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ON THE BEST CONSTANTS IN NONCOMMUTATIVE KHINTCHINE-TYPE
INEQUALITIES

UFFE HAAGERUP(1) AND MAGDALENA MUSAT(2)

Abstract. We obtain new proofs with improved constants of the Khintchine-type inequality with matrix

coefficients in two cases. The first case is the Pisier and Lust-Piquard noncommutative Khintchine

inequality for p = 1 , where we obtain the sharp lower bound of 1√
2

in the complex Gaussian case and

for the sequence of functions {ei2nt}∞n=1 . The second case is Junge’s recent Khintchine-type inequality

for subspaces of the operator space R ⊕ C , which he used to construct a cb-embedding of the operator

Hilbert space OH into the predual of a hyperfinite factor. Also in this case, we obtain a sharp lower

bound of 1√
2

. As a consequence, it follows that any subspace of a quotient of (R⊕C)∗ is cb-isomorphic

to a subspace of the predual of the hyperfinite factor of type III1 , with cb-isomorphism constant ≤ √
2 .

In particular, the operator Hilbert space OH has this property.

1. Introduction

Let rn(t) = sgn(sin(2ntπ)) , n ∈ N denote the Rademacher functions on [0, 1] . The classical Khintchine
inequality states that for every 0 < p < ∞ , there exist constants Ap and Bp such that

(1.1) Ap

(
n∑

k=1

a2
k

) 1
2

≤



1∫

0

∣∣∣∣∣
n∑

k=1

akrk

∣∣∣∣∣

p

dt




1
p

≤ Bp

(
n∑

k=1

a2
k

) 1
2

,

for arbitrary n ∈ N and a1 , . . . , an ∈ R .
Suppose Ap and Bp denote the best constants for which (1.1) holds. While it is elementary to prove

that Bp = 1 for 0 < p ≤ 2 and Ap = 1 for 2 ≤ p < ∞ , it took the work of many mathematicians to
settle all the other cases, including Szarek [20] who proved that A1 = 1√

2
(thus solving a long-standing

conjecture of Littlewood), Young [22] who computed Bp for p ≥ 3 , and the first-named author (cf. [6])
who computed Ap and Bp in the remaining cases.

The Khintchine inequality and its generalization to certain classes of Banach spaces are deeply connected
with the study of the geometry of those Banach spaces (see [13]). Noncommutative generalizations of the
classical Khintchine inequality to the case of matrix-valued coefficients were first proved by Lust-Piquard
[11] in the case 1 < p < ∞ , and by Pisier and Lust-Piquard [12] for p = 1 . Their method of proof follows
the classical harmonic analysis approach of deriving Khintchine inequality for the sequence {ei2nt}∞n=1

from a Paley inequality, for which they proved a noncommutative version (see Theorem II.1 in [12]). As a
consequence, the following noncommutative Khintchine inequality holds (see Corollary II.2 in [12]). Given
d , n ∈ N and x1, . . . , xd ∈ Mn(C) , then

1
1 +

√
2
|||{xj}d

j=1|||∗ ≤
∥∥∥∥∥∥

d∑

j=1

xj ⊗ ei2nt

∥∥∥∥∥∥
L1([0,1];Sn

1 )

≤ |||{xj}d
j=1|||∗ ,(1.2)
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where, by definition,

|||{xi}d
i=1|||∗ : = inf



Tr




(
d∑

i=1

y∗i yi

) 1
2

+

(
d∑

i=1

ziz
∗
i

) 1
2

 ; xi = yi + zi ∈ Mn(C)



 .(1.3)

Here Sn
1 is Mn(C) with the norm ‖x‖1 := Tr((x∗x)1/2) , and Tr is the non-normalized trace on Mn(C) . We

should also point out that it was noted in the paper [12] (cf. p. 250) that, by using the lacunary sequence
{3n}n≥1 instead of the sequence {2n}n≥1, the lower bound in the inequality (1.2) can be improved to 1

2 .
By classical arguments (cf. Proposition 3.2 in [15]) , if one replaces {ei2nt}∞n=1 by a sequence of inde-

pendent complex Gaussian, respectively, Rademacher or Steinhauss random variables, the corresponding
Khintchine inequality with matrix coefficients follows, as well, with possibly different constants.

Our method, leading to improved constants, was inspired by ideas of Pisier from [14], and it is based
on proving first directly the dual inequality to (1.2) with constant

√
2 , where {ei2nt}∞n=1 is replaced by a

sequence of independent complex-valued standard Gaussian random variables on some probability space
(Ω,P) . Based on a result from [8] , the constant

√
2 turns out to be optimal in this case, and for the

sequence {ei2nt}∞n=1 . We also consider the case of a sequence of Rademacher functions, and prove that
the corresponding noncommutative Khintchine inequality holds with constant

√
3 instead of

√
2 , but we

do not know yet whether this is sharp.
In the second part of our paper we obtain an improvement of a recent result of M. Junge (cf. [10])

concerning a Khintchine-type inequality for subspaces of R⊕∞C (the l∞-sum of the row and column
Hilbert spaces). Recall that R := Span{e1j ; j ≥ 1} , respectively, C := Span{ej1; j ≥ 1}, where ekl is
the element in B(l2) corresponding to the matrix with entries equal to 1 on the (k, l) position, and 0
elsewhere. This Khintchine-type inequality is intimately connected with the question of the existence of
a completely isomorphic embedding of the operator space OH, introduced by G. Pisier (see [16]), into a
noncommutative L1-space, a problem that was resolved by Junge in the remarkable paper [9]. In [10] (see
Section 8), Junge improved this result, by showing that OH cb-embeds into the predual of a hyperfinite
type III1 factor.

In our new approach, we first observe that given a closed subspace H of R ⊕ C , there is a self-adjoint
operator A ∈ B(H) satisfying 0 ≤ A ≤ I , where I denotes the identity operator on H , such that the
operator space structure on H is given by

∥∥∥∥∥
r∑

i=1

xi ⊗ ξi

∥∥∥∥∥
Mn(H)

= max





∥∥∥∥∥∥

r∑

i,j=1

〈(I −A)ξi, ξj〉Hxix
∗
j

∥∥∥∥∥∥

1/2

,

∥∥∥∥∥∥

r∑

i,j=1

〈Aξi, ξj〉Hx∗i xj

∥∥∥∥∥∥

1/2




,(1.4)

where n, r are positive integers, x1 , . . . , xr ∈ Mn(C) and ξ1 , . . . , ξr ∈ H .
As in Junge’s approach from [10], we will use CAR algebra methods. We consider the associated quasi-

free state ωA on the CAR-algebra A = A(H) built on the Hilbert space H , and construct a linear map
FA of H∗ into the predual M∗ of the von Neumann algebra M := πA(A)

sot
, which by [19] is a hyperfinite

factor. Here πA is the unital ∗-homomorphism from the GNS representation associated to (A, ωA). Note
that M∗ can be considered as a subspace of A∗ . Next we let FA be the transpose of the map EA : A → H

defined by

〈EA(b), f〉H = ωA(ba(f)∗ + a(f)∗b) , ∀b ∈ A ,∀f ∈ H ,(1.5)
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where f 7→ a(f) is the map from H to A = A(H) in the definition of the CAR-algebra (cf. [4]). We then
prove that FA is a cb-isomorphism of H∗ onto its range, satisfying the following estimates

(1.6)
1√
2
‖FA(y)‖Mn(A)∗ ≤ ‖y‖Mn(H)∗ ≤ ‖FA(y)‖Mn(A)∗ , ∀n ∈ N , y ∈ Mn(H)∗ .

We do so by first proving the dual version of the inequalities (1.6), namely we show that

(1.7) ‖ξ‖Mn(H) ≤ ‖(Idn ⊗ qA)(ξ)‖Mn(A/Ker(EA)) ≤
√

2 ‖ξ‖Mn(H) , ∀n ∈ N , ξ ∈ Mn(H) .

The estimate of the upper bound
√

2 in (1.7) (corresponding to the lower bound 1√
2

in (1.6)) is obtained
by methods very similar to those we used for the Pisier and Lust-Piquard noncommutative Khintchine
inequality. We then prove that both constants in (1.6) are sharp.

Note that if P is the unique hyperfinite factor of type III1 (cf. [7]) , then the von Neumann algebra
tensor product M⊗̄P is isomorphic to P , and therefore FA can be considered as a completely bounded
embedding of H∗ into the predual P∗ of P , as well. It follows that every subspace of a quotient of (R⊕C)∗

is cb-isomorphic to a subspace of P∗ with cb-isomorphism constant ≤ √
2 . In particular, due to results of

G. Pisier (cf. [18] Proposition A1) , the operator Hilbert space OH has this property (cf. Corollary 3.8 in
this paper). The question whether OH embeds completely isometrically into a noncommutative L1-space
remains open.

In the case when the self-adjoint operator A associated to the subspace H of R ⊕ C has pure point
spectrum and Ker(A) = Ker(I − A) = 0 , our construction of the map FA : H∗ → M∗ is very similar to
Junge’s construction from [10] . This can be seen by taking Lemma 3.3 into account.

We refer to the monographs [5, 17] for details on operator spaces. We shall briefly recall some definitions
that are relevant for our paper. An operator space V is a Banach space given together with an isometric
embedding V ⊂ B(H) , the algebra of bounded linear operators on a Hilbert space H . For all n ∈ N,
this embedding determines a norm on Mn(V ), the algebra of n×n matrices over V , induced by the space
Mn(B(H)) ∼= B(Hn) . If W is a closed subspace of V , then both W and V/W are operator spaces; the
matrix norms on V/W are defined by Mn(V/W ) = Mn(V )/Mn(W ) . The morphisms in the category of
operator spaces are completely bounded maps. Given a linear map φ : V0 → V1 between two operator
spaces V0 and V1 , define φn : Mn(V0) → Mn(V1) by φn([vij ]) = [φ(vij)] , for all [vij ]ni,j=1 ∈ Mn(V0) .
Let ‖φ‖cb := sup{‖φn‖ ; n ∈ N } . The map φ is called completely bounded (for short, cb) if ‖φ‖cb < ∞ ,

and φ is called completely isometric if all φn are isometries. A cb map φ which is invertible with a cb
inverse is called a cb isomorphism. The space of all completely bounded maps from V0 to V1 , denoted by
CB(V0, V1) , is an operator space with matrix norms defined by Mn(CB(V0, V1)) = CB(V0,Mn(V1)) . The
dual of an operator space V is, again, an operator space V ∗ = CB(V,C) .

2. The Pisier and Lust-Piquard noncommutative Khintchine inequality

I. The complex Gaussian case
Let {γn}n≥1 be a sequence of independent standard complex-valued Gaussian random variables on

some probability space (Ω,P). Recall that a complex-valued random variable on (Ω,P) is called Gaussian
standard if it has density 1

π e−|z|
2
dRez dImz . Equivalently, its real and imaginary parts are real-valued,

independent Gaussian random variables on (Ω,P) , each having mean 0 and variance 1
2 . Therefore, for all

n ≥ 1 , E(γn) = 0 and E(|γn|2) = 1 , where E denotes the usual expectation of a random variable.
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Theorem 2.1. Let d and n be positive integers, and consider x1, . . . , xd ∈ Mn(C) . Then the following
inequalities hold

1√
2
|||{xi}d

i=1|||∗ ≤
∥∥∥∥∥

d∑

i=1

xi ⊗ γi

∥∥∥∥∥
L1(Ω;Sn

1 )

≤ |||{xi}d
i=1|||∗ ,(2.1)

where |||{xi}d
i=1|||∗ is defined by (1.3) .

We will prove Theorem 2.1 by obtaining first its dual version, namely,

Proposition 2.2. Let d be a positive integer, and let {γi}d
i=1 be a sequence of independent standard

complex-valued Gaussian random variables on a probability space (Ω,P) . For 1 ≤ i ≤ d define a map
φi : L∞(Ω) → C by

φi(f) =
∫

Ω

f(ω)γi(ω)dP(ω) , ∀ f ∈ L∞(Ω) ,

and let E : L∞(Ω) → Cd be defined by

E(f) = (φ1(f) , . . . , φd(f)) , ∀ f ∈ L∞(Ω) .

Furthermore, let q : L∞(Ω) → L∞(Ω)/Ker(E) denote the quotient map. Then, for any positive integer n

and any X ∈ Mn(L∞(Ω)) ,
∣∣∣∣∣∣{xi}d

i=1

∣∣∣∣∣∣
Mn(Cd)

≤ ‖(Idn ⊗ q)(X)‖Mn(L∞(Ω)/Ker(E)) ≤
√

2
∣∣∣∣∣∣{xi}d

i=1

∣∣∣∣∣∣
Mn(Cd)

,(2.2)

where xi = (Idn ⊗ φi)(X) , ∀1 ≤ i ≤ d , and

∣∣∣∣∣∣{xi}d
i=1

∣∣∣∣∣∣
Mn(Cd)

: = max





∥∥∥∥∥
d∑

i=1

x∗i xi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

xix
∗
i

∥∥∥∥∥

1
2


 .(2.3)

Note that Cd equipped with the sequence of matrix norms {||| · |||Mn(C) , n ∈ N}) is an operator space.

Proof. Let n ∈ N . We first prove the left hand side inequality in (2.2). For this, we need the following

Lemma 2.3. Let X ∈ Mn(L∞(Ω)) , and set xi := (Idn ⊗ φi)(X) , ∀1 ≤ i ≤ d . Then

‖X‖Mn(L∞(Ω)) ≥ max





∥∥∥∥∥
d∑

i=1

x∗i xi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

xix
∗
i

∥∥∥∥∥

1
2


 .(2.4)

Proof. Since X ∈ Mn(C)⊗ L∞(Ω) (algebraic tensor product), we can write

X =
r∑

k=1

yk ⊗ fk ,

for some yk ∈ Mn(C) , fk ∈ L∞(Ω) , 1 ≤ k ≤ r .
Let K = Span{γ1 , . . . , γd , f1 , . . . , fr} ⊂ L2(Ω) . Choose an orthonormal basis {gi}s

i=1 for K such that

(2.5) gi = γi , 1 ≤ i ≤ d .

Then X =
s∑

i=1

zi ⊗ gi , for some zi ∈ Mn(C) , 1 ≤ i ≤ s . Note that for 1 ≤ i ≤ d , we have

xi = (Idn ⊗ φi)




s∑

j=1

zj ⊗ gj


 =

s∑

j=1

ziφi(gj) = zi ,
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because by (2.5) it follows that φi(gj) = 〈gj , γi〉L2(Ω) = 〈gj , gi〉L2(Ω) = δij , for all 1 ≤ j ≤ s .
Denote by S(Mn(C)) the state space of Mn(C) . Then, for ω ∈ S(Mn(C)) ,

‖X‖2Mn(L∞(Ω)) ≥ (ω ⊗ E)(X∗X)

= (ω ⊗ E)




s∑

i,j=1

z∗i zj ⊗ ḡigj




= ω

(
s∑

i=1

z∗i zi

)
≥ ω

(
d∑

i=1

z∗i zi

)
= ω

(
d∑

i=1

x∗i xi

)
.

Take supremum over all ω ∈ S(Mn(C)) to obtain

‖X‖2Mn(L∞(Ω)) ≥
∥∥∥∥∥

d∑

i=1

x∗i xi

∥∥∥∥∥ .(2.6)

Since ‖X‖2Mn(L∞(Ω)) = ‖XX∗‖Mn(L∞(Ω)) , a similar argument shows that also

‖X‖2Mn(L∞(Ω)) ≥
∥∥∥∥∥

d∑

i=1

xix
∗
i

∥∥∥∥∥ .(2.7)

This proves the lemma. ¤

Remark 2.4. As a consequence of this lemma, we deduce that for all X ∈ Mn(L∞(Ω)) we have
∣∣∣∣∣∣{xi}d

i=1

∣∣∣∣∣∣
Mn(Cd)

≤ ‖(Idn ⊗ q)(X)‖Mn(L∞(Ω)/Ker(E)) ,(2.8)

i.e., the left hand side inequality in (2.2) holds. Indeed, for any Y ∈ Mn(Ker(E)) we infer by (2.4) that

‖X + Y ‖Mn(L∞(Ω)) ≥ |||(Idn ⊗ E)(X + Y )|||Mn(Cd) = |||(Idn ⊗ E)(X)|||Mn(Cd) =
∣∣∣∣∣∣{xi}d

i=1

∣∣∣∣∣∣
Mn(Cd)

.

By taking infimum over all Y ∈ Mn(Ker(E)), inequality (2.8) follows by the definition of the quotient
operator space norm.

It remains to prove the right hand side inequality in (2.2) . For this, let y1 , . . . , yd ∈ Mn(C) and set

Y :=
d∑

i=1

yi ⊗ γi ∈ Mn(L4(Ω)) .

We will first compute (Idn ⊗ E)(Y ∗Y ) , (Idn ⊗ E)(Y Y ∗) , (Idn ⊗ E)((Y ∗Y )2) and (Idn ⊗ E)((Y Y ∗)2) .
Since E(γiγj) = δij , for all 1 ≤ i, j ≤ d , we immediately get

(Idn ⊗ E)(Y ∗Y ) =
d∑

i=1

y∗i yi , (Idn ⊗ E)(Y Y ∗) =
d∑

i=1

yiy
∗
i .(2.9)

It is easily checked that the vectors fij := γiγj − δij1 , 1 ≤ i, j ≤ d , together with the constant function
1 form an orthonormal set with respect to the usual L2(Ω)-inner product. We then obtain the expansion

Y ∗Y =
d∑

i,j=1

y∗i yj ⊗ fij +
d∑

i=1

y∗i yi ⊗ 1 ,
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from which we infer that

(Idn ⊗ E)((Y ∗Y )2) =
d∑

i=1

y∗i




d∑

j=1

yjy
∗
j


 yi +

(
d∑

i=1

y∗i yi

)2

.(2.10)

A similar argument shows that

(Idn ⊗ E)((Y Y ∗)2) =
d∑

i=1

yi




d∑

j=1

y∗j yj


 y∗i +

(
d∑

i=1

yiy
∗
i

)2

.(2.11)

By (2.10) , (2.11) and (2.9) we then obtain the following inequalities

(Idn ⊗ E)((Y ∗Y )2) ≤
(∥∥∥∥∥

d∑

i=1

y∗i yi

∥∥∥∥∥ +

∥∥∥∥∥
d∑

i=1

yiy
∗
i

∥∥∥∥∥

)
(Idn ⊗ E)(Y ∗Y ) ,(2.12)

(Idn ⊗ E)((Y Y ∗)2) ≤
(∥∥∥∥∥

d∑

i=1

y∗i yi

∥∥∥∥∥ +

∥∥∥∥∥
d∑

i=1

yiy
∗
i

∥∥∥∥∥

)
(Idn ⊗ E)(Y Y ∗) .(2.13)

The crucial point in proving the right hand side inequality in (2.2) is to show the following

Lemma 2.5. Let x1 , . . . , xd ∈ Mn(C) . Then there exists X ∈ Mn(L∞(Ω)) such that

(Idn ⊗ E)(X) =
d∑

i=1

xi ⊗ ei ,

where {ei}1≤i≤d is the canonical unit vector basis in Cd , and

‖X‖Mn(L∞(Ω)) ≤
√

2 max





∥∥∥∥∥
d∑

i=1

x∗i xi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

xix
∗
i

∥∥∥∥∥

1
2


 .

We first prove the following lemma:

Lemma 2.6. If y1 , . . . , yd ∈ Mn(C) and

max





∥∥∥∥∥
d∑

i=1

y∗i yi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

yiy
∗
i

∥∥∥∥∥

1
2


 = 1 ,(2.14)

then there exists Z ∈ Mn(L∞(Ω)) such that

‖Z‖Mn(L∞(Ω)) ≤ 1√
2

and, moreover, when z1 , . . . , zd are defined by (Idn ⊗ E)(Z) =
d∑

i=1

zi ⊗ ei , then

max





∥∥∥∥∥
d∑

i=1

(yi − zi)∗(yi − zi)

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(yi − zi)(yi − zi)∗
∥∥∥∥∥

1
2


 ≤ 1

2
.

Proof. Set

Y =
d∑

i=1

yi ⊗ γi ∈ Mn(L4(Ω)) .
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Let Ẽ : L4(Ω) → Cd denote the natural extension of E to L4(Ω) . Then

(Idn ⊗ Ẽ)(Y ) =
d∑

i=1

yi ⊗ Ẽ(γi) =
d∑

i=1

yi ⊗ ei .

Now let C > 0 and define FC : R→ R by

FC(t) =





−C if t < −C

t if − C ≤ t ≤ C

C if t > C

(2.15)

Use functional calculus to define Z ∈ Mn(L∞(Ω)) by
(

0 Z∗

Z 0

)
= FC

(
0 Y ∗

Y 0

)
.(2.16)

Note that this implies that ‖Z‖Mn(L∞(Ω)) ≤ C . Further, set

GC(t) = t− FC(t) , ∀t ∈ R .

We then have
(

0 (Y − Z)∗

(Y − Z) 0

)
= GC

(
0 Y ∗

Y 0

)

and thus
(

(Y − Z)∗(Y − Z) 0
0 (Y − Z)(Y − Z)∗

)
=

(
GC

(
0 Y ∗

Y 0

))2

.(2.17)

A simple calculation shows that

|GC(t)| ≤ 1
4C

t2 , ∀t ∈ R .(2.18)

By functional calculus it follows that
(

GC

(
0 Y ∗

Y 0

))2

≤ 1
16C2

(
0 Y ∗

Y 0

)4

=
1

16C2

(
(Y ∗Y )2 0

0 (Y Y ∗)2

)
.

Hence, by (2.17) and (2.18) we infer that

(Y − Z)∗(Y − Z) ≤ 1
16C2

(Y ∗Y )2 ,(2.19)

(Y − Z)(Y − Z)∗ ≤ 1
16C2

(Y Y ∗)2 .(2.20)

By letting zi = (Idn ⊗ φi)(Z) , 1 ≤ i ≤ d , we then have

(Idn ⊗ E)(Z) =
d∑

i=1

zi ⊗ ei ,

and hence (Idn ⊗ Ẽ)(Y − Z) =
d∑

i=1

(yi − zi)⊗ ei .
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By (2.19) , (2.12) and (2.14) we then obtain the estimates

d∑

i=1

(yi − zi)∗(yi − zi) ≤ (Idn ⊗ E)((Y − Z)∗(Y − Z))

≤ 1
16C2

(Idn ⊗ E)((Y ∗Y )2)

≤ 1
16C2

(∥∥∥∥∥
d∑

i=1

y∗i yi

∥∥∥∥∥ +

∥∥∥∥∥
d∑

i=1

yiy
∗
i

∥∥∥∥∥

)
(Idn ⊗ E)(Y ∗Y )

≤ 2
16C2

(Idn ⊗ E)(Y ∗Y )

=
1

8C2

d∑

i=1

y∗i yi .

It follows that ∥∥∥∥∥
d∑

i=1

(yi − zi)∗(yi − zi)

∥∥∥∥∥ ≤
1

8C2

∥∥∥∥∥
d∑

i=1

y∗i yi

∥∥∥∥∥ ≤
1

8C2
.

Similarly, we also get
∥∥∥∥∥

d∑

i=1

(yi − zi)(yi − zi)∗
∥∥∥∥∥ ≤ 1

8C2
.

Hence,

max





∥∥∥∥∥
d∑

i=1

(yi − zi)∗(yi − zi)

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(yi − zi)(yi − zi)∗
∥∥∥∥∥

1
2


 ≤ 1√

8C
.

Now take C = 1√
2

to get the conclusion. ¤

We also need the following result:

Lemma 2.7. Let V and W be Banach spaces. Consider T : V → W a bounded linear map. Further, let
φ : W → V be a non-linear map such that, for some C > 0 and some 0 < δ < 1 , we have

‖φ(w)‖ ≤ C‖w‖ ,(2.21)

‖w − (T ◦ φ)(w)‖ ≤ δ‖w‖ , ∀w ∈ W .(2.22)

Then there exists a non-linear map ψ : W → V such that T ◦ ψ = IdW and, moreover,

‖ψ(w)‖ ≤ C

1− δ
‖w‖ , ∀w ∈ W .

Proof. Let w ∈ W . Set w0 = w and define recursively

wn = wn−1 − (T ◦ φ)(wn−1) , ∀n ≥ 1 .

Then, by (2.22) we have for all n ≥ 0

(2.23) ‖wn+1‖ ≤ δ‖wn‖ ≤ . . . ≤ δn+1‖w0‖ .
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Also, we deduce that

w = w0 = (T ◦ φ)(w0) + w1 = (T ◦ φ)(w0) + (T ◦ φ)(w1) + w2 = . . . =
n∑

j=0

(T ◦ φ)(wj) + wn+1 , n ≥ 0 .

By (2.23) it follows that wn → 0 as n →∞ , and therefore

(2.24) w =
∞∑

j=0

(T ◦ φ)(wj) = T




∞∑

j=0

φ(wj)


 .

Define

ψ(w) :=
∞∑

j=0

φ(wj) , ∀w ∈ W .

By (2.24) it follows that T (ψ(w)) = w , for all w ∈ W . Moreover, by (2.21) and (2.23) we obtain that

‖ψ(w)‖ =

∥∥∥∥∥∥

∞∑

j=0

φ(wj)

∥∥∥∥∥∥
≤ C

∞∑

j=0

‖wj‖ ≤ C

1− δ
‖w‖ , ∀w ∈ W ,

which completes the proof. ¤

Now we are ready to prove Lemma 2.5 . Indeed, Lemma 2.6 shows that if

y =
d∑

i=1

yi ⊗ ei ∈ Mn(Cd)

satisfies |||y|||Mn(Cd) = 1 , then there exists Z ∈ Mn(L∞(Ω)) so that ‖Z‖Mn(L∞(Ω)) ≤ 1√
2

and |||(Idn ⊗
E)(Z)−y|||Mn(Cd) ≤ 1

2 . By homogeneity we infer that for all y ∈ Mn(Cd) there exists Z ∈ Mn(L∞(Ω)) so
that ‖Z‖Mn(L∞(Ω)) ≤ 1√

2
|||y|||Mn(Cd) , and, moreover, |||(Idn⊗E)(Z)− y|||Mn(Cd) ≤ 1

2 |||y|||Mn(Cd) . Apply
now Lemma 2.7 with V = Mn(L∞(Ω)) , W = Mn(Cd) , T = Idn ⊗ E , the map φ : W → V be defined
by φ(y) = Z , ∀y ∈ W , C = 1√

2
and δ = 1

2 . We deduce that for all x1 , . . . , xd ∈ Mn(C) , there exists

X ∈ Mn(L∞(Ω)) such that (Idn ⊗ E)(X) =
d∑

i=1

xi ⊗ ei and

(2.25) ‖X‖Mn(L∞(Ω)) ≤
C

1− δ

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
d∑

i=1

xi ⊗ ei

∣∣∣∣∣

∣∣∣∣∣

∣∣∣∣∣
Mn(Cd)

=
√

2|||{xi}d
i=1|||Mn(Cd) ,

which completes the proof of Lemma 2.5. Note that, since the norm on Mn (L∞(Ω)/Ker(E)) is the
quotient space norm on the space Mn(L∞(Ω))/Mn(Ker(E)) , it follows by (2.25) that

‖(Idn ⊗ q)(X)‖Mn(L∞(Ω)/Ker(E)) ≤
√

2|||{xi}d
i=1|||Mn(Cd) .

Therefore, by Lemmas 2.3 and 2.5 and Remark 2.4 , there is a linear bijection Ê : L∞(Ω)/Ker(E) → Cd

such that

Ê(q(si)) = ei , ∀1 ≤ i ≤ d ,

9



where si =
√

4
π sgn(γi) , for 1 ≤ i ≤ d . Note that si ∈ L∞(Ω) and E(siγi) = δij , ∀1 ≤ j ≤ d , so that

E(si) = ei , ∀1 ≤ i ≤ d . For every positive integer n , the following diagram is commutative,

Mn(L∞(Ω))
Idn⊗E //

Idn⊗q ))RRRRRRRRRRRRRR
Mn(Cd)

Mn(L∞(Ω)/Ker(E))
Idn⊗ bE

66mmmmmmmmmmmm

and moreover, the inequalities (2.2) hold. The proof of Proposition 2.2 is now complete. ¤

Remark 2.8. We should mention that, by the same proof with only minor modifications, Theorem 2.1
remains valid if we replace the sequence {γn}n≥1 of independent standard complex Gaussian random
variables by a sequence {sn}n≥1 of independent Steinhauss random variables (that is, a sequence of
independent random variables which are uniformly distributed over the unit circle), or by the sequence
{en}n≥1 given by en(t) = ei2nt , 0 ≤ t ≤ 2π . Indeed, the only essential change in the proof is that the
formulas (2.10) and (2.11) must be modified, because in the case of the sequences {sn}n≥1 and {en}n≥1

we still have that {s̄isj ; 1 ≤ i, j ≤ d} ∪ {1} and, respectively, {ēiej ; 1 ≤ i, j ≤ d} ∪ {1} form orthonormal
sets, but in contrast to the case of the Gaussians {γn}n≥1 , one has

s̄jsj = ējej = 1 , j ≥ 1 .

Therefore, the diagonal terms (corresponding to i = j) in the right hand sides of (2.10) and (2.11) should
be removed from the double sums. However, since the diagonal terms are all positive, it follows that (2.12)
and (2.13) remain valid in the case of the sequences {sn}n≥1 and {en}n≥1 , as well.

We now discuss estimates for best constants in the noncommutative Khintchine inequalities (p = 1).

Theorem 2.9. Denote by c1 , c2 the best constants in the inequalities

c1|||{xi}d
i=1|||∗ ≤

∥∥∥∥∥
d∑

i=1

xi ⊗ γi

∥∥∥∥∥
L1(Ω;Sn

1 )

≤ c2|||{xi}d
i=1|||∗ ,(2.26)

where d and n are positive integers, x1 , . . . , xd ∈ Mn(C), and {γi}d
i=1 is a sequence of independent

standard complex-valued Gaussian random variables on a probability space (Ω,P) . Then

c1 =
1√
2

, c2 = 1 .

Proof. Let m be a positive integer. Let d = 2m + 1 and set n =
(
2m+1

m

)
. Then, by Theorem 1.1 in [8],

there exist partial isometries a1 , . . . , ad ∈ B(H) , where H is a Hilbert space of dim(H) = n , such that

τ(a∗i ai) =
m + 1
2m + 1

, ∀1 ≤ i ≤ d ,(2.27)

where τ denotes the normalized trace on B(H) , satisfying, moreover,

(2.28)
d∑

i=1

a∗i ai =
d∑

i=1

aia
∗
i = (m + 1)I ,

10



where I denotes the identity operator on H . First, we claim that

|||{ai}d
i=1|||Mn(Cd) =

√
m + 1 ,(2.29)

|||{ai}d
i=1|||∗ = n

√
m + 1 .(2.30)

Indeed, (2.29) follows immediately from the definition of the norm ||| · |||Mn(Cd) and relation (2.28), while
the equation (2.30) follows from the following estimates

|||{ai}d
i=1|||∗ = sup

{∣∣∣∣∣Tr

(
d∑

i=1

aibi

)∣∣∣∣∣ ; |||{bi}d
i=1|||Mn(Cd) ≤ 1

}

≥
∣∣∣∣∣Tr

(
d∑

i=1

ai

(
a∗i√

m + 1

))∣∣∣∣∣

=
1√

m + 1
Tr

(
d∑

i=1

aia
∗
i

)

=
1√

m + 1
Tr((m + 1)I) = n

√
m + 1 ,

respectively,

|||{ai}d
i=1|||∗ ≤ Tr




(
d∑

i=1

a∗i ai

)1/2

 = Tr(

√
m + 1I) = n

√
m + 1 .

It was proved in [8] that a1 , . . . , ad have the additional property that ∀β1 , . . . , βd ∈ C with
d∑

i=1

|βi|2 = 1 ,

the operator y :=
d∑

i=1

βiai ∈ B(H) is also a partial isometry with τ(y∗y) = m+1
2m+1 . This implies that for

all ω ∈ Ω , the operator

yω :=
d∑

i=1

γi(ω)
(

d∑
i=1

|γi(ω)|2
) 1

2
ai ∈ B(H)

is a partial isometry with τ(y∗ωyω) = m+1
2m+1 , and we deduce that

c1|||{ai}d
i=1|||∗ ≤

∫

Ω

∥∥∥∥∥
d∑

i=1

γi(ω)ai

∥∥∥∥∥
L1(Mn(C) ,Tr)

dP(ω)(2.31)

=
∫

Ω

(
d∑

i=1

|γi(ω)|2
) 1

2

‖yω‖L1(Mn(C) ,Tr)dP(ω)

= n · m + 1
2m + 1

∫

Ω

(
d∑

i=1

|γi(ω)|2
) 1

2

dP(ω) ,

wherein we have used the fact that y∗ωyω is a projection satisfying τ(|yω|) = m+1
2m+1 , for all ω ∈ Ω . A

standard computation yields the formula

∫

Ω

(
d∑

i=1

|γi(ω)|2
) 1

2

dP(ω) =
Γ

(
d + 1

2

)

Γ(d)
.(2.32)
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Indeed, since the distribution of |γi|2 is Γ(1, 1) , 1 ≤ i ≤ d , it follows by independence that the distribution

of
d∑

i=1

|γi|2 is Γ(d, 1), whose density is 1
Γ(d)x

d−1e−x , x > 0 . Since
∫∞
0

x
1
2 xd−1e−xdx = Γ(d + 1

2 ) , formula

(2.32) follows. Combining now (2.31) with (2.30) and (2.32) we deduce that

(2.33) c1 ≤ 1√
m + 1

(
m + 1
2m + 1

)
Γ

(
d + 1

2

)

Γ(d)
≤
√

m + 1
2m + 1

√
2m + 1 =

√
m + 1√
2m + 1

,

wherein we have used the inequality

Γ
(

k +
1
2

)
<
√

kΓ(k) , ∀k ∈ N ,

applied for k = d = 2m + 1 . Since m was arbitrarily chosen and lim
m→∞

√
m+1√
2m+1

= 1√
2

, we deduce by (2.33)

that c1 ≤ 1√
2

. By Theorem 2.1 we know that c1 ≥ 1√
2

, hence we conclude that c1 = 1√
2

.
To estimate c2 , let d be a positive integer. Set n = d . For all 1 ≤ i ≤ d, set xi := ei1 ∈ Md(C) . We

then have
∥∥∥∥∥

d∑

i=1

xi ⊗ γi

∥∥∥∥∥
L1(Ω;Sn

1 )

=
∫

Ω

∥∥∥∥∥
d∑

i=1

γi(ω)xi

∥∥∥∥∥
L1(Mn(C) ,Tr)

dP(ω) =
∫

Ω

(
d∑

i=1

|γi(ω)|2
) 1

2

dP(ω) .

Note also that

|||{xi}d
i=1|||∗ ≥ Tr




(
d∑

i=1

x∗i xi

) 1
2

 = Tr(

√
d e11) = 1 .

Then, using (2.32), together with the fact that lim
d→∞

1√
d

Γ(d+ 1
2 )

Γ(d) = 1 , we infer by (2.26) that c2 ≥ 1 . Since

by Theorem 2.1 we get c2 ≤ 1 , we conclude that c2 = 1 , and the proof is complete. ¤

Remark 2.10. If we replace the sequence of independent standard complex-valued Gaussian random
variables {γn}n≥1 by a sequence of independent Steinhauss random variables {sn}n≥1 or by the sequence
{ei2nt}n≥1 , and denote by c1 , c2 the best constants in the corresponding inequalities (2.26), the same
argument will give c1 = 1√

2
. Also, c2 = 1 in both cases, as a consequence of Remark 2.8 and the fact that

‖s1‖L1(T) = 1 = ‖ei2t‖L1(T) , where T is the unit circle with normalized Lebesgue measure dt/2π .

II. The Rademacher case

Let {rn}n≥1 be a sequence of Rademacher functions on [0, 1] . Probabilistically, one can think of {rn}n≥1

as being a sequence of independent, identically distributed random variables on [0, 1], each taking value
1 with probability 1

2 , respectively, value −1 with probability 1
2 . It is easily seen that E(rn) = 0 and

E(rnrm) = δnm , for all n,m ∈ N .

Theorem 2.11. Let d and n be positive integers and consider x1, . . . , xd ∈ Mn(C) . Then the following
inequalities hold

1√
3
|||{xi}d

i=1|||∗ ≤
∥∥∥∥∥

d∑

i=1

xi ⊗ ri

∥∥∥∥∥
L1([0,1];Sn

1 )

≤ |||{xi}d
i=1|||∗ .(2.34)

As in the case of complex Gaussian random variables, we prove the dual version of Theorem 2.11,
namely,
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Proposition 2.12. Let d be a positive integer, and let {ri}1≤i≤d be a sequence of Rademacher functions
on [0, 1] . For 1 ≤ i ≤ d define φi : L∞([0, 1]) → C by

φi(f) =
∫ 1

0

f(t)ri(t)dt , ∀ f ∈ L∞([0, 1]) ,

and let E : L∞([0, 1]) → Cd be defined by

E(f) = (φ1(f) , . . . , φd(f)) , ∀ f ∈ L∞([0, 1]) .

Furthermore, let q : L∞([0, 1]) → L∞([0, 1])/Ker(E) denote the quotient map. Then, for any positive
integer n and any X ∈ Mn(L∞([0, 1])) ,

∣∣∣∣∣∣{xi}d
i=1

∣∣∣∣∣∣
Mn(Cd)

≤ ‖(Idn ⊗ q)(X)‖Mn(L∞([0,1])/Ker(E)) ≤
√

3
∣∣∣∣∣∣{xi}d

i=1

∣∣∣∣∣∣
Mn(Cd)

,(2.35)

where xi = (Idn ⊗ φi)(X) , ∀1 ≤ i ≤ d .

Proof. Let n be a positive integer. The proof of the left hand side inequality in (2.35) is the same as in
the complex Gaussian case. For the right hand side inequality we follow the same argument, but with
appropriate modifications, which we indicate below.

Let y1 , . . . , yd ∈ Mn(C) and set

Y :=
d∑

i=1

yi ⊗ ri ∈ Mn(L∞([0, 1]) .

As before we will estimate (Idn⊗E)(Y ∗Y ) , (Idn⊗E)(Y Y ∗) , (Idn⊗E)((Y ∗Y )2) and (Idn⊗E)((Y Y ∗)2) .

First note that Y ∗Y =
d∑

i,j=1

y∗i yj ⊗ rirj and, respectively, Y Y ∗ =
d∑

i,j=1

yiy
∗
j ⊗ rirj to conclude that

(Idn ⊗ E)(Y ∗Y ) =
d∑

i=1

y∗i yi(2.36)

(Idn ⊗ E)(Y Y ∗) =
d∑

i=1

yiy
∗
i .(2.37)

Furthermore, note that (Idn ⊗E)((Y ∗Y )2) =
d∑

i,j,k,l=1

y∗i yjy
∗
kylE(rirjrkrl) . Since E(rirjrkrl) ∈ {0, 1} with

E(rirjrkrl) = 1 if and only if i = j = k = l, or i = j 6= k = l, or i = k 6= j = l, or i = l 6= j = k, it then
follows that

(Idn ⊗ E)((Y ∗Y )2) =
d∑

i=1

y∗i yiy
∗
i yi +

∑

i6=j

y∗i yiy
∗
j yj +

∑

i 6=j

y∗i yjy
∗
i yj +

∑

i 6=j

y∗i yjy
∗
j yi(2.38)

=
d∑

i,j=1

y∗i yiy
∗
j yj +

∑

i 6=j

y∗i yjy
∗
i yj +

∑

i6=j

y∗i yjy
∗
j yi .

Note that
d∑

i,j=1

y∗i yiy
∗
j yj =

(
d∑

i=1

y∗i yi

)2

. Further, we have

∑

i 6=j

y∗i yjy
∗
i yj =

∑

i<j

y∗i yjy
∗
i yj +

∑

i>j

y∗i yjy
∗
i yj =

∑

i<j

y∗i yjy
∗
i yj +

∑

i<j

y∗j yiy
∗
j yi =

∑

i<j

((y∗i yj)2 + (y∗j yi)2) .
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Using the fact that (y∗i yj)2 + (y∗j yi)2 ≤ y∗i yjy
∗
j yi + y∗j yiy

∗
i yj , 1 ≤ i, j ≤ d , it follows that

∑

i<j

((y∗i yj)2 + (y∗j yi)2) ≤
∑

i<j

(y∗i yjy
∗
j yi + y∗j yiy

∗
i yj)(2.39)

=
∑

i<j

y∗i yjy
∗
j yi +

∑

i>j

y∗i yjy
∗
j yi

=
∑

i 6=j

y∗i yjy
∗
j yi .

Therefore, we conclude that

(Idn ⊗ E)((Y ∗Y )2) ≤
(

d∑

i=1

y∗i yi

)2

+ 2
∑

i6=j

y∗i yjy
∗
j yi

≤
(

d∑

i=1

y∗i yi

)2

+ 2
d∑

i,j=1

y∗i yjy
∗
j yi

=

(
d∑

i=1

y∗i yi

)2

+ 2
d∑

i=1

y∗i




d∑

j=1

yjy
∗
j


 yi

Recalling the definition (2.3), and using (2.36) we now obtain

(Idn ⊗ E)((Y ∗Y )2) ≤ |||{yi}d
i=1|||2

(
d∑

i=1

y∗i yi + 2
d∑

i=1

y∗i yi

)
(2.40)

= 3|||{yi}d
i=1|||2(Idn ⊗ E)(Y ∗Y ) .

A similar proof based on (2.37) shows that

(Idn ⊗ E)((Y Y ∗)2) ≤ 3|||{yi}d
i=1|||2(Idn ⊗ E)(Y Y ∗) .(2.41)

Next we prove the following

Lemma 2.13. Let x1 , . . . , xd ∈ Mn(C). Then there exists X ∈ Mn(L∞([0, 1])) such that

(Idn ⊗ E)(X) =
d∑

i=1

xi ⊗ ei ,

satisfying, moreover,

‖X‖Mn(L∞([0,1])) ≤
√

3max





∥∥∥∥∥
d∑

i=1

x∗i xi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

xix
∗
i

∥∥∥∥∥

1
2


 .(2.42)

As in the case of independent standard complex Gaussians, the crucial point in the argument is the
following version of Lemma 2.6, whose proof carries over verbatim to this setting, except for choosing
C =

√
3

2 .

Lemma 2.14. If y1 , . . . , yd ∈ Mn(C) satisfy

max





∥∥∥∥∥
d∑

i=1

y∗i yi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

yiy
∗
i

∥∥∥∥∥

1
2


 = 1 ,(2.43)
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then there exists Z ∈ Mn(L∞([0, 1])) such that ‖Z‖Mn(L∞([0,1])) ≤
√

3
2 , and, moreover, when z1 , . . . , zd

are defined by (Idn ⊗ E)(Z) =
d∑

i=1

zi ⊗ ei , then

max





∥∥∥∥∥
d∑

i=1

(yi − zi)∗(yi − zi)

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(yi − zi)(yi − zi)∗
∥∥∥∥∥

1
2


 ≤ 1

2
.

Hence, for all y ∈ Mn(Cd) there is Z ∈ Mn(L∞([0, 1])) such that ‖Z‖Mn(L∞([0,1])) ≤
√

3
2 |||y|||Mn(H) ,

and |||(Idn⊗E)(Z)−y|||Mn(Cd) ≤ 1
2 |||y|||Mn(Cd) . An application of Lemma 2.7 with V = Mn(L∞([0, 1])) ,

W = Mn(Cd) , T = Idn ⊗ E , the map φ : W → V be defined by φ(y) = Z , ∀y ∈ W , C =
√

3
2 and δ = 1

2

shows that for all x ∈ Mn(Cd) there exists X ∈ Mn(L∞([0, 1])) such that (Idn ⊗ E)(X) = x and

(2.44) ‖X‖Mn(L∞([0,1])) ≤
√

3|||x|||Mn(Cd) .

This completes the proof of Lemma 2.13 . As explained before, (2.44) implies that

‖(Idn ⊗ q)(X)‖Mn(L∞([0,1])/Ker(E)) ≤
√

3
∣∣∣∣∣∣{xi}d

i=1

∣∣∣∣∣∣
Mn(Cd)

.

We conclude that there exists a linear bijection Ê : L∞([0, 1])/Ker(E) → Cd such that Ê(q(ri)) = ei =
E(ri) , for all 1 ≤ i ≤ d , and moreover, with respect to the operator space structure of the quotient space
L∞([0, 1])/Ker(E) , the inequalities (2.35) hold. This completes the proof of Proposition 2.12. ¤

Remark 2.15. Let c1 , c2 denote the best constants in the inequalities

c1|||{xi}d
i=1|||∗ ≤

∥∥∥∥∥
d∑

i=1

xi ⊗ ri

∥∥∥∥∥
L1([0,1];Sn

1 )

≤ c2|||{xi}d
i=1|||∗ ,(2.45)

where d, n are positive integers, and x1 , . . . , xd ∈ Mn(C) . Then the following estimates hold
1√
3
≤ c1 ≤ 1√

2
, c2 = 1 .

Indeed, the estimate c1 ≤ 1√
2

is a consequence of Szarek’s result (see [20]) that the best constant in the
classical Khintchine inequalities for Rademachers is 1√

2
, while the estimate 1√

3
≤ c1 follows by Theorem

2.11, which also shows that c2 ≤ 1 . Since E(|r1|) = 1 , we deduce by taking d = n = 1 and x1 = 1 in
(2.45) that c2 ≥ 1 . Hence c2 = 1 .

3. A noncommutative Khintchine-type inequality for subspaces of R⊕ C

Let H ⊆ R ⊕ C be a subspace, equipped with the Hilbert space structure induced by the usual direct
sum of Hilbert spaces inner product. More precisely, given ξ ∈ H , write ξ = (ξR, ξC) ∈ R⊕ C ; then

〈ξ, η〉H = 〈ξR, ηR〉R + 〈ξC , ηC〉C , ∀ξ, η ∈ H .(3.1)

Consider R⊕C equipped with the operator space structure of the l∞-direct sum R⊕∞C . Note that the
norm induced on H by the inner product 〈·, ·〉H is not the same as the one coming from R⊕∞C . For all
ξ ∈ H , define further

U1(ξ) = ξR , U2(ξ) = ξC .

Then U1 ∈ B(H,R) , respectively U2 ∈ B(H,C) and formula (3.1) becomes

〈ξ, η〉H = 〈U1(ξ), U1(η)〉R + 〈U2(ξ), U2(η)〉C , ∀ξ, η ∈ H.(3.2)
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The operator U : H → R⊕ C defined by U =

(
U1

U2

)
is an isometry, where H and R⊕ C are equipped

with the above Hilbert space structure. This implies that U∗
1 U1 +U∗

2 U2 = I , where I denotes the identity
operator on H . Let

A = U∗
2 U2 ∈ B(H) .(3.3)

Then 0 ≤ A ≤ I .
We now discuss the operator space structure of H. Let n be a positive integer. Then for all r ∈ N , all

xi ∈ Mn(C) and all ξi ∈ H , 1 ≤ i ≤ r , we have
∥∥∥∥∥

r∑

i=1

xi ⊗ ξi

∥∥∥∥∥
Mn(H)

= max





∥∥∥∥∥
r∑

i=1

xi ⊗ U1ξi

∥∥∥∥∥
Mn(R)

,

∥∥∥∥∥
r∑

i=1

xi ⊗ U2ξi

∥∥∥∥∥
Mn(C)



 .(3.4)

We claim that
∥∥∥∥∥

r∑

i=1

xi ⊗ ξi

∥∥∥∥∥
Mn(H)

= max





∥∥∥∥∥∥

r∑

i,j=1

〈(I −A)ξi, ξj〉Hxix
∗
j

∥∥∥∥∥∥

1
2

,

∥∥∥∥∥∥

r∑

i,j=1

〈Aξi, ξj〉Hx∗i xj

∥∥∥∥∥∥

1
2





.(3.5)

Indeed, by the definition of operator space matrix norms on R and C we have

∥∥∥∥∥
r∑

i=1

xi ⊗ U1ξi

∥∥∥∥∥
Mn(R)

=

∥∥∥∥∥∥

r∑

i,j=1

xix
∗
j 〈U1ξi, U1ξj〉R

∥∥∥∥∥∥

1
2

=

∥∥∥∥∥∥

r∑

i,j=1

xix
∗
j 〈(I −A)ξi, ξj〉H

∥∥∥∥∥∥

1
2

,

respectively,

∥∥∥∥∥
r∑

i=1

xi ⊗ U2ξi

∥∥∥∥∥
Mn(C)

=

∥∥∥∥∥∥

r∑

i,j=1

x∗i xj〈U2ξi, U2ξj〉C

∥∥∥∥∥∥

1
2

=

∥∥∥∥∥∥

r∑

i,j=1

x∗i xj〈Aξi, ξj〉H

∥∥∥∥∥∥

1
2

,

and the claim is proved.
Let A be the CAR algebra over the Hilbert space H. Recall that A is a unital C∗-algebra (unique up

to ∗-isomorphism) with the property that there exists a linear map

H 3 f 7→ a(f) ∈ A
whose range generates A , satisfying for all f, g ∈ H the anticommutation relations

a(f)a(g)∗ + a(g)∗a(f) = 〈f, g〉HI(3.6)

a(f)a(g) + a(g)a(f) = 0 .

Let ωA be the gauge-invariant quasi-free state on A corresponding to the operator A (0 ≤ A ≤ I)
associated to the subspace H of R ⊕ C. Recall that a state ω on A is called gauge-invariant if it is
invariant under the group of gauge transformations τθ(a(f)) = a(eiθf) , ∀θ ∈ [0, 2π) . It turns out (see
[1] and [2]) that a gauge-invariant quasi-free state ω on A is completely determined by one truncated
function ωT . More precisely, a functional ωT (·, ·) over the monomials in a∗(f) and a(g) , ∀f, g ∈ H , which
is linear in the first argument and conjugate-linear in the second determines a gauge-invariant quasi-free
state ω on A if and only if

(3.7) 0 ≤ ωT (a(f)∗, a(f)) ≤ ‖f‖2 , ∀f ∈ H .
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Now, given the operator 0 ≤ A ≤ I, define

ωA
T (a(f)∗, a(g)) := 〈Ag, f〉H .

The positivity condition (3.7) is clearly satisfied. Let ωA be the gauge-invariant quasi-free state on A
determined by the truncated function ωA

T . Then for all n ≥ 1, the n-point functions of ωA have the form

(3.8) ωA(a(fn)∗ . . . a(f1)∗a(g1) . . . a(gm)) = δnmdet(〈Agi, fj〉H , i, j) , ∀f1, . . . , fn, g1, . . . , gm ∈ H .

Given b ∈ A, the map
H 3 f 7→ ωA(a(f)b∗ + b∗a(f)) ∈ C

is a bounded linear functional on A. By the Riesz representation theorem, there exists a unique element
EA(b) ∈ H such that

〈f,EA(b)〉H = ωA(a(f)b∗ + b∗a(f)) , ∀f ∈ H .(3.9)

Equivalently,

〈EA(b), f〉H = ωA(ba(f)∗ + a(f)∗b) , ∀f ∈ H .(3.10)

We obtain in this way a bounded linear map EA : A → H . By uniqueness in the Riesz representation
theorem and the anticommutation relations (3.6) it follows that

EA(a(f)) = f , ∀f ∈ H .(3.11)

Consider the GNS representation (πωA
,H, ξωA

) associated to (A, ωA). For simplicity of notation, write
πωA = πA and ξωA = ξA (the cyclic unit vector for the representation). Then for all f ∈ H and all b ∈ A ,

ωA(a(f)b∗ + b∗a(f)) = 〈πA(a(f)b∗ + b∗a(f))ξA , ξA〉H = 〈{πA(a(f)) , πA(b∗)}ξA , ξA〉H ,

where {K,L} = KL + LK . Equivalently,

ωA(ba(f)∗ + a(f)∗b) = 〈{πA(a(f)∗) , πA(b)}ξA , ξA〉H , ∀f ∈ H , ∀b ∈ A .

Note that the map
A 3 c 7→ 〈{πA(a(f)∗) , c}ξA , ξA〉H ∈ C

extends to a normal (positive) linear functional on the von Neumann algebra πA(A)
sot

. This implies that
EA extends to a bounded linear map on the von Neumann algebra generated by πA(A) and moreover the
range of the dual map E∗

A is contained in the predual of πA(A)
sot

.

With the notation set forth above, we prove the following

Theorem 3.1. The map EA : A → H yields a complete isomorphism

H ∼= A/Ker(EA)

with cb-isomorphism constant ≤ √
2 . More precisely, if qA : A → A/Ker(EA) denotes the quotient map,

then given any positive integers n, r we have for all xi ∈ Mn(C) and bi ∈ A , 1 ≤ i ≤ r:

(3.12)

∥∥∥∥∥
r∑

i=1

xi ⊗ EA(bi)

∥∥∥∥∥
Mn(H)

≤
∥∥∥∥∥

r∑

i=1

xi ⊗ qA(bi)

∥∥∥∥∥
Mn(A/Ker(EA))

≤
√

2

∥∥∥∥∥
r∑

i=1

xi ⊗ EA(bi)

∥∥∥∥∥
Mn(H)

.

Furthermore, the dual map E∗
A is a complete isomorphism of H∗ onto a subspace of the predual of πA(A)

sot
.
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Remark 3.2. Note that Theorem 3.1 is equivalent to the statement that for any positive integers n , r

we have for all xi ∈ Mn(C) and ξi ∈ H , 1 ≤ i ≤ r ,

(3.13)

∥∥∥∥∥
r∑

i=1

xi ⊗ ξi

∥∥∥∥∥
Mn(H)

≤
∥∥∥∥∥

r∑

i=1

xi ⊗ qA(a(ξi))

∥∥∥∥∥
Mn(A/Ker(EA))

≤
√

2

∥∥∥∥∥
r∑

i=1

xi ⊗ ξi

∥∥∥∥∥
Mn(H)

.

Indeed, to prove that (3.12) implies (3.13), put bi := a(ξi) , 1 ≤ i ≤ r and use the fact that by (3.11),
EA(a(ξi)) = ξi , 1 ≤ i ≤ r . To prove that, conversely, (3.13) implies (3.12), put ξi := EA(bi) , 1 ≤ i ≤ r .
Then EA(bi − a(ξi)) = 0 , which implies that qA(bi − a(ξi)) = 0 , so the middle term of (3.12) is equal to
the middle term of (3.13) . The equivalence of (3.12) and (3.13) will be used several times in the following.

Proof of Theorem 3.1. We first prove the theorem in the finite dimensional case.
Assume dim(H) = d < ∞. Consider the associated operator A (0 ≤ A ≤ I) defined by (3.3). There

exists an orthonormal basis {ei}1≤i≤d of H with respect to which the matrix A is diagonal. That is,

(3.14) 〈Aei , ej〉H = νiδij , ∀1 ≤ i, j ≤ d ,

which implies that 0 ≤ νi ≤ 1 , ∀1 ≤ i ≤ d .
Let A be the CAR-algebra over H and ωA be the quasi-free state on A corresponding to the operator A .
Further, set

ai := a(ei) , ∀1 ≤ i ≤ d .

By (3.8) it follows that

ωA(a∗i aj) = νiδij , ∀1 ≤ i, j ≤ d ,(3.15)

and, respectively,

ωA(aia
∗
j ) = (1− νi)δij , ∀1 ≤ i, j ≤ d .(3.16)

Let n be a positive integer. Given x1 , . . . , xd ∈ Mn(C) , we have by (3.5) that

(3.17)
∣∣∣∣∣∣{xi}d

i=1

∣∣∣∣∣∣
A

:=

∥∥∥∥∥
d∑

i=1

xi ⊗ ei

∥∥∥∥∥
Mn(H)

= max





∥∥∥∥∥
d∑

i=1

(1− νi)xix
∗
i

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

νix
∗
i xi

∥∥∥∥∥

1
2


 .

In view of Remark 3.2, we have to prove that

max





∥∥∥∥∥
d∑

i=1

(1− νi)xix
∗
i

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

νix
∗
i xi

∥∥∥∥∥

1
2


 ≤

∥∥∥∥∥
d∑

i=1

xi ⊗ qA(ai)

∥∥∥∥∥
Mn(A/Ker(EA))

(3.18)

≤
√

2max





∥∥∥∥∥
d∑

i=1

(1− νi)xix
∗
i

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

νix
∗
i xi

∥∥∥∥∥

1
2


 .

We first prove the left hand side inequality in (3.18) . For each 1 ≤ i ≤ d set

φA
i (b) := ωA(a∗i b + ba∗i ) , ∀b ∈ A .(3.19)

Note that 〈EA(b), ei〉H = φA
i (b) , for all b ∈ A and that by the anticommutation relations (3.6) ,

φA
i (aj) = δij , ∀1 ≤ i, j ≤ d .

In particular, EA(ai) = ei , ∀1 ≤ i ≤ d .
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Lemma 3.3. For all 1 ≤ i ≤ d we have

ωA(a∗i b) = νiφ
A
i (b) , ωA(ba∗i ) = (1− νi)φA

i (b) , ∀b ∈ A .(3.20)

Proof. We consider a special representation of the CAR algebra A . Let e =

(
0 1
0 0

)
, u =

(
1 0
0 −1

)
,

I2 = IM2(C) and set

(3.21) a′1 := e⊗ (⊗d
j=2I2) , a′i :=

(⊗i−1
j=1u

)⊗ e⊗ (⊗d
j=i+1I2) , 2 ≤ i ≤ d .

Since u2 = I2 , ee∗+e∗e = I2 , eu+ue = 0 , it follows that {a′i}1≤i≤d satisfy the CAR relations (3.6). Thus
C∗({a′1 , . . . , a′d}) = ⊗d

i=1M2(C) (see [2] and [4]), and there is a ∗-isomorphism ψ : A → C∗({a′1 , . . . , a′d})
such that ψ(ai) = a′i , ∀1 ≤ i ≤ d . From now on we identify A with ⊗d

i=1M2(C) , and write a′i = ai ,
1 ≤ i ≤ d . Then, by [19] (see pp. 4 and 5),

(3.22) ωA(b) :=
(⊗d

i=1ψi

)
(b) , ∀b ∈ A ,

where ψi(h) = Tr

((
1− νi 0

0 νi

)
h

)
, ∀h ∈ M2(C) , 1 ≤ i ≤ d .

We first show that for all 1 ≤ i ≤ d ,

(1− νi)ωA((ai)∗b) = νiωA(b(ai)∗) , ∀b ∈ A .(3.23)

To check (3.23), it is enough to look at simple tensors b = b1 ⊗ b2 ⊗ . . .⊗ bd ∈ A . Consider first the case
i = 1 . Then

ωA((a1)∗b) = ψ1(e∗b1)
d∏

i=2

ψi(bi) , ωA(b(a1)∗) = ψ1(e∗b1)
d∏

i=2

ψi(bi) .

Let b1 =

(
b
(11)
1 b

(12)
1

b
(21)
1 b

(22)
1

)
. Then ψ1(e∗b1) = ψ1

((
0 0

b
(11)
1 b

(12)
1

))
= Tr

((
0 0
0 ν1b

(12)
1

))
= ν1b

(12)
1 ,

respectively, ψ1(b1e
∗) = π1

((
b
(12)
1 0

b
(22)
1 0

))
= Tr

((
(1− ν1)b

(12)
1 0

ν1b
(22)
1 0

))
= (1− ν1)b

(12)
1 . Hence

ωA((a1)∗b) = ν1b
(12)
1

d∏

i=2

ψi(bi) , ωA(b(a1)∗) = (1− ν1)b
(12)
1

d∏

i=2

ψi(bi) ,

which imply (3.23). The case when i 6= 1 can be proved in a similar way, using the fact that for all
b = b1 ⊗ b2 ⊗ . . .⊗ bd ∈ A , we have ubj = bju , ∀1 ≤ j ≤ i− 1 .

Then, for 1 ≤ i ≤ d we deduce by (3.23) that for all b ∈ A , we have

νiωA((ai)∗b + b(ai)∗) = νiωA((ai)∗b) + (1− νi)ωA((ai)∗b) = ωA((ai)∗b) ,

and, respectively,

(1− νi)ωA((ai)∗b + b(ai)∗) = νiωA(b(ai)∗) + (1− νi)ωA(b(ai)∗) = ωA(b(ai)∗) .

The proof is complete. ¤
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Lemma 3.4. Let X ∈ Mn(A) . By letting

xi := (Idn ⊗ φA
i )(X) , ∀1 ≤ i ≤ d ,(3.24)

we have

(Idn ⊗ EA)(X) =
d∑

i=1

xi ⊗ ei .(3.25)

Then, with the above notation it follows that

‖X‖Mn(A) ≥ max





∥∥∥∥∥
d∑

i=1

νix
∗
i xi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(1− νi)xix
∗
i

∥∥∥∥∥

1
2


 .(3.26)

Proof. Let X ∈ Mn(A) . Then X is of the form X =
r∑

j=1

yj ⊗ bj , where r ∈ N , yj ∈ Mn(C) and bj ∈ A ,

1 ≤ j ≤ r . For all 1 ≤ i ≤ d , let xi be defined by (3.24) . Then

(3.27) xi =
r∑

j=1

φA
i (bj)yj , 1 ≤ i ≤ d .

Further set

(3.28) Z :=
d∑

i=1

xi ⊗ ai ∈ Mn(A) .

To each state ω on Mn(C) we can associate a positive sesquilinear form on Mn(A) given by

sω(c, d) := (ω ⊗ ωA)(d∗c) , ∀c, d ∈ Mn(A) .

By (3.27), (3.28) and (3.20), we obtain

sω(X, Z) =
d∑

i=1

r∑

j=1

ω(x∗i yj)ωA(a∗i bj) =
d∑

i=1

r∑

j=1

νiω(x∗i yj)φA
i (bj)

=
d∑

i=1

νiω(x∗i xi) = sω(Z, Z) ,

where the last equality follows from (3.15) . Hence sω(X − Z, Z) = 0 , and therefore

sω(X,X) = sω(Z,Z) + sω(X − Z, X − Z) ≥ sω(Z,Z) .

It follows that

ω

(
d∑

i=1

νix
∗
i xi

)
= sω(Z, Z) ≤ sω(X,X) ≤ ‖X‖2 ,

for every state ω on Mn(C) , and hence
∥∥∥∥∥

d∑

i=1

νix
∗
i xi

∥∥∥∥∥ ≤ ‖X‖2 .

The same argument applied to the positive sesquilinear form

s′ω(c, d) := (ω ⊗ ωA)(cd∗) , ∀c, d ∈ Mn(A)
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gives by (3.16) that

ω

(
d∑

i=1

(1− νi)xix
∗
i

)
= s′ω(Z, Z) ≤ s′ω(X,X) ≤ ‖X‖2 ,

for every state ω on Mn(C) , and hence
∥∥∥∥∥

d∑

i=1

(1− νi)xix
∗
i

∥∥∥∥∥ ≤ ‖X‖2 .

This completes the proof. ¤

Remark 3.5. For all X ∈ Mn(A) we have

‖(Idn ⊗ EA)(X)‖Mn(H) ≤ ‖(Idn ⊗ qA)(X)‖Mn(A/Ker(EA)) .(3.29)

This follows by a similar argument as the one used to prove (2.8). In particular, given x1, . . . , xd ∈ Mn(C) ,

by letting X =
d∑

i=1

xi⊗ai ∈ Mn(A) , an application of (3.29) yields the left hand side inequality in (3.18) .

We now prove the right hand side inequality in (3.18) . Let y1 , . . . , yd ∈ Mn(C) . Set

Y :=
d∑

i=1

yi ⊗ ai ∈ Mn(A) .

We will compute (Idn⊗ωA)(Y ∗Y ) , (Idn⊗ωA)(Y Y ∗) , (Idn⊗ωA)((Y ∗Y )2) and (Idn⊗ωA)((Y Y ∗)2) . We
have

Y ∗Y =
d∑

i,j=1

y∗i yj ⊗ a∗i aj , Y Y ∗ =
d∑

i,j=1

yiy
∗
j ⊗ aia

∗
j .

By (3.15) and (3.16) it follows immediately that

(Idn ⊗ ωA)(Y ∗Y ) =
d∑

i=1

νiy
∗
i yi(3.30)

(Idn ⊗ ωA)(Y Y ∗) =
d∑

i=1

(1− νi)yiy
∗
i .(3.31)

Furthermore, in order to compute (Idn ⊗ ωA)((Y ∗Y )2) , note that

Y ∗Y =
d∑

i,j=1

y∗i yj ⊗ (a∗i aj − δijνiI) +
d∑

i=1

νiy
∗
i yi ⊗ I .(3.32)

Consider the vectors

fij := a∗i aj − δijνiI , ∀1 ≤ i, j ≤ d .

We claim that {I, fij , 1 ≤ i, j ≤ d} is an orthogonal set in L2(A) with respect to the positive sesquilinear
form on A given by A×A 3 (c, d) 7→ ωA(d∗c) ∈ C , satisfying ωA(I) = 1 and

ωA(f∗ijfij) = νj(1− νi) , ∀1 ≤ i, j ≤ d .(3.33)

Indeed, for 1 ≤ i, j ≤ d ,

ωA(f∗ijfij) = ωA(a∗jaia
∗
i aj)− νiωA(a∗jai + a∗i aj)δij + ν2

i δij .
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By the anticommutation relations (3.6), together with (3.8) we get

ωA(a∗jaia
∗
i aj) = ωA(a∗j (I−a∗i ai)aj) = ωA(a∗jaj)−ωA(a∗ja

∗
i aiaj) = νj−νiνj(1−δij) = νj(1−νi)+νiνjδij ,

wherein we have also used the fact that a2
i = 0 , 1 ≤ i ≤ d . Furthermore, ωA(a∗jai + a∗i aj) = 2νiδij .

Hence ωA(f∗ijfij) = νj(1− νi) + (νiνj − ν2
i )δij = νj(1− νi) , so (3.33) is proved.

We now prove the orthogonality property of the set of vectors {I, fij , 1 ≤ i, j ≤ d} .
First, note that for 1 ≤ i, j ≤ d ,

ωA(fij) = ωA(a∗i aj)− νiδij = νiδij − νiδij = 0 .(3.34)

It remains to show that for 1 ≤ i, j, k, l ≤ d ,

ωA(f∗ijfkl) = 0 , whenever (i, j) 6= (k, l) .(3.35)

We have f∗ijfkl = a∗jaia
∗
kal − νka∗jaiδkl − νia

∗
kalδij + νiνkδijδkl . We distinguish the following cases:

1) i = j 6= k = l , 2) i 6= j , k = l , 3) i = j , k 6= l , 4) i 6= j , k 6= l , (i, j) 6= (k, l) .

Assume 1) i = j 6= k = l. Then

ωA(f∗iifkk) = ωA(a∗i aia
∗
kak)− νkωA(a∗i ai)− νiωA(a∗kak) + νiνk

= ωA(a∗i (−a∗kai)ak)− νkνi − νiνk + νiνk

= −ωA(a∗i a
∗
k(−akai))− νiνk

= νiνk − νiνk = 0

Cases 2) and 3) are similar, so we only prove one of them. Assume 2) i 6= j , k = l . Then

ωA(f∗ijfkk) = ωA(a∗jaia
∗
kak)−νkωA(a∗jai) = ωA(a∗j (Iδik−a∗kai)ak) = ωA(a∗jakδik)−ωA(a∗ja

∗
kaiakδik) = 0 .

Respectively, assume 4) i 6= j , k 6= l , (i, j) 6= (k, l) . In this case, ωA(f∗ijfkl) = ωA(a∗jaia
∗
kal) . By

considering further the two possible subcases 4a) i 6= k and 4b) i = k, j 6= l , we deduce by (3.6) and (3.8)
that ωA(a∗jaia

∗
kal) = 0 .

Then, based on the expansion (3.32) of Y ∗Y in terms of the vectors {I, fij , 1 ≤ i, j ≤ d} , we now get

(Idn ⊗ ωA)((Y ∗Y )2) =
d∑

i,j=1

νj(1− νi)(y∗i yj)∗y∗i yj +

(
d∑

i=1

νiy
∗
i yi

)2

(3.36)

=
d∑

j=1

νjy
∗
j

(
d∑

i=1

(1− νi)yiy
∗
i

)
yj +

(
d∑

i=1

νiy
∗
i yi

)2

≤
(

d∑

i=1

νiy
∗
i yi

)(∥∥∥∥∥
d∑

i=1

(1− νi)yiy
∗
i

∥∥∥∥∥ +

∥∥∥∥∥
d∑

i=1

νiy
∗
i yi

∥∥∥∥∥

)

=

(∥∥∥∥∥
d∑

i=1

νiy
∗
i yi

∥∥∥∥∥ +

∥∥∥∥∥
d∑

i=1

(1− νi)yiy
∗
i

∥∥∥∥∥

)
(Idn ⊗ ωA)(Y ∗Y ) ,

where the last equality is given by (3.30) .
In order to estimate the term (Idn ⊗ ωA)((Y Y ∗)2) , note that

Y Y ∗ =
d∑

i,j=1

yiy
∗
j ⊗ (aia

∗
j − δij(1− νi)I) +

d∑

i=1

(1− νi)yiy
∗
i ⊗ I .(3.37)
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We now consider the vectors

gij := aia
∗
j − δij(1− νi)I , ∀1 ≤ i, j ≤ d .

With a similar proof it can be shown that {I, gij , 1 ≤ i, j ≤ d} is an orthogonal set in L2(A) with respect
to the positive sesquilinear form on A given by A×A 3 (c, d) 7→ ωA(cd∗) ∈ C , satisfying

ωA(gijg
∗
ij) = νj(1− νi) , ∀1 ≤ i, j ≤ d .(3.38)

Thus, based on the expansion (3.37) of Y Y ∗ in terms of the vectors {I, gij , 1 ≤ i, j ≤ d} , we obtain

(Idn ⊗ ωA)((Y Y ∗)2) =
d∑

i,j=1

νj(1− νi)yiy
∗
j (yiy

∗
j )∗ +

(
d∑

i=1

(1− νi)yiy
∗
i

)2

(3.39)

=
d∑

i=1

(1− νi)yi




d∑

j=1

νjy
∗
j yj


 y∗i +

(
d∑

i=1

(1− νi)yiy
∗
i

)2

≤
(

d∑

i=1

(1− νi)yiy
∗
i

)(∥∥∥∥∥
d∑

i=1

νiy
∗
i yi

∥∥∥∥∥ +

∥∥∥∥∥
d∑

i=1

(1− νi)yiy
∗
i

∥∥∥∥∥

)

=

(∥∥∥∥∥
d∑

i=1

νiy
∗
i yi

∥∥∥∥∥ +

∥∥∥∥∥
d∑

i=1

(1− νi)yiy
∗
i

∥∥∥∥∥

)
(Idn ⊗ ωA)(Y Y ∗) ,

where the last equality is given by (3.31) .
As before, the crucial point is to show the following

Lemma 3.6. Let x1 , . . . , xd ∈ Mn(C) . There exists X ∈ Mn(A) so that (Idn ⊗ EA)(X) =
d∑

i=1

xi ⊗ ei ,

satisfying, moreover,

‖X‖Mn(A) ≤
√

2max





∥∥∥∥∥
d∑

i=1

νix
∗
i xi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(1− νi)xix
∗
i

∥∥∥∥∥

1
2


 .(3.40)

For this, we first prove the following

Lemma 3.7. If y1 , . . . , yd ∈ Mn(C) satisfy

max





∥∥∥∥∥
d∑

i=1

νiy
∗
i yi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(1− νi)yiy
∗
i

∥∥∥∥∥

1
2


 = 1 ,(3.41)

then there exists Z ∈ Mn(A) such that ‖Z‖Mn(A) ≤ 1√
2
, and, moreover, when z1 , . . . , zd are defined by

(Idn ⊗ EA)(Z) =
d∑

i=1

zi ⊗ ei , then

max





∥∥∥∥∥
d∑

i=1

νi(yi − zi)∗(yi − zi)

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(1− νi)(yi − zi)(yi − zi)∗
∥∥∥∥∥

1
2


 ≤ 1

2
.

Proof. Set

Y :=
d∑

i=1

yi ⊗ ai ∈ Mn(A) .
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Now let C > 0 and define FC : R → R by formula (2.15) . Use functional calculus to define Z ∈ Mn(A)
by (2.16) . Then ‖Z‖Mn(A) ≤ C and, as shown in the proof of Lemma 2.6 , it follows that

(Y − Z)∗(Y − Z) ≤ 1
16C2

(Y ∗Y )2 , (Y − Z)(Y − Z)∗ ≤ 1
16C2

(Y Y ∗)2 .

By letting zi = (Idn ⊗ φA
i )(Z) , 1 ≤ i ≤ d , we then have

(Idn ⊗ EA)(Z) =
d∑

i=1

zi ⊗ ei , respectively , (Idn ⊗ EA)(Y ) =
d∑

i=1

yi ⊗ EA(ai) =
d∑

i=1

yi ⊗ ei ,

and we obtain the estimates

d∑

i=1

νi(yi − zi)∗(yi − zi) ≤ (Idn ⊗ ωA)((Y − Z)∗(Y − Z))

≤ 1
16C2

(Idn ⊗ ωA)((Y ∗Y )2)

≤ 1
16C2

(∥∥∥∥∥
d∑

i=1

νiy
∗
i yi

∥∥∥∥∥ +

∥∥∥∥∥
d∑

i=1

(1− νi)yiy
∗
i

∥∥∥∥∥

)
(Idn ⊗ ωA)(Y ∗Y )

≤ 2
16C2

(Idn ⊗ ωA)(Y ∗Y )

=
1

8C2

d∑

i=1

νiy
∗
i yi ,

respectively,
d∑

i=1

(1− νi)(yi − zi)(yi − zi)∗ ≤ 1
8C2

d∑
i=1

(1− νi)yiy
∗
i . We deduce that

∥∥∥∥∥
d∑

i=1

νi(yi − zi)∗(yi − zi)

∥∥∥∥∥ ≤ 1
8C2

∥∥∥∥∥
d∑

i=1

νiy
∗
i yi

∥∥∥∥∥ ≤ 1
8C2

,

respectively,
∥∥∥∥∥

d∑

i=1

(1− νi)(yi − zi)(yi − zi)∗
∥∥∥∥∥ ≤ 1

8C2

∥∥∥∥∥
d∑

i=1

(1− νi)yiy
∗
i

∥∥∥∥∥ ≤ 1
8C2

.

Hence

max





∥∥∥∥∥
d∑

i=1

νi(yi − zi)∗(yi − zi)

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(1− νi)(yi − zi)(yi − zi)∗
∥∥∥∥∥

1
2


 ≤ 1√

8C
.

Now take C = 1√
2

to obtain the conclusion. ¤

We are now ready to prove Lemma 3.6 . Indeed, Lemma 3.7 shows that if y :=
d∑

i=1

yi ⊗ ei ∈ Mn(H)

has norm ‖y‖Mn(H) = 1 , then there exists Z ∈ Mn(A) such that ‖Z‖Mn(A) ≤ 1√
2

and ‖(Idn ⊗ EA)(Z)−
y‖Mn(H) ≤ 1

2 . By homogeneity we infer that for all y ∈ Mn(H) , there exists Z ∈ Mn(A) satisfying
the conditions ‖Z‖Mn(A) ≤ 1√

2
‖y‖Mn(H) and ‖(Idn ⊗ EA)(Z) − y‖Mn(H) ≤ 1

2‖y‖Mn(H) . Applying now
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Lemma 2.7 with C = 1√
2

and δ = 1
2 we deduce that for all x ∈ Mn(H) there exists X ∈ Mn(A) so that

(Idn ⊗ EA)(X) = x , satisfying, moreover,

‖X‖Mn(A) ≤ C

1− δ
‖x‖Mn(H) =

√
2‖x‖Mn(H) .

The proof of Lemma 3.6 is complete.
By Lemmas 3.4 and 3.6 and Remark 3.5 , there exists a linear bijection ẼA : A/Ker(EA) → H such that

ẼA(qA(ai)) = ei , 1 ≤ i ≤ d ,

making the following diagram commutative:

Mn(A)
Idn⊗EA //

Idn⊗qA ''OOOOOOOOOOO
Mn(H)

Mn(A/Ker(EA))
Idn⊗ eEA

77ooooooooooo

Moreover, with respect to the natural operator space structure of the quotient A/Ker(EA) one has for all
x1 , . . . , xd ∈ Mn(C) ,

max





∥∥∥∥∥
d∑

i=1

νix
∗
i xi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(1− νi)xix
∗
i

∥∥∥∥∥

1
2


 ≤

∥∥∥∥∥
d∑

i=1

xi ⊗ qA(ai)

∥∥∥∥∥
Mn(A/Ker(EA))

≤
√

2max





∥∥∥∥∥
d∑

i=1

νix
∗
i xi

∥∥∥∥∥

1
2

,

∥∥∥∥∥
d∑

i=1

(1− νi)xix
∗
i

∥∥∥∥∥

1
2


 ,

i.e., the inequalities (3.18) hold. This completes the proof of Theorem 3.1 in the finite dimensional case.
We now consider the infinite dimensional case (dim(H) = ∞) . Let V ⊂ H be a finite dimensional

subspace, and let d = dim(V ) . Set

AV := PV A|PV H
∈ B(PV H) ,

where PV is the projection of H onto V . Then 0 ≤ AV ≤ I .
Let AV be the CAR algebra on V , and denote by ωA (respectively, ωAV ) the gauge-invariant quasi-

free state on A (respectively, AV ) corresponding to the operator A (respectively, AV ) . Recall that AV

is the norm closure of Span{a(ei1)
∗
. . . a(ein)∗a(ej1) . . . a(ejm) ; 1 ≤ i1, . . . , in, j1, . . . , jm, n, m ≤ d} . By

equation (3.8) it follows that ωA|AV
and ωAV

coincide on all polynomials that generate AV . Since states
are norm continuous, we conclude that

ωA|AV
= ωAV

.(3.42)

The key point that will allow us to reduce the infinite dimensional case to the finite dimensional one is
the fact, which we will justify in the following, that EA(b) ∈ V , whenever b ∈ AV . Indeed, given b ∈ AV ,
we will show that

〈EA(b), f〉H = 0 , ∀f ∈ V ⊥ .

By (3.10), this is equivalent to showing that

ωA(ba(f)∗ + a(f)∗b) = 0 , ∀f ∈ V ⊥ .(3.43)
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By continuity, it suffices to consider elements b ∈ AV of the form

b = a(ei1)
∗
. . . a(ein

)∗a(ej1) . . . a(ejm
)

where 1 ≤ i1, . . . , in, j1, . . . , jm, n,m ≤ d . Let f ∈ V ⊥ . Since f ⊥ ei , 1 ≤ i ≤ d , we get by the CAR
relations (3.6) that

ba(f)∗ = (−1)n+ma(f)∗b .

So if n+m is odd, then ba(f)∗+a(f)∗b = 0 . If n+m is even, i.e., n+m+1 is odd, then by (3.6) and (3.8)
(together with (3.42)) it follows that ωA(ba(f)∗) = 0 = ωA(a(f)∗b) . Hence, in both cases (3.43) follows,
and our claim is proved. By uniqueness in the construction of the maps EA and EAV , we conclude that

EA|AV
= EAV

.(3.44)

Since A is the C∗-algebra generated by the operators a(ξ) , ξ ∈ H , it is clear that

(3.45) A =
⋃

V

AV , (norm closure)

where the union is taken over all finite dimensional subspaces V of H . Moreover, note that AV1 ⊆ AV2

when V1 ⊆ V2 . We also claim that

(3.46) Ker(EA) =
⋃

V

Ker(EAV ) , (norm closure)

where the right-hand side is also an increasing union because Ker(EAV
) = Ker(EA)∩AV , for all V ⊂ H ,

finite dimensional subspace. To prove (3.46), let b ∈ Ker(EA) and choose bn ∈
⋃

V AV , n ≥ 1 such that
‖bn − b‖ → 0 as n →∞ . Further, set

b′n := bn − a(EA(bn)) , n ≥ 1 .

For n ≥ 1 , since bn ∈ AVn for some finite dimensional subspace Vn of H , we have by (3.44) that
EA(bn) = EAVn

(bn) ∈ Vn, and hence b′n ∈ AVn . Moreover, by (3.11) , we get

EA(b′n) = EA(bn)− EA(bn) = 0 .

Therefore, b′n ∈ Ker(EA) ∩ AVn = Ker(EAVn
) , which proves (3.46) . Now, since the union in formula

(3.46) is increasing, we also have for all n ∈ N ,

(3.47) Mn(Ker(EA)) =
⋃

V

Mn(Ker(EAV )) . (norm closure)

We are now ready to proceed with the proof of Theorem 3.1 in the case dim(H) = ∞ . We shall prove
that for all positive integers n, r and all xi ∈ Mn(C) and bi ∈ A = A(H) , 1 ≤ i ≤ r , the inequalities
(3.12) hold.

Indeed, by (3.45) and the fact that
⋃

V AV is an increasing union, it suffices to prove (3.12) for elements
bi ∈ AV0 , where V0 is an arbitrary finite dimensional subspace of H . Let now such V0 be fixed. Since
Theorem 3.1 has been proved in the final dimensional case, we have for each finite dimensional subspace
V with V0 ⊆ V ⊂ H that

(3.48)

∥∥∥∥∥
r∑

i=1

xi ⊗ EAV
(bi)

∥∥∥∥∥
Mn(V )

≤
∥∥∥∥∥

d∑

i=1

xi ⊗ qA(bi)

∥∥∥∥∥
Mn(AV /Ker(EAV

))

≤
√

2

∥∥∥∥∥
r∑

i=1

xi ⊗ EAV
(bi)

∥∥∥∥∥
Mn(V )

.
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By (3.44) , EAV
(bi) = EA(bi) , 1 ≤ i ≤ r , for all such V , since bi ∈ V0 ⊆ V . Moreover, since the norm

in Mn(A/Ker(EA)) is the quotient norm of the quotient space Mn(A)/Mn(Ker(EA)) , and likewise for
Mn(AV /Ker(EAV

)) , we get by (3.47) that

lim
V

∥∥∥∥∥
r∑

i=1

xi ⊗ qA(bi)

∥∥∥∥∥
Mn(AV /Ker(EAV

))

=

∥∥∥∥∥
r∑

i=1

xi ⊗ bi

∥∥∥∥∥
Mn(A/Ker(EA))

,

where the limit is taken over the directed set of finite dimensional subspaces V with V0 ⊆ V ⊂ H , ordered
by inclusion. Hence, the inequalities (3.12) follow from (3.48) and the proof of Theorem 3.1 is complete.

Corollary 3.8. Let P be the hyperfinite type III1 factor. For any subspace H of R ⊕ C , its dual H∗

embeds completely isomorphically into the predual P∗ of P , with cb-isomorphism constant ≤ √
2 . In

particular, the operator Hilbert space OH cb-embeds into P∗ with cb-isomorphism constant ≤ √
2 .

Proof. Given a subspace H of R⊕C, let A be the associated operator (0 ≤ A ≤ I) defined by (3.3), A the
CAR algebra over H, and ωA the corresponding gauge-invariant quasi-free state on A . Denote πA(A)

sot

by M , where πA is the unital ∗-homomorphism from the GNS representation associated to (A, ωA) . By
Theorem 5.1 in [19], M is a hyperfinite factor. Then the von Neumann algebra tensor product M⊗̄P is
(isomorphic to) the hyperfinite type III1 factor P (cf. [3] and [7]). Moreover, M∗ cb-embeds into (M⊗̄P )∗ ,
the embedding being given by the dual map of a normal conditional expectation from M⊗̄P onto M .
Therefore, by Theorem 3.1 it follows that the dual H∗ of H embeds completely isomorphically into P∗ ,
with cb-isomorphism constant ≤ √

2 . Furthermore, note that H∗ is completely isometric to a quotient of
the dual space (R⊕∞C)∗. We infer that any quotient (and further, any sub-quotient, that is, subspace of
a quotient) of (R⊕∞C)∗ cb-embeds into P∗, with cb-isomorphism constant ≤ √

2 . As shown by Pisier (cf.
[18]), the operator space OH is a subspace of a quotient of R⊕∞C . Since OH is self-dual as an operator
space (cf. [16]) , OH is also a sub-quotient of (R ⊕∞ C)∗ . We conclude that OH embeds completely
isomorphically into P∗, with cb-isomorphism constant ≤ √

2 . (See also Junge’s results in Section 8 of [10]
on the embedding of OH into P∗ .) ¤

Remark 3.9. Let H ⊂ R ⊕ C be a subspace of dimension d < ∞ , and let A be the associated operator
defined by (3.3), respectively, let {ei}d

i=1 , {νi}d
i=1 be defined by (3.14). Assume further that 0 < νi < 1 ,

for all 1 ≤ i ≤ d . Now define for any x1 , . . . , xd ∈ Mn(C) ,

(3.49) |||{xi}d
i=1|||∗ := inf



Tr




(
d∑

i=1

1
νi

viv
∗
i

) 1
2

+

(
d∑

i=1

1
(1− νi)

z∗i zi

) 1
2

 ; xi = vi + zi ∈ Mn(C)



 ,

where Tr denotes, as before, the non-normalized trace on Mn(C) .
Note that ||| · |||∗ is the dual norm of ‖ · ‖Mn(H). From the proof of Theorem 3.1 it follows by du-

ality that the transpose FA := E∗
A of the map EA : A → H becomes a complete injection of H∗ into

Span{φA
1 , . . . , φA

d } = A∗ . More precisely, we obtain that

(3.50)
1√
2
|||{xi}d

i=1|||∗ ≤
∥∥∥∥∥

d∑

i=1

xi ⊗ φA
i

∥∥∥∥∥
Mn(A)∗

≤ |||{xi}d
i=1|||∗ .

We now discuss estimates for best constants in the inequalities (3.50) above.
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Theorem 3.10. Let c1 , c2 denote the best constants in the inequalities

c1|||{xi}d
i=1|||∗ ≤

∥∥∥∥∥
d∑

i=1

xi ⊗ φA
i

∥∥∥∥∥
Mn(A)∗

≤ c2|||{xi}d
i=1|||∗ .(3.51)

where d, n are arbitrary positive integers, H ⊆ R ⊕ C is a Hilbert space of dimension dim(H) = d with
associated operator A given by (3.3) , A is the CAR-algebra over H, φA

1 , . . . , φA
d are defined by (3.19),

and x1 , . . . , xd ∈ Mn(C) . Then

(3.52) c1 =
1√
2

, c2 = 1 .

Proof. By (3.50) we obtain immediately the following estimates

(3.53)
1√
2
≤ c1 ≤ c2 ≤ 1 .

Next we prove that c1 = 1√
2

. Take n = 1 , d = 1 , in which case H = C , A = 1
2IH and A = M2(C) ,

and let x1 = IM1(C) = IC . Then φA
1 (b) = Tr(a∗1b) , ∀b ∈ A , where a1 =

(
0 1
0 0

)
∈ A . Since |a1| is a

projection with Tr(|a1|) = 1 , we get ‖φA
1 ‖A∗ = ‖a∗1‖L1(A ,Tr) = ‖a1‖L1(A ,Tr) = ‖ |a1| ‖L1(A ,Tr) = 1 . It is

easily checked by the definition (3.49) that |||x1|||∗ =
√

2 , hence, 1√
2
|||x1|||∗ = 1 = ‖φA

1 ‖A∗ = ‖x1⊗φA
1 ‖A∗ .

It follows that c1 ≤ 1√
2

, which together with (3.53) imply that c1 = 1√
2

.
We now prove that c2 = 1 . For this, given d ∈ N , let H = Span{e1i ⊕ ei1; 1 ≤ i ≤ d} ⊆ R ⊕ C . It

follows easily by (3.3) that the associated operator is A = 1
2IH . Let {ei}i≥1 be an orthonormal basis of

H with respect to which the matrix A is diagonal. As before, let

ai := a(ei) , 1 ≤ i ≤ d

be the generators of the CAR algebra A = A(H) built on H . We consider the special representation of
A constructed in the proof of Lemma 3.3 and use the identification

(3.54) A ∼= ψ(A) = ⊗d
i=1M2(C) ,

where ψ is the ∗-isomorphism obtained therein. Via this identification, we may assume that the generators
ai , 1 ≤ i ≤ d, of A are given by (3.21). Note also that the eigenvalues of A are νi = 1

2 , ∀1 ≤ i ≤ d , so
the corresponding quasi-free state ωA on A is tracial. For simplicity of notation, let ωA be denoted by τ .

For all 1 ≤ i ≤ d , set xi := ei1 ∈ Md(C) . In what follows, Tr denotes the non-normalized trace on
Md(C) . For 1 ≤ i ≤ d, we have φA

i (b) = τ(a∗i b + ba∗i ) = 2τ(a∗i b) , ∀b ∈ A .
Let hi := 2a∗i , 1 ≤ i ≤ d . Then

∥∥∥∥∥
d∑

i=1

xi ⊗ φA
i

∥∥∥∥∥
(Md(A))∗

=

∥∥∥∥∥
d∑

i=1

xi ⊗ hi

∥∥∥∥∥
L1(Md(C)⊗A,Tr⊗τ)

= (Tr⊗ τ)




[(
d∑

i=1

x∗i hi

)∗(
d∑

i=1

x∗i hi

)] 1
2




= τ




(
d∑

i=1

h∗i hi

) 1
2

 = 2 τ




(
d∑

i=1

aia
∗
i

) 1
2

 .
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Note that by (3.49) it follows immediately that |||{xi}d
i=1|||∗ ≤ Tr

((
2

d∑
i=1

x∗i xi

) 1
2
)
≤
√

2d . Therefore,

if we show that

(3.55) lim
d→∞

√
2
d

τ




(
d∑

i=1

aia
∗
i

) 1
2

 = 1 ,

it then follows by (3.51) that c2 ≥ 1, which implies that c2 = 1 .
We now prove (3.55). For this, we first show that a1a

∗
1 , . . . , ada

∗
d are independent, self-adjoint random

variables with distribution

(3.56) µaia∗i =
1
2
(δ{0} + δ{1}) , 1 ≤ i ≤ d .

Using the notation set forth in the proof of Lemma 3.3 and (3.21), a simple computation shows that

(3.57) a1a
∗
1 =

(
1 0
0 0

)
⊗ (⊗d

j=2I2) , aia
∗
i :=

(⊗i−1
j=1I2

)⊗
(

1 0
0 0

)
⊗ (⊗d

j=i+1I2

)
, 2 ≤ i ≤ d .

In particular, aia
∗
i is a projection, for all 1 ≤ i ≤ d . So aia

∗
i has spectrum σ(aia

∗
i ) = {0, 1} , and since

τ(aia
∗
i ) = 1

2 , formula (3.56) follows.
By (3.57), aia

∗
i and aja

∗
j do commute, for all 1 ≤ i, j ≤ d . Thus, in order to prove the independence of

a1a
∗
1 , . . . , ada

∗
d (both in the classical sense and in the sense of Voiculescu (cf. [21])), it remains to show

that

τ ((a1a
∗
1)

m1 . . . (ada
∗
d)

md) =
d∏

i=1

τ((aia
∗
i )

mi) , m1 , . . . ,md ∈ N .

This follows immediately from the special form (3.57) of the elements aia
∗
i , 1 ≤ i ≤ d , and the fact that

by the identification (3.54) , τ can be viewed as the tensor product trace on ⊗d
i=1M2(C) .

Now recall that d was arbitrarily chosen. By applying the law of large numbers we deduce that the

sequence
{

1
d

d∑
i=1

aia
∗
i

}

d≥1

converges in probability to 1
2IMn(C) , as d →∞ . This implies that

(3.58) lim
d→∞

√√√√1
d

d∑

i=1

aia∗i =
1√
2
IMn(C) in probability .

Since, moreover, 0 ≤ 1
d

d∑
i=1

aia
∗
i ≤ 1 , for all d ≥ 1 , it follows that the convergence (3.58) holds also in the

2-norm. Hence lim
d→∞

τ

((
1
d

d∑
i=1

aia
∗
i

) 1
2
)

= 1√
2

, which gives (3.55), and the proof is complete. ¤
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