 .
(6.5) Aj(g) =
g2i=1)
g(]) .'. g(zj_l) g(QJ)

In particular Ag(g) = g.
Lemma 6.2. Let g € C¥*2(R) and j € N. Then

(6.6) Aj(g™)A(g) = Aj(g™)* = Aj1(9P) A1 (9)
and
(6.7)
d d

Am(g@))a (85(9)) = A(9) - (A;-1(9®) = A1 (M)A (gD).

The proof of lemma 6.2 relies on elementary matrix manipulations
and is contained in lemma A.1 of appendix A. More specifically (6.6)
is a direct consequence of (a) from lemma A.1, and (6.7) follows from
(b) of lemma A.1 by using the elementary fact that:

PN IR )
) . -
d (Ai(g)) = AR .
d:L' ] g - .t .t . 9(2]_1) I
gG=D T gi=2) 2i-1)
gu+h) o7 g(20)  g(2i+1)

that is, differentiating (6.5) is the same as differentiating the last row
of (6.5).

The next two lemmas are the generalizations of lemma 5.4 and lemma
5.5 to arbitrary k£ > 2.
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Lemma 6.3. Let f € C*([0,1]) and let (f(’j))f:1 be the antiderivatives
of f for which,

(i)

prL g =k

F (1) = {o, 1<j<k-1,
(ii) Assume further that
fO) =p "t and fCP0)=0for1 <j<k-—1.
(111) For all x € [0,1],
Aj(fCD) (@) #0, forj=0...,k—1
and
Ap(f)(@) =0

Then the set of 4k — 2 functions listed in (6.8), (6.9) and (6.10) below
is a solution to (6.4).

.
Wi = f
Aq(F(—1)
Wo2 = Wak,2k = —iilo;z )
(6.8) X
(DA, (£(-1)
Wa,2k = N—lzif flz(f )
f(l)

| Wok,2 = T

Forj=1,... k-2

( A 1 (FA=INA (=1-j)
R ) 18 (FYTINA (S )
Wjt2,j+2 = Wok—j2k—j = — INISE
_ 1 A UCTI)AL (ST
(69) 4 Wjy2,2k—j = 22 Aj(f(—j))2
2 A (PRI A ()
\w%—LH—? =M Aj ()2

2%+2 Ao (fE™) AL (fEP)
~1))2

(6.10) Wit1,k+1 = K Ap 1 (f0R)
Moreover for j =0,...,k—2

o : 1
(6.11) A EE TP

Wok—jj+2 Wok—j2k—j| [
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and
(L(wyy) = —fCY
A (=2-j) .
(6.12) 4 L(wj+2,2kfj) = _u2}+2 ]X;E;(—j)) )a 0<j<k-3
A (F(—Fk)
kL(’ll]k,lc—l—?) =B u2’1—2 A:_Zl((ff(z—k)))
( * 1
L*(wapp) = 1 — 5
* CAG_(F(=2-0) .
(6.13) S L*(wok—j2+5) = —/ﬂ%, 1<j<k-2.
" oA (3—k)
| L (Wh ) = 2 )
Proof. Let w1y, W, . . ., Wik, Wo,2k, W3 2k—1, - - - , Wog 2 be given by (6.8),

(6.9) and (6.10). Then for 1 < j < k — 2 the left hand side of (6.11) is
equal to

1 Ajfl(f(l_j))AjH(f(_l_j))A

I A (fED) ’
where A = A;_y (fO) Ay (f179) = Aj(fOD) A (F5179).

By applying (6.6) to g = f(=179) it follows that A = —A;(f9)2
which proves (6.11) for 1 < j < k — 2. The case j = 0 of (6.11) follows
immediately from (6.8).

The proofs of (6.12) and 6.13) can be obtained exactly as in the case
k = 2 provided the following two identities holds: For j =0,... k — 2:

d (A (fT)\ AN AL (fT)
@< Aj(fC9) )_ A (fED)?

(6.14)

Forj=1,...,k—1:

A (A (&)Y _ A (fOD)A(70)
G 16~ i

dx
However (6.14) follows from (6.7) with ¢ = f(-277) after changing j in
(6.7) to 7+ 1. In the same way (6.15) follows from (6.7) with g = (%)
and j unchanged. It remaims to be proved, that wiy, ..., Wk, Wo 2k, - - ., Wok2
form a solution to (6.4). The proof of the first 2 identities in (6.4) is
exactly the same as in the case £k = 2. Let us check the next k£ — 2
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identities in (6.4) i.e.

(6.16) (L*( 0 L(wj+1,2k+1j)>

Wak—1-j,j+3) 0

= plan(o)

-1
+ Wa+j2+5  W2+j,2k—j
Wok—j,245 W2k—j,2k—j

for j =1,...,k—2. By (6.11) and the fact that woj24; = Wor_jok—;
(cf. (6.8)) we have

—1
Wayjorj Woijok—j\ _ (Mo B
Wok—j24j Wak—j2k—j v oplp)’

where '
o i _ 1A ()
Worjorj M A1 (fO7)
and .
N Wok—j2+45 _  2j+2 Aj(f(lfj))_ ‘
Watj2+j Ajpr (f179)
Hence by (6.12) and (6.13)
B = —L(wj41,26-j4+1) and v = —L*(wak—1-j,5+3)

for j = 1,...,k — 2. This proves (6.16). Observe next that by (6.10)
and (6.12)

Ak—l(f(Q_k))Ak—l(f(_k))
Ap_i (FO-R))2
=1

Wit1,k+1 (00 — L(W g42)) =
o
+ Ap_1 (fOR)2’
where
0= D (&) Apoa (fOF) = A (fE )2
By (6.6) and the assumptions (iii) in lemma 6.3
o= Ak 2o(fEF)AL(SM) = 0.

Hence wyi1 p11(pt — L(wg g12)) = 1, which proves the last equality in
(6.4). This completes the proof of lemma 6.3. O

Lemma 6.4. Let k € N,k > 2 and let o;(s),v;(s) forj=1,...,k and
0 < |[s| < I beasinlemma 5.2 LetpeC, |ul > /e, puts=1p~>
and

f(@) =L (S wls)erer97), r€R

(6.17) _ . :
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Then

(i) (fCD)5_, are succesive antiderivatives of f. Moreover

FEN(1) =0, 1<j<k-1
(6.18) {f(_k)((l)) — 2k J
and
£(0) =7
(6.19) {f(j)(())zo, 1<j<k-1

(ii) The following asymptotic formulas holds for |u| — oo

/

fOR (@) = p* 1+ 0(u )
f(—j)(x) = ]—1|(£U — 1)]’“—1 + o(u—Qk—l), 1<j<k-1

(6.20) ¢ fl@)=p ' +O(u ") :
fO(z) = %xj,u’%’l + O(u %1, 1<7<k~-1
(fP (@) = p 71+ O(u= )
where the error estimates holds uniformly in x on compact subsets
of R.

(i1i) There exists a g > +/e, such that the restriction of f to [0,1]
satisfies all the conditions in lemma 6.3, when |p| > po.

Proof. From the proof of |5, Prop. 4.2|, we know that a;(s) and ~,(s)
are analytic functions of s € B(0, ). Moreover by [4, Prop. 4.1]

EEAOES
(6.21) {Z’ﬁ:ﬂu(s)%(s)jzla j=1,....k—1"

21 )
Moreover, since ;(s) = p(e' & °), where p satisfies

1
p(w)e ™) =y for |w| < =
e
we have (oz,,(s)e*“”(s))lc = s* and therefore
k
(6.22) sl

(o (s))

forv=1,...,k. Having (6.21) and (6.22) in mind, the proof of (i) and
(ii) in lemma 6.4 is now a routine generalization of the proof of lemma
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5.5. Concerning (iii) in lemma 6.4, we have

Aj(fTD) =o(pI7t + O(p= 71, 0, k-1,
(6.23) where o(j) =1 for j = 0,3 (mod 4)

and o(j) = —1 for j = 1,2 (mod 4)

because the leading term in the determinant A;(f(~)) comes from the
antidiagonal, i.e.

0 ... 0 f
A (fCD) = 0 0 +O(u ) = o() T+ O Y
F 0 .0

since the matrix in question has size j + 1. Hence A;(f(7))(z) #
0 for z € [0,1] and 0 < j < k — 1, when |p| is sufficiently large.
Moreover A, (f(~®) =0 for x € [0, 1], because in analogy with (5.29),
Ar(fE®(2)) is the determinant of the (k + 1) x (k + 1) matrix
F = (f(i+j_k))i,j:0 ..... k
which has the factorization F' = ADA!, where A is the (k + 1) X k
matrix with entries
a; = (kal(s))i, 7;:0,...,/{2, l = 1,...,k
and D is the k x k diagonal matrix, with diagonal entries
’Yl(s) kay(s)
dy = ————e"* I=1,...,k.
l (k(l/l(S))ke ) ) )
U

Proof of Theorem 5.1 in the general case. Let pg be as in lemma 6.4,
let u € C,|u| > po and put s = ;2. Put as before

fla) =+ (Z w(s)e'mf<s>w>

for z € [0,1], and define wyy, wag, . .., Wk, Wo ok, W3 2k—1, - - - , Wok,2 DY
(6.8), (6.9) and (6.10), and put all other entries of w € My (D) equal
to 0. Then by lemma 6.4, (6.4) holds, and therefore
Moy (D
:R'f%( )
Let § > 0 be chosen according to lemma 2.1. If we can find a pu; >
max{o, 5 }, such that

(6.24) il > = Jwl| < 6

1

(w) + " = pl gy (0)-
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then w = Enp,, ) (& — T)7Y). In particular
(6.25) f=wn=p""Ep((1 - pT)*TH)™),

and the proof of theorem 5.1 for £ > 2 can be completed exactly as in
the case k = 2. By (6.23)

{ (ﬂJU O(p1), 0<j<k—1
(

6.26 :
(6:26) g =0, 0<j<k-1

uniformly in z € [0, 1] for |u| — co. We claim that

Aj(fHN) =07, 0<j<k-—2
Ak—l(f(_k)) = O(Hk)

Aj(fO) =07, 0<j<k-2"
Ak—1(f(2_k)) = O(u=?F)

Recall by definition 6.1 that

Aj(g) = det ((g(k+l))k,l:0,...,j) -

Hence for 0 < j < k — 2, A;(f97Y) is the determinant of a (j +
1) x (j + 1) matrix, where each entry is equal to one of the func-
tions f(7=Y £ U= By (6.20) all these functions are of or-
der O(p~') as |u| — oo. Hence A;(f=77Y) = O(p7~!) proving the
first estimate in (6.27). By the same argument, A; ;(f(=) is the de-
terminant of a k£ x k matrix for which the upper left entry is of the
order O(u?*1) and all the other entries are of order O(s ). Hence
A 1 (fER) = O(p*~Y(p= k1) = O(uF). Let 0 < j < k— 1. Then
A;(f079)) is by (6.20) a determinant of a (j + 1) x (j + 1) matrix
M = (mk,l)k,lzo,...,]‘ for which

(6.27)

myy = O(p™t) when k+1 <0
my; = O(p=2*71)  whenk+1>0"

Hence for any permutation 7 of {0,1,..., %} the product
Mor(0)M1w(1) * * " Mjm(5)

—2k=1) " Therefore

contains at least one factor of order O(u
Aj(f(l_j)) = det(M) = Z (_1)Sign(7r)m07r(0)m17r(1) © Mk (k)
7TESJ'+1

is of order O(u=%~1(p=1)7) = O(u=2¢~9=1). This proves the last two
estimates in (6.27). Clearly all estimates holds uniformly in z € [0, 1].
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Combining (6.8), (6.9), (6.10) and (6.27), we get

wy = O(,U,_l), 1< <2k
Wiz2k—j = O ¥7%), 0<j<k-2.
wap_gga = (I ), 0<j <k -2

In particular all the entries of w are of size O(u~") as |u| — oo uniformly
inz € [0,1]. Hence there exists 11 > max{so, 3} such that (6.24) holds.
Hence by (6.25) we have for |s| < 17,

S (ks En (T TH7) (@) = 3 ()b, ae [0,1]
k=0 v=1

Now Theorem 5.1 follows from lemma 5.2 and [5, remark 4.3] as in the
case k = 2. O

APPENDIX A. DETERMINANT-IDENTITIES ON HANKEL-MATRICES

We need the following lemma on Hankel-determinants.

Lemma A.l. Let a_¢,—1), a— Gp_1,0, € C for somen € N.

Then
(a)

(n—2)5--->

O_(n—1) G—(n—2) @—(n—3) C—(n—4) < ao

@ (n 3 A (nay - a0 G- (n—2) O—(n—3) G—(n—4)

a_(n—4) a_(n—-3) @—(n—4) Gn—4
Qp—4 a_(p—4) Gn—4 Gnp-3
ag Gnp—4 An-3 Gn—4 QAn—3 Gn-—2
ag Gn—4 n—3 Aan—2 Gn-1
A_(n-1) O—(n=2) *  G-1 ||Q_(n=38) G_(n—4q) - @1 @—(n-2) O—(n-3) * @0
— | —mn-2) G_(n—4) _| %=(n-3)
An—4 an—2 an—-3
a_1 An—4 An_3 a1 an—2 Gp_—1 aop an—-3 Gn—2
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(b)

A_(n—2) G—(n-3)

a_(n—3)
ay Gn—1
a_(n—1)
= | C—(n-2)
a—1
ai

ay

Gnp—1

an

A_(n—2)

a2

A—(n-1)

a_(n—2)

ao

a_(p—2) A—(n-3) ao
a—_(n—3)
an—3
ag Gn—3 an—2
ao G—(n—3) G—(n-4)
a—(n—4)
an—3
Gnp—3 an—2
. an a1
@—(n—2) a0 A—(n-3)
A (n—4)
an—2 .
ao
Gnp—2 Gn—1 a2
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ai

ap—2

Gp—2 Gp—1

A (n—a) a
an—3
anp—3 An—2

a3 an

Proof. To prove (a) we actually prove the more general equation

ailr ai2 ai3 - ain
a _ >
(A 1) e az1 a3z a3z -+ a3;n
an—1,2 Gpn—-1,3 *** Gn—1,n—1 a7; 1 ar: 9 a7;3 an.n
) > > >
ail a1z a1,n—1 a22 a3 -
a1 az2 a2 -1 az2 asz -
Gn—1,1 Gn—-1,2 *** Gpn—1,n—1 an,2 An,3 -
a12 a13 a1,n
a2 as3 az,n
an—1,2 Gpn—-1,3 *** An—1,n

a2.n
a3 n

an,n
a21
aszi

Gn,1 G2

ago -
ass -

a2 n—1
a3 n—1

An,n—1

for a;; € Cand 4,5 € {1,...,n}.
We first add some zero terms to the left-hand side (LHS) of (A.1).

a22 a2 n—1 ail Gl

Gp—1,2 *** Gp—1,n—1 an,1 ** Gn,n
n_1 a1 az k—1 a2 k41 az,n—1 ai2 -t A1,k G1,k Q1,k4+1 "0 G2,p-—1
Z asi ag k-1 a3 k41 ag,n—1 a22 v A2k G2k A2,k4+1 0 A3,;n-—1
k=21 an-1,1 ** @Gp—1,k—1 Qn-1,k+1 " An—1,n—1 an,2 "t Ap,k Apk Apk4+1 " Gn—1,n-1

We note that the last matrix in the sum is zero because coloumn k£ — 1
and k are equal. Now we expand LHS after the k’th coloumn of the
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second matrix in the k’th addent. We get

ai2 - Glp

a22 - G2p—1 : :
aj—1,2 *** Qj—1,n
aj+1,2 " Gj+in

LHS =) (-1)""a;,
j=1

Gp—1,2 *** Gp—-1,n—1

Gn,2 ** Gnn

a2 - Gl

n—1 n a1 v Az k-1 a2 k+1 v A2,n-1 : B
+ (_1)k+ja, . . . . aj—1,2 ** Gj-1,n
3,k : : : : aj+1,2 - Gjtin

k=2 j=1 ap—1,1 *** Op—1,k—1 Gp—1,k+1 **° OGpn—1,n—1 . .
Gn,2 ** Gnn

where 7 = 1 and j = n means leave out row 1 and n respectively.
Switching the indices we have

a2 - A1p
n : : a22 e A2,p—1
_2 : Gj—1,2 ** Qj—1,n _1\1+5,.
(A2) LHS —_— aj41,2 ° Aj41,n (( ]') a’]al .
= . . an—-1,2 *** Ap—1,n—1
a7;,2 ar;,n
n—1 a21 vt G2 k-1 Q241 02,m—1
k+3 .
(D) ag ) : : :
k=2 An-1,1 " On—1,k—1 Gn-1,k+1 =" Gn—1,n—1

But the parenthesis on the right-hand side is exactly expansion along
the j’th row of the following determinants

( ailp -t AQl,n-—1
: o g=1
an—-1,1 ** Gn—1,n—1
az1 v a2,p-1
aj1 - Gjnp—1 | __ .
(A.3) Slan —dni|=0, 2<j<n-1
anp,1 *° Ap,n—1
a21 v G2,p—1
- : : ) J="n
\ Qn,1 ** AGn,n—1

Combining (A.2) and (A.3) we obtain the right-hand side of (A.1) and
thus also the proof of (a).
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To prove (b) we prove the more general equation

a21 a2+ G2n
as31 a3z2 -+ G3,p
a41 a42 - G4n

a1z ai3 v Qlp
a2 a3 o G2.p

(A.4)

an—1,2 Gp—1,3 *** Apn—1,n

an+4+1,1 Gn+1,2 *** Gn+4l,n
a11 ai2 a1
a21 azs - a2’z a2 a3 - a2,
’ az2 az3z -+ G3.n
an—1,1 Gn—1,2 *** Gn—1,n . ; .
a. a e
Gn+1,1 An41,2 = Gntln n,2 4n,3 mn
ail a2 - ain a22 a3 -t G2.n
a21 a2 st A2n a3z2 a33 a3, n
Gp—1,1 An—1,2 *** Gpn—1,n Gp—1,2 Gpn—1,3 *** Gpn—1,n
an,1 an,2 - Qn,n An+1,2 Gp+1,3 *** An41l,n

for a;; € C, i € {1,...n+ 1} and j € {1,...,n}. We remark that
Hankel-matrices are symmetric and for these (A.4) reduces to (b). Ob-
serve that for £ € {2,...,n} we have

ai.k aii aiz2 -0 G1,n
az Q12 azy - a2;p
0=(-1)*
Qp,k an,2 an,3 ' Qn,n
Gp41,k CGn+1,2 Gp+1,3 *** Antln
a11 aiz - G1n
n+l : : :
_ (_1)k Qi (_1)]+1 aj-1,1 Gj—1,2 =" Gj—1,n
- 3k 4j+1,1 Gj+1,2 " Gjtln |
Jj=1
Gnp+1,1 Gn+1,2 *** An+l,n

where the j = 1 and j = n + 1 are interpreted as remove the 1% and

(n 4+ 1)™ coloumn respectively. Thus also

a2 -0 A k—1 az,k+1 0 A2,n
n

ag2 - G3k—1 O3 k+1 ¢ G3n
k=2 |an—12 = Gp_1 k-1 Gn_1,k+1 " Gn—1,n

ail a1z

n+1

| (—1)F Z ajr(—1)

An+1,1 Gp+1,2 ***

aj—11 Gj—12 "
Gj+1,1 Gjt1,2 v

a1,n

aj—1,n
Aj+1,n

an+1,n
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Switching the indices we have

aii a12 - Q1n
bl 1 :
(A 5) 0= aj-1,1 @j—1,2 =** Gj—1,n
: @j+1,1 @j+1,2 i+l
j=1 . . .
an+1,1 Gn+1,2 *** Gn+4l,n
n a2 vt A2 k-1 az g+1  *t A2,n
i a2 v 03 k-1 agz k+1 . A3,n
(_1)k+3—1a_
Jsk
k=2 An—1,2 *** Gp_1,k—1 Ap—1,k+1 *** Gn—1,n

The parenthesis of (A.5) is expansion along the 5™ row of the following
expression except for j = n + 1 where we expand along the n'" row.

( ai2 aiz -t Qln
a2 a3 -+ G2.p )
, J=1
an—.1,2 an—.l,S an—.l,n
Oa ]6{2,,7'),—1}
az2 G23 - G2.n
(A_6) { | as2 asz - a3 )
. o j=n
n,2 Gn3 ** Gnn
a2 a23 -+ G2n
| | j=n+l
an—1,2 Gn—-1,3 *** An—1,n
\ Gn+4+1,2 Gp+1,3 **° Gn41,n
Combining (A.5) and (A.6) we obtain (A.4) and this finishes the proof
of (b). O
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