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Abstract

In this paper it is proved, that for every prime number p, the set of cyclic p-roots in
Cp is finite. Moreover the number of cyclic p-roots counted with multiplicity is equal to(

2p−2

p−1

)
. In particular, the number of complex circulant Hadamard matrices of size p, with

diagonal entries equal to 1, is less than or equal to
(

2p−2

p−1

)
.

1 Introduction

In [Bj], Göran Björck introduced the cyclic n-roots for every n ∈ N (n ≥ 2) as the solutions
z = (z0, . . . , zn−1) ∈ C

n to the following n polynomial equations:

z0 + z1 + . . . + zn−1 = 0

z0z1 + z1z2 + . . .+ zn−1z0 = 0

...

z0z1 · . . . · zn−2 + . . .+ zn−1z0 · . . . · zn−3 = 0

z0z1 · . . . · zn−1 = 1

(1.1)

This system of equations is invariant under cyclic permutation of the indices (0, 1, . . . , n− 1).
The motivation for studying the system of equations (1.1) was to study bi-unimodular se-
quences of length n, i.e. elements (x0, x1, . . . , xn−1) in C

n for which

|xj| = 1 and |x̂j | = 1 for 0 ≤ j ≤ n− 1

where x̂ = (x̂0, x̂1, . . . , x̂n−1) is the Fourier Transformed of x w.r.t. the group Zn = Z/nZ, i.e.

x̂j =
1√
n

n−1∑

k=0

ei2πjk/nxk, 0 ≤ j ≤ n− 1. (1.2)

If x = (x0, . . . , xn−1) ∈ C
n and |xj | = 1, 1 ≤ j ≤ n, then by [Bj], x is a biunimodular sequence

if and only if

(z0, . . . , zn−1) =
(x1

x0
,
x2

x1
, . . . ,

xn−1

xn−2
,
x0

xn−1

)

is a cyclic n-root, and this gives a one-to-one correspondence between bimodular sequences
(x0, x1, . . . , xn−1) with x0 = 1 and cyclic n-roots of modulus 1.

A complex Hadamard matrix of size n is a matrix

H = (hjk)j,k=0,...,n−1
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for which all entries are complex numbers with modulus 1, and

H∗H = nI.

Moreover H is called circulant, if the entries hjk only depend on j− k (calculated modulo n).
By [BS] a n× n matrix H is a complex circulant Hadamard matrix if and only if

hjk = xj−k, j, k ∈ {0, . . . , n− 1}

for a biunimodular sequence x = (x0, . . . , xn−1) (again, indices must be calculated modulo n).
Hence there is also a one-to-one correspondence between complex cyclic n roots and circulant
Hadamard matrices of size n with diagonal entries equal to 1.

It is elementary to solve the cyclic n-root problem (1.1) for n = 2, 3 and 4. In 1991-92
Björck and Fröberg found all cyclic n-roots for 5 ≤ n ≤ 8 by computer algebra methods (cf.
[BF1] and [BF2]), for the case n = 7 see also [BaF]. Moreover in 2001 Faugère found all cyclic
9-roots by developing more advanced software for computer algebra (cf. [Fa]). For 2 ≤ n ≤ 9,
the total number γ(n) of cyclic n-roots and the number γu(n) of cyclic n-roots of modulus 1
are given by the table:

n 2 3 4 5 6 7 8 9

γ(n) 2 6 ∞ 70 156 924 ∞ ∞
γu(n) 2 6 ∞ 20 48 532 ∞ ∞

For further results on cyclic n-roots and circulant Hadamard matrices, see also [Ha].
Based on the values of γ(n) for n = 2, 3, 5 and 7. Ralf Fröberg conjectured that γ(p) =(

2p−2
p−1

)
for all prime numbers p. In this paper we will prove, that for every prime number

p, the number of cyclic p-roots counted with multiplicity is equal to
(

2p−2
p−1

)
. For p = 2, 3, 5

and 7 all the cyclic p-roots have multiplicity 1, but we do not know, whether this holds for all
primes. In the non-prime case n = 9, Faugère found isolated cyclic 9-roots with multiplicity
4 (cf. [Fa]).

Let us next outline the main steps in our proof. In section 2 we prove that there is a
one-to-one correspondence between solutions to (1.1) and solutions to the following system
of 2n− 2 equations in 2n− 2 variables (x1, . . . , xn−1, y1, . . . , yn−1),

xjyj = 1, 1 ≤ j ≤ n− 1
x̂j ŷ−j = 1, 1 ≤ j ≤ n− 1

(1.3)

where x = (1, x1, . . . , xn−1), y = (1, y1, . . . , yn−1) and x̂, ŷ are the Fourier transformed vectors
of x and y as defined by (1.2).

In section 3, we prove that for every prime number p, the set of solutions to (1.3) with
n = p is a finite set. The proof is based on a Theorem of Chebotarëv from 1926, which asserts,
that when p is a prime number, then all square sub-matrices of the matrix

(ei2πjk/p)j,k=0,...,p−1

are non-singular. Having only finitely many solutions to (1.3) the same holds for (1.1), but
in order to count the number of solutions in (1.3) and (1.1), we have in section 4 collected
a number of (mostly) well known results on multiplicity of proper holomorphic functions
ϕ : U → V , where U, V are regions in C

n, and on multiplicity of the isolated zeros of such a
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function. The main result needed is that for all w ∈ V , the number of solutions to ϕ(z) = w
(i.e. the number of zeros of ϕw : z → ϕ(z) − w) counted with multiplicity is equal to the
multiplicity of ϕ, and it is therefore independent of w ∈ V (cf. Theorem 4.8). Using this we
can count the number of solutions to (1.3) with multiplicity, by counting instead the solutions
(x1, . . . , xp−1, y1, . . . , yp−1) ∈ C

2p−2 to

xjyj = 0, 1 ≤ j ≤ p− 1
x̂j ŷ−j = 0, 1 ≤ j ≤ p− 1

(1.4)

where x = (1, x1, . . . , xp−1) and y = (1, y1, . . . , yp−1) as in (1.3). The latter problem can be

solved by linear algebra (cf. section 5) and it has exactly
(

2p−2
p−1

)
solutions all with multiplicity

1. Hence (1.3) has
(

2p−2
p−1

)
solutions counted with multiplicity.

It is clear from section 2, that (1.1) and (1.3) has the same number of distinct solutions.
In section 6, we prove that the same also holds when solutions are counted according to their
multiplicities. This is not obvious, because, when passing from (1.3) to (1.1) the number of
variables is changed twice in the process, first from 2p− 2 to p− 1 and next from p− 1 to p.

In section 7, we use the methods from the previous sections to count the number of cyclic
p-roots of simple index k, where k ∈ N divides p− 1. Following [Bj] and [BH] a cyclic p-root
has simple index k, if the corresponding cyclic p-root on x-level is constant on the cosets of
the unique index k subgroup of (Z∗

p, ·). The cyclic p-roots of simple index k can be determined
by solving the following set of equations in k variables c0, c1, . . . , ck−1 ∈ C

∗:

ca +
1

ca+m
+

k−1∑

i,j=0

nij
cj+a

ci+a
= 0 (0 ≤ a ≤ k − 1) (1.5)

where m and nij are certain integers depending on p and k (cf. [Bj] and section 7 of this
paper for more details). For k = 1, 2, 3 all cyclic p-roots of simple index k has been explicitly
computed in [Bj] and [BH]. The number of distinct cyclic p-roots of simple index k is 2 (resp.
6, 20) for k = 1 (resp. 2, 3) for all primes for which k divides p− 1. We prove in Theorem 7.1
that the number of solutions to (1.5) counted with multiplicity is equal to

(
2k
k

)
for all k ∈ N

and all primes for which k divides p− 1.
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2 Reformulations of the cyclic n-root problem

Recall that the cyclic n-roots are the solutions z = (z0, z1, . . . , zn−1) ∈ C
n to the system of

equations:
z0 + z1 + . . . + zn+1 = 0

z0z1 + z1z2 + . . .+ zn−1z0 = 0

...

z0z1 · . . . · zn−2 + . . .+ zn−1z0 · . . . · zn−3 = 0

z0z1 · . . . · zn−1 = 1

(2.1)

Note that by the last equation zi ∈ C
∗ = C \ {0} for every cyclic n-root z = (z0, . . . , zn−1).

Let z ∈ (C∗)n be a cyclic n-root, and define x = (x0, . . . , xn−1) ∈ (C∗)n by

x0 = 1, x1 = z0, x2 = z0z1, . . . , xn−1 = z0z1 · . . . · zn−2 (2.2)

Then clearly
xj+1

xj
= zj , j = 0, 1, . . . , n− 2

and by the last equation in (2.1) the same formula also holds for j = n− 1. Moreover, by the
first n− 1 equations in (2.1), x = (x0, . . . , xn−1) is a solution to

x0 = 1
x1

x0
+
x2

x1
+ . . .+

x0

xn−1
= 0

x2

x0
+
x3

x1
+ . . .+

x1

xn−1
= 0

...
xn−1

x0
+
x0

x1
+ . . .+

xn−2

xn−1
= 0

(2.3)

Conversely if x = (x0, . . . , xn−1) ∈ (C∗)n is a solution to (2.3), then

(z0, z1, . . . , zn−1) =
(x1

x0
,
x2

x1
, . . . ,

x0

xn−1

)

is a solution to (2.1). We will call the solutions to (2.3) cyclic n-roots on x-level.

Instead of imposing the condition x0 = 1, it would be equivalent to look for solutions to
the last n − 1 equations of (2.3) in the subset (C∗)n/∼ of the complex projective space
Pn−1 = (Cn \ {0})/∼, where x, x′ ∈ C

n \ {0} are equivalent (x ∼ x′) iff x′ = cx for some
c ∈ C

∗.

Suppose x = (x0, . . . , xn−1) ∈ (C∗)n is a solution to (2.3), and put yj = 1
xj

, j = 0, . . . , n− 1.

Then
(x, y) = (x0, . . . , xn−1, y0, . . . , yn−1) ∈ C

n × C
n
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is a solution to
x0 = y0 = 1

xkyk = 1 for 1 ≤ k ≤ n− 1

n−1∑

m=0

xk+mym = 0 for 1 ≤ k ≤ n− 1

(2.4)

where again all indices are counted modulo n. Conversely if (x, y) ∈ C
n × C

n is a solution
to (2.4), then x ∈ (C∗)n and x is a solution to (2.3), because xnyn = 1 for 0 ≤ k ≤ n − 1.
We will call the solutions (x0, . . . , xn−1, y0, . . . , yn−1) ∈ C

n × C
n to (2.4) cyclic n-roots on

(x, y)-level.

Instead of imposing the conditions x0 = y0 = 1, it would be equivalent to look for solu-
tions to

xkyk = x0y0, 1 ≤ k ≤ n− 1

n−1∑

m=0

xk+mym = 0, 1 ≤ k ≤ n− 1
(2.5)

in the subset (C∗)n/∼ × (C∗)n/∼ of Pn−1 × Pn−1.

Lemma 2.1. Let n, v ∈ C
n and let û, v̂ ∈ C

n be the transformed vectors, i.e.

û = Fu, v̂ = Fv

where F is the unitary matrix

F =
1√
n

(
ei2πjk/n

)
j,k=0,...,n−1

Still calculating indices cyclic modulo n, we have

ûj v̂−j =
1

n

n−1∑

k=0

ei2πjk/n

( n−1∑

m=0

uk+mvm

)
, 0 ≤ j ≤ n− 1 (2.6)

n−1∑

j=0

e−i2πkj/nûj v̂j =
n−1∑

m=0

uk+mvm, 0 ≤ k ≤ n− 1 (2.7)

In particular

n−1∑

j=0

ûj v̂−j =

n−1∑

m=0

umvm (2.8)

Proof. Let 0 ≤ j ≤ n− 1. Then

ûj v̂−j =
1

n

n−1∑

l,m=0

ei2πj(l−m)/nukvm.
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Hence, if we replace (l,m) with (k +m,m) in the double sum, we get

ûj v̂−j =
1

n

n−1∑

k,m=0

ei2πjk/nuk+mvm

=
1

n

∑

k=0

n− 1ei2πjk/n

( n−1∑

m=0

uk+mvm

)
,

which proves (2.6). Note that (2.6) can also be written as

(
ûj v̂−j

)n−1

j=0
=

1√
n
F

(( n−1∑

m=0

uk+mvm

)n−1

k=0

)
.

Since F is unitary and symmetric, F−1 = F (complex conjugation). Thus

√
n F

((
ûj û−j

)n−1

j=0

)
=

( n−1∑

m=0

uk+mvm

)n−1

k=0

which proves (2.7). (2.8) is the special case k = 0 of (2.7). Note that (2.8) can also be proved
by applying Parseval’s formula

n−1∑

j=0

ûjŵj =
n−1∑

m=0

umwm

to w = v.

Proposition 2.2. The equations (2.4) for cyclic n-roots on (x, y)-level are equivalent to the
following set of equations for (x, y) ∈ C

n × C
n.

x0 = y0 = 1

xkyk = 1, 1 ≤ k ≤ n− 1

x̂kŷ−k = 1, 1 ≤ k ≤ n− 1

(2.9)

where x̂ = Fx and ŷ = Fy as in lemma 2.1.

Proof. Assume (x, y) is a solution to (2.4). By the last n− 1 equations of (2.4),

n−1∑

m=0

xk+mym = 0 1 ≤ k ≤ n− 1

and by the first n+ 1 equations of (2.4)

n−1∑

m=0

xmym = n

Hence, by (2.6)

x̂j ŷ−j =
1

n

n−1∑

k=0

ei2πjk/n

( n−1∑

m=0

uk+mvm

)

=
1

n
(n+ 0 + . . .+ 0)

= 1
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for j = 0, . . . , n − 1. Hence (2.4) implies (2.9). Conversely if (x, y) ∈ C
n × C

n satisfies (2.9),
then

x̂j ŷ−j = 1 for 1 ≤ j ≤ k

By (2.8) and the first n+ 1 equations of (2.9),

n−1∑

j=0

x̂j ŷ−j =

n−1∑

m=0

xmym = n

and therefore

x̂0ŷ0 = n−
n−1∑

j=1

x̂j ŷ−j = n− (n− 1) = 1

Thus by (2.7)

n−1∑

k=0

xk+mym =

n−1∑

j=0

e−i2πkj/nûj v̂−j

=

n−1∑

j=0

e−i2πkj/n

= 0 for 1 ≤ k ≤ n− 1

Hence (2.9) implies (2.4).

For later use, (cf. proof of Corollary 5.4.) we prove the following extension of Proposition
2.2.

Proposition 2.3. Let a1, . . . , an−1, c1, . . . , cn−1 ∈ C. Then for (x, y) ∈ C
n × C

n, the set of
equations

x0 = y0 = 1

xkyk = ak, 1 ≤ k ≤ n− 1

n−1∑

m=0

xk+mym = ck, 1 ≤ k ≤ n− 1

(2.10)

is equivalent to
x0 = y0 = 1

xkyk = ak, 1 ≤ k ≤ n− 1

x̂kŷ−k = bk, 1 ≤ k ≤ n− 1

(2.11)

where

bj =
1

n

(
1 +

n−1∑

m=1

am +

n−1∑

k=1

ei2πjk/nck

)
, 1 ≤ j ≤ n− 1 (2.12)

Moreover for fixed a1, . . . , an−1, b1, . . . , bn−1 ∈ C, the n − 1 equations (2.12) have a unique
solution (c1, . . . , cn−1) ∈ C

n−1) given by

ck = 1 +
n−1∑

m=1

am +
n−1∑

j=1

(e−i2πkj/n − 1)bj , 1 ≤ k ≤ n− 1. (2.13)
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Proof. Assume (2.10). Then
n−1∑

m=0

xmym = 1 +

n−1∑

m=1

am.

Hence by (2.6) and the last (n− 1) equations in (2.10)

x̂j ŷ−j =
1

n

( n−1∑

m=1

xmym +

n−1∑

k=1

ei2πjk/n

( n−1∑

m=0

xk+mym

))

=
1

n

(
1 +

n−1∑

m=1

am +

n−1∑

k=1

ei2πjk/nck

)

for 0 ≤ j ≤ n− 1. Hence (2.10) implies (2.11), with b1, . . . , bn−1 as in (2.12).

We next show that (2.12) implies (2.13). Put

b0 =
1

n

(
1 +

n−1∑

m=1

am +

n−1∑

k=1

ck

)
.

Then (2.12) holds for 0 ≤ j ≤ n− 1. Hence, if we furthermore put

c0 = 1 +

n−1∑

m=1

am,

then

bj =
1

n

n−1∑

k=0

ei2πjk/nck, j = 0, . . . , n− 1.

Hence, by Fourier inversion, we have

ck =

n−1∑

j=0

e−i2πjk/nbj, k = 0, . . . , n− 1 (2.14)

In particular

1 +

n−1∑

m=1

am = c0 = b0 +

n−1∑

j=1

bj .

Therefore

b0 = 1 +

n−1∑

m=1

am −
n−1∑

j=1

bj

which inserted in (2.14) gives

ck = b0 +
n−1∑

j=1

e−i2πjk/nbj

= 1 +
n−1∑

m=1

am +
n−1∑

j=1

(e−i2πjk/n − 1)bj , 0 ≤ k ≤ n− 1

8



which proves (2.13).

Finally, we show that (2.11) implies (2.10), when (2.12) holds (or equivalently (2.13) holds).
Assume (x, y) ∈ C

n × C
n satisfies (2.11) for given a1, . . . , an−1, b1, . . . , bn−1 ∈ C. By (2.11)

and (2.8) we get

1 +

n−1∑

m=1

am =

n−1∑

m=0

xmym =

n−1∑

j=0

x̂j ŷ−j = x̂0ŷ0 +

n−1∑

j=1

bj.

Therefore

x̂0ŷ0 = 1 +

n−1∑

m=1

am −
n−1∑

j=1

bj (2.15)

Hence by (2.7) we have for 0 ≤ k ≤ n− 1,

n−1∑

m=0

xk+mym =

n−1∑

j=0

e−i2πkj/bx̂j ŷ−j

= x̂0ŷ0 +

n−1∑

j=0

e−i2πkj/nbj

= 1 +

n−1∑

m=1

am +

n−1∑

j=0

(e−i2πkj/n − 1)bj .

Thus (2.11) implies (2.10) with c1, . . . , cn−1 given by (2.13).

3 Finiteness of the set of cyclic p-roots of prime length p

We shall use the following two classical results:

Theorem 3.1. A compact algebraic variety in C
n is a finite set.

Proof. This is well known, see e.g. [Ru, Thm 14.3.i].

Theorem 3.2. (Chebotarëv, 1926). Let p be a prime number and let Fp denote the unitary
matrix of Fourier transform on C

p:

Fp =
( 1√

p
ei2πkl/p

)
k,l=0,...,p−1

.

Then for every two finite subsets K,L ⊆ {0, . . . , p − 1} of the same size |K| = |L| ≥ 1, the
corresponding submatrix

(Fp)K×L =
( 1√

p
ei2πkl/p

)
k∈K,l∈L

has non-zero determinant.
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Proof. See [SL, p. 29-30] and references given there.

The following application of Chebotarëv’s Theorem has been known to the author since
1996. After the results of this paper were presented at CIRM in October 2005, we learned,
that it has been proved independently by Terence Tao (cf. [Ta, Thm 1.1]). In the same paper,
Tao also presents a short and selfcontained proof of Chebotarëv’s theorem.

Proposition 3.3. Let u = (u0, . . . , up−1) ∈ C
p and let û = Fpu be the Fourier transformed

vector. If u 6= 0, then
|supp(u)| + |supp(û)| ≥ p+ 1 (3.1)

where for z ∈ C
p, |supp(z)| denotes the number of i ∈ {0, 1, . . . , p− 1} for which zi 6= 0.

Proof. Let p be a prime number, let u ∈ C
p \ {0}, assume that

|supp(u)| + |supp(û)| ≤ p.

Put L = supp(u) and note that L 6= ∅. Moreover

|Zp \ supp(û)| = p− |supp(û)| ≥ |supp(u)| = |L|.

Hence, we can choose K ⊆ Zp \ supp(û), such that |K| = |L|. For every k ∈ K

1√
p

∑

l∈L

ei2πkl/nul = ûk = 0. (3.2)

By Chebotarëv’s Theorem (Theorem 3.2), the matrix

( 1√
p
ei2πkl/n

)
k∈K,l∈L

has non-zero determinant. Hence by (3.2) ul = 0 for all l ∈ L = supp(û), which implies that
u = 0 and we have reached a contradictim. Therefore (3.1) holds for every u ∈ C

p \ {0}.

Lemma 3.4. Let n ∈ N. If the number of solutions (x, y) ∈ C
n ×C

n to (2.9) is infinite, then
there exists u, v ∈ C

n \ {0}, such that

ukvk = 0 and ûkv̂−k = 0

for k = 0, 1, . . . , n− 1.

Proof. Let W ⊆ C
n × C

n be the set of solutions to the 2n polynomial equations (2.9) and
assume that W have infinite many elements. Since W is an algebraic variety, we get by
Theorem 3.1 and the Heine-Borel Theorem, that W is an unbounded set. Put

‖z‖2 =

( n−1∑

j=0

|zj |2
) 1

2

, z ∈ C
n.

We choose a sequence of elements (x(m), y(m)) in W , (m ∈ N) such that

lim
n→∞

(
‖x(m)‖2

2 + ‖y(m)‖2
2

) 1

2 = +∞. (3.3)

10



Put next

u(m) =
1

‖x(m)‖2
x(m), v(m) =

1

‖y(m)‖2
y(m).

Then ‖u(m)‖2 = ‖v(m)‖2 = 1, i.e. (u(m), v(m)) ∈ S2n−1 × S2n−1 where S2n−1 denotes the unit
sphere in C

n. Since S2n−1 × S2n−1 is compact, we can by passing to a subsequence assume
that

lim
m→∞

(u(m), v(m)) = (u, v)

for some u, v ∈ S2n−1. Since x, y ∈W , x
(m)
0 = y

(m)
0 = 1 for all m ∈ N. Therefore

‖x(m)‖2
2 = 1 + cm, ‖y(m)‖2

2 = 1 + dm

for some non-negative real numbers cm, dm. Thus

‖x(m)‖2
2‖y(m)‖2

2 = (1 + cm)(1 + dm) ≥ 1 + cm + dm = ‖x(m)‖2
2 + ‖y(m)‖2

2 − 1.

Hence by (3.3),
lim

n→∞
‖x(m)‖2‖y(m)‖2 = +∞. (3.4)

Since (x(m), y(m)) satisfies (2.9) for all m, we have for 1 ≤ k ≤ n− 1

x
(m)
k y

(m)
k = 1, x̂

(m)
k ŷ

(m)
−k = 1

and the same equalities holds for k = 0, by (2.8) combined with x
(m)
0 = y

(m)
0 = 1. Therefore

ukvk = ûkv̂−k = lim
m→∞

(
‖x(m)‖2‖y(m)‖2

)−1
= 0

for 0 ≤ k ≤ n− 1, which proves lemma 3.4.

Theorem 3.5. Let p be a prime number, then the set of cyclic p-roots is finite.

Proof. The transformations of the cyclic n-root problem in section 2 from (2.1) to (2.3) and
later from (2.3) to (2.4) and (2.9) do not change the number of distinct solutions. Therefore
it is sufficient to show, that the set of solutions W to (2.9) is finite in the case n = p.

Assume |W | = +∞. Then by lemma 3.5 there exist u, v ∈ C
p \ {0}, such that

ukvk = 0 and ûkv̂−k = 0

for k = 0, 1, . . . , p− 1, i.e.

supp(u) ∩ supp(v) = ∅ and supp(û) ∩ (−supp(v̂)) = ∅

Hence
|supp(u)| + |supp(v)| ≤ p and |supp(û)| + |supp(v̂)| ≤ p

and therefore
|supp(u)| + |supp(û)| + |supp(v)| + |supp(v̂)| ≤ 2p. (3.5)

However, by Proposition 3.3 the left hand side of (3.5) is larger or equal to 2(p + 1). This
gives a contradiction, and we have therefore proved, that the set W of solutions to (2.9) is
finite.
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4 Multiplicity of a proper holomorphic function

Let U , V be regions in C
n (i.e. U and V are non-empty connected open subsets of C

n).
A holomorphic function ϕ : U → V is called proper if for every compact subset K and V ,
ϕ−1(K) = {z ∈ U | ϕ(z) ∈ K} is a compact subset of U . When ϕ is proper its Jacobian
J(z) = det(ϕ′(z)) can not vanish for all z ∈ U (cf. [Ru1, 15.1.3]). Following [Ru1, 15.1.4], we
let M denote the set

M = {z ∈ U | J(z) = 0}.
Its range ϕ(M) ⊆ V is called the set of critical values for ϕ and V \ϕ(M) is called the set of
regular values for ϕ. By [Ru, Prop. 15.1.5 and Thm. 15.1.9] we have

Theorem 4.1. Let U , V be regions in C
n and let ϕ : U → V be a proper holomorphic

function and let ϕ(M) be the set of critical values for ϕ, then

(a) ϕ(U) = V .

(b) The set V \ ϕ(M) of regular values for ϕ is a connected, open and dense subset of V .

(c) There is a unique natural number m ∈ N (called the multiplicity of ϕ) such that the
number of elements |ϕ−1(w)| in ϕ−1(w) satisfies

|ϕ−1(w)| = m for w ∈ V \ ϕ(M)

|ϕ−1(w)| < m for w ∈ ϕ(M).

(d) The critical set ϕ(M) is a zero-variety in V , i.e. ϕ(M) = {w ∈ V | h(w) = 0} for some
holomorphic function h : U → C.

Remark 4.2. The set of critical values ϕ(M) is a zero set with respect to the 2n-dimensional
Lebesgue measure m2n in C

n ≈ R
2n, i.e. m2n(ϕ(M)) = 0. This follows from Sard’s Theorem

(cf. [AY, Theorem 0.11]).

Proposition 4.3. [AY, Chap 1, Prop. 2.1]: Let U, V be regions in C
n and let ϕ : U → V be

a holomorphic function. Let a ∈ U be an isolated zero for ϕ, and choose a neighborhood Ua

of a, such that ϕ(z) 6= 0 when z ∈ Ua \{a}. Then there exists an ε > 0 such that for Lebesgue
almost all w ∈ B(0, ε), the function

ϕw(z) = ϕ(z) − w (4.1)

has only simple zeros in Ua (i.e, the Jacobian det(ϕ′
w) does not vanish at the zeros of ϕw),

and their number depends neither on w nor on the choice of the neighborhood Ua.

Definition 4.4. The number of zeros to (4.1) indicated in Prop. 4.3 is called the multiplicity
of the isolated zero a for ϕ.

An isolated zero a for ϕ has multiplicity one if and only if det(ϕ′(a)) 6= 0 (cf. [AY, Chap
1, Prop 2.2 and Prop 2.3]).
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Remark 4.5. The multiplicity defined above is also called the geometric multiplicity of an
isolated zero (cf [Ts, p. 16]). It coincides with the algebraic multiplicity of a:

µa(ϕ) = dim(Oa/Ia(ϕ)),

where Oa is the ring of holomorphic germs at a, and Ia(ϕ) is the ideal in Oa generated by the
n coordinate functions of ϕ (cf. [Ts, p. 148]).

We will also use the n-dimensional version of Rouchés Theorem (cf. [AY, Thm. 2.5 and
remark after Thm. 2.5]).

Theorem 4.6. Let U , V be regions in C
n and let D be a bounded open set, such that D ⊆ U

and ∂D is piecewise smooth. Let f, g : U → V be holomorphic functions, such that

∀z ∈ ∂D ∀t ∈ [0, 1] : f(z) + tg(z) 6= 0.

Then f and f + g have only isolated zeros in D, and the two functions f and f + g have the
same number of zeros in D counted with multiplicity.

Definition 4.7. Let U, V be regions in C
n, ϕ : U → V be a proper holomorphic function, and

let w ∈ V . By the number m(w) of solutions z ∈ U to ϕ(z) = w counted with multiplicity, we
mean the number of zeros of ϕw(z) = ϕ(z) − w in U connected with multiplicity.

The following theorem is probably well known but since we have not found a concrete
reference to it in the literature, we include a proof.

Theorem 4.8. Let U, V be regions in C
n and let ϕ : U → V be a proper holomorphic function

of multiplicity m (as defined in Theorem 4.1(c)). Then for every w ∈ V , the number m(w)
of solutions z ∈ U to ϕ(z) = w counted with multiplicity is equal to m.

Proof. Let ϕ(M) denote the set of critical values for ϕ as in Theorem 4.1. For w ∈ V we put

ϕw(z) = ϕ(z) − w, z ∈ U.

Note that the Jacobian Jw(z) = det(ϕ′
w(z)) is equal to the Jacobian of ϕ. Assume first, that

w ∈ V \ ϕ(M). Then the Jacobian of ϕw is non-zero at all the zeros of ϕw and hence all the
zeros have multiplicity 1. Hence by Theorem 4.1,

m(w) = |ϕ−1(w)| = m, w ∈ V \ ϕ(M).

Let now w ∈ V be arbitrary. Choose an ε > 0 such that B(w, ε) is contained in V . By the
properness of ϕ,

K = ϕ−1(B(w, ε))

is a compact subset of U . Moreover

|ϕ(z) − w| > ε for z ∈ U \K (4.2)

and since ∂K ⊆ U \K, we have

|ϕ(z) − w| ≥ ε for z ∈ ∂K. (4.3)

Let v ∈ B(w, ε). Then ϕv = ϕw + c where c = w − v ∈ C
n, and by (4.3)

|c| < ε ≤ |ϕw(z)|, z ∈ ∂K.
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Assume first that the boundary ∂K of K is piecewise smooth. Then we can apply Theorem
4.6 to f = ϕw and g = c, and obtain, that ϕw and ϕv have the same number of zeros (counted

with multiplicity) in
◦
K = K \ ∂K. By (4.2) and (4.3), neither ϕw nor ϕv = ϕw + c, |c| < ε

has zeros in ∂K or U \K. Hence

m(v) = m(w), v ∈ B(w, ε).

Since V \ ϕ(M) is dense in V by Theorem 4.1, we can choose a v ∈ B(w, ε) \ ϕ(M) and for
this v, m(w) = m(v) = m by the first part of the proof.

If ∂K is not piecewise smooth, one can find a compact set K ′ with piecewise smooth
boundary, such that K ⊆ K ′ ⊆ U , for instance K ′ can be a polyhedron or a finite union of
disjoint polyhedrons. Then the proof of m(w) = m can be completed as above by using K ′

instead of K.

5 The number of cyclic p-roots on (x, y)-level

Throughout this section p is a prime number. We will show, that for n = p, the numbers of

solutions to (2.4) and (2.9) counted with multiplicity are both equal to
(

2p−2
p−1

)
. In both cases

we will consider x0, y0 as the fixed numbers x0 = y0 = 1, so the problems (2.4) and (2.9) have
2p− 2 variables: x1, . . . , xp−1, y1, . . . , yp−1.

Lemma 5.1. Let x′, y′ ∈ C
p−1, x′ = (x1, . . . , xp−1), y

′ = (y1, . . . , yp−1), put

x = (1, x1, . . . , xp−1), y = (1, y1, . . . , yp−1),

and let x̂ = Fpx, ŷ = Fpy be their Fourier transformed vectors in C
p. Consider the function

ϕ : C
2p−2 → C

2p−2 given by the coordinate functions

ϕj(x
′, y′) = xjyj, 1 ≤ j ≤ p− 1 (5.1)

ϕp−1+j(x
′, y′) = x̂j ŷ−j, 1 ≤ j ≤ p− 1. (5.2)

Then ϕ is a proper holomorphic function.

Proof. Clearly ϕ is a holomorphic function of C
2p−2 into C

2p−2. For R > 0, we put

B(0, R) = {w ∈ C
2p−2 | ‖w‖2 ≤ R}.

Assume that ϕ is not proper. Then for some R > 0, ϕ−1(B(0, R)) is not a bounded subset of
C

2p−2. Hence there exists a sequence (z(m))∞m=1 in C
2p−2 such that

lim
m→∞

‖z(m)‖2 = ∞

while
‖ϕ(z(m))‖2 ≤ R, m ∈ N. (5.3)

Write z(m) = (x
(m)
1 , . . . , x

(m)
p−1, y

(m)
1 , . . . , y

(m)
p−1) and put

x(m) = (1, x
(m)
1 , . . . , x

(m)
p−1), y(m) = (1, y

(m)
1 , . . . , y

(m)
p−1).

14



Then

‖x(m)‖2
2‖y(m)‖2

2 =

(
1 +

p−1∑

j=1

|x(m)
j |2

)(
1 +

p−1∑

j=1

|y(m)
j |2

)
≥ 1 + ‖z(m)‖2

2.

Hence
lim

n→∞
‖x(m)‖2‖y(m)‖2 = ∞. (5.4)

The rest of the proof will follow the proof of Lemma 3.4 and Theorem 3.5. By passing to a
subsequence, we can obtain, that the sequences

u(m) =
1

‖x(m)‖2
x(m), v(m) =

1

‖y(m)‖2
y(m)

both converge in the unit sphere S2p−1 of C
p. Put

u = lim
m→∞

u(m), v = lim
m→∞

v(m).

By (5.1), (5.2) and (5.3),

|x(m)
j y

(m)
j | ≤ R and |x̂(m)

j ŷ
(m)
−j | ≤ R

for 1 ≤ j ≤ p− 1. Hence by (5.4)

ujvj = lim
m→∞

u
(m)
j v

(m)
j = 0, 1 ≤ j ≤ p− 1

and

ûj v̂−j = lim
m→∞

x̂
(m)
j ŷ

(m)
−j = 0, 1 ≤ j ≤ p− 1.

Moreover, since x
(m)
0 = y

(m)
0 = 1, we also have u0v0 = 0 and hence by (2.8) also û0v̂0 = 0.

We have thus proved that

supp(u) ∩ supp(v) = ∅ and supp(û) ∩ (−supp(v̂) = ∅.

However u, v are non-zero, because ‖u‖2 = ‖v‖2 = 1, so as in the proof of Theorem 3.5,
this contradicts Proposition 3.3. Therefore ϕ : C

2p−2 → C
2p−2 is a proper holomorphic

function.

Lemma 5.2. Let ϕ : C
2p−2 → C

2p−2 be the proper holomorphic function defined in lemma
5.1. Put

Z
∗
p = Zp \ {0} = {1, 2, . . . , p− 1}.

(i) Assume z = (x1, . . . , xp−1, y1, . . . , yp−1) is a solution to ϕ(z) = 0, and put

x = (1, x1, . . . , xp−1), y = (1, y1, . . . , yp−1).

Then there is a unique pair (K,L) of subsets K,L ⊆ Z
∗
p satisfying |K| + |L| = p − 1,

such that

supp(x) = L ∪ {0}, supp(x̂) = K ∪ {0} (5.5)

supp(y) = Zp \ L, −supp(ŷ) = Zp \K. (5.6)
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(ii) Conversely if K,L ⊆ Z
∗
p satisfy |K|+ |L| = p− 1, then there exists exactly one solution

(x, y) ∈ C
p×C

p to (5.5) and (5.6) of the form x = (1, x1, . . . , xp−1), y = (1, y1, . . . , yp−1)
and for this solution, z = (x1, . . . , xp−1, y1, . . . , yp−1) ∈ C

2p−2 satisfies ϕ(z) = 0.

(iii) The number of distinct zeros for ϕ is equal to
(

2p−2
p−1

)
.

Proof. (i): Assume that ϕ(z) = 0 for z = (x1, . . . , xp−1, y1, . . . , yp−1) ∈ C
2p−2, and define

x, y ∈ C
p as in (i). Then by the definition of ϕ,

xjyj = 0, x̂j ŷ−j = 0, for 1 ≤ j ≤ p− 1. (5.7)

Moreover x0y0 = 1, so by (5.7) and (2.8) also x̂0ŷ0 = 1. Therefore

supp(x) ∩ supp(y) = {0}
supp(x̂) ∩ (−supp(ŷ)) = {0}.

Hence, there are unique subsets K, K ′, L, L′ of Z
∗
p such that

supp(x) = L ∪ {0}, supp(x̂) = K ∪ {0} (5.8)

supp(y) = L′ ∪ {0}, −supp(ŷ) = K ′ ∪ {0}. (5.9)

Moreover K ∩K ′ = ∅ and L ∩ L′ = ∅. In particular

|K| + |K ′| ≤ p− 1 and |L| + |L′| ≤ p− 1. (5.10)

By Proposition 3.3

|K| + |L| = |supp(x)| + |supp(x̂)| − 2 ≥ p− 1 (5.11)

|K ′| + |L′| = |supp(y)| + |supp(ŷ)| − 2 ≥ p− 1. (5.12)

Hence, equality must hold in the 4 inequalities in (5.10), (5.11) and (5.12). In particular
|K| + |L| = p − 1 and K ′ = Z

∗
p \ K, L′ = Z

∗
p \ L. This proves (5.5) and (5.6), and the

uniqueness of K and L is clear.
(ii): Let K,L ⊆ Z∗

p be such that |K| + |L| = p − 1. Put K ′ = Z
∗
p \K, L′ = Z

∗
p \ L. Then

(5.6) can be written as

supp(y) = L′ ∪ {0}, −supp(ŷ) = K ′ ∪ {0}. (5.13)

Moreover
|K ′| = |L|, |L′| = |K|. (5.14)

Assume first that |K| ≥ 1 and |L| ≥ 1. Then by Chebotarëv’s Theorem (Theorem 2.1), the
submatrices (Fp)K ′×L and (Fp)K×L′ of

Fp = (
1√
p
ei2πkl/p)j,k=0,...,p−1

have non-zero determinants. We claim that (5.5) and (5.6) have a unique solution (x, y) of
the form x = (1, x1, . . . , xp−1), y = (1, y1, . . . , yp−1) and that this solution is given by





(xl)l∈L = − 1√
p

[
(Fp)K ′×L

]−1
(1)k∈K ′

xl = 0 for l ∈ L′
(5.15)
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and 



(yl)l∈L′ = − 1√
p

[
(F p)K×L′

]−1
(1)k∈K

yl = 0 for l ∈ L
(5.16)

where (1)k∈K (resp. (1)k∈K ′) is the column vector with coordinates indexed by K (resp. K ′)
and all entries equal to 1. Moreover F p is the complex conjugate of Fp.

To prove this claim, observe first that (5.5) is equivalent to

supp(x) ⊆ L ∪ {0}, supp(x̂) ⊆ K ∪ {0} (5.17)

because if one of the inclusions in (5.17) is proper, then

|supp(x)| + |supp(x̂)| < |K| + |L| + 2 = p+ 1

which contradicts Proposition 3.3. Moreover x = (1, x1, . . . , xp−1) satisfies (5.17) if and only
if xl = 0 for l ∈ L′ and

1√
p

+
1√
p

∑

l∈L

ei2πkl/pxl = 0, k ∈ K ′.

The latter formula can be rewritten as

(Fp)K ′×L(xl)l∈L = − 1√
p
(1)k∈K ′

which is equivalent to (5.15). Similarly one gets that for y = (1, y1, . . . , yp−1), (5.6) is equiv-
alent to

supp(y) ⊆ L′ ∪ {0}, −supp(ŷ) ⊆ K ′ ∪ {0}
which is equivalent to yl = 0 for l ∈ L and

1√
p

+
1√
p

∑

l∈L′

e−i2πklyl = 0, k ∈ K,

and this is equivalent to (5.16). Finally if |K| = 0, then K = L′ = ∅ and K ′ = L = Z
∗
p. In

this case, it is elementary to check that the pair x = (1, 1, . . . 1), y = (1, 0, . . . , 0) is the unique
solution to (5.5) and (5.6). Similarly, if |L| = 0, the pair x = (1, 0, . . . , 0), y = (1, 1, . . . , 1) is
the unique solution to (5.5) and (5.6).

Note finally, that if (x, y) is a solution to (5.5) and (5.6) of the form x = (1, x1, . . . , xp−1),
y = (1, y1, . . . , yp−1), then z = (x1, . . . , xp−1, y1, . . . , yp−1) is a zero for ϕ, because supp(x) ∩
supp(y) = {0} and supp(x̂) ∩ (−supp(ŷ)) = {0}. This proves (ii).

(iii): By (i) and (ii) there is a one-to-one correspondence between the zeros of ϕ and pairs
(K,L) of subsets Z

∗
p satisfying |K| + |L| = p− 1. The number of such pairs is

p−1∑

j=0

(
p− 1

j

)(
p− 1

p− 1 − j

)
=

(
2p− 2

p− 1

)
,

which proves (iii).

Theorem 5.3. The map ϕ : C
2p−2 → C

2p−2 defined in lemma 5.1 is a proper holomorphic

function of multiplicity
(

2p−2
p−1

)
. In particular the number of solutions (x1, . . . , xp−1, y1, . . . , yp−1)

to (2.9) counted with multiplicity is equal to
(

2p−2
p−1

)
.
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Proof. By Theorem 4.8 it is sufficient to prove that for some w ∈ C, the number of solutions

to ϕ(z) = w counted with multiplicity is equal to
(

2p−2
p−1

)
. Put now w = 0. From lemma 5.2

we know that ϕ has exactly
(

2p−2
p−1

)
distinct zeros. Hence we just have to show, that all the

zeros have multiplicity 1, or equivalently the Jacobian J(z) = det(ϕ′(z)) is non-zero whenever
ϕ(z) = 0.

Let z = (x1, . . . , xp−1, y1, . . . , yp−1) be a zero for ϕ, put x = (1, x1, . . . , xp−1), y =
(1, y1, . . . , yp−1) and let K,L ⊆ Z

∗
p be the corresponding sets as in lemma 5.2. Then |K|+|L| =

p− 1, and with K ′ = Z
∗
p \K, L′ = Z

∗
p \ L, (5.5) and (5.6) can be written

supp(x) = L ∪ {0}, supp(x̂) = K ∪ {0} (5.18)

supp(y) = L′ ∪ {0}, −supp(ŷ) = K ′ ∪ {0}. (5.19)

In order to determine ϕ′(z) we compute ϕ(z+ h) for h = (f1, . . . , fp−1, g1, . . . , gp−1) ∈ C
2p−2.

Put
f = (0, f1, . . . , fp−1), g = (0, g1, . . . , gp−1).

Then

ϕ(z + h)j = (xj + fj)(yj + gj), 1 ≤ j ≤ p− 1

ϕ(z + h)p−1+j = (x̂j + f̂j)(ŷ−j + ĝ−j), 1 ≤ j ≤ p− 1.

Using ‖f̂‖2‖ĝ‖2 = ‖f‖2‖g‖2 ≤ ‖h‖2
2, we get

ϕ(z + h)j = ϕ(z)j + fjyj + xjgj +O(‖h‖2
2)

ϕ(z + h)p−1+j = ϕ(z)p−1+j + f̂j ŷ−j + x̂j ĝ−j +O(‖h‖2
2)

in Landau’s O-notation. Hence

(ϕ′(z)h)j = yjfj + xjgj , 1 ≤ j ≤ p− 1 (5.20)

(ϕ′(x)h)p−1+j = ŷ−j f̂j + x̂j ĝ−j, 1 ≤ j ≤ p− 1. (5.21)

To prove that J(z) = det(ϕ′(z)) 6= 0, we just have to show that ker(ϕ′(z)) = 0, i.e.

ϕ′(z)h = 0 ⇒ h = 0, h ∈ C
2p−2.

By (5.18) and (5.19), the formulas (5.20) and (5.21) can be written as

(ϕ′(z)h)j =

{
xjgj, j ∈ L
yjfj, j ∈ L′

and

(ϕ′(z)h)p−1+j =

{
x̂j ĝ−j , j ∈ K

ŷ−j f̂j, j ∈ K ′ .

Hence, if ϕ′(z)h = 0, then by (5.18) and (5.19),

gj = 0 (j ∈ L), fj = 0 (j ∈ L′),

ĝ−j = 0 (j ∈ K), f̂j = 0(j ∈ K ′),
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and since f0 = g0 = 0 by the definition of f and g, it follows that

supp(f) ⊆ L, supp(f̂) ⊆ K ∪ {0}
supp(g) ⊆ L′, − supp(ĝ) ⊆ K ′ ∪ {0}.

Hence
|supp(f)| + |supp(f̂)| ≤ |K| + |L| + 1 = p

and
|supp(g)| + |supp(ĝ)| ≤ |K ′| + |L′| + 1 = p

By Proposition 3.3, it now follows that f = g = 0 and hence h = 0. Therefore ker(ϕ′(z)) = 0,
and hence J(z) 6= 0.

Corollary 5.4. Let x′, y′ ∈ C
p−1, x′ = (x1, . . . , xp−1), y

′ = (y1, . . . , yp−1) and put x =
(1, x1, . . . , xp−1), y = (1, y1, . . . , yp−1). Then the function ψ : C

2p−2 → C
2p−2 given by the

coordinate functions

ψj(x
′, y′) = xjyj, 1 ≤ j ≤ p− 1 (5.22)

ψp−1+j(x
′, y′) =

p−1∑

m=0

xj+mym, 1 ≤ j ≤ p− 1 (5.23)

is a proper holomorphic function of multiplicity
(

2p−2
p−1

)
. In particular the number of solutions

(x1, . . . , xp−1, y1, . . . , yp−1) to (2.4) counted with multiplicity is equal to
(

2p−2
p−1

)
.

Proof. Let ϕ : C
2p−2 → C

2p−2 be as in lemma 5.1. By Proposition 2.3

ϕ = Λ ◦ ψ (5.24)

where Λ : C
2p−2 → C

2p−2 is the affine map given by

Λ(a1, . . . , ap−1, c1, . . . , cp−1) = (a1, . . . , ap−1, b1, . . . , bp−1) (5.25)

where

bj =
1

p
(1 +

p−1∑

m=1

am +

p−1∑

k=1

ei2πjk/pck), 1 ≤ j ≤ p = 1 (5.26)

Moreover by Proposition 2.3, Λ is a bijection and its inverse is given by (2.13) with n = p.
Hence by (5.24)

ψ = Λ−1 ◦ ϕ
where Λ and Λ−1 are affine transformations of C

2p−2. Therefore it follows from Theorem 5.3,

that ψ is a proper holomorphic function of multiplicity
(

2p−2
p−1

)
, so by Theorem 4.8 the number

of solutions (x1, . . . , xp−1, y1, . . . , yp−1) to (2.4) counted with multiplicity is
(

2p−2
p−1

)
.
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6 The numbers of cyclic p-roots on x-level and z-level

Throughout this section p is again a prime number. We will show that the numbers of

solutions to (2.3) and (2.1) counted with multiplicity are both equal to
(

2p−2
p−1

)
. In the case

of (2.3), we consider x0 as the fixed number 1, so the problem has p−1 variables x1, . . . , xp−1.

Lemma 6.1. Put a0 = x0 = 1 and define for a = (a1, . . . , ap−1) ∈ (C∗)p−1 a map σa :
(C∗)p−1 → C

p−1 by

σa(x1, . . . , xp−1)j =

p−1∑

m=0

am
xm+j

xm
, 1 ≤ j ≤ p− 1

Then σa is a proper holomorphic function, and the multiplicity of σa is independent of a ∈
(C∗)p−1.

Proof. Let a ∈ (C∗)p−1. Then σa is clearly holomorphic. To prove that σa is proper, we let
K ⊆ C

p−1 be compact. Put a0 = x0 = y0 = 1 and let ψ be the holomorphic map defined in
Corollary 5.4. Since ψ is proper, the set

La = ψ−1({a} ×K)

is compact. Moreover La is the set of (x′, y′) = (x1, . . . , xp−1, y1, . . . , yp−1) ∈ C
2p−2 for which

xjyj = aj, 1 ≤ j ≤ p− 1

and (
p−1∑

m=0

xj+mym

)p−1

j=1

∈ K

Since aj 6= 0 (1 ≤ j ≤ p− 1), La can be expressed as the set of

(
x1, . . . , xp−1,

a1

x1
, . . . ,

ap−1

xp−1

)
∈ C

2p−2

for which (x1, . . . , xp−1) ∈ (C∗)p−1 and

(
p−1∑

m=0

am
xj+m

xm

)p−1

j=1

∈ K

Hence σ−1
a (K) = π(La), where π : C

2p−2 → C
p−1 is the map that takes out the first p− 1

coordinates of an element in C
2p−2. Therefore σ−1

a (K) is compact, and we have proved that
σa is proper.

Note that (C∗)p−1 is a connected open set in C
p−1. In order to prove that a → m(σa) is

a constant function on (C∗)p−1, it is therefore sufficient to prove that for every a0 ∈ (C∗)p−1,
m(σa) is constant in a ball U = B(a0, ε), where ε > 0 is chosen such that U ⊆ (C∗)p−1. Put
now

M = max{‖a‖2 | a ∈ U}.
Since the map ψ : C

2p−2 → C
2p−2 is proper, we can choose R > 0, such that

‖ψ(z)‖2 ≥ (M2 + 1)1/2, when ‖z‖2 ≥ R (6.1)
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Applying (6.1) to

z =
(
x1, . . . , xp−1,

a1

x1
, . . . ,

ap−1

xp−1

)

for x′ = (x1, . . . , xp−1) ∈ (C∗)p−1, we get that

‖a‖2
2 + ‖σa(x

′)‖2
2 = ‖ψ(z)‖2

2 ≥M2 + 1

when
‖(x1, . . . , xp−1)‖2

2 + ‖
(a1

x1
, . . . ,

ap−1

xp−1

)
‖2
2 ≥ R2

and since ‖a‖2 ≤M for a ∈ U it follows that

‖σa(x
′)‖2 ≥ 1, when a ∈ U and

‖(x1, . . . , xp−1)‖2 ≥ R or ‖
(a1

x1
, . . . ,

ap−1

xp−1

)
‖2 ≥ R

(6.2)

Put
D = {(x1, . . . , xp−1) ∈ {(C∗)n | c

R
< xj < R}

where c = min{|aj | | a ∈ U, j = 1, . . . , p− 1} > 0. By replacing R with a larger number, we
can assume that c

R < R. Then D is a non-empty compact subset of (C∗)p−1 and its boundary
∂D has 2p−1 smooth components. By (6.2) all the zeros of σa are in D, when a ∈ U . Let
a ∈ U . Since U is convex, all the functions

(1 − t)σa0
+ tσa, 0 ≤ t ≤ 1

are of the form σa′ for an a′ ∈ U , namely a′ = (1 − t)a0 + ta. Hence by applying Rouchés
Theorem (Theorem 4.6) to f = σa0

and g = σa − σa0
, we get that σa0

and σa have the same
number of zeros in D counted with multiplicity, and since neither σa0

nor σa has zeros in
(C∗)p−1 \ D, it follows that σa0

and σa have the same number of zeros in (C∗)p−1 counted
with multiplicity. Therefore by Theorem 4.8, m(ϕa) = m(ϕa0

) for all a ∈ U . Hence we have
proved that m(ϕa) is a constant function on (C∗)p−1.

Theorem 6.2. Put x0 = 1, and let σ : (C∗)p−1 → C
p−1 be the function defined by

σ(x1, . . . , xp−1)j =

p−1∑

m=0

xm+j

xm
1 ≤ j ≤ p− 1

Then σ is a proper holomorphic function of multiplicity
(

2p−2
p−1

)
. In particular there are

(
2p−2
p−1

)
cyclic p-roots on x-level counted with multiplicity.

Proof. Let ψ : C
2p−2 → C

2p−2 be the holomorphic function defined in Theorem 5.4. Then

ψ is proper and has multiplicity m(ψ) =
(

2p−2
p−1

)
. Let N = ψ(M) denote the set of critical

values for ψ. Then by Theorem 4.1, and Remark 4.2, N is a closed set, and

m4p−4(N) = 0
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where m4p−4 is the Lebesgue measure in C
2p−2 ≃ R

4p−4. By Theorem 4.1 the number of
district solutions z ∈ C

2p−2 to
ϕ(z) = w

is m(ϕ) for every w = (a, c) ∈ (Cp−1 × C
p−1) \ N . Since m4p−4(N) = (m2p−2 ×m2p−2)(N),

where m2p−2 is the Lebesgue measure in C
p−1, it follows that

0 = m4p−4(N) =

∫

R2p−2

m2p−2(Na)dm2p−2(a)

where Na = {c ∈ C
p−1 | (a, c) ∈ N} (see e.g. [Ru 2, Sect. 8].) Hence the set

N ′ = {a ∈ C
p−1 | m2p−2(Na) 6= 0}

is a m2p−2–null set in C
p−1. Moreover for all a ∈ C

p−1 \N ′, the number of district solutions
to

ψ(z) = (a, c) (6.3)

is exactly m(ψ) for all c ∈ C
p−1 outside the Lebesgue null set Na. If a ∈ (C∗)p−1 we have

from the proof of lemma 6.1. that the solution (6.3) are precisely the elements in (C∗)2p−2 of
the form (

x1, x2, . . . , xp−1,
a1

x1
, . . . ,

ap−1

xp−1

)

for which σa(x1, . . . , xp−1) = c. Hence for a ∈ (C∗)p−1\N ′, the number of distinct solutions to
σa(x

′) = c is equal to m(ψ) for Lebseque almost all c ∈ C
p−1. Therefore by Theorem 4.1 and

Remark 4.2, the multiplicity m(σa) of σa is equal to m(ψ) for all a ∈ (C∗)p−1 \N ′. But since
a→ m(σa) is a constant function on (C∗)p−1 by lemma 6.1, it follows that m(σa) = m(ψ) for

all a ∈ (C∗)p−1. Putting a = (1, . . . , 1), we get in particular, that m(σ) = m(ψ) =
(

2p−2
p−1

)
.

Thus by Theorem 4.8, the number of solution (x1, . . . , xp−1) to (2.3) counted with multiplicity

is equal to
(

2p−2
p−1

)
where n = p.

Lemma 6.3. Put x0 = 1 and let h : (C∗)p → (C∗)p be the function given by

h(x1, . . . , xp−1, α) =
(αx1

x0
,
αx2

x1
, . . . ,

αx0

xp−1

)
(6.4)

Then h is proper, and for every (z0, . . . , zp−1) ∈ (C∗)p there are exactly p distinct solutions
in (C∗)p to the equation

h(x1, . . . , xp−1, α) = (z0, . . . , zp−1) (6.5)

Proof. We start by solving (6.5) w.r.t. (x1, . . . , xp−1, α). By (6.4)

z0z1 · . . . · zp−1 = αp (6.6)

Hence α is one of the p distinct p’th roots of z0z1 · . . . ·zp−1. For each such α, there is a unique
solution to (6.5) given by

x1 =
z0
α
, x2 =

z0z1
α2

, . . . , xp−1 =
z0z1 · . . . · zp−2

αp−1
(6.7)

22



Hence (6.5) has exactly p distinct solutions. Let K ⊆ (C∗)p be compact. Then there exists
R > 0, such that

K ⊆ {z ∈ (C∗)p | 1

R
≤| zj |≤ R, 0 ≤ j ≤ p− 1}.

¿From (6.6) and (6.7) it now follows that h−1(K) is relatively compact in (C∗)p, which by
the continuity of h implies that h−1(K) is compact. Hence h is proper.

Theorem 6.4. Let ρ : (C∗)p → C
p−1 × C

∗ be the function given by

ρ1(z) = z0 + z1 + . . . + zp−1

ρ2(z) = z0z1 + z1z2 + . . .+ zp−1z0
...

ρp−1(z) = z0z1 · . . . · zp−2 + . . .+ zp−1z0 · . . . · zp−3

ρp(z) = z0z1 · . . . · zp−1

Then ρ is a proper holomorphic function of multiplicity
(

2p−2
p−1

)
. In particular, the numbers

of cyclic p-roots on z-level (i.e. the number of solutions to (2.1) counted with multiplicity is

equal to
(

2p−2
p−1

)
.

Proof. Consider the composed map ρ ◦h : (C∗)p → C
p−1 ×C

∗, where h is given by (6.4) with
x0 = 1. Then

(ρ ◦ h)j(x1, . . . , xp−1, α) = αj
p−1∑

m=0

xm+j

xm
, 1 ≤ j ≤ p− 1

and
(ρ ◦ h)p(x1, . . . , xp−1, α) = αp

Let σ : (C∗)p−1 → C
p−1 be the proper holomorphic map from Theorem 6.2. Then for

x′ = (x1, . . . , xp−1) ∈ (C∗)p−1 and α ∈ C
∗

(ρ ◦ h)(x′, α) = (ασ1(x
′), . . . , αp−1σp−1(x

′), αp) (6.8)

Since σ : (C∗)p−1 → C
p−1 is proper, it is elementary to deduce from (6.8), that ρ ◦ h is a

proper map from (C∗)p to C
p−1 × C

∗. Moreover since h maps (C∗)p into (C∗)p, we have for
every compact subset K of C

p−1 × C
∗, that

ρ−1(K) = h(h−1(ρ−1(K)) = h((ρ ◦ h)−1(K)),

which is compact by the properness of ρ ◦ h. Hence ρ is proper.
We will prove that m(ρ) = m(σ) by computing the multiplicity of g ◦ h in two ways:

By Theorem 4.1 and Remark 4.2, there exists a Lebesgue nullset N0 ⊆ C
p−1 such that for

all w ∈ C
p−1 \ N0 the equation σp(x

′) = w has m(σ) district solutions in (C∗)p−1. For
(x′, α) ∈ (Cp−1 \N0) × C

∗, (ρ ◦ h)(x′, α) = w if and only if

αp = wp (6.9)

and

σ(x′) =
( 1

α
w1, . . . ,

1

αp−1
wp−1

)
(6.10)
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Since (6.9) has exactly p distinct solutions, it follows that (ρ◦h)(x′, α) = w has exactly pm(σ)
distinct solution for all such w. The complement of (Cp−1 \N0)×C

∗ in C
p−1 ×C

∗ is N0 ×C
∗

which is a null set w.r.t. the Lebesgue measure in C
p. Hence by Theorem 4.1 and Remark

4.2, m(ρ ◦ h) = pm(σ).
By the definition of m(ρ), there exists a Lebesgue null set N in C

p−1×C
∗, such that for all

w ∈ C
p−1 × C

∗ \N , the number of distinct solutions z ∈ (C∗)p to ρ(z) = w is equal to m(ρ).
By lemma 6.3 we then get that the number of distinct solutions u ∈ (C∗)p to ρ(h(u)) = w is
equal to pm(ρ). Since N is a Lebesgue nullset it follows that m(ρ ◦ h) = p ·m(ρ). Hence

m(ρ) =
1

p
m(ρ ◦ h) = m(σ) =

(
2p−2
p−1

)
.

By Theorem 4.8 the number of solutions to (2.1) with n = p counted with multiplicity is

equal to
(

2p−2
p−1

)
.

7 Cyclic p-roots of simple index k

Let p be a prime number and let k ∈ N be a number that divides p − 1. Since the group
(Z∗

p, ·) is cyclic, it has a unique subgroup G0 of index k, namely

G0 = {hk|h ∈ Z
∗
p}.

Moreover, if g ∈ Z
∗
p is a generator for Z

∗
p, then

Gl = glG0, 1 ≤ l ≤ k − 1

are the k − 1 non-trivial cosets of G0 in Z
∗
p. Following the notation of [BH], a cyclic p-root

z = (z0, z, . . . , zp−1) has simple index k if the corresponding cyclic p-roots on x-level

x = (1, z0, z0z1, . . . , z0zi · . . . · zp−2)

is of the form {
x0 = 1
xi = cl, if i ∈ Gl, 1 ≤ i ≤ p− 1,

(7.1)

where (c0, c1, . . . , ck−1) ∈ (C∗)k. These special cyclic p-roots where introduced by Björck in
[Bj] under a slightly different name (cyclic p-roots of simple preindex k). It was shown in [Bj],
that if x = (1, x1, x2, . . . , xp−1) has the form (7.1), then the equations (2.3) can be reduced
to the following set of k rational equations in c0, . . . , ck−1:

ca +
1

ca+m
+

k−1∑

i,j=0

nij
ca+j

ca+i
= 0 (0 ≤ a ≤ k − 1) (7.2)

where indices are calculated modulo k. In (7.2) the number m is determined by p − 1 ∈ Gm

and nij denote the number of b ∈ Gi for which b + 1 ∈ Gi+1 (0 ≤ i, j ≤ k − 1). The set of
equations (7.2) is independent of the choice of the generator g for Z

∗
p up to permutation of

the variables and of the equations. The main result of this section is:
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Theorem 7.1. For every k ∈ N and for every prime number p for which k divides p− 1, the
function χ : (C∗)k → C

k given by

χ(c0, . . . , ck−1)a = ca +
1

ca+m
+

k−1∑

i,j=0

nij
ca+j

ca+i
= 0, (0 ≤ a ≤ k − 1)

is a proper holomorphic function of multiplicity
(

2k
k

)
. In particular the number of solutions

(c0, . . . , ck−1) ∈ (C∗)k to (7.2) counted with multiplicity is equal to
(

2k
k

)
.

The proof of Theorem 7.1 relies on Proposition 7.3 and Proposition 7.4 below. We first
introduce some notation: Let n ∈ N and let F be a subspace of C

n of dimension d ≥ 1. A
subset U ⊆ F is called a region in F if it is non-empty, open and connected in the relative
topology on F . By choosing a fixed basis for F , we can identify F with C

d, and thereby extend
the defintion of holomorphic functions, proper holomorphic functions and their multiplicities
to maps ϕ : U → V , where U and V are two regions in F . Clearly these definitions are
independent of the choice of a basis for F .

Definition 7.2. Let E denote the set of (xi)
p−1
i=1 ∈ C

p−1 for which the function i → xi, i ∈
Z
∗
p = {1, . . . , p− 1} is constant on each of the cosets G0, . . . , Gk−1 of G0.

Note that E is the k-dimensional subspace of C
p−1, and the indicator functions 1G0

, . . . , 1Gk−1

given by

(1Gl
)i =

{
1 i ∈ Gl

0 i 6∈ Gl
(7.3)

form a basis for E. Note also, that E×E is a subspace of C
p−1 ×C

p−1 ≃ C
2p−2 of dimension

2k.

Proposition 7.3. Let ϕ,ψ : C
2p−2 → C

2p−2 be the proper holomorphic functions defined in
Lemma 5.1 and corollary 5.4. Then

(a) ϕ(E × E) ⊆ E × E and ψ(E × E) ⊆ E × E.

(b) The restrictions ϕE and ψE of ϕ and ψ to E × E are proper holomorphic functions.

(c) The multiplicities of ϕE and ψE are given by

m(ϕE) = m(ψE) =

(
2k
k

)
.

Proof. (a) Let x′ = (x1, . . . , xp−1) ∈ E, y′ = (y1, . . . , yp−1) ∈ E and put

x = (1, x1, . . . , xp−1) and y = (1, y1, . . . , yp−1).

To prove that ϕ(E × E) ⊆ E × E and ψ(E × E) ⊆ E × E, it is by (5.1), (5.2), (5.22) and
(5.23) sufficient to show that

(xjyj)1≤j≤p−1 ∈ E (7.4)

(x̂j ŷ−j)1≤j≤p−1 ∈ E (7.5)

( p−1∑

m=0

xj+mym

)
1≤j≤p−1

∈ E (7.6)
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Note that (7.4) follows immediately from the conditions x′ ∈ E and y′ ∈ E. To prove (7.5),
note first that G0 acts transitively on each of its cosets, i.e.

Gl = {hj|h ∈ G0} for all j ∈ Gl.

Hence
E = {(xj)

p−1
j=1|xhj = xj for all h ∈ G0} (7.7)

where as usual indices are calculated modulo p. Let h ∈ G0 and 0 ≤ j ≤ p− 1. Then

x̂hj =
1√
p

( p−1∑

m=0

ei2πjhm/pxm

)

Since m → hm is a bijetion of Zp onto itself, we can replace m by h−1m in the above
summation (h−1 is the inverse of h in the group G0 ⊆ Z

∗
p). Hence

x̂hj =
1√
p

( p−1∑

m=0

ei2πjm/pxh−1m

)
. (7.8)

Since (x1, . . . , xp−1) ∈ E and h−10 = 0 we have xh−1m = xm for 0 ≤ m ≤ p− 1 and therefore
x̂hj = x̂j , j ∈ Zp. In the same way we get ŷ−hj = ŷ−j, j ∈ Zp. Hence (7.5) follows from (7.7).

To prove (7.6), put w = (w1, . . . , wp−1), where

wj =

p−1∑

m=0

xj+mym, 1 ≤ j ≤ p− 1.

Let h ∈ G0. Then

whj =

p−1∑

m=0

xhj+mym, 1 ≤ j ≤ p− 1.

By replacing m by hm in the above summation, we get

whj =

p−1∑

m=0

xh(j+m)yhm.

Since x′, y′,∈ E and h0 = 0, it follows that

whj =

p−1∑

m=0

xj+mym = wj.

Hence by (7.7), w ∈ E which proves (7.6).

(b) It is clear that ϕE and ψE are holomorphic functions on E × E. Let K ⊆ E × E be
a compact set. Then

(ϕE)−1(K) = ϕ−1(K) ∩ (E × E).

Since ϕ is proper, it follows that ϕE is a proper holomorphic function of E × E into itself.
The same argument shows that ψE is proper.
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(c) Assume that z = (x1, . . . , xp−1, y1, . . . , yp−1) ∈ E × E is a solution to ϕ(z) = 0, and
put

x = (1, x1, . . . , xp−1) and y = (1, y1, . . . , yp−1).

By Lemma 5.2 there exists a unique pair of subsets K,L ⊆ Z
∗
p satisfying |K| + |L| = p − 1

such that

supp(x) = L ∪ {0}, supp(x̂) = K ∪ {0} (7.9)

supp(y) = Zp \ L, −supp(ŷ) = Zp \K (7.10)

Let h ∈ G0. Since z ∈ E × E we get from the proof of (a), that xhj = xj and x̂hj = x̂j for
1 ≤ j ≤ p − 1. Hence the sets K,L ∈ Z

∗
p are invariant under multiplication by all h ∈ G0,

which implies that K and L are disjoint unions of G0-cosets, i.e

K =
⋃

l∈I

Gl, L =
⋃

l∈I′

Gl (7.11)

where I and I ′ are finite subsets of {0, . . . , k−1}. Moreover |I|+ |I ′| = k, because |K|+ |L| =
p− 1 and each coset Gl has p−1

k elements.
Conversely, if K,L are of the form (7.11) for I, I ′ ⊆ {0, . . . , k− 1} and |I|+ |I ′| = K, then

by Lemma 5.2 (ii), there is precisely one element (x, y) ∈ C
p ×C

p with x0 = y0 = 1 for which
(7.9) and (7.10) holds and for this pair (x, y),

z = (x1, . . . , xp−1, y1, . . . , yp−1)

is a solution to ϕ(z) = 0. We claim that z ∈ E × E. To prove this, let h ∈ G0 and define
(x̃, ỹ) ∈ C

p × C
p by

x̃j = xhj and ỹj = yhj, 0 ≤ j ≤ p− 1.

Then x̃0 = ỹ0 = 1 and by the proof of (7.8)

(ˆ̃x)j = x̂h−1j and (ˆ̃y)−j = ŷ−h−1j , 0 ≤ j ≤ p− 1.

Since h, h−1 ∈ G0 and since K and L are invariant under multiplication by elements from G0,
it follows that (7.9) and (7.10) are satisfied for the pair (x̃, ỹ) as well. Thus by the uniqueness
of (x, y) in Lemma 5.2 (ii), we have x̃ = x and ỹ = y. Hence by (7.7), z ∈ E × E as claimed.

Altogether, we have established a one-to-one correspondence between the zeros of ϕE and
the pairs of subsets (I, I ′) of {0, . . . , k − 1} for which |I| + |I ′| = k. Hence ϕE has exactly

k∑

l=0

(
k

l

)(
k

k − l

)
=

(
2k

j

)

zeros. Let z be a zero for ϕE . Then z ∈ E × E and ϕ(z) = 0. By the proof of Theorem
5.3, kerϕ′(z) = {0} and since ϕ′

E is the restriction of ϕ′(z) to E × E also kerϕ′
E(z) = {0}.

Therefore all the zeros of ϕE have multiplicity 1. It now follows from Theorem 4.8, that
m(ϕE) =

(2k
k

)
.

From the proof of corollary 5.4 we know that ψ = Λ−1 ◦ ϕ, where Λ is the affine trans-
formation of C

2p−2 given by (5.25) and (5.26). It is elementary to check, that ΛE = Λ|E×E

is an affine transformation of E × E onto itself. Hence ψE = Λ−1
E ◦ ϕE , and therefore

m(ψE) = m(ϕE) =
(2k

k

)
.
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Proposition 7.4. Let σ : (C∗)p−1 → C
p−1 be the proper holomorphic map defined in Theorem

6.2, i.e.

σ(x1, . . . , xp−1)j =

p−1∑

m=0

xm+j

xm
, 1 ≤ j ≤ p− 1

where x0 = 1. Then the restriction σE of σ to E0 = E ∩ (C∗)p−1 is a proper holomorphic
function of E0 into E with multiplicity

(2k
k

)
.

Proof. Note first that E0 = E ∩ (C∗)p−1 is an open, connected and dense subset of E. Put
a0 = 1 and define for a ∈ E0

σa(x1, . . . , xp−1)j =

p−1∑

m=0

am
xm+j

xm
, 1 ≤ j ≤ p− 1

as in lemma 6.1. It is clear from the proof of (7.6) that σa(E0) ⊆ E for all a ∈ E0. Let
σa,E denote the restriction of σa to E0. By lemma 6.1, σa is a proper holomorphic map
from (C∗)p−1 to C

p−1. As in the proof of Proposition 7.4(b), it follows that σa is a proper
holomorphic map from E0 to E. By simple modifications of the proofs of lemma 6.1 and
Theorem 6.2 one gets first that the multiplicity of σa,E is independent of a ∈ E0 and next
that m(σa,E) = m(ψE) for all a ∈ E0. In particular

m(σE) = m(ψE) =

(
2k

k

)
.

Proof of Theorem 7.1. The function χ : (C∗)k−1 → C
k−1 defined in Theorem 7.1 is just

the function σE : E0 → E written out in coordinates (c0, . . . , ck−1) with respect to the basis
(1G0

, . . . , 1Gk−1
) for E defined by (7.3) (cf. the derivation of the equations (7.2) in [Bj]).

Therefore Theorem 7.1 is an immediate consequence of Proposition 7.4 and Theorem 4.8.

Remark 7.5. (a) If k = p − 1 all cyclic p-roots are of simple index k, and this special case
of Theorem 7.1 is the same as Theorem 6.2.

(b) It follows from Theorem 7.1 that there are at most
(2k

k

)
distinct cyclic p-roots of simple

index k on x-level (or z-level). Moreover the number of cyclic p-roots of simple index k on
x-level (or z-level) counted with multiplicity is at least

(2k
k

)
. However, for k < p− 1, we have

not been able to rule out the possibility that a cyclic p-root of simple index k could have
higher multiplicity with respect to the set of equations (2.3) than with respect to the set of
equations (7.2).

References

[AY] I.A. Aizenberg and A.P. Yuzhakov, Integral representations and Residues in Multi-
dimensional Complex Analysis. Translations of Mathematical Monographs, Vol. 58,
Amer. Math. Soc (1983).
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