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Abstract. In [4] we introduced the class of DT–operators, which are modeled by certain
upper triangular random matrices, and showed that if the spectrum of a DT–operator is
not reduced to a single point, then it has a nontrivial, closed, hyperinvariant subspace. In
this paper, we prove that also every DT–operator whose spectrum is concentrated on a
single point has a nontrivial, closed, hyperinvariant subspace. In fact, each such operator
has a one–parameter family of them. It follows that every DT–operator generates the von
Neumann algebra L(F2) of the free group on two generators.

1. Introduction

Let
�

be a separable, infinite dimensional Hilbert space and let � (
�

) be the algebra of
bounded operators on

�
. Let A ∈ � (

�
). An invariant subspace of A is a subspace

�
0 ⊆

�
such that A(

�
0) ⊆ �

0, and a hyperinvariant subspace of A is a subspace
�

0 of
�

that is
invariant for every operator B ∈ � (

�
) that commutes with A. A subspace of

�
is said to be

nontrivial if it is neither {0} nor
�

itself. The famous invariant subspace problem for Hilbert
space asks whether every operator in � (

�
) has a closed, nontrivial, invariant subspace, and

the hyperinvariant subspace problem asks whether every operator in � (
�

) that is not a scalar
multiple of the identity operator has a closed, nontrivial, hyperinvariant subspace.

On the other hand, if M ⊆ � (
�

) is a von Neumann algebra, a closed subspace
�

0 of�
is affiliated to M if the projection p from

�
onto

�
0 belongs to M. It is not difficult

to show that every closed, hyperinvariant subspace of A is affiliated to the von Neumann
algebra, W ∗(A), generated by A. The question of whether every element of a von Neumann
algebra M has a nontrivial invariant subspace affiliated to M is called the invariant subspace
problem relative to the von Neumann algebra M.

In [3], we began using upper triangular random matrices to study invariant subspaces
for certain operators arising in free probability theory, including Voiculescu’s circular op-
erator. In the sequel [4], we introduced the DT–operators; these form a class of operators
including all those studied in [3]. (We note that the DT–operators were defined in terms of
approximation by upper triangular random matrices, and have been shown in [6] to solve a
maxmimization problem for free entropy.) We showed that DT–operators are decomposable
in the sense of Foiaş, which entails that those DT–operators whose spectra contain more
than one point have nontrivial, closed, hyperinvariant subspaces. In this paper, we show
that also DT–operators whose spectra are singletons have (a continuum of) closed, nontriv-
ial, hyperinvariant subspaces. These operators are all scalar translates of scalar multiples of
a single operator, the DT(δ0, 1)–operator, which we will denote by T .
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The free group factor L(F2) ⊆ � (
�

) is generated by a semicircular element X and a
free copy of L∞[0, 1], embedded via a normal ∗–homomorphism λ : L∞[0, 1] → L(F2) such

that τ ◦ λ(f) =
∫ 1

0
f(t)dt, where τ is the tracial state on L(F2). Thus X and the image

of λ are free with respect to τ and together they generate L(F2). As proved in [4, §4], the
DT(δ0, 1)–operator T can be obtained by using projections from λ(L∞[0, 1]) to cut out the
“upper triangular part” of X; in the notation of [4, §4], T = ��� (X, λ). It is clear from this
construction that each of the subspaces

�
t = λ(1[0,t])

�
is an invariant subspace of T . We

will show that each of these subspaces is affiliated to W∗(T ) by proving D0 ∈ W ∗(T ), where
D0 = λ(id[0,1]) and id[0,1] is the identity function from [0, 1] to itself. Since X = T + T ∗, this
will also imply W ∗(T ) = L(F2). We will then show that each

�
t is actually a hyperinvariant

subspace of T , by characterizing
�

t as the set of vectors ξ ∈ �
such that ‖T kξ‖ has a certain

asymptotic property as k → ∞.

2. Preliminaries and statement of results

In [4, §8], we showed that the distribution of T ∗T is the probability measure µ on [0, e]
given by

dµ(x) = ϕ(x)dx

where ϕ : (0, e) → R+ is the function given uniquely by

ϕ

(
sin v

v
exp(v cot v)

)
=

1

π
sin v exp(−v cot v), 0 < v < π. (2.1)

Proposition 2.1. Let F (x) =
∫ x

0
ϕ(t)dt, x ∈ [0, e]. Then

F

(
sin v

v
exp(v cot v)

)
= 1 − v

π
+

1

π

sin2 v

v
, 0 < v < π. (2.2)

Proof. From the proof of [4, Thm. 8.9] we have that

σ : v 7→ sin v

v
exp(v cot v) (2.3)

is a decreasing bijection from (0, π) onto (0, e). Hence

F (σ(v)) =

∫ σ(v)

0

ϕ(t)dt = −
∫ π

v

ϕ(σ(u))σ′(u)du

= −[ϕ(σ(u))σ(u)]πv +

∫ π

v

(
d

du
ϕ(σ(u))

)
σ(u)du

= − 1

π

[
sin2 u

u

]π

v

+
1

π

∫ π

v

u

sin u
· sin u

u
du =

1

π

sin2 v

v
+ 1 − v

π
. �

The following is the central result of this paper.

Theorem 2.2. Let Sk = k((T k)∗T k)
1

k , k = 1, 2, . . . . Then σ(Sk) = [0, e] for all k ∈ N and

lim
k→∞

‖F (Sk) −D0‖2 = 0 for k → ∞.

In particular D0 ∈ W ∗(T ). Therefore
�

t = 1[0,t](D0)
�

= λ(1[0,t])
�

, 0 < t < 1 is a one-
parameter family of nontrivial, closed, T -invariant subspaces affiliated with W ∗(T ).

Corollary 2.3. W ∗(T ) ∼= L(F2). Moreover, if Z is any DT–operator, then W ∗(Z) ∼= L(F2).
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Proof. As described in the introduction, with T = ��� (X, λ) ∈ W ∗(X∪λ(L∞[0, 1])) = L(F2),
from Theorem 2.2 we have D0 ∈ W ∗(T ). Since clearly X ∈ W ∗(T ), we have W ∗(T ) = L(F2).
By [4, Thm. 4.4], Z can be realized as Z = D + cT for some D ∈ λ(L∞[0, 1]) and c > 0.
By [4, Lem. 6.2], T ∈ W ∗(Z), so W ∗(Z) = L(F2). �

We now outline the proof of Theorem 2.2. Let M be a factor of type II1 with tracial
state tr, and let A,B ∈ Msa. By [1, §1], there is a unique probability measure µA,B on
σ(A)× σ(B), such that for all bounded Borel functions f, g on σ(A) and σ(B), respectively,
one has

tr(f(A)g(B)) =

∫∫

σ(A)×σ(B)

f(x)g(y)dµA,B(x). (2.4)

The following lemma is a simple consequence of (2.4) (cf. [1, Proposition 1.1]).

Lemma 2.4. Let A,B and µA,B be as above, then for all bounded Borel functions f and g
on σ(A) and σ(B), respectively,

‖f(A) − g(B)‖2
2 =

∫∫

σ(A)×σ(B)

|f(x) − g(y)|2 dµA,B(x, y). (2.5)

We shall need the following key result of Śniady [7]. Strictly speaking, the results of [7]
concern an operator that can be described as a generalized circular operator with a given
variance matrix. It’s not entirely obvious that the operator T studied in [4] and in the
present article is actually of this form. A proof is supplied in Appendix A below.

Theorem 2.5. [7, Thm. 5] Let ED be the trace preserving conditional expectation ofW ∗(D0, T )
onto D = W ∗(D0), which we identify with L∞[0, 1] as in [7]. Let k ∈ N and let (Pk,n)∞n=0 be
the sequence of polynomials in a real variable x determined by:

Pk,0(x) = 1 (2.6)

P
(k)
k,n(x) = Pk,n−1(x + 1), n = 1, 2, . . . (2.7)

Pk,n(0) = P ′
k,n(0) = · · · = P

(k−1)
k,n (0) = 0, n = 1, 2, . . . (2.8)

where P
(`)
k,n denotes the `th derivative of Pk,n. Then for all k, n ∈ N,

ED(((T k)∗T k)n)(x) = Pk,n(x), x ∈ [0, 1].

Remark 2.6. The above Theorem is equivalent to [7, Thm. 5] because

ED(((T k)∗T k)n)(x) = ED((T k(T k)∗)n)(1 − x), x ∈ [0, 1].

Śniady used Theorem 2.5 to prove the following formula, which was conjectured in [4, §9].
Theorem 2.7. [7, Thm. 7] For all n, k ∈ N:

tr(((T k)∗T k)n) =
nnk

(nk + 1)!
. (2.9)

Śniady proved that Theorem 2.5 implies Theorem 2.7 by a tricky and clever combinatorial
argument. In the course of proving Theorem 2.2, we also obtained a purely analytic proof
of Thm. 2.5 ⇒ Thm. 2.7 (see (3.2) and Remark 4.3). Note that it follows from Theorem 2.7
that Sk

k = kk(T k)∗T k has the same moments as (T ∗T )k. Hence the distribution measures
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µSk
and µT ∗T in Prob(R) are equal. In particular their supports are equal. Hence, by [4,

Thm. 8.9],

σ(Sk) = σ(T ∗T ) = [0, e]. (2.10)

We will use Theorem 2.5 to derive in Theorem 2.8 an explicit formula for the measure
µD0,Sk

defined in (2.4). The formula involves Lambert’s W function, which is defined as the
multivalued inverse function of the function C 3 z 7→ zez . We define a function ρ by

ρ(z) = −W0(−z), z ∈ C\[1
e
,∞), (2.11)

where W0 is the principal branch of Lambert’s W–function. By [2, §4], ρ is an analytic
bijection of C\[1

e
,∞) onto

Ω = {x + iy | −π < y < π, x < y cot y},
where we have used the convention 0 cot 0 = 1. Moreover, ρ is the inverse function of the
function f defined by

f(w) = we−w, w ∈ Ω.

Note that f maps the boundary of Ω onto [1
e
,∞), because

f(θ cot θ ± iθ) = f

(
θ

sin θ
e±iθ

)
=

θ

sin θ
e−θ cot θ (2.12)

and θ 7→ sin θ
θ
eθ cot θ is a bijection of (0, π) onto (0, e) (see [4, §8]). By (2.12), it also follows

that if we define functions ρ+, ρ− : [1
e
,∞) → C by

ρ±
(

θ

sin θ
e−θ cot θ

)
= θ cot θ ± iθ, 0 ≤ θ < π, (2.13)

then

ρ±(x) = lim
y↓0

ρ(x± iy), x ∈ [1
e
,∞).

In particular ρ+
(

1
e

)
= ρ−

(
1
e

)
= 1.

Theorem 2.8. Let k ∈ N be fixed. Define for t > 1
e

and j = 0, . . . , k the functions aj(t),
cj(t) by 




a0(t) = ρ+(t)
aj(t) = ρ

(
t exp

(
i2πj

k

))
, 1 ≤ j ≤ k − 1

ak(t) = ρ−(t)
(2.14)

and

cj(t) = −kaj(t)
∏

`6=j

a`(t)

a`(t) − aj(t)
. (2.15)

Then the probability measure µD0,Sk
on σ(D0)×σ(Sk) = [0, 1]× [0, e] is absolutely continuous

with respect to the 2-dimensional Lebesgue measure and, with ϕ as in (2.1), has density

dµD0,Sk
(x, y)

dxdy
= ϕ(y)

(
k∑

j=0

cj(y
−1)ekaj(y

−1)x

)
(2.16)

for x ∈ (0, 1) and y ∈ (0, e).

We will prove Theorem 2.2 by combining Lemma 2.4 and Theorem 2.8 (see Section 6).
Finally, we will prove the following characterization of the subspaces

�
t (see Section 7).



INVARIANT SUBSPACES OF THE QUASINILPOTENT DT–OPERATOR 5

Theorem 2.9. For every t ∈ [0, 1],

�
t = {ξ ∈ � | lim sup

n→∞

(k
e
‖T kξ‖2/k

)
≤ t}. (2.17)

In particular,
�

t is a closed, hyperinvariant subspace of T .

3. Proof of Theorem 2.8 for k = 1

This section is devoted to the proof of Theorem 2.8 in the special case k = 1, which is
somewhat easier than in the general case. For k = 1 it is easy to solve equations (2.6)–(2.8)
explicitly to obtain

P1,n(x) =
1

n!
x(x + n)n−1, (n ≥ 1). (3.1)

From (3.1) one immediately gets (2.9) for k = 1, because

tr((T ∗T )n) =

∫ 1

0

P1,n(x)dx =

[
1

(n+ 1)!
(x− 1)(x+ n)n

]1

0

=
nn

(n+ 1)!
. (3.2)

Lemma 3.1. For x ∈ R and z ∈ C, |z| < 1
e
, one has

∞∑

n=0

P1,n(x)zn = eρ(z)x

where ρ : C\
[

1
e
,∞
)
→ C is the analytic function defined in §2.

Proof. Note that ρ(0) = 0, ρ′(0) = 1. Let ρ(z) =
∑∞

n=1 γnz
n be the power series expansion

of ρ in B
(
0, 1

e

)
. The convergence radius is 1

e
, because ρ is analytic in B

(
0, 1

e

)
and 1

e
is a

singular point for ρ. Hence for |z| < 1
e

and x ∈ C, the function (z, x) 7→ eρ(z)x has a power
series expansion

eρ(z)x =
∞∑

`,m=0

c`mz
`xm.

Since

eρ(z)x =
∞∑

m=0

1

m!
ρ(z)mxm

and since the first non-zero term in the power series for ρ(z)m is zm, we have c`m = 0 for
` < m. Hence

eρ(z)x =
∞∑

`=0

Q`(x)z
` (3.3)

where Q`(x) is the polynomial
∑`

m=0 c`mx
m. Putting z = 0 in (3.3) we get Q0(x) = 1 and

putting x = 0 in (3.3) we get Qn(0) = 0 for n ≥ 1. Moreover since ρ(z)e−ρ(z) = z for
C\
[

1
e
,∞
)
, we get

d

dx
(eρ(z)x) = ρ(z)eρ(z)x = ρ(z)e−ρ(z)eρ(z)(x+1) = zeρ(z)(x+1).
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Hence differentiating (3.3), we get

∞∑

`=0

Q′
`(x)z

` =
∞∑

`=0

Q`(x+ 1)z`+1 =
∞∑

`=1

Q`−1(x+ 1)z`, |z| < 1
e
.

Therefore Q′
`(x) = Q`−1(x+ 1) for ` ≥ 1. Together with Q0(x) = 1, Q`(x) = 0, (` ≥ 1), this

proves that Q`(x) = P1,`(x) for ` ≥ 0. �
Remark 3.2. From Lemma 3.1 and (3.1) we can find the power series expansion of ρ(z),
namely

ρ(z) = zeρ(z) =

∞∑

n=0

P1,n(1)zn+1 =

∞∑

n=0

(n+ 1)n−1

n!
zn+1 =

∞∑

n=1

nn−2

(n− 1)!
zn. (3.4)

Similarly one gets

1

ρ(z)
=

1

z
e−ρ(z) =

∞∑

n=0

P1,n(−1)zn−1 =
1

z
−

∞∑

n=1

(n− 1)n−1

n!
zn−1 =

1

z
−

∞∑

n=0

nn

(n+ 1)!
zn. (3.5)

The latter formula was also found in [4, §8] by different means. Actually, both formulae can
be obtained from the Lagrange Inversion Formula, (cf. [9, Example 5.44]).

Lemma 3.3. For every x ∈ [0, 1] there is a unique probability measure νx on [0, e] such that
∫ e

0

yn dνx(y) = P1,n(x), n ∈ N0. (3.6)

Proof. The uniqueness is clear by Weierstrass’ approximation theorem. For existence, recall
that σ(D) = [0, 1] and, by [4, §8], σ(T ∗T ) = [0, e]. Let now µ = µD0,T ∗T denote the joint
distribution of D0 and T ∗T in the sense of (2.4). For x = 0, νx = δ0 (the Dirac measure at
0) is a solution of (3.6). Assume now that x > 0 and let ε ∈ (0, x). Then for n ∈ N0,

∫ x

x−ε

P1,n(x′)dx′ =

∫ 1

0

1[x−ε,x](x
′)P1,n(x′)dx′ = tr(1[x−ε,x](D)ED((T ∗T )n))

= tr(1[x−ε,x](D)(T ∗T )n) =

∫∫

[0,1]×[0,e]

1[x−ε,x](x
′)yn dµ(x′, y).

Let νε,x denote the Borel measure on [0, e] given by νε,x(B) = 1
ε
µ([x−ε, x]×B) for any Borel

set B in [0, e]. Then by the above calculation,
∫ e

0

yn dνε,x(y) =
1

ε

∫ x

x−ε

P1,n(x′)dx′, n ∈ N0. (3.7)

Since P1,0(x
′) = 1, νε,x is a probability measure. By (3.7), νε,x converges as ε → 0 in the

w∗-topology on Prob([0, e]) to a measure νx satisfying (3.6). �
Lemma 3.4. Let x ∈ [0, 1].

(a) For λ ∈ C\[0, e], the Stieltjes transform (or Cauchy transform) of νx is given by

Gx(λ) =
1

λ
exp

(
ρ

(
1

λ

)
x

)
. (3.8)
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(b) If x ∈ (0, 1], dνx(y) = hx(y)dy, where

hx(y) =
1

πy
Im

(
exp

(
ρ+

(
1

y

)
x

))
, y ∈ (0, e]. (3.9)

Proof. (a). Since Gx(λ) =
∫ e

0
1

λ−y
dνx(y) is analytic in C\[0, e], it is sufficient to check (3.8)

for |λ| > e. In this case, we get from Lemma 3.3 and Lemma 3.1 that

Gx(λ) =

∞∑

n=0

1

λn+1

∫ e

0

yn dνx(y) =
1

λ

∞∑

n=0

λ−nPn(x) =
1

λ
exp

(
ρ

(
1

λ

)
x

)
.

(b). For y ∈ (0, e], put

hx(y) = − 1

π
lim

z→0+
Im(Gx(y + iz)) = − 1

πy
Im

(
exp

(
ρ−
(

1

y

)
x

))

=
1

πy
Im

(
exp

(
ρ+

(
1

y

)
x

))
.

It is easy to see that the above convergence is uniform for y in compact subsets of (0, e],
so by the inverse Stieltjes transform, the restriction of νx to (0, e] is absolutely continuous
with respect to the Lebesgue measure and has density hx(y). It remains to be proved that
νx({0}) = 0. But

lim
λ→0−

λGx(λ) = νx({0}) + lim
λ→0−



∫

(0,e]

|λ|
|λ| + y

dνx(y)


 = νx({0}).

However, λGx(λ) = exp
(
ρ
(

1
λ

)
x
)
→ 0 as λ → 0−, because x > 0 and limy→−∞ ρ(y) = −∞.

Hence νx({0}) = 0, which completes the proof of (b). �
Proof of Theorem 2.8 for k = 1. Put µ = µD0,T ∗T as defined in (2.4). For m,n ∈ N0 we get
from Lemma 3.3 and Lemma 3.4,

∫∫

[0,1]×[0,e]

xmyn dµ(x, y) = tr(Dm
0 (T ∗T )n) = tr(Dm

0 ED((T ∗T )n)) =

∫ 1

0

xmP1,n(x)dx

=

∫ 1

0

xm

∫ e

0

yn dνx(y)dx =

∫ 1

0

(∫ e

0

xmynhx(y)dy

)
dx.

Hence by the Stone–Weierstrass Theorem, µ is absolutely continuous with respect to the two
dimensional Lebesgue measure on [0, 1] × [0, e], and for x ∈ (0, 1), y ∈ (0, e), we have

dµ(x, y)

dxdy
= hx(y) =

1

πy
Im

(
exp

(
ρ+

(
1

y

)
x

))
. (3.10)

We now have to compare (3.10) with (2.16) in Theorem 2.8. Putting k = 1 in (2.14) and
(2.15) one gets for t > 1

e
,

a0(t) = ρ+(t), a1(t) = ρ+(t)

and

c0(t) =
|ρ+(t)|2

2i Im(ρ+(t))
, c1(t) = − |ρ+(t)|2

2i Im(ρ+(t))
.
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Hence the RHS of (2.16) becomes

ϕ(y)c0

(
1

y

)(
exp

(
ρ+

(
1

y

)
x

)
− exp

(
ρ+

(
1

y

)
x

))
=

=
ϕ(y)

∣∣∣ρ+
(

1
y

)∣∣∣
2

Im ρ+
(

1
y

) Im

(
exp

(
ρ+

(
1

y

)
x

))
.

Substituting now y = sin v
v
ev cot v with 0 < v < π as in (2.3), by (2.13) and (2.1) we get

ϕ(y)
∣∣∣ρ+
(

1
y

)∣∣∣
2

Im ρ+
(

1
y

) =
1

πv

(
sin ve−v cot v · v2

sin2 v

)
=

1

πy
. (3.11)

Hence (3.10) coincides with (2.16) for k = 1. �

4. A generating function for Śniady’s polynomials for k ≥ 2

Throughout this section and Section 5, k is a fixed integer, k ≥ 2.

Lemma 4.1. Let α1, . . . , αk be distinct complex numbers and put

γj =
∏

6̀=j

α`

α` − αj

, j = 1, . . . , n. (4.1)

Then 



k∑

j=1

γj = 1

k∑

j=1

γjα
p
j = 0 for p = 1, 2, . . . , k − 1.

(4.2)

Proof. We can express (4.2) as




1 1 . . . 1
α1 α2 αk
...

...
αk−1

1 . . . . . . αk−1
k







γ1

γ2
...
γk


 =




1
0
...
0


 (4.3)

where the determinant of the coefficient matrix is non-zero (Vandermonde’s determinant), so
we just have to check that (4.1) is the unique solution to (4.3). Let A denote the coefficient
matrix in (4.3). Then the solution to (4.3) is given by




γ1

γ2
...
γk


 = A−1




1
0
...
0


 .
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Hence γj = (−1)j+1 det(A1j)

det(A)
, where A1j is the (1, j)th minor of A. By Vandermonde’s formula,

detA =
∏

`<m

(am − a`)

and

det(A1j) = (α1 · · ·αj−1)(αj+1 · · ·αk)
∏

`<m
`,m6=j

(am − a`).

Hence

γj =

(−1)j+1
∏
`6=j

α`

∏
`<j

(αj − α`)
∏
`>j

(α` − αj)
=
∏

`6=j

α`

α` − αj
. �

We prove next a generalization of Lemma 3.1 to k ≥ 2.

Proposition 4.2. Let (Pk,n)∞n=0 be the sequence of polynomials defined Theorem 2.5. For
z ∈ C, |z| < 1

e
and j = 1, . . . , k, put

αj(z) = ρ(zei 2πj
k ) (4.4)

γj(z) =





∏

`6=j

αj(z)

α`(z)−αj(z)
, z 6= 0

1/k, z = 0.

(4.5)

Then
∞∑

n=0

(kz)nkPk,n(x) =
k∑

j=1

γj(z)e
kαj(z)x (4.6)

for all z ∈ B
(
0, 1

e

)
and all x ∈ R.

Proof. Since ρ is analytic and one-to-one on C\
[

1
e
,∞
)
, it is clear that αj(z) is analytic in

B
(
0, 1

e

)
and γj(z) is analytic in B

(
0, 1

e

)
\{0}. Using ρ(0) = 0 and ρ′(0) = 1, one gets

lim
z→0

γj(z) =
∏

6̀=j

1

1 − exp
(
i2π(j−`)

k

) =
k−1∏

m=1

(
1 − exp

(
i
2πm

k

))−1

.

But the numbers exp
(
i2πm

k

)
, m = 1, . . . , k−1 are precisely the k−1 roots of the polynomial

S(z) =
zk − 1

z − 1
= zk−1 + zk−2 + . . .+ 1.

Hence

lim
z→0

γj(z) =
1

S(1)
=

1

k
= γj(0).

Thus γj is analytic in B
(
0, 1

e

)
. The RHS of (4.6) is equal to

∞∑

`=0

β`(z)x
`
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where

β`(z) =

k∑

j=1

γj(z)k
`αj(z)

`.

Since αj(0) = 0, the coefficients to 1, z, . . . , z`−1 in the power series expansion of β`(z) are
equal to 0. Hence

k∑

j=1

γj(z)e
kαj(z)x =

∞∑

`,m=0

β`,mx
`zm (4.7)

where β`,m = 0 when m < `. But, by the definition of αj(z) and γj(z) the LHS of (4.7) is

invariant under the transformation z → ei 2π
k z. Hence β`,m = 0 unless m is a multiple of k.

Therefore
k∑

j=1

γj(z)e
kαj(z)x =

∞∑

n=0

Rn(x)znk (4.8)

where

Rn(x) =

nk∑

`=0

β`,nkx
` (4.9)

is a polynomial of degree at most nk. To complete the proof of Proposition 4.2, we now have
to prove, that the sequence of polynomials

Qn(x) = k−nkRn(x), n = 0, 1, 2, . . . (4.10)

satisfies the same three conditions (2.6)–(2.8) as Pk,n. Putting z = 0 in (4.8) we get

Q0(x) = R0(x) =
k∑

j=1

γj(0) = 1.

Moreover by (4.5)

dk

dxk

( ∞∑

n=0

Rn(x)znk

)
=

k∑

j=1

γj(z)k
kαj(z)

kekαj(z)x.

By definition of ρ, ρ(z)e−ρ(z) = z for all z ∈ C\
(

1
e
,∞
)
. Hence

(αj(z)e
−αj (z))k = (zei 2π

k
j)k = zk, j = 1, . . . , k.

Thus

dk

dxk

( ∞∑

n=0

Rn(z)znk

)
= (kz)k

k∑

j=1

γj(z)e
kαj(z)(x+1) = (kz)k

∞∑

n=0

Rn(x + 1)znk

= kk
∞∑

n=1

Rn−1(x + 1)znk

so differentiating termwise, we get

R(k)
n (x) = kkRn−1(x + 1), n ≥ 1

and thus Q
(k)
n (x) = Qn−1(x+ 1) for all n ≥ 1. We next check the last condition (2.8) for the

Qn, i.e.
Qn(0) = Q′

n(0) = . . . = Q(k−1)
n (0) = 0, n ≥ 1.
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If we put x = 0 in (4.5), we get

∞∑

n=0

Rn(x)znk =
k∑

j=1

γj(z) = 1,

where the last equality follows from (4.2) in Lemma 4.1. Hence Qn(0) = Rn(0) = 0 for
n ≥ 1. For p = 1, . . . , k − 1 we have

∞∑

n=0

R(p)
n (0)znk =

dp

dxp

(
k∑

j=1

γj(z)e
kαj(z)x

)∣∣∣∣
x=0

= kp
k∑

j=1

γj(z)αj(z)
p = 0,

where we again use (4.2) from Lemma 4.1. Hence Q
(p)
n (0) = k−nkR

(p)
n (0) = 0 for all n =

0, 1, 2, . . . and p = 1, . . . , k − 1.
Altogether we have shown that (Qn(x))∞n=0 satisfies the defining relations (2.6)–(2.8) for

Pk,n(x), and hence Qn(x) = Pk,n(x) for all n and. This proves (4.6). �

Remark 4.3. Based on Proposition 4.2, we give a new proof of the implication Theorem 2.5
⇒ Theorem 2.7. Put

sk,n = tr(((T k)∗T k)n) =

∫ 1

0

Pk,n(x)dx.

Then by (4.6)
∞∑

n=0

sk,n(kz)nk =

k∑

j=1

γj(k)

∫ 1

0

ekαj(z)xdx (4.11)

for all z ∈ B
(
0, 1

e

)
. By definition, the function ρ satisfies

ρ(s)e−ρ(s) = s, s ∈ C\[1
e
,∞).

Therefore,

αj(z)
ke−kαj(z) = (zei 2πj

k )k = zk

for all z ∈ B
(
0, 1

e

)
. Hence for z ∈ B

(
0, 1

e

)
\{0},

∫ 1

0

ekαj(z)xdx =
1

kαj(z)
(ekαj(z) − 1) =

1

kzk
αj(z)

k−1 − 1

kαj(z)
.

By Lemma 4.1, we have
∑k

j=0 γj(z)αj(z)
k−1 = 0. Hence by (4.11),

∞∑

n=0

sk,n(kz)nk = −1

k

k∑

j=1

γj(z)

αj(z)
. (4.12)

To compute the right hand side of (4.12), we apply the residue theorem to the rational

function f(s) = 1
s2

∏k
`=1

α`

α`−s
, s ∈ C\{0, α1, α2, . . . , αk}. In the following computation z is

fixed, so let us put αj = αj(z), γj = γj(z). Note that f has simple poles at α1, . . . , αk and

Res(f ;αj) = − 1

αj

∏

`6=j

α`

α` − αj

= − γj

αj

.
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Moreover f has a second order pole at 0 and Res(f ; 0) is the coefficient of s in the power

series expansion of s2f(s) =
∏k

`=1(1 − s
α`

)−1 i.e.

Res(f ; 0) =
∑̀

j=1

1

αj

.

Since f(s) = O(|s|−(k+2)) as |s| → ∞, we have

lim
R→∞

∫

∂B(0,R)

f(s)ds = 0.

Hence, by the residue Theorem, Res(f ; 0) +
∑k

j=1 Res(f ;αj) = 0, giving

k∑

j=1

γj

αj
=

k∑

j=1

α−1
j . (4.13)

Thus, by (4.12), we get

∞∑

n=0

sk,n(kz)nk = −1

k

k∑

j=1

αj(z)
−1 = −1

k

k∑

j=1

ρ(zei 2πj
k )−1. (4.14)

By (3.5), ρ(z)−1 = 1
z
−∑∞

m=0
mm

(m+1)!
zm whenever 0 < |z| < 1

e
. Hence

k∑

j=1

ρ(zei 2πj
k )−1 = −k

∑

k |m

mm

(m+ 1)!
zm = −k

∞∑

n=0

(nk)nk

(nk + 1)!
znk . (4.15)

So by comparing the terms in (4.14) and (4.15), we get skn = nnk

(nk+1)!
as desired. �

5. Proof of Theorem 2.8 for k ≥ 2

Lemma 5.1. Put Ωk = {z ∈ C | zk /∈ [e−k,∞)} and define αj(z), γj(z), j = 1, . . . , k by
(4.4) and (4.5) for all z ∈ Ωk. Then for every x ∈ R, the function

Mx(z) =
k∑

j=1

γj(z)e
kαj(z)x (5.1)

is analytic in Ωk and for every t ∈
[

1
e
,∞
)
, the following two limits exist:

M+
x (t) = lim

z→t
Im z>0

Mx(z), M−
x (t) = lim

z→t
Im z<0

Mx(z).

Let aj(t) and cj(t) for t > 1
e

and j = 0, . . . , k be as in Theorem 2.8. Then for t > 1
e
,

Im M+
x (t) =

Im ρ+(t)

k|ρ+(t)|2
k∑

j=0

cj(t)e
kaj(t)x. (5.2)
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Proof. Since ρ : C\
[

1
e
,∞
)
→ C is one–to–one and analytic, it is clear, that Mx is defined

and analytic on Ωk. Moreover for t ≥ 1
e
,

lim
z→t

Im z>0

αj(z) =

{
ρ(tei 2πj

k ), j = 1, . . . , k − 1
ρ+(t), j = k

=

{
aj(t), j = 1, . . . , k − 1
a0(t), j = k

and similarly

lim
z→t

Im z<0

αj(z) = aj(t), j = 1, . . . , k.

Moreover

lim
z→t

Im z>0

γj(z) =





∏

0≤`≤k−1
`6=j

a`(t)
a`(t)−aj (t)

, j = 1, . . . , k − 1

∏

0≤`≤k−1
`6=0

a`(t)
a`(t)−aj (t)

, j = k

lim
z→t

Im z<0

γj(z) =
∏

1≤`≤k
6̀=j

a`(t)

a`(t) − aj(t)
, j, . . . , k.

Hence the two limits M+
x (t) and M−

x (t) are well defined and by relabeling the kth term to
be the 0th term in case of M+

x (t) one gets:

M+
λ (t) =

k−1∑

j=0




∏

0≤`≤k−1
`6=j

a`(t)

a`(t) − aj(t)


 ekaj(t)x (5.3)

M−
λ (t) =

k∑

j=1



∏

1≤`≤k
`6=j

a`(t)

a`(t) − aj(t)


 ekaj(t)x. (5.4)

It is clear, that Mx(z̄) = Mx(z), z ∈ Ωk. Therefore M−
λ (t) = M+

λ (t) and

Im M+
λ (t) =

1

2i
(M+

λ (t) −M−
λ (t)).

Hence for t > 1
e
,

Im M+
λ (t) =

k∑

j=0

bj(t)e
kaj(t)x
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where

b0(t) =
1

2i

∏

1≤`≤k−1

a`(t)

a`(t) − a0(t)

bj(t) =
1

2i

(
a0(t)

a0(t) − aj(t)
− ak(t)

ak(t) − aj(t)

) ∏

1≤`≤k−1
`6=j

a`(t)

a`(t) − a0(t)

bk(t) = − 1

2i

∏

1≤`≤k−1

a`(t)

a`(t) − ak(t)
.

Using (2.15) and the identity

a0(t)

a0(t) − aj(t)
− ak(t)

ak(t) − aj(t)
=

aj(t)(ak(t) − a0(t))

(a0(t) − aj(t))(ak(t) − aj(t))
,

one observes that for all j ∈ {0, 1, . . . , k}

bj(t) =
1

2i

a0(t) − ak(t)

ka0(t)ak(t)
cj(t) =

Im ρ+(t)

k|ρ+(t)|2 cj(t) .

This proves (5.2). �
We next prove results analogous to Lemma 3.3 and Lemma 3.4 for k ≥ 2.

Lemma 5.2. For every x ∈ [0, 1], there is a unique probability measure νx on [0, ek], such
that ∫ ek

0

un dνx(u) = knkPk,n(x), n ∈ N0. (5.5)

For λ ∈ C\[0, ek], the Cauchy transform of νx is given by

Gx(λ) =
1

λ

k∑

j=1

γj(λ
− 1

k )ekαj(λ
−

1
k )x (5.6)

where αj , γj are given by (4.4) and (4.5) and λ−1/k is the principal value of ( k
√
λ)−1. More-

over, the restriction of νx to (0, ek] is absolutely continuous with respect to Lebesgue measure,
and its density is given by

dνx(u)

du
=
u

1

k
−1ϕ(u1/k)

k

k∑

j=0

cj(u
−1/k)ekaj(u−1/k)x (5.7)

for u ∈ (0, ek).

Proof. By Theorem 2.5

knkPk,n(x) = ED(knk((T k)∗T k)n)(x) = ED(Snk
k )(x)), x ∈ [0, 1].

Moreover σ(Sk
k ) = σ(Sk)

k = [0, ek] by (2.10). Hence the existence and uniqueness of νx can
be proved exactly as in Lemma 3.3. From Proposition 4.2, we get that for |λ| > ek, the
Stieltjes transform Gx(λ) of νx is given by

Gx(λ) =
1

λ

∞∑

n=1

λ−nknkPk,n(x) =
1

λ

k∑

j=1

γj(λ
− 1

k )ekαj(λ
−

1
k )x.
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Let Mx(z), z ∈ Ωk and M+
x (t),M−

x (t), t ≥ 1/e be as in Lemma 5.1. Then it is easy to see
that the function

M̃x(z) =

{
Mx(z), z ∈ ΩK

M−
x (z), z ∈ [1/e,∞)

is a continuous function on the set{
x + iy | x ≥ 0,

−1

ke
≤ y ≤ 0

}
.

Hence, by applying the inverse Stieltjes transform, we get that the restriction of νx to (0, ek]
is absolutely continuous with respect to the Lebesgue measure with density

hx(u) = − 1

π
lim

v→0+
Im(Gx(u+ iv)) = − 1

πu
lim

z→u−1/k

Im z<0

(
Im

k∑

j=1

γj(z)e
kαj(z)x

)

= − 1

πu
Im M−

x (u−1/k) =
1

πu
Im M+

x (u−1/k).

Hence, by Lemma 5.1 we get that for u ∈ (0, ek),

hx(u) =
1

πu

Im (ρ+(u−1/k))

k|ρ+(u−1/k)|2
k∑

j=0

cj(u
−1/k)ekaj(u−1/k)x.

By (3.11),

ϕ(y) =
1

πy

Im (ρ+(1/y))

|ρ+(1/y)|2 , 0 < y < e.

Hence

hx(u) =
u

1

k
−1ϕ(u1/k)

k

k∑

j=0

cj(u
−1/k)ekaj(u−1/k)x. (5.8)

�
Remark 5.3. In order to derive Theorem 2.8 from Lemma 5.2, we will have to prove
νx({0}) = 0 for almost all x ∈ [0, 1] w.r.t. Lebesgue measure. This is done in the proof of
Lemma 5.4 below. Actually it can be proved that νx({0}) = 0 for all x > 0. This can be
obtained from the formula

νx({0}) = lim
λ→0−

λGx(λ)

(cf. proof of Lemma 3.4) together with the following asymptotic formula for ρ(z) for large
values of |z|:

ρ(z) = − log(−z) + log(log(−z)) +O

(
log(log |z|))

log |z|

)
,

where log(−z) is the principal value of the logarithm. The latter formula can also be obtained
from [2, pp. 347–350] using (2.11).

Lemma 5.4. Let ν = µD0,Sk
k

be the measure on [0, 1] × [0, ek] defined in (2.4). Then ν is
absolutely continuous with respect to the Lebesgue measure, and its density is given by

dν(x, u)

dxdu
= hx(u), x ∈ (0, 1), u ∈ (0, ek),

where hx(u) is given by (5.8).
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Proof. For m,n ∈ N0 we have from Lemma 5.2 and Theorem 2.5 that
∫∫

[0,1]×[0,ek]

xmun dν(x, u) = tr(Dm
0 S

kn
k ) = tr(Dm

0 ED(Skn
k )) (5.9)

=

∫ t

0

xm(knkPk,n(x))dx =

∫ 1

0

xm

(∫ ek

e

un dνx(u)

)
dx.

Put g(x) = νx({0}), x ∈ [0, 1]. From the definition of νx it is clear that x → νx is a
w∗-continuous function from [0, 1] to Prob([0, ek]), i.e.

x→
∫ ek

0

f(u) dνx(u), x ∈ [0, 1]

is continuous for all f ∈ C([0, ek]). Put for j ∈ N,

fj(u) =

{
j, 0 ≤ u ≤ 1/j
0, u > 1/j.

Then g(x) = lim
j→∞

(∫ ek

0
fj(u)dνx(u)

)
, and hence g is a Borel function on [0, 1]. Putting now

m = 0 in (5.9) we get

tr(Skn
k ) =

∫ 1

0

(∫ ek

0

unhx(u)du

)
dx, n = 1, 2, . . . (5.10)

and for n = 0 we get

1 =

∫ 1

0

g(x)dx+

∫ 1

0

(∫ ek

0

hx(u)du

)
dx. (5.11)

Let λ ∈ Prob([0, ek]) be the distribution of Sk
k . Then

∫ ek

0

un dλ(u) = tr(Skn
k )

so by (5.10) and (5.11), λ({0}) =
∫ 1

0
g(x)dx and λ is absolutely continuous on (0, ek] w.r.t.

Lebesgue measure, with density u →
∫ 1

0
hx(u)dx, u ∈ (0, ek). However by (2.9) Sk

k and

(T ∗T )k have the same moments. Thus Sk
k and (T ∗T )k have the same distribution measure.

By ([4, §8]), ker(T ∗T ) = ker(T ) = {0}. Hence λ({0}) = 0, which implies that g(x) = 0 for
almost all x ∈ [0, 1]. Thus, using (5.9), we have for all m,n ∈ N0

∫

[0,1]×[0,ek]

xmun dν(x, u) =

∫ 1

0

xm

(∫ ek

0

unhx(u) du

)
dx.

Hence by Stone–Weierstrass Theorem, ν is absolutely continuous w.r.t. two dimensional
Lebesgue measure, and

dν(x, u)

dx du
= hx(u), x ∈ (0, 1), u ∈ (0, ek). �
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Proof of Theorem 2.8 for k ≥ 2. Let f, g be bounded Borel functions on [0, 1] and [0, e] re-
spectively, and put

g1(u) = g(u1/k), u ∈ [0, ek].

By Lemma 5.4,

tr(f(D0)g(Sk)) = tr(f(D0)g1(S
k
k)) =

∫∫

[0,1]×[0,ek]

f(x)g1(u)hx(u)dxdu

=

∫∫

[0,1]×[0,e]

f(x)g(y)hx(y
k)kyk−1dxdy

where the last equality is obtained by substituting u = yk, y ∈ [0, e]. Hence the measure
µD0,Sk

is absolutely continuous with respect to the two dimensional Lebesgue measure, and
by (5.8) the density is given by

hx(y
k)kyk−1 = ϕ(y)

∞∑

j=0

cj
(

1
y

)
ekaj(

1

y
)x

for x ∈ (0, 1), y ∈ (0, e). �

6. Proof of Theorem 2.8 ⇒ Theorem 2.2

Lemma 6.1. Let k ∈ N band let a0, . . . , ak be distinct numbers in � \{0} and put

bj =

k∏

`=0
`6=j

a`

a` − aj
.

Then
k∑

j=0

bja
p
j = 0 p = 1, 2, . . . , k (6.1)

k∑

j=0

bj = 1 (6.2)

k∑

j=0

bja
−1
j =

k∑

j=0

a−1
j (6.3)

k∑

j=0

bja
−2
j =

∑

0≤i≤j≤k

(aiaj)
−1. (6.4)

Proof. By applying Lemma 4.1 to the k + 1 numbers a0, . . . , ak, we get (6.1) and (6.2).
Moreover, (6.3) follows from the residue calculus argument in Remark 4.3 (cf. (4.13)), and
(6.4) follows by a similar argument. Indeed, letting g be the rational function

g(s) =
1

s3

k∏

`=0

(
a`

a` − s

)
, s ∈ C\{0, a0, . . . , ak},
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we have Res(g; aj) = − 1
a2

j

∏
6̀=j

a`

a`−aj
= −bja−2

j and Res(g; 0) is the coefficient of s2 in the

power series expansion of

s3g(s) =

k∏

`=0

(
1 − s

a`

)−1

=

k∏

`=0

(
1 +

s

a`
+
s2

a2
`

+ . . .

)
.

Hence Res(g; 0) =
∑

0≤i≤j≤k(aiaj)
−1. Since g(s) = O(|s|−(k+4)) as |s| → ∞, as in Remark 4.3

we get

Res(g; 0) +

k∑

j=0

Res(g; aj) = 0.

This proves (6.4). �
Lemma 6.2. Let k ∈ N be fixed and let aj(t), cj(t) for t ∈

(
1
e
,∞
)

and j = 0, . . . , k be
defined as in (2.14) and (2.15). Put

H(x, t) =
k∑

j=0

cj(t)e
kaj(t)x, x ∈ R, t > 1/e, (6.5)

m(t) = −1

k

k∑

j=0

aj(t)
−1, (6.6)

v(t) =
1

k2

k∑

j=0

aj(t)
−2. (6.7)

Then ∫ 1

0

H(x, t)dx = 1. (6.8)

Moreover, if k ≥ 2, then ∫ 1

0

xH(x, t)dx = m(t) (6.9)

and if k ≥ 3, then ∫ 1

0

x2H(x, t)dx = m(t)2 + v(t). (6.10)

Proof. For a fixed t ∈
(

1
e
,∞
)
, we will apply Lemma 6.1 to the numbers aj(t), j = 0, . . . , k

and

bj(t) =
∏

`6=j

a`(t)

a`(t) − aj(t)
. (6.11)

Note that by (2.15)

cj(t) = −kaj(t)bj(t). (6.12)

Since t is fixed, we will drop the t in aj(t), bj(t) and cj(t) in the rest of this proof. We have

∫ 1

0

H(x, t)dx =

k∑

j=0

cj
kaj

(ekaj − 1) =

k∑

j=0

bj(1 − ekaj ). (6.13)
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Recall that 



a0 = ρ+(t)

aj = ρ(tei 2πj
k ), 1 ≤ j ≤ n

ak = ρ−(t)

where t ∈
(

1
e
,∞
)
. Since ρ(z)e−ρ(z) = z for z ∈ C\

[
1
e
,∞
)

we get in the limit z → t with
Im z > 0, respectively Im z < 0, that also

ρ+(t)e−ρ+(t) = ρ−(t)e−ρ−(t) = t.

Hence

(aje
−aj )k = (tei 2πj

k )k = tk, j = 0, . . . , k,

which shows

ekaj =
(aj

t

)k

, j = 0, . . . , k. (6.14)

Hence by (6.13), (6.1) and (6.2) we get

∫ 1

0

H(x, t)dx =

k∑

j=0

bj −
1

tk

k∑

j=0

bja
k
j = 1,

which proves (6.8). Moreover,

∫ 1

0

xH(x, t)dx =
k∑

j=0

(−kajbj)

[
x
ekajx

kaj

− ekajx

(kaj)2

]1

0

.

Using (6.14), (6.1) and (6.3) we get

∫ 1

0

xH(x, t)dx = − 1

tk

k∑

j=0

bja
k
j +

1

ktk

k∑

j=0

bja
k−1
j − 1

k

k∑

j=0

bj
aj

= −1

k

k∑

j=0

1

aj
= m(t)

provided k ≥ 2. This proves (6.9). Similarly

∫ 1

0

x2H(x, t)dx =

k∑

j=0

(−kajbj)

[
x2 e

kajx

kaj
2x

ekajx

(kaj)2
+ 2

ekajx

(kaj)3

]1

0

= − 1

tk

k∑

j=0

bja
k
j +

2

ktk

k∑

j=0

bja
k−1
k − 2

k2tk

k∑

j=0

bja
k−2
j +

2

k2

k∑

j=0

bj
a2

j

.

Hence by (6.1) and (6.4), we get for k ≥ 3

∫ 1

0

x2H(x, t)dx =
2

k2

∑

0≤i≤j≤k

(aiaj)
−1 =

1

k2



(

k∑

j=0

a−1
j

)2

+
k∑

j=0

a−2
j


 = m(t)2 + v(t).

�
The functions H,m, v, aj, cj in Lemma 5.2 depend on k ∈ N. Therefore we will in the

rest of this section rename them Hk, mk, vk, akj, ckj. Let F (y) =
∫ y

0
ϕ(u)du, y ∈ [0, e] as in

Proposition 2.1. Since ϕ is the density of a probability measure on [0, e], we have

0 ≤ F (y) ≤ 1, y ∈ [0, e]. (6.15)
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Figure 1. The contour Cε.

Lemma 6.3. For t ∈
(

1
e
,∞
)
,

lim
k→∞

mk(t) = F

(
1

t

)
(6.16)

lim
k→∞

vk(t) = 0. (6.17)

Proof.

mk(t) = −1

k

k∑

j=0

akj(t)
−1 = −1

k

(
k∑

j=0

f

(
j

k

))
,

where f : [0, 1] → C is the continuous function

f(u) =





ρ+(t)−1, u = 0
ρ(tei2πu)−1, 0 < u < 1
ρ−(t)−1, u = 1.

Hence

lim
k→∞

mk(t) = −
∫ 1

0

f(u)du = − 1

2π

∫ 2π

0

1

ρ(teiθ)
dθ = − 1

2πi

∫

∂B(0,t)

1

zρ(z)
dz. (6.18)

To evaluate the RHS of (6.18) we apply the residue theorem to compute the integral of
(zρ(z))−1 along the closed path Cε, 0 < ε < 1

e
, which is drawn in Figure 1.

Since ρ(z) 6= 0 when z 6= 0 we have

1

2πi

∫

Cε

dz

zρ(z)
= Res

(
1

zρ(z)
; 0

)

and by (3.5), Res
(

1
zρ(z)

, 0
)

= −1. Thus, taking the limit ε→ 0+, we get

1

2πi



∫ t

1/e

dt

tρ+(t)
+

∫

∂B(0,t)

dz

zρ(z)
+

∫ 1/e

t

dt

tρ−(t)


 = −1.
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Since ρ−(t) = ρ+(t), we get by (3.11)

1

2πi

∫

∂B(0,t)

dz

zρ(z)
= −1 − 1

π

∫ t

1/e

1

s
Im

(
1

ρ+(s)

)
ds = −1 +

1

π

∫ t

1/e

Im ρ+(s)

s|ρ+(s)|2 ds

= −1 +

∫ t

1/e

1

s2
ϕ

(
1

s

)
ds = −1 +

∫ e

1/t

ϕ(u)du

= −1 + F (1) − F (1/t) = −F (1/t).

Hence (6.16) follows from (6.18). In the same way we get

vk(t) =
1

k2

k∑

j=0

f

(
j

k

)2

.

Hence

lim
k→∞

kvk(t) =

∫ 1

0

f(u)2du,

so in particular

lim
k→∞

vk(t) = 0. �

Proof of Theorem 2.2. By Lemma 2.4, Theorem 2.8 and (6.5),

‖D0 − F (Sk)‖2
2 =

∫∫

[0,1]×[0,e]

|x− F (y)|2ϕ(y)Hk

(
x, 1

y

)
dxdy.

Moreover by (6.8)–(6.10) we have for y ∈ (0, e) and k ≥ 3,

∫ 1

0

(x− F (y))2Hk(x,
1
y
)dx = (vk(

1
y
) +mk(

1
y
)2) − 2mk(

1
y
)F (y) + F (y)2

= (mk(
1
y
) − F (y))2 + vk(

1
y
).

Hence for k ≥ 3

‖D0 − F (Sk)‖2
2 =

∫ e

0

(
(mk(

1
y
) − F (y))2 + vk(

1
y
)
)
ϕ(y)dy.

Since ϕ(y)Hk(x,
1
y
) is a continuous density function for the probability measure µD0Sk

on

(0, 1) × (0, e), and since ϕ(y) > 0, 0 < y < e, we have Hk(x, t) ≥ 0 for all x ∈ (0, 1) and
t ∈ (1

e
,∞). Thus by (6.8)–(6.10), mk(t) and vk(t) are the mean and variance of a probability

measure on (0, 1). In particular 0 ≤ mk(t) ≤ 1 and 0 ≤ vk(t) ≤ 1 for all t > 1/e. Hence by
(6.16), (6.17) and Lebesgue’s dominated convergence theorem

lim
k→∞

‖D0 − F (Sk)‖2
2 = 0.

Hence D0 ∈ W ∗(T ). For 0 < t < 1, the subspace
�

t = 1[0,t](D0)
�

is clearly T -invariant,
and since D0 ∈ W ∗(T ),

�
t is affiliated with W ∗(T ). �
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7. Hyperinvariant subspaces for T

In this section, we prove Theorem 2.9. The proof relies on the following four results.
Lemma 7.2 is probably well known, but we include a proof for convenience.

Lemma 7.1. For every k ∈ N, ‖T k‖ = ( e
k
)k/2.

Proof. By (2.10), ‖T k‖2 = ‖(T ∗)kT k‖ = k−k‖Sk‖ = ( e
k
)k. �

Lemma 7.2. Let (Sλ)λ∈Λ be a bounded net of selfadjoint operators on a Hilbert space
�

which converges in strong operator topology to the selfadjoint operator S ∈ � (
�

), and let
σp(S) denote the set of eigenvalues of S. Then for all t ∈ R\σp(S), we have

lim
λ∈Λ

1(−∞,t](Sλ) = 1(−∞,t](S), (7.1)

where the limit is in strong operator topology.

Proof. There is a compact interval [a, b] such that σ(Sλ) ⊆ [a, b] for all λ and σ(S) ⊆ [a, b].
Therefore, given a continuous function φ : R → R, approximating by polynomials we get

lim
λ∈Λ

φ(Sλ) = φ(S),

in strong operator topology. Let t ∈ R, let ε > 0 and choose a continuous function φ : R → R

such that 0 ≤ φ ≤ 1, φ(x) = 1 for x ≤ t− ε and φ(x) = 0 for x ≥ t. Then for every ξ ∈ �

〈1(−∞,t−ε](S)ξ, ξ〉 ≤ 〈φ(S)ξ, ξ〉 = lim
λ∈Λ

〈φ(Sλ)ξ, ξ〉 ≤ lim inf
λ∈Λ

〈1(−∞,t](Sλ)ξ, ξ〉.

Hence taking the limit as ε → 0+, we get

〈1(−∞,t)(S)ξ, ξ〉 ≤ lim inf
λ∈Λ

〈1(−∞,t](Sλ)ξ, ξ〉. (7.2)

Similarly, by using a continuous function ψ : R → R satisfying ψ(x) = 1 for x ≤ t and
ψ(x) = 0 for x ≥ t+ ε, we get

〈1(−∞,t](S)ξ, ξ〉 ≥ lim sup
λ∈Λ

〈1(−∞,t](Sλ)ξ, ξ〉. (7.3)

If t /∈ σp(S), then 1(−∞,t)(S) = 1(−∞,t](S), and thus by (7.2) and (7.3), we have

lim
λ∈Λ

1(−∞,t](Sλ) = 1(−∞,t](S), (7.4)

with convergence in weak operator topology. However, the weak and strong operator topolo-
gies coincide on the set of projections in � (

�
). Hence we have convergence (7.1) in strong

operator topology, as desired. �
Proposition 7.3. Let F : [0, e] → [0, 1] be the increasing function defined in Proposition 2.1
and fix t ∈ [0, 1]. Let

�
t = {ξ ∈ � | ∃ξk ∈ �

, lim
k→∞

‖ξk − ξ‖ = 0, lim sup
k→∞

(k
e
‖T kξk‖2/k) ≤ t}.

Then
�

t =
�

F (et).

Proof. For t = 1, we have by Lemma 7.1 that
�

1 =
�

=
�

1 =
�

F (e). Assume now
0 ≤ t < 1, and let ξ ∈ �

F (et) = 1[0,F (et)](D0)
�

= 1[0,et](F (D0))
�

. Since σp(D0) = ∅ and
since F is one–to–one, we also have σp(F (D0)) = ∅. Hence, by Theorem 2.8 and Lemma 7.2,

lim
k→∞

1[0,et](Sk)ξ = 1[0,et](F (D0))ξ = ξ.
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Let ξk = 1[0,et](Sk)ξ. Then as we just showed, limk→∞ ‖ξ − ξk‖ = 0. Moreover, since
(T ∗)kT k = k−kSk

k , we have

‖T kξk‖2 = k−k〈Sk
kξk, ξk〉 ≤ k−k(et)k‖ξk‖2 ≤

(et
k

)k‖ξ‖2.

Hence lim supk→∞(k
e
‖T kξk‖2/k) ≤ t, which proves

�
F (et) ⊆

�
t. To prove the reverse inclu-

sion, let ξ ∈ �
t and choose ξk ∈ �

such that

lim
k→∞

‖ξk − ξ‖ = 0, lim sup
k→∞

(k
e
‖T kξk‖2/k

)
≤ t. (7.5)

By (2.10), σ(Sk) = [0, e]. Let Ek be the spectral measure of Sk and let

γk(B) = 〈Ek(B)ξk, ξk〉
for every Borel set B ⊆ [0, e]. Then γk is a finite Borel measure on [0, e] of total mass
γk([0, e]) = ‖ξk‖2 and for all bounded Borel functions f : [0, e] → C, we have

〈f(Sk)ξk, ξk〉 =

∫ e

0

fdγk. (7.6)

In particular,

〈Sk
kξk, ξk〉 =

∫ e

0

xkdγk(x).

Let 0 < ε < 1− t. By (7.5), there exists k0 ∈ N such that k
e
‖T kξk‖2/k ≤ t+ ε

2
for all k ≥ k0.

Thus, ∫ e

0

xkdγk(x) = 〈Sk
kξk, ξk〉 = kk‖T kξk‖2 ≤ (e(t+ ε

2
))k, (k ≥ k0).

Since ( x
e(t+ε)

)k ≥ 1 for x ∈ [e(t + ε), e], we have

γk([e(t + ε), e]) ≤
∫ e

0

(
x

e(t + ε)

)k

dγk(x) ≤
(
t + ε

2

t + ε

)k

‖ξk‖2.

Hence, by (7.6),

‖1(e(t+ε),∞)(Sk)ξk‖2 = 〈1(e(t+ε),∞)(Sk)ξk, ξk〉 ≤
(
t+ ε

2

t+ ε

)k

‖ξk‖2,

which tends to zero as k → ∞. Since ‖ξk − ξ‖ → 0 as k → ∞, we get

lim
k→∞

‖1(e(t+ε),∞)(Sk)ξ‖ = 0,

which is equivalent to
lim
k→∞

1[0,e(t+ε)](Sk)ξ = ξ.

Hence, by Theorem 2.8 and Lemma 7.2,

1[0,F (e(t+ε))](D0)ξ = 1[0,e(t+ε)](F (D0))ξ = ξ,

i.e. ξ ∈ �
F (e(t+ε)) for all ε ∈ (0, 1 − t). Since

�
F (et) =

⋂

s∈(F (et),1)

�
s,

it follows that
�

t ⊆
�

F (et), which completes the proof of the proposition. �
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Lemma 7.4. Let t ∈ (0, 1) and define (an)∞n=1 recursively by

a1 = F (et) (7.7)

an+1 = anF

(
et

an

)
. (7.8)

Then (an)∞n=1 is a strictly decreasing sequence in [0, 1] and limn→∞ an = t.

Proof. The function x 7→ F (ex) is a strictly increasing, continuous bijection of [0, 1] onto
itself. By definition, the restriction of F to (0, e) is differentiable with continuous derivative

F ′(x) = φ(x), x ∈ (0, e),

where φ is uniquely determined by

φ

(
sin v

v
exp(v cot v)

)
=

1

π
sin v exp(−v cot v).

As observed in the proof of [4, Thm. 8.9], the map v 7→ sin v
v

exp(v cot v) is a strictly decreasing
bijection from (0, π) onto (0, e). Moreover,

d

dv
(sin v exp(−v cot v)) =

v

sin v
exp(−v cot v) > 0

for v ∈ (0, π). Hence φ is a strictly decreasing function on (0, e), which implies that F is
strictly convex on [0, e]. Hence

F (ex) > (1 − x)F (0) + xF (e) = x, x ∈ (0, 1). (7.9)

With t ∈ (0, 1) and with (an)∞n=1 defined by (7.7) and (7.8), from (7.9) we have a1 = F (et) ∈
(t, 1). If a ∈ (t, 1) and if a′ = aF ( et

a
), then clearly a′ < a. Moreover, by (7.9),

a′ = aF

(
et

a

)
> a · t

a
= t.

Hence (an)∞n=1 is a strictly decreasing sequence in (t, 1) and therefore converges. Let a∞ =
limn→∞ an. Then by the continuity of F on [0, e], we have

a∞ = a∞F

(
et

a∞

)
.

Hence F ( et
a∞

) = 1, which implies a∞ = t. �
Proof of Theorem 2.9. Let T = ��� (X, λ) be constructed using [4, §4], as described in the
introduction. For t ∈ [0, 1], let

	
t = {ξ ∈ � | lim sup

n→∞

(
k

e
‖T kξ‖2/k

)
≤ t}. (7.10)

We will show �
t ⊆

	
t ⊆

�
F (et), t ∈ [0, 1]. (7.11)

The second inclusion in (7.11) follows immediately from Proposition 7.3. The first inclusion
is trivial for t = 0, so we can assume t > 0. Letting Pt = 1[0,t](D0) be the projection onto�

t, from [4, Lemma 4.10] we have

Tt
def
=

1√
t
T 
��

t
= PtTPt = ��� (

1√
t
PtXPt, λt), (7.12)
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where λt : L∞[0, 1] → PtL(F2)Pt is the injective, normal ∗–homomorphism given by λt(f) =
λ(ft), where

ft(s) =

{
f(s/t) if s ∈ [0, t]

0 if s ∈ (t, 1].

Therefore, Tt is itself a DT(δ0, 1)–operator in (PtMPt, t
−1τ 
 PtMPt

). Hence, by Lemma 7.1
applied to Tt, we have, for all ξ ∈ �

t,

‖T kξ‖ = tk/2‖T k
t ξ‖ ≤

(
te

k

)k/2

‖ξ‖.

Therefore, lim supk→∞(k
e
‖T kξ‖2/k) ≤ t and ξ ∈ 	

t. This completes the proof of (7.11).
From (7.11), we have in particular

	
0 =

�
0 = {0} and

	
1 =

�
1 =

�
. Let t ∈ (0, 1) and

let (an)∞n=1 be the sequence defined by Lemma 7.4. We will prove by induction on n that	
t ⊆

�
an . By (7.11),

	
t ⊆

�
a1

. Let n ∈ N and assume
	

t ⊆
�

an. Then

	
t = {ξ ∈ �

an | lim sup
k→∞

(
k

e
‖T kξ‖2/k

)
≤ t} (7.13)

= {ξ ∈ �
an | lim sup

k→∞

(
k

e
‖T k

an
ξ‖2/k

)
≤ t

an
}. (7.14)

But the space (7.14) is the analogue of
	

t/an for the operator Tan . By (7.11) applied to the
operator Tan , we have that

	
t is contained in the analogue of

�
F (et/an) for Tan . Using (7.12)

(with an instead of t), we see that this latter space is

λan(1[0,F (et/an)])
�

an = λ(1[0,anF (et/an)])
�

an = λ(1[0,an+1])
�

an =
�

an+1
.

Thus
	

t ⊆
�

an+1
and the induction argument is complete.

Now applying Lemma 7.4, we get
	

t ⊆
⋂∞

n=1

�
an =

�
t, as desired. �

Appendix A. D–Gaussianity of T, T ∗

The operator T was defined in [4] as the limit in ∗–moments of upper triangular Gaussian
random matrices, and it was shown in [4] that T can be constructed as T = ��� (X, λ)
in a von Neumann algebra M equipped with a normal, faithful, tracial state τ , from a
semicircular element X ∈ M with τ(X) = 0 and τ(X2) = 1 and an injective, unital, normal
∗–homomorphism λ : L∞[0, 1] → M such that {X} and λ(L∞[0, 1]) are free with respect

to τ and τ ◦ λ(f) =
∫ 1

0
f(t)dt. (See the description in the introduction and [4, §4].) Let

D = λ(L∞[0, 1]) and let ED : M → D be the τ–preserving conditional expectation onto D.
In [7], it was asserted that T is a generalized circular element with respect to ED and with

a particular variance. It is the purpose of this appendix to provide a proof.

Lemma A.1. Let f ∈ L∞[0, 1]. Then

ED(Tλ(f)T ∗) = λ(g), (A.1)

ED(T ∗λ(f)T ) = λ(h), (A.2)

ED(Tλ(f)T ) = 0, (A.3)

ED(T ∗λ(f)T ∗) = 0, (A.4)

where

g(x) =

∫ 1

x

f(t)dt, h(x) =

∫ x

0

f(t)dt. (A.5)
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Moreover,

ED(T ) = 0. (A.6)

Proof. From [4, §4], limn→∞ ‖T − Tn‖ = 0, where

Tn =
2n−1∑

j=1

p[ j−1
2n ,

j
2n ]Xp[ j

2n , 1]

and p[a, b] = λ(1[a,b]). Therefore,

lim
n→∞

‖ED(Tλ(f)T ∗) − ED(Tnλ(f)T ∗
n)‖ = 0.

We have

ED(Tnλ(f)T ∗
n) =

2n−1∑

j=1

p[ j−1
2n ,

j
2n ]ED(Xp[ j

2n , 1]λ(f)X).

Fixing n and letting a =
∫ 1

j/2n f(t)dt, we have

Xp[ j
2n , 1]λ(f)X = X(p[ j

2n , 1]λ(f) − a)X + a(X2 − 1) + a,

and from this we see that ED(Xp[ j
2n , 1]λ(f)X) is the constant

∫ 1

j/2n f(t)dt. Therefore, we

get ED(Tnλ(f)T ∗
n) = λ(gn), where

gn(x) =

{∫ 1

j/2n f(t)dt if j−1
2n ≤ x ≤ j

2n , j ∈ {1, . . . , 2n − 1}
0 if 2n−1

2n ≤ x ≤ 1.

Letting n→ ∞, we obtain (A.1) with g as in (A.5).
Equations (A.2)–(A.4) and (A.6) are obtained similarly. �

Comparing Śniady’s definition of a generalized circular element (with respect to D) in [7]
with Speicher’s algorithm for passing from D–cummulants to D–moments in [8, §2.1 and
§3.2], we see that an operator S ∈ L(F2) is generalized circular if and only if all D–
cummulants of order k 6= 2 for the pair (S, S∗) vanish. Hence S is generalized circular
if and only if the pair (S, S∗) is D–Gaussian in the sense of [8, Def. 4.2.3]. Thus, in order to
prove that T has the properties used in [7], it suffices to prove the following.

Proposition A.2. The distribution of the pair T, T ∗ with respect to ED is a D–Gaussian
distribution with covariance matrix determined by (A.1)–(A.6).

Proof. Take X1, X2, . . . ∈ M, each a (0, 1)–semicircular element such that

D,
(
{Xj}

)∞
j=1

is a free family of sets of random variables. Then the family
(
W ∗(D ∪ {Xj})

)∞
j=1

of ∗–subalgebras of M is free (over D) with respect to ED. Let Tj = ��� (Xj, λ). Then each
Tj has D–valued ∗–distribution (with respect to ED) the same as T . Therefore, by Speicher’s
D–valued free central limit theorem [8, Thm. 4.2.4], the D–valued ∗–distribution of T1+···+Tn√

n
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converges as n→ ∞ to a D–Gaussian ∗–distribution with the correct covariance. However,
X1+···+Xn√

n
is a (0, 1)–semicircular element that is free from D, and

T1 + · · ·+ Tn√
n

= ���
(X1 + · · · +Xn√

n
, λ
)
.

Thus T1+···+Tn√
n

itself has the same D–valued ∗–distribution as T . �
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