Approximation of semigroups generated by differential operators associated with Markov operators

Vita Leonessa

Department of Mathematics, Computer Science and Economics
University of Basilicata, Potenza, Italy
vita.leonessa@unibas.it

joint work with
Francesco Altomare, Mirella Cappelletti Montano
Department of Mathematics, University of Bari, Italy

and Ioan Raşa
Department of Mathematics, Technical University of Cluj-Napoca, Romania

The Real World is Complex
Copenhagen
August, 26-28 2015
F. Altomare, M. Cappelletti Montano, V. L., Ioan Raşa

On differential operators associated with Markov operators,
Given

- a convex compact subset K of \mathbb{R}^d ($d \geq 1$) with non-empty interior
- a Markov operator T on $C(K)$ (i.e., a positive linear operator T on $C(K)$ such that $T(1) = 1$, 1 being the constant function of value 1)

it is possible to associate with T an elliptic second-order differential operator W_T, defined by setting, for every $u \in C^2(K)$,

$$W_T(u) := \frac{1}{2} \sum_{i,j=1}^{d} \alpha_{ij} \frac{\partial^2 u}{\partial x_i \partial x_j} \quad (1)$$

where, for each $i, j = 1, \ldots, d$ and $x \in K$,

$$\alpha_{ij}(x) := T(pr_i pr_j)(x) - (pr_i pr_j)(x), \quad (2)$$

pr_i being the i-th coordinate function (i.e., $pr_i(x) = x_i$ for every $x \in K$).
Differential operators associated with Markov operators

\[W_T(u) := \frac{1}{2} \sum_{i,j=1}^{d} (T(pr_i pr_j) - pr_i pr_j) \frac{\partial^2 u}{\partial x_i \partial x_j} \]

Difficulties

- The boundary \(\partial K \) of \(K \) is generally non-smooth, due to the presence of possible sides and corners.
- \(W_T \) degenerates on the set

\[\partial_T K := \{ x \in K \mid T(f)(x) = f(x) \text{ for every } f \in \mathcal{C}(K) \} \]

(4)

of all interpolation points for \(T \) which contains the set \(\partial_e K \) of the extreme points of \(K \) if, in addition,

\[T(h) = h \quad \text{for every } h \in \{ pr_1, \ldots, pr_d \}. \]

(5)
Differential operators associated with Markov operators

\[W_T(u) := \frac{1}{2} \sum_{i,j=1}^{d} (T(pr_i pr_j) - pr_i pr_j) \frac{\partial^2 u}{\partial x_i \partial x_j} \] \hspace{1cm} (3)

Difficulties

- **The boundary** \(\partial K \) **of** \(K \) **is generally non-smooth, due to the presence of possible sides and corners.**

- \(W_T \) **degenerates on the set**

\[\partial_T K := \{ x \in K \mid T(f)(x) = f(x) \text{ for every } f \in \mathcal{C}(K) \} \] \hspace{1cm} (4)

of all interpolation points for \(T \) which contains the set \(\partial_e K \) of the extreme points of \(K \) if, in addition,

\[T(h) = h \quad \text{for every } h \in \{pr_1, \ldots, pr_d\}. \] \hspace{1cm} (5)
Differential operators associated with Markov operators

\[W_T(u) := \frac{1}{2} \sum_{i,j=1}^{d} (T(pr_i pr_j) - pr_i pr_j) \frac{\partial^2 u}{\partial x_i \partial x_j} \]

(3)

Difficulties

- The boundary \(\partial K \) of \(K \) is generally non-smooth, due to the presence of possible sides and corners.
- \(W_T \) degenerates on the set

\[\partial_T K := \{ x \in K \mid T(f)(x) = f(x) \text{ for every } f \in C(K) \} \]

(4)

of all interpolation points for \(T \) which contains the set \(\partial_e K \) of the extreme points of \(K \) if, in addition,

\[T(h) = h \quad \text{for every } h \in \{ pr_1, \ldots, pr_d \}. \]

(5)
Differential operators associated with Markov operators

\[W_T(u) := \frac{1}{2} \sum_{i,j=1}^{d} (T(pr_ipr_j) - pr_ipr_j) \frac{\partial^2 u}{\partial x_i \partial x_j} \]

(3)

Interests

Operators of the form (3) are of concern in the study of several diffusion problems arising in biology, financial mathematics and other fields.

Our main aim

Proving that, under suitable hypotheses on \(T \), the operator \((W_T, \mathcal{C}^2(K))\) is closable and its closure generates a Markov semigroup \((T(t))_{t \geq 0}\) on \(\mathcal{C}(K) \).

\[W_T \quad \longrightarrow \quad (B_n)_{n \geq 1} \]

via asymptotic formula
Differential operators associated with Markov operators

\[W_T(u) := \frac{1}{2} \sum_{i,j=1}^{d} (T(pr_i pr_j) - pr_i pr_j) \frac{\partial^2 u}{\partial x_i \partial x_j} \quad (3) \]

Interests

Operators of the form (3) are of concern in the study of several diffusion problems arising in biology, financial mathematics and other fields.

Our main aim

Proving that, under suitable hypotheses on \(T \), the operator \((W_T, C^2(K)) \) is closable and its closure generates a Markov semigroup \((T(t))_{t \geq 0} \) on \(C(K) \).

\[W_T \quad \rightarrow \quad (B_n)_{n \geq 1} \]

via asymptotic formula
Differential operators associated with Markov operators

\[W_T(u) := \frac{1}{2} \sum_{i,j=1}^{d} \left(T(pr_i pr_j) - pr_i pr_j \right) \frac{\partial^2 u}{\partial x_i \partial x_j} \]

(3)

Interests

Operators of the form (3) are of concern in the study of several diffusion problems arising in biology, financial mathematics and other fields.

Our main aim

Proving that, under suitable hypotheses on \(T \), the operator \((W_T, C^2(K))\) is closable and its closure generates a Markov semigroup \((T(t))_{t \geq 0}\) on \(C(K) \).

\[W_T \quad \rightarrow \quad \text{via asymptotic formula} \quad (B_n)_{n \geq 1} \]
Trotter-Schnabl-type theorem

Let \((L_n)_{n\geq 1}\) be a sequence of linear contractions \(a\) on a Banach space \((E, \| \cdot \|)\) over \(\mathbb{R}\) or \(\mathbb{C}\) and let \((\rho(n))_{n\geq 1}\) be a sequence of positive real numbers such that \(\lim_{n\to \infty} \rho(n) = 0\). Let \((A_0, D_0)\) be a linear operator defined on a subspace \(D_0\) of \(E\) and assume that

(i) there exists a family \((E_i)_{i \in I}\) of finite dimensional subspaces of \(D_0\) which are invariant under \(L_n\) and whose union \(\bigcup_{i \in I} E_i\) is dense in \(E\).

(ii) \(\lim_{n \to \infty} \frac{L_n(u) - u}{\rho(n)} = A_0(u)\) for every \(u \in D_0\).

Then \((A_0, D_0)\) is closable and its closure \((A, D(A))\) is the generator of a contractive \(C_0\)-semigroup \((T(t))_{t \geq 0}\) on \(E\).

\(^a\|L_n\| \leq 1\) for every \(n \geq 1\).
Moreover, if \(t \geq 0 \) and if \((k(n))_{n \geq 1}\) is a sequence of positive integers satisfying \(\lim_{n \to \infty} k(n) \rho(n) = t \), then, for every \(f \in E \),

\[
T(t)(f) = \lim_{n \to \infty} L_n^{k(n)}(f).
\]

Furthermore, \(\bigcup_{i \in I} E_i \) is a core \(^a\) for \((A, D(A))\).

\(^a\)A core for a linear operator \(A : D(A) \to C(K) \) is a linear subspace of \(D(A) \) which is dense in \(D(A) \) with respect to the graph norm \(\|u\|_A := \|A(u)\|_\infty + \|u\|_\infty \) \((u \in D(A))\).
Moreover, if \(t \geq 0 \) and if \((k(n))_{n \geq 1} \) is a sequence of positive integers satisfying \(\lim_{n \to \infty} k(n) \rho(n) = t \), then, for every \(f \in E \),

\[
T(t)(f) = \lim_{n \to \infty} L_n^{k(n)}(f). \tag{6}
\]

Furthermore, \(\bigcup_{i \in I} E_i \) is a core \(^a\) for \((A, D(A))\).

\(^a\)A core for a linear operator \(A : D(A) \to \mathcal{C}(K) \) is a linear subspace of \(D(A) \) which is dense in \(D(A) \) with respect to the graph norm \(\|u\|_A := \|A(u)\|_\infty + \|u\|_\infty \) (\(u \in D(A) \)).

For us

- \((E, \| \cdot \|) = (\mathcal{C}(K), \| \cdot \|_\infty)\)
- \((A_0, D_0) = (W_T, \mathcal{C}^2(K))\)
- \(L_n = B_n\)
It is well-known that for every $x \in K$ there exists a (unique) probability Borel measure $\tilde{\mu}_x^T$ on K such that, for every $f \in C(K)$,

$$T(f)(x) = \int_K f \, d\tilde{\mu}_x^T. \quad (7)$$

Then, for every $n \geq 1$, we define the n-th Bernstein-Schnabl operator B_n associated with T by setting, for every $f \in C(K)$ and $x \in K$,

$$B_n(f)(x) := \int_K \cdots \int_K f \left(\frac{x_1 + \cdots + x_n}{n} \right) \, d\tilde{\mu}_x^T(x_1) \cdots d\tilde{\mu}_x^T(x_n). \quad (8)$$
It is well-known that for every $x \in K$ there exists a (unique) probability Borel measure $\tilde{\mu}_x^T$ on K such that, for every $f \in C(K),$

$$T(f)(x) = \int_K f \, d\tilde{\mu}_x^T. \quad (7)$$

Then, for every $n \geq 1$, we define the n-th Bernstein-Schnabl operator B_n associated with T by setting, for every $f \in C(K)$ and $x \in K,$

$$B_n(f)(x) := \int_K \cdots \int_K f \left(\frac{x_1 + \cdots + x_n}{n} \right) d\tilde{\mu}_x^T(x_1) \cdots d\tilde{\mu}_x^T(x_n). \quad (8)$$
Properties of B_n’s

- B_n is a positive linear operator from $C(K)$ into $C(K)$.
- $B_n(1) = 1 \implies \|B_n\| = 1$ for every $n \geq 1$.
- $B_1 = T$.
- If $K = [0, 1]$ and $T = T_1$ is the canonical projection, i.e.

$$T_1(f)(x) = xf(1) + (1 - x)f(0) \quad (f \in C([0, 1]), x \in [0, 1]), \quad (9)$$

then B_n’s turn into the classical Bernstein operators on $[0, 1]$.
Properties of B_n’s

- B_n is a positive linear operator from $\mathcal{C}(K)$ into $\mathcal{C}(K)$.
- $B_n(1) = 1 \Rightarrow \|B_n\| = 1$ for every $n \geq 1$.
- $B_1 = T$.
- If $K = [0, 1]$ and $T = T_1$ is the canonical projection, i.e.
 \[T_1(f)(x) = xf(1) + (1 - x)f(0) \quad (f \in \mathcal{C}([0, 1]), x \in [0, 1]), \quad (9) \]
 then B_n’s turn into the classical Bernstein operators on $[0, 1]$.
Properties of B_n’s

• B_n is a positive linear operator from $\mathcal{C}(K)$ into $\mathcal{C}(K)$.
• $B_n(1) = 1 \implies \|B_n\| = 1$ for every $n \geq 1$.
• $B_1 = T$.
• If $K = [0, 1]$ and $T = T_1$ is the canonical projection, i.e.

$$T_1(f)(x) = xf(1) + (1 - x)f(0) \quad (f \in \mathcal{C}([0, 1]), x \in [0, 1]),$$ \hspace{1cm} (9)

then B_n’s turn into the classical Bernstein operators on $[0, 1]$.

Properties of B_n’s

- B_n is a positive linear operator from $C(K)$ into $C(K)$.
- $B_n(1) = 1 \implies \|B_n\| = 1$ for every $n \geq 1$.
- $B_1 = T$.
- If $K = [0, 1]$ and $T = T_1$ is the canonical projection, i.e.
 \[T_1(f)(x) = xf(1) + (1 - x)f(0) \quad (f \in C([0, 1]), x \in [0, 1]), \] \[(9) \]
then B_n’s turn into the classical Bernstein operators on $[0, 1]$.
Properties of B_n’s

Assume that

$$T(h) = h \quad \text{for every } h \in \{pr_1, \ldots, pr_d\}. \quad (10)$$

Theorem 1

For every $i, j = 1, \ldots, d$ and $n \geq 1$,

$$B_n(pr_i) = pr_i \quad \text{and} \quad B_n(pr_i pr_j) = \frac{1}{n} T(pr_i pr_j) + \frac{n-1}{n} pr_i pr_j. \quad (11)$$

Moreover, for every $f \in \mathcal{C}(K)$,

$$\lim_{n \to \infty} B_n(f) = f \quad \text{uniformly on } K. \quad (12)$$

Finally, for every $n \geq 1$ and $f \in \mathcal{C}(K)$,

$$B_n(f) = f \quad \text{on } \partial_T K. \quad (13)$$
Properties of B_n’s

For every $m \geq 1$ denote by $P_m(K)$ the (restriction to K of all) polynomials of degree at most m. Moreover, we set

$$P_{\infty}(K) := \bigcup_{m \geq 1} P_m(K).$$ \hfill (14)

Observe that P_{∞} is a subalgebra of $\mathcal{C}(K)$ and it is dense in $\mathcal{C}(K)$.

Theorem 2

If

$$T(P_m(K)) \subset P_m(K) \quad \text{for every } m \geq 1,$$ \hfill (15)

then

$$B_n(P_m(K)) \subset P_m(K)$$ \hfill (16)

for every $n, m \geq 1$.

In the Trotter-Schnabl-type theorem:

(i) $(E_i)_{i \in I}$ is $(P_m(K))_{m \geq 1}$
For every $m \geq 1$ denote by $P_m(K)$ the (restriction to K of all) polynomials of degree at most m. Moreover, we set

$$P_\infty(K) := \bigcup_{m \geq 1} P_m(K). \quad (14)$$

Observe that P_∞ is a subalgebra of $\mathcal{C}(K)$ and it is dense in $\mathcal{C}(K)$.

Theorem 2

If

$$T(P_m(K)) \subset P_m(K) \quad \text{for every } m \geq 1, \quad (15)$$

then

$$B_n(P_m(K)) \subset P_m(K) \quad (16)$$

for every $n, m \geq 1$.
Properties of B_n’s

For every $m \geq 1$ denote by $P_m(K)$ the (restriction to K of all) polynomials of degree at most m. Moreover, we set

$$P_{\infty}(K) := \bigcup_{m \geq 1} P_m(K).$$ \hfill (14)

Observe that P_{∞} is a subalgebra of $C(K)$ and it is dense in $C(K)$.

Theorem 2

If

$$T(P_m(K)) \subset P_m(K) \quad \text{for every } m \geq 1,$$ \hfill (15)

then

$$B_n(P_m(K)) \subset P_m(K)$$ \hfill (16)

for every $n, m \geq 1$.

In the Trotter-Schnabl-type theorem:

(i) $(E_i)_{i \in I}$ is $(P_m(K))_{m \geq 1}$
Asymptotic formula for B_n's

Theorem 3

For every $u \in C^2(K)$,

$$\lim_{n \to \infty} n(B_n(u) - u) = W_T(u) \quad \text{uniformly on } K.$$

(17)

In the Trotter-Schnabl-type theorem:

(ii) $L_n = B_n$ and $\rho(n) = 1/n$
Asymptotic formula for B_n’s

Theorem 3

For every $u \in \mathcal{C}^2(K)$,

$$\lim_{n \to \infty} n(B_n(u) - u) = W_T(u) \quad \text{uniformly on } K. \quad (17)$$

In the Trotter-Schnabl-type theorem:

(ii) $L_n = B_n$ and $\rho(n) = 1/n$
Theorem 4

Let K be a convex compact subset of \mathbb{R}^d, $d \geq 1$, having non-empty interior and consider a Markov operator T on $C(K)$ preserving coordinate functions. Furthermore, assume that

$$T(P_m(K)) \subset P_m(K) \quad \text{for every } m \geq 2. \quad (18)$$

Then the operator $(W_T, C^2(K))$ is closable and its closure $(A_T, D(A_T))$ generates a Markov semigroup $(T(t))_{t \geq 0}$ on $C(K)$ such that, if $t \geq 0$ and $(k(n))_{n \geq 1}$ is a sequence of positive integers satisfying $\lim_{n \to \infty} k(n)/n = t$,

$$T(t)(f) = \lim_{n \to \infty} B_n^{k(n)}(f) \quad \text{uniformly on } K \quad (19)$$

for every $f \in C(K)$.

Moreover, $P_\infty(K)$, and hence $C^2(K)$ as well, is a core for $(A_T, D(A_T))$.
Finally, for every $t \geq 0$ and $m \geq 1$,

$$T(t)(P_m(K)) \subset P_m(K)$$ \hspace{1cm} (20)

and, if $t \geq 0$ and $f \in \mathcal{C}(K)$,

$$T(t)(f) = f \quad \text{on} \; \partial_T K.$$ \hspace{1cm} (21)
Consider the abstract Cauchy problem

\[
\begin{cases}
\frac{\partial u}{\partial t}(x, t) = A_T(u(\cdot, t))(x) & x \in K, \ t \geq 0, \\
u(x, 0) = u_0(x) & u_0 \in D(A_T), \ x \in K.
\end{cases}
\]
(22)

Since \((A_T, D(A_T))\) generates the Markov semigroup \((T(t))_{t \geq 0}\), (22) admits a unique solution \(u : K \times [0, +\infty[\rightarrow \mathbb{R}\) given by

\[
u(x, t) = T(t)(u_0)(x) \quad (x \in K, t \geq 0).
\]
(23)

Hence, by Theorem 4,

\[
u(x, t) = T(t)(u_0)(x) = \lim_{n \to \infty} B_n^{k(n)}(u_0)(x),
\]
(24)

where \((k(n))_{n \geq 1}\) is a sequence of positive integers satisfying \(\lim_{n \to \infty} k(n)/n = t\), and the limit is uniform with respect to \(x \in K\).
Recall that

\[A_T = W_T \quad \text{on } C^2(K). \quad (25) \]

Therefore, if \(u_0 \in P_m(K) (m \geq 1) \) then \(u(x, t) \) is the unique solution to the Cauchy problem

\[
\begin{cases}
\frac{\partial u}{\partial t}(x, t) = \frac{1}{2} \sum_{i,j=1}^{d} \alpha_{ij}(x) \frac{\partial^2 u}{\partial x_i \partial x_j}(x, t) & x \in K, \ t \geq 0, \\
u(x, 0) = u_0(x) & x \in K
\end{cases}
\]

and

\[u(\cdot, t) \in P_m(K) \quad \text{for every } t \geq 0. \quad (27) \]
In

F. Altomare, M. Cappelletti Montano, V. L., Ioan Raşa

On differential operators associated with Markov operators,

- \((B_n)_{n\geq 1}\) preserves Hölder continuous functions \(\implies\) the same holds for
 \((T(t))_{t\geq 0}\)

Further properties both for \((B_n)_{n\geq 1}\) and \((T(t))_{t\geq 0}\) have been investigated in

F. Altomare, M. Cappelletti Montano, V. L., Ioan Raşa

Markov Operators, Positive Semigroups and Approximation Processes

Examples of W_T satisfying Theorem 4

$T(h) = h$ for every $h \in \{pr_1, \ldots, pr_d\}$ \hspace{1cm} (Hp1)

$T(P_m(K)) \subset P_m(K)$ for every $m \geq 2$ \hspace{1cm} (Hp2)
Examples of W_T satisfying Theorem 4

1. Consider the d-dimensional simplex

$$K_d := \left\{ (x_1, \ldots, x_d) \in \mathbb{R}^d \mid x_i \geq 0 \text{ for every } i = 1, \ldots, d \text{ and } \sum_{i=1}^{d} x_i \leq 1 \right\}$$

(28)

and the projection T_d on K_d defined by

$$T_d(f)(x) := \left(1 - \sum_{i=1}^{d} x_i \right) f(v_0) + \sum_{i=1}^{d} x_i f(v_i)$$

(29)

($f \in \mathcal{C}(K_d)$, $x = (x_1, \ldots, x_d) \in K_d$), where

$$v_0 := (0, \ldots, 0), \quad v_1 := (1, 0, \ldots, 0), \ldots, \quad v_d := (0, \ldots, 0, 1)$$

(30)

are the vertices of the simplex.

T_d is a Markov operator that satisfies (Hp1) and (Hp2) (note that $T_d(\mathcal{C}(K_d)) \subset P_1(K_d)$).
Examples of W_T satisfying Theorem 4

Then Theorem 4 applies to the differential operator associated with T_d given by

$$W_{T_d}(u)(x) = \frac{1}{2} \sum_{i,j=1}^{d} x_i (\delta_{ij} - x_j) \frac{\partial^2 u}{\partial x_i \partial x_j}(x)$$

$$= \frac{1}{2} \sum_{i=1}^{d} x_i (1 - x_i) \frac{\partial^2 u}{\partial x_i^2}(x) - \sum_{1 \leq i < j \leq d} x_i x_j \frac{\partial^2 u}{\partial x_i \partial x_j}(x)$$

(31)

$(u \in C^2(K_d), \ x = (x_1, \ldots, x_d) \in K_d); \ \delta_{ij}$ stands for the Kronecker symbol.

The operator W_{T_d} falls into the class of the so called Fleming-Viot operators.

The coefficients of W_{T_d} vanish on the vertices of the simplex.
Examples of W_T satisfying Theorem 4

Then Theorem 4 applies to the differential operator associated with T_d given by

$$W_{T_d}(u)(x) = \frac{1}{2} \sum_{i,j=1}^{d} x_i(\delta_{ij} - x_j) \frac{\partial^2 u}{\partial x_i \partial x_j}(x)$$

$$= \frac{1}{2} \sum_{i=1}^{d} x_i(1 - x_i) \frac{\partial^2 u}{\partial x_i^2}(x) - \sum_{1\leq i<j\leq d} x_ix_j \frac{\partial^2 u}{\partial x_i \partial x_j}(x)$$

(31)

$$(u \in C^2(K_d), \ x = (x_1, \ldots, x_d) \in K_d); \ \delta_{ij} \text{ stands for the Kronecker symbol.}$$

The operator W_{T_d} falls into the class of the so called Fleming-Viot operators.

The coefficients of W_{T_d} vanish on the vertices of the simplex.
Examples of W_T satisfying Theorem 4

Then Theorem 4 applies to the differential operator associated with T_d given by

$$W_{T_d}(u)(x) = \frac{1}{2} \sum_{i,j=1}^{d} x_i(\delta_{ij} - x_j) \frac{\partial^2 u}{\partial x_i \partial x_j}(x)$$

$$= \frac{1}{2} \sum_{i=1}^{d} x_i(1 - x_i) \frac{\partial^2 u}{\partial x_i^2}(x) - \sum_{1 \leq i < j \leq d} x_i x_j \frac{\partial^2 u}{\partial x_i \partial x_j}(x)$$

(u $\in C^2(K_d)$, x = $(x_1, \ldots, x_d) \in K_d$); δ_{ij} stands for the Kronecker symbol.

The operator W_{T_d} falls into the class of the so called Fleming-Viot operators.

The coefficients of W_{T_d} vanish on the vertices of the simplex.
2. Let $S : C(K_d) \rightarrow C(K_d)$ be the Markov operator defined by

$$
S(f)(x) := \begin{cases}
1 - \frac{x_1}{d} & f(0, x_2, \ldots, x_d) \\
1 - \sum_{i=2}^{d} x_i & f(1 - \sum_{i=2}^{d} x_i, x_2, \ldots, x_d) \quad \text{if } \sum_{i=2}^{d} x_i \neq 1,
\end{cases}
$$

if $\sum_{i=2}^{d} x_i = 1$

$$
(\sum_{i=2}^{d} x_i \neq 1, \quad f \in C(K_d),\ x = (x_1, \ldots, x_d) \in K_d).
$$
Examples of W_T satisfying Theorem 4

One has

$$S(pr_1 pr_j) = \begin{cases}
(1 - \sum_{i=2}^{d} pr_i) pr_1 & \text{if } j = 1, \\
pr_1 pr_j & \text{if } 1 < j \leq d
\end{cases}$$

(33)

and $S(pr_i pr_j) = pr_i pr_j$ for every $1 < i \leq j \leq d$.

Then S verifies (Hp1) and (Hp2) since, if m_1, \ldots, m_d are positive integers,

$$S \left(pr_1^{m_1} \cdots pr_d^{m_d} \right) = \begin{cases}
pr_2^{m_2} \cdots pr_d^{m_d} & \text{if } m_1 = 0, \\
\left(1 - \sum_{i=2}^{d} pr_i \right)^{m_1-1} pr_1 \ pr_2^{m_2} \cdots pr_d^{m_d} & \text{if } m_1 \geq 1.
\end{cases}$$

(34)
Examples of W_T satisfying Theorem 4

Therefore Theorem 4 applies to the differential operator associated with S given by

$$ W_S(u)(x) = \frac{1}{2} x_1 \left(1 - \sum_{i=1}^{d} x_i \right) \frac{\partial^2 u}{\partial x_1^2}(x) $$

$$ (35) $$

$$(u \in C^2(K_d), \ x = (x_1, \ldots, x_d) \in K_d).$$

Note that W_S degenerates on the faces $\{x = (x_1, \ldots, x_d) \in K_d \mid x_1 = 0\}$ and $\left\{ x = (x_1, \ldots, x_d) \in K_d \mid \sum_{i=1}^{d} x_i = 1 \right\}$.
Examples of W_T satisfying Theorem 4

3. Consider the convex combination of the above operators, that is the Markov operator $V := \frac{T_d + S}{2}$. Then V satisfies (Hp1) and (Hp2) and Theorem 4 applies to the differential operator

$$W_V(u)(x) = \frac{1}{4} \left(\left(2x_1(1 - x_1) - x_1 \sum_{i=2}^{d} x_i \right) \frac{\partial^2 u}{\partial x_1^2}(x) \right.$$

$$+ \sum_{i=2}^{d} x_i(1 - x_i) \frac{\partial^2 u}{\partial x_i^2}(x) - \sum_{1 \leq i < j \leq d} x_i x_j \frac{\partial^2 u}{\partial x_i \partial x_j}(x) \right)$$

$$\left(u \in C^2(K_d), \quad x = (x_1, \ldots, x_d) \in K_d \right).$$

Observe that W_V degenerates on the vertices of K_d as well.
Examples of W_T satisfying Theorem 4

4. Let $Q_d := [0, 1]^d$, $d \geq 1$, and for every $i = 1, \ldots, d$ consider a Markov operator U_i on $C([0, 1])$ satisfying (Hp1) and (Hp2).

If $U := \bigotimes_{i=1}^d U_i$ is the tensor product of the family $(U_i)_{1 \leq i \leq d}$, then U is a Markov operator on $C(Q_d)$ satisfying (Hp1) and (Hp2) because

$$U (pr_1^{m_1} \cdots pr_d^{m_d}) = (U_1 (e_1^{m_1}) \circ pr_1) \cdots (U_d (e_1^{m_d}) \circ pr_d)$$

for every positive integers m_1, \ldots, m_d.

Therefore, Theorem 4 applies to the differential operator

$$W_U(u)(x) = \frac{1}{2} \sum_{i=1}^d \alpha_i(x) \frac{\partial^2 u}{\partial x_i^2}(x), \quad (37)$$

($u \in C^2(Q_d)$, $x = (x_1, \ldots, x_d) \in Q_d$), where

$$\alpha_i(x) := U_i(e_2)(x_i) - x_i^2 \quad (1 \leq i \leq d). \quad (38)$$
F. Altomare, M. Cappelletti Montano, V. L., Ioan Raşa
On differential operators associated with Markov operators,

F. Altomare, M. Cappelletti Montano, V. L., Ioan Raşa
On Markov operators preserving polynomials,

F. Altomare, M. Cappelletti Montano, V. L., Ioan Raşa
Markov Operators, Positive Semigroups and Approximation Processes

F. Altomare, M. Campiti
Korovkin-Type Approximation Theory and its Applications
Thank you for your attention