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Abstract We study the categoryRep(Q,M) of representations of a quiver Q with val-

ues in an abelian categoryM. Under certain assumptions, we show that every cotorsion

pair (A,B) inM induces two (explicitly described) cotorsion pairs (Φ(A),Rep(Q,B))
and (Rep(Q,A),Ψ(B)) inRep(Q,M). This is akin to a result byGillespie,whichasserts

that a cotorsion pair (A,B) inM induces cotorsion pairs (Ã,dg B̃) and (dg Ã, B̃) in the
categoryCh(M) of chain complexes inM. Special cases of our results recover descrip-

tions of the projective and injective objects in Rep(Q,M) proved by Enochs, Estrada,

and Garćıa Rozas.

1. Introduction

The traditional study of quiver representations is often restricted to representa-

tions with values in the category of modules over a ring (or even in the category

of finite-dimensional vector spaces over a field). In this paper, we study the cat-

egory Rep(Q,M) of M-valued representations of a quiver Q, where M is an

abelian category, and we are interested in how homological properties (here we

focus on cotorsion pairs) in M carry over to Rep(Q,M). We extend results from

the literature about module-valued quiver representations to general M-valued

representations, but we also prove results about the category Rep(Q,M) which

are new even in the case where M is a module category. Our main results, The-

orems A and B, are akin to [13, Corollary 3.8], where it is shown that every

cotorsion pair (A,B) in an abelian category M with enough projectives and

injectives induces two cotorsion pairs (Ã,dg B̃) and (dg Ã, B̃) in the category

Ch(M) of chain complexes in M (see also [14]).

Besides the obvious gain of generality, there is another advantage to working

with general M-valued representations. While it is not true that the opposite of

a module category is a module category, it is true that the opposite of an abelian

category is abelian. This fact, together with observations like Rep(Qop,Mop) =

Rep(Q,M)op, where Qop is the opposite quiver of Q, makes it easy to dualize

results about quiver representations and, in a sense, cuts the work in half. For
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example, one way to prove Theorem B below is by applying Theorem A directly

to the opposite quiver Qop and the opposite category Mop.

We now explain the mathematical content of this paper in more detail. Our

work is motivated by a series of results about module-valued quiver representa-

tions. To explain them, we first need to introduce some notation. For every i ∈ Q0

(where Q0 denotes the set of vertices in Q) and every M-valued representation

X of Q, there are two canonical morphisms,⊕
a : j→i

X( j)
ϕX

i−→ X(i) and X(i)
ψX

i−→
∏

a : i→ j

X( j),

where the coproduct (resp., product) is taken over all arrows in Q whose target

(resp., source) is the vertex i. In the following results from the literature, a

“representation” means a representation with values in the category of (left)

modules over any ring.

• Enochs and Estrada characterize in [4, Theorem 3.1] the projective repre-

sentations of a left rooted quiver1 Q. They are exactly the representations

X for which the module X(i) is projective and ϕX
i is a split monomorphism

for every i ∈ Q0.

• Enochs, Oyonarte, and Torrecillas characterize in [9, Theorem 3.7] the flat

representations of a left rooted quiver Q. They are exactly the representa-

tions X for which the module X(i) is flat and ϕX
i is a pure monomorphism

for every i ∈ Q0.

• Eshraghi, Hafezi, and Salarian characterize in [11, Theorem 3.5.1(b)] the

Gorenstein projective representations of a left rooted quiver Q. They are

exactly the representations X for which the module X(i) is Gorenstein pro-

jective, and ϕX
i is a monomorphism with Gorenstein projective cokernel for

every i ∈ Q0.

As the reader may notice, all these results follow the same pattern. Indeed, if,

for a class A of objects in M, we define a class Φ(A) of objects in Rep(Q,M) by

Φ(A) =

{
X ∈Rep(Q,M)

∣∣∣∣ ϕX
i is a monomorphism and

X(i),CokerϕX
i ∈A for all i ∈ Q0

}
,

then the results in [4], [9], and [11] mentioned above say that if Q is left rooted and

A is the class of projective, flat, or Gorenstein projective objects in a module

category M, then Φ(A) is exactly the class of projective, flat, or Gorenstein

projective objects in Rep(Q,M). This indicates that—at least if Q is left rooted—

it could be the case that Φ(A) will inherit any “good” properties which the class

A might have. Here we study the relationship between A and Φ(A) from a more

abstract point of view. Our focus is on cotorsion pairs, and we prove that if A
is the left half of a cotorsion pair in M, and if Q is left rooted, then Φ(A) will

1The left rooted quivers, which are defined in 2.5, constitute quite a large class of quivers.
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be the left half of a cotorsion pair in Rep(Q,M). More precisely, we prove the

following.

Theorem A. Let Q be a left rooted quiver, and let M be an abelian category

that satisfies AB4 and AB4* and which has enough projectives and injectives. If

(A,B) is a cotorsion pair in M, then there is a cotorsion pair (Φ(A),Rep(Q,B))
in Rep(Q,M), where Φ(A) is defined as above and

Rep(Q,B) =
{

Y ∈Rep(Q,M)
∣∣ Y(i) ∈ B for all i ∈ Q0

}
.

Moreover, if (A,B) is hereditary or generated by a set, then so is (Φ(A),

Rep(Q,B)).

For the trivial cotorsion pair (A,B) = (PrjM,M), one has Rep(Q,B) =

Rep(Q,M), and we get from Theorem A that the class of projective objects

in Rep(Q,M) is precisely

Prj
(
Rep(Q,M)

)
=Φ(PrjM)

=

{
X ∈Rep(Q,M)

∣∣∣∣ ϕX
i is a split monomorphism and

X(i) ∈ PrjM for all i ∈ Q0

}
.

This recovers the result in [4] mentioned above when M is a module category.

We also establish the following dual version of Theorem A.

Theorem B. Let Q be a right rooted quiver, and let M be an abelian category

that satisfies AB4 and AB4* and which has enough projectives and injectives. If

(A,B) is a cotorsion pair in M, then there is a cotorsion pair (Rep(Q,A),Ψ(B))
in Rep(Q,M), where

Rep(Q,A) =
{

X ∈Rep(Q,M)
∣∣ X(i) ∈A for all i ∈ Q0

}
and

Ψ(B) =
{

Y ∈Rep(Q,M)

∣∣∣∣ ψY
i is an epimorphism and

Y(i),KerψY
i ∈ B for all i ∈ Q0

}
.

Moreover, if (A,B) is hereditary or cogenerated by a set, then so is (Rep(Q,A),

Ψ(B)).

Applied to the other trivial cotorsion pair (A,B) = (M, InjM), Theorem B yields

Inj
(
Rep(Q,M)

)
=Ψ(InjM)

=

{
Y ∈Rep(Q,M)

∣∣∣∣ ψY
i is a split epimorphism and

Y(i) ∈ InjM for all i ∈ Q0

}
.

When M is a module category, this recovers a result by Enochs, Estrada, and

Garćıa Rozas (see [5, Proposition 2.1, Definition 2.2, and Theorem 4.2]). We also

mention that if B is the class of Gorenstein injective modules over a ring, then a

result of Eshraghi, Hafezi, and Salarian [11, Theorem 3.5.1(a)] shows that Ψ(B)
is precisely the class of Gorenstein injective representations of Q, provided that Q
is right rooted. Finally, we notice that in the case where M is a module category,
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versions of Theorems A and B (but not the general theory developed in, e.g.,

Sections 3–5) can be found in [10] by Eshraghi, Hafezi, Hosseini, and Salarian.

The paper is organized as follows. Sections 2 and 6 contain preliminaries on

quivers and cotorsion pairs. In Section 3, we show the existence of a left adjoint

and a right adjoint of the evaluation functor ei, and in Section 4, we do the same

for the stalk functor si. In Section 5, we establish some isomorphisms between

various Ext groups, which will allow us to describe relevant perpendicular classes

in the category of quiver representations. Finally, in Section 7, we prove our main

results, including Theorems A and B.

2. Quivers

Throughout this paper, Q is a quiver (i.e., a directed graph) with vertex set Q0

and arrow set Q1. Unless otherwise mentioned, there will be no restrictions on

the quiver. Thus, Q may have infinitely many vertices, it may have loops and/or

oriented cycles, and there may be infinitely many or no arrows from one vertex

to another.

2.1. For i, j ∈ Q0 (not necessarily different), we write Q(i, j) for the set of paths

in Q from i to j. The trivial path at vertex i is denoted by ei. For an arrow

a : i → j in Q, we write s(a) for its source and t(a) for its target; that is, s(a) = i
and t(a) = j. For a given vertex i ∈ Q0, we denote by Qi→∗

1 (resp., Q∗→i
1 ) the set

of arrows in Q whose source (resp., target) is the vertex i; that is,

Qi→∗
1 =

{
a ∈ Q1

∣∣ s(a) = i
}

and Q∗→i
1 =

{
a ∈ Q1

∣∣ t(a) = i
}
.

2.2. Let M be any category. We write Rep(Q,M) for the category of M-valued

representations of the quiver Q. An object X in Rep(Q,M) assigns to every

vertex i ∈ Q0 an object X(i) in M and to every arrow a : i → j in Q a mor-

phism X(a) : X(i)→ X( j) in M. A morphism λ : X → Y in Rep(Q,M) is a family

{λ(i) : X(i)→ Y(i)}i∈Q0 of morphisms in M for which the diagram

X(i)

X(a)

λ(i)

Y(i)

Y(a)

X( j)
λ( j)

Y( j)

is commutative for every arrow a : i → j in Q. Note that if X is an object in

Rep(Q,M) and p ∈ Q(i, j) is a path in Q, then, by composition, X yields a

morphism X(p) : X(i)→ X( j) in M. For the trivial path ei, the morphism X(ei)

is the identity on X(i).
For every i ∈ Q0, there is an evaluation functor,

Rep(Q,M)
ei

M,
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which maps an M-valued representation X of Q to the object ei(X) = X(i) ∈M
at vertex i.

If M has a zero object 0, then there is also, for every i ∈ Q0, a stalk functor,

M
si

Rep(Q,M),

which to an object M ∈ M assigns the stalk representation si(M) given by

si(M)( j) = 0 for j �= i and si(M)(i) = M. For every arrow a ∈ Q1, the morphism

si(M)(a) is zero.

2.3. For a quiver Q, we denote by Qop its opposite quiver, and for a category C,
we denote by Cop its opposite category. It is straightforward to verify that

Rep(Qop,Mop) = Rep(Q,M)op.

2.4. If M has a certain type of limit (e.g., products, pullbacks, etc.), then

Rep(Q,M) has the same type of limits, and they are computed vertex-wise in M.

A similar remark holds for colimits (see 2.3).

If M is abelian, then so is Rep(Q,M). Kernels, cokernels, and images in

Rep(Q,M) are computed vertex-wise in M; thus, a sequence X → Y → Z in

Rep(Q,M) is exact if and only if the sequence X(i)→ Y(i)→ Z(i) is exact in M
for every vertex i ∈ Q0. It follows that every evaluation functor ei and every stalk

functor si is exact.

The remaining part of this section is concerned with rooted quivers; this material

will not be relevant before Section 7.

Left rooted quivers are defined in [9, Section 3] (where the terminology

“rooted” is used instead of “left rooted”), and the dual notion of right rooted

quivers appears in [5, Section 4].

2.5. Let Q be any quiver. As in [9, Section 3], we consider the transfinite sequence

{Vα}αordinal of subsets of the vertex set Q0 defined as follows:

• For the first ordinal α= 0 set V0 = ∅.
• For a successor ordinal α= β+ 1 set,2

Vα = Vβ+1

=
{

i ∈ Q0

∣∣∣ i is not the target of any arrow a in Q with s(a) /∈
⋃
γ�β

Vγ

}
.

• For a limit ordinal α set Vα =
⋃
β<α Vβ.

Following [9, Definition 3.5], a quiver Q is called left rooted if there exists some

ordinal λ such that Vλ = Q0. It is proved in [9, Proposition 3.6] that Q is left

2As V0 = ∅, it follows that V1 = {i ∈ Q0 | i is not the target of any arrow a in Q}. The vertices
in V1 are often called sources (this includes isolated vertices, i.e., vertices which are neither a

source nor a target of any arrow).
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rooted if and only if there exists no infinite sequence · · · → • → • → • of (not

necessarily different) composable arrows in Q. Hence, the left rooted quivers

constitute quite a large class of quivers; for example, every path-finite quiver—

that is, a quiver which has only finitely many paths—is left rooted.

2.6 Example. Let Q be the (left rooted) quiver:

•
5

•
2

•
1

•
4

•
3

For this quiver, the transfinite sequence {Vα} from 2.5 looks like this:

◦
5

◦
2

◦
1

◦
4

◦
3

◦
5

◦
2

•
1

◦
4

◦
3

◦
5

•
2

•
1

◦
4

•
3

V0 = ∅ V1 = {1} V2 = {1,2,3}

◦
5

•
2

•
1

•
4

•
3

•
5

•
2

•
1

•
4

•
3

V3 = {1,2,3,4} V4 = Q0

The following properties about the transfinite sequence {Vα} from 2.5—which we

will need later—are not mentioned in [9], however, these properties are probably

known to the authors of [9]. A consequence of the lemma below is that one can

simplify the definition of Vβ+1 in 2.5 to be Vβ+1 = {i ∈ Q0 | i is not the target of

any arrow a in Q with s(a) /∈ Vβ}.

2.7 Lemma. The transfinite sequence {Vα} defined in 2.5 is ascending; that is,

for every pair of ordinals α, β with α < β one has Vα ⊆ Vβ. In particular, one has⋃
α�β Vα = Vβ for every ordinal β.
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Proof

It suffices, for every ordinal γ, to prove the following:

For every pair of ordinals α, β� γ for which α < β one has Vα ⊆ Vβ.(Pγ)

We will do this by transfinite induction on γ. The induction start is easy: the

statement is empty for γ= 0 since the situation α < β� γ= 0 is impossible. And

for γ= 1, the only possibility for α < β� γ= 1 is α= 0 and β= 1, and, evidently,

V0 ⊆ V1 as V0 = ∅.
Now assume that γ is a limit ordinal and that (Pδ) holds for all δ < γ. To

prove that (Pγ) is true, let ordinals α < β � γ be given. Then, if β < γ, as (Pβ)

holds, we get that Vα ⊆ Vβ. If β= γ, then one has Vβ = Vγ =
⋃
δ<γ Vδ (since γ is a

limit ordinal), so clearly Vα ⊆ Vβ.

It remains to consider the situation where γ = δ+ 1 is a successor ordinal.

We assume that (Pδ) holds, and we must show that (Pδ+1) holds as well. Let

ordinals α < β� δ+1 be given. If one has β < δ+1, then β� δ and it follows from

(Pδ) that Vα ⊆ Vβ. Now assume that β= δ+1. As α� δ and since (Pδ) holds, we

have Vα ⊆ Vδ. Thus, to prove the desired conclusion Vα ⊆ Vβ = Vδ+1, it suffices to

argue that Vδ ⊆ Vδ+1. There are two cases:

(1) δ is a limit ordinal. To prove Vδ ⊆ Vδ+1, assume that j ∈ Vδ. As δ is a

limit ordinal, we have Vδ =
⋃
σ<δ Vσ and hence j ∈ Vσ for some σ < δ. Since σ <

σ+1 < δ and since (Pδ) holds, we have Vσ ⊆ Vσ+1 and therefore also j ∈ Vσ+1. By

definition, this means that there exists no arrow i → j in Q with i /∈
⋃
τ�σ Vτ. As

σ� δ (in fact, σ < δ), one has
⋃
τ�σ Vτ ⊆

⋃
τ�δ Vτ, and it follows that there exists

no arrow i → j in Q with i /∈
⋃
τ�δ Vτ. By definition, this means that j ∈ Vδ+1, as

desired.

(2) δ = ε + 1 is a successor ordinal. To prove Vδ ⊆ Vδ+1, assume that j ∈
Vδ = Vε+1. By definition, this means that there exists no arrow i → j in Q with

i /∈
⋃
τ�ε Vτ. As ε � δ (in fact, ε < δ), one has

⋃
τ�ε Vτ ⊆

⋃
τ�δ Vτ, and it follows

that there exists no arrow i → j in Q with i /∈
⋃
τ�δ Vτ. By definition, this means

that j ∈ Vδ+1, as desired. �

2.8 Corollary. Let i, j ∈ Q0, and let {Vα} be the transfinite sequence from 2.5.

If i /∈ Vα and j ∈ Vα+1 (in particular, if j ∈ Vα by Lemma 2.7), then there exists

no arrow i → j in Q.

Proof

Since j ∈ Vα+1, there exists by definition no arrow k → j in Q with k /∈
⋃
β�α Vβ.

By Lemma 2.7, we have
⋃
β�α Vβ = Vα, so there exists no arrow k → j in Q with

k /∈ Vα. �

2.9. Let Q be a quiver. As in [5, Section 4], we consider the transfinite sequence

{Wα}αordinal of subsets of the vertex set Q0 defined as follows:

• For the first ordinal α= 0, set W0 = ∅.
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• For a successor ordinal α= β+ 1, set3

Wα = Wβ+1

=
{

i ∈ Q0

∣∣∣ i is not the source of any arrow a in Q with t(a) /∈
⋃
γ�β

Wγ

}
.

• For a limit ordinal α, set Wα =
⋃
β<α Wβ.

A quiver Q is called right rooted if there exists some ordinal λ such that Wλ =

Q0; equivalently, if there exists no infinite sequence • → • → • → · · · of (not

necessarily different) composable arrows in Q.

Note that the sequence {Vα} in 2.5 for the quiver Qop coincides with the sequence

{Wα} in 2.9 for the quiver Q. Therefore, a quiver Q is left rooted (resp., right

rooted) if and only if the opposite quiver Qop is right rooted (resp., left rooted).

3. Adjoints of the evaluation functor ei

As stated in Section 2, we work with an arbitrary quiver Q. Furthermore, in this

section, M denotes any category. We will show that if M has small coproducts

(resp., small products), then the evaluation functor ei : Rep(Q,M)→M from

2.2 has a left adjoint fi (resp., right adjoint gi). If M=ModR is the category of

(left) modules over a ring R, then the left adjoint of ei was constructed in [9] and

the right adjoint of ei was considered in Enochs and Herzog [6]. Here we give a

shorter and cleaner argument which works for any category M, and also explains

the duality between the functors fi and gi (see 3.6).

3.1. Assume that M has small coproducts, and fix any vertex i ∈ Q0. For any

M ∈M, we construct a representation fi(M) ∈Rep(Q,M) as follows. For j ∈ Q0,

set

fi(M)( j) =
∐

p∈Q(i, j)

Mp,

where each Mp is a copy of M. Notice that if there are no paths in Q from i to
j, then this coproduct is empty and hence fi(M)( j) is the initial object in M.

Let a : j → k be an arrow in Q. Note that each path p ∈ Q(i, j) yields a path

ap ∈ Q(i, k), and we define fi(M)(a) to be the unique morphism in M that makes

the following diagram commutative:

(1)

Mp

εp

M Map

εap

fi(M)( j)
fi(M)(a)

fi(M)(k)

(
p ∈ Q(i, j)

)

3Actually, in [5, Section 4], Enochs, Estrada, and Garcia Rozas set Wβ+1 = {i ∈ Q0 |
i is not the source of any arrow a in Q with t(a) /∈ Wβ}, but this is the same as the definition

of Wβ+1 we have given (see the text preceding Lemma 2.7).
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Here the vertical morphisms ε∗ are the canonical injections. It is evident that

the assignment M �→ fi(M) yields a functor fi : M→Rep(Q,M).

3.2 Remark. For the construction of the functors fi to work, it is not necessary

to require that M has all small coproducts; it suffices to assume that the coprod-

uct exists in M for every set of objects {Mu}u∈U with cardinality |U|= |Q(i, j)|
for some i, j ∈ Q0.

A quiver Q is called locally path-finite if there are only finitely many paths

in Q from any given vertex to another, that is, if the set Q(i, j) is finite for

all i, j ∈ Q0. For such a quiver, the functors fi : M→ Rep(Q,M) exist for every

category M with finite coproducts.

3.3 Example. Let Q be the quiver with one vertex (labeled “1”) and one loop:

•
1

Using “element notation”, the functor f1 maps M ∈M to the representation

M
∐

M
∐

M
∐ · · · λ , where λ(m0,m1,m2, . . .) = (0,m0,m1, . . .).

Note that the functor f1 exists if M has countable coproducts (see Remark 3.2).

3.4 Example. Let Q be the quiver

A∞ = · · · •
i+2

•
i+1

•
i

•
i−1

· · · •
2

•
1
.

The functor fi maps M ∈M to the representation

· · · 0
i+2

0
i+1

M
i

=
M

i−1

=
· · ·

=
M
2

=
M
1

,

where 0 is the initial object in M. Note that for this particular quiver, the only

requirement for the existence of fi is that M has an initial object (= empty

coproduct) (see Remark 3.2).

3.5 Lemma. For i ∈ Q0 and M ∈ M, consider the representation fi(M) ∈
Rep(Q,M) constructed in 3.1. For every path p ∈ Q(i, j), one has fi(M)(p)◦εei =

εp.

Proof

The assertion is obviously true for the trivial path p = ei as fi(M)(ei) is the

identity morphism. Every nontrivial path p from i to j is a finite sequence of

arrows in Q,

i = j1
a1

j2
a2

· · ·
an

jn+1 = j (n � 1),

and the desired identity follows from successive applications of (1). �
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3.6. Assume that M has small products, and fix any vertex i ∈ Q0. By a con-

struction dual to that in 3.1, one gets a functor gi : M→Rep(Q,M); that is, for

j ∈ Q0, we have

gi(M)( j) =
∏

q∈Q( j,i)

Mq,

where each Mq is a copy of M. If there are no paths in Q from j to i, then this

product is empty and hence gi(M)( j) is the terminal object in M. For an arrow

a : j → k in Q, the morphism gi(M)(a) is the unique one that makes the following

diagram commutative:

gi(M)( j)

πqa

gi(M)(a)

gi(M)(k)

πq

Mqa M Mq

(
q ∈ Q(k, i)

)

Here the vertical morphisms π∗ are the canonical projections.

Let us make the duality between the functors fi ang gi even more clear.

A precise notation for the functor fi : M → Rep(Q,M) in 3.1 is fQ,M
i , and it

exists for every quiver Q and every category M with small coproducts. If M
has small products, then Mop has small coproducts, and thus it makes sense to

consider the functor fQop,Mop

i : Mop →Rep(Qop,Mop). By taking the opposite of

this functor (see [19, Chapter II, Section 2]), one gets in view of 2.3 a functor

(fQop,Mop

i )op : M−→Rep(Q,M),

and it is straightforward to verify that this functor is nothing but gi (= gQ,M
i ).

3.7 Theorem. Let M be any category, let i be any vertex in a quiver Q, and

consider the evaluation functor ei : Rep(Q,M) → M from 2.2. The following

assertions hold.

(a) If M has small coproducts, then the functor fi from 3.1 is a left adjoint of

ei.

(b) If M has small products, then the functor gi from 3.6 is a right adjoint of

ei.

Proof

(a): For M ∈M and X ∈Rep(Q,M), we construct a pair of natural maps

HomRep(Q,M)

(
fi(M),X

) u

HomM
(

M, ei(X)
)

v

as follows. The map u sends a morphism λ : fi(M)→ X of representations to the

morphism u(λ) := λ(i) ◦ εei in M; that is, the composition of the morphisms
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(2) M = Mei

εei ∐
p∈Q(i,i) Mp = fi(M)(i)

λ(i)

X(i) = ei(X),

where ei is the trivial path at vertex i. To define the map v, let α : M → ei(X) =
X(i) be a morphism in M. For every vertex j ∈ Q0 we define a morphism

λ( j) : fi(M)( j)→ X( j) as follows. If there are no paths from i to j, then Q(i, j)
is empty and hence fi(M)( j) is the initial object in M. In this case, λ( j) is the

unique morphism from the initial object to X( j). Suppose that there exists a

path from i to j. Any such path p ∈ Q(i, j) yields a morphism X(p) : X(i)→ X( j),
and we define λ( j) to be the unique morphism that makes the following diagram

commutative:

(3)

M

εp

α

X(i)

X(p)

fi(M)( j)
λ( j)

X( j)

(
p ∈ Q(i, j)

)

To see that the constructed family {λ( j)} j∈Q0 yields a morphism of representa-

tions v(α) := λ : fi(M)→ X, we must argue that for every arrow a : j → k in Q,

the diagram

(4)

fi(M)( j)

λ( j)

fi(M)(a)

fi(M)(k)

λ(k)

X( j)
X(a)

X(k)

is commutative. This is clear if there are no paths from i to j, as in this case

fi(M)( j) is the initial object in M. If there exists some path from i to j, then
commutativity of (4) amounts, by the universal property of the coproduct, to

showing that X(a) ◦ λ( j) ◦ εp = λ(k) ◦ fi(M)(a) ◦ εp for every p ∈ Q(i, j). This

follows from the defining properties (3) of λ and (1) of fi(M); indeed, one has

X(a) ◦ λ( j) ◦ εp = X(a) ◦ X(p) ◦ α= X(ap) ◦ α= λ(k) ◦ εap = λ(k) ◦ fi(M)(a) ◦ εp.

It is clear that the constructed maps u and v are natural in M and X, and it

remains to prove that they are inverses of each other.

Let α : M → X(i) be a morphism and set λ := v(α). By (2), the morphism

u(λ) = uv(α) is λ(i) ◦ εei , which by (3) is X(ei) ◦ α= α. Hence the composition uv
is the identity.

Conversely, let λ : fi(M)→ X be a morphism and set α := u(λ) = λ(i) ◦ εei . To

prove that λ̃ := v(α) = vu(λ) is equal to λ, it must be argued that λ̃( j) and λ( j) is
the same morphism fi(M)( j)→ X( j) for every j ∈ Q0. If there are no paths from

i to j, then fi(M)( j) is the initial object in M, so evidently λ̃( j) = λ( j). If there
exists a path from i to j, then for every such path p ∈ Q(i, j), we have

λ̃( j) ◦ εp = X(p) ◦ α= X(p) ◦ λ(i) ◦ εei = λ( j) ◦ fi(M)(p) ◦ εei = λ( j) ◦ εp,
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where the first equality is by the defining property (3) of λ̃ = v(α), the second

equality is by the definition of α, the third equality holds as λ is a morphism of

quiver representations, and the fourth and last equality follows from Lemma 3.5.

By the universal property of the coproduct, we now conclude that λ̃( j) = λ( j).
(b): Consider the evaluation functor ei = eQ,M

i : Rep(Q,M)→M. In view of

2.3, its opposite functor (eQ,M
i )op can be identified with the evaluation functor

eQop,Mop

i : Rep(Qop,Mop)−→Mop.

By part (a), this functor has a left adjoint, namely, fQop,Mop

i , and so it follows from

Lemma 3.8 below that the functor (fQop ,Mop

i )op is a right adjoint of ei = eQ,M
i .

However, (fQop,Mop

i )op is equal to gi by 3.6. �

3.8 Lemma. Let F : C →D be a functor. If the opposite functor Fop : Cop →Dop

has a left adjoint G : Dop →Cop, then the functor Gop : D→ C is a right adjoint

of F.

Proof

As G is a left adjoint of Fop, there is a bijection HomCop(GY,X) ∼= HomDop(Y,
FopX), which is natural in X ∈ C and Y ∈D. By the definitions, this is the same

as a bijection HomC(X,GopY)∼=HomD(FX,Y), which expresses that Gop is a right

adjoint of F. �

It is convenient to recall some of Grothendieck’s axioms for abelian categories.

3.9. An abelian category satisfies AB3 if it has small coproducts, equivalently,

if it is cocomplete. It satisfies AB4 it if satisfies AB3 and any coproduct of

monomorphisms is a monomorphism. The axioms AB3∗ and AB4∗ are dual to

AB3 and AB4.

As noted in 2.4, the category Rep(Q,M) inherits various types of categorical

properties from M. The next result, which is a consequence of Theorem 3.7, has

the same flavor.

3.10 Corollary. Let M be any abelian category, and let Q be any quiver.

(a) Assume that M satisfies AB3. If M has enough projectives, then so does

Rep(Q,M).

(b) Assume that M satisfies AB3∗. If M has enough injectives, then so does

Rep(Q,M).

Proof

(a): As explained in 2.4, each evaluation functor ei is exact, and by Theo-

rem 3.7, it has a left adjoint fi. It follows that if P is a projective object in M,

then fi(P) is projective in Rep(Q,M) since the functor HomRep(Q,M)(fi(P),−)∼=
HomM(P, ei(−)) is exact. Now, let X be any object in Rep(Q,M). Since M has

enough projectives, there exists for each i ∈ Q0 an epimorphism πi : Pi � X(i) =
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ei(X) in M with Pi projective. Let ρ be the unique morphism in Rep(Q,M) that

makes the following diagram commutative:

fi(Pi)

ith injection

fi(πi)

fiei(X)

εX
i⊕

j∈Q0
f j(Pj)

ρ

X

(i ∈ Q0)

where εi is the counit of the adjunction fi 
 ei. As noted above, each f j(Pj) is

projective in Rep(Q,M) and hence so is the coproduct
⊕

j∈Q0
f j(Pj). We claim

that ρ is an epimorphism. It suffices to show that ρ(i) = ei(ρ) is an epimorphism

for every i ∈ Q0, as cokernels in Rep(Q,M) are computed vertex-wise (see 2.4).

By applying ei to the diagram above, we see that ei(ρ) will be an epimorphism

if ei(ε
X
i ) ◦ eifi(πi) is an epimorphism. However, eifi(πi) is an epimorphism as πi is

an epimorphism and the functor eifi is right exact (as already noted, ei is exact,

and fi is right exact since it is a left adjoint). And it is well known (see, e.g. [19,

Chapter IV, Theorem 1]) that ei(ε
X
i ) is a split epimorphism with right-inverse

η
ei(X)
i , where ηi is the unit of the adjunction fi 
 ei.

(b): The proof is dual to that of (a). Alternatively, apply part (a) to the

opposite quiver Qop and the opposite category Mop and invoke 2.3. �

4. Adjoints of the stalk functor si

As stated in Section 2, we work with an arbitrary quiver Q. Furthermore, in this

section, M denotes any abelian category. We will show that if M satisfies AB3

(resp., AB3∗; see 3.9), then the stalk functor si : M→ Rep(Q,M) from 2.2 has

a left adjoint ci (resp., right adjoint ki). For the next construction, recall the

notation from 2.1.

4.1. Assume that M satisfies AB3, and fix any vertex i ∈ Q0. For each X ∈
Rep(Q,M), we denote by ϕX

i the unique morphism inM that makes the following

diagram commutative:

X
(

s(a)
)

εa

X(a)

⊕
a∈Q∗→i

1
X
(

s(a)
)

ϕX
i

X(i)

(a ∈ Q∗→i
1 )

Here εa denotes the canonical injection. It is clear that the assignment X �→ ϕX
i

is a functor from Rep(Q,M) to the category of morphisms in M, and thus one

has a functor

ci = cQ,M
i : Rep(Q,M)−→M given by X �−→CokerϕX

i .
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4.2 Remark. For the construction of the functors ci to work, it is not necessary

to require that M has all small coproducts; it suffices to assume that the coprod-

uct exists in M for every set of objects {Mu}u∈U with cardinality |U| = |Q∗→i
1 |

for some i ∈ Q0.

A quiver Q is called target-finite if every vertex in Q is the target of at most

finitely many arrows, that is, if the set Q∗→i
1 is finite for every vertex i. For such

a quiver, the functors ci : M→Rep(Q,M) exist for any abelian category M.

4.3 Example. Let Q be the quiver

•
1

•
2
.

For an M-valued representation X = X(1)
α

β

X(2) of Q, we have

c1(X) = Coker
(
0→ X(1)

)
= X(1) and

c2(X) = Coker

⎛⎜⎜⎝ X(1)
⊕

X(1)

(α β )

X(2)

⎞⎟⎟⎠ .

For this quiver, the functors c1 and c2 exist for any abelian category M (see

Remark 4.2).

4.4. Assume that M satisfies AB3∗, and fix any vertex i ∈ Q. For each X ∈
Rep(Q,M), we denote by ψX

i the unique morphism inM that makes the following

diagram commutative:

X(i)

X(a)

ψX
i ∏

a∈Qi→∗
1

X
(
t(a)

)
πa

X
(
t(a)

)
(a ∈ Qi→∗

1 )

Here πa denotes the canonical projection. It is clear that we get a functor

ki = kQ,M
i : Rep(Q,M)−→M given by X �−→KerψX

i .

Analogous with the considerations in 3.6, one sees that ki = kQ,M
i is equal to

(cQop,Mop

i )op.

4.5 Theorem. Let M be any abelian category, let i be any vertex in a quiver

Q, and consider the stalk functor si : M→ Rep(Q,M) from 2.2. The following

assertions hold.

(a) If M satisfies AB3, then the functor ci from 4.1 is a left adjoint of si.

(b) If M satisfies AB3∗, then the functor ki from 4.4 is a right adjoint of si.
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Proof

(a): For X ∈Rep(Q,M) and M ∈M, we construct below a pair of natural maps

HomM
(
ci(X),M

) u

HomRep(Q,M)

(
X, si(M)

)
.

v

By definition (see 4.1), one has ci(X) = CokerϕX
i , and so there is a right exact

sequence,

⊕
a∈Q∗→i

1
X
(

s(a)
) ϕX

i

X(i)
ρX

i

ci(X) 0,

where ρX
i is the canonical morphism.

The map u sends a morphism α : ci(X)→ M in M to the morphism λ : X →
si(M) defined as follows. For every j ∈ Q0 with j �= i one has si(M)( j) = 0, and

we set λ( j) = 0. One also has si(M)(i) = M, and we set λ(i) = αρX
i . We must

argue that λ is a morphism of representations of Q; that is, we must show that

λ(k)◦X(a) = si(M)(a)◦λ( j) for every arrow a : j → k. Since si(M)(a) = 0 (always)

and λ(k) = 0 for k �= i, the only thing that needs to be checked is that λ(i)◦X(a) =
0 for all arrows a : j → i, that is, for all a ∈ Q∗→i

1 . However, for every such arrow

a, we have by definition λ(i) ◦ X(a) = αρX
i ϕ

X
i εa = α0εa = 0.

For a morphism λ : X → si(M) in Rep(Q,M), we have λ(k) ◦ X(a) = 0 for

every arrow a : j → k in Q. In particular, the morphism λ(i) : X(i)→ M satisfies

λ(i) ◦ ϕX
i εa = λ(i) ◦ X(a) = 0 for every a ∈ Q∗→i

1 . By the universal property of

the coproduct, it follows that λ(i) ◦ ϕX
i = 0. Thus by the universal property of

the cokernel, λ(i) factors uniquely through the morphism ρX
i : X(i) → ci(X) =

CokerϕX
i . That is, there exists a unique morphism λ(i) : ci(X) → M such that

λ(i) ◦ ρX
i = λ(i). We define v(λ) to be this morphism λ(i).

It is clear that the constructed maps u and v are natural in X and M, and

that they are inverses of each other.

(b): This proof is dual to that of (a). Alternatively, in view of 4.4 and

Lemma 3.8, part (b) follows directly by applying (a) to the opposite quiver Qop

and the opposite category Mop. �

5. Isomorphisms of groups of extensions

In this section, we extend the adjunctions in Theorems 3.7 and 4.5 to the level

of Ext. The following lemma is the key to our results.

5.1 Lemma. Let F : A → B and G : B → A be functors between abelian cate-

gories, where F is a left adjoint of G. Fix an integer n � 0 and objects A ∈A and

B ∈ B. Assume the following:

(1) The functor F maps every exact sequence 0→GB → D1 → · · · → Dn → A →
0 in A to an exact sequence 0→ FGB → FD1 → · · · → FDn → FA → 0.
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(2) The functor G maps every exact sequence 0→ B → E1 → · · · → En → FA →
0 in B to an exact sequence 0→GB →GE1 → · · · →GEn →GFA → 0.

Then there is an isomorphism of abelian groups, Extn
B(FA,B)∼=Extn

A(A,GB).

Proof

By the assumptions, the functors F and G yield well-defined group homomor-

phisms F(−) : Extn
A(A,GB) → Extn

B(FA,FGB) and G(−) : Extn
B(FA,B) →

Extn
A(GFA,GB). Let η be the unit, let ε be the counit of the adjunction F 
 G,

and consider the group homomorphisms u and v given by the following compo-

sitions:

Extn
B(FA,B)

G(−)

u
Extn

A(A,GB)

Extn
A(GFA,GB)

Extn
A(ηA,GB)

and

Extn
B(FA,B) Extn

A(A,GB)
v

F(−)

Extn
B(FA,FGB)

Extn
B(FA,εB)

It is tedious but straightforward to verify that u and v are inverses of each other

(for n = 0 this is a well-known fact; see [19, Chapter IV.1, Theorem 1]), and we

leave it as an exercise. �

The next result concerns the evaluation functor ei and its adjoints fi and gi (see

Section 3).

5.2 Proposition. Let M be any abelian category, and let i be any vertex in a

quiver Q.

(a) Assume that M satisfies AB4. For all objects M ∈M and X ∈Rep(Q,M)

and all integers n � 0, there is an isomorphism

Extn
Rep(Q,M)

(
fi(M),X

)∼=Extn
M
(

M, ei(X)
)
.

(b) Assume that M satisfies AB4∗. For all objects M ∈M and X ∈Rep(Q,M)

and all integers n � 0, there is an isomorphism

Extn
Rep(Q,M)

(
X,gi(M)

)∼=Extn
M
(
ei(X),M

)
.

Proof

(a): As M satisfies AB3, the left adjoint fi of ei exists by Theorem 3.7. The

functor fi is certainly right exact, as it is a left adjoint, but it is even exact; this

follows directly from the construction in 3.1 of fi and the assumption AB4 that
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any coproduct of monomorphisms is a monomorphism. The asserted isomorphism

now follows from Lemma 5.1.

(b): The proof is dual to that of (a). Alternatively, apply part (a) directly to

the opposite quiver Qop and the opposite category Mop. �

5.3 Remark. For the conclusion in Proposition 5.2(a) to hold, it is not always

necessary to require that M satisfies AB4. For example, if Q is a locally path-

finite quiver, then the functor fi exists and it is exact for any abelian category

M (see Remark 3.2).

The next result concerns the stalk functor si and its adjoints ci and ki (see

Section 4).

5.4 Proposition. Let M be any abelian category, and let i be any vertex in a

quiver Q.

(a) Assume that M satisfies AB3. Let X ∈Rep(Q,M) be a representation for

which ϕX
i is a monomorphism, and let M ∈M be any object. Then there is

an isomorphism

Ext1Rep(Q,M)

(
X, si(M)

)∼=Ext1M
(
ci(X),M

)
.

(b) Assume that M satisfies AB3∗. Let X ∈Rep(Q,M) be a representation for

which ψX
i is an epimorphism, and let M ∈M be any object. Then there is

an isomorphism

Ext1Rep(Q,M)

(
si(M),X

)∼=Ext1M
(

M,ki(X)
)
.

Proof

(a): We will apply Lemma 5.1 with n = 1 to the adjunction ci 
 si from Theo-

rem 4.5. The functor si is exact so it satisfies the hypothesis in Lemma 5.1(2).

To see that Lemma ci satisfies 5.1(1), we must argue that ci maps every short

exact sequence 0→ si(M)→ D → X → 0 in Rep(Q,M) to a short exact sequence

in M (this is not true for any X, but we shall see that it is true in our case where

ϕX
i is assumed to be a monomorphism). Such a short exact sequence induces the

following commutative diagram in M with exact rows:

(5)

⊕
a∈Q∗→i

1
si(M)

(
s(a)

)
ϕ
si(M)
i

⊕
a∈Q∗→i

1
D
(

s(a)
)

ϕD
i

⊕
a∈Q∗→i

1
X
(

s(a)
)

ϕX
i

0

0 si(M)(i) D(i) X(i) 0

(We are not guaranteed that a coproduct of monomorphisms in M is a monomor-

phism, as we have not assumed that M satisfies AB4. Thus, the left-most mor-

phism in the top row of (5) is not necessarily monic.) By assumption, KerϕX
i = 0,

so the exact kernel-cokernel sequence that arises from applying the snake lemma

to (5) shows that the sequence
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0−→Cokerϕ
si(M)
i −→CokerϕD

i −→CokerϕX
i −→ 0

is exact. By definition, this sequence is nothing but 0 → cisi(M) → ci(D) →
ci(X)→ 0, and since cisi(M)∼= M, this completes the proof.

(b): The proof is dual to that of (a). Alternatively, apply part (a) directly to

the opposite quiver Qop and the opposite category Mop. �

5.5. Fix objects X ∈ Rep(Q,M) and M ∈ M, and fix a vertex i ∈ Q0. Given

any family Ξ = {ξa}a∈Q∗→i
1

of morphisms ξa : X(s(a))→ M in M, we construct a

representation

C =C(X,M, i, Ξ) ∈Rep(Q,M)

as follows.

For a vertex j ∈ Q0, we set

C( j) = X( j) for j �= i and C( j) =C(i) =
X(i)
⊕
M

for j = i.

The morphism C(a) : C( j)→C(k) associated to an arrow a : j → k in Q is, depend-

ing on four different cases, defined as shown in the following table:

(1◦) If j �= i and k �= i: (3◦) If j �= i and k = i:

X( j)
X(a)

X(k) X( j)

(
X(a)
ξa

)
X(i)
⊕
M

(2◦) If j = i and k �= i: (4◦) If j = i and k = i:

X(i)
⊕
M

( X(a) 0 )

X(k)
X(i)
⊕
M

(
X(a) 0
ξa 0

)
X(i)
⊕
M

As a result, the constructed representation C fits into a short exact sequence in

Rep(Q,M),

(6) 0 si(M)
ι

C
π

X 0,

where ι( j) and π( j) are defined as follows:

For j �= i: For j = i:

si(M)( j)
ι( j)

C( j)
π( j)

X( j)

0
0

X( j)
1X( j)

X( j)

si(M)(i)
ι(i)

C(i)
π(i)

X(i)

M

(
0
1M

)
X(i)
⊕
M

( 1X(i) 0 )

X(i)



Cotorsion pairs in categories of quiver representations 593

To see that ι and π are in fact morphisms of representations, that is, that the

diagram

si(M)( j)

si(M)(a)=0

ι( j)

C( j)

C(a)

π( j)

X( j)

X(a)

si(M)(k)
ι(k)

C(k)
π(k)

X(k)

is commutative for every arrow a : j → k in Q, one simply checks all four cases

(1◦)–(4◦) in the table above.

5.6 Proposition. Let M be any abelian category, and let i be any vertex in a

quiver Q. For any objects X ∈Rep(Q,M) and M ∈M, the following conclusions

hold:

(a) Assume that M satisfies AB3. If one has Ext1Rep(Q,M)(X, si(M)) = 0, then

the homomorphism HomM(ϕX
i ,M) is surjective.

Thus, if M has enough injectives and Ext1Rep(Q,M)(X, si(I)) = 0 for each

injective I ∈M, then ϕX
i is a monomorphism.

(b) Assume that M satisfies AB3∗. If one has Ext1Rep(Q,M)(si(M),X) = 0, then

the homomorphism HomM(M, ψX
i ) is surjective.

Thus, if M has enough projectives and Ext1Rep(Q,M)(si(P),X) = 0 for each

projective P ∈M, then ψX
i is an epimorphism.

Proof

(a): We must show that for every morphism α, there exists a morphism β that

makes the following diagram in M commutative:

(7)

⊕
a∈Q∗→i

1
X
(

s(a)
)

α

ϕX
i

X(i)

β

M

We write εa : X(s(a))→
⊕

a∈Q∗→i
1

X(s(a)) for the canonical injections and apply

5.5 to the morphisms ξa = αεa to obtain the short exact sequence (6). As

Ext1Rep(Q,M)(X, si(M)) = 0, this sequence splits, and hence there is a morphism

σ : X →C in Rep(Q,M) which is a right-inverse of π. Recall that for j ∈ Q0 with

j �= i, we have π( j) = 1X( j) and, consequently, σ( j) = 1X( j) as well. The morphism

σ(i) has two coordinate maps, say,

X(i)
σ(i)=

( γ
β

)
C(i) =

X(i)
⊕
M

.
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As σ(i) is a right-inverse of π(i), it follows that

1X(i) = π(i)σ(i) =
(
1X(i) 0

)(γ
β

)
= γ.

Since σ : X → C is a morphism of representations, we have for every arrow a ∈
Q∗→i

1 , say, a : j → i, a commutative diagram:

For j �= i, see 5.5(3◦): For j = i, see 5.5(4◦):

X( j)

X(a)

σ( j)=1X( j)

C( j) = X( j)

C(a)=
(

X(a)
αεa

)
X(i)

σ(i)=
( 1X(i)

β

)
C(i) =

X(i)
⊕
M

X(i)

X(a)

σ(i)=
( 1X(i)

β

)
C(i) =

X(i)
⊕
M

C(a)=
(

X(a) 0
αεa 0

)
X(i)

σ(i)=
( 1X(i)

β

)
C(i) =

X(i)
⊕
M

In either case, it follows that βX(a) = αεa. By the definition in 4.1 of ϕX
i , we have

X(a) = ϕX
i εa, and hence βϕX

i εa = αεa for all a ∈ Q∗→i
1 . By the universal property

of the coproduct, it follows that βϕX
i = α, so (7) is commutative, as desired.

(b): The proof is dual to that of (a). Alternatively, apply part (a) directly to

the opposite quiver Qop and the opposite category Mop. �

6. Cotorsion pairs

We collect some results about cotorsion pairs in abelian categories that we will

need. In this section, M is any abelian category.

For objects M,N ∈M and an integer n � 0, we denote by Extn
M(M,N) the

nth Yoneda Ext group, whose elements are equivalence classes of n-extensions of
N by M. It is well known that if M has enough projectives or enough injectives,

then Extn
M(M,N) can be computed by using a projective resolution of M or

an injective resolution of N, respectively (see, e.g., Hilton and Stammbach [16,

Chapter IV, Section 9]).

For a class C of objects in M and n � 1, we set

C⊥n =
{

N ∈M
∣∣ Extn

M(C,N) = 0 for all C ∈ C
}

and

⊥nC =
{

M ∈M
∣∣ Extn

M(M,C) = 0 for all C ∈ C
}
.

We set C⊥ = C⊥1 and C⊥∞ =
⋂∞

n=1 C⊥n , and similarly ⊥C = ⊥1C and ⊥∞C =⋂∞
n=1

⊥nC.
A cotorsion pair in M is a pair (A,B) of classes of objects in M for which

equalities A⊥ = B and A= ⊥B hold.

For a class C of objects in M, the cotorsion pair generated by C is GC =

(⊥(C⊥),C⊥), and the cotorsion pair cogenerated by C is CC = (⊥C, (⊥C)⊥). Here
we use the terminology of Göbel and Trlifaj (see [15, Definition 2.2.1]). Beware

that some authors (e.g., Enochs and Jenda [8, Definition 7.1.2] and Šaroch and
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Trlifaj [23, Introduction]) use the term “generated” (resp., “cogenerated”) for

what we have called “cogenerated” (resp., “generated”).

The following terminology is standard (see, e.g., [15, Definition 2.2.8]).

6.1. Let C be a class of objects in M. If M has enough projectives (resp.,

enough injectives), then C is called resolving (resp., coresolving) if it contains all

projective (resp., all injective) objects in M and is closed under extensions and

kernels of epimorphisms (resp., extensions and cokernels of monomorphisms).

6.2. A cotorsion pair (A,B) in M is called hereditary if Extn
M(A,B) = 0 for all

A ∈A, B ∈ B, and all n � 1. That is, (A,B) is hereditary if A⊥∞ ⊇B, equivalently,
if A⊆ ⊥∞B, and in the affirmative case one has A⊥∞ = B and A= ⊥∞B.

A result by Garćıa Rozas (see [12, Theorem 1.2.10]; see also [15, Lemma

2.2.10]) asserts that for a cotorsion pair (A,B) in the category M =ModR of

(left) modules over a ring R, the following conditions are equivalent:

(i) (A,B) is hereditary;
(ii) A is resolving (see 6.1);

(iii) B is coresolving (see 6.1).

An inspection of the proof of this result reveals that (i) ⇔ (ii) holds in any

abelian category M with enough projectives and, similarly, (i) ⇔ (iii) holds if

M has enough injectives.

6.3. A cotorsion pair (A,B) in M is complete if it satisfies the following two

conditions:

(i) The cotorsion pair (A,B) has enough projectives; that is, for every M ∈M,

there exists an exact sequence 0→ B → A → M → 0 with A ∈A and B ∈ B.
(ii) The cotorsion pair (A,B) has enough injectives; that is, for every M ∈M,

there exists an exact sequence 0→ M → B → A → 0 with A ∈A and B ∈ B.
Salce’s lemma (which goes back to [21]) asserts that (i) and (ii) are equivalent

in the case where M= Ab is the category of abelian groups. The proof of this

lemma (see, e.g., [8, Proposition 7.1.7] or [15, Lemma 2.2.6]) shows that if the

abelian category M has enough injectives, then (i) ⇒ (ii), and if M has enough

projectives, then (ii) ⇒ (i).

Let M be a Grothendieck category. If (A,B) is a cotorsion pair in M gen-

erated by a set (as opposed to a proper class), then [24, Proposition 5.8] (or [3,

Theorem 10] in the special case where M=ModR) implies that (A,B) satisfies
condition (ii) above. As already noted, (i) follows from (ii) if M has enough

projectives, and so we get the following:
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If M is a Grothendieck category with enough projectives, then every cotorsion

pair in M which is generated by a set is complete.4

Under certain assumptions, including Gödel’s axiom of constructibility

(V = L), cotorsion pairs in ModR that are cogenerated by a set will also be

complete (see Šaroch and Trlifaj [23, Theorems 1.3 and 1.7]).

6.4. Let λ be an ordinal. A λ-direct system { fβα : Mα → Mβ}α�β�λ in M, that

is, a well-ordered direct system in M indexed by λ, can be (partially) illustrated

as follows:

(8)

M0
f20

f30

fω,0
fω+1,0

f10
M1

f21
M2

f32
M3

f43
· · · Mω

fω+1,ω

Mω+1

fω+2,ω+1

· · ·

Such a system is called a direct λ-sequence if, for each limit ordinal μ � λ, the

object Mμ, together with the morphisms fμα : Mα → Mμ for α < μ, is a colimit of

the direct subsystem { fβα : Mα → Mβ}α�β<μ. In symbols: Mμ = lim−→α<μ
Mα.

A continuous direct λ-sequence is a direct λ-sequence (8) for which all the

morphisms fβα : Mα → Mβ (α� β� λ) are monic.

A C-filtration of an object M ∈M is a continuous direct λ-sequence (8) with

M0 = 0 and Mλ = M such that Coker fα+1,α ∈ C for all α < λ.

6.5 Remark. In the paper [24] by Šťov́ıček, cotorsion pairs are studied in the

context of exact categories. We are only dealing with abelian categories,5 but

even for such categories, our definition of a C-filtration is stronger than the one

found in [24, Definition 3.7]; indeed, there, it is only required that the mor-

phisms fα+1,α : Mα → Mα+1 are inflations (in our case, monomorphisms) with

Coker fα+1,α ∈ C—not that all the morphisms fβα : Mβ → Mα are inflations

(= monomorphisms). However, several of the results about C-filtrations found

in [24] (e.g., Lemma 3.10 and Proposition 5.7) require the exact category in

which the result takes place to satisfy the axiom (Ef1), which means that arbi-

trary transfinite compositions, in the sense of [24, Definition 3.2], of inflations

(= monomorphisms) exist and are themselves inflations (= monomorphisms). In

such a category, all morphisms fβα : Mβ → Mα in a C-filtration in the sense of

Šťov́ıček [24, Definition 3.7] are actually inflations (= monomorphisms). In other

words, in an abelian category satisfying (Ef1), there is no difference between our

definition in Section 6.4 of a C-filtration and the one found in [24, Definition 3.7].

4Actually, one does not need to assume that the Grothendieck category M has enough projec-
tives. Indeed, by [24, Theorem 5.16], it is enough that the left half of the cotorsion pair contains

a generator of M.
5Every abelian category has a canonical structure as an exact category in which all short exact
sequences are considered to be conflations (hence the inflations are exactly the monomorphisms

and the deflations are exactly the epimorphisms).
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In the case where M =ModR is the category of (left) modules over a ring R,
the next result, known as Eklof’s lemma, is indeed due to Eklof [2, Theorem 1.2]

(see also Eklof and Trlifaj [3, Lemma 1]).

If M is an exact category satisfying (Ef1), then Lemma 6.6 can be found

in Šťov́ıček [24, Proposition 5.7] (see also Saoŕın and Šťov́ıček [22, Proposi-

tion 2.12]). In our version of Eklof’s lemma (6.6 below), we are working with

any cocomplete abelian category M, and such a category does not necessarily

satisfy (Ef1) (as M is cocomplete, we do have that transfinite compositions of

monomorphisms exist, but the resulting composition is not necessarily monic).

However, as discussed above, we are also working with a stronger meaning of the

notion of “filtration” compared to Šťov́ıček [24], and this makes up for the lack

of (Ef1).

6.6 Lemma (Eklof). Let M be a cocomplete abelian category. Let C be a class

of objects in M, and let M be an object in M. If M has a ⊥C-filtration, then M
belongs to ⊥C.

Proof

We leave it to the reader to verify that the proof of [8, Theorem 7.3.4] (which deals

with the case M=ModR) also works in the present more general setting. Here

we just note that, as in the proof of [8, Theorem 7.3.4], we can form the preimage

g−1(Mα) of the subobject Mα ⊆ Mβ with respect to the morphism g : G → Mβ.

Indeed, Mα really is a subobject of Mβ; that is, the morphism Mα → Mβ is monic,

since this is part of what it means to be a filtration in our sense of Section 6.4.

Hence, we can define the preimage g−1(Mα) to be the kernel of the composite

morphism G
g
� Mβ � Mβ/Mα. �

6.7. Let λ be an ordinal. A λ-inverse system {gαβ : Mβ → Mα}α�β�λ in M, that

is, a well-ordered inverse system in M indexed by λ, can be (partially) illustrated

as follows:

(9)

· · ·
gω+1,ω+2

Mω+1

g0,ω+1

gω,ω+1

Mω

g0,ω

· · ·
g34

M3

g03

g23
M2

g02

g12
M1

g01
M0

Such a system is called an inverse λ-sequence if, for each limit ordinal μ� λ, the

object Mμ together with the morphisms gαμ : Mμ → Mα for α < μ is a limit of the

inverse subsystem {gαβ : Mβ → Mα}α�β<μ. In symbols: Mμ = lim←−α<μ
Mα.

A continuous inverse λ-sequence is an inverse λ-sequence (9) for which all

the morphisms gαβ : Mβ → Mα (α� β� λ) are epic.

A C-cofiltration of an object M ∈M is a continuous inverse λ-sequence (9)

with M0 = 0 and Mλ = M such that Kergα,α+1 ∈ C for all α < λ.

In the case where M=ModR is the category of (left) modules over a ring R, the
next result is due to Trlifaj (see [25, Lemma 2.3]). Having established the above
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version (see Section 6.6) of Eklof’s lemma, the following more general version of

Trlifaj’s result can be inferred directly from Lemma 6.6 by duality.

6.8 Lemma (Trlifaj). Let M be a complete abelian category. Let C be a class

of objects in M, and let M be an object in M. If M has a C⊥-cofiltration, then

M belongs to C⊥.

Proof

Consider M as an object and C as a class of objects in the opposite category Mop

(which is cocomplete as M is complete). The given C⊥-cofiltration of M in M
yields a ⊥C-filtration of M in Mop, and so by Lemma 6.6 we get that M belongs

to ⊥C in Mop, which is nothing but C⊥ in M. �

7. Cotorsion pairs in the category of quiver representations

In this section, Q is any quiver and M is any abelian category.

7.1 Definition. For a class C of objects in M, we set

f∗(C) =
{
fi(C)

∣∣C ∈ C and i ∈ Q0

}
,

g∗(C) =
{
gi(C)

∣∣C ∈ C and i ∈ Q0

}
, and

s∗(C) =
{
si(C)

∣∣C ∈ C and i ∈ Q0

}
.

Here, fi and gi are the left and right adjoints of the evaluation functor ei (provided

that they exist; see Theorem 3.7) and si is the stalk functor (see 2.2). We also

set

Rep(Q,C) =
{

X ∈Rep(Q,M)
∣∣ X(i) ∈ C for all i ∈ Q0

}
,

Φ(C) =
{

X ∈Rep(Q,M)

∣∣∣∣ ϕX
i is a monomorphism and

CokerϕX
i ∈ C for all i ∈ Q0

}
, and

Ψ(C) =
{

X ∈Rep(Q,M)

∣∣∣∣ ψX
i is an epimorphism and

KerψX
i ∈ C for all i ∈ Q0

}
.

Note that a priori the classes Φ(A) and Ψ(B) from Theorem A (where Q is left

rooted) and Theorem B (where Q is right rooted) in the Introduction (Section 1)

look different from what we have defined above. Indeed, representations in Φ(A)

as defined in the Introduction must satisfy X(i) ∈ A for all i ∈ Q0. However, as

explained by the next result, this seeming difference is not real. Recall that left

and right rooted quivers are defined in 2.5 and 2.9.

7.2 Proposition. Let M be an abelian category that satisfies AB3 and AB3∗,

and let C be a class of objects in M.

(a) If the quiver Q is left rooted and if C is closed under extensions and coprod-

ucts in M, then every X ∈ Φ(C) has values in C; that is, X(i) ∈ C for all

i ∈ Q0.
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(b) If the quiver Q is right rooted and if C is closed under extensions and

products in M, then every X ∈Ψ(C) has values in C; that is, X(i) ∈ C for

all i ∈ Q0.

Proof

(a): Let {Vα} be the transfinite sequence of subsets of Q0 from Section 2.5. Since

Q is left rooted, we have Vλ = Q0 for some ordinal λ. Thus, it suffices to prove

the assertion

For all i ∈ Vα and all X ∈Φ(C), one has X(i) ∈ C(Pα)

for every ordinal α. We do this by transfinite induction. The assertion (P0) is

true as V0 = ∅. If α is a limit ordinal and if (Pβ) holds for all β < α, then (Pα)

holds as well since, in this case, one has Vα =
⋃
β<α Vβ. Finally, assume that α+1

is a successor ordinal and that (Pα) holds. We must prove that (Pα+1) also holds.

Let i ∈ Vα+1, and let X ∈ Φ(C) be given. As ϕX
i is a monomorphism, there is a

short exact sequence

0
⊕

a∈Q∗→i
1

X
(

s(a)
) ϕX

i

X(i) CokerϕX
i 0.

Since i ∈ Vα+1, it follows from Corollary 2.8 that s(a) ∈ Vα for every a ∈ Q∗→i
1 ,

so by the induction hypothesis (Pα) and the assumption that C is closed under

coproducts, we get that
⊕

a∈Q∗→i
1

X(s(a)) belongs to C. We also have CokerϕX
i ∈ C,

and since C is closed under extensions, we conclude that X(i) ∈ C, as desired.
(b): The proof is dual to that of (a). �

With the notation from Definition 7.1, the results in Section 5 enable us to

compute the following perpendicular classes in the category Rep(Q,M).

7.3 Proposition. Let C be a class of objects in an abelian category M.

(a) If M satisfies AB4, then one has f∗(C)⊥n =Rep(Q,C⊥n).

(b) If M satisfies AB4∗, then one has ⊥ng∗(C) = Rep(Q,⊥nC).
(c) If M satisfies AB3 and has enough injectives and C ⊇ InjM, then ⊥s∗(C) =

Φ(⊥C).
(d) If M satisfies AB3∗ and has enough projectives and C ⊇ PrjM, then

s∗(C)⊥ =Ψ(C⊥).

Proof

Parts (a) and (b) follow immediately from Proposition 5.2. In part (c), the inclu-

sion “⊇” follows from Proposition 5.4(a), and the opposite inclusion “⊆” fol-

lows from Propositions 5.6(a) and 5.4(a). Similarly, (d) follows from Proposi-

tions 5.4(b) and 5.6(b). �

7.4 Theorem. Let M be an abelian category that satisfies AB4 and AB4* and

which has enough projectives and injectives. Let (A,B) be a cotorsion pair in M
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which is generated by a class A0 (e.g., A0 =A) and cogenerated by a class B0

(e.g., B0 = B).
(a) The cotorsion pair in Rep(Q,M) generated by f∗(A0) is

Gf∗(A0) =
(⊥Rep(Q,B),Rep(Q,B)

)
.

If B0 ⊇ InjM, then the cotorsion pair in Rep(Q,M) cogenerated by s∗(B0)

is

Cs∗(B0) =
(
Φ(A),Φ(A)⊥

)
.

(b) The cotorsion pair in Rep(Q,M) cogenerated by g∗(B0) is

Cg∗(B0) =
(
Rep(Q,A),Rep(Q,A)⊥

)
.

If A0 ⊇ PrjM, then the cotorsion pair in Rep(Q,M) generated by s∗(A0)

is

Gs∗(A0) =
(⊥Ψ(B),Ψ(B)

)
.

Proof

Part (a) follows from Proposition 7.3(a,c) and (b) from Proposition 7.3(b,d). �

7.5 Remark. If A0 (resp., B0) is a set, then so is f∗(A0) (resp., g∗(B0)). Thus, if

the cotorsion pair (A,B) is generated by a set, then so is (⊥Rep(Q,B),Rep(Q,B)),
and if (A,B) is cogenerated by a set, then so is (Rep(Q,A),Rep(Q,A)⊥).

We will show in Theorem 7.9 below that if Q is left rooted, then the two cotorsion

pairs in part (a) of the theorem above are the same and, similarly, if Q is right

rooted, then the two cotorsion pairs in part (b) are the same.

Suppose that the cotorsion pair (A,B) has a certain property; for example,

(A,B) could be hereditary or complete. It is then natural to ask if the induced

cotorsion pairs in Theorem 7.4 have the same property.

7.6 Proposition. Adopt the setup and the notation from Theorem 7.4. If the

cotorsion pair (A,B) is hereditary, then so are all four cotorsion pairs in Theo-

rem 7.4.

Proof

Recall from Corollary 3.10 that the abelian category Rep(Q,M) has enough

projectives and enough injectives, so by 6.2 we only need to show that if A is

resolving, then so are Rep(Q,A) and Φ(A), and if B is coresolving, then so are

Rep(Q,B) and Ψ(B).
If A is resolving, then clearly so is Rep(Q,A). To see that Φ(A) is resolving,

note that Φ(A) is closed under extensions and contains all projective objects in

Rep(Q,M) as Φ(A) is the left half of a cotorsion pair. It remains to see that if

0→ X′ → X → X′′ → 0 is a short exact sequence in Rep(Q,M) with X,X′′ ∈Φ(A),

then one also has X′ ∈Φ(A). To this end, consider for every i ∈ Q0 the following

commutative diagram with exact rows:
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0
⊕

a∈Q∗→i
1

X′(s(a)
)

ϕX′
i

⊕
a∈Q∗→i

1
X
(

s(a)
)

ϕX
i

⊕
a∈Q∗→i

1
X′′(s(a)

)
ϕX′′

i

0

0 X′(i) X(i) X′′(i) 0

By assumption, ϕX
i and ϕX′′

i are monomorphisms with cokernels in A. From the

snake lemma and the assumption that A is resolving, it now follows that ϕX′

i

is a monomorphism with cokernel in A. Since this is true for every i ∈ Q0, we

conclude that X′ ∈Φ(A).

Similar arguments show that if B is coresolving, then so are Rep(Q,B) and

Ψ(B). �

As mentioned in Section 6.3, if the category M is Grothendieck with enough

projectives and the cotorsion pair (A,B) is generated by a set, then it is also

complete. If (A,B) is complete for this strong reason, then the induced cotor-

sion pair (⊥Rep(Q,B),Rep(Q,B))—which by Theorem 7.9 below is equal to

(Φ(A),Φ(A)⊥) when Q is left rooted—will also be complete, since it too is gen-

erated by a set (see Remark 7.5) and Rep(Q,M) is Grothendieck with enough

projectives (see Section 2.4 and Corollary 3.10).

Many complete cotorsion pairs in, for example, M = ModR, are known

to be generated by sets. For example, this is the case for the trivial cotorsion

pairs (PrjR,ModR) (generated by {0}) and (ModR, InjR) (generated by {R/a |
a ⊆ R ideal} because of Baer’s criterion). Also the flat cotorsion pair (FlatR,
(FlatR)⊥) is generated by a set; in fact, the flat cover conjecture was settled

affirmatively by proving the existence of such a generating set (see [1, Proposi-

tion 2]).

This gives a partial answer to the following.

7.7 Question. Is it true that if the cotorsion pair (A,B) is complete, then so

are the four cotorsion pairs in Theorem 7.4?

The next example gives a positive answer to this question in some other special

cases.

7.8 Example. Let Q be a finite quiver, and let M =ModR. In this case, the

path ring RQ is unital and the category Rep(Q,M) is equivalent to ModRQ. For

a cotorsion pair (A,B) in M=ModR, we write (Ã, B̃) for the induced cotorsion

pair (⊥Rep(Q,B),Rep(Q,B)) = (Φ(A),Φ(A)⊥) in ModRQ (see Theorem 7.9(a)

below).

We write GPrjR for the class of Gorenstein projective (left) R-modules (see

[7]). Under mild assumptions on R, it is known that every R-module has a special

Gorenstein projective precover (in the sense of Xu [26, Proposition 2.1.3]; see, e.g.,

the proof of Corollary 2.13 in Jørgensen [17] and the proof of Theorem A.1 in

Murfet and Salarian [20]), and hence (A,B) = (GPrjR, (GPrjR)⊥) is a complete
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cotorsion pair in ModR. It not known if this cotorsion pair is generated by a

set! Nevertheless, in this case the induced cotorsion pair (Ã, B̃) in ModRQ will

be complete as well, since it is nothing but (GPrjRQ, (GPrjRQ)⊥). This follows

from [11, Theorem 3.5.1(b)], as mentioned in the Introduction (Section 1).

Similarly, under weak hypotheses (see Krause [18, Theorem 7.12]), the

Gorenstein-injective cotorsion pair (⊥(GInjR),GInjR) is complete, even though

it is not known to be generated by a set. The induced cotorsion pair (Ā, B̄) =
(Rep(Q,A),Rep(Q,A)⊥) = (⊥Ψ(B),Ψ(B)) in ModRQ (see Theorem 7.9(b) below)

is also complete as it is nothing but the Gorenstein-injective cotorsion pair

(⊥(GInjRQ),GInjRQ) in ModRQ (see Introduction).

Recall from Sections 2.5 and 2.9 the definitions of left rooted and right rooted

quivers.

7.9 Theorem. Adopt the setup and the notation from Theorem 7.4.

(a) If Q is left rooted, then one has (⊥Rep(Q,B),Rep(Q,B)) = (Φ(A),Φ(A)⊥).

(b) If Q is right rooted, then one has (Rep(Q,A),Rep(Q,A)⊥) = (⊥Ψ(B),
Ψ(B)).

Proof

(a): From Theorem 7.4, we have

Rep(Q,B) = f∗(A)⊥ and Φ(A) = ⊥s∗(B),

and it must be shown that Rep(Q,B) = Φ(A)⊥. For all objects A ∈A and B ∈ B
and all vertices i, j ∈ Q0, we have

Ext1Rep(Q,M)

(
fi(A), s j(B)

)∼=Ext1M
(
A, eis j(B)

)∼= 0,

where the first isomorphism follows from Proposition 5.2(a) and the second iso-

morphism follows as (A,B) is a cotorsion pair, and since eis j(B) is in B (more

precisely, eis j(B) = 0 if i �= j and eis j(B) = B if i = j). This shows the inclusion

f∗(A)⊆ ⊥s∗(B), and consequently

Rep(Q,B) = f∗(A)⊥ ⊇
(⊥s∗(B))⊥ =Φ(A)⊥.

To show the opposite inclusion, it suffices by Lemma 6.8 to argue that every

Y ∈Rep(Q,B) has a Φ(A)⊥-cofiltration. To this end, let {Vα} be the transfinite

sequence of subsets of Q0 from Section 2.5. As Q is left rooted, we have Vλ = Q0

for some ordinal λ. For any Y ∈Rep(Q,M), we define, for every ordinal α� λ, a

representation Yα ∈Rep(Q,M) as follows:

Yα(i) =

{
Y(i) if i ∈ Vα

0 if i /∈ Vα

(i ∈ Q0).

For an arrow a : i → j in Q, the morphism

Yα(i)
Yα(a)

Yα( j) is

{
Y(a) if i ∈ Vα and j ∈ Vα,

0 if i /∈ Vα or j /∈ Vα.



Cotorsion pairs in categories of quiver representations 603

Note that Y0 = 0 since V0 = ∅ and that Yλ = Y since Vλ = Q0. For ordinals α�
β� λ, we define a morphism gαβ : Yβ → Yα as follows:

– If i ∈ Vα (⊆ Vβ by Lemma 2.7), then Yβ(i) = Y(i) = Yα(i), and we set gαβ(i) =
1Y(i).

– If i /∈ Vα, then Yα(i) = 0, and we set gαβ(i) = 0.

To see that gαβ really is a morphism of quiver representations, it must be argued

that for every arrow a : i → j in Q, the following diagram is commutative:

(10)

Yβ(i)
gαβ(i)

Yβ(a)

Yα(i)

Yα(a)

Yβ( j)
gαβ( j)

Yα( j)

If j /∈ Vα, then Yα( j) = 0 and (10) is obviously commutative. Assume that j ∈ Vα

(⊆ Vβ). If we do have an arrow a : i → j in Q, then it follows from Corollary 2.8

that we must have i ∈ Vα. In this situation, diagram (10) looks as follows, and it

is clearly commutative:

Y(i)
1Y(i)

Y(a)

Y(i)

Y(a)

Y( j)
1Y( j)

Y( j)

It is not hard to see that the following constructed system {gαβ : Yβ → Yα}α�β�λ
is a continuous inverse λ-sequence in Rep(Q,M) (see 6.7), and, as already noted,

we have Y0 = 0 and Yλ = Y . We will show that if Y ∈Rep(Q,B), then this system

is a Φ(A)⊥-cofiltration (of Y); that is, the representation Kα := Kergα,α+1 belongs

to Φ(A)⊥ for all α < λ. Note that

Kα(i) = Ker
(
gα,α+1(i)

)
=

{
Y(i) if i ∈ Vα+1 � Vα

0 otherwise
(i ∈ Q0).

We claim that for every arrow a : i → j in Q, the morphism Kα(a) : Kα(i)→ Kα( j)
is zero. Indeed, if j /∈ Vα+1 � Vα, then Kα( j) = 0 and hence Kα(a) is zero. If

j ∈ Vα+1 �Vα ⊆ Vα+1, then, if we do have an arrow a : i → j in Q, it follows from

Corollary 2.8 that i ∈ Vα and hence i /∈ Vα+1 � Vα. Thus one has Kα(i) = 0, and

therefore Kα(a) is also zero in this case. It follows that

Kα =
∏

i∈Vα+1�Vα

si
(
Y(i)

)
.

Now, if Y ∈Rep(Q,B), then each Y(i) belongs to B, and consequently one has

si
(
Y(i)

)
∈ s∗(B)⊆

(⊥s∗(B))⊥ =Φ(A)⊥
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for all i ∈ Q0. Since Φ(A)⊥ is closed under products in M, it follows that Kα ∈
Φ(A)⊥.

(b): The proof is dual to that of (a). �

At this point, the proofs of Theorems A and B from the Introduction are simply

a matter of collecting the appropriate references.

Proof of Theorem A

Since Q is left rooted, Theorem 7.4(a) yields that (Φ(A),Rep(Q,B)) is a cotor-

sion pair in Rep(Q,M), where Φ(A) is given in Definition 7.1. It follows from

Proposition 7.2(a) that this class Φ(A) equals the class from the Introduction,

which is denoted by the same symbol. The assertions about (Φ(A),Rep(Q,B))
being hereditary or being generated by a set follow from Proposition 7.6 and

Remark 7.5. �

Proof of Theorem B

The proof follows from Theorem 7.4(b), Proposition 7.2(b), Proposition 7.6, and

Remark 7.5 (see the proof of Theorem A above). �
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