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Cohen-Macaulay Homological Dimensions.

HENRIK HOLM (*) - PETER JORGENSEN (**)

ABSTRACT - We define three new homological dimensions: Cohen-Macaulay in-
jective, projective, and flat dimension, and show that they inhabit a theory si-
milar to that of classical injective, projective, and flat dimension. In particular,
we show that finiteness of the new dimensions characterizes Cohen-Macaulay
rings with dualizing modules.

1. Introduction.

The classical theory of homological dimensions is very important to
commutative algebra. In particular, it is useful that there are a number of
finiteness conditions on these dimensions which characterize regular rings.
For instance, if the projective dimension of each finitely generated A-
module is finite, then A is a regular ring.

Several attempts have been made to mimic this success by defining
homological dimensions whose finiteness would characterize other rings
than the regular ones. These efforts have given us complete intersection
dimension [2], Gorenstein dimension [1], and Cohen-Macaulay dimension [8].

The normal practice has not been to mimic the full classical theory,
which comprises both injective, projective, and flat dimension for arbitrary
modules, but rather to focus on projective dimension for finitely generated
modules. Hence complete intersection dimension and Cohen-Macaulay
dimension only exist in this restricted sense, and the same used to be the
case for Gorenstein dimension.
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However, recent years have seen much work on the Gorenstein theory
which now contains both Gorenstein injective, projective, and flat dimen-
sion. These dimensions inhabit a nice theory similar to classical homo-
logical algebra. A summary is given in [3], although this reference is al-
ready a bit dated.

The purpose of this paper is to develop a similar theory in the Cohen-
Macaulay case. So we will define Cohen-Macaulay injective, projective, and
flat dimension, denoted CMid, CMpd, and CMfd, and show that they in-
habit a theory with a number of desirable features. The main result is the
following, whereby finiteness of the Cohen-Macaulay dimensions char-
acterizes Cohen-Macaulay rings with dualizing modules.

THEOREM. Let A be a local commutative noetherian ring. Then the
following conditions are equivalent.

(i) A is a Cohen-Macaulay ring with a dualizing module.
(i) CMidg M < oo for each A-module M.
(iii) CMpdy M < oo for each A-module M.
@iv) CMfdAM < oo for each A-module M.

Another main result is a bound for the Cohen-Macaulay dimensions in
terms of the Krull dimension dim A of the ring.

THEOREM. Let A be a local commutative noetherian ring and let M be
an A-module. Then

CMidy M < 0o < CMidy M < dimA,
CMpd, M < 0o < CMpd, M < dimA,
CMfds M < oo < CMfdy M < dimA.

These results are proved as theorems 5.1 and 5.4; in fact, theorem 5.1 is
somewhat more general than the first of the above theorems.

There are also some other results: Theorem 5.6 compares our Cohen-
Macaulay projective dimension to Gerko’s Cohen-Macaulay dimension
from [8], and to the Gorenstein projective dimension, see [3, chp. 4]. And
propositions 5.7 and 5.8 show Auslander-Buchsbaum and Bass formulae for
the Cohen-Macaulay dimensions.

As tools to define the Cohen-Macaulay dimensions, we use change of
rings. If A is a ring with a semi-dualizing module C (as defined in [4]), then
we can consider the trivial extension ring A x C, and if M is a complex of A-
modules, then we can consider M as a complex of (A x C)-modules and take



Cohen-Macaulay Homological Dimensions 89

Gorenstein homological dimensions of M over A x C. The infima of these
over all semi-dualizing modules C define the Cohen-Macaulay dimensions
of M. Our use of trivial extension rings was in part inspired by [8], and
there are also some similarities to [7].

It is worth noting that while finiteness of our Cohen-Macaulay di-
mensions characterises Cohen-Macaulay rings with dualizing modules,
there are Cohen-Macaulay rings without dualizing modules, see [6]. It
would be of interest to develop similar dimensions whose finiteness char-
acterised all Cohen-Macaulay rings, but we do not yet know how to do that.

The paper is organized as follows. Section 2 defines the Cohen-Ma-
caulay dimensions and gives an example of their computation. Sections 3
and 4 establish a number of technical tools by studying the trivial extension
ring Ax C when C is a semi-dualizing module for A, and giving some
bounds on the injective dimension of C. And finally, section 5 proves all the
main results as described.

Let us end the introduction with a few blanket items. Throughout, A is a
commutative noetherian ring, and complexes of A-modules have the form

= Mgy > My —> My — -

Isomorphisms in categories are denoted by = and equivalences of functors
by ~.

2. Cohen-Macaulay dimensions.

This section introduces Cohen-Macaulay injective, projective, and flat
dimension, and gives an example of their computation.

DEFINITION 2.1. Let C be an A-module. The direct sum A @ C can be
equipped with the product

(a,0) - (a1, ¢1) = (aa, acy + car).
This turns A @ C into a ring which is called the trivial extension of A by C
and denoted A x C.

There are ring homomorphisms
A — AxC — A,
a — (a,0),

(a,c) — «a
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whose composition is the identity on A. These homomorphisms allow us to
view any A-module as an (A x C)-module and any (A x C)-module as an A-
module, and we shall do so freely.

In particular, if M is a complex of A-modules with suitably bounded
homology, then we can consider the Gorenstein homological dimensions
over Ax C,

Giduxe M, Gpdy, oM, and Gfda.c M,

where Gid, Gpd, and Gfd denote the Gorenstein injective, projective, and
flat dimensions as described e.g. in [3].

Let us briefly recall the definitions of the Gorenstein dimensions. A
complex N with H;N = 0 for ¢ <« 0 has GpdN < n if it is quasi-isomorphic
to a complex G which has the form

0= Gy — Gyq — -

and consists of Gorenstein projective modules. The Gorenstein projective
modules are the kernels of differentials in complete projective resolutions,
that is, exact complexes P of projective modules for which Hom(P, Q) is
also exact for each projective module Q.

Dualizing this gives the definition of Gorenstein injective dimension.
Finally, Gorenstein flat dimension is defined as follows. A complex N with
H;N =0 for i <« 0 has GfdN < » if it is quasi-isomorphic to a complex H
which has the form

—=0—-H, > Hy 31—

and consists of Gorenstein flat modules. The Gorenstein flat modules are
the kernels of differentials in exact complexes of flat modules which remain
exact when tensored with an injective module.

DEFINITION 2.2. A semi-dualizing module C for A is a finitely generated
module for which the canonical map A — Homy(C, C) is an isomorphism,
while Ext/,(C, C) = 0 for each i>1.

A semi-dualizing module is called dualizing if it has finite injective di-
mension.

Note that equivalently, a finitely generated module C is semi-dualizing
if the canonical morphism A — RHom4(C, C) is an isomorphism in the
derived category D(A). An example of a semi-dualizing module is A itself,
so A always has at least one semi-dualizing module. On the other hand, if A
has a dualizing module, then it is necessarily Cohen-Macaulay, as follows
for instance by [3, (A.8.5.3)].
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The theory of semi-dualizing modules (and complexes) is developed
in [4].

DEFINITION 2.3. Let M and N be complexes of A-modules such that
H; M =0fori> 0and H; N = 0 for : <« 0.

The Cohen-Macaulay injective, projective, and flat dimensions of M and
N over A are

CMidy M = inf { Gidgxc M | C is a semi-dualizing module },
CMpdy N = inf { Gpdy,o N | C is a semi-dualizing module },
CMfdy N =inf { Gfdsxc N | C is a semi-dualizing module }.

REMARK 2.4. From the definition of the Cohen-Macaulay homological
dimensions, the connection to Cohen-Macaulayness is less than obvious,
but as described in the introduction, we shall prove in section 5 that the
Cohen-Macaulay dimensions have the same relation to Cohen-Macaulay
rings with dualizing modules as classical injective, projective, and flat di-
mension have to regular rings.

ExampLE 2.5. Let the ring A be local and artinian. Then it is easy
directly to compute the Cohen-Macaulay dimensions of any module.

Namely, for a local artinian ring, the injective hull E(k) of the residue
class field is a dualizing module. By [7, thm. 5.6], the trivial extension
A x E(k) is Gorenstein, and it is clearly also local and artinian.

But over a local artinian Gorenstein ring, each module is both Goren-
stein injective, projective, and flat. So if M is an A-module and we view it as
an A x E(k)-module, then

GidAKE(k)M = 0, GpdAxE(lc)M = 0, and GfdAXE(k>M = 07
and hence
CMidy M =0, CMpdy M =0, and CMfdy M = 0.

REMARK 2.6. The result in example 2.5 is a special case of the theo-
rems in the introduction, since the local artinian ring A is Cohen-Macaulay
and has Krull dimension zero.

3. Lemmas on the trivial extension

This section studies the homological properties of the trivial extension
Ax C. This is essential for subsequent developments since our Cohen-
Macaulay dimensions are defined in terms of A x C.
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Some of the material in this section is related to [7]. See in particular
[7, prop. 4.35 and thm. 5.2].

LemMA 3.1. Let C be an A-module and F a foithfully flat (Ax C)-
module.

@) If1 is an injective A-module, then Homu(F', I), with the (A x C)-
structure coming from the first variable, is an injective (A x C)-module. If
1 is faithfully injective, then so is Homu(F', I).

(ii)) Each injective (A x C)-module is a direct summand in a mod-
ule Homy(Ax C, 1), with the (Ax C)-structure coming from the first
variable, where I is an injective A-module.

Proor. (i) This holds because adjunction gives
(1) Homy, o(—, Homy (7, 1)) ~ Homs(F ®axc —, 1)

on (A x C)-modules.
(ii) Note first the handy special case of equation (1) with F' = A x C,

(2) Homgyc(—, Homy (A x C, 1)) ~ Homu(—, I).

To see that aninjective (A x C)-moduleJ is a direct summand in a module
of the form Homu4 (A x C, I), it is enough to embed it into such a module. For
this, first view J as an A-module and choose an embedding /<1 into an in-
jective A-module I. Then use equation (2) to convert the morphism of A-
modules J <1 to a morphism of (4 x C)-modules J/ — Homy(A x C,I). It is
not hard to check that this last morphism is in fact injective. O

The following lemma is closely related to [8, sec. 3], although that paper
was not phrased in terms of derived categories. The lemma and its proof
use the right derived Hom functor, RHom, and the left derived tensor
functor, @, which are defined on derived categories.

LEmmA 3.2.  Let C be a semi-dualizing module for A.

() There is an isomorphism
Ax C=RHomyAxC,C)

m the derived category D(A x C), where the (A x C)-structure of the RHom
comes from the first variable.
(ii)) There is a natural equivalence

RHomyy,(—,Ax C) ~ RHomy(—, C)
of functors from D(A) to D(A).
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(i) If M is in D(A) then the biduality morphisms

M — RHomy(RHomy (M, C), 0),
M —RHomy,oc(RHomy,oc(M,Ax C),Ax C)

are identified under the equivalence from part (ii).
(iv) There is an isomorphism
RHomy, (A, Ax C) = C

n DA x O).

Proor. (i) Since C is semi-dualizing, there is a canonical isomorphism
in D(A),
3) A®C — RHomus(C D A,CQC).

Let us write out more carefully how this arises. Let C' — I be an in-
jective resolution of C. Then the canonical map A — Hom(C, I) is a quasi-

isomorphism, and there is clearly a quasi-isomorphism C — Homy(A4, I).
Combining these maps gives a quasi-isomorphism

A®C — Homyu(C,I) ® Homa(A, 1),
that is, a quasi-isomorphism
4) A®dC— Homu(Co A, D).
The right-hand side here is

Homuy(C ¢ A,I) 2 RHomyu (C ¢ A, C),

so the quasi-isomorphism (4) represents the isomorphism (3) in D(A).
But it is easy to check that in fact, the morphism (4) respects the action
of Ax C on both sides, so

Ax C =~ RHomyAx C,C)
in DA x O).

(ii) This is a computation,

RHom, o(—, A x C) 2 RHom, o(—, RHomy (4 x C, C)

2 RHom, (A x O)&k . —,C)

~ RHomy(—,C),

where (a) is by part (i) and (b) is by adjunction.



94 Henrik Holm - Peter Jgrgensen

(iii) and (iv) These are easy to obtain from (ii). O

Lemma 3.3. Let C be a semi-dualizing module for A and let I be an
mjective A-module.

(i) A and C are Gorenstein projective over A x C.
(ii)) Homy(A,I) = I and Homy(C,I) are Gorenstein injective over
AxC.

Proor. (i) To see that A is Gorenstein projective over A x C, by [3,
prop. (2.2.2)] we need to see that the homology of

RHomy, (4,4 x C)

is concentrated in degree zero and that the biduality morphism
A — RHomy,c(RHomy,(A,Ax C),Ax C)

is an isomorphism. The first of these conditions follows from lemma 3.2(ii).
The second condition holds because the biduality morphism can be identi-
fied with

A — RHomy(RHomy (4, €), C)

by lemma 3.2(iii), and this in turn can be identified with the canonical
morphism

A — RHomyu(C, C)

which is an isomorphism.
To see that C is Gorenstein projective over A x C can be done by the
same method.

(ii) We will prove that Homy(C, I) is Gorenstein injective over A x C,
the case of Homy (A, I) = I being similar.

Since C is Gorenstein projective over A x C, it has a complete pro-
jective resolution P; see [3, def. (4.2.1)]. In particular, P is exact and the
zeroth cycle module Zy(P) is isomorphic to C. Since C is finitely gen-
erated, we can assume that P consists of finitely generated (A x C)-
modules by [3, thms. (4.1.4) and (4.2.6)].

Lemma3.1(i) shows thatJ = Homy (P, I)is a complex of injective (4 x C)-
modules. It is clear that J is exact and that Zy(J) =2 Homu(Zy(P),I) =
=~ Homyu(C, 1), so if we can prove that Homg,o(K,J) is exact for each
injective (A x C)-module K, it will follow that J is a complete injective re-
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solution of Homy (C, I) over A x C'whence Homy (C, I) is Gorenstein injective
over A x C; see [3, def. (6.1.1)].
But

Homy, c(K,J) = Homy, (K, Homy (P, 1)) = Homy (K ®4xc P, 1),

so it is enough to see that K ®4,¢ P is exact. And by lemma 3.1(ii), the
module K is a direct summand in Homy(A x C, L) for some injective A-
module L, and hence it is enough to see that Homy(A x C,L) ®4.¢c P is
exact. But P consists of finitely generated projective (A x C)-modules which
by [3, (A.2.11)] implies

Homy(Ax C, L) @4xc P = Homy(Homy, o(P,Ax C), L),

and this is exact because L is an injective A-module while the complex
Homy, ¢(P,A x C) is exact because P is a complete projective resolution.

LeEmMmA 3.4. Let C be a semi-dualizing module for A and let I be an
myjective A-module. Then there is an equivalence of functors on D(A x C),

RHomy, c(Homy(Ax C,I),—) ~ RHomy(Homy(C, I), —),

where the (A x C)-structure of Homy (A x C, I) comes from the first vari-
able.

Proor. First note that

Hom (A x C,I) ~ RHomy(Ax C,I)

% RHom,(RHomy (A x C, C), I)

2 (Ax O)gk RHomu(C, 1)

where (a) is by lemma 3.2(i) and (b) is by [3, (A.4.24)]. Hence
RHomy,c(HomyAx C,I),—)
~ RHomy, ¢((A x C)®% RHomy(C, ), —)
* RHomy (RHom,(C, I), -),

~ RHomy(Homy(C,I), —)

where (c) is by adjunction. O
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4. Bounds on the injective dimension of C

This section studies the injective dimension of a semi-dualizing module
C. If this dimension is finite, then C is a dualizing module, and this forces
the ring A to be Cohen-Macaulay.

The main result is proposition 4.5 which will be used in section 5 to show
that finiteness of Cohen-Macaulay dimensions characterizes Cohen-Ma-
caulay rings with a dualizing module.

LemMA 4.1.  Let C be a semi-dualizing module for A and let M be an A-
module which is Gorenstein injective over A x C. Then there exists a short
exact sequence of A-modules,

0— M — Homyu(C,I) — M — 0,
such that

(i) The A-module I is injective.
(ii)) The A-module M' is Gorenstein injective over A x C.
(iii) For each injective A-module J, the sequence stays exact if one
applies to it the functor Homy(Homy (C,J), —).

ProoF. Since M is Gorenstein injective over A x C, it has a complete
injective resolution; see [3, def. (6.1.1)]. From this can be extracted a short
exact sequence of (A x C)-modules,

0—-—N—-K—-M-—0,

where K is injective and N Gorenstein injective over A x C, which stays
exact if one applies to it the functor Homy, (L, —) for any injective (A x C)-
module L.

In particular, the sequence stays exact if one applies to it the functor
Homy,c(Homyu(Ax C,J),—) for any injective A-module J, because
Homy (A x C,J) is an injective (A x C)-module by lemma 3.1(3).

By lemma 3.1(ii), the injective (A x C)-module K is a direct summand
in Homy(Ax C,I) for some injective A-module I. If K@K =~
=~ Homy (A x C,I), then by adding K’ to both the first and the second
module in the short exact sequence, we may assume that the sequence
has the form

0— N — Homy(AxC,I) > M — 0.

The module N is still Gorenstein injective over A x C, and the sequence
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still stays exact if one applies to it the functor
Homg, c(Homus(Ax C,J), —)

for any injective A-module J.

Now let us consider in detail the homomorphism 7. Elements of the
source Homy (A x C,I) have the form (o, y) where A X Tand C 51 are
homomorphisms of A-modules. The (A x C)-module structure of
Homy (A x C, I) comes from the first variable, and one checks that it takes
the form

((1/7 c)- (“7 y) = (0o + Xy(e)s G/}/)7

where y,, is the homomorphism A — I given by a—ay(c).
The target of 7 is M which is an A-module. When viewed as an (A x C)-
module, M is annihilated by the ideal 0x C, so

(5) 0 =(0,0) - (e, ) = n((0,¢) - (o, 7)) = 10y, 0),
where the last = follows from the previous equation.

In fact, this implies
(6) 7, 0) =0
for each A = I. To see so, note that there is a surjection ¥ — Homy(C, 1)
with F' free, and hence a surjection C ®4 F' — C ®4 Hom4(C,I). The tar-
get here is isomorphic to I by [4, prop. (4.4) and obs. (4.10)], so there is a
surjection C ®4 F' — 1. As C ®4 Fis a direct sum of copies of C, this means
that, given an element ¢ in I, it is possible to find homomorphisms

P,--- 7 C— I and elements ¢y, ...,¢ in C with ¢ = y;(c1) + - - - + y,(cp).
Hence the homomorphism A = I given by a+— ai satisfies

&= Xp(en)++7,e) = Xyyer) +ot Xyle

and so equation (5) implies equation (6).
To make use of this, observe that the canonical exact sequence of
(A x C)-modules

0 - C —- AxC — A — 0,
(7 c — (0,0),
(a,c) — a
induces an exact sequence
0 — Homy(A,I) — Homy(Ax C,I) — Homuy(C,I) — 0

because [ is injective. Equation (6) means that the composition of
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Homy(A,I) - Homy(Ax C,I) and HomyuAx C,I) M s Zero, SO
HomyAx C,1) " M factors through the surjection Homy(A x C,I) —
— Homy(C,I). This means that we can construct a commutative dia-
gram of (A x C)-modules with exact rows,

0——> N ——> Homu(Ax C,I) —= M —>0

| |

0 M’ Hom4(C, 1) M 0.

We will show that if we view the lower row as a sequence of A-modules, then
it is a short exact sequence with the properties claimed in the lemma.

(i) The A-module [ is injective by construction.

(i) Applying the Snake Lemma to the above diagram embeds the
vertical arrows into exact sequences. The leftmost of these gives the short
exact sequence

0 — HomyA,I) = N — M — 0.

Here the modules Homy(A,I) =2 I and N are Gorenstein injective over
Ax C by lemma 3.3(ii), respectively, by construction. Hence M’ is also
Gorenstein injective over A x C because the class of Gorenstein injective
modules is injectively resolving by [9, thm. 2.6].

(ili) By construction, the upper sequence in the diagram stays exact if
one applies to it the functor Homy, c(Homy(A x C,J), —) for any injective
A-module J. It follows that the same holds for the lower row. But taking Hy
of the isomorphism in lemma 3.4 shows

Homy,c(Homy(Ax C,J), —) ~ Homy(Homy(C, J), —),

so the lower row in the diagram also stays exact if one applies to it the
functor Homy(Homy (C, J), —) for any injective A-module J. O

The special case C = A of the following lemma was first proved by
Frankild and Holm using the octahedral axiom; the present proof is
simpler. In the lemma, ¢.A(A) and ¢B(A) denote the Auslander and Bass
classes of the semi-dualizing module C, as introduced in [4, def. (4.1)].
By 2 is denoted suspension of complexes in the derived category, and by
id is denoted injective dimension of complexes as defined e.g. in [3,
def. (A.3.8)].
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LEmma 4.2. Let C be a semi-dualizing module for A. Let M be a
complex i ¢AA) which has non-zero homology and satisfies that
Gidgxe M < oo. Writes = sup{ 1| H;M # 0}. Then there is a distinguished
triangle in D(A),

2H—Y - M —,

where H is an A-module which is Gorenstein injective over Ax C and
where

id4(C®%Y)<Gidgue M.
Proor. By [4, prop. (4.8)] we know
sup{i | Hi(C®} M) #0} = sup{i|[H;M # 0} =,
so we can pick an injective resolution of C®% M of the form
J= 0=y —Jgq —
Then
M =~ RHomu(C, C®% M) =~ Hom,(C,J)

where the first = is because M is in ¢ A(A).
Now, Homy(C, J) consists of A-modules which are Gorenstein injective
over A x C by lemma 3.3(ii), and if we write

n = GidAxcM

for the finite Gorenstein injective dimension of M over A x C, it follows from
[3, thm. (6.2.4)] or [5, thm. (2.5)] that the soft truncation

-+ — 0 — Homy(C,Js) — -+ — Homu(C,J 1) = G—0— -

has G Gorenstein injective over A x C. The truncation remains quasi-iso-
morphic to M.

By iterating lemma 4.1, the module G can be embedded into the com-
plex

-+ —=0—Homy(C, Is1) > Homu (C, [y) — - - - — Homua (C, [ y41) = G—0—- -,

where the I; are injective A-modules by 4.1(i). This complex can only have
non-zero homology in degree s+ 1; let us call the (s + 1)’st homology
module H so the complex is quasi-isomorphic to **!H. Note that the A-
module H is Gorenstein injective over A x C by 4.1(i).
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By 4.1(iii), the identity on G can be lifted to a chain map

>0 —> 00— (CJs) —> - —> (C,J_p41) —> G —> 0 —> -

® | ] ] bl

e 0 (Cilas1) —> (Ody) —> = —> (Clopg1) —> G —> 0 —> -

where we have omitted Homy, everywhere for typographical reasons.
(Note that this is actually just a version of Auslander’s pitchfork con-
struetion.)

If we construct the mapping cone of the chain map (8), it is a standard
observation that the null homotopic subcomplex

e 0 G —=— G —0— -

splits off as a direct summand. The remaining complex @ consists of mod-
ules of the form Hom, (C, K) where K is an injective A-module, and it sits in
homological degrees s +1,...,—n + 1.

In the derived category D(A), we can replace a complex with any quasi-
isomorphic complex. Hence (8) can be viewed as a morphism M — S*"1H.
Given that the mapping cone of (8) is @ up to a null-homotopic summand,
this gives that there is a distinguished triangle

M — Zs+1 H — Q N
in D(A). Rotation gives a distinguished triangle
H-32Q-M—

in D(A) where H is Gorenstein injective over A x C, and where X *IQ
consists of modules of the form Hom,(C, K) where K is an injective A-
module, and sits in homological degrees s, ..., —n.

We claim that with ¥ = X1, this is the lemma’s triangle. It only re-
mains to check id,(C®% Y)<Gida.c M. But Y has the form

Y=--—0—-Homy(C,K;) — - — Homuy(C,K ;) - 0— ---

where the K; are injective A-modules, and [4, prop. (4.4) and obs. (4.10)]
give that modules of the form Hom,(C, K) are acyclic for the functor
C ®4 — whence

CoLY =Co, Y.

Moreover, [4, prop. (4.4) and obs. (4.10)] show C ®4 Homy(C, K;) = K; for
each i, so

CoaY 0K, —- =K ,—0—--
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The last two equations imply
ida(Ce%Y)<n = Gidg.c M

as desired. O

LeEMMA 4.3.  Let C be a semi-dualizing module for A. Let M be a com-
plex i ¢ A(A) with non-zero homology. Write s = sup{ ¢ | H;M # 0} and
suppose that

Ext"' (M, H) =0
for each A-module H which is Gorenstein injective over Ax C. Then

ids (C®% M) = Gidg.c M.

Proor. To prove the lemma’s equation, let us first prove the inequality
<. We may clearly suppose Gidaxc M < oc. By lemma 4.2 there is a dis-
tinguished triangle in D(A),

9) 3H —-Y — M — 31 H,

where H is an A-module which is Gorenstein injective over A x C, and
where

(10) id4(C®% Y)<Gidg.c M.
But
Hompy (M, 2 H) =~ Ext}™ (M, H) = 0

by assumption, so the connecting morphism M — X*"'H in (9) is zero,
whence (9) is a split distinguished triangle with Y = X*H & M.
This implies

CeLY = (CeL2*H) & (CoY M)
from which clearly follows
(11) ids(CoL M) <ida(CoLY).
Combining the inequalities (11) and (10) shows
ids(C®j M)<Gidacc M

as desired.
Let us next prove the inequality >. Let t = sup{i|H;(C®% M) #0}
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and n = ida(C®Y M). We may clearly suppose n < oo . Let
J=o o0 dy = 50— e

be an injective resolution of C®£M . The complex M is in ¢.A(A) by as-
sumption, so we get the first = in

M =~ RHomyu(C, C% M) =~ Hom,(C, J).

Lemma 3.3(ii) implies that Homy4 (C, J) is a complex of Gorenstein injective
modules over A x C. Since Homy(C,J), = Homu4(C,J;) = 0 for £ < —n, we
see

Gidge M <n = ida(C% M)
as desired. O

The following lemma provides some complexes to which lemma 4.3
applies. By pd is denoted projective dimension of complexes as defined
e.g. in [3, def. (A.3.9)].

LemMaA 4.4.  Let C be a semi-dualizing module for A. Let M be a com-
plex of A-modules which has mon-zero homology and satisfies that
H;M =0fori < 0and that pdy M < co. Writes = sup{i|H;M #0}. IfH
1s an A-module which is Gorenstein injective over A x C, then

Exti™ (M, H) = 0.

ProorF. The conditions on M imply that it has a bounded projective
resolution P, and clearly

Exti™ (M, H) ~ Ext}(Q,H)
when @ is the s’th cokernel of P. Since
=Py - P, —-Q—0

is a projective resolution of @ and since P is bounded, we have pd,Q < oc.
Hence it is enough to show

Ext(@Q,H) =0

for each A-module @ with pd4 @ < co. The case @ = 01is clear, so we assume

Q#0.

To prove this, we first argue that if  is any injective A-module then

(12) Ext},(Q, Homy(C, 1)) = 0
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for 2 > 0. For this, note that we have

RHomyu(Q, Homy (C, 1)) =2 RHomu (Q, RHomy (C, 1))
L RHom, Q=% C, 1)

2 RHomy(C, RHom(Q, 1))
=~ RHomy (C, Homy(Q, 1))
where (a) and (b) are by adjunction, and consequently,
(13) Ext,(Q, Homy(C, 1)) =~ Ext},(C, Homs(Q, )

for each ¢. The condition pd, @ < oo implies idyHoma(Q,I) < co, and
therefore Homy(Q,I) belongs to ¢B(A) by [4, prop. 4.4)]. Thus [4,
obs. (4.10)] implies that the right hand side of (13) is zero for ¢ > 0, proving
equation (12).

Now set n = pdy Q. Repeated use of lemma 4.1 shows that there is an
exact sequence of A-modules

(14) 0 — H — Homy(C,I,_1) — --- — Homyu(C,Iy) — H — 0,

where Iy, ...,I, 1 are injective A-modules. Applying Hom4(Q, —) to (14)
and using equation (12), we obtain

Exty (@, H) =~ Ext}™(Q,H) =0

as desired. Here the last equality holds because pd,Q = n. |

The following proposition uses some homological invariants for com-
plexes of modules. In particular, injective, projective and flat dimension of
complexes are used. They are denoted id, pd, and fd, and the definition can
be found e.g. in [3, defs. (A.3.8), (A.3.9), and (A.3.10)].

Recall from [3, (A.5.7.4)] that when A is local with residue class field k&
and C' is a complex of A-modules with bounded finitely generated homol-
ogy, then

id4C = —inf{ | H;RHomyu(k,C) #0}.

Recall also from [3, (A.6.3)] that the width of a complex of A-modules M is
defined as

widthy M = inf{i| H;(Mo%k) #0}.

The following is the main result of this section.
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PROPOSITION 4.5.  Assume that the ring A is local and let C be a semi-
dualizing module for A. Let M be a complex of A-modules which has non-
zero homology and satisfies H;M = 0 for i < 0 and fdy M < oo. Then

1dAC <Gidaxc M + widthy M.

ProoF. Denote by k the residue class field of A. Observe that H;M = 0
for 1 <« 0 implies Hi(M®f; k) = 0 for © <« 0, whence widthy M > —oo. Also,
we can assume widthy M < oo, because the proposition is trivially true if
widthy M = cc.

Since fdgy M < oo, the isomorphism [3, (A.4.23)] gives

RHomy (k, C®Y M) = RHomy(k, )&% M.
This implies (a) in
inf{i| H;RHomy(k,Ce% M) #0}
@ inf{i|H;(RHoma(k, C)®% M) # 0}

© inf{i|H;RHomy(k,C) # 0} +inf{i| H; M2 k) #0}
= —idsC + widthy M,
where (b) is by [3, (A.7.9.2)]. Consequently,
idyC = —inf{i| H;RHomy (k, C®% M) # 0} + widthy M
<ids(CoY% M) + widthy M
— (%)

The condition fdq M < oo implies pdy M < oo by [11, Seconde partie,
cor. (3.2.7)], and hence if we write s = sup{?|H;M # 0}, lemma 4.4 gives

Ext{™(M,H) =0

when H is an A-module which is Gorenstein injective over A x C. But
fdga M < 0o also implies M € ¢ A(A) by [4, prop. (4.4)], and altogether,
lemma 4.3 applies to M and gives

(%) = Gidgxc M + widthy M

as desired. O

We will also need the dual of proposition 4.5. First an easy lemma.
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LEmMA 4.6. Let C be an A-module, let I be a faithfully injective A-
module, and let M be a complex of A-modules with H;M = 0 for i < 0.
Then

GidAMC HomA (M, I = GfdAXC M.

Proor. From lemma 3.1G0) follows that £ = Homy(Ax C,I) is a
faithfully injective (A x C)-module. Hence

GidaxcHomyyc (M, E) = Gfdac M

follows from [3, thm. (6.4.2)].
But equation (2) in the proof of lemma 3.1 shows

Homy,.c (M, E) =~ Homy (M, 1),
so accordingly,

GidAKC HomA(M, 1) = GfdA[XC M.
]

ProposITION 4.7, Assume that the ring A is local and let C be a
semi-dualizing module for A. Let N be a complex of A-modules which
has non-zero homology and satisfies H;N = 0 for i > 0 and ida N < oc.
Then

id4C < Gfdgnc N + depth 4 N.

Proor. Apply Matlis duality and lemma 4.6 to proposition 4.5. O

5. Properties of the Cohen-Macaulay dimensions

This section contains our main results on the Cohen-Macaulay dimen-
sions, as announced in the introduction. From now on, A is assumed to be
local with residue class field k.

THEOREM 5.1.  The following conditions are equivalent.

(CM) A is a Cohen-Macaulay ring with a dualizing module.
(I1) CMidy M < oo holds when M is any complex of A-modules with
bounded homology.
(I2) There is a complex M of A-modules with bounded homology,
CMidAM < 00, fdAM < oo, and WidthAM < 0Q.
(I3) CMidy k < oc.
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(P1) CMpdy M < oo holds when M 1is any complex of A-modules
with bounded homology.

(P2) There is a complex M of A-modules with bounded homology,
CMpdy M < oo, idg M < oo, and depthy M < co.

(P3) CMpdy k < oc.

(F1) CMfdsq M < oo holds when M is any complex of A-modules
with bounded homology.

(¥2) There is a complex M of A-modules with bounded homology,
CMfds M < oo, idg M < oo, and depthy, M < oc.

(F3) CMfda k < cc.

ProOOF. Let us first prove that conditions (CM), (I1), (I2), and (I3) are
equivalent.

(CM) = (I1) Let A be Cohen-Macaulay with dualizing module C. Then
A x C is Gorenstein by [7, thm. 5.6]. If M is a complex of A-modules with
bounded homology, then M is also a complex of (A x C)-modules with
bounded homology, so

Gidgxe M < 00

by [3, thm. (6.2.7)]. As C is in particular a semi-dualizing module, the de-
finition of CMid then implies

CMidA M < .

(I1) = (I2) and (I1) = (I8) Trivial.
(I2) = (CM) When CMidy M < oo then the definition of CMid implies
that A has a semi-dualizing module C with

Gidgwe M < 0.
When
width M < oo
then M has non-zero homology. And finally, when
fdM <
also holds, then proposition 4.5 implies
idy C < 0.

So C is a dualizing module for A, and hence A is Cohen-Macaulay by [3,
(A.8.5.3)] and has a dualizing module.
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(I3) = (CM) When CMidsk < oo, then A has a semi-dualizing module C
with
GidAKC k < 0.

Denoting by K 4, (k) the injective hull of k over A x C, it follows from [9,
thm. 2.22] that

RHOmAGC(EAxC(k)» k)
has bounded homology. Denoting Matlis duality over A x C by V, we have
RHomyy (B axc(k), k) = RHomuy (k" , Eaxc(k)”)

~ RHomy, ok, A x C)

L RHom,o(k, A C) @400 Ax C,
where (a) is by [3, (A.4.23)]. Since the completion Ax Cis faithfully flat over
Ax C, it follows that also RHomy,c(k,Ax C) has bounded homology,
whence A x C is a Gorenstein ring.

But then C is a dualizing module for A by [7, thm. 5.6] and so again, A is
Cohen-Macaulay with a dualizing module.

Similar proofs give that also (CM), (P1), (P2), and (P3) as well as (CM),
(F1), (F2), and (F'3) are equivalent. For this, proposition 4.7 should be used
instead of proposition 4.5. O

REMARK 5.2. In condition (I2) of theorem 5.1, one could consider for M
either the ring A itself, or the Koszul complex K(x;,...,x,) on any se-
quence of elements 1, . . ., x, in the maximal ideal. These complexes satisfy
fdy M < oo and widthy M < oo, and so either of the conditions

CMidyg A < 0o and CMidy K(xg, ..., 2) < 00

is equivalent to A being a Cohen-Macaulay ring with a dualizing module.

Similarly, in conditions (P2) and (F2), one could consider for M either
the injective hull of the residue class field, £ 4(k), or a dualizing complex D
(if one is known to exist). These complexes satisfy idy M < oo and
depth, M < oo, and so either of the conditions

CMpdy E4(k) < oo and CMpdy D < oo
and

CMfdy E4(k) < oo and CMfdy D < oo

is equivalent to A being a Cohen-Macaulay ring with a dualizing module.
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REMARK 5.3. Our viewpoint of emphasizing the Cohen-Macaulay
homological dimensions makes us think of theorem 5.1 as a main result.
However, proposition 4.5 actually implies a more precise result, namely, if
there is a complex M with non-zero homology, H;M = 0 for i < 0, and

Gidgaxc M < oo, fdg M < oo, and widthy M < oo,

then A is Cohen-Macaulay with dualizing module C.
Similarly, proposition 4.7 implies that if there is a complex N with non-
zero homology and H;N = 0 for 7 > 0, then either of

Gpdy, o N < oo, idyN < oo, and depthyN < oo
and

Gfdaxc N < 00, idaN < co, and depthyN < oo
implies that A is Cohen-Macaulay with dualizing module C.

THEOREM 5.4. Let M be an A-module. Then
CMidy M < oo < CMidy M < dim A,
CMpdy M < o0 < CMpd,y M < dimA,
CMfdy M < 0o < CMfdy M < dimA.

ProoF. The implications < are trivial.
To see the implication = for CMpd, observe that when M is given there
exists a semi-dualizing module C with

CMpdy M = Gpd .o M.
When this is finite, we have
Gpdy,c M < FPDA X C)
by [9, thm. 2.28], where FPD denotes the (big) finitistic projective di-

mension. But
FPDAxX C) =dimAx C
by [11, Seconde partie, thm. (3.2.6)], and A and A x C are finitely gener-
ated as modules over each other, so
dimAx C = dimA.

Together, this establishes the implication = for CMpd.
The implication = for CMfd follows by a similar argument, using
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that the finitistic flat dimension satisfies FFD(A x C) < FPD(A x C)
because of [11, Seconde partie, cor. (3.2.7)].

Finally, the implication = for CMid follows from the one for CMfd
using Matlis duality and lemma 4.6. O

The following results use CMdim, the Cohen-Macaulay dimension in-
troduced by Gerko in [8], and Gdim, the G-dimension originally introduced
by Auslander and Bridger in [1].

LEmMa 5.5. Let C be a semi-dualizing module for A and let M be a
finitely generated A-module. If

Gpdy,c M < o0
then
CMdimy M = Gpdy, o M.
Proor. Combining [8, proof of thm. 3.7] with [8, def. 3.2’] shows
CMdimy M <Gpdy,. M.
So Gpd ¢ M < oo implies CMdimy M < oo and hence
CMdimy M = depthyA — depth, M

by [8, thm. 3.8].
On the other hand,

Gpd,, o M = G-dime M

by [10, prop. 3.1], where G-dimgc M is the homological dimension in-
troduced in [4, def. (3.11)]. So G-dim¢ M is finite and hence

G-dim¢ M = depthyA — depth, M

by [4, thm. (3.14)].
Combining the last three equations shows

CMdlmA M = GpdAGC M

as desired. O

THEOREM 5.6. Let M be a finitely generated A-module. Then
CMdimy M <CMpdy M <Gdimy M,

and if one of these numbers is finite then the inequalities to its left are
equalities.
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ProoF. The first inequality is clear from lemma 5.5, since CMpd, M is
defined as the infimum of all Gpd,,.o M.

For the second inequality, note that the ring A is itself a semi-dualizing
module, so the definition of CMpd gives < in

CMpd, M <Gpd,, oM = Gpd, M = Gdims M,

where the first = is by [10, cor. 2.17], and the second = holds by [3,
cor. (4.4.6)] or [5, prop. (2.11)(b)] because M is finitely generated.

Equalities: If Gdimg M < oo then CMdimy M < oo by [8, thm. 3.7]. But
Gdimy M < oo implies

Gdimy M = depthy A — depthy M
by [3, thm. (2.3.13)], and similarly, CMdim4 M < oo implies
CMdimy M = depthyA — depthy M

by [8, thm. 3.8]. So it follows that CMdim4 M = Gdim M, and hence both
inequalities in the theorem must be equalities.

If CMpd, M < oo then by the definition of CMpd there exists a semi-
dualizing module C over A with Gpd,,M < co. But by lemma 5.5, any
such C has

CMdimy M = Gpd .o M,

so the first inequality in the theorem is an equality. O
We finish with two clasically flavoured results.

ProPOSITION 5.7 [Auslander-Buchsbaum formula]. Let M be a finitely
generated A-module. If CMpd 4 M < oo, then

CMpd, M = depth, A — depth, M.

Proor. By the definition of CMpd, we can pick a semi-dualizing A-
module C such that

CMpdy M = Gpd,.c M.
But M is finitely generated, so
Gpdy,c M = GdimgeM
by [3, cor. (4.4.6)] or [5, prop. (2.11)(b)]. The Auslander-Bridger formula
gives
Gdimg,c M = depthy, - Ax C — depthy, - M.
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Finally, it remains to note that
depthy, A x C = depthy A
and
depthy, o M = depthy M

because A x C and A are finitely generated over each other. O

ProposiTION 5.8 [Bass formula). Assume that A has a dualizing
complex and let N #0 be a finitely generated A-module. If
CMidyN < oo, then

CMids N = depthA.

Proor. By the definition of CMid, we can pick a semi-dualizing A-
module C such that CMidy N = Gidgx¢ N. By [5, thm. (6.4)], finiteness of
Gidgxc N implies that

Gidayc N = depth,, o Ax C,

since N # 0 is finitely generated over A x C, and since A x C is finitely
generated over A and so has a dualizing complex because A does. Finally,
we have

depthy,cAx C = depthy A

again. O
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