
MODEL CATEGORIES OF QUIVER REPRESENTATIONS

HENRIK HOLM AND PETER JØRGENSEN

Abstract. Gillespie’s Theorem gives a systematic way to construct model category structures on
C (M ), the category of chain complexes over an abelian category M .

We can view C (M ) as the category of representations of the quiver · · · → 2→ 1→ 0→ −1→ −2→ · · ·
with the relations that two consecutive arrows compose to 0.

This is a self-injective quiver with relations, and we generalise Gillespie’s Theorem to other such quivers
with relations. There is a large family of these, and our result gives a systematic way to construct model
category structures on many categories. This includes the category of N -periodic chain complexes, the
category of N -complexes where ∂N = 0, and the category of representations of the repetitive quiver
ZAn with mesh relations.

0. Introduction

Gillespie’s Theorem permits the construction of model category structures on categories of chain
complexes. We will generalise it to categories of representations of self-injective quivers with relations.

0.i. Outline.
Let M be an abelian category. An abelian model category structure on C (M ), the category of chain
complexes over M , consists of three classes of morphisms, (fib, cof,weq), known as fibrations, cofibra-
tions, and weak equivalences, subject to several axioms, see [15, def. 2.1] and [24, sec. I.1]. It provides
an extensive framework for the construction and manipulation of the localisation weq−1 C (M ), where
the morphisms in weq have been inverted formally. Some of the localisations thus obtained are of
considerable interest, not least the derived category D(M ).

Hovey’s Theorem says that each abelian model category structure can be constructed from two so-
called complete, compatible cotorsion pairs, see Theorem 0.2. This motivates Gillespie’s Theorem,
which takes a hereditary cotorsion pair in M and produces two compatible cotorsion pairs in C (M ),
see Theorem 0.3.

Gillespie’s Theorem can be viewed as a result on quiver representations since C (M ) is the category
of representations of Q with values in M , where Q is the following self-injective quiver with relations.{

Quiver: · · · −→ 2 −→ 1 −→ 0 −→ −1 −→ −2 −→ · · ·
Relations: Two consecutive arrows compose to 0.

(0.1)

The notion of self-injectivity is made precise in Paragraph 2.4. This paper will generalise Gillespie’s
Theorem to other self-injective quivers with relations. They form a large family, see for example
Equations (0.3) and (0.4) and Section 0.viii.

Let k be a field, R a k-algebra, Q a self-injective quiver with relations over k, and let X be the category
of representations of Q with values in RMod, the category of R-left-modules. Our main theorem,
Theorem A, takes a hereditary cotorsion pair in RMod and produces two compatible cotorsion pairs
in X . It specialises to Gillespie’s Theorem for M = RMod if Q is the quiver with relations from
(0.1).
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0.ii. Cotorsion pairs.

Let Y be an abelian category. If Γ and ∆ are classes of objects of Y , then we write
Γ⊥ = {Y ∈ Y | Ext1

Y (Γ, Y ) = 0 } , ⊥∆ = {Y ∈ Y | Ext1
Y (Y,∆) = 0 }.

Definition 0.1. Recall the following from the literature.

(i) A cotorsion pair in Y is a pair (Γ,∆) of classes of objects of Y such that Γ = ⊥∆ and
Γ⊥ = ∆, see [26, p. 12]. A cotorsion pair (Γ,∆) is determined by each of the classes Γ and
∆, because it is equal to (Γ,Γ⊥) and to (⊥∆,∆).

(ii) The cotorsion pair (Γ,∆) in Y is complete if each Y ∈ Y permits short exact sequences
0 −→ D −→ C −→ Y −→ 0 and 0 −→ Y −→ D′ −→ C ′ −→ 0 with C,C ′ ∈ Γ and D,D′ ∈ ∆, see [12,
lem. 5.20].

(iii) The cotorsion pair (Γ,∆) is hereditary if Γ is closed under kernels of epimorphisms and ∆ is
closed under cokernels of monomorphisms, see [12, lem. 5.24].

(iv) The cotorsion pairs (Φ,Φ⊥) and (⊥Ψ,Ψ) in Y are compatible if they satisfy the following
conditions, see [10, sec. 1].

(Comp1) Ext1
Y (Φ,Ψ) = 0.

(Comp2) Φ ∩ Φ⊥ = ⊥Ψ ∩Ψ.
Condition (Comp1) is equivalent to Φ ⊆ ⊥Ψ and to Φ⊥ ⊇ Ψ. It is not symmetric in the two
cotorsion pairs; their order matters.

(v) Let (Γ,∆) be a cotorsion pair in Y , and let C be a class of objects in Y . If ∆ = C ⊥, then
we say that (Γ,∆) is generated by C . If Γ = ⊥C , then we say that (Γ,∆) is cogenerated by
C . See [12, def. 5.15].

For example, if Y has enough projective objects, then (projective objects,Y ) is called the projective
cotorsion pair. If Y has enough injective objects, then (Y , injective objects) is called the injective
cotorsion pair. These cotorsion pairs are complete and hereditary. Note that the triangulated version
of compatible cotorsion pairs was investigated by Nakaoka under the name concentric twin cotorsion
pair, see [22, def. 3.3].

0.iii. Hovey’s Theorem: Abelian model category structures.

We will not reproduce Hovey’s Theorem in full, but rather state the following result, which motivates
the interest in compatible cotorsion pairs and dovetails with Gillespie’s Theorem.

Theorem 0.2 ([9, prop. 2.3 and sec. 4.2], [10, thm. 1.1], [15, thm. 2.2]). Let (Φ,Φ⊥) and (⊥Ψ,Ψ) be
complete, hereditary, compatible cotorsion pairs in the abelian category Y . Set

W = {Y ∈ Y | there is a short exact sequence 0 −→ P −→ F −→ Y −→ 0 with P ∈ Ψ, F ∈ Φ }.
There is a model category structure on Y with

fib = { epimorphisms with kernel in Φ⊥ },

cof = {monomorphisms with cokernel in ⊥Ψ },

weq =

{
morphisms which factor as a monomorphism with cokernel in W
followed by an epimorphism with kernel in W

}
,

and the localisation weq−1 Y is triangulated.

We will give an example after recalling Gillespie’s Theorem.
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0.iv. Gillespie’s Theorem: Chain complexes.

Gillespie’s Theorem gives a systematic way to construct compatible cotorsion pairs in the category of
chain complexes. It requires the following setup.

• M is an abelian category with enough projective and enough injective objects.
• C (M ) is the category of chain complexes over M .
• For q ∈ Z, consider the functors

M
Sq // C (M ),

Cq

zz

Kq

dd

where Sq sends M to the chain complex with M in degree q and zero everywhere else, and Cq
and Kq are given by

Cq(X) = Coker(∂Xq+1) , Kq(X) = Ker(∂Xq ).

Here ∂Xq is the qth differential of the chain complex X. There are adjoint pairs (Cq, Sq) and
(Sq, Kq).

The following is Gillespie’s Theorem.

Theorem 0.3 ([11, thm. 3.12 and cor. 3.13]). If (A ,B) is a hereditary cotorsion pair in M , then
there are hereditary, compatible cotorsion pairs

(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
in C (M ), where

Φ(A ) = {X ∈ C (M ) | If q ∈ Z then Cq(X) ∈ A and Hq(X) = 0 },

Ψ(B) = {X ∈ C (M ) | If q ∈ Z then Kq(X) ∈ B and Hq(X) = 0 }.

For instance, the projective cotorsion pair (A ,B) = (projective objects,M ) gives(
Φ(A ),Φ(A )⊥

)
= (P,P⊥) ,

(⊥Ψ(B),Ψ(B)
)

= (⊥E ,E ), (0.2)

where P is the class of projective objects in C (M ) and E is the class of exact chain complexes. Note
that P⊥ = C (M ). The cotorsion pairs (0.2) are hereditary and compatible by Gillespie’s Theorem.
If M is a complete and cocomplete category, then the cotorsion pairs (0.2) are complete, and then
Theorem 0.2 says that they determine an abelian model category structure on C (M ). The associated
localisation weq−1 C (M ) is the derived category D(M ), see [9, thm. 5.3].

0.v. The Main Theorem: Quiver representations.

Our main theorem is a generalisation of Gillespie’s Theorem to quiver representations. It requires the
following setup, which we keep in the rest of the introduction.

• k is a field, R is a k-algebra, RMod is the category of R-left-modules.
• Q is a self-injective quiver with relations over k, see Paragraph 2.4.
• X is the category of representations of Q with values in RMod. If p π−→ q is an arrow in Q,
then the corresponding homomorphism in X ∈X is Xp

Xπ−−→ Xq.
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• For q an element of Q0, the set of vertices of Q, consider the functors

RMod
Sq // X

Cq

zz

Kq

dd

defined by:
Cq(−) = DS〈q〉 ⊗

Q
− , Sq(−) = S〈q〉 ⊗

k
− , Kq(−) = HomQ(S〈q〉,−).

Here S〈q〉 is the simple representation of Q supported at q. Its dual DS〈q〉 = Homk(S〈q〉, k)
is the simple representation of the opposite quiver Qo supported at q. The symbols ⊗

Q
and

HomQ denote the tensor product and homomorphism functors of representations of Q. Note
that Sq sends M to the representation with M at vertex q and zero everywhere else. There
are adjoint pairs (Cq, Sq) and (Sq, Kq).

Our main theorem is the following.

Theorem A. If (A ,B) is a hereditary cotorsion pair in RMod, then there are hereditary, compatible
cotorsion pairs

(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
in X , the category of representations of Q with

values in RMod, where

Φ(A ) = {X ∈X | If q ∈ Q0 then Cq(X) ∈ A and L1Cq(X) = 0 },

Ψ(B) = {X ∈X | If q ∈ Q0 then Kq(X) ∈ B and R1Kq(X) = 0 }.

In the body of the paper, we prove the more general Theorem 3.2 where Q is a small k-preadditive
category, and X is the functor category of k-linear functors Q→ RMod. Paragraph 2.4 explains how
a quiver can be viewed as a category, whence Theorem 3.2 specialises to Theorem A.

Theorem A specialises to Gillespie’s Theorem for M = RMod if Q is the quiver with relations from
(0.1). Then X is the category of chain complexes over RMod. A computation shows that the functors
Cq, Sq, Kq specialise to those of Section 0.iv, and that

L1Cq = Hq+1 , R1Kq = Hq−1,

whence the formulae in Theorem A specialise to those in Gillespie’s Theorem. However, Theorem
A applies to many other quivers with relations, and then we think of L1Cq and R1Kq as generalised
homology functors.

To serve as the input for Theorem 0.2, the cotorsion pairs
(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
must

be complete. In the setup of Theorem 0.3, this is indeed true under the conditions that M is a
complete and cocomplete category and (A ,B) is a complete cotorsion pair, see [7, thm. 2.4]. In
the more complicated setup of Theorem A, we do not have an equally neat result, but we do prove
completeness in certain cases, see Theorem 3.3.

0.vi. Application: N-periodic chain complexes.

Let N > 1 be an integer.

• In Section 0.vi only, Q is the following quiver with relations.
Quiver: N − 1 // N − 2 // · · · // 1 // 0jj

Relations: Two consecutive arrows compose to 0

(0.3)

This is a self-injective quiver with relations, see Paragraph 2.4.
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An object X ∈X has the form

XN−1

∂XN−1 // XN−2

∂XN−2 // · · · // X1

∂X1 // X0,

∂X0

jj

where two consecutive morphisms compose to 0. Hence X is the category of N -periodic chain
complexes over RMod. This even makes sense for N = 1, in which case X is a so-called module
with differentiation in the sense of [6, sec. IV.1], consisting of an object X0 ∈ RMod and a morphism

X0

∂X0−→ X0 squaring to 0.

For 0 6 q 6 N − 1 there is a homology functor X
Hq−→ RMod defined in an obvious fashion. We will

use our theory to prove the following.

Theorem B. Let (A ,B) be a hereditary cotorsion pair in RMod.

(i) There are hereditary, compatible cotorsion pairs
(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
in X ,

the category of N-periodic chain complexes over RMod, where

Φ(A ) = {X ∈X | If 0 6 q 6 N − 1 then Coker(∂Xq ) ∈ A and Hq(X) = 0 },

Ψ(B) = {x ∈X | If 0 6 q 6 N − 1 then Ker(∂Xq ) ∈ B and Hq(X) = 0 }.
(ii) If A is closed under pure quotients and (A ,B) is generated by a set, then the cotorsion pairs

in part (i) are complete.

This applies to the so-called flat cotorsion pair (A ,B) = (flat modules, cotorsion modules): Heredity
holds by [12, thm. 8.1(a)], the class of flat modules is easily seen to be closed under pure quotients, and
generation by a set holds by [5, prop. 2] (in which “cogenerated” means the same as our “generated”).
Hence Theorem B provides an N -periodic version of Gillespie’s result for chain complexes from [11]
(see theorem 3.12 and corollaries 3.13, 4.10, 4.18 in that paper). Theorem B also applies to the
injective cotorsion pair (A ,B) = (RMod, injective modules).

0.vii. Application: ZA3 with mesh relations.

The following is a slightly more complicated example.

• In Section 0.vii only, Q is the repetitive quiver ZA3 modulo the mesh relations. That is, Q is

(3, 2)

��

(2, 2)

��

(1, 2)

��

(0, 2)

��

(−1, 2)

· · · (2, 1)

��

??

(1, 1)

��

??

(0, 1)

��

??

(−1, 1)

��

??

· · ·

(2, 0)

??

(1, 0)

??

(0, 0)

??

(−1, 0)

??

(−2, 0)

(0.4)

modulo the relations that each composition of the form
◦
��◦

??
◦ or
◦
��
◦

◦
??
is zero, and that each

square of the form
◦
��◦

??

��
◦

◦
?? is anticommutative. This is a self-injective quiver with relations,

see Paragraph 2.4.
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For j ∈ Z, the mesh relations imply that there are short chain complexes
X(j,0) −→ X(j,1) −→ X(j−1,0),

X(j,1) −→ X(j−1,0) ⊕X(j,2) −→ X(j−1,1), (0.5)

X(j,2) −→ X(j−1,1) −→ X(j−1,2).

We will use our theory to prove the following.

Theorem C. If (A ,B) is a hereditary cotorsion pair in RMod, then there are hereditary, compatible
cotorsion pairs

(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
in X , the category of representations of Q with

values in RMod, where

Φ(A ) =


X ∈X

If j ∈ Z then each of the following cokernels is in A :

Coker(X(j,1) −→ X(j−1,0)),

Coker(X(j,0) ⊕X(j+1,2) −→ X(j,1)),

Coker(X(j,1) −→ X(j,2)),

and each of the short chain complexes (0.5) is exact


,

Ψ(B) =


X ∈X

If j ∈ Z then each of the following kernels is in B:

Ker(X(j,0) −→ X(j,1)),

Ker(X(j,1) −→ X(j−1,0) ⊕X(j,2)),

Ker(X(j,2) −→ X(j−1,1)),

and each of the short chain complexes (0.5) is exact


.

0.viii. Other self-injective quivers with relations.

There are many other self-injective quivers with relations to which Theorem A can be applied, for
instance · · · −→ 2 −→ 1 −→ 0 −→ −1 −→ −2 −→ · · · with the relations that N consecutive arrows
compose to 0. Then X is the category of N -complexes over RMod in the sense of [18, def. 0.1]. Other
possibilities are ZAn with mesh relations, the quiver with relations of a finite-dimensional self-injective
k-algebra, and quivers with relations of repetitive algebras, see [20, sec. 3.1] and [27, sec. 2].

0.ix. An observation on the model category literature.

Observe that Theorem A does not assume the existence of a model category structure on RMod. This
is in contrast to several results from the literature, where a model category structure on a functor
category Fun(I ,M ) is induced by a model category structure on M . If I is a small category, then
such results exist when M has a cofibrantly generated or combinatorial model category structure, see
[13, thm. 11.6.1] and [21, prop. A.2.8.2], and when M has an arbitrary model category structure and
I is a direct, an inverse, or a Reedy category, see [16, thms. 5.1.3 and 5.2.5].

0.x. Contents of the paper.

Section 1 defines the cotorsion pairs
(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
in an abstract setup, and

shows that they are hereditary and compatible under certain assumptions. Section 2 introduces functor
categories. Section 3 proves Theorem 3.2, which has Theorem A as a special case. Sections 4, 5, and
6 provide several results used in the proof of Theorem 3.2. Section 7 proves Theorem B. Section 8
proves Theorem C. Appendix A provides additional background on functor categories.
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1. The cotorsion pairs
(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)

in an abstract setup

This section defines the cotorsion pairs
(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
in an abstract setup,

and shows that they are hereditary and compatible under certain assumptions.

Setup 1.1. Section 1 uses the following setup.

• M and X are abelian categories with enough projective and enough injective objects.
• (A ,B) is a cotorsion pair in M .
• J is an index set.
• For each j ∈ J there are adjoint pairs of functors (Cj, Sj) and (Sj, Kj) as follows.

M
Sj // X

Cj

zz

Kj

cc

Note that this implies that Sj is exact.

The following lemma provides a so-called “five term exact sequence”. It is classic, but we show the
proof because we do not have a reference for the precise statement.

Lemma 1.2. Let (C, S) be an adjoint pair of functors as follows: M
S
// X .

Coo
Assume that S is

exact. For N ∈M and X ∈X there is an exact sequence

0→ Ext1
M (CX,N)→ Ext1

X (X,SN)→ HomM (L1CX,N)→ Ext2
M (CX,N)→ Ext2

X (X,SN).

Proof. Consider the functors X
C−→ M

B−→ Ab where Ab is the category of abelian groups and
B(−) = HomM (−, N).

The contravariant functor B is left exact. If P ∈ X is projective, then C(P ) ∈ M is projective
because HomM (CP,−) ' HomX

(
P, S(−)

)
is an exact functor since S is exact. In particular, the

functor C maps projective objects to right B-acyclic objects, that is, objects on which the derived
functors R>1B vanish.

By [25, thm. 10.49] there is a Grothendieck third quadrant spectral sequence

Ei`
2 = (RiB)(L`C)X ⇒

i
Rn(BC)X.

If P is a projective resolution of X, then
Rn(BC)X ∼= Hn(BCP ) = HnHomM (CP,N) ∼= HnHomX (P, SN) ∼= ExtnX (X,SN).

Hence the spectral sequence is
Ei`

2 = ExtiM (L`CX,N)⇒
i

ExtnX (X,SN).

By [25, thm. 10.33] there is an associated exact sequence, which gives the sequence in the lemma. �

We record the dual without a proof:

Lemma 1.3. Let (S,K) be an adjoint pair of functors as follows: M
S //

X .
K
oo Assume that S is

exact. For N ∈M and X ∈X there is an exact sequence

0→ Ext1
M (N,KX)→ Ext1

X (SN,X)→ HomM (N,R1KX)→ Ext2
M (N,KX)→ Ext2

X (SN,X).
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The following is well known.

Lemma 1.4. A cotorsion pair (A ,B) in M is hereditary if and only if A is resolving, that is,
contains the projective objects and is closed under kernels of epimorphisms.

Proof. See [12, lem. 5.24], the proof of which works in the present generality. �

Definition 1.5. Let
EL = {X ∈X | If j ∈ J then L1Cj(X) = 0 },

ER = {X ∈X | If j ∈ J then R1Kj(X) = 0 }.
If C is a class of objects in M , then let

Φ(C ) = {X ∈X | If j ∈ J then Cj(X) ∈ C and L1Cj(X) = 0 },

Ψ(C ) = {X ∈X | If j ∈ J then Kj(X) ∈ C and R1Kj(X) = 0 }.
Note that Φ(C ) ⊆ EL and Ψ(C ) ⊆ ER.

If C is a class of objects in M , then we use the shorthand {S∗(C ) } = {Sj(C) | j ∈ J,C ∈ C }.
Lemma 1.6. Let C be a class of objects in M .

(i) Assume that for each non-zero M ∈ M there is an injective object I which is in C and
satisfies HomM (M, I) 6= 0. Then Φ(⊥C ) = ⊥{S∗(C ) }.

(ii) Assume that for each non-zero M ∈ M there is a projective object P which is in C and
satisfies HomM (P,M) 6= 0. Then Ψ(C ⊥) = {S∗(C ) }⊥.

Proof. First note that for N ∈ C , X ∈X , j ∈ J , there is an exact sequence
0→ Ext1

M (CjX,N)→ Ext1
X (X,SjN)→ HomM (L1CjX,N)→ Ext2

M (CjX,N) (1.1)
by Lemma 1.2.

Part (i), the inclusion ⊆: Let X ∈ Φ(⊥C ) and j ∈ J be given. Then Cj(X) ∈ ⊥C and L1Cj(X) = 0
by the definition of Φ. It follows that for N ∈ C , the terms in (1.1) which involve Ext1

M and HomM

are 0, so (1.1) implies Ext1
X (X,SjN) = 0. Hence X ∈ ⊥{S∗(C ) }.

Part (i), the inclusion ⊇: Let X ∈ ⊥{S∗(C ) } and j ∈ J be given.

For N ∈ C , the term in (1.1) which involves Ext1
X is 0, so (1.1) implies Ext1

M (CjX,N) = 0. Hence
Cj(X) ∈ ⊥C .

Assume that L1Cj(X) 6= 0. Pick an injective object N which is in C and satisfies HomM (L1CjX,N) 6=
0. By the previous paragraph, the term in (1.1) which involves Ext1

X is 0. However, the term involving
Ext2

M is also 0 since N is injective, so (1.1) implies HomM (L1CjX,N) = 0. This is a contradiction,
so we conclude L1Cj(X) = 0. Combining with the previous paragraph shows X ∈ Φ(⊥C ).

Part (ii): Proved dually to part (i). �

Theorem 1.7. There are cotorsion pairs
(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
in X .

Proof. The class A contains the projective objects of M , and the class B contains the injective
objects of M . Since we also have A = ⊥B and B = A ⊥, Lemma 1.6 implies

Φ(A ) = ⊥{S∗(B) } , Ψ(B) = {S∗(A ) }⊥.
Hence there are the following cotorsion pairs, see [12, def. 5.15]:(

Φ(A ),Φ(A )⊥
)

=
(⊥{S∗(B) }, (⊥{S∗(B) })⊥

)
,(⊥Ψ(B),Ψ(B)

)
=
(⊥({S∗(A ) }⊥), {S∗(A ) }⊥

)
. �
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Theorem 1.8. Assume that (A ,B) is a hereditary cotorsion pair in M .

(i) If L2Cj(EL) = 0 for j ∈ J , then there is a hereditary cotorsion pair
(
Φ(A ),Φ(A )⊥

)
in X .

(ii) If R2Kj(ER) = 0 for j ∈ J , then there is a hereditary cotorsion pair
(⊥Ψ(B),Ψ(B)

)
in X .

Proof. The cotorsion pairs exist by Theorem 1.7, and we must prove heredity under the given assump-
tions.

(i): Lemma 1.4 implies that A is resolving, and that it is enough to prove that so is Φ(A ). Let
0→ X ′ → X → X ′′ → 0 be a short exact sequence in X with X,X ′′ ∈ Φ(A ), and let j ∈ J be given.
By definition we have Cj(X), Cj(X

′′) ∈ A and L1Cj(X) = L1Cj(X
′′) = 0. In particular, X ′′ ∈ EL, so

the assumption in part (i) says L2Cj(X
′′) = 0. Hence the long exact sequence

· · · → L2Cj(X
′′)→ L1Cj(X

′)→ L1Cj(X)→ L1Cj(X
′′)→ Cj(X

′)→ Cj(X)→ Cj(X
′′)→ 0

reads
· · · → 0→ L1Cj(X

′)→ 0→ 0→ Cj(X
′)→ Cj(X)→ Cj(X

′′)→ 0.

This implies L1Cj(X
′) = 0. It also implies Cj(X ′) ∈ A because A is resolving and Cj(X), Cj(X

′′) ∈
A . Hence X ′ ∈ Φ(A ) as desired.

(ii): Proved dually to (i). �

Definition 1.9. Consider the following conditions on the classes EL, ER, Φ(A ), Ψ(B) from Definition
1.5.

(Ex) EL = ER.

(Seq) If j ∈ J is given, then:
(i) Each A ∈ A permits a short exact sequence in X ,

0→ Sj(A)→ R→ U → 0,

with R ∈ Φ(A ) and Ext2
X (U,ER) = 0.

(ii) Each B ∈ B permits a short exact sequence in X ,
0→ W → T → Sj(B)→ 0,

with T ∈ Ψ(B) and Ext2
X (EL,W ) = 0.

Remark 1.10. It is not obvious that the sequences in condition (Seq) exist. Their construction in the
category of representations of a self-injective quiver is a key technical part of the paper, see Section 6.

Theorem 1.11. Assume that conditions (Comp1), (Ex), and (Seq) hold (see Definitions 0.1 and 1.9).
Then there are compatible cotorsion pairs (Φ(A ),Φ(A )⊥) and (⊥Ψ(B),Ψ(B)) in X .

Proof. The cotorsion pairs exist by Theorem 1.7, and we must prove that they are compatible under
the given assumptions, which amounts to proving that condition (Comp2) holds. We have assumed
condition (Ex), so write E = EL = ER. It is enough to prove

⊥Ψ(B) ∩ E = Φ(A ), (1.2)

Φ(A )⊥ ∩ E = Ψ(B), (1.3)
since then

Φ(A ) ∩ Φ(A )⊥ ∩ E = Φ(A ) ∩Ψ(B) = ⊥Ψ(B) ∩Ψ(B) ∩ E ,

and this shows (Comp2) since E can be removed from the displayed formula because Φ(A ),Ψ(B) ⊆ E .

We prove Equation (1.2) by establishing the two inclusions.
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The inclusion ⊆: Let X ∈ ⊥Ψ(B)∩E be given. Given j ∈ J and B ∈ B, condition (Seq)(ii) provides
a short exact sequence in X ,

0→ W → T → Sj(B)→ 0,

with T ∈ Ψ(B) and Ext2
X (E ,W ) = 0. There is a long exact sequence containing

Ext1
X (X,T )→ Ext1

X (X,SjB)→ Ext2
X (X,W ).

The first term is zero since X ∈ ⊥Ψ(B) and T ∈ Ψ(B). The last term is zero since X ∈ E and
Ext2

X (E ,W ) = 0. Hence the middle term is zero: Ext1
X (X,SjB) = 0. By Lemma 1.2 this implies

Ext1
M (CjX,B) = 0 whence Cj(X) ∈ ⊥B = A . We also know X ∈ E , so L1Cj(X) = 0. It follows

that X ∈ Φ(A ).

The inclusion ⊇: This follows because Φ(A ) ⊆ E , while condition (Comp1) implies Φ(A ) ⊆ ⊥Ψ(B).

Equation (1.3) is proved dually to Equation (1.2). �

We end by recording a lemma which has almost the same proof as Theorem 1.7.

Lemma 1.12. Let C be a class of objects in M .

(i) Assume that for each non-zero M ∈ M there is an injective object I which is in C and
satisfies HomM (M, I) 6= 0.

If (A ,B) is the cotorsion pair in M cogenerated by C , then
(
Φ(A ),Φ(A )⊥

)
is the cotorsion

pair in X cogenerated by {S∗(C ) }.
(ii) Assume that for each non-zero M ∈ M there is a projective object P which is in C and

satisfies HomM (P,M) 6= 0.

If (A ,B) is the cotorsion pair in M generated by C , then
(⊥Ψ(B),Ψ(B)

)
is the cotorsion

pair in X generated by {S∗(C ) }.

Proof. (i): If (A ,B) is cogenerated by C , then A = ⊥C , so Lemma 1.6 implies Φ(A ) = ⊥{S∗(C ) }.
Hence (

Φ(A ),Φ(A )⊥
)

=
(⊥{S∗(C ) }, (⊥{S∗(C ) })⊥

)
is the cotorsion pair cogenerated by {S∗(C ) }.

(ii) is proved dually to (i). �

2. Functor categories

This section introduces functor categories. In particular, Paragraph 2.4 explains how a category of
quiver representations can be viewed as a functor category, whence Theorem 3.2 has Theorem A as a
special case.

Setup 2.1. Section 2 uses the following setup.

• k is a field.
• R is a k-algebra.

2.2 (Functor categories). Let Q be a small k-preadditive category; that is, each Hom-space is a k-
vector space and composition of morphisms is k-bilinear. The homomorphism functor and the radical
of Q will be denoted Q(−,−) and radQ(−,−), see [1, sec. A.3], [8, sec. 3.2], and [19, p. 303].
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Let Qo denote the opposite category, and let kMod and RMod denote, respectively, the categories of
k-vector spaces and R-left-modules. There are the following functor categories.

QMod = the category of k-linear functors Q→ kMod

ModQ = the category of k-linear functors Qo → kMod

Q,RMod = the category of k-linear functors Q→ RMod

QModQ = the category of k-linear functors Qo ×Q→ kMod

Their homomorphism functors are denoted HomQ, HomQo , HomQ,R, and HomQe .

We think of them as the categories of Q-left-modules, Q-right-modules, Q-left-R-left-modules, and
Q-bi-modules. They are abelian categories with enough projective and injective objects, which are
in fact Grothendieck categories. In each of the categories QMod, ModQ, and Q,RMod, a sequence of

functors L′ λ′−→ L
λ−→ L′′ is short exact if 0 −→ L′(q)

λ′q−→ L(q)
λq−→ L′′(q) −→ 0 is a short exact sequence

in kMod or RMod for each q ∈ Q. An object X of Q,RMod can be viewed as an object of QMod by
forgetting the R-structure on each X(q) for q ∈ Q. We refer to Appendix A for additional information.

Definition 2.3. The following are conditions we can impose on a small k-preadditive category Q.

(Fin) Each Hom-space of Q is finite dimensional over k. If q ∈ Q is fixed then Q(p, q) =
Q(q, p) = 0 except for finitely many p ∈ Q. There is an integer N such that radNQ = 0.

(Rad) If q ∈ Q then Q(q, q) is a local k-algebra, and the canonical map k −→ Q(q, q)/ radQ(q, q)
is an isomorphism of k-algebras. If p 6= q are in Q then Q(p, q) = radQ(p, q).

(SelfInj) The category Q has a Serre functor, that is, a k-linear autoequivalence W : Q→ Q such
that there are natural isomorphisms Q(p, q) ∼= DQ(q,Wp) where D(−) = Homk(−, k).

Note that the last part of condition (Rad) implies that different objects of Q are non-isomorphic.
Conditions (Fin) and (Rad) imply that Q is a locally bounded spectroid in the terminology of [8,
secs. 3.5 and 8.3], whence the functor categories over Q share many properties of module categories
over a finite dimensional algebra, see Appendix A. If condition (SelfInj) also holds, then projective,
injective, and flat objects coincide in each of QMod and ModQ, see Paragraph A.6.

2.4 (Special case: Quivers with relations). Let Q be a quiver with relations over k in the sense of
[1, def. II.2.3]. Then Q can be viewed as a small k-preadditive category: The objects are the vertices,
and the morphism spaces are the k-linear combinations of paths modulo relations. Composition of
morphisms is induced by concatenation of paths.

Viewed as a quiver with relations, Q has a category X of representations with values in RMod. Viewed
as a small k-preadditive category, Q has the functor category Q,RMod. The categories X and Q,RMod
can be identified.

We say that Q is a self-injective quiver with relations if Q, viewed as a small k-preadditive category,
satisfies conditions (Fin), (Rad), and (SelfInj).

The quivers with relations from the introduction are self-injective. In particular, the Serre functors
are given as follows: For (0.1) by the shift q 7→ q− 1, for (0.3) by the shift q 7→ q− 1 where q is taken
modulo N , and for (0.4) by reflecting in a horizontal line through the vertices (1, j), then shifting one
vertex to the right.

2.5 (Special case: Finite quivers with relations). Let Q be a self-injective quiver with relations
over k. Assume that Q is finite and connected, and that its relations are given by an admissible ideal
a in the path algebra A over k, see [1, def. II.2.1].
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Structures over the category Q Structures over the algebra Λ

Q,RMod Λ,RMod = Λ-left-R-left-modules
QMod ΛMod = Λ-left-modules
ModQ ModΛ = Λ-right-modules
QModQ ΛModΛ = Λ-bimodules
HomQ,R HomΛ,R = homomorphisms of Λ-left-R-left-modules
HomQ HomΛ = homomorphisms of Λ-left-modules
HomQo HomΛo = homomorphisms of Λ-right-modules
HomQe HomΛe = homomorphisms of Λ-bimodules
⊗
Q

⊗
Λ

= tensor product of Λ-modules

⊗
k

⊗
k

= tensor product of k-vector spaces

S〈q〉 S〈q〉 = the simple Λ-left-module supported at vertex q
DS〈q〉 DS〈q〉 = the simple Λ-right-module supported at vertex q

Figure 1. A finite self-injective quiver with relations Q can be viewed as a small k-
preadditive category. On the other hand, it gives a finite dimensional algebra Λ, and
structures over Q and Λ can be identified as shown.

On the one hand, Q can be viewed as a small k-preadditive category, which has the functor category
Q,RMod. On the other hand, there is a finite dimensional algebra Λ = A/a, which has the category
Λ,RMod of Λ-left-R-left-modules. The categories Q,RMod and Λ,RMod can be identified.

A more extensive list of identifications is given in Figure 1, where the entries in the first column are
explained in Paragraph 2.2 and Appendix A. The list can be extended with Ext- and Tor-functors.

Note that since Q is a self-injective quiver with relations, Λ is a self-injective algebra.

3. Proof of Theorem A

This section proves Theorem 3.2, which has Theorem A as a special case, see Paragraph 2.4.

Sections 3 through 6 are phrased in the language of functor categories over a small k-preadditive
category Q. A reader who prefers modules over functors can use Figure 1 to specialise everything to
the case of modules over a finite dimensional self-injective algebra Λ.

Setup 3.1. Sections 3 through 6 use the following setup, which dovetails with Setups 1.1 and 2.1
so the results of Sections 1 and 2 can be used verbatim. We refer to Appendix A for additional
information, in particular on several functors which will be used extensively: ⊗

k
, Homk, ⊗

Q
, TorQi ,

HomQ, ExtiQ, HomQ,R, ExtiQ,R.

• k is a field.
• R is a k-algebra.
• Q is a small k-preadditive category satisfying conditions (Fin), (Rad), and (SelfInj) of Defi-
nition 2.3.
• M = RMod is the category of R-left-modules.
• X = Q,RMod is the category of k-linear functors Q→ RMod.
The categories M and X have enough projective and enough injective objects by Paragraph
A.4.
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• (A ,B) is a cotorsion pair in M .
• J = objQ. The statement q ∈ objQ will be abbreviated q ∈ Q.
• For each q ∈ Q, there is a simple object DS〈q〉 ∈ ModQ and a simple object S〈q〉 ∈ QMod,
see Paragraph A.4(i). The functors

RMod = M
Sq // X = Q,RMod

Cq

xx

Kq

ff

are defined by:
Cq(−) = DS〈q〉 ⊗

Q
−,

Sq(−) = S〈q〉 ⊗
k
−, (3.1)

Kq(−) = HomQ(S〈q〉,−).

There is an adjoint pair (Cq, Sq) by Paragraph A.2(ii) and the observation that we have
Sq(−) = Homk(DS〈q〉,−) by Paragraph A.2(vi). There is an adjoint pair (Sq, Kq) by Para-
graph A.2(i).
• E denotes either EL or ER; these classes are equal because condition (Ex) of Definition 1.9
holds by Proposition 4.2.

Theorem 3.2. If (A ,B) is a hereditary cotorsion pair in M = RMod, then there are hereditary,
compatible cotorsion pairs

(
Φ(A ),Φ(A )⊥

)
and

(⊥Ψ(B),Ψ(B)
)
in X = Q,RMod, where

Φ(A ) = {X ∈X | If q ∈ Q then Cq(X) ∈ A and L1Cq(X) = 0 },

Ψ(B) = {X ∈X | If q ∈ Q then Kq(X) ∈ B and R1Kq(X) = 0 }.

Proof. The formulae for Φ(A ) and Ψ(B) are those of Definition 1.5 adapted to the present setup,
so the results of Section 1 apply. In particular, the cotorsion pairs exist by Theorem 1.7. They are
hereditary by Theorem 1.8 combined with Proposition 4.2 below. They are compatible by Theorem
1.11 combined with Propositions 4.2, 5.2, and 6.18 below. �

Theorem 3.3. We have:

(i) If the cotorsion pair (A ,B) is generated by a set, then the cotorsion pair
(⊥Ψ(B),Ψ(B)

)
is

complete.
(ii) Assume that Q arises from the special case described in Paragraph 2.5. If A is closed under

pure quotients, then the cotorsion pair
(
Φ(A ),Φ(A )⊥

)
is complete.

Proof. (i) Suppose that C is a set of objects of M which generates (A ,B). This is still the case
after adding the projective R-left-module RR to C . Then Lemma 1.12(ii) says that {S∗(C )} is a set
of objects of X which generates

(⊥Ψ(B),Ψ(B)
)
. This cotorsion pair is hence complete by [12, lem.

5.20] and [28, def. 3.11, prop. 3.13, and prop. 5.8]. Note that the proof of [12, lem. 5.20] goes through
for X because it has enough projective objects and enough injective objects by Paragraph A.4.

(ii) As explained in Paragraph 2.5, we can view
(
Φ(A ),Φ(A )⊥

)
as a cotorsion pair in Λ,RMod, hence

as a cotorsion pair in Λ⊗RMod, the category of left-modules over the k-algebra Λ ⊗
k
R, which will be

denoted simply by Λ⊗R. By [12, lem. 5.13(b) and lem. 5.20] and [14, thm. 2.5] it is enough to show
that Φ(A ) is closed under pure quotients.
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Let
σ = 0 −→ X ′ −→ X −→ X ′′ −→ 0

be pure short exact in Λ⊗RMod with X ∈ Φ(A ). We will show X ′′ ∈ Φ(A ), that is, Cq(X ′′) ∈ A and
L1Cq(X

′′) = 0 for each q ∈ Q.

Given q ∈ Q and B ∈ ModR we have that
B ⊗

R
Cq(σ) = B ⊗

R
(DS〈q〉 ⊗

Λ
σ) ∼= (B ⊗

k
DS〈q〉) ⊗

Λ⊗R
σ

is exact, because σ is pure short exact in Λ⊗RMod. The isomorphism is by [6, prop. IX.2.1]. Hence
Cq(σ) = 0 −→ Cq(X

′) −→ Cq(X) −→ Cq(X
′′) −→ 0

is pure short exact in RMod. But X ∈ Φ(A ) implies Cq(X) ∈ A whence Cq(X ′′) ∈ A since A is
closed under pure quotients.

Given M ∈ ModΛ we have that
M ⊗

Λ
σ ∼= M ⊗

Λ

(
(Λ⊗R) ⊗

Λ⊗R
σ
) ∼= (M ⊗

Λ
(Λ⊗R)

)
⊗

Λ⊗R
σ

is exact, because σ is pure short exact in Λ⊗RMod. Hence σ, viewed as a sequence of Λ-left-modules,
is pure short exact. But X ∈ Φ(A ) implies X ∈ E , so X, viewed as a Λ-left-module, is flat by
Proposition 4.2. It follows that X ′′, viewed as a Λ-left-module, is flat, so L1Cq(X

′′) = 0. �

4. Condition (Ex)

Section 4 continues to use Setup 3.1. The aim is to prove Proposition 4.2, by which condition (Ex)
holds. We also establish some other properties of the class E .

Lemma 4.1. If i > 0 and q ∈ Q then

(i) LiCq(−) = TorQi (DS〈q〉,−),
(ii) RiKq(−) = ExtiQ(S〈q〉,−),

and there are isomorphisms in RMod,

(iii) LiCq(M ⊗
k
B) ∼= TorQi (DS〈q〉,M)⊗

k
B,

(iv) RiKq(M ⊗
k
B) ∼= ExtiQ(S〈q〉,M)⊗

k
B,

natural in M ∈ QMod and B ∈ RMod.

Proof. Parts (i) and (ii) follow from Equation (3.1) and Paragraph A.5. Parts (iii) and (iv) follow
from parts (i) and (ii) combined with Paragraph A.5, parts (iii) and (ii). �

Proposition 4.2. In the situation of Setup 3.1, condition (Ex) of Definition 1.9 holds, that is EL = ER.
We write E = EL = ER and have

E = {X ∈X | X is projective when viewed as an object of QMod }

= {X ∈X | X is flat when viewed as an object of QMod }

= {X ∈X | X is injective when viewed as an object of QMod }.

Proof. Combining Definition 1.5 and Lemma 4.1(i) shows

EL = {X ∈X | If q ∈ Q then TorQ1 (DS〈q〉, X) = 0 }.
Combining this with Equation (A.3) proves

EL = {X ∈X | X is flat when viewed as an object of QMod }.
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Similarly, combining Definition 1.5, Lemma 4.1(ii), and Equation (A.2) proves
ER = {X ∈X | X is injective when viewed as an object of QMod }.

The proposition now follows from Equation (A.4). �

Lemma 4.3. If M ∈ QMod has finite length and I ∈ RMod is injective, then M ⊗
k
I ∈ E ⊥.

Proof. Let E ∈ E have the projective resolution P in X = Q,RMod. Then

Ext1
Q,R

(
E,Homk(DS〈q〉, I)

) ∼= H1 HomQ,R

(
P,Homk(DS〈q〉, I)

)
(a)∼= H1 HomR(DS〈q〉 ⊗

Q
P, I)

(b)∼= HomR

(
H1(DS〈q〉 ⊗

Q
P ), I

)
(c)∼= HomR

(
TorQ1 (DS〈q〉, E), I

)
(d)∼= HomR

(
0, I
)

= 0.

Here (a) is by Paragraph A.2(ii) and (b) is because I is injective. The isomorphism (c) is because P
consists of projective objects in X , and they are also projective when viewed as objects of QMod by
Paragraph A.4(iv). Finally, (d) is by Proposition 4.2.

Hence Homk(DS〈q〉, I) ∈ E ⊥, and Paragraph A.2(vi) gives S〈q〉 ⊗
k
I ∈ E ⊥. However, by Paragraph

A.4(i) the object M has a finite filtration with quotients of the form S〈q〉 for q ∈ Q, so by Paragraph
A.1(iv) the object M ⊗

k
I has a finite filtration with quotients of the form S〈q〉 ⊗

k
I for q ∈ Q, and it

follows that M ⊗
k
I ∈ E ⊥ as claimed. �

Lemma 4.4. We have E ⊥ = E ⊥∞ as subcategories of X where E ⊥∞ = {X ∈X | Ext>1
X (E , X) = 0 }.

Proof. The proof of [12, cor. 5.25] goes through for X = Q,RMod, so it is enough to see that E is
closed under syzygies. Let 0→ ΩE → P → E → 0 be a short exact sequence in X with P projective
and E ∈ E . Then P and E are projective when viewed in QMod, see Proposition 4.2 and Paragraph
A.4(iv). Hence ΩE is projective when viewed in QMod, so ΩE ∈ E by Proposition 4.2. �

5. Condition (Comp1)

Section 5 continues to use Setup 3.1. The aim is to prove Proposition 5.2, by which condition (Comp1)
holds.

Lemma 5.1. If q ∈ Q and A ∈ A , then Sq(A) ∈ ⊥Ψ(B).

Proof. The categories M and X have enough projective and injective objects by Paragraph A.4, and
the functor Sq(−) = S〈q〉⊗

k
− is exact by Paragraph A.1(iv). Given Y ∈ Ψ(B) we have R1Kq(Y ) = 0

by definition of Ψ(B), so Lemma 1.3 gives an isomorphism Ext1
M (A,KqY ) ∼= Ext1

X (SqA, Y ). The
first Ext is zero since Kq(Y ) ∈ B by definition of Ψ(B), so the lemma follows. �

Proposition 5.2. In the situation of Setup 3.1, condition (Comp1) of Definition 0.1 holds.
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Proof. If X ∈ Φ(A ) is given, then X ∈ EL = E by definition of Φ(A ), so Proposition 4.2 says that
X is flat when viewed as an object of QMod. This means that −⊗

Q
X is exact, so the filtration (A.6)

induces a filtration in X = Q,RMod:

0 = radNQ ⊗
Q
X ⊆ · · · ⊆ rad1

Q⊗
Q
X ⊆ rad0

Q⊗
Q
X = X.

The final equality is by Equation (A.1). The quotients are

(radiQ / radi−1
Q )⊗

Q
X

(a)∼=

( ∐
p,q∈Q

(DS〈p〉 ⊗
k
S〈q〉)ni(p,q)

)
⊗
Q
X

(b)∼=
∐
p,q∈Q

(
S〈q〉 ⊗

k
(DS〈p〉 ⊗

Q
X)
)ni(p,q)

=
∐
p,q∈Q

SqCp(X)ni(p,q)

= (∗),
where (a) is by Equation (A.7), while (b) uses that −⊗

Q
X preserves coproducts, followed by Paragraph

A.2(iv). However, Cp(X) ∈ A by definition of Φ(A ), so Lemma 5.1 implies (∗) ∈ ⊥Ψ(B), whence
also X ∈ ⊥Ψ(B) as desired. �

6. Condition (Seq)

Section 6 continues to use Setup 3.1. The aim is to prove Proposition 6.18 by which condition (Seq)
holds.

Setup 6.1. In addition to Setup 3.1, Section 6 uses the following setup.

• M0 ∈ QMod is an object of finite length. By Paragraph A.4(ii) it has an augmented minimal
projective resolution, which we break into short exact sequences as follows.

· · · // P2

∂P2 //

π2 !! !!

P1

∂P1 //

π1 !! !!

P0
π0 // // M0

M2

. �
µ2

>>

M1

. �
µ1

>>

Each Pi and each Mi has finite length, and for each q ∈ Q, the functors DS〈q〉 ⊗
Q
− and

HomQ(S〈q〉,−) vanish on the ∂Pi .
• B0 ∈ RMod is a module with an augmented injective resolution, which we break into short
exact sequences as follows.

B0 � � β0

// I0
∂0I //

α0     

I1
∂1I //

α1     

I2 // · · ·

B1
. � β1

>>

B2
. � β2

>>

Construction 6.2. This construction consists of two parts labelled (i) and (ii).

(i) For each i > 0 we define a short exact sequence

0 −→ Ei εi−→ T i
τ i−→Mi ⊗

k
Bi −→ 0 (6.1)

in X as follows:
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If i = 0 then (6.1) is defined to be

0 −→ 0 −→M0 ⊗
k
B0 id−→M0 ⊗

k
B0 −→ 0.

If (6.1) has already been defined for a given value i > 0, then we use it as the last non-trivial column
of the following diagram. The lower right square is a pullback, and the rows and columns are exact,
see Paragraph A.1(iv).

0

��

0

��
Ei

ζi

��

Ei

εi

��
0 // Mi+1 ⊗

k
Bi θi+1

// Ei+1 κi+1
//

ηi

��

T i //

τ i

��

0

0 // Mi+1 ⊗
k
Bi

µi+1⊗Bi
// Pi ⊗

k
Bi

πi⊗Bi
//

��

Mi ⊗
k
Bi //

��

0

0 0

(6.2)

The row which contains Ei+1 is used as the first non-trivial row of the following diagram. The upper
left square is a pushout, and the rows and columns are exact.

0

��

0

��
0 // Mi+1 ⊗

k
Bi θi+1

//

Mi+1⊗βi

��

Ei+1 κi+1
//

εi+1

��

T i // 0

0 // Mi+1 ⊗
k
I i

γi+1
//

Mi+1⊗αi

��

T i+1

δi+1
//

τ i+1

��

T i // 0

Mi+1 ⊗
k
Bi+1

��

Mi+1 ⊗
k
Bi+1

��
0 0

(6.3)

The column which contains Ei+1 defines (6.1) for i + 1. Note that diagrams (6.2) and (6.3) define a
number of morphisms in addition to those in (6.1). The first steps of the construction give

E0 = 0 , E1 ∼= P0 ⊗
k
B0 , T 0 ∼= M0 ⊗

k
B0. (6.4)

(ii) Part (i) permits us to construct a short exact sequence of inverse systems as follows: Set

∆i =

{
idT 0 for i = 0,

δ1 ◦ · · · ◦ δi for i > 1
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and
W i = Ker ∆i.

Each ∆i is an epimorphism because each δi is an epimorphism by Diagram (6.3). Hence there is a
short exact sequence of inverse systems, where it is easy to check that the induced morphisms ωi are
also epimorphisms:

· · · // W 2 ω2
// //

� _

��

W 1 ω1
// //

� _

��

W 0
� _

��
· · · // T 2 δ2 // //

∆2

����

T 1 δ1 // //

∆1

����

T 0

∆0

����
· · · // T 0 T 0 T 0.

(6.5)

The inverse limits of the two first systems will be denoted
W = lim←−W

i , T = lim←−T
i. (6.6)

The inverse limit of the third system is
lim←−T

0 ∼= lim←−M0 ⊗
k
B0 ∼= M0 ⊗

k
B0 (6.7)

by Equation (6.4).

Remark 6.3. If q ∈ Q and B ∈ B are given, then we can set M0 = S〈q〉 and B0 = B in Setup 6.1.
We will prove that if (A ,B) is hereditary, then the inverse limit of (6.5) is a short exact sequence

0 −→ W −→ T −→ Sq(B) −→ 0, (6.8)
which can be used as the sequence in condition (Seq)(ii). This will be accomplished in Proposition
6.18.

As an example, suppose that Q is the quiver with relations (0.1), viewed as a k-preadditive category.
Then X is the category of chain complexes over RMod. If q = 1 and we write Ij = I−j, then

T i = · · · −→ 0 −→ B −→ I0 −→ I−1 −→ · · · −→ I−i+1 −→ 0 −→ · · ·
with B in degree 1, and

W i = · · · −→ 0 −→ I0 −→ I−1 −→ · · · −→ I−i+1 −→ 0 −→ · · · .
The inverse limits become the augmented injective resolution

T = · · · −→ 0 −→ B −→ I0 −→ I−1 −→ I−2 −→ · · ·
with B in degree 1, and the injective resolution

W = · · · −→ 0 −→ I0 −→ I−1 −→ I−2 −→ · · · .
With these T and W , the short exact sequence (6.8) is dual to a sequence with projective objects,
which was used indirectly by Gillespie in his proof of compatibility, see the proof of [10, thm. 3.12].

Lemma 6.4. If i > 0 then Ei ∈ E .

Proof. It follows from Definition 1.5 that E contains E0 = 0 and is closed under extensions. Diagram
(6.2) contains the short exact sequence 0 → Ei → Ei+1 → Pi ⊗

k
Bi → 0, so it is enough to show

Pi⊗
k
Bi ∈ E for each i > 0. However, for q ∈ Q we have L1Cq(Pi⊗

k
Bi) ∼= TorQ1 (DS〈q〉, Pi)⊗

k
Bi = (∗)

by Lemma 4.1(iii). Since Pi is projective, this is (∗) = 0⊗
k
Bi = 0. This shows Pi ⊗

k
Bi ∈ EL = E . �
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Lemma 6.5. If i > 0 and q ∈ Q then there is a short exact sequence

0 −→ Kq(Mi+1 ⊗
k
Bi)

Kq(Mi+1⊗βi)−−−−−−−−→ Kq(Mi+1 ⊗
k
I i)

Kq(Mi+1⊗αi)−−−−−−−−→ Kq(Mi+1 ⊗
k
Bi+1) −→ 0.

Proof. By Paragraph A.1(iv) the functor HomQ(S〈q〉,Mi+1) ⊗
k
− is exact. Applying it to the short

exact sequence 0 −→ Bi βi−→ I i
αi−→ Bi+1 −→ 0 gives the sequence in the lemma by Lemma 4.1(iv). �

Lemma 6.6. If i > 0 and q ∈ Q then:

(i) There is a short exact sequence

0 −→ Kq(E
i)

Kq(εi)−−−→ Kq(T
i)

Kq(τ i)−−−−→ Kq(Mi ⊗
k
Bi) −→ 0.

(ii) There is an isomorphism

R1Kq(T
i)

R1Kq(τ i)−−−−−→ R1Kq(Mi ⊗
k
Bi).

Proof. The functor Kq(−) = HomQ(S〈q〉,−) is left exact, so applying it to the short exact sequence
(6.1) gives a long exact sequence

0 −→ Kq(E
i)

Kq(εi)−−−→ Kq(T
i)

Kq(τ i)−−−−→ Kq(Mi ⊗
k
Bi)

−→ R1Kq(E
i)

R1Kq(εi)−−−−−→ R1Kq(T
i)

R1Kq(τ i)−−−−−→ R1Kq(Mi ⊗
k
Bi) −→ R2Kq(E

i) −→ · · · .

This implies both parts of the lemma because R>1Kq(E
i) = 0 by Proposition 4.2 and Lemma 6.4. �

Lemma 6.7. If i > 1 and q ∈ Q then there is an exact sequence

Kq(E
i+1)

Kq(κi+1)−−−−−→ Kq(T
i)

Kq(τ i)−−−−→ Kq(Mi ⊗
k
Bi).

Proof. Since HomQ(S〈q〉,−) is left-exact and µi a monomorphism, HomQ(S〈q〉, µi) is injective. But
Setup 6.1 implies

0 = HomQ(S〈q〉, ∂Pi ) = HomQ(S〈q〉, µi) ◦ HomQ(S〈q〉, πi),
so we conclude HomQ(S〈q〉, πi) = 0. By Lemma 4.1(iv) this implies

Kq(πi ⊗
k
Bi) = HomQ(S〈q〉, πi)⊗

k
Bi = 0. (6.9)

Now observe that the left exact functor Kq preserves the pullback in diagram (6.2), so there is the
following pullback square.

Kq(E
i+1)

Kq(κi+1)
//

Kq(ηi)

��

Kq(T
i)

Kq(τ i)

��
Kq(Pi ⊗

k
Bi)

Kq(πi⊗Bi)
// Kq(Mi ⊗

k
Bi)

Combining with Equation (6.9) proves the lemma. �

Lemma 6.8. If i > 1 and q ∈ Q then ImKq(κ
i) = ImKq(δ

i).
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Proof. If i > 0, then Kq can be applied to Diagram (6.3). Replacing the third non-trivial column by
the images of the relevant morphisms gives the following commutative diagram.

0

��

0

��

0

��
0 // Kq(Mi+1 ⊗

k
Bi)

Kq(θi+1)
//

Kq(Mi+1⊗βi)

��

Kq(E
i+1) //

Kq(εi+1)

��

ImKq(κ
i+1) //

��

0

0 // Kq(Mi+1 ⊗
k
I i)

Kq(γi+1)

//

Kq(Mi+1⊗αi)

��

Kq(T
i+1) //

Kq(τ i+1)

��

ImKq(δ
i+1) //

��

0

0 // Kq(Mi+1 ⊗
k
Bi+1)

��

Kq(Mi+1 ⊗
k
Bi+1) //

��

0 //

��

0

0 0 0

It is enough to show that the third non-trivial column is a short exact sequence. We use the Nine
Lemma, so have to show that the rows and the first two non-trivial columns are short exact. The row
which contains an identity morphism is trivially short exact. Since Kq is left-exact, the other rows
are short exact by construction. The first non-trivial column is short exact by Lemma 6.5 and the
second by Lemma 6.6(i). �

Lemma 6.9. If i > 1 and q ∈ Q then ImKq(ε
i) = ImKq(δ

i+1).

Proof. Using Lemmas 6.6(i), 6.7, and 6.8 gives the equalities

ImKq(ε
i) = KerKq(τ

i) = ImKq(κ
i+1) = ImKq(δ

i+1). �

Lemma 6.10. If i > 1 and q ∈ Q then there are short exact sequences:

(i) 0 −→ ImKq(δ
i+1)

ψ′−→ Kq(T
i)

Kq(τ i)−−−−→ Kq(Mi ⊗
k
Bi) −→ 0,

(ii) 0 −→ Kq(Mi+1 ⊗
k
I i)

Kq(γi+1)−−−−−→ Kq(T
i+1)

ψ′′−→ ImKq(δ
i+1) −→ 0,

where ψ′ is the canonical inclusion and ψ′′ is induced by Kq(δ
i+1).

Proof. Applying the left exact functor Kq to the short exact sequence (6.1) gives a long exact sequence
containing

Kq(E
i)

Kq(εi)−−−→ Kq(T
i)

Kq(τ i)−−−−→ Kq(Mi ⊗
k
Bi) −→ R1Kq(E

i).

The last term is zero by Proposition 4.2 and Lemma 6.4, and ImKq(ε
i) = ImKq(δ

i+1) by Lemma 6.9,
so we get the sequence (i).

Diagram (6.3) contains the short exact sequence 0 −→Mi+1⊗
k
I i

γi+1

−−→ T i+1 δi+1

−−→ T i −→ 0. Applying the

left exact functor Kq gives the sequence (ii). �
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Definition 6.11. If i > 0 and q ∈ Q, then ϕi+2 is the unique morphism which makes the following
square commutative, where the vertical morphisms are the canonical inclusions.

ImKq(δ
i+2)

ϕi+2

//
� _

��

ImKq(δ
i+1)
� _

��
Kq(T

i+1)
Kq(δi+1)

// Kq(T
i)

Lemma 6.12. If i > 1 and q ∈ Q then there is a short exact sequence

0 −→ Kq(Mi+1)⊗
k
Bi −→ ImKq(δ

i+2)
ϕi+2

−−→ ImKq(δ
i+1) −→ 0.

Proof. In view of Lemma 4.1(iv), it is enough to show that there is a commutative diagram as follows,
in which the first non-trivial row is a short exact sequence.

0

��

0

��

0

��
0 // Kq(Mi+1 ⊗

k
Bi)

ψ′′′ //

Kq(Mi+1⊗βi)

��

ImKq(δ
i+2)

ϕi+2

//

ψ′

��

ImKq(δ
i+1) // 0

0 // Kq(Mi+1 ⊗
k
I i)

Kq(γi+1)
//

Kq(Mi+1⊗αi)

��

Kq(T
i+1)

ψ′′ //

Kq(τ i+1)

��

ImKq(δ
i+1) //

��

0

0 // Kq(Mi+1 ⊗
k
Bi+1)

��

Kq(Mi+1 ⊗
k
Bi+1) //

��

0 //

��

0

0 0 0

To construct the diagram, observe that it has three non-trivial columns, each of which is short exact.
The first comes from Lemma 6.5, the second from Lemma 6.10(i), and the third is trivial. As for
the morphisms between the columns, Kq(γ

i+1) is obtained from Diagram (6.3), which also shows that
the lower left square is commutative. There is a unique induced morphism ψ′′′ making the upper
left square commutative. The morphism ψ′′ is induced by Kq(δ

i+1), and the upper right square is
commutative by Definition 6.11. The lower right square is trivially commutative.

We use the Nine Lemma, so it remains to show that the last two non-trivial rows are short exact. The
row which contains an identity morphism is trivially short exact, and row above it is short exact by
Lemma 6.10(ii). �

Lemma 6.13. If i > 1 and q ∈ Q then R1Kq(δ
i) = 0.

Proof. If i > 0 then Diagram (6.3) contains a short exact sequence 0 −→ Mi+1 ⊗
k
I i

γi+1

−−→ T i+1 δi+1

−−→
T i −→ 0. It induces a long exact sequence containing

R1Kq(Mi+1 ⊗
k
I i)

R1Kq(γi+1)−−−−−−−→ R1Kq(T
i+1)

R1Kq(δi+1)−−−−−−→ R1Kq(T
i),

so it is enough to see that R1Kq(γ
i+1) is an epimorphism.
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Setup 6.1 gives an epimorphism I i
αi−→ Bi+1, and

R1Kq(Mi+1 ⊗
k
I i)

R1Kq(Mi+1⊗αi)−−−−−−−−−→ R1Kq(Mi+1 ⊗
k
Bi+1)

is an epimorphism because Lemma 4.1(iv) says it can be identified with the morphism obtained by
applying the exact functor Ext1

Q(S〈q〉,Mi+1) ⊗
k
− to αi. Combining this with Lemma 6.6(ii) shows

that applying R1Kq to the lower square in Diagram (6.3) gives the following commutative square with
an epimorphism on the left and an isomorphism on the right.

R1Kq(Mi+1 ⊗
k
I i)

R1Kq(γi+1)
//

R1Kq(Mi+1⊗αi)
����

R1Kq(T
i+1)

R1Kq(τ i+1)∼

��
R1Kq(Mi+1 ⊗

k
Bi+1) R1Kq(Mi+1 ⊗

k
Bi+1)

Hence R1Kq(γ
i+1) is an epimorphism as desired. �

Lemma 6.14. For each q ∈ Q we have:

(i) Kq(T ) ∼= lim←−Kq(T
i),

(ii) There is a short exact sequence

0 −→ R1 lim←−Kq(T
i) −→ R1Kq(T ) −→ lim←−R

1Kq(T
i) −→ 0.

Proof. Recall from Construction 6.2(ii) that T is the inverse limit of · · · δ2−→ T 1 δ1−→ T 0. Each δi is
an epimorphism by Diagram (6.3), so this system satisfies the Mittag-Leffler condition and there is a
short exact sequence

0 −→ T −→
∏
i

T i
id− shift−−−−−→

∏
i

T i −→ 0,

see Paragraph A.7. It gives a long exact sequence containing

0 −→ Kq(T ) −→ Kq

(∏
i

T i
)

Kq(id− shift)−−−−−−−→ Kq

(∏
i

T i
)

−→ R1Kq(T ) −→ R1Kq

(∏
i

T i
)

R1Kq(id− shift)−−−−−−−−−→ R1Kq

(∏
i

T i
)
. (6.10)

Combining Equation (3.1) and Paragraph A.5(i) shows that there are natural isomorphisms

R`Kq

(∏
T i
) ∼=−→

∏
R`Kq(T

i),

so (6.10) can be identified with

0 −→ Kq(T ) −→
∏
i

Kq(T
i)

id− shift−−−−−→
∏
i

Kq(T
i)

−→ R1Kq(T ) −→
∏
i

R1Kq(T
i)

id− shift−−−−−→
∏

R1Kq(T
i),

which implies both parts of the lemma. �

Lemma 6.15. Assume that (A ,B) is hereditary, that B0 ∈ B, and that M ∈ QMod has finite length.
If i > 0 and q ∈ Q then Kq(M)⊗

k
Bi ∈ B.
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Proof. Since (A ,B) is hereditary, Bi ∈ B for each i > 0 by [12, lem. 5.24]. Since M ∈ QMod has
finite length, dimkKq(M) <∞ by Paragraph A.4(v). Hence Kq(M)⊗

k
Bi is in B because it is a finite

coproduct of copies of Bi. �

Lemma 6.16. Assume that (A ,B) is hereditary and that B0 ∈ B. Then

lim←−
(
· · · −→ ImKq(δ

4)
ϕ4

−→ ImKq(δ
3)

ϕ3

−→ ImKq(δ
2)
)

is in B.

Proof. Since B = A ⊥, the Lukas Lemma implies that it is enough to show the following, see Paragraph
A.7.

(i) ϕi is an epimorphism for i > 3.
(ii) ImKq(δ

2) ∈ B.
(iii) Kerϕi ∈ B for i > 3.

Lemma 6.12 gives (i). It also gives Kerϕi+2 ∼= Kq(Mi+1)⊗
k
Bi for i > 1, and this is in B by Lemma

6.15 since Mi+1 has finite length by Setup 6.1. This shows (iii).

To show (ii), we compute:

ImKq(δ
2)

(a)∼= ImKq(ε
1)

(b)∼= Kq(E
1)

(c)∼= Kq(P0 ⊗
k
B0)

(d)∼= Kq(P0)⊗
k
B0.

Here (a) is by Lemma 6.9. For (b), apply the left exact functor Kq to the short exact sequence (6.1)
for i = 1. Equation (6.4) implies (c), and Lemma 4.1(iv) implies (d). But Kq(P0) ⊗

k
B0 ∈ B by

Lemma 6.15 since P0 has finite length by Setup 6.1. �

Lemma 6.17. Assume that (A ,B) is hereditary and that B0 ∈ B. Then T ∈ Ψ(B).

Proof. Let q ∈ Q be given. By Definition 1.5 we must show Kq(T ) ∈ B and R1Kq(T ) = 0.

Kq(T ) ∈ B: Lemma 6.10(i) gives the vertical short exact sequences in the following diagram.

· · · // ImKq(δ
4)

ϕ4

//
� _

��

ImKq(δ
3)

ϕ3

//
� _

��

ImKq(δ
2)

� _

��
· · · // Kq(T

3)
Kq(δ3)

//

Kq(τ3)

����

Kq(T
2)

Kq(δ2)
//

Kq(τ2)

����

Kq(T
1)

Kq(τ1)

����
· · · // Kq(M3 ⊗

k
B3)

0
// Kq(M2 ⊗

k
B2)

0
// Kq(M1 ⊗

k
B1)

The upper squares are commutative by Definition 6.11, and the lower squares are obviously commu-
tative, so the diagram constitutes a short exact sequence of inverse systems. The long exact lim←−
sequence contains

0 −→ lim←− ImKq(δ
i) −→ lim←−Kq(T

i) −→ lim←−Kq(Mi ⊗
k
Bi),

where the last term is zero because all morphisms in the third inverse system are zero. This gives the
first of the following isomorphisms,

lim←− ImKq(δ
i) ∼= lim←−Kq(T

i) ∼= Kq(T ),
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and the second isomorphism is by Lemma 6.14(i). However, the left hand side is in B by Lemma
6.16.

R1Kq(T ) = 0: We show this without using the assumption B0 ∈ B. If i > 2 and q ∈ Q then the
epimorphism in the short exact sequence of Lemma 6.12 shows

Im
(
Kq(δ

i) ◦Kq(δ
i+1)
)

= ImKq(δ
i).

Hence the system

· · · Kq(δ
2)−−−−→ Kq(T

1)
Kq(δ1)−−−−→ Kq(T

0)

satisfies the Mittag-Leffler condition, so the first term of the exact sequence in Lemma 6.14(ii) is zero,
see Paragraph A.7. The last term is zero because Lemma 6.13 says that the morphisms vanish in the
inverse system

· · · R
1Kq(δ2)−−−−−→ R1Kq(T

1)
R1Kq(δ1)−−−−−→ R1Kq(T

0).

Hence R1Kq(T ) = 0 as desired. �

Proposition 6.18. In the situation of Setup 3.1, if (A ,B) is hereditary then condition (Seq) of
Definition 1.9 holds.

Proof. We show condition (Seq)(ii). Condition (Seq)(i) follows by a dual argument, parts of which
are simplified by exactness of direct limits.

Let q ∈ Q and B ∈ B be given. Set M0 = S〈q〉 and B0 = B in Setup 6.1. Consider the short
exact sequence of inverse systems (6.5). The morphisms in the inverse systems are epimorphisms, so
Paragraph A.7 says there is an induced short exact sequence

0 −→ lim←−W
i −→ lim←−T

i −→ lim←−T
0 −→ 0,

which by Equations (6.6) and (6.7) reads
0 −→ W −→ T −→ Sq(B) −→ 0,

where we have used M0 ⊗
k
B0 = S〈q〉 ⊗

k
B = Sq(B) by Equation (3.1). We claim this sequence can be

used as the sequence in condition (Seq)(ii).

We have T ∈ Ψ(B) by Lemma 6.17, so it remains to show Ext2
Q,R(E ,W ) = 0. By Lemma 4.4 it

is enough to show W ∈ E ⊥. The Lukas Lemma can be applied to the first inverse system in (6.5)
because ωi is an epimorphism for i > 1. Hence it is sufficient to show the following, see Paragraph
A.7.

(i) W 0 ∈ E ⊥.
(ii) Kerωi ∈ E ⊥ for i > 1.

But (i) is trivially true because W 0 = Ker ∆0 = Ker idT 0 = 0. For (ii), let i > 1 be given. From the
diagram (6.5) it is easy to prove the first of the isomorphisms

Kerωi ∼= Ker δi ∼= Mi ⊗
k
I i−1 = (∗),

and the second isomorphism is by Diagram (6.3). But Mi has finite length and I i−1 is injective by
Setup 6.1, so (∗) ∈ E ⊥ by Lemma 4.3. �

7. Proof of Theorem B

Section 7 continues to use Setup 3.1, except that:

• Q is the quiver with relations (0.3), viewed as a k-preadditive category.
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We think of objects of QMod and X as quiver representations. In particular, the value of X at q
is denoted Xq, instead of X(q) which would be used if we thought of X as a functor. Recall from
Section 0.vi that each X ∈X has the form

XN−1

∂XN−1 // XN−2

∂XN−2 // · · · // X1

∂X1 // X0,

∂X0

jj

where two consecutive morphisms compose to 0. For 0 6 q 6 N − 1 there is a homology functor
X

Hq−→ RMod defined in an obvious fashion.

Lemma 7.1. For 0 6 q 6 N − 1 and X ∈X we have

Cq(X) = Coker(∂Xq+1) , Kq(X) = Ker(∂Xq ) , R1Kq = Hq−1 , L1Cq = Hq+1,

with subscripts taken modulo N .

Proof. The functor Sq : M −→ X sends an object M to an object Sq(M) which has M at vertex q
and 0 at all other vertices. The two first formulae in the lemma are easily verified to define left and
right adjoint functors to Sq, hence define Cq and Kq.

The simple object S〈q〉 has k at vertex q and 0 at every other vertex. There is an indecomposable
projective object P 〈q〉, see Paragraph A.4(i). It has copies of k at vertices q and q− 1 and 0 at every
other vertex. The homomorphism between the copies of k is the identity map, and vertices are taken
modulo N . This permits to determine the minimal augmented projective resolution of S〈q〉 in QMod.
The first terms are the following, with indices taken modulo N .

· · · −→ P 〈q − 2〉 −→ P 〈q − 1〉 −→ P 〈q〉 −→ S〈q〉 −→ 0 −→ · · ·
Each morphism of projective objects is induced by an arrow in Q. We can now compute R1Kq(X) =
Ext1

Q(S〈q〉, X) by using the projective resolution and Paragraph A.4(iii). This gives the third formula
in the lemma, and the fourth formula is proved similarly. �

Proof of Theorem B. Paragraph 2.4 means that Theorems 3.2 and 3.3 apply to the setup of Theorem
B. The formulae for Φ(A ) and Ψ(B) in Theorem 3.2 can be converted into the formulae in Theorem
B, part (i) by using Lemma 7.1, and Theorem 3.3 implies Theorem B, part (ii). �

8. Proof of Theorem C

Section 8 continues to use Setup 3.1, except that:

• Q is the repetitive quiver ZA3 modulo the mesh relations, viewed as a k-preadditive category;
see Section 0.vii.

As in Section 7 we think of objects of QMod and X as quiver representations. For j ∈ Z there is an
arrow (j, 0) −→ (j, 1) in Q, so a corresponding homomorphism X(j,0) −→ X(j,1) for each X ∈ X . This
and similar homomorphisms are used in the following two lemmas.

Lemma 8.1. For j ∈ Z and X ∈X we have:

(i) The functors Cq are given by

C(j,0)(X) = Coker(X(j+1,1) −→ X(j,0)),

C(j,1)(X) = Coker(X(j,0) ⊕X(j+1,2) −→ X(j,1)),

C(j,2)(X) = Coker(X(j,1) −→ X(j,2)).
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(ii) The functors Kq are given by

K(j,0)(X) = Ker(X(j,0) −→ X(j,1)),

K(j,1)(X) = Ker(X(j,1) −→ X(j−1,0) ⊕X(j,2)),

K(j,2)(X) = Ker(X(j,2) −→ X(j−1,1)).

Proof. The functor Sq : M −→ X sends an object M to an object Sq(M) which has M at vertex q
and 0 at all the other vertices. The formulae in the lemma are easily verified to define left and right
adjoint functors to Sq, hence define Cq and Kq. �

Lemma 8.2. For j ∈ Z and X ∈X we have:

R1K(j,0)(X) = H(X(j,0) −→ X(j,1) −→ X(j−1,0)),

R1K(j,1)(X) = H(X(j,1) −→ X(j−1,0) ⊕X(j,2) −→ X(j−1,1)),

R1K(j,2)(X) = H(X(j,2) −→ X(j−1,1) −→ X(j−1,2)).

Here H denotes the homology of a three term chain complex, taken at the middle term. The mesh
relations imply that the arguments of H are indeed chain complexes.

Proof. For readability, the simple object S〈(j, `)〉 of QMod is denoted S〈j, `〉. It has k at vertex (j, `)
and 0 at every other vertex. The indecomposable projective object P 〈(j, `)〉 of QMod is denoted
P 〈j, `〉. It is one of the following, where in each case, one of the vertices is identified by a superscript.

P 〈j, 0〉 =

0

��

0

��

k

��

0

��

0

· · · 0

��

??

k

��

id
??

0

��

??

0

��

??

· · ·

0

??

k(j,0)

id
??

0

??

0

??

0

P 〈j, 1〉 =

0

��

0

��

k
id

��

0

��

0

· · · 0

��

??

k(j,1)

id ��

id
??

k

��

??

0

��

??

· · ·

0

??

0

??

k
− id

??

0

??

0

P 〈j, 2〉 =

0

��

0

��

k(j,2)

id

��

0

��

0

· · · 0

��

??

0

��

??

k
id

��

??

0

��

??

· · ·

0

??

0

??

0

??

k

??

0

This permits to determine the minimal augmented projective resolutions of the simple objects in
QMod. In each case, the first terms are the following.

· · · −→ P 〈j − 1, 0〉 −→ P 〈j, 1〉 −→ P 〈j, 0〉 −→ S〈j, 0〉 −→ 0 −→ · · ·

· · · −→ P 〈j − 1, 1〉 −→ P 〈j − 1, 0〉 ⊕ P 〈j, 2〉 −→ P 〈j, 1〉 −→ S〈j, 1〉 −→ 0 −→ · · ·

· · · −→ P 〈j − 1, 2〉 −→ P 〈j − 1, 1〉 −→ P 〈j, 2〉 −→ S〈j, 2〉 −→ 0 −→ · · ·
Each morphism of projective objects is induced by arrows in Q. We can now compute R1K(j,`)(X) =

Ext1
Q(S〈j, `〉, X) by using the projective resolutions and Paragraph A.4(iii), and this gives the formulae

in the lemma. �
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Proof of Theorem C. Paragraph 2.4 means that Theorem 3.2 applies to the setup of Theorem C. The
formulae for Φ(A ) and Ψ(B) in Theorem 3.2 can be converted into the formulae in Theorem C by
combining Definition 1.5, Proposition 4.2, and Lemmas 8.1 and 8.2. �

Appendix A. Compendium on functor categories

In this appendix, k, Q, and R are as in Setup 3.1: k is a field, R a k-algebra, Q a small k-preadditive
category satisfying conditions (Fin), (Rad), and (SelfInj) of Definition 2.3. The homomorphism functor
and the radical of Q will be denoted Q(−,−) and radQ(−,−), see [1, sec. A.3], [8, sec. 3.2], and [19,
p. 303].

The appendix explains some properties of the functor categories QMod, ModQ, Q,RMod, and QModQ
from Paragraph 2.2, which are used extensively in Sections 3 through 6. They share many properties
of the module categories ΛMod, ModΛ, Λ,RMod, and ΛModΛ, where Λ is a finite dimensional k-algebra.
This follows from conditions (Fin) and (Rad), which imply that Q is a locally bounded spectroid in
the terminology of [8, secs. 3.5 and 8.3]. We can even think of Λ as self-injective because condition
(SelfInj) implies that projective, injective, and flat objects coincide in each of QMod and ModQ, see
Paragraph A.6.

Note that each statement in the appendix for QMod has an analogue for ModQ.

The appendix has been included because we do not have references for all the results we need on
functor categories. Some hold by [8] as we shall point out along the way. The rest follow by amending
the proofs in the following references: [2, chp. 1], [3, secs. 1-4], [4, secs. 1 and 2], [17, app. B], [23].

A.1 (Hom and tensor functors). The following functors are used extensively in this paper.

(i) The homomorphism functor of QMod is
HomQ(−,−) : (QMod)o × QMod→ kMod .

It is defined by HomQ(M,N) being the set of k-linear natural transformations M → N for
M,N ∈ QMod.
If X ∈ Q,RMod, then X is a k-linear functor Q→ RMod, so R acts on HomQ(M,X). Hence
HomQ can also be viewed as a functor

HomQ(−,−) : (QMod)o × Q,RMod→ RMod .

(ii) There are functors
−⊗

Q
− : ModQ× QMod→ kMod,

−⊗
Q
− : ModQ× Q,RMod→ RMod,

−⊗
Q
− : QModQ× Q,RMod→ Q,RMod,

see [23, p. 93]. They are right exact in each variable, and the last of them satisfies
Q(−,−)⊗

Q
X ∼= X (A.1)

naturally in X ∈ Q,RMod. This makes sense because Q(−,−) is an object of QModQ.
(iii) There is a functor

Homk(−,−) : (ModQ)o × RMod→ Q,RMod

defined by
Homk(N,B)(q) = Homk

(
N(q), B

)
,

where Homk on the right hand side is Hom of k-vector spaces. It is exact in both variables.
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(iv) There is a functor
−⊗

k
− : QMod×RMod→ Q,RMod

defined by
(M ⊗

k
B)(q) = M(q)⊗

k
B,

where ⊗
k
on the right hand side is tensor of k-vector spaces. It is exact in both variables.

(v) There is a functor
−⊗

k
− : ModQ×QMod→ QModQ

defined by
(M ⊗

k
N)(q′, q′′) = M(q′)⊗

k
N(q′′),

where ⊗
k
on the right hand side is tensor of k-vector spaces. It is exact in both variables.

(vi) We can view D(−) = Homk(−, k) as a functor QMod
D−→ ModQ.

A.2 (Standard isomorphisms). The functors from Paragraph A.1 permit the following standard
isomorphisms, among others.

(i) There is an adjunction isomorphism in kMod,

HomQ,R(M ⊗
k
B,X)

∼=−→ HomR

(
B,HomQ(M,X)

)
,

natural in M ∈ QMod, B ∈ RMod, X ∈ Q,RMod.
(ii) There is an adjunction isomorphism in kMod,

HomR(M ⊗
Q
X,B)

∼=−→ HomQ,R

(
X,Homk(M,B)

)
,

natural in M ∈ ModQ, X ∈ Q,RMod, B ∈ RMod.
(iii) There is an associativity isomorphism in RMod,

(M ⊗
Q
N)⊗

k
B
∼=−→M ⊗

Q
(N ⊗

k
B),

natural in M ∈ ModQ, N ∈ QMod, B ∈ RMod, where ⊗
k
on the left hand side is tensor of

k-vector spaces.
(iv) There is an associativity isomorphism in Q,RMod,

(M ⊗
k
N)⊗

Q
X
∼=−→ N ⊗

k
(M ⊗

Q
X),

natural in M ∈ ModQ, N ∈ QMod, X ∈ Q,RMod.
(v) There is a morphism in RMod,

HomQ(M,N)⊗
k
B −→ HomQ(M,N ⊗

k
B),

natural in M,N ∈ QMod, B ∈ RMod. It is an isomorphism if M has finite length. Note that
⊗
k
on the left hand side is tensor of k-vector spaces.

(vi) There is a morphism in Q,RMod,
M ⊗

k
B → Homk(DM,B),

natural in M ∈ QMod, B ∈ RMod. It is an isomorphism if M has finite length.
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A.3 (Products and coproducts). We will explain products and coproducts in QMod. What we
say applies equally to ModQ and Q,RMod.

Let {Mα} be a family of objects of QMod. The product of the Mα in QMod is given by(∏
α

Mα

)
(−) =

∏
α

Mα(−),

where the second
∏

is in kMod. There is a similar formula for
∐
. This implies that QMod inherits

the following properties from kMod: It is complete and cocomplete, and products, coproducts, and
filtered colimits preserve exact sequences.

Each of the tensor product functors from Paragraph A.1 preserves coproducts in each variable.

A.4 (Projective, injective, and simple objects). Each of the categories QMod, ModQ, Q,RMod,
and QModQ has enough projective objects and enough injective objects. We list some additional
properties.

(i) By [8, sec. 3.7] we have the following: For each q ∈ Q there is an indecomposable projective
object

P 〈q〉 = Q(q,−)

in QMod, which has finite length by condition (Fin). Condition (Rad) implies that there is a
unique maximal subobject rP 〈q〉 ( P 〈q〉 given by rP 〈q〉 = radQ(q,−), and

S〈q〉 = P 〈q〉/rP 〈q〉
is a simple object in QMod. It satisfies

S〈q〉(p) ∼=
{
k for p = q,

0 otherwise.

The simple objects of QMod are precisely the S〈q〉 for q ∈ Q. The simple objects of ModQ
are precisely the duals DS〈q〉 for q ∈ Q.

(ii) By [8, p. 85, exa. 2] we have the following: Each M ∈ QMod has an augmented projective
resolution

· · · ∂3−→ P2
∂2−→ P1

∂1−→ P0
∂0−→M −→ 0 −→ · · · ,

which can be constructed by choosing an epimorphism P0

∂0
� M with P0 projective, then,

when ∂i−1 has been defined, choosing an epimorphism Pi � Ker ∂i−1 and defining ∂i to be
the composition Pi � Ker ∂i−1 ↪→ Pi−1.
If M has finite length, then condition (Fin) implies that each Pi can be chosen as a coproduct
of finitely many objects of the form P 〈q〉, and then each Pi and each Ker ∂i has finite length.

Moreover, by choosing each of the epimorphisms P0

∂0
� M and Pi � Ker ∂i−1 as a projective

cover, we can even make the resolution minimal, that is, if i > 1 then ∂i is in the radical of
QMod. This implies that the functors DS〈q〉 ⊗

Q
− and HomQ(S〈q〉,−) vanish on ∂i.

(iii) A morphism p
π−→ q in Q induces a natural transformation Q(q,−) → Q(p,−), that is, a

morphism P 〈q〉 → P 〈p〉. By Yoneda’s Lemma, this in turn induces a commutative square

HomQ(P 〈p〉, X) //

∼

��

HomQ(P 〈q〉, X)

∼

��
X(p)

X(π)
// X(q),

natural in X ∈ Q,RMod, where the vertical arrows are isomorphisms.
(iv) If X is a projective object of Q,RMod, then X is projective when viewed as an object of QMod.
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(v) M,N ∈ QMod have finite length ⇒ dimk HomQ(M,N) <∞.

A.5 (Ext and Tor functors). The functors HomQ and ⊗
Q
of Paragraph A.1 have right and left derived

functors,
ExtiQ(−,−) : (QMod)o × QMod→ kMod,

TorQi (−,−) : ModQ× QMod→ kMod

for i > 0. Like HomQ and ⊗
Q

they can also be viewed as functors

ExtiQ(−,−) : (QMod)o × Q,RMod→ RMod,

TorQi (−,−) : ModQ× Q,RMod→ RMod .

We list some additional properties.

(i) Since products preserve exact sequences, there are isomorphisms in RMod,

ExtiQ(N,
∏
α

Mα)
∼=−→
∏
α

ExtiQ(N,Mα),

natural in N ∈ QMod and Mα ∈ Q,RMod.
(ii) The morphism in Paragraph A.2(v) induces standard morphisms in RMod,

ExtiQ(M,N)⊗
k
B −→ ExtiQ(M,N ⊗

k
B),

natural in M,N ∈ QMod, B ∈ RMod. They are isomorphisms if M has finite length.
(iii) The isomorphism in Paragraph A.2(iii) induces standard isomorphisms in RMod,

TorQi (M,N)⊗
k
B
∼=−→ TorQi (M,N ⊗

k
B),

natural in M ∈ ModQ, N ∈ QMod, B ∈ RMod.

A.6 (Criteria for injectivity and flatness). Condition (Fin) implies that M ∈ QMod satisfies

M is injective ⇔ If q ∈ Q then Ext1
Q(S〈q〉,M) = 0. (A.2)

Similarly, M is flat if the functor −⊗
Q
M is exact, and

M is flat ⇔ If q ∈ Q then TorQ1 (DS〈q〉,M) = 0. (A.3)
Conditions (Fin) and (SelfInj) imply that M ∈ QMod satisfies

M is projective ⇔ M is flat ⇔ M is injective. (A.4)

A.7 (Inverse limits). We will explain inverse limits in QMod. What we say applies equally to ModQ
and Q,RMod.

Since products exist and preserve exact sequences, the results on (derived) inverse limits in [29, sec.
3.5] apply. In particular, if there is an inverse system

· · · −→M2 µ2−→M1 µ1−→M0, (A.5)
then there is an exact sequence

0 −→ lim←−M
i −→

∏
i

M i id− shift−−−−−→
∏
i

M i −→ R1 lim←−M
i −→ 0,

where id− shift is the difference between the identity morphism and the shift morphism induced by
the µi.
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The inverse system is said to satisfy the Mittag-Leffler condition if, for each i > 0, the images of the
maps M ` →M i for ` > i satisfy the descending chain condition. In this case we have R1 lim←−M

i = 0.
This holds in particular if each morphism in (A.5) is an epimorphism.

If there is a short exact sequence

· · · // // M ′2 // //
� _

��

M ′1 // //
� _

��

M ′0
� _

��
· · · // M2 //

����

M1 //

����

M0

����
· · · // M ′′2 // M ′′1 // M ′′0

of inverse systems, then there is an induced long exact sequence
0 −→ lim←−M

′
i −→ lim←−Mi −→ lim←−M

′′
i −→ R1 lim←−M

′
i −→ R1 lim←−Mi −→ R1 lim←−M

′′
i −→ 0.

If each morphism in the M ′-system is an epimorphism, then R1 lim←−M
′
i = 0 and there is a short exact

sequence
0 −→ lim←−M

′
i −→ lim←−Mi −→ lim←−M

′′
i −→ 0.

Some of the results on inverse limits in [12, sec. 6] also apply. In particular, the Lukas Lemma says
that if N is fixed, then in order to conclude lim←−M

i ∈ N⊥, it is enough to verify the following for the
inverse system (A.5), see [12, lem. 6.37].

(i) µi is an epimorphism for i > 1.
(ii) M0 ∈ N⊥.
(iii) Kerµi ∈ N⊥ for i > 1.

A.8 (The radical filtration). If i > 0 then the i’th power of the radical, radiQ(−,−), is an object
of QModQ. Because of condition (Rad), there is a finite filtration in QModQ,

0 = radNQ ( · · · ( rad1
Q ( rad0

Q = Q(−,−), (A.6)

where N > 0 is chosen minimal such that radNQ = 0. Each quotient radiQ / radi−1
Q is annihilated on

both sides by radQ, and this implies

radiQ / radi−1
Q
∼=
∐
p,q∈Q

(DS〈p〉 ⊗
k
S〈q〉)ni(p,q) (A.7)

for certain integers ni(p, q).
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