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Abstract

In this article it is proved, that every locally compact, second countable group
has a left invariant metric d, which generates the topology on G, and which is
proper, ie. every closed d-bounded set in G is compact. Moreover, we obtain
the following extension of a result due to N. Brown and E. Guentner [BG05]:
Every locally compact, second countable G admits a proper affine action on
the reflexive and strictly convex Banach space

∞
⊕

n=1

L2n(G, dµ),

where the direct sum is taken in the l2-sense.

1 Introduction

We consider a special class of metrics on second countable, locally compact groups, namely
proper left invariant metrics which generate the given topology on G, and we will denote
such a metric a plig metric.

It is fairly easy to show, that if a locally compact group G admits a plig metric, then G
is second countable. Moreover, any two plig metrics d1 and d2 on G are coarsely equivalent,
ie. the identity map on G defines a coarse equivalence between (G, d1) and (G, d2) in the
sense of [Roe95].

In [LMR00, pp. 14-16] Lubotzky, Moser and Ragunathan shows, that every compactly
generated second countable group has a plig metric. Moreover, Tu shoved in [Tu01, lemma
2.1], that every contable discrete group has a plig metric.

The main result of this paper is that every locally compact, second countable group G
admits a plig metric. Moreover a plig metric d can be chosen, such that the d-balls have
exponentially controlled growth in the sense that

µ(Bd(e, n)) ≤ β · eαn, n ∈ N,
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for suitable constants α and β. Here µ denotes the Haar measure on G.
In [BG05], Brown and Guentner proved that for every contable discrete group Γ there

exists a sequence of numbers pn ∈ (1,∞) converging to ∞ for n → ∞, such that Γ has a
proper affine action on the reflexive and strictly convex Banach space

X0 =
∞

⊕

n=1

lpn(Γ),

where the direct sum is in the l2-sense.
By similar methods, we prove that every second countable group has a proper affine

action on the reflexive and strictly convex Banach space

X =
∞

⊕

n=1

L2n(G, dµ),

where the sum is taken in the l2-sense. However, in order to prove, that the exponents
(pn)∞n=1 can be chosen to be pn = 2n, it is essential to work with a plig metric on G for
which the d-balls have exponentially controlled growth. As a corollary we obtain, that a
second countable locally compact group G has a uniform embedding in the above Banach
space X

Note, that the Banach spaces X and X0 above are not uniformly convex. Kasparov and
Yu have recently proved, that the Novikov conjecture holds for every discrete countable
group, which has a uniform embedding in a uniformly convex Banach space (cf. [KY05]).
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2 Coarse geometry and plig metrics

First, let us fix notation and basic definitions:

Definition 2.1. Let G be a topological group, ie. a group equipped with a Hausdorff
topology, such that the map (x, y) → x · y−1 is continuous. If G is equipped with a metric
d, we put Bd(x,R) = {y ∈ G : d(x, y) < R} and Dd(x,R) = {y ∈ G : d(x, y) ≤ R}.

• G is locally compact if every x ∈ G has a relative compact neighbourhood.

• We say that the metric d induces the topology of G if the topology generated by the
metric τd coincides with the original topology τ .

• The metric d is said to be left invariant if for all g, x, y ∈ G we have that

d(x, y) = d(g · x, g · y).
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• Following [Roe95, p. 10], a metric space is called proper if all closed bounded sets are
compact. When G is a group, this reduces by the left invariance of the group metric
to the requirement, that for every M > 0 all the closed balls

D(e,M) = {h ∈ G : d(e, h) ≤M}

are compact.

We will work with a special class of metrics on locally compact, second countable
groups, which we define here:

Definition 2.2. Let G be a topological group. A plig metric d on G is a metric on G,
which is Proper, Left Invariant and Generates the topology.

M. Gromov started investigating asymptotic invariants of groups, particularly funda-
mental groups of manifolds.

This lead to the development of coarse geometry - or large scale geometry . Coarse
geometry studies global properties of metric spaces, neglecting small (bounded) variations
of these spaces. The properties and invariants in coarse geometry are treated in the limit
at infinity, as opposed to the traditional world of topology, which focuses on the local
structure of the space.

Definition 2.3 ([Roe95]). Let (X, dX) and (Y, dY ) be metric spaces.

• A map f : X → Y is called uniformly expansive if

∀R>0∃S>0 such that dX(x, x′) ≤ R ⇒ dY (f(x), f(x′)) ≤ S.

• A map f : X → Y is called metrically proper if

∀B⊂Y B is bounded ⇒ f−1(B) ⊂ X is bounded.

• A map f : X → Y will by called a coarse map if it is both metrically proper and
uniformly expansive.

• Two coarse maps h0, h1 : X → Y are said to be coarsely equivalent when

∃C>0∀x∈X : dY (h0(x), h1(x)) < C.

We denote the relation of coarse equivalence by ’∼c’.

• The spaces X and Y are said to be coarsely equivalent if there exist coarse maps
f : X → Y , and g : Y → X such that

f ◦ g ∼c IdY and g ◦ f ∼c IdX .
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• The coarse structure of X means the coarse equivalence class of the given metric,
[dX ]∼.

Example 2.4. It is well known that

(0, 1) ∼h R and Z 6∼h R,

where ∼h means that the two spaces in question are homeomorphic.
It is easy to see, that in the coarse case we have:

(0, 1) 6∼c R and Z ∼c R.

The reason for working with coarse geometry is, that many geometric group theory
properties are coarse invariants. Examples of coarse invariants are: property A [HR00],
asymptotic dimension [BD01] and change of generators for a finitely generated group.

M. Gromov has suggested in [Gro95] to solve the Novikov conjecture by considering
classes of groups admitting uniform embeddings into Banach spaces with various restraints.

G. Yu proved in [Yu00], that the Novikov Conjecture is true for a space that admits a
uniform embedding into a Hilbert space. This result was strenghtened in [KY05], where it
is shown that the Novikov Conjecture is true for a space that admits a uniform embedding
into a uniformly convex Banach space.

Together with the fact, that exact groups admit a uniform embedding into a Hilbert
space, see [GK02], makes uniform embedding extremely interesting to study.

The idea of a uniform embedding is to map a metric space (X, dX) into a metric space
(Y, dY ) in such a way that the large-scale geometry of X is preserved.

This means for instance that we are not allowed to “squease” unbounded segments into
a point, and we are not allowed to “blow up” bounded segments to unbounded - the limits
at infinity must be preserved.

Definition 2.5. A map f : X → Y will by called a uniform embedding if there exist
non-decreasing functions ρ−, ρ+ : [0,∞) → [0,∞) such that

lim
t→∞

ρ−(t) = lim
t→∞

ρ+(t) = ∞

and
ρ−(dX(x, y)) ≤ dY (f(x), f(y)) ≤ ρ+(dX(x, y)) (1)

When f : X → Y is a coarse map, we will denote a map φ : f(X) → X a section of f
if it fullfills that

f ◦ φ = idf(x).

The set of sections of the map f will be denoted by Inv(f).

Example 2.6. It is easy to see that we can not have a uniform embedding of the free group
F2 in any R

n. On the other hand it was shown in [Haa79], [dlHV89, p. 63] that F2 has a
uniform embedding in the infinite dimensional Hilbert space H.
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The following is a folklore lemma, as different definitions of uniform embedding are
used in the litterature, see [Gro93], [HR00] and [GK02], see [Prz05] for a detailed proof.

Lemma 2.7. Let (X, dX) and (Y, dY ) be metric spaces, and f : X → Y a map. The
following are equivalent:

1. f : X → Y is a uniform embedding.

2. (Guentner and Kaminker version) f is uniformly expansive, and

∀S>0∃R>0 dX(x, y) ≥ R ⇒ dY (f(x), f(y)) ≥ S. (2)

3. (Higson and Roe version) The map f is uniformly expansive, and so is any φ ∈
Inv(f).

4. f is a coarse equivalence between X and f(X) and any section φ ∈ Inv(f) is a coarse
map.

Theorem 2.8. Let G be a locally compact, second countable group. Assume that d1 and
d2 are plig metrics on G.

Then the identity map
Id : (G, d1) → (G, d2)

is a coarse equivalence.

Proof. To establish the coarse equivalence of the metric spaces, it is by the 3rd case of
lemma (2.7), enough to show that Id : (G, d1) → (G, d2) and Id : (G, d2) → (G, d1) are
both uniformly expansive, that is:

∀R>0∃S>0 d1(x, y) ≤ R ⇒ d2(x, y) ≤ S.

∀R>0∃S>0 d2(x, y) ≤ R ⇒ d1(x, y) ≤ S.

Since both d1 and d2 generates the topology of G, the identity map

Id : (G, d1) → (G, d2)

is a homeomorphism, and the maps φi : (G, di) → R+ given by

φi(x) = di(e, x), x ∈ G

are continuous.
Let R > 0. Since the closed d1-ball

D1(x,R) = {x ∈ G : d1(x, e) ≤ R}
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is compact, φ2 attains a maximum values S on D1(x,R). Moreover

d1(e, x) ≤ R ⇒ d2(e, x) ≤ S.

Hence, by the left invariance of d1 and d2

d1(x, y) ≤ R ⇒ d2(x, y) ≤ S, ∀x,y∈G.

Since R was arbitary, this shows the uniform expansiveness of Id.
By reversing the roles of d1 and d2 in the last argument, we also obtain that the inverse

map is uniformly expansive.

Remark 2.9. In the special case of a countable discrete group, Theorem (2.8) was proved
by J. Tu (cf. the uniqueness part of [Tu01, lemma 2.1]).

3 Bounded geometry on locally compact groups.

The purpose of this section is to show, that a plig metric implies bounded geometry on
a locally compact, second countable group. Let us begin by defining bounded geometry,
which is a concept from the world of coarse geometry.

Definition 3.1. Following [Roe95, p. 13], the metric space (G, d) is said to have bounded
geometry if it is coarsely equivalent to a discrete space (Q, dQ), where for every M > 0
there exists constants ΓM such that

∀q∈Q |D(q,M)| = |{p ∈ Q : d(q, p) ≤M}| ≤ ΓM .

Note that (G, d) is a finitely generated group, and d a word length metric. Then G has
bounded geometry.

Definition 3.2. Let (Y, d) be a metric space. We say that a discrete space X ⊂ Y is a
coarse lattice, if

∃λ∈R∀y∈Y ∃xy∈X d(xy, y) ≤ λ. (3)

Lemma 3.3. Let G be a locally compact group, and let d be a plig metric on G. Then
(G, d) is second countable and has bounded geometry.

Proof. First we observe that the conditions on (G, d) imply, that G is second countable.
We can write G as a union of compact metric spaces, namely:

G =
∞
⋃

n=1

Dd(e, n),

where we have that each Dd(e, n) is a compact metric space, since d is proper.
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Now, since every compact metric space is seperable, see [Eng89, Theorem 4.1.17, page.
297], we can conclude that every Dd(e, n) has a countable dense subset. Hence G is
seperable, and since for any metric space second countability is equivalent to seperability,
see [Wil70, Theorem 16.11, page 112], it follows that G is second countable.

We will now show that G has bounded geometry by constructing a countable coarse
lattice X ⊂ G such that X has bounded geometry.

Let X = {xi}i∈I be a maximal family of elements from G, such that d(xi, xj) ≥ 1, i 6= j.
Since G is seperable, the index set I is at most countable.

By maximality of X, we have that

G =
⋃

i∈I

Bd(xi, 1).

If we had that |I| < ∞, then G = ∪i∈IBd(xi, 1) would be a finite union of compact sets,
and therefore compact, and hence bounded. Therefore G is coarsely equivalent to {•} if I
is finite, and therefore G has bounded geometry.

Let us therefore assume, that |I| = ∞, and we can use N instead of the index set I.
Let us construct the coarse equivalences between X and G:

Start by setting

A1 = Bd(x1, 1)

A2 = Bd(x2, 1) \ A1

. . .

An = Bd(xn, 1) \
n−1
⋃

i=1

Ai

We have now that the family {An}
∞
n=1 in G fullfills the following:











An ∩ Am = ∅ if m 6= n

xn ∈ An ⊂ Bd(xn, 1) for all n ∈ N

∪∞
n=1An = G

Now equip the set X = {xi}i∈I with the metric inherited from (G, d). Define:

φ : G→ X, by φ(x) = xn when x ∈ An

ψ : X → G, by φ(xn) = xn for n ∈ N

Remark that both ψ and φ are coarse maps. We have from the construction of φ and
ψ that

φ ◦ ψ = IdX

and
∀x∈G d(ψ ◦ φ(x), x) ≤ 1
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and therefore we see, that the spaces X and G are coarsely equivalent.
Now, we have to show that the set X indeed has bounded geometry. Let M > 0 be

given, and let us look at the disks of radius M in X:

DX(q,M) = {xn ∈ X : d(q, xn) ≤M, n ∈ N}. (4)

For every M > 0 we need to find a constant ΓM such that

sup
q∈X

|DX(q,M)| ≤ ΓM .

Since d(xn, xm) ≥ 1 when n 6= m, the balls B(xn,
1
2
) are disjoint. Moreover, we have

that
⋃

xn∈DX(q,M)

B(xn,
1

2
) ⊂ B(q,M +

1

2
).

Let µ denote the Haar measure on G, then we have that

∑

xn∈DX(q,M)

µ(B(xn,
1

2
)) ≤ µ(B(q,M +

1

2
))

Since the number of terms in the sum above is equal to |D(q,M)|, we get by the left
invariance of the Haar measure, that

|D(q,M)| · µ(B(e,
1

2
)) ≤ µ(B(e,M +

1

2
)).

Hence

sup
q∈X

|D(q,M)| ≤
µ(B(e,M + 1

2
))

µ(B(e, 1
2
))

<∞.

Therefore we see that (X, d) has bounded geometry, and we can conclude that (G, d) also
has bounded geometry.

Example 3.4. Remark, that lemma (3.3) is not true for general metric spaces, as we can
find an example of a metric space X that is proper, but does not have bounded geometry:

Consider the triple (Dn, dn, xn), where Dn is the discrete space with n points, equipped
with the discrete metric:

dn(x, y) =

{

1 x 6= y

0 x = y
,

and where xn ∈ Dn.
Let X =

∐

n∈N
Dn, and equip X with the following metric:

d(z, y) = dj(z)(z, xj(z)) + |j(z) − j(y)| + dj(y)(y, xj(y)) where j(x) = n⇔ x ∈ Dn.

It is easy to see that X is proper, but on the other hand X does not have bounded geometry
since the number of elements in Dd(xn, 1) tends to infinity for n→ ∞.
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4 Construction of a plig metric on G.

In this and the section, we will prove that every locally compact, second countable group
has a plig metric d. Together with theorem (2.8) we have therefore that a locally compact,
second countable group has exactly one coarse equivalence class of plig metrics.

Definition 4.1. We will call a map l : G → R+ for a length function, if it satisfies the
following conditions (5)–(7).

∀g∈G l(g) = 0 ⇔ g = e. (5)

∀g∈G l(g) = l(g−1). (6)

∀g,h∈G l(g · h) ≤ l(g) + l(h). (7)

Lemma 4.2. 1. If l : G→ R+ is a length function, then

d(x, y) = l(y−1x), x, y ∈ G (8)

is a left invariant metric on G.

2. Conversily, if d : G×G→ R+ is a left invariant metric on G, then

l(x) = d(x, e), x ∈ G

is a length function on G, and d is the metric obtained from l by (8).
Moreover, if l is a length function on G and d(x, y) = l(y−1x) is the associated left

invariant metric, then d generates the topology on G if and only if

{l−1[0, r) : r > 0} is a basis for the neighborhoods of e ∈ G0. (9)

Moreover, d is proper if and only if:

∀r>0 l−1([0, r]) is compact. (10)

Proof. The proof is elementary, and will be left to the reader.

Remark 4.3. If l is a length function on G satisfying (9), then the associated metric

d(x, y) = l(y−1x), x, y ∈ G

generates the given topology on G. Therefore

l−1([0, r]) = {x ∈ G : d(x, e) ≤ r}

is closed in G. Hence if we assume (9), then (10) is equivalent to that l−1([0, r]) is relatively
compact for all r > 0, which again is equialent to that

Bd(e, n) = l−1([0, n))

is relatively compact for all n ∈ N.
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Lemma 4.4. Let G be a locally compact, second countable group. Assume that the topology
on G is generated by a left invariant metric δ, for which

U = Bδ(e, 1) is relatively compact (11)

G =
∞
⋃

k=1

Uk (12)

Then G admits a left invariant metric d generating the topology on G, for which
Bd(e, 1) = U , and

∀n∈N B(e, n) ⊂ B(e, 1)2n−1. (13)

Moreover d is a plig metric on G.

Proof. Let lδ(g) = δ(g, e) be the length function associated to δ, and define a function
l : G→ R+ by

l(g) = inf

{ k
∑

i=1

lδ(gi) : g = g1, . . . , gk, where gi ∈ U, i = 1, . . . k, k ∈ N

}

(14)

Clearly, l(g) ≥ 0 for all g ∈ G, and by the assumption (12), we have that l(g) < ∞.
Moreover, one checks easily that

l(g · h) ≤ l(g) + l(h), g, h ∈ G. (15)

Since U = U−1, we have also that

l(g−1) = l(g), g ∈ G. (16)

Moreover
l(g) ≥ lδ(g), g ∈ G (17)

and
l(g) = lδ(g), g ∈ U (18)

By (17) and (18), we have that

l(g) = 0 ⇔ g = e.

Hence by lemma (4.2), l is a length function on G. Let

d(g, h) = l(g−1 · h), g, h ∈ G (19)

be the associated left invariant metric on G. By (18) and (19) we have that

Bd(x, r) = Bδ(x, r), r ≤ 1 (20)
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for all g ∈ G. Hence d generates the same topology on G as δ does. Moreover, we have
that

Bd(e, 1) = Bδ(e, 1) = U. (21)

We next turn to the proof of (13). Let n ∈ N, and let g ∈ Bd(e, n). Then there exists
a k ∈ N, and g1, . . . , gk ∈ U such that

g = g1 . . . gk and
k

∑

i=1

lδ(gi) < n.

Further we may assume, that k ∈ N is minimal among all the numbers for which such a
representation is possible.

We claim, that in this case

lδ(gi) + lδ(gi+1) ≥ 1, i = 1, . . . , k − 1. (22)

Assume namely, that lδ(gi)+ lδ(gi+1) < 1 for some i, where 1 ≤ i ≤ k− 1, then we have

lδ(gi · gi+1) ≤ lδ(gi) + lδ(gi+1) < 1, (23)

and thus we have that gi · gi+1 ∈ U . Hence g can be written as a product of k− 1 elements
from U :

g = g1 . . . gi · gi−1(gi · gi+1)gi+2 . . . gk (24)

for which
i−1
∑

j=1

lδ(gj) + lδ((gi · gi+1) +
k

∑

j=i+2

lδ(gj) ≤
k

∑

j=1

lδ(gj) < n. (25)

This contradicts the minimality of k, and hence (22) must hold.
Let brc as usual denote the largest integer such that

brc ≤ r

From (22) we get that

b
k

2
c ≤

b k
2
c

∑

j=1

(lδ(g2j−1) + lδ(g2j)) ≤
k

∑

j=1

lδ(gj) < n (26)

Since both bk
2
c and n are integers, we have that b k

2
c ≤ n− 1, and therefore

k ≤ 2 · b
k

2
c + 1 ≤ 2n− 1, (27)

and hence we get that
g ∈ Uk ⊂ U 2n−1 = Bd(e, 1)

2n−1, (28)
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which prooves (13).

Since U 2n−1 ⊂ U
2n−1

, where the latter set is compact by assumption (11), we have that
Bd(e, n) is relatively compact for all n ∈ N. Hence, by lemma (4.2) and remark (4.3) d is
a plig metric on G.

We are now ready toprove, that there exists a plig metric on every locally compact,
second countable group.

Theorem 4.5. Every locally compact, second countable group G has a plig metric d.

Proof. Let G be locally compact, second countable group. By Remark [Wil70, Theorem
1.22,page 34], we can choose a left invariant metric δ0 on G, which generates the topology
on G. Moreover, since G is locally compact,there exists an r > 0 such that the open ball
Bδ0(e, r) is relatively compact. Put now δ = 1

r
δ0. Then δ is again a left invariant metric

on G, which generates the topology. Moreower,

U = Bδ(e, 1) (29)

is relatively compact.
Put

G0 =
∞
⋃

k=1

Uk. (30)

Then G0 is an open and closed subgroup of G. Since G is second countable, it follows
that the space Y = G/G0 of left G0-cosets in G is a countable set. In the following we
will assume that |Y | = ∞. The proof in the case |Y | < ∞ can be obtained by the same
method with elementary modifications.

We can choose a sequence {xn}
∞
n=1 ⊂ G, such that x0 = e and such that is a disjoint

union of cosets:

G =
∞
⋃

n=0

xn ·G0. (31)

By lemma (4.4), there is a plig metric d0 on G0, such that

Bd0
(e, 1) = U (32)

Bd0
(e, n) ⊂ U 2n−1. (33)

In particular, d0 is proper. Let

l0(h) = d0(h, e), h ∈ G0 (34)

be the length function associated with d0.
Put

S = {x1, x2, x3 . . .} ⊂ G (35)
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and define l1 : S → N by
l1(xn) = n. (36)

Define furthermore a function l̃ : G→ [0,∞[ by setting

l̃(g) = inf

{

l0(h0) +
k

∑

i=1

(l1(si) + l0(hi))

}

, (37)

where the infimum is taken over all the representations of g of the form










g = h0 · s1 · h1 · s2 · h2 · · ·hk

k ∈ N ∪ {0}, h0, . . . , hk ∈ G0

s1, . . . , sk ∈ S

(38)

Note that

G = G0 ∪
∞
⋃

n=1

xn ·G0 = G0 ∪ S ·G0 ⊂ G0 ∪G0 · S ·G0, (39)

so that every g ∈ G has a representation of the form (38) with k = 0 or k = 1.
Next, put

l(g) = max

{

l̃(g), l̃(g−1)

}

, g ∈ G (40)

We will show, that l(g) is a length function on G, and that the associated metric

d(g, h) = l(g−1 · h), g, h ∈ G (41)

is a plig metric on G.
It is easily checked that

l̃(g · h) ≤ l̃(g) + l̃(h), g, h ∈ G (42)

and hence also
l(g · h) ≤ l(g) + l(h), g, h ∈ G. (43)

Moreover, by (38)
l(g−1) = l(g), g ∈ G. (44)

If g ∈ G and l(g) < 1, then l̃(g) ≤ l(h) < 1. Thus for every ε > 0, g has a representation
of the form (38), such that

l0(h0) +
k

∑

i=1

(l1(si) + l0(hi)) < l(g) + ε (45)

and for sufficiently small ε, we have that

l(g) + ε < 1,
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which implies that k = 0, because

∀s∈S l1(s) ≥ 1.

Hence g = h0 ∈ G0, and
l0(g) = l0(h0) < l(g) + ε.

Since ε can be chosen arbitrarily small, we have shown that

g ∈ G and l(g) < 1 ⇒ g ∈ G0 and l0(g) ≤ l(g). (46)

In particular, l(g) = 0 implies that g = e, which together with (43) and (44) shows,
that l is a length function on G. Hence by lemma (4.2)

d(g, h) = l(g−1 · h), g, h ∈ G

is a left invariant metric on G.
¿From (46) we have

g ∈ Bd(e, 1) ⇒ g ∈ G0 and l0(g) ≤ l(g). (47)

Conversely, if g ∈ G0, then using (37) with k = 0 and h0 = g, we get that

l̃(g) ≤ l0(g)

and therefore

l(g) ≤ max

{

l0(g), l0(g
−1)

}

= l0(g), g ∈ G0. (48)

By (47) and (48), we have

Bd(e, r) = Bd0
(e, r), 0 < r ≤ 1, (49)

and since G0 is open in G, the sets

Bd0
(e, r), 0 < r ≤ 1

form a basis of neighbourhoods for e in G. Hence d generates the original topology on G.
It remains to be proved, that d is proper, ie. that Bd(e, r) is relatively compact for all

r > 0. Note that it is sufficient to consider the case, where r = n ∈ N.
Let n ∈ N, and let g ∈ Bd(e, n). Then we have that

l̃(g) ≤ l(g) < n.

Hence by (38), we see that

g = h0 · s1 · h1 · s2 · h2 · · · sk · hk, (50)
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where


















k ∈ N ∪ {0}

h0, . . . , hk ∈ G0

s1, . . . , sk ∈ S

l0(h0) +
∑k

i=1(l1(si) + l0(hi)) < n

(51)

Since
l1(s) ≥ 1 ∀s∈S,

we have that k ≤ n− 1. Moreover, since l1 : S → N is defined by

l1(xm) = m, m = 1, 2, . . .

we have
si ∈ {x1, x2, . . . , xn−1}, 1 ≤ i ≤ k. (52)

Moreover
hi ∈ Bd0

(e, n), 0 ≤ i ≤ k (53)

because l0(hi) < n by (51). Put

T (n) = {x1, . . . , xn−1} ∪ {e}

Then by (50), (51), (52) and (53) we have

g ∈ Bd0
(e, n)

(

T (n) ·Bd0
(e, n)

)k

⊂

(

T (n) ·Bd0
(e, n)

)k+1

⊂

(

T (n) ·Bd0
(e, n)

)n

where the last inclusion follows from the inequality k ≤ n− 1. Since g ∈ Bd(e, n) was
chosen arbitrarily, we have shown that

Bd(e, n) ⊂

(

T (n) ·Bd0
(e, n)

)n

.

But d0 is a proper metric on G0, and since T (n) is a finite set, it follows, that

(

T (n) ·Bd0
(e, n)

)n

is compact.
Hence Bd(e, n) is relatively compact for all n ∈ N, and therefore d is a proper metric

on G, cf. remark (4.3).

Remark 4.6. As mentioned in the introduction, Theorem (4.5) has previously been obtained
in two important special cases, the compactly generated case [LMR00] and the countable,
discrete case [Tu01].
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Example 4.7. In this example, we give an explicit formula for a plig metric on GL(n,R).
The same formula will also define a plig metric on every closed subgroup of GL(n,R).
Recall that

GL(n,R) = {A ∈Mn(R) : det(A) 6= 0} (54)

and the topology on GL(n,R)is inherited from the topology of Mn(R) ' R
n2

. We equip
Mn(R) with the operator norm

||A|| = sup{||Ax|| : x ∈ R
n, ||x|| ≤ 1},

where ||x|| =
√

x2
1 + · · · + x2

n is the Euclidian norm on R
n.

Define a function on GL(n,R) by

l(A) = max{ln(1 + ||A− I||), ln(1 + ||A−1 − I||}. (55)

We claim that l is a length function on GL(n,R), and that the associated metric

d(A,B) = l(B−1A), A,B ∈ GL(n,R)

is a plig metric on GL(n,R). We prove first, that l is a length function. Clearly, l(A) =
l(A−1) and l(A) = 0 ⇔ A = I.

Let A,B ∈ GL(n,R). Then

||A− I|| ≤ el(A) − 1, ||B − I|| ≤ el(B) − 1.

Put X = A− I and Y = B − I. Then

||AB − I|| = ||XY +X + Y || ≤ ||X|| · ||Y || + ||X|| + ||Y ||

= (||X|| + 1)(||Y || + 1) − 1 ≤ el(A)el(B) − 1

and hence
ln(1 + (||AB − I||) ≤ l(A) + l(B). (56)

Substituting (A,B) with (B−1, A−1) in this inequality, we get

ln(1 + (||(AB)−1 − I||) ≤ l(B−1) + l(A−1) = l(A) + l(B), (57)

and by (56) and (57) it follows that l(A+ B) ≤ l(A) + l(B). Hence l is a length function
on GL(n,R).

To prove that d is a plig metric on GL(n,R), it suffices to check, that the conditions
(10) and (9) in lemma (4.2) are fullfilled.

Since A→ A−1 is a homeomorphism of GL(n,R)onto itself, (9) is clearly fullfilled. To
prove (10) we let r ∈ (0,∞) and put M = er. Since ||C|| ≤ 1+ ||C− I|| for C ∈ GL(n,R),
we see that l−1([0, r]) is a closed subset of

K = {A ∈ GL(n,R) : ||A|| ≤M, ||A−1|| ≤M}.
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Denote

L = {(A,B) ∈Mn(R) ×Mn(R) : AB = BA = I, ||A|| ≤M, ||B|| ≤M},

then L is a compact subset of Mn(R)2, and K is the range of L by the continuous map
π : (A,B) → A of Mn(R)2 onto Mn(R). Hence K is compact, and therefore l−1([0, r]) is
also compact. This proves (10), and therefore d is a plig metric on GL(n,R).

Example 4.8. Let G be a connected Lie group. Then we can choose a left invariant Rie-
mannian structure on G. Let (gp)p∈G denote the corresponding inner product on the spaces
(Tp)p∈G. The path length metric on G corresponding to the Riemannian structure is

d(g, h) = inf
γ
L(γ)

where

L(γ) =

∫ b

a

√

gγ(t)(γ′(t), γ ′(t))dt

is the path length of a piecewise smooth path γ in G, and where the infimum is taken over
all such paths, that starts in γ(a) = g and ends in γ(b) = h. Then d is a left invariant
metric on G which induces the given topology on G, cf. [Hel01, p.51-52].

We claim that d is a proper metric on G. To prove this, it is sufficient to prove, that
Bd(e, r) is relatively compact for all r > 0. Let r > 0, and let g ∈ B(e, r). Then e and g
can be connected with a piecewise smooth path γ of length L(γ) < r.

Now γ can be divided in two paths each of length 1
2
L(γ). Let h denote the endpoint of

the first path. Then

d(e, h) ≤
L(γ)

2
and d(h, g) ≤

L(γ)

2
.

Hence g = h(h−1g), where d(e, r) < r
2

and d(h−1g, e) = d(g, h) < r
2
. This shows, that

B(e, r) ⊂ B(e,
r

2
)2

and hence
B(e, r) ⊂ B(e, r · 2−k)2k

for all k ∈ N. Since G is locally compact, we can choose a k ∈ N such that B(e, r2−k) is
relatively compact. Hence B(e, r) is contained in the compact set

B(e, r2−k)
2k

.

This shows that d is proper, and therefore d is a plig metric on G.
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5 Exponentially controlled growth of the d-balls

Definition 5.1. Let (G, d) be a locally compact, second countable group with a plig

metric, and let µ denote the Haar measure on G. Then we say that the d-balls have
exponentially controlled growth if there exists constants α, β > 0, such that

µ(Bd(e, n)) ≤ βeαn, ∀n∈N. (58)

Note, that if (58) holds, then

µ(Bd(e, r)) ≤ β ′ · ec2·r, r ∈ [1,∞), (59)

where β ′ = β · eα.

We now turn to the problem of constructing a plig metric on G, for which the d-balls
have exponentially controlled growth. We first prove the following simple combinatorial
lemma:

Lemma 5.2. Let n ∈ N, and let k ∈ {1, . . . , n}.
Put

Nn,k =

{

(n1, n2, . . . , nk) ∈ N
k :

k
∑

i=1

ni ≤ n

}

(60)

Then the number of elements in Nn,k is

|Nn,k| =

(

n

k

)

.

Proof. The map

(n1, . . . , nk) → {n1, n1 + n2, . . . , n1 + n2 + · · · + nk}

is a bijection from Nn,k onto the set of subsets of {1, . . . , n} with k elements, and the latter
set has of course

(

n

k

)

elements.

Having established lemma (5.2), we can now turn to giving a proof of the main theorem
of this section:

Theorem 5.3. Every locally compact, second countable group G has a plig metric d, for
which the d-balls have exponentially controlled growth.

Proof. The result is obtained, by modifying the construction of a plig metric on G from
the proof of theorem (4.5).

Let U,G0, d0, d and S = {x1, x2, . . .} be as in the proof of theorem (4.5), and note that
by (49) we have

Bd(e, 1) = Bd0
(e, 1) = U.
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For each i ∈ N the set U · xi is compact in G, and can therefore be covered by finitely
many left translates of U :

U · xi ⊂ U · xi ⊂

p(i)
⋃

j=1

yi,j · U. (61)

Define l∗1 : S → [1,∞[ by
l∗1(xi) = i+ log2(p(i)), (62)

and note that
l∗1(xi) ≥ i = l1(xi), xi ∈ S,

where l1 : S → N is the map defined in (36).
We will now repeat the construction of the left invariant metric d in the proof of theorem

(4.5), with l1 replaced by l∗1, ie. we first define a function l̃∗ : G→ [0,∞[ by

l̃∗(g) = inf

{

l0(h0) +
k

∑

i=1

(l∗1(si) + l0(hi))

}

(63)

where the infimum is taken over all representations of g of the form



















g = h0 · s1 · h1 · s2 · h2 · · · sk · hk

k ∈ N ∪ {0}

h0, . . . , hk ∈ G0

s1, . . . , sk ∈ S

(64)

Next, we put

l∗(g) = max

{

l̃∗(g), l̃∗(g−1)

}

, g ∈ G (65)

and
d∗(g, h) = l∗(g−1 · h), g, h ∈ G. (66)

Then, exactly as for the metric d in the proof of theorem (4.5) we get that d∗ is a left
invariant metric on G, which generates the given topology on G, and which satisfies the
following

Bd∗(e, 1) = Bd0
(e, 1) = U,

(cf. the proof of theorem (4.5)).
Moreover, since l∗1 ≥ l1, we have that d∗ ≥ d, so the properness of d implies, that d∗ is

also proper.
Let n ∈ N. Since

l∗(g) ≤ l̃∗(g), g ∈ G,

we get from (63) and (64) that

Bd∗(e, n) ⊂

{

g ∈ G : l̃∗(g) < n

}
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Hence every g ∈ Bd∗(e, n) can be written on the form (64) with

l0(h0) +
k

∑

i=1

(l∗1(si) + l0(hi)) < n.

Note, that since
l∗1(s) ≥ l1(s) ≥ 1, s ∈ S,

we have that k ≤ n− 1.
Choose next natural numbers m0, . . . ,mk, such that

l0(hi) < mi ≤ l0(hi) + 1, i = 0, . . . , k.

Then we have that
hi ∈ Bd∗(e,mi), i = 0, . . . , k,

and

m0 +
k

∑

i=1

(l∗1(si) +mi) < n+ (k + 1) ≤ 2n+ 1.

Hence

Bd∗(e, n) ⊂
⋃

M

Bd0
(e,mo) · xn1

·Bd0
(e,m1) · xn2

· · · xnk
·Bd0

(e,mk), (67)

where M is the set of tuples

(

k,m0,m1, . . . ,mk, n1, . . . , nk

)

(68)

for which










k ∈ {0, . . . , n− 1}

n1, . . . , nk,m0, . . . ,mk ∈ N
∑k

i=0mi +
∑k

i=1 l
∗
1(xni

) < 2n+ 1

By (62), the latter condition can be rewritten as

k
∑

i=0

mi +
k

∑

i=1

(ni + log2(p(ni)) < 2n+ 1, (69)

where p(ni) ∈ N are given by formula (61). Since mi, ni ∈ N and p(ni) ≥ 1, it follows that

k
∑

i=0

mi +
k

∑

i=1

ni ≤ 2n.
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Hence M ⊂
⋃n−1

k=0 Mk, where Mk is the set of 2k + 1-tuples (m0, . . . ,mk, n1, . . . , nk) of
natural numbers for which

k
∑

i=0

mi +
k

∑

i=1

ni ≤ 2n.

Therefore, by lemma (5.2) we have that |Mk| =
(

2n

2k+1

)

, and thus

|M | ≤
n−1
∑

k=0

(

2k

2k + 1

)

≤
2n
∑

j=0

(

2n

j

)

= 22n. (70)

¿From (33), we have
Bd0

(e,mi) ⊂ U 2mi−1 ⊂ U 2mi .

Hence by (67), we have

Bd∗(e, n) ⊂
⋃

M

U2mo · xn1
· U 2m1 · xn2

· · · xnk
· U 2mk , (71)

where |M | ≤ 22n and where (69) holds for each (k,m0, . . . ,mk, n1, . . . , nk) ∈ M . Since U
2

is compact, it can be covered by finitely many left translates of U , ie.

U2 ⊂ U
2
⊂

q
⋃

i=1

zi · U, z1, . . . zq ∈ G.

It now follows that for every k ∈ N, the set U k can be covered by qk−1 translates of U ,
namely

Uk ⊂

q
⋃

i1=···=ik−1=1

zi1 · · · zik−1
· U, z1, . . . , zq ∈ G. (72)

We can now use (61) and (72) to control the Haar measure of each of the sets

U2mo · xn1
· U 2m1 · xn2

· · · xnk
· U 2mk , (73)

from (71). By (72) we see that U 2m0 can be covered by q2m0−1 left translations of U .
Combined with (61), we get that U 2m0 ·xn1

can be covered by q2m0−1·p(n1) left translates
of U . Hence

U2m0xn1
U2m1 =

⋃

w∈A1

w · U 2m1+1,

where |A1| ≤ 22m0−1p(n1).
Again by (72), we see that U 2m1+1 can be covered by q2m1 left translations of U , so

altogether we see that the set
U2m0xn1

U2m1
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can be covered by q2m0+2m1−1p(n1) left translations of U . Continuing this procedure, we
get that the set in (73) can be covered by

q2m0+2m1+···+2mk−1p(n1) · p(n2) · · · p(nk)

left translates of U , and hence the Haar measure of the set satisfies that

µ

(

U2mo · xn1
· U 2m1 · xn2

· · · xnk
· U 2mk

)

≤ q2·
Pk

i=0
mi ·

k
∏

i=1

p(ni)µ(U)

≤ q2·
Pk

i=0
mi · 2

Pk
i=1

log
2
(p(ni))µ(U)

By (69), we have that

{

∑k

i=0mi ≤ 2n+ 1
∑k

i=1 log2(p(ni)) ≤ 2n+ 1
.

Hence, we have that

µ

(

U2mo · xn1
· U 2m1 · xn2

· · · xnk
· U 2mk

)

≤ (2q2)2n+1 · µ(U).

This holds for all tupples (k,m0, . . . ,mk, n1, . . . , nk) ∈ M , and since we have shown
that |M | ≤ 22n, we get from (67) that

µ(Bd∗(e, n)) ≤ (4q2)2n+1µ(U), n ∈ N, (74)

which shows that the d∗-balls have exponentially controlled growth.

Example 5.4. In this example, we will give a more direct proof of Theorem (5.3) in the
case of a countable discrete group Γ. If Γ is finitely generated, it is elementary to check,
that the word length metric d is proper and that the d-balls have exponentially controlled
growth, so we can assume that Γ is generated by an infite, symmetric set S, such that
e /∈ S.

We can write S as a disjoint union

S =
∞
⋃

n=1

Zn,

where each Zn is of the form {xn, x
−1
n }. Note that |Zn| = 2 if xn 6= x−1

n , and |Zn| = 1 if
xn = x−1

n . Define a function
l0 : S → N
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by
l0(xn) = l0(x

−1
n ) = n.

Next, define a function
l : Γ → N ∪ {0}

by

l(g) =

{

inf{
∑n

k=1 l(gk)} g 6= e

0 g = e
(75)

where the infimum is taken over all representations of g of the form

g = g1 · · · gn, gi ∈ S, n ∈ N.

Then it is easy to check, that l is a length function on Γ, and since

l(g) ≥ 1 for g ∈ Γ \ {e}

the associated left invariant metric

d(g, h) = l(g−1h), g, h ∈ Γ (76)

generates the discrete topology on Γ. Put

D(e, n) = {g ∈ Γ : d(g, e) ≤ n}. (77)

We will next show, that
|D(e, n)| ≤ 3n, n ∈ N, (78)

which clearly implies, that the d-balls have exponentially controlled growth. In order to
prove (78), we will show by induction in n ∈ N, that the set

∂(e, n) = {g ∈ Γ : d(g, e) = n} (79)

satisfies
|∂(e, n)| ≤ 2 · 3n−1, n ∈ N. (80)

Since l0(s) ≥ 2 for s ∈ S \ {x1, x
−1
1 }, we have for g ∈ Γ, that

l(g) = 1 ⇔ g ∈ {x1, x
−1
1 }. (81)

Hence
|∂(e, 1)| = |{x1, x

−1
1 }| ≤ 2 (82)

which proves (80) for n = 1. Let now n ≥ 2 and assume as induction hyphotesis, that

|∂(e, i)| ≤ 2 · 3i−1, i = 1, . . . , n− 1. (83)

We shall then show, that
|∂(e, n)| ≤ 2 · 3n−1.

23



We claim, that

∂(e, n) ⊂
n

⋃

k=1

Zk · ∂(e, n− k) (84)

To prove (83), let g ∈ ∂(e, n). Then there exists a m ∈ N and g1, . . . , gm ∈ S such that

g = g1 · · · gm

and
m

∑

i=1

l0(gi) = n

Put k = l0(g1). Then k ∈ N and k ≤ n. Now

g = g1 · (g2 · · · gm),

where

l(g1) ≤ l0(g1) = k (85)

l(g2 · · · gm) ≤
m

∑

i=2

l0(gi) = n− k. (86)

But, since
n = l(g) ≤ l(g1) + l(g2 · · · gm)

equality holds in both (85) and (86). Hence g2 · · · gm ∈ ∂(e, n− k), which proves (84). By
(84) we have

|∂(e, n)| ≤
n

∑

k=1

|Zk| · |∂(e, n− k)| ≤ 2
n

∑

k=1

|∂(e, n− k)| = 2
n−1
∑

i=1

|∂(e, i)|,

Since |∂(e, 0)| = |{e}| = 1, we get by the induction hypothesis (83), that

|∂(e, n)| ≤
n−1
∑

i=0

2|∂(e, i)| ≤ 2(1 +
n−1
∑

i=1

2 · 3i−1) = 2(1 + 3n−1 − 1)) = 2 · 3n−1. (87)

This completes the proof of the induction step. Hence (80) holds for all n ∈ N. Since l
only takes integer values, we have

D(e, n) =
n

⋃

i=0

∂(e, i).

Therefore

|D(e, n)| =
n

∑

i=0

|∂(e, i)| ≤ 1 +
n

∑

i=1

2 · 3i−1 = 3n. (88)

This proves (78), and it follows that the d-balls have exponentially controlled growth.
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6 Affine actions on Banach spaces.

We have shown in theorem 4.5 that for any locally compact, second countable group G
there exists a plig metric d, and we have shown in theorem 5.3 that d can be chosen so that
the d-balls have exponentially controlled growth. We will now construct an affine action
of G on the reflexive seperable strictly convex Banach space

⊕∞
n=1 L

2n(G,µ) (in the l2 sense).

Gromov suggested in [Gro95], that it is purposeful to attack the Baum Connes Conjec-
ture by considering proper affine isometric actions on various Banach spaces.

It was shown by N. Higson and G. Kasparov in [HK01] that the Baum-Connes Con-
jecture holds for discrete countable groups that admit a proper affine isometric action on
a Hilbert space. In particular, this holds for all discrete amenable groups. Moreover, Yu
proved in [Yu05], that a word hyperbolic group Γ has a proper affine action on the uniform
convex Banach space lp(Γ × Γ) for some p ∈ [2,∞).

Therefore, it is interesting to study what kind of proper affine isometric actions on
Banach spaces a given locally compact, second countable group admits.

Definition 6.1. The group of affine actions on G: Let X be a normed vector space, then
the affine group of X is:

Aff(X) = {φ : X → X : φ(x) = Ax+ b;A ∈ GL(X), b ∈ X}.

We say that G has an affine action on X, if there exists a group homomorphism of G on
Aff(X), ie:

α : G � Aff(X), (89)

such that
∀g,h∈G α(g · h) = α(g) ◦ α(h). (90)

Let πg denote the linear part of α(g), and denote the translation part by b(g). We say that
α(g) is isometric if the linear part πg is isometric, i.e:

∀ξ∈X ||πgξ|| = ||ξ||.

Moreover, we say that the action is proper, if

∀ξ∈X lim
g→∞

||α(g)ξ|| = ∞.

Remark 6.2. Since α is a homomorphism of the group G into Aff(X), we have that:

∀ξ∈X α(st)ξ = α(s)(α(t)ξ) ⇔

∀ξ∈X πstξ + b(st) = πsπtξ + πsb(t) + b(s) ⇔

πst = πs ◦ πt and b(st) = πs(b(t)) + b(s). (91)

The formula for b(st) is called the cocycle condition with respect to π.
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And we also need to know what a strictly convex space is – and we will use the oppor-
tunity to define a uniformly convex space as well:

Definition 6.3. Let X be a normed vector space, denote the unit ball by SX .

1. The following two conditions are equivalent (see [Meg98, Prop. 5.1.2]). If X satisfies
any of them, it is called strictly convex.

(a)
∀x6=y∈SX ,1>t>0 ||tx+ (1 − t)y|| < 1. (92)

(b)

∀x6=y∈SX
||

1

2
(x+ y)|| < 1. (93)

2. X is called uniformly convex if

∀ε>0∃δ>0∀x, y ∈ SX ||x− y|| ≥ ε⇒ ||
1

2
(x+ y)|| ≤ 1 − δ (94)

Remark 6.4. Every space that is uniformly convex is also strictly convex (see [Meg98,
Proposition 5.2.6]). Examples of uniformly convex Banach spaces include

lp, l
n
p , ∞ > p > 1, n ≥ 1

(this follows from Milman-Pettis theorem, see [Meg98, Theorem 5.2.15]).
A uniformly convex Banach space is necessarily reflexive (see [Meg98, Theorem ]).

There are spaces that are strictly convex, but not uniformly convex, and also spaces that
are strictly convex and not reflexive. An example of a strictly convex but not uniformly
convex Banach space is:

∞
⊕

i=1

lnpn
, where pn = 1 +

1

n

(with l2 norm on the direct sum).

As an application of the construction of a plig metric with the d-balls have exponentially
controlled growth on a given locally compact, second countable group in theorem (5.3),
we will construct a proper isometric action on the Banach space

⊕∞
n=1 L

2n(G,µ) (in the l2 sense).

In [BG05] a proper isometric action is constructed for a discrete group Γ into the
Banach space

⊕∞
p=1 L

pn(G, dµ), where pn is an unbounded sequence. We have generalized
this result as follows:

Theorem 6.5. Let G be a locally compact, second countable group, and let µ denote the
Haar measure. Then there exists a proper affine isometric action α of G on the seperable,
strictly convex, reflexive Banach space

X =
⊕∞

n=1 L
2n(G,µ) (in the l2 sense).
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Proof. Let G be as in the statement of the theorem, then according to theorem (4.5) and
theorem (5.3) we can choose a plig metric d on G where the d-balls have exponentially
controlled growth, ie.

∃α>0 µ(Bd(e, n) ≤ β · eαn, (95)

for some constants α, β > 0. We can without loss of generality assume that β ≥ 1.
Consider the functions phing : G− > R given by:

φn
x(y) =

{

1 − d(x,y)
n

when d(x, y) ≤ n

0 when d(x, y) ≥ n
(96)

It is easy to check, that phing is 1
n
-Lipschitz:

|φn
x(y) − φn

x(z)| ≤
d(y, z)

n
. (97)

Assume that x ∈ Bd(e,
n
2
):

φn
e (x) = 1 −

d(x, e)

n
≥ 1 −

n
2

n
=

1

2
· 1Bd(e, n

2
)(x), (98)

Let Cucb(G) denote the set of uniformly continuous bounded functions from G to R.
Define bn : G→ Cucb(G) by:

bn(g) = λ(g)φn
e − φn

e ⇒ bn(g)(h) = φn
e (g−1h) − φn

e (h). (99)

Since d(g, e) = d(g−1, e), we have that

φn
e (g) = φn

e (g−1), g ∈ G.

Hence, by (99) and (97) we have

|bn(g)| ≤
∣

∣φn
e (g−1h) − φn

e (h)
∣

∣ =
∣

∣φn
e (h−1g) − φn

e (h−1)
∣

∣ ≤
d(h−1g, h−1)

n
≤
d(e, g)

n
(100)

Since bn(g) = 0, when x 6∈ Bd(e, n) ∪Bd(g, n), it follows that

|bn(g)| ≤
d(e, g)

n
· 1Bd(e,n)∪Bd(g,n).

Hence bn(g) ∈ L2(G,µ) and

||bn(g)||2n
2n ≤

(d(e, g)

n

)2n(

µ(Bd(e, n)) + µ(Bd(g, n))
)

.

Therefore, by (95) and the left invariance of µ, we have that

||bn(g)||2n
2n ≤

(d(e, g)

n

)2n
· 2βeαn.
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Using now, that β ≥ 1 and
∑∞

n=1
1
n2 = π2

6
< 2, we get

∞
∑

n=1

||bn(g)||22n ≤
∞

∑

n=1

d(e, g)2

n2
(2β)

1

n eα ≤ 4βeαd(g, e)2

Hence
b(g) = ⊕∞

n=1b
n(g) ∈ X

and
||b(g)||X ≤ 2

√

βe
α
2 d(g, e).

Let λ̃ denote the left regular representation ofG onX =
⊕∞

n=1 L
2n(G,µ) (in the l2 sense).

Clearly λ̃(g) is an isometry ofX for every g ∈ G. We show next, that b(g) fulfills the cocycle
condition

b(st) = λ̃(s)b(t) + b(s), s, t ∈ G (101)

and (101) follows from

bn(st) = λ(st)φn
e − φn

e

= λ(s)(λ(t)φn
e − φn

e ) + (λ(s)φn
e − φn

e ) = λ(s)bn(t) + bn(s), s, t ∈ G,

for alle n ∈ N. By (101) we can define a continuous affine action α of G on X by

α(g)ξ = λ̃(g)ξ + b(g), x ∈ X, g ∈ G. (102)

The last thing to show is that the action is metrically proper. For ξ ∈ X and g ∈ G,
we have

||α(g)ξ|| = ||λ̃(g)ξ + b(g)|| ≥ ||b(g)|| − ||λ̃(g)ξ|| = ||b(g)|| − ||ξ||.

Hence, we only have to check, that

||b(g)|| → ∞ when d(g, e) → ∞.

Let g ∈ G and assume that d(g, e) > 2. Moreover, let N(g) ∈ N denote the integer for
which

d(g, e)

2
− 1 ≤ N(g) <

d(g, e)

2
.

For n = 1 . . . , N(g), we have that

d(g, e) > 2N(g) ≥ 2n.

Hence
B(e, n) ∩B(g, n) = ∅,

which implies that φn
e and φn

g have disjoint supports. Therefore

||bn(g)||2n
2n = ||φn

g − φn
e ||

2n
2n = ||φn

g ||
2n
2n + ||φn

e ||
2n
2n ≥ ||φn

e ||
2n
2n
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Since we have that

φn
e ≥

1

2
· 1B(e, n

2
)

it follows that

||bn(g)||2n
2n ≥ 2−2nµ(B(e,

n

2
)) ≥ 2−2nµ(B(e,

1

2
)).

Hence

||b(g)||2 ≥

N(g)
∑

n=1

||bn(g)||22n ≥
1

4

N(g)
∑

n=1

µ(B(e,
1

2
))

1

n

≥
N(g)

4
· min

{

µ(B(e,
1

2
)), 1

}

. (103)

Since

N(g) ≥
d(g, e)

2
− 1

it follows that
||b(g)|| → ∞ for d(g, e) → ∞.

Corollary 6.6. Let G be a locally compact, 2-nd countable group. Then G has a uniform
embedding into the seperable, strictly convex Banach space

⊕∞
n=1 L

2n(G,µ) (in the l2 sense).

Proof. We will show, that the map b : G→ X constructed in the proof of theorem (6.5) is
a uniform embedding. By the proof of theorem (6.5), we have that

c1
√

d(g, e) ≤ ||b(g)||X ≤ c2d(g, e), (104)

when d(g, e) ≥ c3 for some positive constants c1, c2, c3. By the cocycle condition (91), we
get for g, h ∈ G that

b(g) = b(h(h−1g)) = λ̃(h)b(h−1g) + b(h).

Hence
||b(g) − b(h)||X = ||λ̃(h)b(h−1g)||X = ||b(h−1g)||X .

Since d(h−1g, e) = d(g, h), we obtain by applying (104) to b(h−1g), that

c1
√

d(g, h) ≤ ||b(g) − b(h)||X ≤ c2d(g, h),

when d(g, h) ≥ c3. This proves, that b is a uniform embedding.
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