Hausdorff dimension of the Julia sets of some rational maps

YANG Fei (杨飞)

Nanjing University

Conference on Orthogonal Polynomials and Holomorphic Dynamics

Carlsberg Academy, Copenhagen
Aug 14, 2018
Singular perturbation and McMullen maps

Consider a singular perturbation of the unicritical polynomials

\[f_\lambda(z) = z^q + \frac{\lambda}{z^p}, \text{ where } p \geq 2, \ q \geq 2, \ \lambda \in \mathbb{C} \setminus \{0\}. \]

\(f_\lambda : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) is called the **McMullen family**, since McMullen studied this family first in 1988.
Singular perturbation and McMullen maps

Consider a singular perturbation of the unicritical polynomials

$$f_\lambda(z) = z^q + \frac{\lambda}{z^p}, \text{ where } p \geq 2, q \geq 2, \lambda \in \mathbb{C} \setminus \{0\}.$$

$f_\lambda : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is called the **McMullen family**, since McMullen studied this family first in 1988.

Some basic properties (and definitions):

1. 0 and ∞ are critical points, $f_\lambda(0) = \infty = f_\lambda(\infty)$;
Singular perturbation and McMullen maps

Consider a singular perturbation of the unicritical polynomials

\[f_\lambda(z) = z^q + \frac{\lambda}{z^p}, \text{ where } p \geq 2, q \geq 2, \lambda \in \mathbb{C} \setminus \{0\}. \]

\(f_\lambda : \hat{\mathbb{C}} \to \hat{\mathbb{C}} \) is called the **McMullen family**, since McMullen studied this family first in 1988.

Some basic properties (and definitions):

1. 0 and \(\infty \) are critical points, \(f_\lambda(0) = \infty = f_\lambda(\infty) \);
2. Let \(T_\lambda \) and \(B_\lambda \) be the Fatou components containing 0 and \(\infty \) respectively;
Consider a singular perturbation of the unicritical polynomials

$$f_\lambda(z) = z^q + \frac{\lambda}{z^p}, \text{ where } p \geq 2, q \geq 2, \lambda \in \mathbb{C} \setminus \{0\}.$$

$f_\lambda : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is called the \textbf{McMullen family}, since McMullen studied this family first in 1988.

Some basic properties (and definitions):

1. 0 and ∞ are critical points, $f_\lambda(0) = \infty = f_\lambda(\infty);$
2. Let T_λ and B_λ be the Fatou components containing 0 and ∞ respectively;
3. \textbf{free} critical points: $\omega_j = \frac{p+q}{p} \sqrt{\frac{\lambda}{p}} e^{2\pi ij/(p+q)}$, where $0 \leq j < p+q;$
Singular perturbation and McMullen maps

Consider a singular perturbation of the unicritical polynomials

$$f_\lambda(z) = z^q + \frac{\lambda}{z^p},$$

where $p \geq 2$, $q \geq 2$, $\lambda \in \mathbb{C} \setminus \{0\}$.

$f_\lambda : \hat{\mathbb{C}} \to \hat{\mathbb{C}}$ is called the **McMullen family**, since McMullen studied this family first in 1988.

Some basic properties (and definitions):

1. 0 and ∞ are critical points, $f_\lambda(0) = \infty = f_\lambda(\infty)$;
2. Let T_λ and B_λ be the Fatou components containing 0 and ∞ respectively;
3. Free critical points: $\omega_j = p^+ q \sqrt{\frac{\lambda}{p/q}} e^{2\pi i j / (p+q)}$, where $0 \leq j < p + q$;
4. The dynamics of f_λ depends on the **one of** the free critical orbits.
Escape Trichotomy Theorem

Theorem (Devaney, Look and Uminsky, 2005)

Suppose that the free critical points of f_λ are attracted by ∞. Then one and only one of the following three cases happens:

1. $f_\lambda(\omega_j) \in B_\lambda$ for some j, then J_λ is a **Cantor set**;

2. $f_\lambda(\omega_j) \in T_\lambda \neq B_\lambda$ for some j, then J_λ is a **Cantor circles**;

3. $f^{\circ k}_\lambda(\omega_j) \in T_\lambda \neq B_\lambda$ for some j and $k \geq 2$, then J_λ is a **Sierpinski carpet**.

Moreover, if the orbit of ω_j is bounded, then $J(f_\lambda)$ is connected.

Cantor set: compact, perfect and totally disconnected

Cantor circles: Cantor set \times unit circle

Sierpinski carpet: compact, connected, locally connected, has empty interior, and the complementary domains are bounded by pairwise disjoint simple closed curves
Theorem (Devaney, Look and Uminsky, 2005)

Suppose that the free critical points of f_λ are attracted by ∞. Then one and only one of the following three cases happens:

1. $f_\lambda(\omega_j) \in B_\lambda$ for some j, then J_λ is a **Cantor set**;
2. $f_\lambda(\omega_j) \in T_\lambda \neq B_\lambda$ for some j, then J_λ is a **Cantor set of circles**;
3. $f_\lambda(\omega_j) \in T_\lambda \neq B_\lambda$ for some j and $k \geq 2$, then J_λ is a **Sierpinski carpet**.

Moreover, if the orbit of ω_j is bounded, then $J(f_\lambda)$ is connected.

Cantor set: compact, perfect and totally disconnected

Cantor circles: Cantor set \times unit circle

Sierpinski carpet: compact, connected, locally connected, has empty interior, and the complementary domains are bounded by pairwise disjoint simple closed curves.
Theorem (Devaney, Look and Uminsky, 2005)

Suppose that the free critical points of \(f_\lambda \) are attracted by \(\infty \). Then one and only one of the following three cases happens:

1. \(f_\lambda(\omega_j) \in B_\lambda \) for some \(j \), then \(J_\lambda \) is a **Cantor set**;
2. \(f_\lambda(\omega_j) \in T_\lambda \neq B_\lambda \) for some \(j \), then \(J_\lambda \) is a **Cantor set of circles**;
3. \(f_\lambda^{\circ k}(\omega_j) \in T_\lambda \neq B_\lambda \) for some \(j \) and \(k \geq 2 \), then \(J_\lambda \) is a **Sierpiński carpet**.

Cantor set: compact, perfect and totally disconnected

Cantor circles: Cantor set \(\times \) unit circle

Sierpinski carpet: compact, connected, locally connected, has empty interior, and the complementary domains are bounded by pairwise disjoint simple closed curves
Escape Trichotomy Theorem

Theorem (Devaney, Look and Uminsky, 2005)

Suppose that the free critical points of f_λ are attracted by ∞. Then one and only one of the following three cases happens:

1. $f_\lambda(\omega_j) \in B_\lambda$ for some j, then J_λ is a **Cantor set**;
2. $f_\lambda(\omega_j) \in T_\lambda \neq B_\lambda$ for some j, then J_λ is a **Cantor set of circles**;
3. $f_\lambda^{\circ k}(\omega_j) \in T_\lambda \neq B_\lambda$ for some j and $k \geq 2$, then J_λ is a **Sierpiński carpet**.

Moreover, if the orbit of ω_j is bounded, then $J(f_\lambda)$ is connected.

Cantor set: compact, perfect and totally disconnected

Cantor circles: Cantor set \times unit circle

Sierpinski carpet: compact, connected, locally connected, has empty interior, and the complementary domains are bounded by pairwise disjoint simple closed curves
Parameter plane of

\[f_\lambda(z) = z^3 + \lambda/z^3 \]
Singular perturbation and dimension

Parameter plane of $f_\lambda(z) = z^3 + \lambda/z^3$

A connected Julia set

Cantor set

Cantor circles

Sierpinski carpet

Hausdorff dimension of the Julia sets

Copenhagen, Aug 14, 2018
Question:

What are the values of the Hausdorff dimensions of these three kinds of Julia sets?

Cantor set

Cantor circles

Sierpinski carpet
Question:

What the values of the Hausdorff dimensions of these three kinds of Julia sets?

For hyperbolic cases:

\[0 < \dim_H < 2 \quad 1 < \dim_H < 2 \quad 1 < \dim_H < 2 \]

Cantor set Cantor circles Sierpinski carpet
Theorem (Y., Qiu-Ren-Y., Fu-Y., 2018)

We have

1. \(\dim_H(\text{Cantor Julia sets}) \) can take any value in \((0, 2]\);

Moreover, there exist Sierpinski carpet Julia sets with positive area, and Sierpinski carpet Julia sets with zero area but with Hausdorff dimension two.

Remark: these results are sharp.

Except: We don’t know the existence of Cantor Julia sets with positive area.
Theorem (Y., Qiu-Ren-Y., Fu-Y., 2018)

We have

1. \(\dim_H(\text{Cantor Julia sets}) \) can take any value in \((0, 2]\);
2. \(\dim_H(\text{Cantor circle Julia sets}) \) can take any value in \((1, 2)\);

Moreover, there exist Sierpinski carpet Julia sets with positive area, and Sierpinski carpet Julia sets with zero area but with Hausdorff dimension two.

Remark: these results are sharp.

Except: We don’t know the existence of Cantor Julia sets with positive area.
Theorem (Y., Qiu-Ren-Y., Fu-Y., 2018)

We have

1. \(\dim_H(\text{Cantor Julia sets}) \) can take any value in \((0, 2]\);
2. \(\dim_H(\text{Cantor circle Julia sets}) \) can take any value in \((1, 2)\);
3. \(\dim_H(\text{Sierpinski carpet Julia sets}) \) can take any value in \((1, 2]\).

Moreover, there exist Sierpinski carpet Julia sets with positive area, and Sierpinski carpet Julia sets with zero area but with Hausdorff dimension two.

Remark: these results are sharp.

Except: We don’t know the existence of Cantor Julia sets with positive area.
Theorem (Y., Qiu-Ren-Y., Fu-Y., 2018)

We have
1. \(\dim_H(\text{Cantor Julia sets}) \) can take any value in \((0, 2]\);
2. \(\dim_H(\text{Cantor circle Julia sets}) \) can take any value in \((1, 2)\);
3. \(\dim_H(\text{Sierpinski carpet Julia sets}) \) can take any value in \((1, 2]\).

Moreover, there exist Sierpinski carpet Julia sets with positive area, and Sierpinski carpet Julia sets with zero area but with Hausdorff dimension two.

Remark: these results are sharp.
Theorem (Y., Qiu-Ren-Y., Fu-Y., 2018)

We have

1. \(\dim_H(\text{Cantor Julia sets}) \) can take any value in \((0, 2]\);
2. \(\dim_H(\text{Cantor circle Julia sets}) \) can take any value in \((1, 2)\);
3. \(\dim_H(\text{Sierpinski carpet Julia sets}) \) can take any value in \((1, 2]\).

Moreover, there exist Sierpinski carpet Julia sets with positive area, and Sierpinski carpet Julia sets with zero area but with Hausdorff dimension two.

Remark: these results are sharp.

Except: We don’t know the existence of Cantor Julia sets with positive area.
Some facts:

1. Garber (1978) and Stallard (1994): $\dim_H(J(f)) > 0$, where f is a non-constant, non-linear meromorphic function.

2. Bodart and Zinsmeister (1996): \(\lim_{c \to \infty} \dim_H(J(z^2 + c)) = 0. \)

3. Shishikura (1998): \(\sup_{c \in \mathbb{C} \setminus M} \dim_H(J(z^2 + c)) = 2. \)

5. \dim_H(hyperbolic Cantor Julia sets) can take any value in $(0, 2)$.

Theorem (Y., 2018)

There exist cubic polynomials whose Julia sets are Cantor sets having Hausdorff dimension two.

Remark: such Cantor Julia sets have zero area.
Cantor Julia sets

Some facts:

1. Garber (1978) and Stallard (1994): \(\dim_H(J(f)) > 0 \), where \(f \) is a non-constant, non-linear meromorphic function.

2. Bodart and Zinsmeister (1996): \(\lim_{c \to \infty} \dim_H(J(z^2 + c)) = 0 \).

Theorem (Y., 2018)

There exist cubic polynomials whose Julia sets are Cantor sets having Hausdorff dimension two.

Remark: such Cantor Julia sets have zero area.
Some facts:

1. Garber (1978) and Stallard (1994): $\dim_H(J(f)) > 0$, where f is a non-constant, non-linear meromorphic function.

2. Bodart and Zinsmeister (1996): $\lim_{c \to \infty} \dim_H(J(z^2 + c)) = 0$.

3. Shishikura (1998): $\sup_{c \in \mathbb{C} \setminus M} \dim_H(J(z^2 + c)) = 2$.

Theorem (Y., 2018)

There exist cubic polynomials whose Julia sets are Cantor sets having Hausdorff dimension two.

Remark: such Cantor Julia sets have zero area.
Cantor Julia sets

Some facts:

1. Garber (1978) and Stallard (1994): $\dim_H(J(f)) > 0$, where f is a non-constant, non-linear meromorphic function.

2. Bodart and Zinsmeister (1996): $\lim_{c \to \infty} \dim_H(J(z^2 + c)) = 0$.

3. Shishikura (1998): $\sup_{c \in \mathbb{C} \setminus M} \dim_H(J(z^2 + c)) = 2$.

5. \dim_H (hyperbolic Cantor Julia sets) can take any value in $(0, 2)$.

Theorem (Y., 2018)

There exist cubic polynomials whose Julia sets are Cantor sets having Hausdorff dimension two.

Remark: such Cantor Julia sets have zero area.
Cantor Julia sets

Some facts:

1. Garber (1978) and Stallard (1994): $\dim_H(J(f)) > 0$, where f is a non-constant, non-linear meromorphic function.

2. Bodart and Zinsmeister (1996): $\lim_{c \to \infty} \dim_H(J(z^2 + c)) = 0$.

3. Shishikura (1998): $\sup_{c \in \mathbb{C} \setminus M} \dim_H(J(z^2 + c)) = 2$.

5. \dim_H (hyperbolic Cantor Julia sets) can take any value in $(0, 2)$.

Theorem (Y., 2018)

There exist cubic polynomials whose Julia sets are Cantor sets having Hausdorff dimension two.

Remark: such Cantor Julia sets have zero area.
Cantor Julia sets

Some facts:

1. Garber (1978) and Stallard (1994): \(\dim_H(J(f)) > 0 \), where \(f \) is a non-constant, non-linear meromorphic function.

2. Bodart and Zinsmeister (1996): \(\lim_{c \to \infty} \dim_H(J(z^2 + c)) = 0 \).

3. Shishikura (1998): \(\sup_{c \in \mathbb{C} \setminus M} \dim_H(J(z^2 + c)) = 2 \).

5. \(\dim_H(\text{hyperbolic Cantor Julia sets}) \) can take any value in \((0, 2) \).

Theorem (Y., 2018)

There exist cubic polynomials whose Julia sets are Cantor sets having Hausdorff dimension two.

Remark: such Cantor Julia sets have zero area.
Cantor Julia sets

Some facts:

1. Garber (1978) and Stallard (1994): \(\dim_H(J(f)) > 0 \), where \(f \) is a non-constant, non-linear meromorphic function.

2. Bodart and Zinsmeister (1996): \(\lim_{c \to \infty} \dim_H(J(z^2 + c)) = 0 \).

3. Shishikura (1998): \(\sup_{c \in \mathbb{C} \setminus M} \dim_H(J(z^2 + c)) = 2 \).

5. \(\dim_H(\text{hyperbolic Cantor Julia sets}) \) can take any value in \((0, 2) \).

Theorem (Y., 2018)

There exist cubic polynomials whose Julia sets are Cantor sets having Hausdorff dimension two.

Remark: such Cantor Julia sets have zero area.
Shishikura’s criterion

Theorem (Shishikura, 1998)

Suppose that a rational map f_0 of degree $d \geq 2$ has a **parabolic fixed point** z_0 with multiplier $e^{2\pi i p/q}$ ($p, q \in \mathbb{Z}$, $(p, q) = 1$) and that the immediate parabolic basin of z_0 contains only one critical point of f_0. Then for any $\varepsilon > 0$ and $b > 0$, there exist a neighborhood \mathcal{N} of f_0 in the space of rational maps of degree d, a neighborhood \mathcal{V} of z_0 in \mathbb{C}, positive integers N_1 and N_2 such that if $f \in \mathcal{N}$, and if f has a fixed point in \mathcal{V} with multiplier $e^{2\pi i \alpha}$, where

$$q \alpha = p \pm \frac{1}{a_1 \pm \frac{1}{a_2 + \beta}}$$

with integers $a_1 \geq N_1$, $a_2 \geq N_2$ and $\beta \in \mathbb{C}$, $0 \leq \text{Re} \beta < 1$, $|\text{Im} \beta| \leq b$, then

$$\dim_H(J(f)) > 2 - \varepsilon.$$
Branner-Hubbard’s characterization on cubic poly.

\[P_{a,b}(z) = z^3 - 3a^2z + b \]

Figure: The space \(\mathcal{L}^+(\zeta) \) for some \(\zeta > 1 \). The set \(\mathcal{B}^+(\zeta) \subset \mathcal{L}^+(\zeta) \) has been drawn and zoomed in several times. The *copies of the Mandelbrot set* and some decorations of the *point components* of \(\mathcal{B}^+(\zeta) \) can be seen clearly.
Branner-Hubbard’s characterization on cubic poly.

\[P_{a,b}(z) = z^3 - 3a^2z + b \]

The critical point \(+a \) escapes faster

Figure: The space \(\mathcal{L}^+(\zeta) \) for some \(\zeta > 1 \). The set \(\mathcal{B}^+(\zeta) \subset \mathcal{L}^+(\zeta) \) has been drawn and zoomed in several times. The **copies of the Mandelbrot set** and some decorations of the **point components** of \(\mathcal{B}^+(\zeta) \) can be seen clearly.
Branner-Hubbard’s characterization on cubic poly.

\[P_{a,b}(z) = z^3 - 3a^2z + b \]

The critical point +a escapes faster

\[\zeta \in \mathbb{C} \setminus \overline{D} \] is the Böttcher coordinate of the co-critical point \(-2a\)

Figure: The space \(\mathcal{L}^+(\zeta) \) for some \(\zeta > 1 \). The set \(\mathcal{B}^+(\zeta) \subset \mathcal{L}^+(\zeta) \) has been drawn and zoomed in several times. The copies of the Mandelbrot set and some decorations of the point components of \(\mathcal{B}^+(\zeta) \) can be seen clearly.
Cantor circle Julia sets

Some facts:

1. Qiu-Y.-Yin (2015): All cantor circle Julia sets are hyperbolic or parabolic.
Cantor circle Julia sets

Some facts:

1. Qiu-Y.-Yin (2015): All cantor circle Julia sets are hyperbolic or parabolic.
3. $\dim_H(\text{Cantor circle Julia sets})$ can take any value very close to 2.
4. Zdunik (1990): $\dim_H(\text{Julia set (non-circle or interval) with a non-degenerate continua}) > 1$.
5. Häggisnky-Pilgrim (2012): The lower bound α of $\dim_H(\text{Cantor circle Julia sets})$ is determined by the combinatorics.

$$\sum_{i=1}^{n} \left(\frac{1}{d_i} \right)^{\alpha} = 1,$$

where $\sum_{i=1}^{n} \frac{1}{d_i} < 1$, and α is the conformal dimension.
Cantor circle Julia sets

Some facts:

1. Qiu-Y.-Yin (2015): All cantor circle Julia sets are hyperbolic or parabolic.
2. Urbanski (1994), Yin (2000): \(\dim_H(\text{geom. finite Julia sets}) < 2. \)
3. \(\dim_H(\text{Cantor circle Julia sets}) \) can take any value very close to 2.
Cantor circle Julia sets

Some facts:

1. Qiu-Y.-Yin (2015): All cantor circle Julia sets are hyperbolic or parabolic.
3. $\dim_H(\text{Cantor circle Julia sets})$ can take any value very close to 2.
4. Zdunik (1990):
 $\dim_H(\text{Julia set (non-circle or interval) with a non-degenerate continua}) > 1$.
Some facts:

1. Qiu-Y.-Yin (2015): All cantor circle Julia sets are hyperbolic or parabolic.
3. \dim_H(Cantor circle Julia sets) can take any value very close to 2.
4. Zdunik (1990):
 \dim_H(Julia set (non-circle or interval) with a non-degenerate continua) > 1.
5. Haissinsky-Pilgrim (2012): The lower bound α of \dim_H(Cantor circle Julia sets) is determined by the combinatorics.

\[
\sum_{i=1}^{n} \left(\frac{1}{d_i} \right)^\alpha = 1, \text{ where } \sum_{i=1}^{n} \frac{1}{d_i} < 1, \text{ and } \alpha \text{ is the conformal dimension}
\]
Theorem (Qiu-Y., 2018)

Let \mathcal{H} be a hyperbolic component containing a rational map f_0 whose Julia set $J(f_0)$ is a Cantor set of circles. Then

$$\inf_{f \in \mathcal{H}} \dim_H(J(f)) = \dim_C(J(f_0)) \quad \text{and} \quad \sup_{f \in \mathcal{H}} \dim_H(J(f)) = 2.$$
Cantor circle Julia sets

Theorem (Qiu-Y., 2018)

Let \mathcal{H} be a hyperbolic component containing a rational map f_0 whose Julia set $J(f_0)$ is a Cantor set of circles. Then

$$\inf_{f \in \mathcal{H}} \dim_H(J(f)) = \dim_C(J(f_0)) \quad \text{and} \quad \sup_{f \in \mathcal{H}} \dim_H(J(f)) = 2.$$

Theorem (Qiu-Ren-Y., 2018)

Let $f_\lambda(z) = z^q + \lambda/z^p$, where $1/p + 1/q < 1$. Then

$$\lim_{\lambda \to 0} \dim_H(J(f_\lambda)) = 1 + \alpha_{p,q},$$

where $\alpha_{p,q} = \alpha \in (0,1)$ is the unique positive root of $p^{-\alpha} + q^{-\alpha} = 1$.

Moreover, if $p = q \geq 3$ then

$$\left| \dim_H(J(f_\lambda)) - \left(1 + \frac{\log 2}{\log p}\right) \right| \leq \frac{2^{p+1} \log(2p)}{\log^2 p} |\lambda|^{1 - \frac{2}{p}} + O(|\lambda|^{2(1 - \frac{2}{p})}).$$
The proof idea

Ingredients in the proof:

1. Decompose the dynamics of f_λ to an IFS;
2. Koebe’s distortion theorem on the estimation of contraction factors;
3. Falconer’s criterion on the Hausdorff dimension of the attractor of the IFS;
4. Put the calculation on the logarithm plane.
Sierpinski carpet Julia sets

Some known results:

Sierpinski carpet Julia sets

Some known results:

2. Barański-Wardal (2015): For $f_{\lambda,p}(z) = z^p + \lambda/z^p$ with $p \geq 2$, there exists $\lambda = \lambda(p)$ such that $J(f_{\lambda,p})$ is a Sierpinski carpet, and $\lim_{p \to \infty} \dim_H(J(f_{\lambda,p})) = 1$.
Some known results:

2. Barański-Wardal (2015): For $f_{\lambda,p}(z) = z^p + \lambda/z^p$ with $p \geq 2$, there exists $\lambda = \lambda(p)$ such that $J(f_{\lambda,p})$ is a Sierpinski carpet, and $\lim_{p \to \infty} \dim_H(J(f_{\lambda,p})) = 1$.

Some known results:

1. Zdunik (1990): \(\dim_H(\text{Sierpinski carpet Julia set}) > 1 \).

2. Barański-Wardal (2015): For \(f_{\lambda,p}(z) = z^p + \lambda/z^p \) with \(p \geq 2 \), there exists \(\lambda = \lambda(p) \) such that \(J(f_{\lambda,p}) \) is a Sierpinski carpet, and \(\lim_{p \to \infty} \dim_H(J(f_{\lambda,p})) = 1 \).

4. Qiu-Wang-Yin (2012): There exists renormalizable parameters \(\lambda \)'s such that the Julia sets of \(f_{\lambda}(z) = z^p + \lambda/z^p \) with \(p \geq 3 \) are Sierpinski carpets.
Sierpinski carpet Julia sets

Some known results:

1. Zdunik (1990): \(\dim_H(\text{Sierpinski carpet Julia set}) > 1 \).

2. Barański-Wardal (2015): For \(f_{\lambda,p}(z) = z^p + \lambda/z^p \) with \(p \geq 2 \), there exists \(\lambda = \lambda(p) \) such that \(J(f_{\lambda,p}) \) is a Sierpinski carpet, and \(\lim_{p \to \infty} \dim_H(J(f_{\lambda,p})) = 1 \).

4. Qiu-Wang-Yin (2012): There exists renormalizable parameters \(\lambda \)'s such that the Julia sets of \(f_{\lambda}(z) = z^p + \lambda/z^p \) with \(p \geq 3 \) are Sierpinski carpets.

Theorem (Fu-Y., 2018)

Let \(\mathcal{H} \) be a Sierpinski carpet hyperbolic component (actually holds for the hyperbolic Julia sets with a simply connected attracting basin). Then

\[
\sup_{f \in \mathcal{H}} \dim_H(J(f)) = 2.
\]
Theorem (Y.-Yin, 2018, a refinement of Shishikura’s result)

There exist non-renormalizable quadratic polynomials whose periodic points are all repelling and whose Julia sets have Hausdorff dimension two. Moreover, such parameters are dense on the boundary of the Mandelbrot set.
Theorem (Y.-Yin, 2018, a refinement of Shishikura’s result)

There exist non-renormalizable quadratic polynomials whose periodic points are all repelling and whose Julia sets have Hausdorff dimension two. Moreover, such parameters are dense on the boundary of the Mandelbrot set.

Lyubich, Shishikura (1991): such Julia sets have zero area.
Theorem (Y.-Yin, 2018, a refinement of Shishikura’s result)

There exist non-renormalizable quadratic polynomials whose periodic points are all repelling and whose Julia sets have Hausdorff dimension two. Moreover, such parameters are dense on the boundary of the Mandelbrot set.

Lyubich, Shishikura (1991): such Julia sets have zero area.

Theorem (Fu-Y., 2018)

There exist Sierpinski carpet Julia sets with zero area but with Hausdorff dimension two.
One may consider the Lebesgue area and the Hausdorff dimension of some special Julia sets (or subsets):

1. degenerated Sierpinski carpets;

Conjecture

For each hyperbolic component H in the space of rational maps with degree at least two,

$$\sup_{f \in H} \dim_H (J(f)) = 2.$$
One may consider the Lebesgue area and the Hausdorff dimension of some special Julia sets (or subsets):

1. degenerated Sierpinski carpets;
2. Boundaries of Siegel disks (McMullen, Buff-Chéritat, Graczyk-Jones, Cheraghi-DeZotti, ⋅⋅⋅)
One may consider the Lebesgue area and the Hausdorff dimension of some special Julia sets (or subsets):

1. degenerated Sierpinski carpets;
2. Boundaries of Siegel disks (McMullen, Buff-Chéritat, Graczyk-Jones, Cheraghi-DeZotti, ···)
3. hedgehogs, Cremer Julia sets (with Cheraghi-DeZotti, work in progress)
One may consider the Lebesgue area and the Hausdorff dimension of some special Julia sets (or subsets):

1. degenerated Sierpinski carpets;
2. Boundaries of Siegel disks (McMullen, Buff-Chéritat, Graczyk-Jones, Cheraghi-DeZotti, ⋯)
3. hedgehogs, Cremer Julia sets (with Cheraghi-DeZotti, work in progress)
One may consider the Lebesgue area and the Hausdorff dimension of some special Julia sets (or subsets):

1. degenerated Sierpinski carpets;
2. Boundaries of Siegel disks (McMullen, Buff-Chéritat, Graczyk-Jones, Cheraghi-DeZotti, ···)
3. hedgehogs, Cremer Julia sets (with Cheraghi-DeZotti, work in progress)

Conjecture

For each hyperbolic component \mathcal{H} in the space of rational maps with degree at least two,

$$\sup_{f \in \mathcal{H}} \dim_H(J(f)) = 2.$$
One may consider the Lebesgue area and the Hausdorff dimension of some special Julia sets (or subsets):

1. degenerated Sierpinski carpets;
2. Boundaries of Siegel disks (McMullen, Buff-Chéritat, Graczyk-Jones, Cheraghi-DeZotti, …)
3. hedgehogs, Cremer Julia sets (with Cheraghi-DeZotti, work in progress)

Conjecture

For each hyperbolic component \(\mathcal{H} \) in the space of rational maps with degree at least two,

\[
\sup_{f \in \mathcal{H}} \dim_H(J(f)) = 2.
\]

Thank you for your attention!