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ON MODULES WITH SELF TOR VANISHING

OLGUR CELIKBAS AND HENRIK HOLM

ABSTRACT. The long-standing Auslander and Reiten Conjecture states that a finitely gen-

erated module over a finite-dimensional algebra is projective if certain Ext-groups van-

ish. Several authors, including Avramov, Buchweitz, Iyengar, Jorgensen, Nasseh, Sather-

Wagstaff, and Şega, have studied a possible counterpart of the conjecture, or question, for

commutative rings in terms of vanishing of Tor. This has led to the notion of Tor-persistent

rings. Our main result shows that the class of Tor-persistent local rings is closed under a

number of standard procedures in ring theory.

1. INTRODUCTION

Inspired by work of Şega [22, para. preceding Thm. 2.6], Avramov, Iyengar, Nasseh,

and Sather-Wagstaff raise in [6]1, the question of whether every commutative noetherian

ring is Tor-persistent. A commutative ring A is said to be Tor-persistent if every finitely

generated A-module M with TorA
i (M,M) = 0 for all i ≫ 0, that is, TorA(M,M) is bounded,

has finite projective dimension. We refer to [6] and the precursor [5] (by the same authors)

for a history/background of this question. The mentioned works also contain information

about several interesting classes of rings which are known to be Tor-persistent. This in-

cludes Gorenstein rings with an exact zero divisor whose radical to the fourth power is zero

[22, Thm. 2], complete intersection rings [15, Cor. (1.2)] (see also [3, Thm. IV] and [14,

Thm. 1.9]) and Golod rings [16, Thm. 3.1].

In [6, Prop. 1.6] it is shown that a commutative noetherian ring A is Tor-persistent if

and only if the localization Am is so for every maximal ideal m ⊂ A; hence it suffices to

study the question mentioned above for commutative noetherian local rings. Throughout

this paper, (R,m,k) denotes such a ring. Our main result is the following:

1.1 Theorem. The following conditions are equivalent:

(i) R is Tor-persistent.

(ii) R̂ is Tor-persistent.

(iii) R[[X1, . . . ,Xn]] is Tor-persistent.

(iv) R[X1, . . . ,Xn](m,X1,...,Xn) is Tor-persistent.

While some papers in the literature approach the question raised in [6] by finding spe-

cific conditions that imply Tor-persistence, we show that Tor-persistence is a property pre-

served by standard procedures in local algebra. Our work is motivated by [10] where a

result similar to Theorem 1.1 is proved for the so-called Auslander’s condition. However,

our arguments are somewhat different since the techniques used in loc. cit. do not work in

our setting; see Remark 2.3 and [10, Cor. (2.2)].

It should be noticed that there is some overlap between this paper and [6]. For example,

the equivalence (i) ⇔ (ii) in Theorem 1.1 is contained in [6, Prop. 1.5], and our Proposi-

tion 2.2 is akin to [6, Prop. 3.8]. However, the two papers have been written completely

independently, indeed, [6] were only made available to us after we completed this work.

Subsequently, we rewrote our introduction and adopted the terminology “Tor-persistent”

coined in [6].
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This short paper is organized as follows. In Section 2 we prove Theorem 1.1 and show

how to construct new examples of Tor-persistent rings (Example 2.7). We also give a way

to obtain certain kinds of regular sequences in power series rings (Lemma 2.6), which might

be of independent interest. In Section 3 we consider another property for rings, called (TG);

it is a slightly weaker property than Tor-persistence and it is related to the Gorenstein di-

mension. For this property we prove a result similar to Theorem 1.1 (see Theorem 3.2),

and show that some results from Section 2 can be strengthened in this new setting.

2. MAIN RESULTS

2.1 Lemma. Let (R,m,k)→ (S ,n, ℓ) be a local homomorphism of commutative noether-
ian local rings. If S is Tor-persistent and has finite flat dimension over R, then R is Tor-
persistent.

Proof. Assume S is Tor-persistent and let M be a finitely generated R-module such that

TorR
i (M,M) = 0 for all i ≫ 0. We have TorR

i (M,S ) = 0 for each i > d, where d is the flat

dimension of S over R. Replacing M by a sufficiently high syzygy we can (by dimension

shifting) assume that TorR
i (M,M) = 0 and TorR

i (M,S ) = 0 for every i > 0. In this case

there is an isomorphism M⊗L
R S ∼= M⊗R S in the derived category over S . This yields:

(M ⊗
L
R M)⊗L

R S ∼= (M⊗
L
R S )⊗L

S (M⊗
L
R S )∼= (M ⊗R S )⊗L

S (M⊗R S ) .

As the complex M⊗L
R M is homologically bounded (its homology is even concentrated in

degree zero) and since S has finite flat dimension over R, the left-hand side is homologi-

cally bounded, and hence so is the right-hand side. That is, TorS
i (M ⊗R S ,M ⊗R S ) = 0

for all i ≫ 0. As S is Tor-persistent, it follows that M⊗R S ∼= M⊗L
R S has finite projective

dimension over S . It follows from [4, (1.5.3)] that pdR(M) is finite. �

2.2 Proposition. Let (R,m,k) be a commutative noetherian local ring and let x= x1, . . . , xn

be an R-regular sequence. If R/(x) is Tor-persistent, then R is Tor-persistent. The converse
is true if xi /∈m

2 + (x1, . . . , xi−1) holds for every i = 1, . . . ,n.

Proof. The first statement is a special case of Lemma 2.1. We now prove the (partial) con-

verse. By assumption, x̄i is a non zero-divisor on R/(x1, . . . , xi−1), which has the maximal

ideal m̄=m/(x1, . . . , xi−1). Since xi /∈m
2+ (x1, . . . , xi−1) we have x̄i /∈ m̄

2, so by induction

it suffices to consider the case where n = 1.

Let R be Tor-persistent and let x ∈mrm
2 be a non zero-divisor on R. To see that R/(x)

is Tor-persistent, let N be a finitely generated R/(x)-module with Tor
R/(x)
i (N,N) = 0 for all

i ≫ 0. By [21, 11.65] (see also [13, Lem. 2.1]) there is a long exact sequence,

· · · −→ Tor
R/(x)
i−1 (N,N) −→ TorR

i (N,N) −→ Tor
R/(x)
i (N,N) −→ ·· · .

Therefore TorR
i (N,N) = 0 for all i ≫ 0. Since R is Tor-persistent, we get that pdR(N) is

finite. As x /∈m
2, it follows that pdR/(x)(N) is finite; see e.g. [2, Prop. 3.3.5(1)]. �

2.3 Remark. It would be interesting to know if the last assertion in Proposition 2.2 holds

without the assumption xi /∈ m
2 +(x1, . . . , xi−1), i.e. if Tor-persistence is preserved when

passing to the quotient by an ideal generated by any regular sequence; cf. Proposition 3.1.

2.4 Remark. The sequence X1, . . . ,Xn is regular on R[[X1, . . . ,Xn]] and Xi does not belong

to (m,X1, . . . ,Xn)
2 +(X1, . . . ,Xi−1). It follows from Proposition 2.2 that R is Tor-persistent

if and only if R[[X1, . . . ,Xn]] is Tor-persistent.

Proposition 2.2 can be used to construct new examples of Tor-persistent rings from

known examples; see Example 2.7. However, to do so it is useful to have a concrete way of

constructing regular sequences with the property mentioned in 2.2. In Lemma 2.6 below

we give one such construction.
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If A is a commutative ring and a is an element in A, then it can happen, perhaps surpris-

ingly, that X−a is a zero-divisor on A[[X]]; see [12, p. 146] for an example. However, as is

well-known, if A is noetherian, then the situation is much nicer:

2.5. Let A be a commutative noetherian ring and consider an elemement f = f (X1, . . . ,Xn)
in A[[X1, . . . ,Xn]]. It follows from [11, Thm. 5] that if f has some coefficient which is a unit

in A, then f is a non zero-divisor on A[[X1, . . . ,Xn]].

2.6 Lemma. Let (R,m,k) be a commutative noetherian local ring. Consider the power
series ring S = R[[X1, . . . ,Xn]] and write n = (m,X1, . . . ,Xn) for its unique maximal ideal.
Let 0 = m0 < m1 < · · · < mt−1 < mt = n be integers and let f1, . . . , ft ∈ n be elements such
that, for every i = 1, . . . , t, the following conditions hold:

(a) fi ∈ R[[X1, . . . ,Xmi
]]⊆ S .

(b) The element ∂ fi
∂Xj

(0, . . . ,0) ∈ R is a unit for some mi−1 < j.

Then f1, . . . , ft is a regular sequence on R[[X1, . . . ,Xn]] with fi /∈ n
2 +( f1, . . . , fi−1) for all i.

Proof. First note that condition (b) implies:

The power series fi(0, . . . ,0,Xmi−1+1, . . . ,Xn) has a coefficient which is a unit in R. (2.1)

Indeed, if mi−1 < j, then ∂ fi
∂Xj

(0, . . . ,0) is a coefficient in fi(0, . . . ,0,Xmi−1+1, . . . ,Xn).
Next we show that f1, . . . , ft is a regular sequence. With i = 1 condition (2.1) says that

f1(X1, . . . ,Xn) has a coefficient which is a unit in R, and so f1 is a non zero-divisor on S by

2.5. Next we show that fi+1 is a non zero-divisor on S/( f1, . . . , fi) where i > 1. Write

fi+1 = ∑vmi+1,...,vn
hvmi+1,...,vn X

vmi+1

mi+1 · · ·X
vn
n ∈ S ∼= R[[X1, . . . ,Xmi

]][[Xmi+1, . . . ,Xn]] (2.2)

with h∗ ∈ R[[X1, . . . ,Xmi
]]. As f1, . . . , fi ∈ R[[X1, . . . ,Xmi

]] by (a) there is an isomorphism:

S/( f1, . . . , fi) ∼=
(
R[[X1, . . . ,Xmi

]]/( f1, . . . , fi)
)
[[Xmi+1, . . . ,Xn]] . (2.3)

In particular, the image f̄i+1 of fi+1 in S/( f1, . . . , fi) can be identified with the element

f̄i+1 = ∑vmi+1,...,vn
h̃vmi+1,...,vn X

vmi+1

mi+1 · · ·X
vn
n

in the right-hand side of (2.3), where h̃∗ is the image of h∗ in R[[X1, . . . ,Xmi
]]/( f1, . . . , fi).

Hence, to show that f̄i+1 is a non zero-divisor, it suffices by 2.5 to argue that one of the co-

efficients h̃∗ is a unit. By (2.1) we know that fi+1(0, . . . ,0,Xmi+1, . . . ,Xn) has a coefficient

which is a unit in R, and by (2.2) this means that one of the elements hvmi+1,...,vn(0, . . . ,0) ∈ R

is a unit. Consequently hvmi+1,...,vn = hvmi+1,...,vn(X1, . . . ,Xmi
) will be a unit in R[[X1, . . . ,Xmi

]],

so its image h̃vmi+1,...,vn is also a unit, as desired.

Next we show that fi /∈ n
2+( f1, . . . , fi−1) holds for all i. Suppose for contradiction that:

fi = ∑v pvqv + ∑
i−1
w=1 gw fw , where pv,qv ∈ n and gw ∈ S .

By assumption (b) we have that ∂ fi
∂Xj

(0, . . . ,0) ∈ R is a unit for some mi−1 < j. It follows

from the identity above that:

∂ fi
∂Xj

(0) = ∑v

(
∂pv

∂Xj
(0)qv(0)+ pv(0)

∂qv

∂Xj
(0)

)
+ ∑

i−1
w=1

(
∂gw

∂Xj
(0) fw(0)+ gw(0)

∂ fw
∂Xj

(0)
)
.

As already mentioned, the left-hand side is a unit, and this contradicts that the right-hand

side belongs to m. Indeed, we have pv(0),qv(0), fw(0) ∈m as pv,qv, fw ∈ n. Furthermore,

f1, . . . , fi−1 only depend on the variables X1, . . . ,Xmi−1
by (a), so every ∂ fw

∂Xj
is zero. �

2.7 Example. In R[[U,V,W]] the following (more or less arbitrarily chosen) sequence, cor-

responding to t = 2 and m1 = 2, satisfies the assumptions of Lemma 2.6:

f1 = a+U3+UV+V and f2 = b+UV2+W+W2 (a,b ∈m) .

Indeed, (a) is clear and (b) holds since ∂ f1
∂V

(0,0,0) = 1 = ∂ f2
∂W

(0,0,0). So Proposition 2.2

implies that if R is Tor-persistent, then so is A = R[[U,V,W]]/( f1, f2).



4 OLGUR CELIKBAS AND HENRIK HOLM

Note that the fiber product ring

R = k[[X]]/(X4) ×k k[[Y]]/(Y3) ∼= k[[X,Y]]/(X4, Y3, XY)

is artinian, not Gorenstein, and by [18, Thm. 1.1] it is Tor-persistent. Hence the following

ring (where we have chosen a = Y2 and b = X2) is Tor-persistent as well:

A = k[[X,Y,U,V,W]]/(X4, Y3, XY, Y2+U3+UV+V, X2+UV2+W +W2) . �

Proof of Theorem 1.1. The equivalence (i)⇔ (iii) is noted in Remark 2.4. Let a1, . . . ,an

be a set of elements that generate m. We have R̂ ∼= R[[X1, . . . ,Xn]]/(X1 − a1, . . . ,Xn − an) by

[17, Thm. 8.12]. The sequence fi = Xi−ai clearly satisfies the assumptions in Lemma 2.6,

so the equivalence (i)⇔ (ii) follows. Note that R[X1, . . . ,Xn](m,X1,...,Xn) and R[[X1, . . . ,Xn]]

have isomorphic completions (both are isomorphic to R̂[[X1, . . . ,Xn]]), so the equivalence

(iii)⇔ (iv) follows from the already established equivalence between (i) and (ii). �

3. CONNECTIONS WITH THE GORENSTEIN DIMENSION

In this section, we give a few remarks and observations pertaining Aulander’s G-dimen-

sion [1] and self Tor vanishing. For a commutative noetherian local ring (R,m,k), we con-

sider the following property (which R may, or may not, have):

(TG) Every finitely generated R-module M satisfying TorR
i (M,M) = 0 for all i ≫ 0 has

finite G-dimension, that is, G-dimR(M) < ∞.

Every Tor-persistent ring has the property (TG), see [9, Prop. (1.2.10)], and the converse

holds if the maximal ideal m is decomposable; see [20, Thm. 5.5].

Testing finiteness of the G-dimension via the vanishing of Tor, in some form, is an idea

pursued in a number of papers. For example, in [7, Thm. 3.11] it was proved that a finitely

generated module M over a commutative noetherian ring R has finite G-dimension if and

only if the stable homology T̃or R
i (M,R) vanishes for every i ∈ Z. Furthermore, finitely

generated modules testing finiteness of the G-dimension via the vanishing of absolute ho-

mology, i.e. Tor, were also examined in [8].

For the property (TG) we have the following stronger version of Proposition 2.2.

3.1 Proposition. Let (R,m,k) be a commutative noetherian local ring and let x= x1, . . . , xn

be an R-regular sequence. Then R has the property (TG) if and only if R/(x) has it.

Proof. For the “if” part we proceed as in the proof of Lemma 2.1 with S =R/(x). Note that

having replaced M with a sufficiently high syzygy, the sequence x becomes regular on M

(this is standard but see also [19, Lem. 5.1]). From the finiteness of G-dimR/(x)(M/(x)M)
we infer the finiteness of G-dimR(M) from [9, Cor. (1.4.6)]. For the “only if” part proceed

as in the proof of Proposition 2.2. From the finiteness of G-dimR(N) one always gets

finiteness of G-dimR/(x)(N) (the assumption x /∈m
2 is not needed) by [9, Thm. p. 39]. �

Now the arguments in the proof of Theorem 1.1 applies and give the following.

3.2 Theorem. Let (R,m,k) be a commutative noetherian local ring. The following condi-
tions are equivalent:

(i) R has the property (TG).

(ii) R̂ has the property (TG).

(iii) R[[X1, . . . ,Xn]] has the property (TG).

(iv) R[X1, . . . ,Xn](m,X1,...,Xn) has the property (TG). �
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