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Introduction

Random matrices has been an important tool in statistics since 1928 and in physics since
1955 starting with the pioneering works of Wishart [Wis] and Wigner [Wig1]. In the
last 12 years random matrices have also played a key role in operator algebra theory and
free probability theory starting with Voiculescu’s random matrix model for a free semi-
circular system (cf. [Vo]). Many results on eigenvalue distributions for random matrices
are obtained by complicated combinatorial methods, and the purpose of this paper is
to give more easily accessible proofs, by analytic methods, for those results on random
matrices, which are of most interest to people working in operator algebra theory and free
probability theory

We will study two classes of random matrices. The first class is the Gaussian unitary
ensemble (GUE) (cf. [Meh, Ch.5]), and the second class is the complex Wishart ensemble,
which is also called the Laguerre ensemble (cf. [Go], [Kh] and [Fo]). Our new approach is
based on the derivation of an explicit formula for the moment generating function:

t → E(Tr(exp(tZ)),

where Z is either a GUE random matrix or a complex Wishart matrix. These two formulas
are then used to reprove classical results on the asymptotic behaviour of the eigenvalue
distribution of Z. In particular, we shall study the asymptotic behaviour of the largest
and smallest eigenvalue of Z in those two cases. The above mentioned explicit formulas
also give a new proof of the Harer-Zagier recursion formula for the moments E(Tr(Zp)),
p = 1, 2, . . . , in the GUE case, and we derive a similar recursion formula for the moments
in the complex Wishart case.
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1 Preliminaries and statement of results

The first class of random matrices studied in this paper is the class of complex selfadjoint
random matrices A = (aij)

n
i,j=1, for which

(aii)
n
i=1, (

√
2Reaij)i<j, (

√
2Imaij)i<j

form a set of n2 independent real normal distributed random variables all with mean value
0 and variance σ2. We denote this class of random matrices SGRM(n, σ2). If σ2 = 1

2
one

gets the Gaussian unitary ensemble (GUE) from Mehta’s book (cf. [Meh, Sect.5]) and
the value σ2 = 1

n
gives the normalization used in Voiculescu’s random matrix paper [Vo].

In [Meh, Section 5], it is proved that the “mean density” of the eigenvalues of a random
matrix A from the class SGRM(n, 1

2
) is given by

1

n

n−1∑
k=0

ϕk(x)2 (1.1)

where ϕ0, ϕ1, ϕ2, . . . is the sequence of Hermite functions. I Section 3 we derive from (1.1)
that for A in SGRM(n, σ2):

E
(
Trn[exp(sA)]

)
= n · exp(σ2s2

2
) · Φ(1− n, 2;−σ2s2), (1.2)

where Trn is the usual unnormalized trace on Mn(C), and Φ is the confluent hyper-
geometric function (cf. formula (3.9) in Section 3). From (1.2), we obtain a simple proof
of Wigner’s Semi-circle Law in the sense of “convergence in moments”, i.e., for a sequence
(Xn) of random matrices, such that Xn ∈ SGRM(n, 1

n
) for all n,

lim
n→∞

E
(
trn[Xp

n]
)

= 1
2π

∫ 2

−2

xp
√

4− x2 dx, (p ∈ N), (1.3)

where trn = 1
n
Trn is the normalized trace on Mn(C).

In Section 4, we apply (1.2) to show, that if (Xn) is a sequence of random matrices,
defined on the same probability space, and such that Xn ∈ SGRM(n, 1

n
) for all n, then

lim
n→∞

λmax

(
Xn(ω)

)
= 2, for almost all ω, (1.4)

lim
n→∞

λmin

(
Xn(ω)

)
= −2, for almost all ω, (1.5)

2



where λmax

(
Xn(ω)

)
and λmin

(
Xn(ω)

)
denote the largest and smallest eigenvalues of Xn(ω),

for each ω in the underlying probability space Ω. This result was proved by combinatorial
methods for a much larger class of random matrices by Bai and Yin in [BY1] in 1988.
Only random matrices with real entries are considered in [BY1], but the proofs also work
in the complex case with only minor modifications (cf. [Ba, Thm. 2.12]). In Section 5
we apply (2.1) to give a new proof of a recursion formula due to Harer and Zagier, [HZ],
namely the numbers

C(p, n) = E(Trn[A2p]), p = 0, 1, 2, . . .

for A in SGRM(n, 1) satisfies

C(p + 1, n) = n · 4p+2
p+2

· C(p, n) + p(4p2−1)
p+2

· C(p− 1, n), (1.6)

In Sections 6–9 we consider random matrices of the form B∗B where B is in the class
GRM(m,n, σ2) consisting of all m × n random matrices of the form B = (bjk)j,k where
{bjk | 1 ≤ j ≤ m, 1 ≤ k ≤ n} is a set of mn independent, complex Gaussian random
variables each with density π−1σ−2 exp(−|z|2/σ2), z ∈ C. The distribution of B∗B is
known as the complex Wishart distribution or the Laguerre ensemble (cf. [Go], [Kh] and
[Fo]), and in analogy with (1.1), the “mean density” of the eigenvalues of B∗B in the case
σ2 = 1 is given by

1

n

n−1∑
k=0

ϕm−n
k (x)2 (1.7)

where the sequence of functions (ϕα
k )∞k=0 can be expressed in terms of the Laguerre poly-

nomials Lα
n(x):

ϕα
k (x) =

[
k!

Γ(k+α+1)
xα exp(−x)

] 1
2 Lα

k (x). (1.8)

From (1.7) and (1.8) we derive in Section 7 the following two formulas:

If m ≥ n, B ∈ GRM(m, n, 1), and s ∈ C such that Re(s) < n,

E
(
Trn[exp(sB∗B)]

)
=

n∑
k=1

F (k −m, k − n, 1; s2)

(1− s)m+n+1−2k
, (1.9)

E
(
Trn[B∗B exp(sB∗B)]

)
= mn

F (1−m, 1− n, 2; s2)

(1− s)m+n
, (1.10)

where F (a, b, c; z) is the hyper-geometric function (cf. formula (7.8) in Section 7).

In Section 7, we use (1.10) to give a new proof of the following result originally due to
Marchenko and Pastur [MP]:

Let (Yn) be a sequence of random matrices, such that for all n, Yn ∈ GRM(m(n), n, 1
n
),

where m(n) ≥ n. Then, if limn→∞
m(n)

n
= c, the mean distribution of the eigenvalues of

Y ∗
n Yn converges in moments to the probability measure µc on [0,∞[ with density

dµc(x)

dx
=

√
(x− a)(b− x)

2πx
· 1[a,b](x), (1.11)
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where a =
(√

c− 1
)2

and b =
(√

c + 1
)2

. Specificly,

lim
n→∞

E
(
trn[(Y ∗

n Yn)p]
)

=

∫ b

a

xp dµc(x), (p ∈ N), (1.12)

Since Marchenko and Pastur’s proof from 1967, many other proofs of (1.12) have been
given both for the real and complex Wishart case (cf. [Wa], [GS], [Jo], [Ba] and [OP]).

In Section 8 we use (1.9) to prove that if (Yn)∞n=1 is a sequence of random matrices defined
on the same probability space, such that Yn ∈ GRM(m(n), n, 1

n
) and m(n) ≥ n for all

n ∈ N, then if limn→∞
m(n)

n
= c, one has

lim
n→∞

λmax(Y
∗
n Yn) =

(√
c + 1

)2
, almost surely, (1.13)

lim
n→∞

λmin(Y
∗
n Yn) =

(√
c− 1

)2
, almost surely. (1.14)

Again, this is not a new result. (1.13) was proved in 1980 by Geman [Gem] and (1.14) was
proved in 1985 by Silverstein [Si]. Only the real Wishart case is considered in [Gem] and
[Si], but the proofs can easily be generalized to the complex case. Moreover (1.13) and
(1.14) can be extended to a much larger class of random matrices (cf. [BY2] and [Ba]).

Finally, in Section 9, we use (1.10) combined with the differential equation for the hyper-
geometric function, to derive a recursion formula for the numbers:

D(p, m, n) = E
(
Trn[(B∗B)p]

)
, (B ∈ GRM(m, n, 1), p ∈ N),

analogous to (1.6), namely

D(p + 1, m, n) = (2p+1)(m+n)
p+2

·D(p, m, n) + (p−1)(p2−(m−n)2)
p+2

·D(p− 1, m, n). (1.15)

It would be interesting to know the counterparts of the explicit formulas (1.2), (1.6),
(1.9), (1.10) and (1.15), for random matrices with real or symplectic Gaussian entries.
The real and symplectic counterparts of the density (1.1) are completed in Mehta’s book
[Meh, Chap.6 and 7], and the real and symplectic counterpart of (1.7) can be found in
Forrester’s book manuscript [Fo, Chap.5]. However, the formulas for these densities are
much more complicated than in the complex case.

2 Selfadjoint Gaussian Random Matrices

2.1 Definition. By SGRM(n, σ2) we denote the class of n×n complex random matrices
A = (ajk)

n
j,k=1, where ājk = ajk, j, k = 1, . . . , n and

ajj, (
√

2Reajk)j<k (
√

2Imajk)j<k (2.1)

is a family of n2 identical distributed real Gaussian random variables with mean value 0
and variance σ2 on a probability space (Ω,F , P ). �
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The density of a Gaussian random variable with mean value 0 and variance σ2 is given
by

(2πσ2)−
1
2 exp

(
− x2

2σ2

)
.

For a selfadjoint matrix H = (hjk)
n
j,k=1

Trn(H2) =
∑

j

h2
jj + 2

∑
j<k

|hjk|2.

Therefore the distribution of a random matrix A ∈ SGRM(n, 1
n
) (considered as a proba-

bility distribution on Mn(C)sa) is given by

dµ(H) = c1 exp

(
− 1

2σ2
Trr(H

2)

)
dH (2.2)

where dH is the Lebesgue measure on Mn(C)sa

dH =
n∏

j=1

dhjj

∏
1≤j<k≤n

dRe(hjk)dIm(hjk) (2.3)

and
c1 =

(
2k/2(πσ2)k2/2

)−1
.

For a selfadjoint matrix H ∈ Mn(C)sa we let λ1(H) ≤ λ2(H) ≤ · · · ≤ λn(H) denote the
ordered list of eigenvalues. Put

Λ =
{
(λ1, . . . , λn) ∈ Rn | λ1 ≤ λ2 ≤ · · · ≤ λn

}
and let η : Mn(C) → Λ denote the map

η(H) = (λ1(H), . . . , λn(H)), H ∈ Mn(C).

Then the image measure η(dµ) of the measure dµ, given by (2.2), is equal to

η(dµ) = c2

∏
1≤j<j≤n

(λj − λk)
2 exp

(
− 1

2σ2

∑
λ2

k

)
dλ1, . . . , dλn

for (λ1, . . . , λn) ∈ Λ, where c2 > 0 is a new normalization constant

c2 =
(
πn(n−1)/2

n−1∏
j=1

j!
)−1

(cf. [Meh, Chap.5] or [De, Sect. 5.3]). Hence, after averaging over all permutations of
(λ1, . . . , λn) we get that for any symmetric Borel function ϕ : Rn → C one has∫

Mn(C)

ϕ(λ1(H), . . . , λn(H))dH =

∫
Rn

ϕ(λ)g(λ)dλ1, . . . , dλn (2.4)
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where λ = (λ1, . . . , λn) and

g(λ1, . . . , λn) =
c2

n!

∏
j<k

(λj − λk)
2 exp

(
− 1

2σ2

n∑
j=1

λ2
j

)
(2.5)

provided the integrals on both sides of (2.4) are defined. The marginal density h corre-
sponding to (2.5):

h(λ) =

∫
Rn−1

g(λ, λ2, . . . , λn) dλ2, . . . , dλn, (λ ∈ R), (2.6)

can be computed explicitly. For σ2 = 1
2
, one gets by [Meh, Formulas 5.1.2 and 5.2.16]

that h is equal to
∑n

k=1 ϕk(x)2, where (ϕk)
∞
k=0 is the sequence of Hermite functions:

ϕk(x) = 1
(2kk!

√
π)1/2 Hk(x) exp(−x2

2
), (k ∈ N0), (2.7)

and H0, H1, H2, . . ., are the Hermite polynomials:

Hk(x) = (−1)k exp(x2) ·
( dk

dxk
exp(−x2)

)
, (k ∈ N0), (2.8)

(cf. [HTF, Vol. 2, p.193, formula (7)]). Hence, by a simple scaling argument, one gets
that for general σ2 > 0,

h(λ) =
1

nσ
√

2

n−1∑
k=0

ϕ
( λ

σ
√

2

)2
, λ ∈ R. (2.9)

From the above, one easily gets:

2.2 Proposition. Let A ∈ SGRM(n, σ2), and let h : R → R be the function given by
(2.9). Then

E(Trn[f(A)]) = n

∫ ∞

−∞
f(λ)h(λ) dλ (2.10)

for every Borel function f on R for which
∫∞
−∞ |f(λ)|h(λ) dλ < ∞.

Proof. Let ϕ : Rn → C be symmetric Borel functions. Then, by standard arguments for
image measures, the equality∫

Mn(C)

|ϕ(λ1(H), . . . , λn(H))|dH =

∫
Rn

ϕ(λ)g(λ) dλ1, . . . , dλn (2.11)

holds independent of finiteness of the integrals. Assume f is a Borel function on R,
satisfying

∫∞
−∞ |f(λ)|h(λ)dλ < ∞ and put

ϕ(λ1, . . . , λn) =
n∑

i=1

f(λi).

6



Then

|ϕ(λ1, . . . , λn)| ≤
n∑

i=1

|f(λi)|

so by (2.6) and the symmetry of ϕ under permutations of the coordinates, we have∫
Rn

|ϕ(λ)g(λ) dλ1, . . . , dλn ≤ n

∫ ∞

−∞
|f(λ)|h(λ)dλ < ∞

Hence

E(Trn(f(A)) =

∫
Rn

ϕ(λ)g(λ) dλ1, . . . , dλn (2.12)

is well-defined and, again by the symmetry of ϕ, we get that the right hand side of (2.12)
is equal to n

∫∞
−∞ f(λ)h(λ) dλ. �

2.3 Remark. Let A ∈ SGRM(n, σ2), and let λ1(A) ≤ · · · ≤ λn(A) be the ordered
eigenvalues of A considered as random variables on the underlying probability space Ω,
and let νk ∈ Prob(R) be the probability distribution of λk(A), k = 1, . . . , n. Then

h(λ)dλ =
n∑

k=1

νk.

Therefore we call h(λ) the “mean density” of the eigenvalue distribution of A. �

3 The moment generating function for GUE random

matrices

If A ∈ SGRM(n, σ2), then 1
σ
√

2
A ∈ SGRM(n, 1

2
), which is the Gaussian, unitary ensemble

(GUE) in [Meh, Chapter 5]. Hence, up to a scaling factor, SGRM(n, σ2) is the same as
the GUE-case. In this section we will prove formula (1.2) (cf. Theorem 3.5 below) and
use it to give a new proof of the Wigner semicircle law in the GUE-case. We start by
quoting a classical result from probability theory:

3.1 Proposition. Let µ, µ1, µ2, µ3, . . ., be probability measures on R, and consider the
corresponding distribution functions:

F (x) = µ
(
]−∞, x]

)
, Fn(x) = µn

(
]−∞, x]

)
, (x ∈ R, n ∈ N).

Let C0(R) and Cb(R) denote the set of continuous functions on R that vanish at ±∞,
respectively the set of continuous, bounded functions on R.

Then the following conditions are equivalent:

(i) limn→∞ Fn(x) = F (x) for all points x of R in which F is continuous.

(ii) ∀f ∈ C0(R) : limn→∞
∫

R f dµn =
∫

R f dµ.
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(iii) ∀f ∈ Cb(R) : limn→∞
∫

R f dµn =
∫

R f dµ.

(iv) ∀t ∈ R : limn→∞
∫

R exp(itx) dµn(x) =
∫

R exp(itx) dµ(x).

Proof. Cf. [Fe, Chapter VIII: Criterion 1,Theorem 1,Theorem 2 and Chapter XV: Theo-
rem 2]. �

3.2 Definition. Let Prob(R) denote the set of probability measures on R. Follow-
ing standard notation, we say that a sequence (µn)∞n=1 in Prob(R) converges weakly to
µ ∈ Prob(R) if the above equivalent conditions (i)–(iv) hold. Moreover, we say that µn

converges to µ in moments, if µn and µ have moments of all orders, i.e.,∫
R
|x|p dµ(x) < ∞, and

∫
R
|x|p dµn(x) < ∞, (p, n ∈ N)

and the following holds

lim
n→∞

∫
R

xp dµn(x) =

∫
R

xp dµ(x), (p ∈ N). �

In general convergence in moments do not imply weak convergence or visa versa. However
if µ is uniquely determined by its moments, then µn → µ in moments implies that µn → µ
weakly (cf. [Bre, Thm. 8.48]. In particular this holds if the limit measure µ has compact
support.

Let (Hk)
∞
k=0 and (ϕk)

∞
k=0 denote the sequences of Hermite polynomials and Hermite func-

tions given by (2.8) and (2.7). Then H0, H1, . . . satisfy the orthogonality relations∫ ∞

−∞
Hk(x)H`(x)e−x2

dx =

{ √
π2kk!, k = `

0, k 6= `
(3.1)

(cf. [HTF, Vol.2, p.164 and p.193 formula (4)]). Hence∫ ∞

−∞
ϕk(x)ϕ`(x)dx =

{
1, k = `
0, k 6= `

(3.2)

3.3 Lemma. Let (ϕn) denote the sequence of Hermite functions given by (2.7). We then
have

ϕ′0(x) = − 1√
2
ϕ1(x), (3.3)

ϕ′n(x) =
√

n
2
ϕn−1(x)−

√
n+1

2
ϕn+1(x), (n ∈ N), (3.4)

d

dx

( n−1∑
k=0

ϕk(x)2
)

= −
√

2nϕn(x)ϕn−1(x), (n ∈ N). (3.5)

Proof. The equations (3.3) and (3.4) follow from (2.7) and the elementary formulas

xHn(x) = 1
2
Hn+1 + nHn−1(x), (3.6)

H ′
n(x) = 2nHn−1(x), (3.7)
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(cf. [HTF, Vol. 2, p. 193, formulas (10) and (14)]). Moreover, (3.5) is easily derived from
(3.3) and (3.4). �

For any non-negative integer n, and any complex number w, we apply the notation

(w)n =

{
1, if n = 0,

w(w + 1)(w + 2) · · · (w + n− 1), if n ∈ N.
(3.8)

Recall then, that the confluent hyper-geometric function (a, c, x) 7→ Φ(a, c; x) is defined
by the expression:

Φ(a, c; x) =
∞∑

n=0

(a)nx
n

(c)nn!
= 1 +

a

c

x

1
+

a(a + 1)

c(c + 1)

x2

2
+ · · · , (3.9)

for a, c, x in C, such that c /∈ Z \ N (cf. [HTF, Vol. 1, p.248]). Note, in particular, that
if a ∈ Z \ N, then x 7→ Φ(a, c; x) is a polynomial in x of degree −a, for any permitted c.

3.4 Lemma. For any s in C and k in N0,∫
R

exp(sx)ϕk(x)2 dx = exp( s2

4
)Φ(−k, 1;− s2

2
)

= exp( s2

4
)

k∑
j=0

k(k − 1) · · · (k + 1− j)

(j!)2

(s2

2

)j

,

(3.10)

and for s in C and n in N,∫
R

exp(sx)
(∑n−1

k=0 ϕk(x)2
)

dx

= n · exp( s2

4
)Φ(1− n, 2;− s2

2
)

= n · exp( s2

4
)
n−1∑
j=0

(n− 1)(n− 2) · · · (n− j)

j!(j + 1)!

(s2

2

)j

.

(3.11)

Proof. For l,m in N0 and s in R, we have that∫
R

exp(sx)ϕl(x)ϕm(x) dx =
1

(2l+ml!m!π)1/2

∫
R

exp(sx− x2)Hl(x)Hm(x) dx. (3.12)

By the substitution y = x− s
2
, the integral on the right hand side of (3.12) becomes

exp( s2

4
)

∫
R

exp(−y2)Hl(y + s
2
)Hm(y + s

2
) dy. (3.13)

Note here, that by (2.8) we have for a in R and k in N0,

Hk(x + a) = (−1)k exp((x + a)2) ·
( dk

dxk
exp(−(x + a)2)

)
= (−1)k exp(x2 + 2ax)

k∑
j=0

(
k

j

)( dj

dxj
exp(−x2)

)( dk−j

dxk−j
exp(−2ax)

)
,
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which can be reduced to

Hk(x + a) =
k∑

j=0

(
k

j

)
(2a)k−jHj(x). (3.14)

It follows thus that the quantity in (3.13) equals

exp( s2

4
)

∫
R

exp(−y2)
( l∑

j=0

(
l

j

)
(s)l−jHj(y)

)( m∑
j=0

(
m

j

)
(s)m−jHj(y)

)
dy,

which by the orthogonality relations (3.1) can be reduced to

exp( s2

4
)

min{l,m}∑
j=0

(
l

j

)(
m

j

)
2jj!

√
π sl+m−2j.

Altogether, we have shown that for m, l in N0 and s in R,∫
R

exp(sx)ϕl(x)ϕm(x) dx =
exp( s2

4
)

√
l!m!

min{l,m}∑
j=0

j!

(
l

j

)(
m

j

)( s√
2

)l+m−2j

. (3.15)

But since both sides of (3.15) are analytic functions of s ∈ C, the formula (3.15) holds
for all s in C.

Putting now l = m = k, and substituting j by k − j, (3.15) becomes∫
R

exp(sx)ϕk(x)2 dx =
exp( s2

4
)

k!

k∑
j=0

(k − j)!

(
k

j

)2( s√
2

)2j

= exp( s2

4
)

k∑
j=0

k(k − 1) · · · (k + 1− j)

(j!)2

(s2

2

)j

,

and this proves (3.10).

The formula (3.11) is trivial in the case s = 0, because of the orthogonality relations (3.2).
If s ∈ C \ {0}, then by (3.5) and partial integration, we get that∫

R
exp(sx)

(∑n−1
k=0 ϕk(x)2

)
dx =

√
2n
s

∫
R

exp(sx)ϕn(x)ϕn−1(x) dx.

Using now (3.15) in the case l = n, m = n− 1, we get, after substituting j by n− 1− j,
that

√
2n
s

∫
R

exp(sx)ϕn(x)ϕn−1(x) dx =

√
2 exp( s2

4
)

s(n− 1)!

n−1∑
j=0

(n− 1− j)!

(
n

j + 1

)(
n− 1

j

)( s√
2

)2j+1

= n exp( s2

4
)
n−1∑
j=0

(n− 1)(n− 2) · · · (n− j)

j!(j + 1)!

(s2

2

)j

,

and (3.11) follows. �
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3.5 Theorem. (i) For any element A of SGRM(n, σ2) and any s in C, we have that

E
(
Trn[exp(sA)]

)
= n · exp(σ2s2

2
) · Φ(1− n, 2;−σ2s2). (3.16)

(ii) Let (Xn) be a sequence of random matrices, such that Xn ∈ SGRM(n, 1
n
) for all n in

N. Then for any s in C, we have that

lim
n→∞

E
(
trn[exp(sXn)]

)
= 1

2π

∫ 2

−2

exp(sx)
√

4− x2 dx, (3.17)

and the convergence is uniform on compact subsets of C.

Proof. From (2.9) and Proposition 2.2 we have

E
(
Trn[exp(sA)]

)
=

1

nσ
√

2

∫ ∞

−∞
exp(sλ)

n−1∑
k=0

ϕk

( λ

σ
√

2

)2
dλ. (3.18)

Hence (3.16) follows from (3.11) by substituting x = λ
σ
√

2
in (3.18). This proves (i). By

application of (i), it follows then, that for Xn from SGRM(n, 1
n
) and s in C, we have that

E
(
trn[exp(sXn)]

)
= exp( s2

2n
) · Φ(1− n, 2;− s2

n
)

= exp( s2

2n
)
n−1∑
j=0

(n− 1)(n− 2) · · · (n− j)

j!(j + 1)!

(s2

n

)j

.
(3.19)

By Lebesgue’s Theorem on Dominated Convergence, it follows thus that

lim
n→∞

E
(
trn[exp(sXn)]

)
=

∞∑
j=0

s2j

j!(j + 1)!
.

The even moments of the standard semi-circular distribution are:

1
2π

∫
R
x2p
√

4− x2 dx = 1
p+1

(
2p

p

)
, (p ∈ N0),

and the odd moments vanish. Hence, using the power series expansion of exp(sx), we find
that

1
2π

∫ 2

−2

exp(sx)
√

4− x2 dx =
∞∑

j=0

s2j

(2j)!(j + 1)

(
2j

j

)
=

∞∑
j=0

s2j

j!(j + 1)!
.

Therefore,

lim
n→∞

E
(
trn[exp(sXn)]

)
= 1

2π

∫ 2

−2

exp(sx)
√

4− x2 dx, (s ∈ C). (3.20)

Note next, that by (3.19), we have that

∣∣E(trn[exp(sXn)]
)∣∣ ≤ ∞∑

j=0

|s|2j

j!(j + 1)!
, (s ∈ C),

11



so the functions s 7→ E
(
trn[exp(sXn)]

)
, (n ∈ N), are uniformly bounded on any fixed

bounded subset of C. Hence by a standard application of Cauchy’s Integral Formula and
Lebesgue’s theorem on Dominated Convergence, it follows that the convergence in (3.20)
is uniform on compact subsets of C. �

Wigner’s semicircle law for the GUE-case (cf. [Wig1], [Wig2] and [Meh, Chap.5]) is now
a simple consequence of Theorem 3.5. We formulate it both in the sense of convergence
in moments and in the sense of weak convergence (cf. Definition 3.2):

3.6 Corollary. (cf. [Wig1], [Wig2], [Meh]) Let (Xn) be a sequence of random matrices,
such that Xn ∈ SGRM(n, 1

n
) for all n. We then have

(i) For any p in N,

lim
n→∞

E
(
trn[Xp

n]
)

= 1
2π

∫ 2

−2

xp
√

4− x2 dx. (3.21)

(ii) For every continuous bounded function f : R → C,

lim
n→∞

E
(
trn[f(Xn)]

)
= 1

2π

∫ 2

−2

f(x)
√

4− x2 dx.

Proof. Let hn(λ) denote the function h(λ) in (2.9) for the special case σ2 = 1
n
. By

Proposition 2.2 and Theorem 3.5(ii),

lim
n→∞

∫
R

exp(sx)hn(x)dx =
1

2π

∫ 2

−2

exp(sx)
√

4− x2dx

for all s ∈ C and the convergence is uniform in s on compact subsets of C. Hence by
Cauchy’s integral formulas, we have

lim
n→∞

dp

dsp

(∫
R

exp(sx)hn(x) dx
)

=
dp

dsp

(
1
2π

∫ 2

−2

exp(sx)
√

4− x2 dx
)
,

for all s in C. Putting s = 0, it follows that

lim
n→∞

E
(
trn[Xp

n]
)

= lim
n→∞

(∫
R

xphn(x) dx
)

= 1
2π

∫ 2

−2

xp
√

4− x2 dx,

which proves (i). Putting s = it in Lemma 3.5(ii), it follows, that for any t in R,

lim
n→∞

∫
R

exp(itx)hn(x) dx =

∫
R

exp(itx) dγ(x), (3.22)

where dγ = 1
2π

√
4− x2 · 1[−2,2](x) dx. Hence by Proposition 3.1,

E
(
trn[f(Xn)]

)
= lim

n→∞

∫
R

f(x)hn(x) dx =

∫
R

f(x) dγ(x),

for any continuous bounded function f on R, and this proves (ii). �

3.7 Remark. Arnold’s strengthening of Wigner’s Semi-circle Law to a result about al-
most sure convergence of the empirical distributions of the eigenvalues (cf. [Ar]), will be
taken up in Section 4 (see Proposition 4.6). A very good survey of the history of Wigner’s
Semi-circle Law is given by Olson and Uppuluri in [OU]. �
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4 Almost Sure Convergence of the Largest and Smal-

lest Eigenvalues in the GUE case

Bai and Yin proved in [BY1] that for a large class of selfadjoint random matrices for which
Wigner’s semicircle law holds, one also gets that the largest (resp. smallest) eigenvalue
converges almost surely to 2 (resp. −2) as n →∞. In [BY1] only random matrices with
real entries are considered, but the proof can easily be extended to the complex case
(cf. [Ba, Thm. 2.12]. In this section we will give a simple proof of Bai’s and Yin’s result,
in the special case of GUE random matrices, based on Theorem 3.5 (cf. Theorem 4.1
below).

Thanks to results of Tracy and Widom ([TW1], [TW2]), one now has much more precise
information on the asymptotic behaviour of the largest (and smallest) eigenvalue in the
GUE case, as well as in the corresponding real and symplectic cases (GUE and GSE).
These results, however, lie outside the scope of the present paper.

4.1 Theorem. (cf. [BY1] and [Ba]) Let (Xn) be a sequence of random matrices, defined
on the same probability space (Ω,F , P ), and such that Xn ∈ SGRM(n, 1

n
), for each n

in N. For each ω in Ω and n in N, let λmax

(
Xn(ω)

)
and λmin

(
Xn(ω)

)
denote the largest

respectively the smallest eigenvalue of Xn(ω). We then have

lim
n→∞

λmax(Xn) = 2, almost surely, (4.1)

and
lim

n→∞
λmin(Xn) = −2, almost surely. (4.2)

For the proof of Theorem 4.1, we need some lemmas:

4.2 Lemma. (Borel-Cantelli) Let F1, F2, F3, . . ., be a sequence of measurable subsets
of Ω, and assume that

∑∞
n=1 P (Ω \ Fn) < ∞. Then P (Fn eventually) = 1, where

(Fn eventually) =
⋃
n∈N

⋂
m≥n

Fn,

i.e., for almost all ω in Ω, ω ∈ Fn eventually as n →∞.

Proof. Cf. [Bre, Lemma 3.14]. �

4.3 Lemma. Let (Xn) be a sequence of random matrices, defined on the same probability
space (Ω,F , P ), and such that Xn ∈ SGRM(n, 1

n
) for all n in N. We then have,

lim sup
n→∞

λmax(Xn) ≤ 2, almost surely, (4.3)

and
lim inf
n→∞

λmin(Xn) ≥ −2, almost surely. (4.4)

13



Proof. By (3.19), we have for any n in N, that

E
(
Trn[exp(tXn)]

)
= n · exp( t2

2n
)
∞∑

j=0

(n− 1)(n− 2) · · · (n− j)

j!(j + 1)!

(t2

n

)j

≤ n · exp( t2

2n
)
∞∑

j=0

t2j

j!(j + 1)!

≤ n · exp( t2

2n
)

[ ∞∑
j=0

tj

j!

]2

.

It follows thus, that

E
(
Trn[exp(tXn)]

)
≤ n · exp( t2

2n
+ 2t), (t ∈ R+). (4.5)

Note here, that since all eigenvalues of exp(tXn) are positive, we have that

Trn[exp(tXn)] ≥ λmax(exp(tXn)) = exp(tλmax(Xn)),

and hence by integration,

E
(
exp(tλmax(Xn))

)
≤ n · exp( t2

2n
+ 2t), (t ∈ R+).

It follows thus, that for any ε in ]0,∞[,

P (λmax(Xn) ≥ 2 + ε) = P
(
exp(tλmax(Xn)− t(2 + ε)) ≥ 1

)
≤ E

(
exp(tλmax(Xn)− t(2 + ε))

)
≤ exp(−t(2 + ε))E

(
exp(tλmax(Xn))

)
,

and hence by (4.5),

P (λmax(Xn) ≥ 2 + ε) ≤ n · exp( t2

2n
− εt), (t ∈ R+). (4.6)

As a function of t ∈ R+, the right hand side of (4.6) attains its minimum when t = nε.
For this value of t, (4.6) becomes,

P (λmax(Xn) ≥ 2 + ε) ≤ n · exp(−nε2

2
).

Hence by the Borel-Cantelli Lemma (Lemma 4.2),

lim sup
n→∞

λmax(Xn) ≤ 2 + ε, almost surely.

Since this holds for arbitrary positive ε, we have proved (4.3). We note finally that
(4.4) follows from (4.3), since the sequence (−Xn) of random matrices also satisfies that
−Xn ∈ SGRM(n, 1

n
) for all n. �

To complete the proof of Theorem 4.1, we shall need an “almost sure convergence version”
of Wigner’s semi-circle law. This strengthened version of the semi-circle law was proved
by Arnold in [Ar]. Arnold’s result is proved for real symmetric random matrices, with
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rather general conditions on the entries. His proof is combinatorial and can easily be
generalized to the complex case. For convenience of the reader, we include below a short
proof of Arnold’s result in the GUE case (cf. Proposition 4.6 below). The proof relies
on the following lemma, due to Pisier (cf. [Pi, Theorem 4.7]), which is related to the
“concentration of measure phenomenon” (cf. [Mi]).

4.4 Lemma. ([Pi]) Let GN,σ denote the Gaussian distribution on RN with density

dGN,σ(x)

dx
= (2πσ2)−N/2 exp(−‖x‖2

2σ2 ), (4.7)

where ‖x‖ is the Euclidean norm of x. Furthermore, let F : RN → R be a function that
satisfies the Lipschitz condition

|F (x)− F (y)| ≤ c‖x− y‖, (x, y ∈ RN), (4.8)

for some positive constant c. Then for any positive number t, we have that

GN,σ

({
x ∈ RN

∣∣ |F (x)− E(F )| > t
})

≤ 2 exp(− Kt2

c2σ2 ),

where E(F ) =
∫

RN F (x) dGN,σ(x), and K = 2
π2 .

Proof. For σ = 1, this is proved in [Pi, Theorem 4.7], and the general case follows easily
from this case, by using that GN,σ is the range measure of GN,1 under the mapping
x 7→ σx : RN → RN , and that the composed function x 7→ F (σx), satisfies a Lipschitz
condition with constant cσ. �

The following result is also well-known:

4.5 Lemma. Let f : R → R be a function that satisfies the Lipschitz condition

|f(s)− f(t)| ≤ c|s− t|, (s, t ∈ R). (4.9)

Then for any n in N, and all matrices A, B in Mn(C)sa, we have that

‖f(A)− f(B)‖HS = c‖A−B‖HS,

where ‖·‖HS is the Hilbert-Schmidt norm, i.e., ‖C‖HS = Trn(C2)1/2, for all C in Mn(C)sa.

Proof. The proof can be extracted from the proof of [Co, Proposition 1.1]: Note first that
we may write,

A =
n∑

i=1

λiEi, B =
n∑

i=1

µiFi,

where λ1, . . . , λn and µ1, . . . , µn are the eigenvalues of A and B respectively, and where
E1 . . . , En and F1, . . . , Fn are two families of mutually orthogonal one-dimensional pro-
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jections (adding up to 111n). Using then that Trn(EiFj) ≥ 0 for all i, j, we find that

‖f(A)− f(B)‖2
HS = Trn(f(A)2) + Trn(f(B)2)− 2Trn(f(A)f(B))

=
n∑

i,j=1

(f(λi)− f(µj))
2 · Trn(EiFj)

≤ c2 ·
n∑

i,j=1

(λi − µj)
2 · Trn(EiFj)

= c2‖A−B‖2
HS. �

4.6 Proposition. (cf. [Ar]) Let (Xn) be a sequence of random matrices, defined on the
same probability space (Ω,F , P ), and such that Xn ∈ SGRM(n, 1

n
), for each n in N.

For each ω in Ω, let µn,ω denote the empirical distribution of the ordered eigenvalues
λ1(Xn(ω)) ≤ λ2(Xn(ω)) ≤ · · · ≤ λn(Xn(ω)), of Xn(ω), i.e., with the usual Dirac measure
notation,

µn,ω = 1
n

n∑
i=1

δλi(Xn(ω)). (4.10)

Then for almost all ω in Ω, µn,ω converges weakly to the standard semi-circular distribution
γ, with density x 7→ 1

2π

√
4− x2 · 1[−2,2](x).

Hence, for any interval I in R, and almost all ω in Ω, we have that

lim
n→∞

(
1
n
· card

(
sp[Xn(ω)] ∩ I

))
= γ(I).

Proof. Note first that for any f in C0(R), we have that∫
R

f(x) dµn,ω(x) = trn

[
f(Xn(ω))

]
,

for all ω in Ω. Hence by Proposition 3.1, it suffices to show, that for almost all ω in Ω,
we have that

lim
n→∞

trn

[
f(Xn(ω))

]
=

∫
R

f dµ, for all f in C0(R). (4.11)

By separability of the Banach space C0(R), it is enough to check that (4.11) holds almost
surely for each fixed f in C0(R) or for each fixed f in some dense subset of C0(R).
In the following we shall use, as such a dense subset, C1

c (R), i.e., the set of continuous
differentiable functions on R with compact support. So consider a function f from C1

c (R),
and put

F (A) = trn

[
f(A)

]
, (X ∈ Mn(C)sa).

Then for any A, B in Mn(C)sa, we have that

|F (A)− F (B)| ≤ 1
n
|Trn

[
f(A)

]
− Trn

[
f(B)

]
| ≤ 1√

n
‖f(A)− f(B)‖HS,

and since f is Lipschitz with constant c = supx∈R |f ′(x)| < ∞, it follows then by
Lemma 4.5, that

|F (A)− F (B)| ≤ c√
n
‖A−B‖HS, (A, B ∈ Mn(C)sa). (4.12)
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The linear bijection Φ: Mn(C)sa → Rn2
, given by

Φ(A) =
(
(aii)1≤i≤n, (

√
2Re(aij))1≤i<j≤n, (

√
2Im(aij))1≤i<j≤n

)
, (A = (aij) ∈ Mn(C)sa),

maps the distribution on Mn(C)sa of an element of SGRM(n, 1
n
) (cf. Definition 2.1) onto

the joint distribution of n2 independent, identically distributed random variables with
distribution N(0, 1), i.e., the distribution Gn2,n−1/2 on Rn2

with density

dGn2,n−1/2(x)

dx
=
( n

2π

)−n2/2

exp(−n‖x‖2
2

), (x ∈ Rn2
).

Moreover, the Euclidean norm on Rn2
corresponds, via the mapping Φ, to the Hilbert-

Schmidt norm on Mn(C)sa. Hence by (4.12) and Lemma 4.4, we get for any positive t,
that

P
({

ω ∈ Ω
∣∣ |F (Xn(ω))− E(F (Xn))| > t

})
≤ exp(−n2Kt2

c2
),

where K = 2
π2 . Hence by the Borel-Cantelli Lemma, it follows that∣∣trn

[
f(Xn(ω))

]
− E

(
trn[f(Xn)]

)∣∣ ≤ t, eventually,

for almost all ω. Since t > 0 was arbitrary, we get by Theorem 3.6, that

lim
n→∞

trn

[
f(Xn(ω))

]
= lim

n→∞
E
(
trn[f(Xn)]

)
= 1

2π

∫ 2

−2

f(x)
√

4− x2 dx,

for almost all ω. The last assertion in the proposition follows by Proposition 3.1(i) and
Definition 3.2. This completes the proof. �

Proof of Theorem 4.1. By Lemma 4.3, we have that

lim sup
n→∞

λmax(Xn(ω)) ≤ 2, for almost all ω in Ω.

On the other hand, given any positive ε, it follows from Proposition 4.6, that

card
(
sp[Xn(ω)] ∩ [2− ε,∞[

)
→∞, as n →∞, for almost all ω in Ω,

and hence that

lim inf
n→∞

λmax(Xn(ω)) ≥ 2− ε, for almost all ω in Ω.

Since this is true for any positive ε, it follows that (4.1) holds, and (4.2) follows from (4.1)
by considering the sequence (−Xn). �

5 The Harer-Zagier Recursion Formula

In [HZ, Section 4, Proposition 1], Harer and Zagier considered the numbers:

C(p, n) = 2−k/2π−k2/2

∫
Mn(C)sa

Trn(A2p) exp(−1
2
Trn(A2)) dA, (n ∈ N, p ∈ N0),
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where dA =
∏n

i=1 daii

∏
i<j d(Re(ai,j)) d(Im(ai,j)).

Comparing with Section 2, it follows, that if A ∈ SGRM(n, 1), then for all p in N0,

C(p, n) = E
(
Trn[A2p]

)
.

Harer and Zagier proved that

C(p, n) =

[ p
2
]∑

j=1

εj(p)np+1−2j, (n, p ∈ N),

where the coefficients εj(p) satisfy the following recursion formula:

(p + 2)εj(p + 1) = (4p + 2)εj(p) + p(4p2 − 1)εj−1(p− 1),

(cf. [HZ, p. 460, line 3], with (n, g) substituted by (p + 1, j)).

Below we give a new proof of the above recursion formula, based on Theorem 3.5 and the
differential equation for the confluent hyper-geometric function x 7→ Φ(a, c; x). Another
treatment of this result of Harer and Zagier can be found in [Meh, pp. 117-120].

5.1 Theorem. Let A be an element of SGRM(n, 1), and define

C(p, n) = E
(
Trn[A2p]

)
, (p ∈ N0). (5.1)

Then C(0, n) = n, C(1, n) = n2, and for fixed n in N, the numbers C(p, n) satisfy the
recursion formula:

C(p + 1, n) = n · 4p+2
p+2

· C(p, n) + p(4p2−1)
p+2

· C(p− 1, n), (p ≥ 1). (5.2)

Proof. Let a, c be complex numbers, such that c /∈ Z \ N. Then the confluent hyper-
geometric function

x 7→ Φ(a, c; x) = 1 + a
c

x
1

+ a(a+1)
c(c+1)

x2

2
+ a(a+1)(a+2)

c(c+1)(c+2)
x3

3!
+ · · · , (x ∈ C),

is an entire function, and y = Φ(a, c; x) satisfies the differential equation

x
d2y

dx2
+ (c− x)

dy

dx
− ay = 0, (5.3)

(cf. [HTF, Vol. 1, p.248, formula (2)]). By (3.18), we have for any A in SGRM(n, 1), that

E
(
Trn[exp(sA)]

)
= n

∫
R

exp(sx)h(x) dx, (s ∈ C),

where h(x) = 1
n
√

2

∑n−1
k=0 ϕk(

x√
2
)2. Hence by (3.16) in Lemma 3.5, we get that

E
(
Trn[exp(sA)]

)
= n · exp( s2

2
) · Φ(1− n, 2;−s2), (s ∈ C).
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Since hn is an even function, E
(
Trn[A2q−1]

)
= 0, for any q in N, and consequently

E
(
Trn[exp(sA)]

)
=

∞∑
p=0

s2p

(2p)!
E
(
Trn[A2p]

)
.

It follows thus, that C(p,n)
(2p)!

is the coefficient to xp in the power series expansion of the
function

σn(x) = n · exp(x
2
) · Φ(1− n, 2;−x).

By (5.3) the function ρn(x) = Φ(1− n, 2;−x), satisfies the differential equation

xρ′′n(x) + (2 + x)ρ′n(x)− (n− 1)ρn(x) = 0,

which implies that σn(x) = n · exp(x
2
) · ρn(x), satisfies the differential equation

xσ′′n(x) + 2σ′n(x)− (x
4

+ n)σn(x) = 0. (5.4)

We know that σn has the power series expansion:

σn(x) =
∞∑

p=0

αpx
p, where αp =

C(p, n)

(2p)!
, (p ∈ N). (5.5)

Inserting (5.5) in (5.4), we find that

(p + 1)(p + 2)αp+1 − nαp − 1
4
αp−1 = 0, (p ≥ 1), (5.6)

and that
2α1 − nα0 = 0. (5.7)

Inserting then C(p, n) = C(p,n)
(2p)!

, in (5.6), we obtain (5.2). Moreover, it is clear that

C(0, n) = Trn(111n) = n, and thus, by (5.7), C(1, n) = 2α1 = nα0 = n2. �

5.2 Corollary. ([HZ]) With C(p, n) as introduced in (5.1), we have that

C(p, n) =

[ p
2
]∑

j=0

εj(p)np+1−2j, (p ∈ N0, n ∈ N), (5.8)

where the coefficients εj(p), j, p ∈ N0, are determined by the conditions

εj(p) = 0, whenever j ≥ [p
2
] + 1, (5.9)

ε0(p) = 1
p+1

(
2p
p

)
, (p ∈ N0), (5.10)

εj(p + 1) = 4p+2
p+2

· εj(p) + p(4p2−1)
p+2

· εj−1(p− 1), (p, j ∈ N). (5.11)

Proof. It is immediate from (5.2) of Theorem 5.1, that for fixed p, C(p, n) is a polynomial
in n of degree p+1 and without constant term. Moreover, it follows from (5.2), that only
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np+1, np−1, np−3, etc., have non-zero coefficients in this polynomial. Therefore C(p, n) is
of the form set out in (5.8) for suitable coefficients

εj(p), p ≥ 0, 0 ≤ j ≤ [p
2
].

Inserting (5.8) in (5.2), and applying the convention (5.9), we obtain (5.11), and also that

ε0(p + 1) = 4p+2
p+2

· ε0(p), (p ≥ 1). (5.12)

Clearly, ε0(0) = ε0(1) = 1, and thus by induction on (5.12), we obtain (5.10). �

From Theorem 5.1 or Corollary 5.2, one gets, that for any A in SGRM(n, 1),

E
(
Trn[A2]

)
= n2,

E
(
Trn[A4]

)
= 2n3 + n,

E
(
Trn[A6]

)
= 5n4 + 10n2,

E
(
Trn[A8]

)
= 14n5 + 70n3 + 21n,

E
(
Trn[A10]

)
= 42n6 + 420n4 + 483n2,

etc. (see [HZ, p. 459] for a list of the numbers εj(p), p ≤ 12). If, as in Sections 3 and 4,
we replace the A above by an element X of SGRM(n, 1

n
), and Trn by trn, then we have

to divide the above numbers by np+1. Hence for X in SGRM(n, 1
n
), we have

E
(
trn[X2]

)
= 1,

E
(
trn[X4]

)
= 2 + 1

n2 ,

E
(
trn[X6]

)
= 5 + 10

n2 ,

E
(
trn[X8]

)
= 14 + 70

n2 + 21
n4 ,

E
(
trn[X10]

)
= 42 + 420

n2 + 483
n4 ,

etc. Note that the constant term in E
(
trn[X2p]

)
is

ε0(p) = 1
p+1

(
2p
p

)
= 1

2π

∫ 2

−2

x2p
√

4− x2 dx,

in concordance with Wigner’s semi-circle law.

6 Rectangular Gaussian Random Matrices and the

Complex Wishart Distribution

6.1 Definition. Let m, n ∈ N and σ > 0. We denote by GRM(m, n, σ2) the class of
m× n random matrices

B = (bjk)1≤j≤m,1≤k≤n (6.1)

for which the entries are m × n independent complex random matrices such that the
distribution of each bjk has density

1

πσ2
exp

(
− |z|2

σ2

)
, z ∈ C (6.2)

with respect to the Lebesgue measure d(Re z)d(Im z) on C. �
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Note that B ∈ GRM(m, n, σ2) if and only if (Re bjk)j,k, (Im bjk)jk form a family of 2mn
independent real Gaussian random variables each with mean value 0 and variance 1

2
σ2.

6.2 Definition. If B ∈ GRM(m, n, 1) then the distribution of the selfadjoint m × n
random matrix B∗B is called the complex Wishart distribution with parameters (m,n).

�

The complex Wishart distribution was first studied by Goodman and Khalid in [Go] and
[Kh].

6.3 Proposition. ([Go],[Kh]) Let B ∈ GRM(m, n, 1). For m ≥ n the distribution
dν(S) of S = B∗B is given by

dν(S) = c3(det S)m−n exp(−Trn(S)) dS (6.3)

for S ∈ Mn(C)+ (the positive cone in Mn(C)), where c3 > 0 is a normalization constant,
depending on m and n, and

dS =

(
n∏

j=1

dsjj

)∏
j<k

d(Resjk)d(Imsjk). (6.4)

Moreover the joint distribution of the ordered eigenvalues λ1(S) ≤ λ2(S) ≤ · · · ≤ λn(S)
of S is given by

c4

∏
j<k

(λj − λk)
2

(
k∏

j=1

λj

)m−n

exp
(
−

n∑
j=1

λj

)
dλ1, . . . , dλn (6.5)

on
Λ+ =

{
(λ1, . . . , λn) ∈ Rn | 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn

}
where c4 > 0 is again a normalization constant depending on m and n.

Put R+ = [0,∞). Assume m ≥ n and let g : Rn
+ → R denote the function

g(λ) =
c4

n!
(λj − λk)

2
( n∏

j=1

λj

)m−n
exp

(
−

n∑
j=1

λj

)
(6.6)

where λ = (λ1, . . . , λn) and c4 as above. Then, by averaging over all permutations of
(λ1, . . . , λn), we get, as in Section 2, that for any symmetric Borel function ϕ : Rn

+ → C,∫
Mn(C)+

ϕ(λ1(S), . . . , λn(S)) dν(S) =

∫
Rn

+

ϕ(λ)g(λ)dλ1, . . . , λn. (6.7)

The marginal density h corresponding to (6.6),

h(λ) =

∫
Rn−1

+

g(λ, λ2, . . . , λn)dλ2 . . . dλn (6.8)
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can be computed explicitly. This is done in [Bro]. In analogy with (2.9), one gets

h(λ) =
1

n

n−1∑
j=0

ϕm−n
k (x)2 (6.9)

where
ϕα

k (x) =
[

k!
Γ(k+α+1)

xα exp(−x)
]1/2 · Lα

k (x), (k ∈ N0), (6.10)

and (Lα
k )k∈N0 is the sequence of generalized Laguerre polynomials of order α, i.e.,

Lα
k (x) = (k!)−1x−α exp(x) · dk

dxk

(
xk+α exp(−x)

)
, (k ∈ N0). (6.11)

6.4 Proposition. Let B be an element of GRM(m, n, 1), let ϕα
k , α ∈ ]0,∞[, k ∈ N0, be

the functions introduced in (6.10), and let f : [0,∞[ → R be a Borel function.

(i) If m ≥ n, we have that

E
(
Trn[f(B∗B)]

)
=

∫ ∞

0

f(x)
[∑n−1

j=0 ϕm−n
k (x)2

]
dx,

whenever the integral on the right hand side is well-defined.

(ii) If m < n, we have that

E
(
Trn[f(B∗B)]

)
= (n−m)f(0) +

∫ ∞

0

f(x)
[∑m−1

j=0 ϕn−m
k (x)2

]
dx,

whenever the integral on the right hand side is well-defined.

Proof. (i) The proof of (i) can be copied from the proof of Proposition 2.2, using (6.5)–
(6.9) instead of (2.4)–(2.9).

(ii) Assume that m < n, and note that B∗ ∈ GRM(n, m, 1). If T ∈ Mm,n(C), then T ∗T
and TT ∗ have the same list of non-zero eigenvalues counted with multiplicity, and hence
T ∗T must have n − m more zeroes in its list of eigenvalues than TT ∗ has. Combining
these facts with (i), we obtain (ii). �

6.5 Remark. The real, complex and symplectic Wishart distribution has been exten-
sively studied in the literature (see f.inst. [Wis], [Go], [Kh], [Ja], [ABJ], [HSS], and [LM]).
Due to the connection to Laguerre polynomials, the complex Wishart distribution is also
called the Laguerre ensemble. The book manuscript of Forrester [Fo] gives a self-contained
treatment of all the results quoted in this section. The orthogonalization procedure which
is used to derive (6.9) from (6.6) is also described in details in Deift’s book [De, Section
5.4]. �
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7 The Moment Generating Function for the Complex

Wishart Distribution

In this section we will prove that for m, n ∈ N, m ≥ n, B ∈ GRM(m,n, 1), s ∈ C and
Res > n, then

E(Trn[exp(sB∗B]) =
n∑

k=1

F (k −m, k − n, 1; s2)

(1− s)m+n+1−2k

and

E(Trn[B∗B exp(sB∗B)]) = mn
F (1−m, 1− n, 2; s2)

(1− s)m+n

where F is the hypergeometric function (cf. Theorem 7.4 below). Moreover we will apply
the second of these two formulas to give a new proof of Marchenko and Pastur’s result
[MP] on the limit distribution of the eigenvalues of B∗B, when m = m(n) ≥ n, and
limn→∞ m(n)/n = c (cf. Corollary 7.8 below). As in Section 6, for any real number α in
]− 1,∞[, we denote by (Lα

k )k∈N0 the sequence of Laguerre polynomials of order α, i.e.,

Lα
k (x) = (k!)−1x−α exp(x)

dk

dxk

(
xk+α exp(−x)

)
, (k ∈ N0, x > 0), (7.1)

and by (ϕα
k )k∈N0 the sequence of functions given by

ϕα
k (x) =

(
k!

Γ(k+α+1)
xα exp(−x)

)1/2
Lα

k (x), (x > 0). (7.2)

The Laguerre polynomials satisfy the orthogonality relations:∫ ∞

0

Lα
j (x)Lα

k (x) · xα exp(−x) dx =

{
Γ(k+α+1)

k!
, if j = k,

0, if j 6= k,
(7.3)

(cf. [HTF, Vol. 2, p.188, formula (2)]), which implies that the sequence of functions
(ϕα

k )k∈N0 is an orthonormal sequence in the Hilbert space L2([0,∞[, dx), i.e.,∫ ∞

0

ϕα
j (x)ϕα

k (x) dx =

{
1 if j = k,

0 if j 6= k.

7.1 Lemma. For any n in N0, we have that

d

dx

(
x

n−1∑
j=0

ϕα
j (x)2

)
=
√

n(n + α) · ϕα
n−1(x)ϕα

n(x), (x > 0). (7.4)

Proof. For each n in N, we define

ρn(x) =
n−1∑
j=0

j!
Γ(j+α+1)

Lα
j (x)2, (x > 0). (7.5)
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Using [HTF, Volume 2, p.188, formula (7)], we have here that

ρn(x) = lim
y→x

n−1∑
j=0

j!
Γ(j+α+1)

Lα
j (y)Lα

j (x)

= lim
y→x

n!
(
Lα

n−1(y)Lα
n(x)− Lα

n(y)Lα
n−1(x)

)
(y − x) · Γ(n + α)

.

Therefore, it follows that

ρn(x) = n!
Γ(n+α)

(
(Lα

n−1)
′(x)Lα

n(x)− (Lα
n)′(x)Lα

n−1(x)
)
, (7.6)

and hence that

ρ′n(x) = n!
Γ(n+α)

(
(Lα

n−1)
′′(x)Lα

n(x)− (Lα
n)′′(x)Lα

n−1(x)
)
. (7.7)

By [HTF, Volume 2, p.188, formula (10)], we have that

x(Lα
n−1)

′′(x) + (α + 1− x)(Lα
n−1)

′(x) = −(n− 1)Lα
n−1(x),

x(Lα
n)′′(x) + (α + 1− x)(Lα

n)′(x) = −nLα
n(x).

Combining these two formulas with (7.6) and (7.7), we find that

xρ′n(x) + (α + 1− x)ρn(x) = n!
Γ(n+α)

(
− (n− 1)Lα

n−1(x)Lα
n(x) + nLα

n(x)Lα
n−1(x)

)
= n!

Γ(n+α)
Lα

n−1(x)Lα
n(x).

It follows now, that

d

dx

(
x

n−1∑
j=0

ϕα
j (x)2

)
=

d

dx

(
ρn(x)xα+1 exp(−x)

)
=
(
xρ′n(x) + (α + 1− x)ρn(x)

)
xα exp(−x)

= n!
Γ(n+α)

Lα
n−1(x)Lα

n(x)xα exp(−x)

= n!
Γ(n+α)

(
Γ(n+α)
(n−1)!

Γ(n+α+1)
n!

)1/2

ϕα
n−1(x)ϕα

n(x)

=
√

n(n + α) · ϕα
n−1(x)ϕα

n(x),

which is the desired formula. �

In order to state the next lemma, we need to introduce the hyper-geometric function F ,
which is given by the equation (cf. [HTF, Vol. 1, p.56, formula (2)]),

F (a, b, c; z) =
∞∑

n=0

(a)n(b)n

(c)nn!
zn, (7.8)

with the notation introduced in (3.8). We note that F (a, b, c; z) is well-defined whenever
c /∈ Z \ N and |z| < 1. If either −a ∈ N0 or −b ∈ N0, then F (a, b, c; z) becomes a
polynomial in z, and is thus well-defined for all z in C.
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7.2 Lemma. Consider α in ] − 1,∞[ and j, k in N0. Then for any complex number s,
such that s 6= 0 and Re(s) < 1, we have that∫ ∞

0

ϕα
j (x)ϕα

k (x) exp(sx) dx = γ(α, j, k) · sj+k

(1− s)α+j+k+1
· F (−j,−k, α + 1; s−2), (7.9)

where

γ(α, j, k) =
(−1)j+k

Γ(α + 1)

(
Γ(α + j + 1)Γ(α + k + 1)

j!k!

)1/2

. (7.10)

Proof. The formula (7.9) can be extracted from the paper [Ma] by Mayr, but for the
readers convenience, we include an elementary proof. Both sides of the equality (7.9) are
analytic functions of s ∈ {z ∈ C | Re(z) < 1}, so it suffices to check (7.9) for all s in
]−∞, 1[ \ {0}. By (7.2), we have that∫ ∞

0

ϕα
j (x)ϕα

k (x) exp(sx) dx

=
(

j!k!
Γ(j+α+1)Γ(k+α+1)

)1/2
∫ ∞

0

Lα
j (x)Lα

k (x)xα exp((s− 1)x) dx

=
(

j!k!
Γ(j+α+1)Γ(k+α+1)

)1/2
1

(1−s)α+1

∫ ∞

0

Lα
j ( y

1−s
)Lα

k ( y
1−s

)yα exp(−y) dy,

(7.11)

where, in the last equality, we applied the substitution y = x
1−s

. We note here, that by
[HTF, Volume 2, p.192, formula (40)], we have for any positive number λ, that

Lα
k (λx) =

k∑
r=0

(
k + α

r

)
λk−r(1− λ)rLα

k−r(x)

=
k∑

r=0

(
k + α

k − r

)
λr(1− λ)k−rLα

r (x).

(7.12)

By application of this formula and the orthogonality relation (7.3) for the Laguerre poly-
nomials, we obtain that∫ ∞

0

Lα
j (x)Lα

k (x)xα exp((s− 1)x) dx

=
1

(1− s)α+1

min{j,k}∑
r=0

(
j + α

j − r

)(
k + α

k − r

)( 1

1− s

)2r(
1− 1

1− s

)j+k−2r Γ(α + r + 1)

r!

=
(−s)j+k

(1− s)α+j+k+1

min{j,k}∑
r=0

(
j + α

j − r

)(
k + α

k − r

)
Γ(α + r + 1)

r!
(−s)−2r

=
(−s)j+k

(1− s)α+j+k+1

min{j,k}∑
r=0

Γ(j + α + 1)Γ(k + α + 1)

(j − r)!(k − r)!r!Γ(α + r + 1)
s−2r.

(7.13)
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We note here that

j!k!Γ(α + 1)

(j − r)!(k − r)!r!Γ(α + r + 1)
=

(−j)r(−k)r

(α + 1)rr!
,

and hence it follows that∫ ∞

0

Lα
j (x)Lα

k (x)xα exp((s− 1)x) dx

=
Γ(j + α + 1)Γ(k + α + 1) · (−s)j+k

j!k!Γ(α + 1) · (1− s)α+j+k+1
· F (−j,−k, α + 1; s−2).

(7.14)

Combining (7.11) and (7.14), we obtain (7.9). �

7.3 Lemma. Assume that α ∈ ]− 1,∞[, and that n ∈ N, k ∈ N0. Then for any complex
number s such that Re(s) < 1, we have that∫ ∞

0

ϕα
k (x)2 exp(sx) dx =

F (−k − α,−k, 1; s2)

(1− s)α+2k+1
(7.15)∫ ∞

0

( n−1∑
j=0

ϕα
j (x)2

)
x exp(sx) dx = n(n + α)

F (1− n− α, 1− n, 2; s2)

(1− s)α+2n
. (7.16)

Proof. By continuity, it suffices to prove (7.15) and (7.16) for all s in C \ {0}, for which
Re(s) < 1. Before doing so, we observe that for j, k in N0 such that j ≤ k, we have that

F (−j,−k, α + 1; s−2) =

j∑
r=0

(−j)r(−k)r

(α + 1)rr!
s−2r

=

j∑
r=0

j!k!Γ(α + 1)

(j − r)!(k − r)!r!Γ(α + r + 1)
s−2r.

Replacing now r by j − r in the summation, it follows that

F (−j,−k, α + 1; s−2) =

j∑
r=0

j!k!Γ(α + 1)

r!(k − j + r)!(j − r)!Γ(α + j − r + 1)
s2r−2j

=
k!Γ(α + 1)

(k − j)!Γ(α + j + 1)

j∑
r=0

(−j)r(−α− j)r

r!(1 + k − j)r

s2r−2j.

Hence for j, k in N0 such that j ≤ k, we have that

F (−j,−k, α + 1; s−2) =
k!Γ(α + 1)

(k − j)!Γ(α + j + 1)
· F (−j − α,−j, 1 + k − j; s2)

s2j
. (7.17)

Returning now to the proof of (7.15) and (7.16), we note that by Lemma 7.1 and (7.17),
we have that∫ ∞

0

ϕα
k (x)2 exp(sx) dx =

Γ(α + k + 1) · s2k

k!Γ(α + 1) · (1− s)α+2k+1
· F (−k,−k, α + 1; s−2)

=
F (−k − α,−k, 1;−s2)

(1− s)α+2k+1
,

26



which proves (7.15). Regarding (7.16), we get by partial integration, Lemma 7.1, Lemma 7.2
and (7.17), that∫ ∞

0

( n−1∑
j=0

ϕα
j (x)2

)
x exp(sx) dx

=
−1

s

∫ ∞

0

d

dx

(
x

n−1∑
j=0

ϕα
j (x)2

)
exp(sx) dx

=
−
√

n(n + α)

s

∫ ∞

0

ϕα
n−1(x)ϕα

n(x) exp(sx) dx

=
−
√

n(n + α) · γ(α, n− 1, n) · s2n−1

s(1− s)α+2n
· F (−n + 1,−n, α + 1; s−2)

=
−
√

n(n + α) · γ(α, n− 1, n) · s2n−1 · n! · Γ(α + 1)

s(1− s)α+2n · Γ(α + n)
· F (−n− α + 1,−n + 1, 2; s2)

s2n−2

=
−
√

n(n + α) · γ(α, n− 1, n) · n! · Γ(α + 1)

(1− s)α+2n · Γ(α + n)
· F (1− n− α, 1− n, 2; s2).

(7.18)

Recall here from (7.10), that

γ(α, n− 1, n) =
−1

Γ(α + 1)

(Γ(α + n)Γ(α + n + 1)

(n− 1)!n!

)1/2

=
−Γ(α + n)

Γ(α + 1)n!

√
n(n + α),

and inserting this in (7.18), we obtain (7.16). �

7.4 Theorem. Assume that m, n ∈ N and that B ∈ GRM(m, n, 1). Then for any
complex number s, such that Re(s) < 1, we have that

E
(
Trn[B∗B exp(sB∗B)]

)
= m · n · F (1−m, 1− n, 2; s2)

(1− s)m+n
, (7.19)

and that

E
(
Trn[exp(sB∗B)]

)
=

n∑
k=1

F (k −m, k − n, 1; s2)

(1− s)m+n+1−2k
, if m ≥ n, (7.20)

E
(
Trn[exp(sB∗B)]

)
= (n−m) +

m∑
k=1

F (k −m, k − n, 1; s2)

(1− s)m+n+1−2k
, if m < n. (7.21)

Proof. To prove (7.19), assume first that m ≥ n. Then by Corollary 6.4(i), we have that

E
(
Trn[B∗B exp(sB∗B)]

)
=

∫ ∞

0

( n−1∑
k=0

ϕm−n
k (x)2

)
x exp(sx) dx,

and hence (7.19) follows from (7.16) in Lemma 7.3. The case m < n is proved similarly
by application of Proposition 6.4(ii) instead of Proposition 6.4(i).
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To prove (7.20), assume that m ≥ n, and note then that by Proposition 6.4(i) and (7.15)
in Lemma 7.3,

E
(
Trn[exp(sB∗B)]

)
=

∫ ∞

0

( n−1∑
k=0

ϕm−n
k (x)2

)
x dx

=
n−1∑
k=0

F (−k −m + n,−k, 1; s2)

(1− s)m−n+2k+1
.

Replacing then k by n− k in this summation, we obtain (7.20).

We note finally that (7.21) is proved the same way as (7.20), by application Proposi-
tion 6.4(ii) instead of Proposition 6.4(i). �

7.5 Definition. For c in ]0,∞[, we denote by µc, the measure on [0,∞[ given by the
equation

µc = max{1− c, 0}δ0 +

√
(x− a)(b− x)

2πx
· 1[a,b](x) · dx,

where a = (
√

c− 1)2 and b = (
√

c + 1)2. It is not hard to check that∫ b

a

√
(x− a)(b− x)

2πx
dx =

{
1, if c ≥ 1,

c, if c < 1,

and this implies that µc is a probability measure for all c in ]0,∞[.

The measure µc is called the Marchenko-Pastur distribution (cf. [MP] and [OP]). It is
also known as the free analog of the Poisson distribution with parameter c (cf. [VDN]).

�

7.6 Lemma. Assume that c ∈ ]0,∞[, and let (m(n))n be a sequence of positive integers,

such that limn→∞
m(n)

n
= c. Consider furthermore a sequence (Yn) of random matrices,

such that for all n in N, Yn ∈ GRM(m(n), n, 1
n
). We then have

(i) For any s in C and n in N, such that n > Re(s), we have that

E
(∣∣trn[Y ∗

n Yn exp(sY ∗
n Yn)]

∣∣) < ∞.

(ii) For any complex number s, we have that

lim
n→∞

E
(
trn[Y ∗

n Yn exp(sY ∗
n Yn)]

)
=

∫ ∞

0

x exp(sx) dµc(x), (7.22)

and the convergence is uniform on compact subsets of C.

Proof. For each n in N, put Bn =
√

nYn, and note that Bn ∈ GRM(m(n), n, 1). If s ∈ C
and n ∈ N such that n > Re(s), then by Theorem 7.4, we have that

E
(∣∣trn[Y ∗

n Yn exp(sY ∗
n Yn)]

∣∣) ≤ E
(
trn

[
Y ∗

n Yn exp(Re(s)Y ∗
n Yn)

])
≤ 1

n2 E
(
Trn

[
B∗

nBn exp(Re(s)
n

B∗
nBn)

])
< ∞,
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which proves (i). Regarding (ii), Theorem 7.4 yields furthermore (still under the assump-
tion that n > Re(s)), that

E
(
trn[Y ∗

n Yn exp(sY ∗
n Yn)]

)
= 1

n2 E
(
Trn[B∗

nBn exp( s
n
B∗

nBn)]
)

=
m(n) · F (1−m(n), 1− n, 2; s2

n2 )

n · (1− s
n
)m(n)+n

.

Here,

F (1−m(n), 1− n, 2; s2

n2 ) =
∞∑

j=0

1

j + 1

(
m(n)− 1

j

)(
n− 1

j

)
s2j

n2j
,

with the convention that
(

k
j

)
= 0, whenever j > k, (j, k ∈ N0). Since limn→∞

m(n)
n

= c, it
follows that for each fixed j in N,

lim
n→∞

1

j + 1

(
m(n)− 1

j

)(
n− 1

j

)
s2j

n2j
=

(cs2)j

j!(j + 1)!
.

Moreover, with γ := supn∈N
m(n)

n
< ∞, we have that∣∣∣ 1

j + 1

(
m(n)− 1

j

)(
n− 1

j

)
s2j

n2j

∣∣∣ ≤ (γs2)j

j!(j + 1)!
,

for all j, n. Hence by Lebesgue’s Theorem on Dominated Convergence (for series), it
follows that

lim
n→∞

F (1−m(n), 1− n, 2; s2

n2 ) =
∞∑

j=0

(cs2)j

j!(j + 1)!
, (s ∈ C), (7.23)

and moreover

|F (1−m(n), 1− n, 2; s2

n2 )| ≤
∞∑

j=0

(c|s|2)j

j!(j + 1)!
≤ exp(γ|s|2), (s ∈ C). (7.24)

A standard application of Cauchy’s Integral Formula and Lebesgue’s Theorem on Domi-
nated Convergence (using (7.24)) now shows that the convergence in (7.23) actually holds
uniformly on compact subsets of C.

Recalling next that limn→∞(1− s
n
)n = exp(−s) for any complex number s, it follows that

lim
n→∞

(1− s
n
)m(n)+n = exp(−(c + 1)s), (s ∈ C). (7.25)

Using then that∣∣(1− s
n
)m(n)+n

∣∣ ≤ (1− |s|
n

)(γ+1)n ≤ exp((γ + 1)|s|), (s ∈ C),

it follows as before, that (7.25) holds uniformly on compact subsets of C.
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Taken together, we have verified that,

lim
n→∞

E
(
trn[Y ∗

n Yn exp(sY ∗
n Yn)]

)
= c exp((c + 1)s)

∞∑
j=0

(cs2)j

j!(j + 1)!
, (s ∈ C), (7.26)

and that the convergence is uniform on compact subsets of C.

It remains thus to show that∫ ∞

0

x exp(sx) dµc(x) = c exp((c + 1)s)
∞∑

j=0

(cs2)j

j!(j + 1)!
, (s ∈ C). (7.27)

Note for this, that for any c in ]0,∞[,∫ ∞

0

x exp(sx) dµc(x) = 1
2π

∫ c+1+2
√

c

c+1−2
√

c

exp(sx)
√

4c− (x− c− 1)2 dx,

since, in the case where c < 1, the mass at 0 for µc does not contribute to the integral.
Applying then the substitution x = c + 1 +

√
cy, we get that∫ ∞

0

x exp(sx) dµc(x) =
c exp((c + 1)s)

2π

∫ 2

−2

√
4− y2 exp(s

√
cy) dy, (7.28)

and here, as we saw in the proof of Theorem 3.6,

1
2π

∫ 2

−2

√
4− y2 exp(ty) dy =

∞∑
j=0

t2j

j!(j + 1)!
, (t ∈ C). (7.29)

Combining (7.28) and (7.29), we obtain (7.27). �

7.7 Theorem. Assume that c ∈ ]0,∞[ and let (m(n))n be a sequence of positive integers,

such that limn→∞
m(n)

n
= c. Consider furthermore a sequence (Yn) of random matrices,

satisfying that Yn ∈ GRM(m(n), n, 1
n
) for all n. Then for any s in C and n in N, such

that n > Re(s),

E
(∣∣trn[exp(sY ∗

n Yn)]
∣∣) < ∞,

and moreover

lim
n→∞

E
(
trn[exp(sY ∗

n Yn)]
)

=

∫ ∞

0

exp(sx) dµc(x), (s ∈ C), (7.30)

with uniform convergence on compact subsets of C.

Proof. Since exp(u) ≤ 1 + u exp(u), for any u in [0,∞[, the first statement of (i) follows
immediately from Lemma 7.6.
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Consider next an element Y of GRM(m, n, 1
n
), and put B =

√
nY ∈ GRM(m,n, 1). Then

by Corollary 6.4, we have that

E
(
trn[f(Y ∗Y )])

= 1
n
E
(
Trn[f( 1

n
B∗B)]

)
=


∫ ∞

0

(∑n−1
k=0ϕ

m−n
k (nx)2

)
f(x) dx, if m ≥ n,

(1− m
n
)f(0) +

∫ ∞

0

(∑m−1
k=0 ϕn−m

k (nx)2
)
f(x) dx, if m < n,

(7.31)

for any Borel function f : [0,∞[ → C, for which the integrals on the right hand side make
sense.

From this formula, it follows easily that s 7→ E
(
trn[exp(sY ∗Y )]

)
, is an analytic function

in the half-plane {s ∈ C | Re(s) < n}, and that

d

ds
E
(
trn[exp(sY ∗Y )]

)
= E

(
trn[Y ∗Y exp(sY ∗Y )]

)
, (Re(s) < n). (7.32)

Now for each n in N, define

fn(s) = E
(
trn[exp(sY ∗

n Yn)]
)
, (Re(s) < n),

where (Yn) is as set out in the theorem. Define furthermore,

f(s) =

∫ ∞

0

exp(sx) dµc(x), (s ∈ C).

Since µc has compact support, f is an entire function, and moreover

f ′(s) =

∫ ∞

0

x exp(sx) dµc(x), (s ∈ C).

It follows thus by (7.32) and Lemma 7.6, that

f ′n(s) → f ′(s), as n →∞, (s ∈ C), (7.33)

with uniform convergence on compact subsets of C. Now for fixed s in C, we may choose a
smooth path γ : [0, 1] → C, such that γ(0) = 0 and γ(1) = s. Then since fn(0) = 1 = f(0)
for all n, it follows that

fn(s)− f(s) =

∫
γ

(
f ′n(z)− f ′(z)

)
dz,

whenever n > Re(s). Combining this fact with (7.33), it follows readily that fn(s) → f(s)
for all s in C, and that the convergence is uniform on compact subsets of C. This completes
the proof of Theorem 7.7. �

Marchenko and Pastur’s limit result from [MP] in the complex Wishart case is now an
immediate consequence of Theorem 7.7:
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7.8 Corollary. (cf [MP], [Wa], [GS], [Jo], [Ba], [OP].) Assume that c ∈ ]0,∞[ and

let (m(n))n be a sequence of positive integers such that limn→∞
m(n)

n
= c. Consider

furthermore a sequence (Yn) of random matrices satisfying Yn ∈ GRM(m(n), n, 1
n
) for all

n ∈ N, Then

(i) For any positive integer p,

lim
n→∞

E(trn[(Y ∗
n Yn)p]) =

∫ ∞

0

xpdµc(x). (7.34)

(ii) For any bounded continuous function f : [0,∞[→ C,

lim
n→∞

E(trn[f(Y ∗
n Yn)]) =

∫ ∞

0

f(x)dµc(x). (7.35)

Proof. (i) follows from Theorem 7.7 by repeating the arguments given in the proof of
Corollary 3.6. Finally, to prove (ii), for any m, n in N, let σm,n denote the probability
measure on [0,∞[, given by

σm,n =


(∑n−1

k=0 ϕm−n
k (nx)2

)
· dx, if m ≥ n

(1− m
n
)δ0 +

(∑m−1
k=0 ϕn−m

k (mx)2
)
· dx, if m < n.

Applying then (7.31) and (7.30) in the case s = it, t ∈ R, it follows from the implication
(iv) ⇒ (iii) in Proposition 3.1, that (7.35) holds. �

7.9 Remark. In [OP, Proposition 1.1], Oravecz and Petz showed that∫ ∞

0

xp dµc(x) = 1
p

p∑
k=1

(
p

k

)(
p

k − 1

)
ck, (c > 0, p ∈ N), (7.36)

by solving a recursion formula for the moments of µc. It is also possible to derive this
formula directly: For p in N, the point-mass at 0 for µc (if c < 1), does not contribute to
the integral on the left hand side of (7.36), and hence∫ ∞

0

xp dµc(x) = 1
2π

∫ c+1+2
√

c

c+1−2
√

c

√
4c− (x− c− 1)2xp−1 dx.

Applying now the substitution x = c + 1 + 2
√

c cos θ, θ ∈ [0, π], we get that∫ ∞

0

xp dµc(x) = 2c
π

∫ π

0

sin2 θ · (c + 1 + 2
√

c cos θ)p−1 dθ

= c
π

∫ π

−π

sin2 θ · (c + 1 + 2
√

c cos θ)p−1 dθ.

Consider next the functions,

gp(θ) = (1 +
√

ceiθ)p−1, h(θ) = eiθgp(θ), and k(θ) = e−iθgp(θ), (θ ∈ [0, π]).
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Using then the formula: sin2 θ = 1
2
(1− cos 2θ), we find that∫ ∞

0

xp dµc(x) = c
2π

∫ π

−π

Re(1− ei2θ) · |gp(θ)|2 dθ

= c
2π

(∫ π

−π

|g(θ)|2 dθ − Re
( ∫ π

−π

hp(θ)kp(θ) dθ
))

.

(7.37)

By the binomial formula and Parseval’s formula, we have here that

1
2π

∫ π

−π

|g(θ)|2 dθ =

p−1∑
j=0

(
p− 1

j

)2

cj,

and that

1
2π

∫ π

−π

hp(θ)kp(θ) dθ =

p−1∑
j=0

(
p− 1

j − 1

)(
p− 1

j + 1

)
cj,

where we have put
(

p−1
−1

)
=
(

p−1
p

)
= 0. A simple computation shows that(

p− 1

j

)2

−
(

p− 1

j − 1

)(
p− 1

j + 1

)
=

1

p

(
p

j + 1

)(
p

j

)
, (0 ≤ j ≤ p− 1). (7.38)

Now (7.36) follows by combining (7.37)-(7.38), and substituting j by j − 1. �

8 Almost Sure Convergence of the Largest and Smal-

lest Eigenvalues in the Complex Wishart case

In the paper [Gem] from 1980, Geman studied a sequence (Tn) of random matrices, such

that for all n in N, Tn is an m(n) × n random matrix, satisfying that the entries t
(n)
jk ,

1 ≤ j ≤ m(n), 1 ≤ k ≤ n, are independent, identically distributed, real valued random

variables, with mean 0 and variance 1. Under the assumption that limn→∞
m(n)

n
= c,

and some extra conditions on the growth of the higher order moments of the entries t
(n)
jk ,

Geman proved that

lim
n→∞

λmax(
1
n
T t

nTn) = (
√

c + 1)2, almost surely, (8.1)

where λmax(
1
n
T t

nTn) denotes the largest eigenvalue of 1
n
T t

nTn. Under the additional as-

sumptions that Tn is Gaussian for all n, (i.e., that t
(n)
jk ∼ N(0, 1) for all j, k, n), and that

m(n) ≥ n for all n, Silverstein proved in 1985, that

lim
n→∞

λmin(
1
n
T t

nTn) = (
√

c− 1)2, almost surely, (8.2)

where λmin(
1
n
T t

nTn) denotes the smallest eigenvalue of 1
n
T t

nTn (cf. [Si]). Both Geman’s and
Silverstein’s conditions have later been relaxed to the condition that the entries of Tn have
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finite fourth moment, i.e., E
(
|t(n)

jk |4
)

< ∞ (cf. [YBK] and [BY2]). This condition is also
necessary for (8.1) (cf. [BSY]).

The above quoted papers consider only real random matrices, but it is not hard to gen-
eralize the proofs to the complex case (cf. [Ba]). In this section we give a new proof of
(8.1) and (8.2) in the complex Wishart case, by taking a different route, namely by ap-
plying the explicit formula for E

(
Trn[exp(B∗

nBn)]
)
, B ∈ GRM(m, n, 1), that we obtained

in Section 7. This route is similar to the one we took in Section 4.

8.1 Theorem. Let c be a strictly positive number, and let (m(n))n be a sequence of

positive integers, such that limn→∞
m(n)

n
= c. Consider furthermore a sequence (Yn) of

random matrices, defined on the same probability space (Ω,F , P ), and such that Yn ∈
GRM(m(n), n, 1

n
), for all n. We then have

lim
n→∞

λmax(Y
∗
n Yn) = (

√
c + 1)2, almost surely, (8.3)

and

lim
n→∞

λmin(Y
∗
n Yn) =

{
(
√

c− 1)2, if c > 1,

0, if c ≤ 1,
almost surely. (8.4)

We start by proving two lemmas:

8.2 Lemma. Consider an element B of GRM(m, n, 1). We then have

(i) For any t in [0, 1
2
],

E
(
Trn[exp(tB∗B)]

)
≤ n exp

(
(
√

m +
√

n)2t + (m + n)t2
)
, (8.5)

(ii) If m ≥ n and t ≥ 0, then

E
(
Trn[exp(−tB∗B)]

)
≤ n exp

(
− (

√
m−

√
n)2t + (m + n)t2

)
. (8.6)

Proof. (i) Assume first that m ≥ n. Then by (7.20) in Theorem 7.4, we have that

E
(
Trn[exp(tB∗B)]

)
=

n∑
k=1

F (m− k, n− k, 1; t2)

(1− t)n+m+1−2k
, (t ∈ ]−∞, 1]). (8.7)

For k in {1, 2, . . . , n}, we have here that

F (m− k, n− k, 1; t2) =
∞∑

j=0

(
m− k

j

)(
n− k

j

)
t2j

≤
∞∑

j=0

(m− k)j(n− k)j

(j!)2
t2j

≤
( ∞∑

j=0

(
√

(m− k)(n− k)|t|)j

j!

)2

,
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and thus we obtain the estimate

F (m− k, n− k, 1; t2) ≤ exp(2
√

(m− k)(n− k)|t|), (k ∈ {1, 2, . . . , n}). (8.8)

For t in [0, 1[ and k in N, we have also that (1− t)2k−1 ≤ 1, and hence by (8.7) and (8.8),
we get the estimate

E
(
Trn[exp(tB∗B)]

)
≤

n∑
k=1

exp(2
√

mnt)

(1− t)m+n
=

n exp(2
√

mnt)

(1− t)m+n
, (t ∈ [0, 1[). (8.9)

Regarding the denominator of the fraction on the right hand side of (8.9), note that for
t in [0, 1

2
], we have that

− log(1− t) =
∞∑

n=1

tn

n
≤ t + 1

2
(t2 + t3 + t4 + · · · ) ≤ t + t2,

and hence that (1− t)−1 ≤ exp(t + t2). Inserting this inequality in (8.9), we obtain (8.5),
in the case where m ≥ n.

If, conversely, m < n, then by application of (7.21) in Theorem 7.4, we get as above, that
for t in [0, 1[,

E
(
Trn[exp(tB∗B)]

)
≤ (n−m) +

m exp(2
√

mnt)

(1− t)m+n
≤ n exp(2

√
mnt)

(1− t)m+n
.

Estimating then the denominator as above, it follows that (8.5) holds for all t in [0, 1
2
].

(ii) Assume that m ≥ n, and note then that for k in {1, 2, . . . , n}, we have that√
(m− k)(n− k) ≤

√
mn− k.

Combining this inequality with (8.7) and (8.8), we get for t in [0,∞[, that

E
(
Trn[exp(−tB∗B)]

)
=

n∑
k=1

F (m− k, n− k, 1; t2)

(1 + t)m+n+1−2k

≤ 1

(1 + t)m+n+1

( n∑
k=1

exp(2(
√

mn− k)t)

(1 + t)−2k

)
≤ exp(2

√
mnt)

(1 + t)m+n

( n∑
k=1

(
(1 + t) exp(−t)

)2k
)
.

Here, (1 + t) exp(−t) ≤ 1 for all t in [0,∞[, and hence we see that

E
(
Trn[exp(−tB∗B)]

)
≤ n exp(2

√
mnt)

(1 + t)m+n
, (t ∈ [0,∞[). (8.10)

Regarding the denominator of the fraction on the right hand side of (8.10), we note that
for any t in [0,∞[, we have by Taylor’s formula with remainder term,

log(1 + t) = t− t2

2
+ t3

3(1+ξ(t))3
,
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for some number ξ(t) in [0, t[. It follows thus that log(1 + t) ≥ t − t2

2
, and hence that

(1 + t)−1 ≤ exp(−t + t2), for any t in [0,∞[. Combining this fact with (8.10), we obtain
(8.6). �

8.3 Lemma. Let c, (m(n))n and (Yn) be as set out in Theorem 8.1. We then have

(i) For almost all ω in Ω,

lim sup
n→∞

λmax

(
Y ∗

n (ω)Yn(ω)
)
≤ (

√
c + 1)2. (8.11)

(ii) If c > 1, then for almost all ω in Ω,

lim inf
n→∞

λmin

(
Y ∗

n (ω)Yn(ω)
)
≥ (

√
c− 1)2. (8.12)

Proof. For each n in N, we put cn = m(n)
n

, and Bn =
√

nYn ∈ GRM(m(n), n, 1). By
Lemma 8.2, we have then that

E
(
Trn[exp(tY ∗

n Yn)]
)
≤ n exp

(
(
√

cn + 1)2t + 1
n
(cn + 1)t2

)
, (t ∈ [0, n

2
]), (8.13)

and that

E
(
Trn[exp(−tY ∗

n Yn)]
)
≤ n exp

(
− (

√
cn − 1)2t + 1

n
(cn + 1)t2

)
, (t ∈ [0,∞[), (8.14)

Since all the eigenvalues of exp(±tY ∗
n Yn) are positive, we have here for any t in [0,∞[,

that

Trn[exp(tY ∗
n (ω)Yn(ω))] ≥ λmax

(
exp(tY ∗

n (ω)Yn(ω))
)

= exp
(
tλmax(Y

∗
n (ω)Yn(ω))

)
, (ω ∈ Ω),

(8.15)

and that

Trn[exp(−tY ∗
n (ω)Yn(ω))] ≥ λmax

(
exp(−tY ∗

n (ω)Yn(ω))
)

= exp
(
− tλmin(Y

∗
n (ω)Yn(ω))

)
, (ω ∈ Ω).

(8.16)

For fixed n in N, t in ]0, n
2
] and ε in ]0, 1[, we get now by (8.15) and (8.13),

P
(
λmax(Y

∗
n Yn) ≥ (

√
cn + 1)2 + ε

)
= P

(
exp

[
tλmax(Y

∗
n Yn)− t(

√
cn + 1)2 − tε

]
≥ 1
)

≤ E
(

exp
[
tλmax(Y

∗
n Yn)− t(

√
cn + 1)2 − tε

])
≤ exp[−t(

√
cn + 1)2 − tε]E

(
Trn[exp(tY ∗

n Yn)]
)

≤ n exp
(
− tε + 1

n
(cn + 1)t2

)
.

For fixed n in N and ε in ]0,∞[, the function t 7→ −tε + 1
n
(cn + 1)t2, attains its minimum

at t0 = nε
2(cn+1)

∈ ]0, n
2
]. With this value of t, the above inequality becomes

P
(
λmax(Y

∗
n Yn) ≥ (

√
cn + 1)2 + ε

)
≤ n exp

(
− t0ε + 1

n
(cn + 1)t20

)
= n exp( −nε2

4(cn+1)
).
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Since cn → c as n →∞, the sequence (cn) is bounded, and thus it follows that

∞∑
n=1

P
(
λmax(Y

∗
n Yn) ≥ (

√
cn + 1)2 + ε

)
≤

∞∑
n=1

n exp( −nε2

4(cn+1)
) < ∞.

Hence the Borel-Cantelli lemma yields, that on a set with probability one, we have that

λmax(Y
∗
n Yn) ≤ (

√
cn + 1)2 + ε, eventually,

and consequently that

lim sup
n→∞

λmax(Y
∗
n Yn) ≤ lim sup

n→∞

[
(
√

cn + 1)2 + ε
]

= (
√

c + 1)2 + ε.

Taken together, we have verified that for any ε in ]0,∞[, we have that

P
(

lim sup
n→∞

λmax(Y
∗
n Yn) ≤ (

√
c + 1)2 + ε

)
= 1,

and this proves (8.11). The proof of (8.12) can be carried out in exactly the same way,
using (8.16) and (8.14) instead of (8.15) respectively (8.13). We leave the details to the
reader. �

To conclude the proof of Theorem 8.1, we must, as in Geman’s paper [Gem], rely on
Wachter’s result from [Wa] on almost sure convergence of the empirical distribution of
the eigenvalues to the measure µc. As mentioned in the beginning of Section 7, the
random matrices considered by Wachter have real valued (but not necessarily Gaussian)
entries. His method works also for random matrices with complex valued entries, but in
the following we shall give a short proof for the case of complex Gaussian random matrices,
based on the “concentration of measures phenomenon” in the form of Lemma 4.4.

8.4 Proposition. (cf. [Wa]) Let c, (m(n))n and (Yn) be as in Theorem 8.1, and for
all n in N and ω in Ω, let µn,ω denote the empirical distribution of the eigenvalues of
Y ∗

n (ω)Yn(ω), i.e.,
µn,ω = 1

n

∑n
j=1 δλk(Y ∗

n (ω)Yn(ω)),

where, as usual, λ1(Y
∗
n (ω)Yn(ω)) ≤ · · · ≤ λn(Y ∗

n (ω)Yn(ω)) are the ordered eigenvalues of
Y ∗

n (ω)Yn(ω). We then have

(i) For almost all ω in Ω, µn,ω converges weakly to the measure µc introduced in Defini-
tion 7.5.

(ii) On a set with probability 1, we have for any interval I in R, that

lim
n→∞

(
1
n
· card

[
sp(Y ∗

n Yn) ∩ I
])

= µc(I).

Proof. Note first that (ii) follows from (i), Proposition 3.1 and Definition 3.2.

To prove (i), it suffices, as in the proof of Proposition 4.6, to show that for every fixed
function f from C1

c (R), we have that

lim
n→∞

trn[f(Y ∗
n Yn)] =

∫ ∞

0

f dµc, almost surely.
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So let such an f be given, and define g : R → C by the equation: g(x) = f(x2), (x ∈ R).
Then g ∈ C1

c (R), so in particular g is Lipschitz with constant

c = sup
x∈R

|g′(x)| < ∞.

Consider furthermore fixed m, n in N, and for A, B in Mm,n(C), define Ã and B̃ in
Mm+n(C) by the equations

Ã =

(
0 A∗

A 0

)
, B̃ =

(
0 B∗

B 0

)
.

By Lemma 4.5 it follows then that

‖g(Ã)− g(B̃)‖HS ≤ c‖Ã− B̃‖HS. (8.17)

Note here that

Ã2 =

(
A∗A 0

0 AA∗

)
, B̃2 =

(
B∗B 0

0 BB∗

)
.

so that

g
(
Ã
)

=

(
f(A∗A) 0

0 f(AA∗)

)
, g

(
B̃
)

=

(
f(B∗B) 0

0 f(BB∗)

)
.

Hence, it follows from (8.17) that

‖f(A∗A)− f(B∗B)‖2
HS + ‖f(AA∗)− f(BB∗)‖2

HS ≤ c2
(
‖A−B‖2

HS + ‖A∗ −B∗‖2
HS

)
.

Since ‖A∗ −B∗‖2
HS = ‖A−B‖2

HS, the above inequality implies that

‖f(A∗A)− f(B∗B)‖HS ≤ c
√

2‖A−B‖HS,

and hence, by the Cauchy-Schwarz inequality, that∣∣trn[f(A∗A)]− trn[f(B∗B)]
∣∣ ≤ c

√
2
n
‖A−B‖HS.

It follows thus, that the function F : Mm,n(C) → R, given by

F (A) = trn[f(A∗A)], (A ∈ Mm,n(C)), (8.18)

satisfies the Lipschitz condition

|F (A)− F (B)| ≤ c
√

2
n
‖A−B‖HS, (A, B ∈ Mm,n(C)). (8.19)

The linear bijection Φ: Mm,n(C) → R2mn, given by

Φ(A) =
(
Re(Ajk), Im(Ajk)

)
1≤j≤m
1≤k≤n

, (A ∈ Mm,n(C)),
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transforms the distribution on Mm,n(C) of an element of GRM(m,n, 1
n
) onto the joint

distribution of 2mn independent, identically N(0, 1
2n

)-distributed random variables, i.e.,
the distribution G

2mn,(2n)−
1
2

on R2mn with density

dG
2mn,(2n)−

1
2
(x)

dx
=
(n

π

)mn

exp(−n‖x‖2), (x ∈ R2mn),

w.r.t. Lebesque measure on R2mn. Moreover, the Hilbert-Schmidt norm on Mm,n(C) corre-
sponds to the Euclidean norm on R2mn via the mapping Φ. Combining these observations
with Lemma 4.4 (in the case σ2 = 1√

2n
) and (8.19), it follows that with (Yn) as set out in

the proposition, we have for any n in N and t from ]0,∞[, that

P
(
|F (Yn)− E(F (Yn))| > t

)
≤ 2 exp(−n2Kt2

c2
),

where K = 2
π2 . It follows thus by application of the Borel-Cantelli lemma, that

lim
n→∞

|F (Yn)− E(F (Yn))| = 0, almost surely.

Using then (8.18) and Theorem 7.7(iii), we get that

lim
n→∞

trn[f(Y ∗
n Yn)] =

∫ ∞

0

f dµc, almost surely,

as desired. �

Proof of Theorem 8.1. By Lemma 8.3, we only need to show, that for any c from ]0,∞[,
we have that

lim inf
n→∞

λmax(Y
∗
n Yn) ≥ (

√
c + 1)2, almost surely, (8.20)

lim sup
n→∞

λmin(Y
∗
n Yn) ≤

{
(
√

c− 1)2, if c > 1,

0, if c ≤ 1,
almost surely. (8.21)

By Proposition 8.4, it follows, that for any strictly positive ε and almost all ω from Ω,
the numbers of eigenvalues of Y ∗

n (ω)Yn(ω) in the intervals
[
(
√

c + 1)2 − ε, (
√

c + 1)2
]

and[
(
√

c − 1)2, (
√

c − 1)2 + ε
]
, both tend to ∞, as n → ∞. This proves (8.20) and, when

c ≥ 1, also (8.21). If c < 1, then m(n) < n eventually, and this implies that eventually, 0
is an eigenvalue for Y ∗

n (ω)Yn(ω), for any ω in Ω. Hence we conclude that (8.21) holds in
this case too. �

9 A Recursion Formula for the Moments of the com-

plex Wishart distribution

In [HSS], Hanlon, Stanley and Stembridge used representation theory of the Lie group
U(n) to compute the moments E

(
Trn[(B∗B)p]

)
of B∗B, when B ∈ GRM(m, n, 1). They
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derived the following formula (cf. [HSS, Theorem 2.5]):

E
(
Trn[(B∗B)p]

)
= 1

p

p∑
j=1

(−1)j−1 [m + p− j]p[n + p− j]p
(p− j)!(j − 1)!

, (p ∈ N), (9.1)

where we apply the notation: [a]p = a(a− 1) · · · (a− p + 1), (a ∈ C, p ∈ N0).

By application of the results of Section 7, we can derive another explicit formula for the
moments of B∗B:

9.1 Proposition. Let m, n be positive integers, and let B be an element of GRM(m, n, 1).
Then for any p in N, we have that

E
(
Trn[(B∗B)p]

)
= mn(p− 1)!

[ p−1
2

]∑
j=0

1

j + 1

(
m− 1

j

)(
n− 1

j

)(
m + n + p− 2j − 2

p− 2j − 1

)
. (9.2)

Proof. In Section 7, we saw that that for any complex number s, such that Re(s) < 1, we
have the formula

E
(
Trn[B∗B exp(sB∗B)]

)
=

m · n · F (1−m, 1− n, 2; s2)

(1− s)m+n
, (9.3)

(cf. formula (7.19)). Hence, by Taylor series expansion, for any s in C, such that |s| < 1,
we have that

∞∑
p=1

E
(
Trn[(B∗B)p]

)
· sp−1

(p− 1)!
=

m · n · F (1−m, 1− n, 2; s2)

(1− s)m+n
, (9.4)

Formula (9.2) now follows by multiplying the two power series

F (1−m, 1− n, 2; s2) =
∞∑

j=0

1

j + 1

(
m− 1

j

)(
n− 1

j

)
s2j,

and

(1− s)−(m+n) =
∞∑

k=0

(
m + n + k − 1

k

)
sk,

and comparing terms in (9.4). �

We prove next a recursion formula for the moments of B∗B, similar to the Harer-Zagier
recursion formula, treated in Section 5.

9.2 Theorem. Let m, n be positive integers, let B be an element of GRM(m, n, 1), and
for p in N0, define

D(p, m, n) = E
(
Trn[(B∗B)p]

)
. (9.5)

Then D(0, m, n) = n, D(1, m, n) = mn, and for fixed m,n, the numbers D(p, m, n) satisfy
the recursion formula

D(p + 1, m, n) = (2p+1)(m+n)
p+2

·D(p, m, n) + (p−1)(p2−(m−n)2)
p+2

·D(p− 1, m, n), (p ∈ N).

(9.6)
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Proof. Recall from Section 7, that the hyper-geometric function F is defined by the
formula

F (a, b, c; x) =
∞∑

k=0

(a)k(b)k

(c)kk!
xk,

for a, b, c, x in C, such that c /∈ Z \ N0, and |x| < 1. For fixed a, b, c, the function
u(x) = F (a, b, c; x), is a solution to the differential equation

x(1− x)
d2u

dx2
+ (c− (a + b + 1)x)

du

dx
− abu = 0,

(cf. [HTF, Vol. 1, p.56, formula (1)]). In particular, if a = 1 − n, b = 1 −m and c = 2,
then u satisfies the differential equation

x(1− x)
d2u

dx2
+ (2 + (m + n− 3)x)

du

dx
− (m− 1)(n− 1)u = 0. (9.7)

Define now, for these a, b, c,

v(t) = u(t2) = F (1−m, 1− n, 2; t2), (|t| < 1).

Then (9.7) implies that v satisfies the differential equation

t(1− t)
d2v

dt2
+ (3 + (2m + 2n− 5)t2)

dv

dt
− 4(m− 1)(n− 1)tv = 0, (|t| < 1). (9.8)

Define next

w(t) =
v(t)

(1− t)m+n
=

F (1−m, 1− n, 2; t2)

(1− t)m+n
, (|t| < 1).

A tedious, but straightforward computation, then shows that w satisfies the differential
equation

t(1− t2)
d2w

dt2
+ (3− 2(m + n)t− 5t2)

dw

dt
− (3(m + n) + 4t− (m− n)2t)w = 0, (|t| < 1).

(9.9)

Introduce now the power series expansion w(t) =
∑∞

p=0 αpt
p, of w(t). Inserting this

expansion in (9.9), one finds (after some reductions), that the coefficients αp satisfy the
formulas

α0 = 1, and α1 = m + n, (9.10)

p(p + 2)αp − (2p + 1)(m + n)αp−1 − (p2 − (m− n)2)αp−2 = 0, (p ≥ 2). (9.11)

On the other hand, inserting the power series expansion of w(t) in (9.4), yields the formula

D(p, m, n) = E
(
Trn[(B∗B)p]

)
= mn(p− 1)!αp−1, (p ∈ N). (9.12)

Combining this formula with (9.11), it follows that (9.6) holds, whenever p ≥ 2. Regarding
the case p = 1, it follows from (9.10) and (9.12), that D(1, m, n) = mn, D(2, m, n) =
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mn(m + n), and hence (9.6) holds in this case too. It remains to note that D(0, m, n) =
E
(
Trn[111n]

)
= n. �

The recursion formula (9.6) is much more efficient than (9.1) and (9.2) to generate tables
of the moments of B∗B. For an element B of GRM(m,n, 1), we get

E
(
Trn[B∗B]

)
= mn

E
(
Trn[(B∗B)2]

)
= m2n + mn2

E
(
Trn[(B∗B)3]

)
= (m3n + 3m2n2 + mn3) + mn

E
(
Trn[(B∗B)4]

)
= (m4n + 6m3n2 + 6m2n3 + mn4) + (5m2n + 5mn2)

E
(
Trn[(B∗B)5]

)
= (m5n + 10m4n2 + 20m3n3 + 10m2n4 + mn5)

+ (15m3n + 40m2n2 + 15mn3) + 8mn.

For p ≤ 4, these moments were also computed in [HSS, p.172] by application of (9.1).
Note that only terms of homogeneous degree p + 1 − 2j, j ∈ {0, 1, 2, . . . , [p−1

2
]}, appear

in the above formulas. This is a general fact, which can easily be proved by Theorem 9.2
and induction. If we replace the B from GRM(m, n, 1) considered above by an element
Y from GRM(m,n, 1

n
), and Trn by trn, then we have to divide the right hand sides of the

above formulas by np+1. Thus with c = m
n
, we obtain the formulas

E
(
trn[Y ∗Y ]

)
= c

E
(
trn[(Y ∗Y )2]

)
= c2 + c

E
(
trn[(Y ∗Y )3]

)
= (c3 + 3c2 + c) + cn−2

E
(
trn[(Y ∗Y )4]

)
= (c4 + 6c3 + 6c2 + c) + (5c2 + 5c)n−2

E
(
trn[(Y ∗Y )5]

)
= (c5 + 10c4 + 20c3 + 10c2 + c)

+ (15c3 + 40c2 + 15c)n−2 + 8cn−4.

In general E
(
trn[(Y ∗Y )p]

)
is a polynomial of degree [p−1

2
] in n−2, for fixed c. By Theo-

rem 9.2, the constant term γ(p, c) in this polynomial, satisfies the recursion formula

γ(p + 1, c) = (2p+1)(c+1)
p+2

· γ(p, c)− (p−1)(c−1)2

p+2
· γ(p− 1, c), (p ∈ N),

and moreover, γ(0, c) = 1, γ(1, c) = c. As was proved in [OP], for any c in ]0,∞[, the
solution to this difference equation is exactly the sequence of moments of the free Poisson
distribution µc with parameter c, i.e.,

γ(p, c) =

∫ ∞

0

xp dµc(x) = 1
p

p∑
k=1

(
p

k

)(
p

k − 1

)
ck, (p ∈ N),

(cf. [OP, Formula (1.2) and Proposition 1.1]). Thus, if Yn ∈ GRM(m(n), n, 1
n
), for all n

in N, and m(n)
n

→ c, as n →∞, then we have that

lim
n→∞

E
(
trn[(Y ∗Y )p]

)
= γ(p, c) =

∫ ∞

0

xp dµc(x),

in concordance with Theorem 7.7(ii).
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