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Abstract

In the process of developing the theory of free probability and free entropy,
Voiculescu introduced in 1991 a random matrix model for a free semicircular sys-
tem. Since then, random matrices have played a key role in von Neumann algebra
theory (cf. [V8], [V9]). The main result of this paper is the following extension of
Voiculescu’s random matrix result: Let (X(n)

1 , . . . , X
(n)
r ) be a system of r stochas-

tically independent n× n Gaussian self-adjoint random matrices as in Voiculescu’s
random matrix paper [V4], and let (x1, . . . , xr) be a semi-circular system in a C∗-
probability space. Then for every polynomial p in r non-commuting variables

lim
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥ = ‖p(x1, . . . , xr)‖,

for almost all ω in the underlying probability space. We use the result to show that
the Ext-invariant for the reduced C∗-algebra of the free group on 2 generators is
not a group but only a semi-group. This problem has been open since Anderson in
1978 found the first example of a C∗-algebra A for which Ext(A) is not a group.

1 Introduction.

A random matrix X is a matrix whose entries are real or complex random variables on
a probability space (Ω,F, P ). As in [T], we denote by SGRM(n, σ2) the class of complex
self-adjoint n× n random matrices

X = (Xij)
n
i,j=1,

for which (Xii)i, (
√

2ReXij)i<j, (
√

2ImXij)i<j are n2 independent identically distributed
(i.i.d.) Gaussian random variables with mean value 0 and variance σ2. In the terminology
of Mehta’s book [Me], X is a Gaussian unitary ensemble (GUE). In the following we put
σ2 = 1

n
which is the normalization used in Voiculescu’s random matrix paper [V4]. We

shall need the following basic definitions from free probability theory (cf. [V2],[VDN]):
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a) A C∗-probability space is a pair (B, τ) consisting of a unital C∗-algebra B and a
state τ on B.

b) A family of elements (ai)i∈I in a C∗-probability space (B, τ) is free if for all n ∈ N
and all polynomials p1, . . . , pn ∈ C[X], one has

τ(p1(ai1) · · · pn(ain)) = 0,

whenever i1 6= i2, i2 6= i3, . . . , in−1 6= in and ϕ(pk(aik)) = 0 for k = 1, . . . , n.

c) A family (xi)i∈I of elements in a C∗-probability space (B, τ) is a semicircular family,
if (xi)i∈I is a free family, xi = x∗i for all i ∈ I and

τ(xki ) =
1

2π

∫ 2

−2

tk
√

4− t2 dt =

{
1

k/2+1

(
k
k/2

)
, if k is even,

0, if k is odd,

for all k ∈ N and i ∈ I.

We can now formulate Voiculescu’s random matrix result from [V5]: Let, for each n ∈ N,

(X
(n)
i )i∈I be a family of independent random matrices from the class SGRM(n, 1

n
), and

let (xi)i∈I be a semicircular family in a C∗-probability space (B, τ). Then for all p ∈ N
and all i1, . . . , ip ∈ I, we have

lim
n→∞

E
{

trn
(
X

(n)
i1
· · ·X(n)

ip

)}
= τ(xi1 · · ·xip), (1.1)

where trn is the normalized trace on Mn(C), i.e., trn = 1
n
Trn, where Trn(A) is the sum

of the diagonal elements of A. Furthermore, E denotes expectation (or integration) w.r.t.
the probability measure P .

The special case |I| = 1 is Wigner’s semi-circle law (cf. [Wi], [Me]). The strong law
corresponding to (1.1) also holds, i.e.,

lim
n→∞

trn
(
X

(n)
i1

(ω) · · ·X(n)
ip

(ω)
)

= τ(xi1 · · ·xip), (1.2)

for almost all ω ∈ Ω (cf. [Ar] for the case |I| = 1 and [HP], [T, Cor. 3.9] for the general
case). Voiculescu’s result is actually more general than the one quoted above. It also
involves sequences of non random diagonal matrices. We will, however, only consider the
case, where there are no diagonal matrices. The main result of this paper is that the
strong version (1.2) of Voiculescu’s random matrix result also holds for the operator norm
in the following sense:

Theorem A. Let r ∈ N and, for each n ∈ N, let (X
(n)
1 , . . . , X

(n)
r ) be a set of r independent

random matrices from the class SGRM(n, 1
n
). Let further (x1, . . . , xr) be a semicircular

system in a C∗-probability space (B, τ) with a faithful state τ . Then there is a P -null set
N ⊆ Ω such that for all ω ∈ Ω\N and all polynomials p in r non-commuting variables,
we have

lim
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥ = ‖p(x1, . . . , xr)‖. (1.3)
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The proof of Theorem A is given in Section 7. The special case

lim
n→∞

∥∥X(n)
1 (ω)

∥∥ = ‖x1‖ = 2

is well known (cf. [BY], [Ba, Thm. 2.12] or [HT1, Thm. 3.1]).

From Theorem A above, it is not hard to obtain the following result (cf. section 8).

Theorem B. Let r ∈ N ∪ {∞}, let Fr denote the free group on r generators, and
let λ : Fr → B(`2(Fr)) be the left regular representation of Fr. Then there exists a
sequence of unitary representations πn : Fr → Mn(C) such that for all h1, . . . , hm ∈ Fr
and c1, . . . , cm ∈ C:

lim
n→∞

∥∥∥ m∑
j=1

cjπn(hj)
∥∥∥ =

∥∥∥ m∑
j=1

cjλ(hj)
∥∥∥.

The invariant Ext(A) for separable unital C∗-algebras A was introduced by Brown, Dou-
glas and Fillmore in 1973 (cf. [BDF1], [BDF2]). Ext(A) is the set of equivalence classes
[π] of one-to-one ∗-homomorphisms π : A → C(H), where C(H) = B(H)/K(H) is the
Calkin algebra for the Hilbert space H = `2(N). The equivalence relation is defined as
follows:

π1 ∼ π2 ⇐⇒ ∃u ∈ U(B(H)) ∀a ∈ A : π2(a) = ρ(u)π1(a)ρ(u)∗,

where U(B(H)) denotes the unitary group of B(H) and ρ : B(H)→ C(H) is the quotient
map. Since H ⊕ H ' H, the map (π1, π2) → π1 ⊕ π2 defines a natural semi-group
structure on Ext(A). By Choi and Effros [CE], Ext(A) is a group for every separable
unital nuclear C∗-algebra and by Voiculescu [V1], Ext(A) is a unital semi-group for all
separable unital C∗-algebras A. Anderson [An] provided in 1978 the first example of
a unital C∗-algebra A for which Ext(A) is not a group. The C∗-algebra A in [An] is
generated by the reduced C∗-algebra C∗red(F2) of the free group F2 on 2 generators and a
projection p ∈ B(`2(F2)). Since then, it has been an open problem whether Ext(C∗red(F2))
is a group. In [V6, Sect. 5.14], Voiculescu shows that if one could prove Theorem B, then
it would follow that Ext(C∗red(Fr)) is not a group for any r ≥ 2. Hence we have

Corollary 1. Let r ∈ N ∪ {∞}, r ≥ 2. Then Ext(C∗red(Fr)) is not a group.

The problem of proving Corollary 1 has been considered by a number of mathematicians;
see [V6, Section 5.11] for a more detailed discussion.

In Section 9 we extend Theorem A (resp. Theorem B) to polynomials (resp. linear com-
binations) with coefficients in an arbitrary unital exact C∗-algebra. The first of these two
results is used to provide new proofs of two key results from our previous paper [HT2]:
“Random matrices and K-theory for exact C∗-algebras”. Moreover, we use the second
result to make an exact computation of the constants C(r), r ∈ N, introduced by Junge
and Pisier [JP] in connection with their proof of

B(H) ⊗
max

B(H) 6= B(H) ⊗
min

B(H).
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Specifically, we prove the following

Corollary 2. Let r ∈ N, r ≥ 2, and let C(r) be the infimum of all real numbers C > 0
with the following property: There exists a sequence of natural numbers (n(m))m∈N and

a sequence of r-tuples (u
(m)
1 , . . . , u

(m)
r )m∈N of n(m)× n(m) unitary matrices, such that∥∥∥ r∑
i=1

u
(m)
i ⊗ ū(m′)

i

∥∥∥ ≤ C,

whenever m,m′ ∈ N and m 6= m′. Then C(r) = 2
√
r − 1.

Pisier proved in [P3] that C(r) ≤ 2
√
r − 1 and Valette proved subsequently in [V] that

C(r) = 2
√
r − 1, when r is of the form r = p+ 1 for an odd prime number p.

We end section 9 by using Theorem A to prove the following result on powers of “circular”
random matrices (cf. Section 9):

Corollary 3. Let Y be a random matrix in the class GRM(n, 1
n
), i.e., the entries of Y

are i.i.d. complex Gaussian random variables with density z 7→ n
π
e−n|z|

2
, z ∈ C. Then for

every p ∈ N and almost all ω ∈ Ω,

lim
n→∞

∥∥Y (ω)p
∥∥ =

(
(p+ 1)p+1

pp

) 1
2

.

Note that for p = 1, Corollary 3 follows from Geman’s result [Ge].

In the remainder of this introduction, we sketch the main steps in the proof of Theorem
A. Throughout the paper, we denote by Asa the real vector space of self-adjoint elements
in a C∗-algebra A. In Section 2 we prove the following “linearization trick”:

Let A,B be unital C∗-algebras, and let x1, . . . , xr and y1, . . . , yr be operators in Asa and
Bsa, respectively. Assume that for all m ∈ N and all matrices a0, . . . , ar in Mm(C)sa, we
have

sp
(
a0 ⊗ 111B +

∑r
i=1 ai ⊗ yi

)
⊆ sp

(
a0 ⊗ 111A +

∑r
i=1 ai ⊗ xi

)
,

where sp(T ) denotes the spectrum of an operator T , and where 111A and 111B denote the
units of A and B, respectively. Then there exists a unital ∗-homomorphism

Φ: C∗(x1, . . . , xr,111A)→ C∗(y1, . . . , yr,111B),

such that Φ(xi) = yi, i = 1, . . . , r. In particular,

‖p(y1, . . . , yr)‖ ≤ ‖p(x1, . . . , xr)‖,

for every polynomial p in r non-commuting variables.

The linearization trick allows us to conclude (see Section 7):
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Lemma 1. In order to prove Theorem A, it is sufficient to prove the following: With
(X

(n)
1 , . . . , X

(n)
r ) and (x1, . . . , xr) as in Theorem A, one has for all m ∈ N, all matrices

a0, . . . , ar in Mm(C)sa and all ε > 0 that

sp
(
a0 ⊗ 111n +

∑r
i=1 ai ⊗X

(n)
i (ω)

)
⊆ sp(a0 ⊗ 111B +

∑r
i=1 ai ⊗ xi

)
+ ]− ε, ε[,

eventually as n→∞, for almost all ω ∈ Ω, and where 111n denotes the unit of Mn(C).

In the rest of this section, (X
(n)
1 , . . . , X

(n)
r ) and (x1, . . . , xr) are defined as in Theorem A.

Moreover we let a0, . . . , ar ∈Mm(C)sa and put

s = a0 ⊗ 111B +
r∑
i=1

ai ⊗ xi

Sn = a0 ⊗ 111n +
r∑
i=1

ai ⊗X(n)
i , n ∈ N.

It was proved by Lehner in [Le] that Voiculescu’s R-transform of s with amalgamation
over Mm(C) is given by

Rs(z) = a0 +
r∑
i=1

aizai, z ∈Mm(C). (1.4)

For λ ∈Mm(C), we let Imλ denote the self-adjoint matrix Imλ = 1
2i

(λ− λ∗), and we put

O =
{
λ ∈Mm(C) | Imλ is positive definite

}
.

From (1.4) one gets (cf. Section 6) that the matrix-valued Stieltjes transform of s,

G(λ) = (idm ⊗ τ)
[
(λ⊗ 111B − s)−1

]
∈Mm(C),

is defined for all λ ∈ O, and satisfies the matrix equation

r∑
i=1

aiG(λ)aiG(λ) + (a0 − λ)G(λ) + 111m = 0. (1.5)

For λ ∈ O, we let Hn(λ) denote the Mm(C)-valued random variable

Hn(λ) = (idm ⊗ trn)
[
(λ⊗ 111n − Sn)−1

]
,

and we put
Gn(λ) = E

{
Hn(λ)

}
∈Mm(C).

Then the following analogy to (1.5) holds (cf. Section 3):

Lemma 2 (Master equation). For all λ ∈ O and n ∈ N:

E
{ r∑

i=1

aiHn(λ)aiHn(λ) + (a0 − λ)Hn(λ) + 111m

}
= 0. (1.6)
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The proof of (1.6) is completely different from the proof of (1.5). It is based on the simple
observation that the density of the standard Gaussian distribution, ϕ(x) = 1√

2π
e−x

2/2

satisfies the first order differential equation ϕ′(x) + xϕ(x) = 0. In the special case of a
single SGRM(n, 1

n
) random matrix (i.e., r = m = 1 and a0 = 0, a1 = 1), equation (1.6)

occurs in a recent paper by Pastur (cf. [Pas, Formula (2.25)]). Next we use the so-called
“Gaussian Poincar inequality” (cf. Section 4) to estimate the norm of the difference

E
{ r∑

i=1

aiHn(λ)aiHn(λ)
}
−

r∑
i=1

aiE{Hn(λ)}aiE{Hn(λ)},

and we obtain thereby (cf. Section 4):

Lemma 3 (Master inequality). For all λ ∈ O and all n ∈ N, we have∥∥∥ r∑
i=1

aiGn(λ)aiGn(λ)− (a0 − λ)Gn(λ) + 111m

∥∥∥ ≤ C

n2

∥∥(Imλ)−1
∥∥4
, (1.7)

where C = m3
∥∥∑r

i=1 a
2
i

∥∥2
.

In Section 5, we deduce from (1.5) and (1.7) that

‖Gn(λ)−G(λ)‖ ≤ 4C

n2

(
K + ‖λ‖

)2∥∥(Imλ)−1
∥∥7
, (1.8)

where C is as above and K = ‖a0‖ + 4
∑r

i=1 ‖ai‖. The estimate (1.8) implies that for
every ϕ ∈ C∞c (R,R):

E
{

(trm ⊗ trn)ϕ(Sn)
}

= (trm ⊗ τ)(ϕ(s)) +O
(

1
n2

)
, (1.9)

for n → ∞ (cf. Section 6). Moreover, a second application of the Gaussian Poincar
inequality yields that

V
{

(trm ⊗ trn)ϕ(Sn)
}
≤ 1

n2
E
{

(trm ⊗ trn)(ϕ′(Sn)2)
}
, (1.10)

where V denotes the variance. Let now ψ be a C∞-function with values in [0, 1], such
that ψ vanishes on a neighbourhood of the spectrum sp(s) of s, and such that ψ is 1 on
the complement of sp(s) + ]− ε, ε[.
By applying (1.9) and (1.10) to ϕ = ψ − 1, one gets

E
{

(trm ⊗ trn)ψ(Sn)
}

= O(n−2),

V
{

(trm ⊗ trn)ψ(Sn)
}

= O(n−4),

and by a standard application of the Borel-Cantelli lemma, this implies that

(trm ⊗ trn)ψ(Sn(ω)) = O(n−4/3),
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for almost all ω ∈ Ω. But the number of eigenvalues of Sn(ω) outside sp(s) + ] − ε, ε[ is
dominated by mn(trm ⊗ trn)ψ(Sn(ω)), which is O(n−1/3) for n → ∞. Being an integer,
this number must therefore vanish eventually as n→∞, which shows that for almost all
ω ∈ Ω,

sp(Sn(ω)) ⊆ sp(s) + ]− ε, ε[,

eventually as n→∞, and Theorem A now follows from Lemma 1.

2 A linearization Trick.

Throughout this section we consider two unital C∗-algebras A and B and self-adjoint
elements x1, . . . , xr ∈ A, y1, . . . , yr ∈ B. We put

A0 = C∗(111A, x1, . . . , xr) and B0 = C∗(111B, y1, . . . , yr).

Note that since x1, . . . , xr and y1, . . . , yr are self-adjoint, the complex linear spaces

E = spanC{111A, x1, . . . , xr,
∑r

i=1 x
2
i } and F = spanC{111B, y1, . . . , yr,

∑r
i=1 y

2
i }

are both operator systems.

2.1 Lemma. Assume that u0 : E → F is a unital completely positive (linear) mapping,
such that

u0(xi) = yi, i = 1, 2, . . . , r,

and
u0

(∑r
i=1 x

2
i

)
=
∑r

i=1 y
2
i .

Then there exists a surjective ∗-homomorphism u : A0 → B0, such that

u0 = u|E.

Proof. The proof is inspired by Pisier’s proof of [P2, Prop. 1.7]. We may assume that B is
a unital sub-algebra of B(H) for some Hilbert space H. Combining Stinespring’s theorem
([Pau, Theorem 4.1]) with Arveson’s extension theorem ([Pau, Corollary 6.6]), it follows
then that there exists a Hilbert space K containing H, and a unital ∗-homomorphism
π : A→ B(K), such that

u0(x) = pπ(x)p (x ∈ E),

where p is the orthogonal projection of K onto H. Note in particular that

(a) u0(111A) = pπ(111A)p = p = 111B(H),

(b) yi = u0(xi) = pπ(xi)p, i = 1, . . . , r,

(c)
∑r

i=1 y
2
i = u0

(∑r
i=1 x

2
i

)
=
∑r

i=1 pπ(xi)
2p.
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From (b) and (c), it follows that p commutes with π(xi) for all i in {1, 2, . . . , r}. Indeed,
using (b) and (c), we find that

r∑
i=1

pπ(xi)pπ(xi)p =
r∑
i=1

y2
i =

r∑
i=1

pπ(xi)
2p,

so that
r∑
i=1

pπ(xi)
(
111B(K) − p

)
π(xi)p = 0.

Thus, putting bi = (111B(K) − p)π(xi)p, i = 1, . . . , r, we have that
∑r

i=1 b
∗
i bi = 0, so that

b1 = · · · = br = 0. Hence, for each i in {1, 2, . . . , r}, we have

[p, π(xi)] = pπ(xi)− π(xi)p = pπ(xi)(111B(K) − p)− (111B(K) − p)π(xi)p = b∗i − bi = 0,

as desired. Since π is a unital ∗-homomorphism, we may conclude further that p commutes
with all elements of the C∗-algebra π(A0).

Now define the mapping u : A0 → B(H) by

u(a) = pπ(a)p, (a ∈ A0).

Clearly u(a∗) = u(a)∗ for all a in A0, and, using (a) above, u(111A) = u0(111A) = 111B.
Furthermore, since p commutes with π(A0), we find for any a, b in A0 that

u(ab) = pπ(ab)p = pπ(a)π(b)p = pπ(a)pπ(b)p = u(a)u(b).

Thus, u : A0 → B(H) is a unital ∗-homomorphism, which extends u0, and u(A0) is a
C∗-sub-algebra of B(H). It remains to note that u(A0) is generated, as a C∗-algebra, by
the set u({111A, x1, . . . , xr}) = {111B, y1, . . . , yr}, so that u(A0) = C∗(111B, y1, . . . , yr) = B0, as
desired. �

For any element c of a C∗-algebra C, we denote by sp(c) the spectrum of c, i.e.,

sp(c) = {λ ∈ C | c− λ111C is not invertible}.

2.2 Theorem. Assume that the self-adjoint elements x1, . . . , xr ∈ A and y1, . . . , yr ∈ B

satisfy the property:

∀m ∈ N ∀a0,a1, . . . , ar ∈Mm(C)sa :

sp
(
a0 ⊗ 111A +

∑r
i=1 ai ⊗ xi

)
⊇ sp

(
a0 ⊗ 111B +

∑r
i=1 ai ⊗ yi

)
.

(2.1)

Then there exists a unique surjective unital ∗-homomorphism ϕ : A0 → B0, such that

ϕ(xi) = yi, i = 1, 2, . . . , r.

Before the proof of Theorem 2.2, we make a few observations:
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2.3 Remark. (1) In connection with condition (2.1) above, let V be a subspace of
Mm(C) containing the unit 111m. Then the condition:

∀a0,a1, . . . , ar ∈ V :

sp
(
a0 ⊗ 111A +

∑r
i=1 ai ⊗ xi

)
⊇ sp

(
a0 ⊗ 111B +

∑r
i=1 ai ⊗ yi

) (2.2)

is equivalent to the condition:

∀a0,a1, . . . , ar ∈ V :

a0 ⊗ 111A +
∑r

i=1 ai ⊗ xi is invertible =⇒ a0 ⊗ 111B +
∑r

i=1 ai ⊗ yi is invertible.
(2.3)

Indeed, it is clear that (2.2) implies (2.3), and the reverse implication follows by replacing,
for any complex number λ, the matrix a0 ∈ V by a0 − λ111m ∈ V .

(2) Let H1 and H2 be Hilbert spaces and consider the Hilbert space direct sum H =
H1 ⊕H2. Consider further the operator R in B(H) given in matrix form as

R =

(
x y
z 111B(H2),

)
where x ∈ B(H1), y ∈ B(H2,H1) and z ∈ B(H1,H2). Then R is invertible in B(H) if
and only if x− yz is invertible in B(H1).

This follows immediately by writing(
x y
z 111B(H2)

)
=

(
111B(H1) y

0 111B(H2)

)
·
(
x− yz 0

0 111B(H2)

)
·
(

111B(H1) 0
z 111B(H2)

)
,

where the first and last matrix on the right hand side are invertible with inverses given
by:(

111B(H1) y
0 111B(H2)

)−1

=

(
111B(H1) −y

0 111B(H2)

)
and

(
111B(H1) 0
z 111B(H2)

)−1

=

(
111B(H1) 0
−z 111B(H2)

)
.

Proof of Theorem 2.2. By Lemma 2.1, our objective is to prove the existence of a unital
completely positive map u0 : E → F , satisfying that u0(xi) = yi, i = 1, 2, . . . , r and
u0(
∑r

i=1 x
2
i ) =

∑r
i=1 y

2
i .

Step I. We show first that the assumption (2.1) is equivalent to the seemingly stronger
condition:

∀m ∈ N ∀a0,a1, . . . , ar ∈Mm(C) :

sp
(
a0 ⊗ 111A +

∑r
i=1 ai ⊗ xi

)
⊇ sp

(
a0 ⊗ 111B +

∑r
i=1 ai ⊗ yi

)
.

(2.4)

Indeed, let a0, a1, . . . , ar be arbitrary matrices in Mm(C) and consider then the self-adjoint
matrices ã0, ã1, . . . , ãr in M2m(C) given by:

ãi =

(
0 a∗i
ai 0

)
, i = 0, 1, . . . , r.
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Note then that

ã0 ⊗ 111A +
r∑
i=1

ãi ⊗ xi =

(
0 a∗0 ⊗ 111A +

∑r
i=1 a

∗
i ⊗ xi

a0 ⊗ 111A +
∑r

i=1 ai ⊗ xi 0

)

=

(
0 111A

111A 0

)
·
(
a0 ⊗ 111A +

∑r
i=1 ai ⊗ xi 0

0 a∗0 ⊗ 111A +
∑r

i=1 a
∗
i ⊗ xi

)
.

Therefore, ã0⊗111A+
∑r

i=1 ãi⊗xi is invertible in M2m(A) if and only if a0⊗111A+
∑r

i=1 ai⊗xi
is invertible in Mm(A), and similarly, of course, ã0 ⊗ 111B +

∑r
i=1 ãi ⊗ yi is invertible in

M2m(B) if and only if a0 ⊗ 111B +
∑r

i=1 ai ⊗ yi is invertible in Mm(B). It follows that

a0 ⊗ 111A +
r∑
i=1

ai ⊗ xi is invertible ⇐⇒ ã0 ⊗ 111A +
r∑
i=1

ãi ⊗ xi is invertible

=⇒ ã0 ⊗ 111B +
r∑
i=1

ãi ⊗ yi is invertible

⇐⇒ a0 ⊗ 111B +
r∑
i=1

ai ⊗ yi is invertible,

where the second implication follows from the assumption (2.1). Since the argument
above holds for arbitrary matrices a0, a1, . . . , ar in Mm(C), it follows from Remark 2.3(1)
that condition (2.4) is satisfied.

Step II. We prove next that the assumption (2.1) implies the condition:

∀m ∈ N ∀a0, a1, . . . , ar, ar+1 ∈Mm(C) :

sp
(
a0 ⊗ 111A+

∑r
i=1 ai ⊗ xi + ar+1 ⊗

∑r
i=1 x

2
i

)
⊇ sp

(
a0 ⊗ 111B +

∑r
i=1 ai ⊗ yi + ar+1 ⊗

∑r
i=1 y

2
i

)
.

(2.5)

Using Remark 2.3(1), we have to show, given m in N and a0, a1, . . . , ar+1 in Mm(C), that
invertibility of a0 ⊗ 111A +

∑r
i=1 ai ⊗ xi + ar+1 ⊗

∑r
i=1 x

2
i in Mm(A) implies invertibility of

a0 ⊗ 111A +
∑r

i=1 ai ⊗ yi + ar+1 ⊗
∑r

i=1 y
2
i in Mm(B). For this, consider the matrices:

S =


a0 ⊗ 111A −111m ⊗ x1 −111m ⊗ x2 · · · −111m ⊗ xr

a1 ⊗ 111A + ar+1 ⊗ x1 111m ⊗ 111A O
a2 ⊗ 111A + ar+1 ⊗ x2 111m ⊗ 111A

...
. . .

ar ⊗ 111A + ar+1 ⊗ xr O 111m ⊗ 111A

 ∈M(r+1)m(A)

and

T =


a0 ⊗ 111B −111m ⊗ y1 −111m ⊗ y2 · · · −111m ⊗ yr

a1 ⊗ 111B + ar+1 ⊗ y1 111m ⊗ 111B O
a2 ⊗ 111B + ar+1 ⊗ y2 111m ⊗ 111B

...
. . .

ar ⊗ 111B + ar+1 ⊗ yr O 111m ⊗ 111B

 ∈M(r+1)m(B).
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By Remark 2.3(2), invertibility of S in M(r+1)m(A) is equivalent to invertibility of

a0 ⊗ 111A +
∑r

i=1(111m ⊗ xi) · (ai ⊗ 111A + ar+1 ⊗ xi)

= a0 ⊗ 111A +
∑r

i=1 ai ⊗ xi + ar+1 ⊗
∑r

i=1 x
2
i

in Mm(A). Similarly, T is invertible in M(r+1)m(B) if and only if

a0 ⊗ 111B +
∑r

i=1 ai ⊗ yi + ar+1 ⊗
∑r

i=1 y
2
i

is invertible in Mm(B). It remains thus to show that invertibility of S implies that of T .
This, however, follows immediately from Step I, since we may write S and T in the form:

S = b0 ⊗ 111A +
r∑
i=1

bi ⊗ xi and T = b0 ⊗ 111B +
r∑
i=1

bi ⊗ yi,

for suitable matrices b0, b1, . . . , br in M(r+1)m(C); namely

b0 =


a0 0 0 · · · 0
a1 111m O
a2 111m
...

. . .

ar O 111m


and

bi =



0 · · · 0 −111m 0 · · · 0
...
0

ar+1 O
0
...
0


, i = 1, 2, . . . , r.

For i in {1, 2, . . . , r}, the (possible) non-zero entries in bi are at positions (1, i + 1) and
(i+ 1, 1). This concludes Step II.

Step III. We show, finally, the existence of a unital completely positive mapping u0 : E →
F , satisfying that u0(xi) = yi, i = 1, 2, . . . , r and u0(

∑r
i=1 x

2
i ) =

∑r
i=1 y

2
i .

Using Step II in the case m = 1, it follows that for any complex numbers a0, a1, . . . , ar+1,
we have that

sp
(
a0111A +

∑r
i=1 aixi + ar+1

∑r
i=1 x

2
i

)
⊇ sp

(
a0111B +

∑r
i=1 aiyi + ar+1

∑r
i=1 y

2
i

)
. (2.6)

If a0, a1, . . . , ar+1 are real numbers, then the operators

a0111A +
∑r

i=1 aixi + ar+1

∑r
i=1 x

2
i and a0111B +

∑r
i=1 aiyi + ar+1

∑r
i=1 y

2
i

11



are self-adjoint, since x1, . . . , xr and y1, . . . , yr are self-adjoint. Hence (2.6) implies that

∀a0, . . . , ar+1 ∈ R :∥∥a0111A +
∑r

i=1 aixi + ar+1

∑r
i=1 x

2
i

∥∥ ≥ ∥∥a0111B +
∑r

i=1 aiyi + ar+1

∑r
i=1 y

2
i

∥∥. (2.7)

Let E ′ and F ′ denote, respectively, the R-linear span of {111A, x1, . . . , xr,
∑r

i=1 x
2
i } and

{111B, y1, . . . , yr,
∑r

i=1 y
2
i }:

E ′ = spanR{111A, x1, . . . , xr,
∑r

i=1 x
2
i } and F ′ = spanR{111B, y1, . . . , yr,

∑r
i=1 y

2
i }.

It follows then from (2.7) that there is a (well-defined) R-linear mapping u′0 : E ′ → F ′

satisfying that u′0(111A) = 111B, u′0(xi) = yi, i = 1, 2, . . . , r and u′0(
∑r

i=1 x
2
i ) =

∑r
i=1 y

2
i . For

an arbitrary element x in E, note that Re(x) = 1
2
(x+x∗) ∈ E ′ and Im(x) = 1

2i
(x−x∗) ∈ E ′.

Hence, we may define a mapping u0 : E → F by setting:

u0(x) = u′0(Re(x)) + iu′0(Im(x)), (x ∈ E).

It is straightforward, then, to check that u0 is a C-linear mapping from E onto F , which
extends u′0.

Finally, it follows immediately from Step II that for all m in N, the mapping idMm(C)⊗u0

preserves positivity. In other words, u0 is a completely positive mapping. This concludes
the proof. �

In Section 7, we shall need the following strengthening of Theorem 2.2:

2.4 Theorem. Assume that the self adjoint elements x1, . . . , xr ∈ A, y1, . . . , yr ∈ B

satisfy the property

∀m ∈ N ∀a0, . . . , ar ∈Mm(Q + iQ)sa :
sp
(
a0 ⊗ 111A +

∑r
i=1 ai ⊗ xi

)
⊇ sp

(
a0 ⊗ 1B +

∑r
i=1 ai ⊗ yi

)
.

(2.8)

Then there exists a unique surjective unital ∗-homomorphism ϕ : A0 → B0 such that
ϕ(xi) = yi, i = 1, . . . , r.

Proof. By Theorem 2.2, it suffices to prove that condition (2.8) is equivalent to condition
(2.1) of that theorem. Clearly (2.1) ⇒ (2.8). It remains to be proved that (2.8) ⇒ (2.1).
Let dH(K,L) denote the Hausdorff distance between two subsets K, L of C:

dH(K,L) = max
{

sup
x∈K

d(x, L), sup
y∈L

d(y,K)
}
. (2.9)

For normal operators A,B in Mm(C) or B(H) (H a Hilbert space) one has

dH(sp(A), sp(B)) ≤ ‖A−B‖ (2.10)

(cf. [Da, Prop. 2.1]). Assume now that (2.8) is satisfied, let m ∈ N, b0, . . . , br ∈ Mm(C)
and let ε > 0.
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Since Mm(Q + iQ)sa is dense in Mm(C)sa, we can choose a0, . . . , ar ∈Mm(Q + iQ)sa such
that

‖a0 − b0‖+
r∑
i=1

‖ai − bi‖‖xi‖ < ε

and

‖a0 − b0‖+
r∑
i=1

‖ai − bi‖‖yi‖ < ε.

Hence, by (2.10),

dH
(
sp
(
a0 ⊗ 1 +

∑r
i=1ai ⊗ xi

)
, sp
(
b0 ⊗ 1 +

∑r
i=1 bi ⊗ xi

))
< ε

and
dH
(
sp
(
a0 ⊗ 1 +

∑r
i=1ai ⊗ yi

)
, sp
(
b0 ⊗ 1 +

∑r
i=1 bi ⊗ yi

))
< ε.

By these two inequalities and (2.8) we get

sp
(
b0 ⊗ 1 +

∑r
i=1bi ⊗ yi

)
⊆ sp

(
a0 ⊗ 1 +

∑r
i=1ai ⊗ yi

)
+ ]− ε, ε[

⊆ sp
(
a0 ⊗ 1 +

∑r
i=1ai ⊗ xi

)
+ ]− ε, ε[

⊆ sp
(
b0 ⊗ 1 +

∑r
i=1bi ⊗ xi) + ]− 2ε, 2ε[.

Since sp(b0 ⊗ 1 +
∑r

i=1 bi ⊗ yi) is compact and ε > 0 is arbitrary, it follows that

sp
(
b0 ⊗ 1 +

∑r
i=1bi ⊗ yi

)
⊆ sp

(
b0 ⊗ 1 +

∑r
i=1 bi ⊗ xi

)
,

for all m ∈ N and all b0, . . . , br ∈ Mm(C)sa, i.e. (2.1) holds. This completes the proof of
Theorem 2.4. �

3 The master equation.

Let H be a Hilbert space. For T ∈ B(H) we let ImT denote the self adjoint operator
ImT = 1

2i
(T − T ∗). We say that a matrix T in Mm(C)sa is positive definite if all its

eigenvalues are strictly positive, and we denote by λmax(T ) and λmin(T ) the largest and
smallest eigenvalues of T , respectively.

3.1 Lemma. (i) Let H be a Hilbert space and let T be an operator in B(H), such
that the imaginary part ImT satisfies one of the two conditions:

ImT ≥ ε111B(H) or ImT ≤ −ε111B(H),

for some ε in ]0,∞[. Then T is invertible and ‖T−1‖ ≤ 1
ε
.

(ii) Let T be a matrix in Mm(C) and assume that ImT is positive definite. Then T is
invertible and ‖T−1‖ ≤ ‖(ImT )−1‖.

13



Proof. Note first that (ii) is a special case of (i). Indeed, since ImT is self-adjoint, we
have that ImT ≥ λmin(ImT )111m. Since ImT is positive definite, λmin(ImT ) > 0, and hence
(i) applies. Thus, T is invertible and furthermore

‖T−1‖ ≤ 1

λmin(ImT )
= λmax

(
(ImT )−1

)
= ‖(ImT )−1‖,

since (ImT )−1 is positive.

To prove (i), note first that by replacing, if necessary, T by −T , it suffices to consider the
case where ImT ≥ ε111B(H). Let ‖ · ‖ and 〈·, ·〉 denote, respectively, the norm and the inner
product on H. Then, for any unit vector ξ in H, we have

‖Tξ‖2 = ‖Tξ‖2‖ξ‖2 ≥ |〈Tξ, ξ〉|2 =
∣∣〈Re(T )ξ, ξ〉+ i〈ImTξ, ξ〉

∣∣2 ≥ 〈ImTξ, ξ〉2 ≥ ε2‖ξ‖2,

where we used that 〈Re(T )ξ, ξ〉, 〈ImTξ, ξ〉 ∈ R. Note further, for any unit vector ξ in H,
that

‖T ∗ξ‖2 ≥ |〈T ∗ξ, ξ〉|2 = |〈Tξ, ξ〉|2 ≥ ε2‖ξ‖2.

Altogether, we have verified that ‖Tξ‖ ≥ ε‖ξ‖ and that ‖T ∗ξ‖ ≥ ε‖ξ‖ for any (unit) vector
ξ in H, and by [Pe, Prop. 3.2.6] this implies that T is invertible and that ‖T−1‖ ≤ 1

ε
.

�

3.2 Lemma. Let A be a unital C∗-algebra and denote by GL(A) the group of invertible
elements of A. Let further A : I → GL(A) be a mapping from an open interval I in R
into GL(A), and assume that A is differentiable, in the sense that

A′(t0) := lim
t→t0

1

t− t0
(
A(t)− A(t0)

)
exists in the operator norm, for any t0 in I. Then the mapping t 7→ A(t)−1 is also
differentiable and

d

dt
A(t)−1 = −A(t)−1A′(t)A(t)−1, (t ∈ I).

Proof. The lemma is well known. For the reader’s convenience we include a proof. For
any t, t0 in I, we have

1

t− t0
(
A(t)−1 − A(t0)−1

)
=

1

t− t0
A(t)−1

(
A(t0)− A(t)

)
A(t0)−1

= −A(t)−1
( 1

t− t0
(
A(t)− A(t0)

))
A(t0)−1

−→
t→t0
−A(t0)−1A′(t0)A(t0)−1,

where the limit is taken in the operator norm, and we use that the mapping B 7→ B−1 is
a homeomorphism of GL(A) w.r.t. the operator norm. �
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3.3 Lemma. Let σ be a positive number, let N be a positive integer and let γ1, . . . , γN
be N independent identically distributed real valued random variables with distribution
N(0, σ2), defined on the same probability space (Ω,F, P ). Consider further a finite di-
mensional vector space E and a C1-mapping:

(x1, . . . , xN) 7→ F (x1, . . . , xN) : RN → E,

satisfying that F and all its first order partial derivatives ∂F
∂x1
, . . . , ∂F

∂xN
are polynomially

bounded. For any j in {1, 2, . . . , N}, we then have

E
{
γjF (γ1, . . . , γN)

}
= σ2E

{
∂F
∂xj

(γ1, . . . , γN)
}
,

where E denotes expectation w.r.t. P .

Proof. Clearly it is sufficient to treat the case E = C. The joint distribution of γ1, . . . , γN
is given by the density function

ϕ(x1, . . . , xN) = (2πσ2)−
n
2 exp

(
− 1

2σ2

∑N
i=1 x

2
i

)
, (x1, . . . , xN) ∈ RN .

Since
∂ϕ

∂xj
(x1, . . . , xN) = − 1

σ2
xjϕ(x1, . . . , xN),

we get by partial integration in the variable xj,

E
{
γjF (γ1, . . . , γN)

}
=

∫
RN

F (x1, . . . , xN)xjϕ(x1, . . . , xN) dx1, . . . , dxN

= −σ2

∫
RN

F (x1, . . . , xN)
∂ϕ

∂xj
(x1, . . . , xN) dx1, . . . , dxN

= σ2

∫
RN

∂F

∂xj
(x1, . . . , xN)ϕ(x1, . . . , xN) dx1, . . . , dxN

= σ2E
{
∂F

∂xj
(γ1, . . . , γN)

}
. �

Let r and n be positive integers. In the following we denote by Er,n the real vector space
(Mn(C)sa)r. Note that Er,n is a Euclidean space with inner product 〈·, ·〉e given by

〈(A1, . . . , Ar), (B1, . . . , Br)〉e = Trn

( r∑
j=1

AjBj

)
, ((A1, . . . , Ar), (B1, . . . , Br) ∈ Er,n),

and with norm given by

‖(A1, . . . , Ar)‖2
e = Trn

( r∑
j=1

A2
j

)
=

r∑
j=1

‖Aj‖2
2,Trn

, ((A, . . . , Ar) ∈ Er,n).

Finally, we shall denote by S1(Er,n) the unit sphere of Er,n w.r.t. ‖ · ‖e.
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3.4 Remark. Let r, n be positive integers, and consider the linear isomorphism Ψ0 be-
tween Mn(C)sa and Rn2

given by

Ψ0((akl)1≤k,l≤n) =
(
(akk)1≤k≤n, (

√
2Re(akl))1≤k<l≤n, (

√
2Im(akl))1≤k<l≤n

)
, (3.1)

for (akl)1≤k,l≤n in Mn(C)sa. We denote further by Ψ the natural extension of Ψ0 to a linear
isomorphism between Er,n and Rrn2

:

Ψ(A1, . . . , Ar) = (Ψ0(A1), . . . ,Ψ0(Ar)), (A1, . . . , Ar ∈Mn(C)sa).

We shall identify Er,n with Rrn2
via the isomorphism Ψ. Note that under this identification,

the norm ‖ · ‖e on Er,n corresponds to the usual Euclidean norm on Rrn2
. In other words,

Ψ is an isometry.

Consider next independent random matrices X
(n)
1 , . . . , X

(n)
r from SGRM(n, 1

n
) as defined

in the introduction. Then X = (X
(n)
1 , . . . , X

(n)
r ) is a random variable taking values in

Er,n, so that Y = Ψ(X) is a random variable taking values in Rrn2
. From the definition of

SGRM(n, 1
n
) and the fact that X

(n)
1 , . . . , X

(n)
r are independent, it is easily seen that the

distribution of Y on Rrn2
is the product measure µ = ν ⊗ ν ⊗ · · · ⊗ ν (rn2 terms), where

ν is the Gaussian distribution with mean 0 and variance 1
n
.

In the following, we consider a given family a0, . . . , ar of matrices in Mm(C)sa, and, for

each n in N, a family X
(n)
1 , . . . , X

(n)
r of independent random matrices in SGRM(n, 1

n
).

Furthermore, we consider the following random variable with values in Mm(C)⊗Mn(C):

Sn = a0 ⊗ 111n +
r∑
i=1

ai ⊗X(n)
i . (3.2)

3.5 Lemma. For each n in N, let Sn be as above. For any matrix λ in Mm(C), for
which Imλ is positive definite, we define a random variable with values in Mm(C) by (cf.
Lemma 3.1),

Hn(λ) = (idm ⊗ trn)
[
(λ⊗ 111n − Sn)−1

]
.

Then, for any j in {1, 2, . . . , r}, we have

E
{
Hn(λ)ajHn(λ)

}
= E

{
(idm ⊗ trn)

[
(111m ⊗X(n)

j ) · (λ⊗ 111n − Sn)−1
]}
.

Proof. Let λ be a fixed matrix in Mm(C), such that Imλ is positive definite. Consider the
canonical isomorphism Ψ: Er,n → Rrn2

, introduced in Remark 3.4, and then define the
mappings F̃ : Er,n →Mm(C)⊗Mn(C) and F : Rrn2 →Mm(C)⊗Mn(C) by (cf. Lemma 3.1)

F̃ (v1, . . . , vr) =
(
λ⊗ 111n − a0 ⊗ 111n −

∑r
i=1 ai ⊗ vi

)−1
, (v1, . . . , vr ∈Mn(C)sa),

and
F = F̃ ◦Ψ−1.

Note then that (
λ⊗ 111n − Sn

)−1
= F (Ψ(X

(n)
1 , . . . , X(n)

r )),
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where Y = Ψ(X
(n)
1 , . . . , X

(n)
r ) is a random variable taking values in Rrn2

, and the distri-
bution of Y equals that of a tuple (γ1, . . . , γrn2) of rn2 independent identically N(0, 1

n
)-

distributed real-valued random variables.

Now, let j in {1, 2, . . . , r} be fixed, and then define

X
(n)
j,k,k = (X

(n)
j )kk, (1 ≤ k ≤ n),

Y
(n)
j,k,l =

√
2Re(X

(n)
j )k,l, (1 ≤ k < l ≤ n),

Z
(n)
j,k,l =

√
2Im(X

(n)
j )k,l, (1 ≤ k < l ≤ n).

Note that
(
(X

(n)
j,k,k)1≤k≤n, (Y

(n)
j,k,l)1≤k<l≤n, (Z

(n)
j,k,l)1≤k<l≤n

)
= Ψ0(X

(n)
j ), where Ψ0 is the map-

ping defined in (3.1) of Remark 3.4. Note also that the standard orthonormal basis for
Rn2

corresponds, via Ψ0, to the following orthonormal basis for Mn(C)sa:

e
(n)
k,k, (1 ≤ k ≤ n)

f
(n)
k,l = 1√

2

(
e

(n)
k,l + e

(n)
l,k

)
(1 ≤ k < l ≤ n),

g
(n)
k,l = i√

2

(
e

(n)
k,l − e

(n)
l,k

)
(1 ≤ k < l ≤ n).

(3.3)

In other words,
(
(X

(n)
j,k,k)1≤k≤n, (Y

(n)
j,k,l)1≤k<l≤n, (Z

(n)
j,k,l)1≤k<l≤n

)
are the coefficients of X

(n)
j

w.r.t. the orthonormal basis set out in (3.3).

Combining now the above observations with Lemma 3.3, it follows that

1

n
E
{ d

dt
∣∣

t=0

(
λ⊗ 111n − Sn − taj ⊗ e(n)

k,k

)−1
}

= E
{
X

(n)
j,k,k ·

(
λ⊗ 111n − Sn

)−1}
,

1

n
E
{ d

dt
∣∣

t=0

(
λ⊗ 111n − Sn − taj ⊗ f (n)

k,l

)−1
}

= E
{
Y

(n)
j,k,l ·

(
λ⊗ 111n − Sn

)−1}
,

1

n
E
{ d

dt
∣∣

t=0

(
λ⊗ 111n − Sn − taj ⊗ g(n)

k,l

)−1
}

= E
{
Z

(n)
j,k,l ·

(
λ⊗ 111n − Sn

)−1}
,

for all values of k, l in {1, 2, . . . , n} such that k < l. On the other hand, it follows from
Lemma 3.2 that for any vector v in Mn(C)sa,

d

dt
∣∣

t=0

(
λ⊗ 111n − Sn − taj ⊗ v

)−1
= (λ⊗ 111n − Sn)−1(aj ⊗ v)(λ⊗ 111n − Sn)−1,

and we obtain thus the identities:

E
{
X

(n)
j,k,k ·

(
λ⊗ 111n − Sn

)−1}
= 1

n
E
{

(λ⊗ 111n − Sn)−1(aj ⊗ e(n)
k,k)(λ⊗ 111n − Sn)−1

}
(3.4)

E
{
Y

(n)
j,k,l ·

(
λ⊗ 111n − Sn

)−1}
= 1

n
E
{

(λ⊗ 111n − Sn)−1(aj ⊗ f (n)
k,l )(λ⊗ 111n − Sn)−1

}
(3.5)

E
{
Z

(n)
j,k,l ·

(
λ⊗ 111n − Sn

)−1}
= 1

n
E
{

(λ⊗ 111n − Sn)−1(aj ⊗ g(n)
k,l )(λ⊗ 111n − Sn)−1

}
(3.6)

17



for all relevant values of k, l, k < l. Note next that for k < l, we have

(X
(n)
j )k,l = 1√

2

(
Y

(n)
j,k,l + iZ

(n)
j,k,l

)
,

(X
(n)
j )l,k = 1√

2

(
Y

(n)
j,k,l − iZ

(n)
j,k,l

)
,

e
(n)
k,l = 1√

2

(
f

(n)
k,l − ig

(n)
k,l

)
,

e
(n)
l,k = 1√

2

(
f

(n)
k,l + ig

(n)
k,l

)
,

and combining this with (3.5)-(3.6), it follows that

E
{

(X
(n)
j )k,l ·

(
λ⊗ 111n − Sn

)−1}
=

1

n
E
{

(λ⊗ 111n − Sn)−1(aj ⊗ e(n)
l,k )(λ⊗ 111n − Sn)−1

}
, (3.7)

and that

E
{

(X
(n)
j )l,k ·

(
λ⊗ 111n − Sn

)−1}
=

1

n
E
{

(λ⊗ 111n − Sn)−1(aj ⊗ e(n)
k,l )(λ⊗ 111n − Sn)−1

}
, (3.8)

for all k, l, k < l. Taking also (3.4) into account, it follows that (3.7) actually holds for
all k, l in {1, 2, . . . , n}. By adding the equation (3.7) for all values of k, l and by recalling
that

X
(n)
j =

∑
1≤k,l≤n

(X
(n)
j )k,le

(n)
k,l ,

we conclude that

E
{

(111m ⊗X(n)
j )(λ⊗ 111n − Sn)−1

}
=

1

n

∑
1≤k,l≤n

E
{

(111m ⊗ e(n)
k,l )(λ⊗ 111n − Sn)−1(aj ⊗ e(n)

l,k )(λ⊗ 111n − Sn)−1
}
.

(3.9)

To calculate the right hand side of (3.9), we write(
λ⊗ 111n − Sn

)−1
=

∑
1≤u,v≤n

Fu,v ⊗ eu,v,

where, for all u, v in {1, 2, . . . , n}, Fu,v : Ω→Mm(C) is an Mm(C)-valued random variable.
Recall then that for any k, l, u, v in {1, 2, . . . , n},

e
(n)
k,l · e

(n)
u,v =

{
ek,v, if l = u,

0, if l 6= u.

For any fixed u, v in {1, 2, . . . , n}, it follows thus that

∑
1≤k,l≤n

(111m ⊗ e(n)
k,l )(Fu,v ⊗ e

(n)
u,v)(aj ⊗ e

(n)
l,k ) =

{
(Fu,u · aj)⊗ 111n, if u = v,

0, if u 6= v.
(3.10)
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Adding the equation (3.10) for all values of u, v in {1, 2, . . . , n}, it follows that∑
1≤k,l≤n

(111m ⊗ e(n)
k,l )(λ⊗ 111n − Sn)−1(aj ⊗ e(n)

l,k ) =
(∑n

u=1 Fu,uaj
)
⊗ 111n.

Note here that
n∑
u=1

Fu,u = n · idm ⊗ trn
[
(λ⊗ 111n − Sn)−1

]
= n ·Hn(λ),

so that ∑
1≤k,l≤n

(111m ⊗ e(n)
k,l )(λ⊗ 111n − Sn)−1(aj ⊗ e(n)

l,k ) = nHn(λ)aj ⊗ 111n.

Combining this with (3.9), we find that

E
{

(111m ⊗X(n)
j )(λ⊗ 111n − Sn)−1

}
= E

{
(Hn(λ)aj ⊗ 111n)(λ⊗ 111n − Sn)−1

}
. (3.11)

Applying finally idm ⊗ trn to both sides of (3.11), we conclude that

E
{

idm ⊗ trn
[
(111m ⊗X(n)

j )(λ⊗ 111n − Sn)−1
]}

= E
{
Hn(λ)aj · idm ⊗ trn

[
(λ⊗ 111n − Sn)−1

]}
= E

{
Hn(λ)ajHn(λ)

}
,

which is the desired formula. �

3.6 Theorem. (Master equation) Let, for each n in N, Sn be the random matrix
introduced in (3.2), and let λ be a matrix in Mm(C) such that Im(λ) is positive definite.
Then with

Hn(λ) = (idm ⊗ trn)
[
(λ⊗ 111n − Sn)−1

]
(cf. Lemma 3.1), we have the formula

E
{ r∑

i=1

aiHn(λ)aiHn(λ) + (a0 − λ)Hn(λ) + 111m

}
= 0, (3.12)

as an Mm(C)-valued expectation.

Proof. By application of Lemma 3.5, we find that

E
{ r∑

j=1

ajHn(λ)ajHn(λ)
}

=
r∑
j=1

ajE
{
Hn(λ)ajHn(λ)

}
=

r∑
j=1

ajE
{

idm ⊗ trn
[
(111m ⊗X(n)

j )(λ⊗ 111n − Sn)−1
]}

=
r∑
j=1

E
{

idm ⊗ trn
[
(aj ⊗ 111n)(111m ⊗X(n)

j )(λ⊗ 111n − Sn)−1
]}

=
r∑
j=1

E
{

idm ⊗ trn
[
(aj ⊗X(n)

j )(λ⊗ 111n − Sn)−1
]}
.
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Moreover,

E{a0Hn(λ)} = E{a0(idm ⊗ trn)((λ⊗ 111n − Sn)−1)}
= E{(idm ⊗ trn)((a0 ⊗ 111n)(λ⊗ 111n − Sn)−1}.

Hence,

E
{
a0Hn(λ) +

r∑
i=1

ajHn(λ)ajHn(λ)
}

= E
{

idm ⊗ trn
[
Sn(λ⊗ 111n − Sn)−1

]}
= E

{
idm ⊗ trn

[(
λ⊗ 111n − (λ⊗ 111n − Sn)

)
(λ⊗ 111n − Sn)−1

]}
= E

{
idm ⊗ trn

[
(λ⊗ 111n)(λ⊗ 111n − Sn)−1 − 111m ⊗ 111n

]}
= E

{
λHn(λ)− 111m

}
,

from which (3.12) follows readily. �

4 Variance estimates.

Let K be a positive integer. Then we denote by ‖ · ‖ the usual Euclidean norm CK , i.e.,

‖(ζ1, . . . , ζK)‖ =
(
|ζ1|2 + · · ·+ |ζK |2

)1/2
, (ζ1, . . . , ζK ∈ C).

Furthermore, we denote by ‖ · ‖2,TrK
the Hilbert-Schmidt norm on MK(C), i.e.,

‖T‖2,TrK
=
(
TrK(T ∗T )

)1/2
, (T ∈MK(C)).

We shall also, occasionally, consider the norm ‖ · ‖2,trk
given by:

‖T‖2,trK
=
(
trK(T ∗T )

)1/2
= K−1/2‖T‖2,TrK

, (T ∈MK(C)).

4.1 Proposition. (Gaussian Poincar inequality) Let N be a positive integer and
equip RN with the probability measure µ = ν ⊗ ν ⊗ · · · ⊗ ν (N terms), where ν is the
Gaussian distribution on R with mean 0 and variance 1. Let f : RN → C be a C1-function,
such that E{|f |2} <∞. Then with V{f} = E{|f − E{f}|2}, we have

V{f} ≤ E
{
‖grad(f)‖2

}
.

Proof. See [Cn, Theorem 2.1]. �

The Gaussian Poincar inequality is a folklore result which goes back to the 30’s (cf. Beckner
[Be]). It was rediscovered by Chernoff [Cf] in 1981 in the case N = 1 and by Chen [Cn]
in 1982 for general N . The original proof as well as Chernoff’s proof is based on an
expansion of f in Hermite polynomials (or tensor products of Hermite polynomials in
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the case N ≥ 2). Chen gives in [Cn] a self-contained proof which does not rely on
Hermite polynomials. In a preliminary version of this paper, we proved the slightly
weaker inequality: V{f} ≤ π2

8
E{‖gradf‖2} using the method of proof of [P1, Lemma

4.7]. We wish to thank Gilles Pisier for bringing the papers by Bechner, Chernoff and
Chen to our attention.

4.2 Corollary. Let N ∈ N, and let Z1, . . . , ZN be N i.i.d. real Gaussian random variables
with mean zero and variance σ2 and let f : RN → C be a C1-function, such that f and
grad(f) are both polynomially bounded. Then

V
{
f(Z1, . . . , ZN)

}
≤ σ2E

{
‖(gradf)(Z1, . . . , ZN)‖2

}
.

Proof. In the case σ = 1, this is an immediate consequence of Proposition 4.1. In the
general case, put Yj = 1

σ
Zj, j = 1, . . . , N , and define g ∈ C1(RN) by

g(y) = f(σy), (y ∈ RN). (4.1)

Then
(gradg)(y) = σ(gradf)(σy), (y ∈ RN). (4.2)

Since Y1, . . . , YN are independent standard Gaussian distributed random variables, we
have from Proposition 4.1 that

V
{
g(Y1, . . . , YN)

}
≤ E

{
‖(gradg)(Y1, . . . , YN)‖2

}
. (4.3)

Since Zj = σYj, j = 1, . . . , N , it follows from (4.1), (4.2), and (4.3) that

V
{
f(Z1, . . . , ZN)

}
≤ σ2E

{
‖(gradf)(Z1, . . . , ZN)‖2

}
. �

4.3 Remark. Consider the canonical isomorphism Ψ: Er,n → Rrn2
introduced in Re-

mark 3.4. Consider further independent random matricesX
(n)
1 , . . . , X

(n)
r from SGRM(n, 1

n
).

Then X = (X
(n)
1 , . . . , X

(n)
r ) is a random variable taking values in Er,n, so that Y = Ψ(X)

is a random variable taking values in Rrn2
. As mentioned in Remark 3.4, it is easily seen

that the distribution of Y on Rrn2
is the product measure µ = ν⊗ν⊗· · ·⊗ν (rn2 terms),

where ν is the Gaussian distribution with mean 0 and variance 1
n
. Now, let f̃ : Rrn2 → C

be a C1-function, such that f̃ and gradf̃ are both polynomially bounded, and consider
further the C1-function f : Er,n → C given by f = f̃ ◦ Ψ. Since Ψ is a linear isometry
(i.e., an orthogonal transformation), it follows from Corollary 4.2 that

V
{
f(X)

}
≤ 1

n
E
{∥∥gradf(X)

∥∥2

e

}
. (4.4)

4.4 Lemma. Let m,n be positive integers, and assume that a1, . . . , ar ∈ Mm(C)sa and
w1, . . . , wr ∈Mn(C). Then∥∥∥ r∑

i=1

ai ⊗ wi
∥∥∥

2,Trm⊗Trn

≤ m1/2
∥∥∥ r∑
i=1

a2
i

∥∥∥1/2( r∑
i=1

‖wi‖2
2,Trn

)1/2
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Proof. We find that∥∥∑r
i=1 ai ⊗ wi

∥∥
2,Trm⊗Trn

≤
∑r

i=1 ‖ai ⊗ wi‖2,Trm⊗Trn

=
∑r

i=1 ‖ai‖2,Trm · ‖wi‖2,Trn

≤
(∑r

i=1 ‖ai‖2
2,Trm

)1/2(∑r
i=1 ‖wi‖2

2,Trn

)1/2

=
(
Trm

(∑r
i=1 a

2
i

))1/2 ·
(∑r

i=1 ‖wi‖2
2,Trn

)1/2

≤ m1/2
∥∥∑r

i=1 a
2
i

∥∥1/2 ·
(∑r

i=1 ‖wi‖2
2,Trn

)1/2
. �

Note, in particular, that if w1, . . . , wr ∈Mn(C)sa, then Lemma 4.4 provides the estimate:∥∥∑r
i=1 ai ⊗ wi

∥∥
2,Trm⊗Trn

≤ m1/2
(∑r

i=1‖ai‖2
)1/2 ·

∥∥(w1, . . . , wr)
∥∥
e
.

4.5 Theorem. (Master inequality) Let λ be a matrix in Mm(C) such that Im(λ) is
positive definite. Consider further the random matrix Hn(λ) introduced in Theorem 3.6
and put

Gn(λ) = E
{
Hn(λ)

}
∈Mm(C).

Then ∥∥∥ r∑
i=1

aiGn(λ)aiGn(λ) + (a0 − λ)Gn(λ) + 111m

∥∥∥ ≤ C

n2

∥∥(Im(λ))−1
∥∥4
,

where C = m3‖
∑r

i=1 a
2
i ‖2.

Proof. We put
Kn(λ) = Hn(λ)−Gn(λ) = Hn(λ)− E

{
Hn(λ)

}
.

Then, by Theorem 3.6, we have

E
{ r∑

i=1

aiKn(λ)aiKn(λ)
}

= E
{ r∑

i=1

ai
(
Hn(λ)−Gn(λ)

)
ai
(
Hn(λ)−Gn(λ)

)}

= E
{ r∑

i=1

aiHn(λ)aiHn(λ)
}
−

r∑
i=1

aiGn(λ)aiGn(λ)

=
(
− (a0 − λ)E

{
Hn(λ)

}
− 111m

)
−

r∑
i=1

aiGn(λ)aiGn(λ)

= −
( r∑
i=1

aiGn(λ)aiGn(λ) + (a0 − λ)Gn(λ) + 111m

)
.
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Hence, we can make the following estimates∥∥∥ r∑
i=1

aiGn(λ)aiGn(λ) + (a0 − λ)Gn(λ) + 111m

∥∥∥ =
∥∥∥E{ r∑

i=1

aiKn(λ)aiKn(λ)
}∥∥∥

≤ E
{∥∥∥ r∑

i=1

aiKn(λ)aiKn(λ)
∥∥∥}

≤ E
{∥∥∥ r∑

i=1

aiKn(λ)ai

∥∥∥ · ∥∥Kn(λ)
∥∥}.

Note here that since a1, . . . , ar are self-adjoint, the mapping v 7→
∑r

i=1 aivai : Mm(C) →
Mm(C) is completely positive. Therefore, it attains its norm at the unit 111m, and the norm
is ‖

∑r
i=1 a

2
i ‖. Using this in the estimates above, we find that∥∥∥ r∑

i=1

aiGn(λ)aiGn(λ) + (a0 − λ)Gn(λ) + 111m

∥∥∥ ≤ ∥∥∥ r∑
i=1

a2
i

∥∥∥ · E{∥∥Kn(λ)
∥∥2
}

≤
∥∥∥ r∑
i=1

a2
i

∥∥∥ · E{∥∥Kn(λ)
∥∥2

2,Trm

}
,

(4.5)

where the last inequality uses that the operator norm of a matrix is always dominated
by the Hilbert-Schmidt norm. It remains to estimate E{‖Kn(λ)‖2

2,Trm
}. For this, let

Hn,j,k(λ), (1 ≤ j, k ≤ n) denote the entries of Hn(λ), i.e.,

Hn(λ) =
m∑

j,k=1

Hn,j,k(λ)e(m, j, k), (4.6)

where e(m, j, k), (1 ≤ j, k ≤ m) are the usual m×m matrix units. Let, correspondingly,
Kn,j,k(λ) denote the entries of Kn(λ). Then Kn,j,k(λ) = Hn,j,k(λ) − E{Hn,j,k(λ)}, for all
j, k, so that V{Hn,j,k(λ)} = E{|Kn,j,k(λ)|2}. It follows thus that

E
{∥∥Kn(λ)

∥∥2

2,Trm

}
= E

{ m∑
j,k=1

|Kn,j,k(λ)|2
}

=
m∑

j,k=1

V
{
Hn,j,k(λ)

}
. (4.7)

Note further that by (4.6)

Hn,j,k(λ) = Trm
(
e(m, k, j)Hn(λ)

)
= m · trm

(
e(m, k, j) · (idm ⊗ trn)

[
(λ⊗ 111n − Sn)−1

])
= m · trm ⊗ trn

[
(e(m, j, k)⊗ 111n)(λ⊗ 111n − Sn)−1

]
.

For any j, k in {1, 2, . . . ,m}, consider next the mapping fn,j,k : Er,n → C given by:

fn,j,k(v1, . . . , vr) = m · (trm ⊗ trn)
[
(e(m, k, j)⊗ 111n)(λ⊗ 111n − a0 ⊗ 111n −

∑r
i=1 ai ⊗ vi)−1

]
,

23



for all v1, . . . , vr in Mn(C)sa. Note then that

Hn,j,k(λ) = fn,j,k(X
(n)
1 , . . . , X(n)

r ),

for all j, k. Using now the “concentration estimate” (4.4) in Remark 4.3, it follows that
for all j, k,

V
{
Hn,j,k(λ)

}
≤ 1

n
E
{∥∥gradfn,j,k(X

(n)
1 , . . . , X(n)

r )
∥∥2

e

}
. (4.8)

For fixed j, k in {1, 2, . . . ,m} and v = (v1, . . . , vr) in Er,n, note that gradfn,j,k(v) is the
vector in Er,n, characterized by the property that〈

gradfn,j,k(v), w
〉
e

=
d

dt
∣∣

t=0

fn,j,k(v + tw),

for any vector w = (w1, . . . , wr) in Er,n. It follows thus that∥∥gradfn,j,k(v)
∥∥2

e
= max

w∈S1(Er,n)

∣∣〈gradfn,j,k(v), w
〉
e

∣∣2 = max
w∈S1(Er,n)

∣∣∣ d

dt
∣∣

t=0

fn,j,k(v+tw)
∣∣∣2. (4.9)

Let v = (v1, . . . , vn) be a fixed vector in Er,n, and put Σ = a0 ⊗ 111n +
∑r

i=1 ai ⊗ vi. Let
further w = (w1, . . . , wn) be a fixed vector in S1(Er,n). It follows then by Lemma 3.2 that

d

dt
∣∣

t=0

fn,j,k(v + tw)

=
d

dt
∣∣

t=0

m · (trm ⊗ trn)
[
(e(m, k, j)⊗ 111n)

(
λ⊗ 111n − a0 ⊗ 111n −

∑r
i=1 ai ⊗ (vi + twi)

)−1]
= m · (trm ⊗ trn)

[
(e(m, k, j)⊗ 111n)

d

dt
∣∣

t=0

(
λ⊗ 111n − a0 ⊗ 111n −

∑r
i=1 ai ⊗ (vi + twi)

)−1
]

= m · (trm ⊗ trn)
[
(e(m, k, j)⊗ 111n)

(
λ⊗ 111n − Σ

)−1(∑r
i=1 ai ⊗ wi

)(
λ⊗ 111n − Σ

)−1]
.

(4.10)

Using next the Cauchy-Schwartz inequality for Trn ⊗ Trm, we find that

m2
∣∣(trm ⊗ trn)

[
e(m, k, j)⊗ 111n ·

(
λ⊗ 111n − Σ

)−1(∑r
i=1 ai ⊗ wi

)(
λ⊗ 111n − Σ

)−1]∣∣2
=

1

n2

∣∣(Trm ⊗ Trn)
[
e(m, k, j)⊗ 111n ·

(
λ⊗ 111n − Σ

)−1(∑r
i=1 ai ⊗ wi

)(
λ⊗ 111n − Σ

)−1]∣∣2
≤ 1

n2

∥∥e(m, j, k)⊗ 111n
∥∥2

2,Trm⊗Trn
·
∥∥(λ⊗ 111n − Σ

)−1(∑r
i=1 ai ⊗ wi

)(
λ⊗ 111n − Σ

)−1∥∥2

2,Trm⊗Trn

=
1

n

∥∥(λ⊗ 111n − Σ
)−1(∑r

i=1 ai ⊗ wi
)(
λ⊗ 111n − Σ

)−1∥∥2

2,Trm⊗Trn
.

(4.11)

Note here that∥∥(λ⊗ 111n − Σ
)−1(∑r

i=1 ai ⊗ wi
)(
λ⊗ 111n − Σ

)−1∥∥2

2,Trm⊗Trn

≤
∥∥(λ⊗ 111n − Σ

)−1∥∥2 ·
∥∥∑r

i=1 ai ⊗ wi
∥∥2

2,Trm⊗Trn
·
∥∥(λ⊗ 111n − Σ

)−1∥∥2

≤
∥∥∑r

i=1 ai ⊗ wi
∥∥2

2,Trm⊗Trn
·
∥∥(Im(λ)

)−1∥∥4
,
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where the last inequality uses Lemma 3.1 and the fact that Σ is self-adjoint:∥∥(λ⊗ 111n − Σ
)−1∥∥ ≤ ∥∥(Im(λ⊗ 111n − Σ

)−1∥∥ =
∥∥(Im(λ⊗ 111n)

)−1∥∥ =
∥∥(Im(λ)

)−1∥∥.
Note further that by Lemma 4.4, ‖

∑r
i=1 ai ⊗ wi‖2,Trm⊗Trn ≤ m1/2

∥∥∑r
i=1 a

2
i

∥∥1/2
, since

w = (w1, . . . , wr) ∈ S1(Er,n). We conclude thus that∥∥(λ⊗ 111n − Σ
)−1(∑r

i=1 ai ⊗ wi
)(
λ⊗ 111n − Σ

)−1∥∥2

2,Trm⊗Trn
≤ m

∥∥∑r
i=1 a

2
i

∥∥ · ∥∥(Im(λ)
)−1∥∥4

.

(4.12)

Combining now formulas (4.10)-(4.12), it follows that for any j, k in {1, 2, . . . ,m}, any
vector v = (v1, . . . , vr) in Er,n and any unit vector w = (w1, . . . , wr) in Er,n, we have that∣∣∣ d

dt
∣∣

t=0

fn,j,k(v + tw)
∣∣∣2 ≤ m

n

∥∥∑r
i=1 a

2
i

∥∥ · ∥∥(Im(λ)
)−1∥∥4

,

and hence, by (4.9), ∥∥gradfn,j,k(v)
∥∥2

e
≤ m

n

∥∥∑r
i=1 a

2
i

∥∥ · ∥∥(Im(λ)
)−1∥∥4

.

Note that this estimate holds at any point v = (v1, . . . , vr) in Er,n. Using this in conjunc-
tion with (4.8), we may thus conclude that

V
{
Hn,j,k(λ)

}
≤ m

n2

∥∥∑r
i=1 a

2
i

∥∥ · ∥∥(Im(λ)
)−1∥∥4

,

for any j, k in {1, 2 . . . ,m}, and hence, by (4.7),

E
{∥∥Kn(λ)

∥∥2

2,Trm

}
≤ m3

n2

∥∥∑r
i=1 a

2
i

∥∥ · ∥∥(Im(λ)
)−1∥∥4

. (4.13)

Inserting finally (4.13) into (4.5), we find that∥∥∥ r∑
i=1

aiGn(λ)aiGn(λ) + (a0 − λ)Gn(λ) + 111m

∥∥∥ ≤ m3

n2

∥∥∑r
i=1 a

2
i

∥∥2 ·
∥∥(Im(λ)

)−1∥∥4
,

and this is the desired estimate �

4.6 Lemma. Let N be a positive integer, let I be an open interval in R, and let t 7→
a(t) : I → MN(C)sa be a C1-function. Consider further a function ϕ in C1(R). Then the
function t 7→ trN [ϕ(a(t))] is C1-function on I, and

d

dt
trN
[
ϕ(a(t))

]
= trN

[
ϕ′(a(t)) · a′(t)

]
.

Proof. This is well known. For the reader’s convenience we include a proof: Note first
that for any k in N,

d

dt

(
a(t)k

)
=

k−1∑
j=0

a(t)ja′(t)a(t)k−j−1.
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Hence, by the trace property trN(xy) = trN(yx), we get

d

dt
(trN(a(t)k) = trN(ka(t)k−1a′(t)).

Therefore
d

dt
trN(p(a(t))) = trN(p′(a(t))a′(t))

for all polynomials p ∈ C[X]. The general case ϕ ∈ C1(I) follows easily from this by
choosing a sequence of polynomials pn ∈ C[X], such that pn → ϕ and p′n → ϕ′ uniformly
on compact subsets of I, as n→∞. �

4.7 Proposition. Let a0, a1, . . . , ar be matrices in Mm(C)sa and put as in (3.1)

Sn = a0 ⊗ 111n +
r∑
i=1

ai ⊗X(n)
i .

Let further ϕ : R→ C be a C1-function with compact support, and consider the random
matrices ϕ(Sn) and ϕ′(Sn) obtained by applying the spectral mapping associated to the
self-adjoint (random) matrix Sn. We then have:

V
{

(trm ⊗ trn)[ϕ(Sn)
]}
≤ 1

n2

∥∥∥ r∑
i=1

a2
i

∥∥∥2

E
{

(trm ⊗ trn)
[
|ϕ′|2(Sn)

]}
.

Proof. Consider the mappings g : Er,n →Mnm(C)sa and f : Er,n → C given by

g(v1, . . . , vr) = a0 ⊗ 111n +
r∑
i=1

ai ⊗ vi, (v1, . . . , vr ∈Mn(C)sa),

and

f(v1, . . . , vr) = (trm ⊗ trn)
[
ϕ(g(v1, . . . , vr))

]
, (v1, . . . , vr ∈Mm(C)sa),

Note then that Sn = g(X
(n)
1 , . . . , X

(n)
r ) and that (trm ⊗ trn)[ϕ(Sn)] = f(X

(n)
1 , . . . , X

(n)
r ).

Note also that f is a bounded function on Mn(C)sa, and, by Lemma 4.6, it has bounded
continuous partial derivatives. Hence, we obtain from (4.4) in Remark 4.3 that

V
{

(trm ⊗ trn)[ϕ(Sn)]
}
≤ 1

n
E
{∥∥gradf(X

(n)
1 , . . . , X(n)

r )
∥∥2

e

}
. (4.14)

Recall next that for any v in Er,n, gradf(v) is the vector in Er,n, characterized by the
property that 〈

gradf(v), w
〉
e

=
d

dt
∣∣

t=0

f(v + tw),

for any vector w = (w1, . . . , wr) in Er,n. It follows thus that∥∥gradf(v)
∥∥2

e
= max

w∈S1(Er,n)

∣∣〈gradf(v), w
〉
e

∣∣2 = max
w∈S1(Er,n)

∣∣∣ d

dt
∣∣

t=0

f(v + tw)
∣∣∣2, (4.15)
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at any point v = (v1, . . . , vr) of Er,n. Now, let v = (v1, . . . , vr) be a fixed point in Er,n and
let w = (w1, . . . , wr) be a fixed point in S1(Er,n). By Lemma 4.6, we have then that

d

dt
∣∣

t=0

f(v + tw) =
d

dt
∣∣

t=0

(trm ⊗ trn)
[
ϕ(g(v + tw))

]
= (trm ⊗ trn)

[
ϕ′(g(v)) · d

dt
∣∣

t=0

g(v + tw)
]

= (trm ⊗ trn)
[
ϕ′(g(v)) ·

∑r
i=1 ai ⊗ wi

]
.

Using then the Cauchy-Schwartz inequality for Trm ⊗ Trn, we find that∣∣∣ d

dt
∣∣

t=0

f(v + tw)
∣∣∣2 =

1

m2n2

∣∣∣(Trm ⊗ Trn)
[
ϕ′(g(v)) ·

∑r
i=1 ai ⊗ wi

]∣∣∣2
=

1

n2m2

∥∥ϕ′(g(v))
∥∥2

2,Trm⊗Trn
·
∥∥∑r

i=1 ai ⊗ wi
∥∥2

2,Trm⊗Trn
.

Note here that∥∥ϕ′(g(v))
∥∥2

2,Trm⊗Trn
= Trm ⊗ Trn

[
|ϕ′|2(g(v))

]
= mn · trm ⊗ trn

[
|ϕ′|2(g(v))

]
,

and that, by Lemma 4.4,∥∥∑r
i=1 ai ⊗ wi

∥∥2

2,Trm⊗Trn
≤ m

∥∥∑r
i=1a

2
i

∥∥,
since w is a unit vector w.r.t. ‖ · ‖e. We find thus that∣∣∣ d

dt
∣∣

t=0

f(v + tw)
∣∣∣2 ≤ 1

n

∥∥∑r
i=1a

2
i

∥∥trm ⊗ trn
[
|ϕ′|2(g(v))

]
.

Since this estimate holds for any unit vector w in Er,n, we conclude, using (4.15), that∥∥gradf(v)
∥∥2

e
≤ 1

n

∥∥∑r
i=1a

2
i

∥∥trm ⊗ trn
[
|ϕ′|2(g(v))

]
,

for any point v in Er,n. Combining this with (4.14), we obtain the desired estimate. �

5 Estimation of ‖Gn(λ)−G(λ)‖.

5.1 Lemma. For each n in N, let Xn be a random matrix in SGRM(n, 1
n
). Then

E
{
‖Xn‖

}
≤ 2 + 2

√
log(2n)

2n
, (n ∈ N). (5.1)

In particular, it follows that
E
{
‖Xn‖

}
≤ 4, (5.2)

for all n in N.
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Proof. In [HT1, Proof of Lemma 3.3] it was proved that for any n in N and any positive
number t, we have

E
{

Trn(exp(tXn))
}
≤ n exp

(
2t+ t2

2n

)
. (5.3)

Let λmax(Xn) and λmin(Xn) denote the largest and smallest eigenvalue of Xn as functions
of ω ∈ Ω. Then

exp(t‖Xn‖) = max{exp(tλmax(Xn)), exp(−tλmin(Xn))}

≤ exp(tλmax(Xn)) + exp(−tλmin(Xn)) ≤ Trn
(

exp(tXn) + exp(−tXn)
)
.

Using this in connection with Jensen’s inequality, we find that

exp
(
tE{‖Xn‖}

)
≤ E

{
exp(t‖Xn‖)

}
≤ E

{
Trn(exp(tXn))

}
+ E

{
Trn(exp(−tXn))

}
= 2E

{
Trn(exp(tXn))

}
,

(5.4)

where the last equality is due to the fact that −Xn ∈ SGRM(n, 1
n
) too. Combining (5.3)

and (5.4) we obtain the estimate

exp
(
tE{‖Xn‖}

)
≤ 2n exp

(
2t+ t2

2n

)
,

and hence, after taking logarithms and dividing by t,

E{‖Xn‖} ≤
log(2n)

t
+ 2 +

t

2n
. (5.5)

This estimate holds for all positive numbers t. As a function of t, the right hand side
of (5.5) attains its minimal value at t0 =

√
2n log(2n) and the minimal value is 2 +

2
√

log(2n)/2n. Combining this with (5.5) we obtain (5.1). The estimate (5.2) follows
subsequently by noting that the function t 7→ log(t)/t (t > 0) attains its maximal value
at t = e, and thus 2 + 2

√
log(t)/t ≤ 2 + 2

√
1/e ≈ 3.21 for all positive numbers t. �

In the following we consider a fixed positive integer m and fixed self-adjoint matrices
a0, . . . , ar in Mm(C)sa. We consider further, for each positive integer n, independent

random matrices X
(n)
1 , . . . , X

(n)
r in SGRM(n, 1

n
). As in sections 3 and 4, we define

Sn = a0 +
r∑
i=1

ai ⊗X(n)
i .

and, for any matrix λ in Mm(C) such that Im(λ) is positive definite, we put

Hn(λ) = (idm ⊗ trn)
[
(λ⊗ 111n − Sn)−1

]
,

and
Gn(λ) = E{Hn(λ)}.

5.2 Proposition. Let λ be a matrix in Mm(C) such that Im(λ) is positive definite. Then
Gn(λ) is invertible and ∥∥Gn(λ)−1

∥∥ ≤ (‖λ‖+K
)2∥∥(Imλ)−1

∥∥,
where K = ‖a0‖+ 4

∑r
i=1 ‖ai‖.
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Proof. We note first that

Im
(
(λ⊗ 111n − Sn)−1

)
=

1

2i

(
(λ⊗ 111n − Sn)−1 − (λ∗ ⊗ 111n − Sn)−1

)
=

1

2i

(
(λ⊗ 111n − Sn)−1

(
(λ∗ ⊗ 111n − Sn)− (λ⊗ 111n − Sn)

)
(λ∗ ⊗ 111n − Sn)−1

)
= −(λ⊗ 111n − Sn)−1(Im(λ)⊗ 111n)(λ∗ ⊗ 111n − Sn)−1.

From this it follows that −Im((λ⊗111n−Sn)−1) is positive definite at any ω in Ω, and the
inverse is given by(

− Im((λ⊗ 111n − Sn)−1)
)−1

= (λ∗ ⊗ 111n − Sn)((Imλ)−1 ⊗ 111n)(λ⊗ 111n − Sn).

In particular, it follows that

0 ≤
(
− Im((λ⊗ 111n − Sn)−1)

)−1 ≤
∥∥λ⊗ 111n − Sn

∥∥2∥∥(Imλ)−1
∥∥ · 111m ⊗ 111n,

and this implies that

−Im
(
(λ⊗ 111n − Sn)−1

)
≥ 1

‖λ⊗ 111n − Sn‖2‖(Imλ)−1‖
· 111m ⊗ 111n.

Since the slice map idm ⊗ trn is positive, we have thus established that

−ImHn(λ) ≥ 1

‖λ⊗ 111n − Sn‖2‖(Imλ)−1‖
· 111m ≥

1

(‖λ‖+ ‖Sn‖)2‖(Imλ)−1‖
· 111m,

so that

−ImGn(λ) = E{−ImHn(λ)} ≥ 1

‖(Imλ)−1‖
E
{ 1

(‖λ‖+ ‖Sn‖)2

}
111m.

Note here that the function t 7→ 1
(‖λ‖+t)2 is convex, so applying Jensen’s inequality to the

random variable ‖Sn‖, yields the estimate

E
{ 1

(‖λ‖+ ‖Sn‖)2

}
≥ 1

(‖λ‖+ E{‖Sn‖})2
,

where

E{‖Sn‖} ≤ E
{
‖a0‖+

r∑
i=1

‖ai‖·‖X(n)
i ‖

}
= ‖a0‖+

r∑
i=1

‖ai‖·E
{
‖X(n)

i ‖
}
≤ ‖a0‖+4

r∑
i=1

‖ai‖,

by application of Lemma 5.1. Putting K = 4
∑r

i=1 ‖ai‖, we may thus conclude that

−ImGn(λ) ≥ 1

‖(Imλ)−1‖
1

(‖λ‖+K)2
111m.

By Lemma 3.1, this implies that Gn(λ) is invertible and that∥∥Gn(λ)−1
∥∥ ≤ (‖λ‖+K)2 ·

∥∥(Imλ)−1
∥∥,

as desired. �
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5.3 Corollary. Let λ be a matrix in Mm(C) such that Imλ is positive definite. Then∥∥∥a0 +
r∑
i=1

aiGn(λ)ai +Gn(λ)−1 − λ
∥∥∥ ≤ C

n2
(K + ‖λ‖)2

∥∥(Imλ)−1
∥∥5
, (5.6)

where, as before, C = m3‖
∑r

i=1 a
2
i ‖2 and K = ‖a0‖+ 4

∑r
i=1 ‖ai‖.

Proof. Note that

a0 +
r∑
i=1

aiGn(λ)ai +Gn(λ)−1−λ =
( r∑
i=1

aiGn(λ)aiGn(λ) + (a0−λ)Gn(λ) +111m

)
Gn(λ)−1.

Hence, (5.6) follows by combining Theorem 4.5 with Proposition 5.2. �

In addition to the given matrices a0, . . . , ar in Mm(C)sa, we consider next, as replace-

ment for the random matrices X
(n)
1 , . . . , X

(n)
r , free self-adjoint operators x1, . . . , xr in some

C∗-probability space (B, τ). We assume that x1, . . . , xr are identically semi-circular dis-
tributed, such that τ(xi) = 0 and τ(x2

i ) = 1 for all i. Then put

s = a0 ⊗ 111B +
r∑
i=1

ai ⊗ xi ∈Mm(C)⊗B. (5.7)

Consider further the subset O of Mm(C), given by

O = {λ ∈Mm(C) | Im(λ) is positive definite} = {λ ∈Mm(C) | λmin(Imλ) > 0} (5.8)

and for each positive number δ, put

Oδ = {λ ∈ O | ‖(Imλ)−1‖ < δ} = {λ ∈ O | λmin(Imλ) > δ−1}. (5.9)

Note that O and Oδ are open subsets of Mm(C).

If λ ∈ O, then it follows from Lemma 3.1 that λ⊗111B−s is invertible, since s is self-adjoint.
Hence, for each λ in O, we may define

G(λ) = idm ⊗ τ
[
(λ⊗ 111B − s)−1

]
.

As in the proof of Lemma 5.2, it follows that G(λ) is invertible for any λ in O. Indeed,
for λ in O, we have

Im
(
(λ⊗ 111B − s)−1

)
=

1

2i

(
(λ⊗ 111B − s)−1

(
(λ∗ ⊗ 111B − s)− (λ⊗ 111B − s)

)
(λ∗ ⊗ 111B − s)−1

)
= −(λ⊗ 111B − s)−1(Im(λ)⊗ 111B)(λ∗ ⊗ 111B − s)−1,

which shows that −Im((λ⊗ 111B − s)−1) is positive definite and that

0 ≤
(
− Im((λ⊗ 111B − s)−1)

)−1
= (λ∗ ⊗ 111B − s)((Imλ)−1 ⊗ 111B)(λ⊗ 111B − s)

≤
∥∥λ⊗ 111B − s

∥∥2∥∥(Imλ)−1
∥∥ · 111m ⊗ 111B.
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Consequently,

−Im
(
(λ⊗ 111B − s)−1

)
≥ 1

‖λ⊗ 111B − s‖2‖(Imλ)−1‖
· 111m ⊗ 111B,

so that

−ImG(λ) ≥ 1

‖λ⊗ 111B − s‖2‖(Imλ)−1‖
· 111m.

By Lemma 3.1, this implies that G(λ) is invertible and that∥∥G(λ)−1
∥∥ ≤ ∥∥(λ⊗ 111B − s)

∥∥2∥∥(Imλ)−1
∥∥.

The following lemma shows that the estimate (5.6) in Corollary 5.3 becomes an exact
equation, when Gn(λ) is replaced by G(λ).

5.4 Lemma. With O and G(λ) defined as above, we have that

a0 +
r∑
i=1

aiG(λ)ai +G(λ)−1 = λ,

for all λ in O.

Proof. We start by recalling the definition of the R-transform Rs of (the distribution of)
s with amalgamation over Mm(C): It can be shown (cf. [V7]) that the expression

G(λ) = idm ⊗ τ
[
(λ⊗ 111B − s)−1

]
,

gives rise to a well-defined and bijective mapping on a region of the form

Uδ =
{
λ ∈Mm(C) | λ is invertible and ‖λ−1‖ < δ

}
,

where δ is a (suitably small) positive number. Denoting by G〈−1〉 the inverse of the
mapping λ 7→ G(λ) (λ ∈ Uδ), the R-transform Rs of s with amalgamation over Mm(C) is
defined as

Rs(ρ) = G〈−1〉(ρ)− ρ−1, (ρ ∈ G(Uδ)).

In [Le] it was proved that

Rs(ρ) = a0 +
r∑
i=1

aiρai,

so that

G〈−1〉(ρ) = a0 +
r∑
i=1

aiρai + ρ−1, (ρ ∈ G(Uδ)),

and hence

a0 +
r∑
i=1

aiG(λ)ai +G(λ)−1 = λ, (λ ∈ Uδ). (5.10)
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Note now that by Lemma 3.1, the set Oδ, defined in (5.9), is a subset of Uδ, and hence
(5.10) holds, in particular, for λ in Oδ. Since Oδ is an open, non-empty subset of O

(defined in (5.8)) and since O is a non-empty connected (even convex) subset of Mm(C),
it follows then from the principle of uniqueness of analytic continuation (for analytical
functions in m2 complex variables) that formula (5.10) actually holds for all λ in O, as
desired. �

For n in N and λ in the set O (defined in (5.8)), we introduce further the following
notation:

Λn(λ) = a0 +
r∑
i=1

aiGn(λ)ai +Gn(λ)−1, (5.11)

ε(λ) =
1

‖(Imλ)−1‖
= λmin(Imλ), (5.12)

O′n =
{
λ ∈ O

∣∣ C
n2 (K + ‖λ‖)2ε(λ)−6 < 1

2

}
, (5.13)

where, as before, C = π2

8
m3‖

∑r
i=1 a

2
i ‖2 and K = ‖a0‖+ 4

∑r
i=1 ‖ai‖. Note that O′n is an

open subset of Mm(C), since the mapping λ 7→ ε(λ) is continuous on O. With the above
notation we have the following

5.5 Lemma. For any positive integer n and any matrix λ in O′n we have

ImΛn(λ) ≥ ε(λ)

2
111m. (5.14)

In particular, Λn(λ) ∈ O. Moreover

a0 +
r∑
i=1

aiG(Λn(λ))ai +G(Λn(λ))−1 = a0 +
r∑
i=1

aiGn(λ)ai +Gn(λ)−1, (5.15)

for any λ in O′n.

Proof. Note that the right hand side of (5.15) is nothing else than Λn(λ). Therefore,
(5.15) follows from Lemma 5.4, once we have established that Λn(λ) ∈ O for all λ in O′n.
This, in turn, is an immediate consequence of (5.14). It suffices thus to verify (5.14).
Note first that for any λ in O, we have by Corollary 5.3 that

∥∥ImΛn(λ)− Imλ
∥∥ ≤ ∥∥Λn(λ)− λ

∥∥ =
∥∥∥a0 +

r∑
i=1

aiGn(λ)ai +Gn(λ)−1 − λ
∥∥∥

≤ C

n2
(K + ‖λ‖)2ε(λ)−5.

In particular, ImΛn(λ) − Imλ ≥ − C
n2 (K + ‖λ‖)2ε(λ)−5111m, and since also Imλ ≥ ε(λ)111m,

by definition of ε(λ), we conclude that

ImΛn(λ) = Imλ+ (ImΛn(λ)− Imλ) ≥
(
ε(λ)− C

n2 (K + ‖λ‖)2ε(λ)−5
)
111m, (5.16)
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for any λ in O. Assume now that λ ∈ O′n. Then C
n2 (K + ‖λ‖)2ε(λ)−5 < 1

2
ε(λ), and

inserting this in (5.16), we find that

ImΛn(λ) ≥ 1
2
ε(λ)111m,

as desired. �

5.6 Proposition. Let n be a positive integer. Then with G, Gn and O′n as defined above,
we have that

G(Λn(λ)) = Gn(λ),

for all λ in O′n.

Proof. Note first that the functions λ 7→ Gn(λ) and λ 7→ G(Λn(λ)) are both analytical
functions (of m2 complex variables) defined on O′n and taking values in Mm(C). Applying
the principle of uniqueness of analytic continuation, it suffices thus to prove the following
two assertions:

(a) The set O′n is an open connected subset of Mm(C).

(b) The formula G(Λn(λ)) = Gn(λ) holds for all λ in some open, non-empty subset O′′n
of O′n.

Proof of (a): We have already noted that O′n is open. Consider the subset In of R given
by:

In =
{
t ∈ ]0,∞[

∣∣ C
n2 (K + t)2t−6 < 1

2

}
,

with C and K as above. Note that since the function t 7→ (K+t)2t−6 (t > 0) is continuous
and strictly decreasing, In has the form: In = ]tn,∞[, where tn is uniquely determined by
the equation: C

n2 (K + t)2t−6 = 1
2
. Note further that for any t in In, it111m ∈ O′n, and hence

the set
In = {it111m | t ∈ In},

is an arc-wise connected subset of O′n. To prove (a), it suffices then to show that any λ in
O′n is connected to some point in In via a continuous curve γλ, which is entirely contained
in O′n. So let λ from O′n be given, and note that 0 ≤ ε(λ) = λmin(Imλ) ≤ ‖λ‖. Thus,

C

n2
(K + ε(λ))2ε(λ)−6 ≤ C

n2
(K + ‖λ‖)2ε(λ)−6 <

1

2
,

and therefore ε(λ) ∈ In and iε(λ)111m ∈ In. Now, let γλ : [0, 1] → Mm(C) be the straight
line from iε(λ)111m to λ, i.e.,

γλ(t) = (1− t)iε(λ)111m + tλ, (t ∈ [0, 1]).

We show that γλ(t) ∈ O′n for all t in [0, 1]. Note for this that

Imγλ(t) = (1− t)ε(λ)111m + tImλ, (t ∈ [0, 1]),
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so obviously γλ(t) ∈ O for all t in [0, 1]. Furthermore, if 0 ≤ r1 ≤ r2 ≤ · · · ≤ rm denote
the eigenvalues of Im(λ), then, for each t in [0, 1], (1 − t)ε(λ) + trj (j = 1, 2, . . . ,m) are
the eigenvalues of Imγλ(t). In particular, since r1 = ε(λ), ε(γλ(t)) = λmin(Imγλ(t)) = ε(λ)
for all t in [0, 1]. Note also that

‖γλ(t)‖ ≤ (1− t)ε(λ) + t‖λ‖ ≤ (1− t)‖λ‖+ t‖λ‖ = ‖λ‖,

for all t in [0, 1]. Altogether, we conclude that

C

n2
(K + ‖γλ(t)‖)2ε(γλ(t))

−6 ≤ C

n2
(K + ‖λ‖)2ε(λ)−6 <

1

2
,

and hence γλ(t) ∈ O′n for all t in [0, 1], as desired.

Proof of (b): Consider, for the moment, a fixed matrix λ from O′n, and put ζ = Gn(λ)
and υ = G(Λn(λ)). Then Lemma 5.5 asserts that

a0 +
r∑
i=1

aiυai + υ−1 = a0 +
r∑
i=1

aiζai + ζ−1,

so that

υ
( r∑
i=1

aiυai + υ−1
)
ζ = υ

( r∑
i=1

aiζai + ζ−1
)
ζ,

and hence
r∑
i=1

υai(υ − ζ)aiζ = υ − ζ.

In particular, it follows that(
‖υ‖‖ζ‖

r∑
i=1

‖ai‖2
)
‖υ − ζ‖ ≥ ‖υ − ζ‖. (5.17)

Note here that by Lemma 3.1,

‖ζ‖ = ‖Gn(λ)‖ =
∥∥idm ⊗ trn

[
(λ⊗ 111n − Sn)−1

]∥∥
≤
∥∥(λ⊗ 111n − Sn)−1

∥∥ ≤ ∥∥(Imλ)−1
∥∥ =

1

ε(λ)
.

(5.18)

Similarly, it follows that

‖υ‖ = ‖G(Λn(λ))‖ ≤
∥∥(Λn(λ)⊗ 111B − s)−1

∥∥ ≤ ∥∥(ImΛn(λ))−1
∥∥ ≤ 2

ε(λ)
, (5.19)

where the last inequality follows from (5.14) in Lemma 5.5. Combining (5.17)-(5.19), it
follows that ( 2

ε(λ)2

r∑
i=1

‖ai‖2
)
‖υ − ζ‖ ≥ ‖υ − ζ‖. (5.20)
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This estimate holds for all λ in O′n. If λ satisfies, in addition, that 2
ε(λ)2

∑r
i=1 ‖ai‖2 < 1,

then (5.20) implies that ζ = υ, i.e., Gn(λ) = G(Λn(λ)). Thus, if we put

O′′n =
{
λ ∈ O′n

∣∣ ε(λ) >
√

2
∑r

i=1 ‖ai‖2
}
,

we have established that Gn(λ) = G(Λn(λ)) for all λ in O′′n. Since ε(λ) is a continuous
function of λ, O′′n is clearly an open subset of O′n, and it remains to check that O′′n is
non-empty. Note, however, that for any positive number t, the matrix it111m is in O and
it satisfies that ‖it111m‖ = ε(it111m) = t. From this, it follows easily that it111m ∈ O′′n for all
sufficiently large positive numbers t. This concludes the proof of (b) and hence the proof
of Proposition 5.6. �

5.7 Theorem. Let r,m be positive integers, let a1, . . . , ar be self-adjoint matrices in
Mm(C) and, for each positive integer n, letX

(n)
1 , . . . , X

(n)
r be independent random matrices

in SGRM(n, 1
n
). Consider further free self-adjoint identically semi-circular distributed

operators x1, . . . , xr in some C∗-probability space (B, τ), and normalized such that τ(xi) =
0 and τ(x2

i ) = 1 for all i. Then put as in (3.2) and (5.7):

s = a0 ⊗ 111B +
r∑
i=1

ai ⊗ xi ∈Mm(C)⊗B

Sn = a0 ⊗ 111n +
r∑
i=1

ai ⊗X(n)
i ∈Mm(C)⊗Mn(C), (n ∈ N),

and for λ in O = {λ ∈Mm(C) | Im(λ) is positive definite} define

Gn(λ) = E
{

(idm ⊗ trn)
[
(λ⊗ 111n − Sn)−1

]}
G(λ) = (idm ⊗ τ)

[
(λ⊗ 111B − s)−1

]
.

Then, for any λ in O and any positive integer n, we have∥∥Gn(λ)−G(λ)
∥∥ ≤ 4C

n2
(K + ‖λ‖)2

∥∥(Imλ)−1
∥∥7
, (5.21)

where C = m3‖
∑r

i=1 a
2
i ‖2 and K = ‖a0‖+ 4

∑r
i=1 ‖ai‖.

Proof. Let n in N be fixed, and assume first that λ is in the set O′n defined in (5.13).
Then, by Proposition 5.6, we have∥∥Gn(λ)−G(λ)

∥∥ =
∥∥G(Λn(λ))−G(λ)

∥∥
=
∥∥idm ⊗ τ

[
(Λn(λ)⊗ 111B − s)−1 − (λ⊗ 111B − s)−1

]∥∥
≤
∥∥(Λn(λ)⊗ 111B − s)−1 − (λ⊗ 111B − s)−1

∥∥.
Note here that

(Λn(λ)⊗111B− s)−1− (λ⊗111B− s)−1 = (Λn(λ)⊗111B− s)−1
(
(λ−Λn(λ)⊗111n

)
(λ⊗111B− s)−1,
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and therefore, taking Lemma 3.1 into account,∥∥Gn(λ)−G(λ)
∥∥ ≤ ∥∥(Λn(λ)⊗ 111B − s)−1

∥∥ · ∥∥λ− Λn(λ)
∥∥ · ∥∥(λ⊗ 111B − s)−1

∥∥
≤
∥∥(ImΛn(λ))−1

∥∥ · ∥∥λ− Λn(λ)
∥∥ · ∥∥(Imλ)−1

∥∥.
Now, ‖(Imλ)−1‖ = 1/ε(λ) (cf. (5.12)), and hence, by (5.14) in Lemma 5.5, ‖(ImΛn(λ))−1‖ ≤
2/ε(λ) = 2‖(Imλ)−1‖. Furthermore, by (5.11) and Corollary 5.3,

∥∥Λn(λ)− λ
∥∥ =

∥∥∥a0 +
r∑
i=1

aiGn(λ)ai +Gn(λ)−1 − λ
∥∥∥ ≤ C

n2
(K + ‖λ‖)2

∥∥(Imλ)−1
∥∥5
.

Thus, we conclude that∥∥Gn(λ)−G(λ)
∥∥ ≤ 2C

n2
(K + ‖λ‖)2

∥∥(Imλ)−1
∥∥7
,

which shows, in particular, that (5.21) holds for all λ in O′n.

Assume next that λ ∈ O \ O′n, so that

C

n2
(K + ‖λ‖)2

∥∥(Imλ)−1
∥∥6

=
C

n2
(K + ‖λ‖)2ε(λ)−6 ≥ 1

2
. (5.22)

By application of Lemma 3.1, it follows that∥∥G(λ)
∥∥ ≤ ∥∥(λ⊗ 111B − s)−1

∥∥ ≤ ∥∥(Imλ)−1
∥∥, (5.23)

and similarly we find that∥∥idm ⊗ trn
[
(λ⊗ 111n − Sn(ω))−1

]∥∥ ≤ ∥∥(Imλ)−1
∥∥,

at all points ω in Ω. Hence, after integrating w.r.t. ω and using Jensen’s inequality,

‖Gn(λ)‖ ≤ E
{∥∥idm ⊗ trn

[
(λ⊗ 111n − Sn)−1

]∥∥} ≤ ∥∥(Imλ)−1
∥∥. (5.24)

Combining (5.22)-(5.24), we find that∥∥Gn(λ)−G(λ)
∥∥ ≤ 2

∥∥(Imλ)−1
∥∥ =

1

2
· 4
∥∥(Imλ)−1

∥∥ ≤ 4C

n2
(K + ‖λ‖)2

∥∥(Imλ)−1
∥∥7
,

verifying that (5.21) holds for λ in O \ O′n too. �

6 The spectrum of Sn.

Let r,m ∈ N, let a0, . . . , ar ∈ Mm(C)sa and for each n ∈ N, let X
(n)
1 , . . . , X

(n)
r be r inde-

pendent random matrices in SGRM(n, 1
n
). Let further x1, . . . , xr be a semi-circular family

in a C∗-probability space (B, τ), and define Sn, s, Gn(λ) and G(λ) as in Theorem 5.7.
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6.1 Lemma. For λ ∈ C with Imλ > 0, put

gn(λ) = E
{

(trm ⊗ trn)[(λ111mn − Sn)−1]
}

(6.1)

and
g(λ) = (trm ⊗ τ)

[
(λ(111m ⊗ 111B)− s)−1

]
. (6.2)

Then

|gn(λ)− g(λ)| ≤ 4C

n2

(
K + |λ|

)2
(Imλ)−7 (6.3)

where C, K are the constants defined in Theorem 5.7.

Proof. This is immediate from Theorem 5.7 because

gn(λ) = trm(Gn(λ111m))

and
g(λ) = trm(G(λ111m)). �

Let Prob(R) denote the set of Borel probability measures on R. We equip Prob(R) with
the weak∗-topology given by C0(R), i.e., a net (µα)α∈A in Prob(R) converges in weak∗-
topology to µ ∈ Prob(R), if and only if

lim
α

(∫
R
ϕ dµα

)
=

∫
R
ϕ dµ

for all ϕ ∈ C0(R).

Since Sn and s are self-adjoint, there are, by Riesz’ representation theorem, unique prob-
ability measures µn, n = 1, 2, . . . and µ on R, such that∫

R
ϕ dµn = E

{
(trm ⊗ trn)ϕ(Sn)

}
(6.4)∫

R
ϕ dµ = (trm ⊗ τ)ϕ(s) (6.5)

for all ϕ ∈ C0(R). Note that µ is compactly supported while µn, in general, is not
compactly supported.

6.2 Theorem. Let Sn and s be given by (3.2) and (5.7), and let C = π2

8
m3‖

∑r
i=1 a

2
i ‖2

and K = ‖a0‖+ 4
∑r

i=1 ‖ai‖. Then for all ϕ ∈ C∞c (R,R);

E
{

(trm ⊗ trn)ϕ(Sn)
}

= (trm ⊗ τ)ϕ(s) +Rn (6.6)

where

|Rn| ≤
4C

315πn2

∫
R

∣∣((1 +D)8ϕ)(x)
∣∣(K + 2 + |x|

)2
dx (6.7)

and D = d
dx

. In particular Rn = O( 1
n2 ) for n→∞.
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Proof. Let gn, g, µn, µ be as in (6.1), (6.2), (6.4) and (6.5). Then for any complex number
λ, such that Im(λ) > 0, we have

gn(λ) =

∫
R

1

λ− x
dµn(x) (6.8)

g(λ) =

∫
R

1

λ− x
dµ(x). (6.9)

Hence gn and g are the Stieltjes transforms (or Cauchy transforms, in the terminology of
[VDN]) of µn and µ in the half plane Imλ > 0. Hence, by the inverse Stieltjes transform,

µn = lim
y→0+

(
− 1

π
Im(gn(x+ iy)) dx

)
where the limit is taken in the weak∗-topology on Prob(R). In particular, for all ϕ in
C∞c (R,R): ∫

R
ϕ(x) dµn(x) = lim

y→0+

[
− 1

π
Im
(∫

R
ϕ(x)gn(x+ iy) dx

)]
. (6.10)

In the same way we get for ϕ ∈ C∞c (R,R):∫
R
ϕ(x) dµ(x) = lim

y→0+

[
− 1

π
Im

∫
R
ϕ(x)g(x+ iy) dx

]
. (6.11)

In the rest of the proof, n ∈ N is fixed, and we put h(λ) = gn(λ)− g(λ). Then by (6.10)
and (6.11)∣∣∣ ∫

R
ϕ(x) dµn(x)−

∫
R
ϕ(x) dµ(x)

∣∣∣ ≤ 1

π
lim sup
y→0+

∣∣∣ ∫
R
ϕ(x)h(x+ iy) dx

∣∣∣. (6.12)

For Imλ > 0 and p ∈ N, put

Ip(λ) =
1

(p− 1)!

∫ ∞
0

h(λ+ t)tp−1e−t dt. (6.13)

Note that Ip(λ) is well defined because, by (6.8) and (6.9), h(λ) is uniformly bounded in
any half-plane of the form Imλ ≥ ε, where ε > 0. Also, it is easy to check that Ip(λ) is
an analytic function of λ, and its first derivative is given by

I ′p(λ) =
1

(p− 1)!

∫ ∞
0

h′(λ+ t)tp−1e−t dt (6.14)

where h′ = dh
dλ

. We claim that

I1(λ)− I ′1(λ) = h(λ) (6.15)

Ip(λ)− I ′p(λ) = Ip−1(λ), p ≥ 2. (6.16)

Indeed, by (6.14) and partial integration we get

I ′1(λ) =
[
h(λ+ t)e−t

]∞
0

+

∫ ∞
0

h(λ+ t)e−t dt

= −h(λ) + I1(λ),
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which proves (6.15) and in the same way we get for p ≥ 2,

I ′p(λ) =
1

(p− 1)!

∫ ∞
0

h′(λ+ t)tp−1e−t dt

= − 1

(p− 1)!

∫ ∞
0

h(λ+ t)((p− 1)tp−2 − tp−1)e−t dt

= −Ip−1(λ) + Ip(λ),

which proves (6.16). Assume now that ϕ ∈ C∞c (R,R) and that y > 0. Then, by (6.15)
and partial integration, we have∫

R
ϕ(x)h(x+ iy) dx =

∫
R
ϕ(x)I1(x+ iy) dx−

∫
R
ϕ(x)I ′1(x+ iy) dx

=

∫
R
ϕ(x)I1(x+ iy) dx+

∫
R
ϕ′(x)I1(x+ iy) dx

=

∫
R
((1 +D)ϕ)(x) · I1(x+ iy) dx,

where D = d
dx

. Using (6.16), we can continue to perform partial integrations, and after p
steps we obtain ∫

R
ϕ(x)h(x+ iy) dx =

∫
R
((1 +D)pϕ)(x) · Ip(x+ iy) dx.

Hence, by (6.12), we have for all p ∈ N:∣∣∣ ∫
R
ϕ(x) dµn(x)−

∫
R
ϕ(x) dµ(x)

∣∣∣ ≤ 1

π
lim sup
y→0+

∣∣∣ ∫
R
((1 +D)pϕ)(x) · Ip(x+ iy) dx

∣∣∣. (6.17)

Next, we use (6.3) to show that for p = 8 and Imλ > 0 one has

|I8(λ)| ≤ 4C(K + 2 + |λ|)2

315n2
. (6.18)

To prove (6.18), we apply Cauchy’s integral theorem to the function

F (z) =
1

7!
h(λ+ z)z7e−z,

which is analytic in the half-plane Imz > −Imλ. Hence for r > 0∫
[0,r]

F (z) dz +

∫
[r,r+ir]

F (z) dz +

∫
[r+ir,0]

F (z) dz = 0

where [α, β] denotes the line segment connecting α and β in C oriented from α to β. Put

M(λ) = sup
{
|h(w)|

∣∣ Imw ≥ Imλ
}
.
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Then by (6.8) and (6.9), M(λ) ≤ 2
|Imλ| <∞. Hence∣∣∣ ∫

[r,r+ir]

F (z) dz
∣∣∣ ≤ M(λ)

7!

∫ r

0

|r + it|7e−r dt

≤ M(λ)

7!
(2r)7r · e−r

→ 0, for r →∞.

Therefore,

I8(λ) =
1

7!

∫ ∞
0

h(λ+ t)t7e−t dt

= lim
r→∞

∫
[0,r]

F (z) dz

= lim
r→∞

∫
[0,r+ir]

F (z) dz

=
1

7!

∫ ∞
0

h(λ+ (1 + i)t)((1 + i)t)7e−(1+i)t(1 + i) dt. (6.19)

By (6.3),

|h(w)| ≤ 4C

n2
(K + |w|)2(Imw)−7, Imw > 0.

Inserting this in (6.19) we get

|I8(λ)| ≤ 4C

7!n2

∫ ∞
0

(
K + |λ|+

√
2t
)2

(Imλ+ t)7
(
√

2t)7e−t
√

2 dt

≤ 26C

7!n2

∫ ∞
0

(
K + |λ|+

√
2t
)2

e−t dt

=
4C

315n2

(
(K + |λ|)2 + 2

√
2(K + |λ|) + 4

)
≤ 4C

315n2
(K + |λ|+ 2)2.

This proves (6.18). Now, combining (6.17) and (6.18), we have∣∣∣ ∫
R
ϕ(x) dµn(x)−

∫
R
ϕ(x) dµ(x)

∣∣∣
≤ 4C

315πn2
lim sup
y→0+

∫
R

∣∣((1 +D)8ϕ)(x)
∣∣(K + 2 + |x+ iy|

)2
dx

=
4C

315πn2

∫
R

∣∣((1 +D)8ϕ)(x)
∣∣(K + 2 + |x|

)2
dx

for all ϕ ∈ C∞c (R,R). Together with (6.4) and (6.5) this proves Theorem 6.2. �
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6.3 Lemma. Let Sn and s be given by (3.2) and (5.7), and let ϕ : R → R be a C∞-
function which is constant outside a compact subset of R. Assume further that

supp(ϕ) ∩ sp(s) = ∅. (6.20)

Then

E
{

(trm ⊗ trn)ϕ(Sn)
}

= O
(

1
n2

)
, for n→∞ (6.21)

V
{

(trm ⊗ trn)ϕ(Sn)
}

= O
(

1
n4

)
, for n→∞ (6.22)

where V is the absolute variance of a complex random variable (cf. Section 4). Moreover

(trm ⊗ trn)ϕ(Sn(ω)) = O(n−4/3) (6.23)

for almost all ω in the underlying probability space Ω.

Proof. By the assumptions, ϕ = ψ + c, for some ψ in C∞c (R,R) and some constant c in
R. By Theorem 6.2

E
{

(trm ⊗ trn)ψ(Sn)
}

= (trm ⊗ τ)ψ(s) +O
(

1
n2

)
, for n→∞,

and hence also

E
{

(trm ⊗ trn)ϕ(Sn)
}

= (trm ⊗ τ)ϕ(s) +O
(

1
n2

)
, for n→∞.

But since ϕ vanishes on sp(s), we have ϕ(s) = 0. This proves (6.21). Moreover, applying
Proposition 4.7 to ψ ∈ C∞c (R), we have

V
{

(trm ⊗ trn)ψ(Sn)
}
≤ 1

n2

∥∥∥ r∑
i=1

a2
i

∥∥∥2

E
{

(trm ⊗ trn)(ψ′(Sn))2
}
. (6.24)

By (6.20), ψ′ = ϕ′ also vanishes on sp(s). Hence, by Theorem 6.2

E
{

(trm ⊗ trn)|ψ′(Sn)|2
}

= O
(

1
n2

)
, as n→∞.

Therefore, by (6.24)

V
{

(trm ⊗ trn)ψ(Sn)
}

= O
(

1
n4

)
, as n→∞.

Since ϕ(Sn) = ψ(Sn) + c111mn, V
{

(trm ⊗ trn)ϕ(Sn)
}

= V
{

(trm ⊗ trn)ψ(Sn)
}

. This proves
(6.22). Now put

Zn = (trm ⊗ trn)ϕ(Sn)

Ωn =
{
ω ∈ Ω

∣∣ |Zn(ω)| ≥ n−4/3
}
.

By (6.21) and (6.22)

E
{
|Zn|2

}
= |E{Zn}|2 + V{Zn} = O

(
1
n4

)
, for n→∞.
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Hence

P (Ωn) =

∫
Ωn

dP (ω) ≤
∫

Ωn

∣∣n4/3Zn(ω)
∣∣2 dP (ω) ≤ n8/3E

{
|Zn|2

}
= O(n−4/3), (6.25)

for n → ∞. In particular
∑∞

n=1 P (Ωn) < ∞. Therefore, by the Borel-Cantelli lemma
(see e.g. [Bre]), ω /∈ Ωn eventually, as n→∞, for almost all ω ∈ Ω, i.e., |Zn(ω)| < n−4/3

eventually, as n→∞, for almost all ω ∈ Ω. This proves (6.23). �

6.4 Theorem. Let m ∈ N and let a0, . . . , ar ∈Mm(C)sa, Sn and s be as in Theorem 5.7.
Then for any ε > 0 and for almost all ω ∈ Ω,

sp(Sn(ω)) ⊆ sp(s) + ]− ε, ε[,

eventually as n→∞.

Proof. Put

K = sp(s) +
[
− ε

2
, ε

2

]
F =

{
t ∈ R | d(t, sp(s)) ≥ ε

}
.

Then K is compact, F is closed and K ∩ F = ∅. Hence there exists ϕ ∈ C∞(R), such
that 0 ≤ ϕ ≤ 1, ϕ(t) = 0 for t ∈ K and ϕ(t) = 1 for t ∈ F (cf. [F, (8.18) p. 237]). Since
C\F is a bounded set, ϕ satisfies the requirements of lemma 6.3. Hence by (6.23), there
exists a P -null set N ⊆ Ω, such that for all ω ∈ Ω\N :

(trm ⊗ trn)ϕ(Sn(ω)) = O(n−4/3), as n→∞.

Since ϕ ≥ 1F , it follows that

(trm ⊗ trn)1F (Sn(ω)) = O(n−4/3), as n→∞.

But for fixed ω ∈ Ω\N , the number of eigenvalues (counted with multiplicity) of the
matrix Sn(ω) in the set F is equal to mn(trm ⊗ trn)1F (Sn(ω)), which is O(n−1/3) as
n→∞. However, for each n ∈ N the above number is an integer. Hence, the number of
eigenvalues of Sn(ω) in F is zero eventually as n→∞. This shows that

sp(Sn(ω)) ⊆ C\F = sp(s) + ]− ε, ε[

eventually as n→∞, when ω ∈ Ω\N . �

7 Proof of the main Theorem.

Throughout this section, r ∈ N ∪ {∞}, and, for each n in N, we let (X
(n)
i )ri=1 denote

a finite or countable set of independent random matrices from SGRM(n, 1
n
), defined on

the same probability space (Ω,F, P ). In addition, we let (xi)
r
i=1 denote a corresponding
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semi-circular family in a C∗-probability space (B, τ), where τ is a faithful state on B.
Furthermore, as in [VDN], we let C〈(Xi)

r
i=1〉 denote the algebra of all polynomials in r

non-commuting variables. Note that C〈(Xi)
r
i=1〉 is a unital ∗-algebra, with the ∗-operation

given by:
(cXi1Xi2 · · ·Xik)∗ = cXikXik−1

· · ·Xi2Xi1 ,

for c in C, k in N and i1, i2, . . . , ik in {1, 2, . . . , r}, when r is finite, and in N when r =∞.
The purpose of this section is to conclude the proof of the main theorem (Theorem 7.1
below) by combining the results of the previous sections.

7.1 Theorem. Let r be in N ∪ {∞}. Then there exists a P -null-set N ⊆ Ω, such that
for all p in C〈(Xi)

r
i=1〉 and all ω in Ω \N , we have

lim
n→∞

∥∥p((X(n)
i (ω))ri=1

)∥∥ =
∥∥p((xi)ri=1

)∥∥.
We start by proving the following

7.2 Lemma. Assume that r ∈ N. Then there exists a P -null set N1 ⊆ Ω, such that for
all p in C〈(Xi)

r
i=1〉 and all ω in Ω\N1:

lim inf
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥ ≥ ‖p(x1, . . . , xr)‖. (7.1)

Proof. We first prove that for each p in C〈X1, . . . , Xr〉, there exists a P -null-set N(p),
depending on p, such that (7.1) holds for all ω in Ω \ N(p). This assertion is actually a
special case of [T, Prop. 4.5], but for the readers convenience, we include a more direct
proof: Consider first a fixed p ∈ C〈X1, . . . , Xr〉. Let k ∈ N and put q = (p∗p)k. By [T,
Cor. 3.9] or [HP],

lim
n→∞

trn
(
q(X

(n)
1 (ω), . . . , X(n)

r (ω))
)

= τ
(
q(x1, . . . , xr)

)
, (7.2)

for almost all ω ∈ Ω. For s ≥ 1, Z ∈ Mn(C) and z ∈ B, put ‖Z‖s = trn(|Z|s)1/s and
‖z‖s = τ(|z|s)1/s. Then (7.2) can be rewritten as

lim
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥2k

2k
=
∥∥p(x1, . . . , xr)

∥∥2k

2k
(7.3)

for ω ∈ Ω\N(p), where N(p) is a P -null-set. Since N is a countable set, we can assume
that N(p) does not depend on k ∈ N. For every bounded Borel function f on a probability
space, one has

‖f‖∞ = lim
k→∞
‖f‖k, (7.4)

(cf. [F, Exercise 7, p. 179]). Put a = p(x1, . . . , xr), and let Γ: D→ C(D̂) be the Gelfand
transform of the Abelian C∗-algebra D generated by a∗a and 111B, and let µ be the prob-
ability measure on D̂ corresponding to τ|D. Since τ is faithful, supp(µ) = D̂. Hence,
‖Γ(a∗a)‖∞ = ‖Γ(a∗a)‖sup = ‖a∗a‖. Applying then (7.4) to the function f = Γ(a∗a), we
find that

‖a‖ = ‖a∗a‖1/2 = lim
k→∞
‖a∗a‖1/2

k = lim
k→∞
‖a‖2k. (7.5)
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Let ε > 0. By (7.5), we can choose k in N, such that

‖p(x1, . . . , xr)‖2k > ‖p(x1, . . . , xr)‖ − ε.

Since ‖Z‖s ≤ ‖Z‖ for all s ≥ 1 and all Z ∈Mn(C), we have by (7.3)

lim inf
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥ ≥ ‖p(x1, . . . , xr)‖2k > ‖p(x1, . . . , xr)‖ − ε,

for all ω ∈ Ω\N(p), and since N(p) does not depend on ε, it follows that (7.1) holds
for all ω ∈ Ω\N(p). Now put N ′ =

⋃
p∈PN(p), where P is the set of polynomials from

C〈X1, . . . , Xr〉 with coefficients in Q + iQ. Then N ′ is again a null set, and (7.1) holds
for all p ∈ P and all ω ∈ Ω\N ′.

By [Ba, Thm. 2.12] or [HT1, Thm. 3.1], limn→∞ ‖X(n)
i (ω)‖ = 2, i = 1, . . . , r, for almost

all ω ∈ Ω. In particular

sup
n∈N
‖X(n)

i (ω)‖ <∞, i = 1, . . . , r, (7.6)

for almost all ω ∈ Ω. Let N ′′ ⊆ Ω be the set of ω ∈ Ω for which (7.6) fails for some
i ∈ {1, . . . , r}. Then N1 = N ′ ∪ N ′′ is a null set, and a simple approximation argument
shows that (7.1) holds for all p in C〈X1, . . . , Xr〉, when ω ∈ Ω\N1. �

In order to complete the proof of Theorem 7.1, we have to prove

7.3 Proposition. Assume that r ∈ N. Then there is a P -null set N2 ⊆ Ω, such that for
all polynomials p in r non-commuting variables and all ω ∈ Ω\N2,

lim sup
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥ ≤ ‖p(x1, . . . , xr)‖.

The proof of Proposition 7.3 relies on Theorem 6.4 combined with the linearization trick
in the form of Theorem 2.4. Following the notation of [BK] we put∏

n

Mn(C) =
{

(Zn)∞n=1

∣∣ Zn ∈Mn(C), supn∈N‖Zn‖ <∞
}

and ∑
n

Mn(C) =
{

(Zn)∞n=1

∣∣ Zn ∈Mn(C), limn→∞‖Zn‖ = 0
}
,

and we let C denote the quotient C∗-algebra

C =
∏
n

Mn(C)
/∑

n

Mn(C). (7.7)

Moreover, we let ρ :
∏

nMn(C) → C denote the quotient map. By [RLL, Lemma 6.13],
the quotient norm in C is given by∥∥ρ((Zn)∞n=1

)∥∥ = lim sup
n→∞

‖Zn‖, (7.8)

44



for (Zn)∞n=1 ∈
∏
Mn(C).

Let m ∈ N. Then we can identify Mm(C) ⊗ C with
∏

nMmn(C) /
∑
Mmn(C), where∏

nMmn(C) and
∑

nMmn(C) are defined as
∏

nMn(C) and
∑

nMn(C), but with
Zn ∈ Mmn(C) instead of Zn ∈ Mn(C). Moreover, for (Zn)∞n=1 ∈

∏
nMmn(C), we have,

again by [RLL, Lemma 6.13],∥∥(idm ⊗ ρ)
(
(Zn)∞n=1

)∥∥ = lim sup
n→∞

‖Zn‖. (7.9)

7.4 Lemma. Let m ∈ N and let Z = (Zn)∞n=1 ∈
∏

nMmn(C), such that each Zn is
normal. Then for all k ∈ N

sp
(
(idm ⊗ ρ)(Z)

)
⊆
∞⋃
n=k

sp(Zn).

Proof. Assume λ ∈ C is not in the closure of
⋃∞
n=k sp(Zn). Then there exists an ε > 0, such

that d(λ, sp(Zn)) ≥ ε for all n ≥ k. Since Zn is normal, it follows that ‖(λ111mn−Zn)−1‖ ≤ 1
ε

for all n ≥ k. Now put

yn =

{
0, if 1 ≤ n ≤ k − 1,

(λ111mn − Zn)−1, if n ≥ k.

Then y = (yn)∞n=1 ∈
∏

nMmn(C), and one checks easily that λ111Mm(C)⊗C − (idm ⊗ ρ)(Z)
is invertible in Mm(C)⊗ C =

∏
nMmn(C) /

∑
nMmn(C) with inverse (idm ⊗ ρ)y. Hence

λ /∈ sp((idm ⊗ ρ)(Z)). �

Proof of Proposition 7.3 and Theorem 7.1. Assume first that r ∈ N. Put

Ω0 =
{
ω ∈ Ω

∣∣ supn∈N‖X
(n)
i (ω)‖ <∞, i = 1, . . . , r

}
.

By (7.6), Ω\Ω0 is a P -null set. For every ω ∈ Ω0, we define

yi(ω) ∈ C =
∏
n

Mn(C)
/∑

n

Mn(C)

by
yi(ω) = ρ

(
(X

(n)
i (ω))∞n=1

)
, i = 1, . . . , r. (7.10)

Then for every non-commutative polynomial p ∈ C〈X1, . . . , Xr〉 and every ω in Ω0, we
get by (7.8) that∥∥p(y1(ω), . . . , yr(ω))

∥∥ = lim sup
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥. (7.11)

Let j ∈ N and a0, a1, . . . , ar ∈ Mm(C)sa. Then by Theorem 6.4 there exists a null set
N(m, j, a0, . . . , ar), such that for

sp
(
a0 ⊗ 111n +

∑r
i=1ai ⊗X

(n)
i (ω)

)
⊆ sp

(
a0 ⊗ 111B +

∑r
i=1ai ⊗ xi

)
+
]
−1
j
, 1
j

[
,
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eventually, as n → ∞, for all ω ∈ Ω\N(m, j, a0, . . . , ar). Let N0 =
⋃
N(m, j, a0, . . . , ar),

where the union is taken over all m, j ∈ N and a0, . . . , ar ∈ Mn(Q + iQ)sa. This is a
countable union. Hence N0 is again a P -null set, and by Lemma 7.4

sp
(
a0 ⊗ 111n +

∑r
i=1ai ⊗ yi(ω)

)
⊆ sp

(
a0 ⊗ 111B +

∑r
i=1ai ⊗ xi

)
+
[
−1
j
, 1
j

]
,

for all ω ∈ Ω0\N0, all m, j ∈ N and all a0, . . . , ar ∈ Mn(Q + iQ)sa. Taking intersection
over j ∈ N on the right hand side, we get

sp
(
a0 ⊗ 111n +

∑r
i=1ai ⊗ yi(ω)

)
⊆ sp

(
a0 ⊗ 111B +

∑r
i=1ai ⊗ xi

)
,

for ω ∈ Ω0\N0, m ∈ N and a0, . . . , ar ∈Mn(Q + iQ)sa. Hence, by Theorem 2.4,∥∥p(y1(ω), . . . , yr(ω))
∥∥ ≤ ‖p(x1, . . . , xr)‖,

for all p ∈ C〈X1, . . . , Xr〉 and all ω ∈ Ω0\N0, which, by (7.11), implies that

lim sup
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥ ≤ ‖p(x1, . . . , xr)‖,

for all p ∈ C〈X1, . . . , Xr〉 and all ω ∈ Ω0\N0. This proves Proposition 7.3, which, together
with Lemma 7.2, proves Theorem 7.1 in the case r ∈ N. The case r =∞ follows from the
case r ∈ N, because C〈(Xi)

∞
i=1〉 = ∪∞r=1C〈(Xi)

r
i=1〉. �

8 Ext(C∗red(Fr)) is not a group.

We start this section by translating Theorem 7.1 into a corresponding result, where the
self-adjoint Gaussian random matrices are replaced by random unitary matrices and the
semi-circular system is replaced by a free family of Haar-unitaries.

Define C1-functions ϕ : R→ R and ψ : R→ C by

ϕ(t) =


−π, if t ≤ −2,∫ t

0

√
4− s2 ds, if − 2 < t < 2,

π, if t ≥ 2.

(8.1)

and
ψ(t) = eiϕ(t), (t ∈ R). (8.2)

Let µ be the standard semi-circle distribution on R:

dµ(t) =
1

2π

√
4− t2 · 1[−2,2](t) dt,

and let ϕ(µ) denote the push-forward measure of µ by ϕ, i.e., ϕ(µ)(B) = µ(ϕ−1(B)) for
any Borel subset B of R. Since ϕ′(t) =

√
4− t2 · 1[−2,2](t) for all t in R, it follows that

ϕ(µ) is the uniform distribution on [−π, π], and, hence, ψ(µ) is the Haar measure on the
unit circle T in C.

The following lemma is a simple application of Voiculescu’s results in [V3].
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8.1 Lemma. Let r ∈ N∪{∞} and let (xi)
r
i=1 be a semi-circular system in a C∗-probability

space (B, τ), where τ is a faithful state on B. Let ψ : R → T be the function defined in
(8.2), and then put

ui = ψ(xi), (i = 1, . . . , r).

Then there is a (surjective) ∗-isomorphism Φ: C∗red(Fr)→ C∗((ui)
r
i=1), such that

Φ
(
λ(gi)

)
= ui, (i = 1, . . . , r),

where g1, . . . , gr are the generators of the free group Fr, and λ : Fr → B(`2(Fr)) is the left
regular representation of Fr on `2(Fr).

Proof. Recall that C∗red(Fr) is, by definition, the C∗-algebra in B(`2(Fr)) generated by
λ(g1), . . . , λ(gr). Let e denote the unit in Fr and let δe ∈ `2(Fr) denote the indicator
function for {e}. Recall then that the vector state η = 〈 · δe, δe〉 : B(`2(Fr)) → C, corre-
sponding to δe, is faithful on C∗red(Fr). We recall further from [V3] that λ(g1), . . . , λ(gr)
are ∗-free operators w.r.t. η, and that each λ(gi) is a Haar unitary, i.e.,

η(λ(gi)
n) =

{
1, if n = 0,

0, if n ∈ Z \ {0}.

Now, since (xi)
r
i=1 are free self-adjoint operators in (B, τ), (ui)

r
i=1 are ∗-free unitaries in

(B, τ), and since, as noted above, ψ(µ) is the Haar measure on T, all the ui’s are Haar
unitaries as well. Thus, the ∗-distribution of (λ(gi))

r
i=1 w.r.t. η (in the sense of [V3]) equals

that of (ui)
r
i=1 w.r.t. τ . Since η and τ are both faithful, the existence of a ∗-isomorphism

Φ, with the properties set out in the lemma, follows from [V3, Remark 1.8]. �

Let r ∈ N ∪ {∞}. As in Theorem 7.1, we consider next, for each n in N, independent

random matrices (X
(n)
i )ri=1 in SGRM(n, 1

n
). We then define, for each n, random unitary

n× n matrices (U
(n)
i )ri=1, by setting

U
(n)
i (ω) = ψ(X

(n)
i (ω)), (i = 1, 2, . . . , r), (8.3)

where ψ : R → T is the function defined in (8.2). Consider further the (free) generators
(gi)

r
i=1 of Fr. Then, by the universal property of a free group, there exists, for each n in

N and each ω in Ω, a unique group homomorphism:

πn,ω : Fr → U(n) = U(Mn(C)),

satisfying
πn,ω(gi) = U

(n)
i (ω), (i = 1, 2, . . . , r). (8.4)

8.2 Theorem. Let r ∈ N ∪ {∞} and let, for each n in N, (U
(n)
i )ri=1 be the random

unitaries given by (8.3). Let further for each n in N and each ω in Ω, πn,ω : Fr → U(n)
be the group homomorphism given by (8.4).

Then there exists a P -null set N ⊆ Ω, such that for all ω in Ω \ N and all functions
f : Fr → C with finite support, we have

lim
n→∞

∥∥∥∑
γ∈Fr

f(γ)πn,ω(γ)
∥∥∥ =

∥∥∥∑
γ∈Fr

f(γ)λ(γ)
∥∥∥,
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where, as above, λ is the left regular representation of Fr on `2(Fr).

Proof. In the proof we shall need the following simple observation: If a1, . . . , as, b1, . . . , bs
are 2s operators on a Hilbert space K, such that ‖ai‖, ‖bi‖ ≤ 1 for all i in {1, 2, . . . , s},
then

‖a1a2 · · · as − b1b2 · · · bs‖ ≤
s∑
i=1

‖ai − bi‖. (8.5)

We shall need further that for any positive ε there exists a polynomial q in one variable,
such that

|q(t)| ≤ 1, (t ∈ [−3, 3]), (8.6)

and
|ψ(t)− q(t)| ≤ ε, (t ∈ [−3, 3]). (8.7)

Indeed, by Weierstrass’ approximation theorem we may choose a polynomial q0 in one
variable, such that

|ψ(t)− q0(t)| ≤ ε/2, (t ∈ [−3, 3]). (8.8)

Then put q = (1 + ε/2)−1q0 and note that since |ψ(t)| = 1 for all t in R, it follows from
(8.8) that (8.6) holds. Furthermore,

|q0(t)− q(t)| ≤ ε
2
|q(t)| ≤ ε

2
, (t ∈ [−3, 3]),

which, combined with (8.8), shows that (8.7) holds.

After these preparations, we start by proving the theorem in the case r ∈ N. For each
n in N, let X

(n)
1 , . . . , X

(n)
r be independent random matrices in SGRM(n, 1

n
) defined on

(Ω,F, P ), and define the random unitaries U
(n)
1 , . . . , U

(n)
r as in (8.3). Then let N be a P -

null set as in the main theorem (Theorem 7.1). By considering, for each i in {1, 2, . . . , r},
the polynomial p(X1, . . . , Xr) = Xi, it follows then from the main theorem that

lim
n→∞

∥∥X(n)
i (ω)

∥∥ = 2,

for all ω in Ω \N . In particular, for each ω in Ω \N , there exists an nω in N, such that∥∥X(n)
i (ω)

∥∥ ≤ 3, whenever n ≥ nω and i ∈ {1, 2, . . . , r}.

Considering then the polynomial q introduced above, it follows from (8.6) and (8.7) that
for all ω in Ω \N , we have∥∥q(X(n)

i (ω)
)∥∥ ≤ 1, whenever n ≥ nω and i ∈ {1, 2, . . . , r}, (8.9)

and ∥∥U (n)
i (ω)− q

(
X

(n)
i (ω)

)∥∥ ≤ ε, whenever n ≥ nω and i ∈ {1, 2, . . . , r}. (8.10)

Next, if γ ∈ Fr \ {e}, then γ can be written (unambiguesly) as a reduced word: γ =
γ1γ2 · · · γs, where γj ∈ {g1, g2, . . . , gr, g

−1
1 , g−1

2 , . . . , g−1
r } for each j in {1, 2, . . . , s}, and
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where s = |γ| is the length of the reduced word for γ. It follows then, by (8.4), that
πn,ω(γ) = a1a2 · · · as, where

aj = πn,ω(γj) ∈
{
U

(n)
1 (ω), . . . , U (n)

r (ω), U
(n)
1 (ω)∗, . . . , U (n)

r (ω)∗
}
, (j = 1, 2, . . . , s).

Combining now (8.5), (8.9) and (8.10), it follows that for any γ in Fr \ {e}, there exists
a polynomial pγ in C〈X1, . . . , Xr〉, such that∥∥πn,ω(γ)− pγ

(
X

(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥ ≤ |γ|ε, whenever n ≥ nω and ω ∈ Ω \N.

(8.11)
Now, let {x1, . . . , xr} be a semi-circular system in a C∗-probability space (B, τ), and put
ui = ψ(xi), i = 1, 2, . . . , r. Then, by Lemma 8.1, there is a surjective ∗-isomorphism
Φ: C∗red(Fr) → C∗(u1, . . . , ur), such that (Φ ◦ λ)(gi) = ui, i = 1, 2, . . . , r. Since ‖xi‖ ≤ 3,
i = 1, 2, . . . , r, the arguments that lead to (8.11) show also that for any γ in Fr \ {e},∥∥(Φ ◦ λ)(γ)− pγ(x1, . . . , xr)

∥∥ ≤ |γ|ε, (8.12)

where pγ is the same polynomial as in (8.11). Note that (8.11) and (8.12) also hold in the
case γ = e, if we put pe(X1, . . . , Xr) = 1, and |e| = 0.

Consider now an arbitrary function f : Fr → C with finite support, and then define the
polynomial p in C〈X1, . . . , Xr〉, by: p =

∑
γ∈Fr

f(γ)pγ. Then, for any ω in Ω \N and any
n ≥ nω, we have∥∥∥∑

γ∈Fr

f(γ)πn,ω(γ)− p
(
X

(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥∥ ≤ (∑

γ∈Fr

|f(γ)| · |γ|
)
ε, (8.13)

and ∥∥∥∑
γ∈Fr

f(γ) · (Φ ◦ λ)(γ)− p(x1, . . . , xr)
∥∥∥ ≤ (∑

γ∈Fr

|f(γ)| · |γ|
)
ε, (8.14)

Taking also Theorem 7.1 into account, we may, on the basis of (8.13) and (8.14), conclude
that for any ω in Ω \N , we have

lim sup
n→∞

∣∣∣∣∣∥∥∥∑
γ∈Fr

f(γ)πn,ω(γ)
∥∥∥− ∥∥∥∑

γ∈Fr

f(γ) · (Φ ◦ λ)(γ)
∥∥∥∣∣∣∣∣ ≤ 2ε

(∑
γ∈Fr

|f(γ)| · |γ|
)
.

Since ε > 0 is arbitrary, it follows that for any ω in Ω \N ,

lim
n→∞

∥∥∥∑
γ∈Fr

f(γ)πn,ω(γ)
∥∥∥ =

∥∥∥∑
γ∈Fr

f(γ) · (Φ ◦ λ)(γ)
∥∥∥ =

∥∥∥∑
γ∈Fr

f(γ)λ(γ)
∥∥∥,

where the last equation follows from the fact that Φ is a ∗-isomorphism. This proves
Theorem 8.2 in the case where r ∈ N. The case r =∞ follows by trivial modifications of
the above argument. �

8.3 Remark. The distributions of the random unitaries U
(n)
1 , . . . , U

(n)
r in Theorem 8.2

are quite complicated. For instance, it is easily seen that for all n in N,

P
({
ω ∈ Ω

∣∣ U (n)
1 (ω) = −111n

})
> 0.
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It would be interesting to know whether Theorem 8.2 also holds, if, for each n in N,
U

(n)
1 , . . . , U

(n)
r are replaced be stochastically independent random unitaries V

(n)
1 , . . . , V

(n)
r ,

which are all distributed according to the normalized Haar measure on U(n).

8.4 Corollary. For any r in N ∪ {∞}, the C∗-algebra C∗red(Fr) has a unital embedding
into the quotient C∗-algebra

C =
∏
n

Mn(C)
/∑

n

Mn(C),

introduced in Section 7. In particular, C∗red(Fr) is an MF-algebra in the sense of Blackadar
and Kirchberg (cf. [BK]).

Proof. This follows immediately from Theorem 8.2 and formula (7.8). In fact, one only
needs the existence of one ω in Ω for which the convergence in Theorem 8.2 holds! �

We remark that Corollary 8.4 could also have been proved directly from the main theorem
(Theorem 7.1) together with Lemma 8.1.

8.5 Corollary. For any r in {2, 3, . . .} ∪ {∞}, the semi-group Ext(C∗red(Fr)) is not a
group.

Proof. In Section 5.14 of Voiculescu’s paper [V6], it is proved that Ext(C∗red(Fr)) cannot
be a group, if there exists a sequence (πn)n∈N of unitary representations πn : Fr → U(n),
with the property that

lim
n→∞

∥∥∥∑
γ∈Fr

f(γ)πn(γ)
∥∥∥ =

∥∥∥∑
γ∈Fr

f(γ)λ(γ)
∥∥∥, (8.15)

for any function f : Fr → C with finite support.

For any r ∈ {2, 3, . . .}∪{∞}, the existence of such a sequence (πn)n∈N follows immediately
from Theorem 8.2, by considering one single ω from the sure event Ω \ N appearing in
that theorem. �

8.6 Remark. Let us briefly outline Voiculescu’s argument in [V6] for the fact that (8.15)
implies Corollary 8.5. It is obtained by combining the following two results of Rosenberg
[Ro] and Voiculescu [V5], respectively:

(i) If Γ is a discrete countable non-amenable group, then C∗red(Γ) is not quasi-diagonal
([Ro]).

(ii) A separable unital C∗-algebra A is quasi-diagonal if and only if there exists a se-
quence of natural numbers (nk)k∈N and a sequence (ϕk)k∈N of completely positive
unital maps ϕk : A→Mnk

(C), such that limk→∞ ‖ϕk(a)‖ = ‖a‖ and limk→∞ ‖ϕk(ab)−
ϕk(a)ϕk(b)‖ = 0 for all a, b ∈ A ([V5]).
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Let A be a separable unital C∗-algebra. Then, as mentioned in the introduction, Ext(A)
is the set of equivalence classes [π] of one-to-one unital ∗-homomorphisms π of A into
the Calkin algebra C(H) = B(H)/K(H) over a separable infinite dimensional Hilbert
space H. Two such ∗-homomorphisms are equivalent if they are equal up to a unitary
transformation of H. Ext(A) has a natural semi-group structure and [π] is invertible in
Ext(A) if and only if π has a unital completely positive lifting: ψ : A→ B(H) (cf. [Arv]).
Let now A = C∗red(Fr), where r ∈ {2, 3, . . . } ∪ {∞}. Moreover, let πn : Fr → Un, n ∈ N,
be a sequence of unitary representations satisfying (8.15) and let H be the Hilbert space
H =

⊕∞
n=1 Cn. Clearly,

∏
nMn(C)/

∑
nMn(C) embeds naturally into the Calkin algebra

C(H) = B(H)/K(H). Hence, there exists a one-to-one ∗-homomorphism π : A → C(H),
such that

π(λ(h)) = ρ

π1(h) 0
π2(h)

0
. . .

 ,

for all h ∈ Fr (here ρ denotes the quotient map from B(H) to C(H)). Assume [π] is
invertible in Ext(A). Then π has a unital completely positive lifting ϕ : A → B(H).
Put ϕn(a) = pnϕ(a)pn, a ∈ A, where pn ∈ B(H) is the orthogonal projection onto the
component Cn of H. Then each ϕn is a unital completely positive map from A to Mn(C),
and it is easy to check that

lim
n→∞

‖ϕn(λ(h))− πn(h)‖ = 0, (h ∈ Fr).

From this it follows that

lim
n→∞

‖ϕn(a)‖ = ‖a‖ and lim
n→∞

‖ϕn(ab)− ϕn(a)ϕn(b)‖ = 0, (a, b ∈ A)

so by (ii), A = C∗red(Fr) is quasi-diagonal. But since Fr is not amenable for r ≥ 2, this
contradicts (i). Hence [π] is not invertible in Ext(A).

8.7 Remark. let A be a separable unital C∗-algebra and let π : A→ C(H) = B(H)/K(H)
be a one-to-one *-homomorphism. Then π gives rise to an extension of A by the com-
pact operators K = K(H), i.e., a C∗-algebra B together with a short exact sequence of
*-homomorphisms

0→ K
ι→ B

q→ A→ 0.

Specifically, with ρ : B(H) → C(H) the quotient map, B = ρ−1(π(A)), ι is the inclusion
map of K into B and q = π−1 ◦ ρ. Let now A = C∗red(Fr), let π : A → C(H) be the
one-to-one unital *-homomorphism from Remark 8.6, and let B be the compact extension
of A constructed above. We then have

a) A = C∗red(Fr) is an exact C∗-algebra, but the compact extension B of A is not exact.

b) A = C∗red(Fr) is not quasi-diagonal but the compact extension B of A is quasi-
diagonal.
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To prove a), note that C∗red(Fr) is exact by [DH, Cor. 3.12] or [Ki2, p. 453, l. 1–3].
Assume B is also exact. Then, in particular, B is locally reflexive (cf. [Ki2]). Hence by
the lifting theorem in [EH] and the nuclearity of K, the identity map A→ A has a unital
completely positive lifting ϕ : A → B. If we consider ϕ as a map from A to B(H), it
is a unital completely positive lifting of π : A → C(H), which contradicts that [π] is not
invertible in Ext(A). To prove b), note that by Rosenberg’s result, quoted in (i) above,
C∗red(Fr) is not quasi-diagonal. On the other hand, by the definition of π in Remark 8.6,
every x ∈ B is a compact perturbation of an operator of the form

y =

y1 0
y2

0
. . .

 ,

where yn ∈Mn(C), n ∈ N. Hence B is quasi-diagonal.

9 Other applications.

Recall that a C∗-algebra A is called exact if, for every pair (B, J) consisting of a C∗-algebra
B and closed two-sided ideal J in B, the sequence

0→ A ⊗
min

J→ A ⊗
min

B→ A ⊗
min

(B/J)→ 0 (9.1)

is exact (cf. [Ki1]). In generalization of the construction described in the paragraph
preceding Lemma 7.4, we may, for any sequence (An)∞n=1 of C∗-algebras, define two C∗-
algebras ∏

n

An =
{

(an)∞n=1 | an ∈ An, supn∈N‖an‖ <∞
}

∑
n

An =
{

(an)∞n=1 | an ∈ An, limn→∞‖an‖ = 0
}
.

The latter C∗-algebra is a closed two-sided ideal in the first, and the norm in the quotient
C∗-algebra

∏
n An/

∑
n An is given by∥∥ρ((xn)∞n=1

)∥∥ = lim sup
n→∞

‖xn‖, (9.2)

where ρ is the quotient map (cf. [RLL, lemma 6.13]) . In the following we let A denote
an exact C∗-algebra. By (9.1) we have the following natural identification of C∗-algebras

A ⊗
min

(∏
n

Mn(C)
/∑

n

Mn(C)
)

=
(
A ⊗

min

∏
n

Mn(C)
)/(

A ⊗
min

∑
n

Mn(C)
)
.

Moreover, we have (without assuming exactness) the following natural identification

A ⊗
min

∑
n

Mn(C) =
∑
n

Mn(A)
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and the natural inclusion

A ⊗
min

∏
n

Mn(C) ⊆
∏
n

Mn(A).

If dim(A) <∞, the inclusion becomes an identity, but in general the inclusion is proper.
Altogether we have for all exact C∗-algebras A a natural inclusion

A ⊗
min

(∏
n

Mn(C)
/∑

n

Mn(C)
)
⊆
∏
n

Mn(A)
/∑

n

Mn(A). (9.3)

Similarly, if n1 < n2 < n3 < · · · , are natural numbers, then

A ⊗
min

(∏
k

Mnk
(C)
/∑

k

Mnk
(C)
)
⊆
∏
k

Mnk
(A)
/∑

k

Mnk
(A). (9.4)

After these preparations we can now prove the following generalizations of Theorems 7.1
and 8.2.

9.1 Theorem. Let (Ω,F, P ), N , (X
(n)
i )ri=1 and (xi)

r
i=1 be as in Theorem 7.1, and let A

be a unital exact C∗-algebra. Then for all polynomials p in r non-commuting variables
and with coefficients in A (i.e., p is in the algebraic tensor product A⊗C〈(Xi)

r
i=1〉), and

all ω ∈ Ω\N ,

lim
n→∞

∥∥p((X(n)
i (w))ri=1

)∥∥
Mn(A)

=
∥∥p((xi)ri=1

)∥∥
A⊗minC∗((xi)r

i=1,111B)
. (9.5)

Proof. We consider only the case r ∈ N. The case r = ∞ is proved similarly. By
Theorem 7.1 we can for each ω ∈ Ω\N define a unital embedding πω of C∗(x1, . . . , xr,111B)
into

∏
nMn(C)/

∑
nMn(C), such that

πω(xi) = ρ
((
X

(n)
i (ω)

)∞
n=1

)
, i = 1, . . . , r,

where ρ :
∏

nMn(C)→
∏

nMn(C)/
∑

nMn(C) is the quotient map. Since A is exact, we
can, by (9.3), consider idA ⊗ πω as a unital embedding of A⊗min C

∗(x1, . . . , xr,111B) into∏
nMn(A)/

∑
nMn(A), for which

(idA ⊗ πω)(a⊗ xi) = ρ̃
((
a⊗X(n)

i (ω)
)∞
n=1

)
, i = 1, . . . , r,

where ρ̃ :
∏

nMn(A)→
∏

nMn(A)/
∑
Mn(A) is the quotient map. Hence, for every p in

A⊗ C〈X1, . . . , Xr〉,

(idA ⊗ πω)
(
p(x1, . . . , xr)

)
= ρ̃
((
p(X

(n)
1 (ω), . . . , X(n)

r (ω))
)∞
n=1

)
.

By (9.2) it follows that for all ω ∈ Ω/N , and every p in A⊗ C〈X1, . . . , Xr〉,∥∥p(x1, . . . , xr)
∥∥

A⊗minC∗(x1,...,xr,111B)
= lim sup

n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥

Mn(A)
.
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Consider now a fixed ω ∈ Ω\N . Put

α = lim inf
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥

Mn(A)
,

and choose natural numbers n1 < n2 < n3 < · · · , such that

α = lim
k→∞

∥∥p(X(nk)
1 (ω), . . . , X(nk)

r (ω)
)∥∥

Mn(A)
.

By Theorem 7.1 there is a unital embedding π′ω of C∗(x1, . . . , xr,111B) into the quotient∏
kMnk

(C)/
∑

kMnk
(C), such that

π′ω(xi) = ρ′
((
X

(nk)
i (ω)

)∞
k=1

)
, i = 1, . . . , r,

where ρ′ :
∏

kMnk
(C) →

∏
kMnk

(C)/
∑

kMnk
(C) is the quotient map. Using (9.4) in-

stead of (9.3), we get, as above, that

‖p(x1, . . . , xr)‖A⊗minC∗(x1,...,xr,111B) = lim sup
k→∞

∥∥p(X(nk)
1 (ω), . . . , X(nk)

r (ω)
)∥∥

Mn(A)

= α

= lim inf
n→∞

∥∥p(X(n)
1 (ω), . . . , X(n)

r (ω)
)∥∥

Mn(A)
.

This completes the proof of (9.5). �

9.2 Theorem. Let (Ω,F, P ), (U
(n)
i )ri=1, πn,ω, λ and N be as in Theorem 8.2. Then for

every unital exact C∗-algebra A, every function f : Fr → A with finite support (i.e. f is
in the algebraic tensor product A⊗ CFr), and for every ω ∈ Ω\N

lim
n→∞

∥∥∥∑
γ∈Fr

f(γ)⊗ πn,ω(γ)
∥∥∥
Mn(A)

=
∥∥∥∑
γ∈Fr

f(γ)⊗ λ(γ)
∥∥∥

A⊗minC
∗
red(Fr)

.

Proof. This follows from Theorem 8.2 in the same way as Theorem 9.1 follows from
Theorem 7.1, so we leave the details of the proof to the reader. �

In Corollary 9.3 below we use Theorem 9.1 to give new proofs of two key results from
our previous paper [HT2]. As in [HT2] we denote by GRM(n, n, σ2) or GRM(n, σ2) the
class of n × n random matrices Y = (yij)1≤i,j≤n, whose entries yij, 1 ≤ i, j ≤ n, are n2

i.i.d. complex Gaussian random variables with density (πσ2)−1 exp(−|z|2/σ2), z ∈ C. It
is elementary to check that Y is in GRM(n, σ2), if and only if Y = 1√

2
(X1 + iX2), where

X1 =
1√
2

(Y + Y ∗), X2 =
1

i
√

2
(Y − Y ∗)

are two stochastically independent self-adjoint random matrices from the class SGRM(n, σ2).

9.3 Corollary. [HT2, Thm. 4.5 and Thm. 8.7] Let H,K be Hilbert spaces, let c > 0, let
r ∈ N and let a1, . . . , ar ∈ B(H,K) such that∥∥∥ r∑

i=1

a∗i ai

∥∥∥ ≤ c and
∥∥∥ r∑
i=1

aia
∗
i

∥∥∥ ≤ 1,
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and such that {a∗i aj | i, j = 1, . . . , r}∪ {111B(H)} generates an exact C∗-algebra A ⊆ B(H).

Assume further that Y
(n)

1 , . . . , Y
(n)
r are stochastically independent random matrices from

the class GRM(n, 1
n
), and put Sn =

∑r
i=1 ai⊗Y

(n)
i . Then for almost all ω in the underlying

probability space Ω,

lim sup
n→∞

max
{

sp(Sn(ω)∗Sn(ω))
}
≤ (
√
c+ 1)2. (9.6)

If, furthermore, c > 1 and
∑r

i=1 a
∗
i ai = c111B(H), then

lim inf
n→∞

min
{

sp(Sn(ω)∗Sn(ω))
}
≥ (
√
c− 1)2. (9.7)

Proof. By the comments preceding Corollary 9.3, we can write

Y
(n)
i =

1√
2

(X
(n)
2i−1 + iX

(n)
2i ), i = 1, . . . , r,

where X
(n)
1 , . . . , X

(n)
2r are independent self-adjoint random matrices from SGRM(n, 1

n
).

Hence S∗nSn is a second order polynomial in (X
(n)
1 , . . . , X

(n)
2r ) with coefficient in the exact

unital C∗-algebra A generated by {a∗i aj | i, j = 1, . . . , r} ∪ {111B(H)}. Hence, by Theorem
9.1, there is a P -null set N in the underlying probability space (Ω,F, P ) such that

lim
n→∞

‖S∗n(ω)Sn(ω)‖ =
∥∥∥( r∑

i=1

ai ⊗ yi
)∗( r∑

i=1

ai ⊗ yi
)∥∥∥,

where yi = 1√
2
(x2i−1+ix2i) and (x1, . . . , x2r) is any semicircular system in a C∗-probability

space (B, τ) with τ faithful. Hence, in the terminology of [V3], (y1, . . . , yr) is a circular
system with the normalization τ(y∗i yi) = 1, i = 1, . . . , r. By [V3], a concrete model for
such a circular system is

yi = `2i−1 + `∗2i, i = 1, . . . , r

where `1, . . . , `2r are the creation operators on the full Fock space

T = T(L) = C⊕ L⊕ L⊗2 ⊕ · · ·

over a Hilbert space L of dimension 2r, and τ is the vector state given by the unit vector
1 ∈ C ⊆ T(L). Moreover, τ is a faithful trace on the C∗-algebra B = C∗(y1, . . . , y2r,111B(T(L))).
The creation operators `1, . . . , `2r satisfy

`∗i `j =

{
1, if i = j,

0, if i 6= j.

Hence, we get

r∑
i=1

ai ⊗ yi =
( r∑
i=1

ai ⊗ `2i−1

)
+
( r∑
i=1

ai ⊗ `∗2i
)

= z + w,
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where

z∗z =
( r∑
i=1

a∗i ai

)
⊗ 111B(T) and ww∗ =

( r∑
i=1

aia
∗
i

)
⊗ 111B(T).

Hence ∥∥∥ r∑
i=1

ai ⊗ yi
∥∥∥ ≤ ‖z‖+ ‖w‖ ≤

∥∥∥ r∑
i=1

a∗i ai

∥∥∥ 1
2

+
∥∥∥ r∑
i=1

aia
∗
i

∥∥∥ 1
2 ≤
√
c+ 1.

This proves (9.5). If, furthermore, c > 1 and
∑r

i=1 a
∗
i ai = c · 111B(H), then z∗z = c111A⊗B(T)

and, as before, ‖w‖ ≤ 1. Thus, for all ξ ∈ H⊗ T, ‖zξ‖ =
√
c‖ξ‖ and ‖wξ‖ ≤ ‖ξ‖. Hence

(
√
c− 1)‖ξ‖ ≤ ‖(z + w)ξ‖ ≤ (

√
c+ 1)‖ξ‖, (ξ ∈ H ⊗ T),

which is equivalent to

(
√
c− 1)2111B(H⊗T) ≤ (z + w)∗(z + w) ≤ (

√
c+ 1)2111B(H⊗T).

Hence
−2
√
c111B(H⊗T) ≤ (z + w)∗(z + w)− (c+ 1)111B(H⊗T) ≤ 2

√
c111B(H⊗T),

and therefore ∥∥(z + w)∗(z + w)− (c+ 1)111B(H⊗T)

∥∥ ≤ 2
√
c. (9.8)

Since S∗nSn is a second order polynomial in (X
(n)
1 , . . . , X

(n)
2r ) with coefficients in A, the

same holds for S∗nSn − (c+ 1)111Mn(A). Hence, by Theorem 9.1 and (9.8),

lim
n→∞

∥∥Sn(ω)∗Sn(ω)− (c+ 1)111Mn(A)

∥∥ =
∥∥∥( r∑

i=1

ai ⊗ yi
)∗( r∑

i=1

ai ⊗ yi
)
− (c+ 1)111B(H⊗T)

∥∥∥
≤ 2

√
c.

Therefore, lim infn→∞min{sp(Sn(ω)∗Sn(ω))} ≥ (c+ 1)− 2
√
c, which proves (9.7). �

9.4 Remark. The condition that {a∗i aj | i, j = 1, . . . , r} ∪ {111B(H)} generates an exact
C∗-algebra is essential for Corollary 9.3 and hence also for Theorem 9.1. Both (9.6) and
(9.7) are false in the general non-exact case (cf. [HT2, Prop. 4.9] and [HT3]).

We turn next to a result about the constants C(r), r ∈ N, introduced by Junge and Pisier
in connection with their proof of

B(H) ⊗
max

B(H) 6= B(H) ⊗
min

B(H). (9.9)

9.5 Definition. [JP] For r ∈ N, let C(r) denote the infimum of all C ∈ R+ for which there
exists a sequence of natural numbers (n(m))∞m=1 and a sequence of r-tuples of n(m)×n(m)
unitary matrices

(u
(m)
1 , . . . , u(m)

r )∞m=1

such that for all m,m′ ∈ N, m 6= m′∥∥ r∑
i=1

u
(m)
i ⊗ ū(m′)

i

∥∥ ≤ C, (9.10)

where ū
(m′)
i is the unitary matrix obtained by complex conjugation of the entries of u

(m′)
i .
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To obtain (9.9), Junge and Pisier proved that limr→∞
C(r)
r

= 0. Subsequently, Pisier [P3]

proved that C(r) ≥ 2
√
r − 1 for all r ≥ 2. Moreover, using Ramanujan graphs, Valette

[V] proved that C(r) = 2
√
r − 1, when r = p + 1 for an odd prime number p. From

Theorem 9.2 we obtain

9.6 Corollary. C(r) = 2
√
r − 1 for all r ∈ N, r ≥ 2.

Proof. Let r ≥ 2, and let g1, . . . , gr be the free generators of Fr and let λ denote the left
regular representation of Fr on `2(Fr). Recall from [P3, Formulas (4) and (7)] that∥∥∥ r∑

i=1

λ(gi)⊗ vi
∥∥∥ = 2

√
r − 1 (9.11)

for all unitaries v1, . . . , vr on a Hilbert space H. Let C > 2
√
r − 1. We will construct

natural numbers (n(m))∞m=1 and r-tuples of n(m)× n(m) unitary matrices

(u
(m)
1 , . . . , u(m)

r )∞m=1

such that (9.10) holds for m,m′ ∈ N, m 6= m′. Note that by symmetry it is sufficient to
check (9.10) for m′ < m. Put first

n(1) = 1 and u
(1)
1 = · · · = u(1)

r = 1.

Proceeding by induction, let M ∈ N and assume that we have found n(m) ∈ N and

r-tuples of n(m)×m(n) unitaries (u
(m)
1 , . . . , u

(m)
r ) for 2 ≤ m ≤M , such that (9.10) holds

for 1 ≤ m′ < m ≤M . By (9.11),∥∥∥ r∑
i=1

λ(gi)⊗ ū(m)
i

∥∥∥ = 2
√
r − 1,

for m = 1, 2, . . . ,M . Applying Theorem 9.2 to the exact C∗-algebras Am′ = Mn(m′)(C),
m′ = 1, . . . ,M , we have

lim
n→∞

∥∥∥ r∑
i=1

πn,ω(gi)⊗ ū(m′)
i

∥∥∥ = 2
√
r − 1 < C, (m′ = 1, 2, . . . ,M),

where πn,ω : Fr → U(n) are the group homomorphisms given by (8.4). Hence, we can
choose n ∈ N such that∥∥∥ r∑

i=1

πn,ω(gi)⊗ ū(m′)
i

∥∥∥ < C, m′ = 1, . . . ,M.

Put n(M + 1) = n and u
(M+1)
i = πn,ω(gi), i = 1, . . . , r. Then (9.10) is satisfied for all

m,m′ for which 1 ≤ m′ < m ≤ M + 1. Hence, by induction we get the desired sequence
of numbers n(m) and r-tuples of n(m)× n(m) unitary matrices. �

We close this section with an application of Theorem 7.1 to powers of random matrices:
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9.7 Corollary. Let for each n ∈ N Yn be a random matrix in the class GRM(n, 1
n
), i.e.,

the entries of Yn are n2 i.i.d. complex Gaussian variables with density n
π
e−n|z|

2
, z ∈ C.

Then for all p ∈ N

lim
n→∞

‖Yn(ω)p‖ =

(
(p+ 1)p+1

pp

) 1
2

,

for almost all ω in the underlying probability space Ω.

Proof. By the remarks preceding Corollary 9.3, we have

(Yn)p =

(
1√
2

(
X

(n)
1 + iX

(n)
2

))p
,

where, for each n ∈ N, X
(n)
1 , X

(n)
2 are two independent random matrices from SGRM(n, 1

n
).

Hence, by Theorem 7.1, we have for almost all ω ∈ Ω:

lim
n→∞

‖Yn(ω)p‖ = ‖yp‖,

where y = 1√
2
(x1 + ix2), and {x1, x2} is a semicircular system in a C∗-probability space

(B, τ) with τ faithful. Hence, y is a circular element in B with the standard normalization

τ(y∗y) = 1. By [La, Proposition 4.1], we therefore have ‖yp‖ = ((p+ 1)p+1/pp)
1
2 . �

9.8 Remark. For p = 1, Corollary 9.7 is just the complex version of Geman’s result
[Ge] for square matrices (see [Ba, Thm. 2.16] or [HT1, Thm. 7.1]), but for p ≥ 2 the
result is new. In [We, Example 1, p.125], Wegmann proved that the empirical eigenvalue
distribution of (Y p

n )∗Y p
n converges almost surely to a probability measure µp on R with

max(supp(µp)) =
(p+ 1)p+1

pp
.

This implies that for all ε > 0, the number of eigenvalues of (Y p
n )∗Y p

n , which are larger
than (p + 1)p+1/pp + ε, grows slower than n, as n → ∞ (almost surely). Corollary 9.7
shows that this number is, in fact, eventually 0 as n→∞ (almost surely).
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