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COTORSION PAIRS INDUCED BY DUALITY PAIRS

HENRIK HOLM AND PETER JORGENSEN

ABSTRACT. We introduce the notion of a duality pair and
demonstrate how the left half of such a pair is “often” covering
and preenveloping. As an application, we generalize a result
by Enochs et al. on Auslander and Bass classes, and we prove
that the class of Gorenstein injective modules, introduced by
Enochs and Jenda, is covering when the ground ring has a
dualizing complex.

1. Introduction. What is now known as semi-dualizing modules
were studied more than 25 years ago under other names by, e.g., Foxby
[15] (PG-modules of rank one), Golod [17 (suitable modules) and
Vasconcelos [33] (spherical modules). As a common generalization of
the notion of a semidualizing module and that of a dualizing complex,
in the sense of Hartshorne [18], Christensen [7] introduced in 2001 the
notion of a semidualizing complex, cf. (1.5).

Avramov and Foxby [1] and Christensen [7] demonstrated how a
semidualizing complex C' over a commutative Noetherian ring R gives
rise to two important classes of R-modules, namely the so-called Aus-
lander class AS and Bass class Bf, cf. (1.6). Semidualizing complexes
and their Auslander and Bass classes have caught the attention of sev-
eral authors, but this paper is motivated by a result of Enochs and Holm
[10], for which we prove the following generalization in Theorem 3.2.

Theorem A. Let R be a commutative Noetherian ring, and let C' be
a semidualizing complex of R-modules. Then the following conclusions
hold:

(a) (AS,(AS)*L) is a perfect cotorsion pair, in particular, the class AS
is covering. Furthermore, A§ is preenveloping.

(b) The class B§ is covering and preenveloping.
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Cotorsion pairs, introduced by Salce [28], covering classes and preen-
veloping classes are central notions in relative homological algebra. We
refer the reader to (1.2) and (1.3), and further to the monograph [12]
by Enochs and Jenda, for relevant details about these notions.

Theorem A extends the main result of [10] in two directions: In
[10], C is assumed to be a semidualizing module (as opposed to a
semidualizing compler), and furthermore the covering property of BS
is new.

To prove Theorem A, we first establish Theorem 3.1 and then combine
it with the fact that AOC and BOC are parts of appropriate duality pairs.
The latter notion is introduced in Definition 2.1. The technique used to
prove Theorem A applies to show that several other classes of modules
are covering and/or preenveloping; see, for example, Theorem B below.

Now, assume that R has a dualizing complex D in the sense of
Hartshorne [18], and consider a semidualizing R-module C. Then CT =
RHompg(C, D) is a semidualizing complex for which the associated
Auslander and Bass classes can be characterized in terms of two
homological dimensions introduced in [22], and studied further by
Sather-Wagstaff, Sharif and White [29-32]. More precisely, for any
R-module M, one has the following equivalences:

M e AS'(R) « C-GfdpM
M eBS'(R) < C-GidgM

dim R,
dim R.

NN

Here C-Gfdgr M and C-Gidg M are the so-called C-Gorenstein flat and
C-Gorenstein injective dimensions of M. Naturally, Theorem A applies
to the semidualizing complex CT, but in view of the equivalences above,
Theorem B below, which is a special case of Theorem 3.3, gives more
information.

Theorem B. Let R be a commutative Noetherian ring with a du-
alizing complex, and let n > 0 be an integer. Consider the following
classes of R-modules:

GF, = {M | C-Gfdr M
GIY = {M | C-Gidg M

b
}.

<n
<n

Then the next conclusions hold:
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(a) (GFY, (GF9)L) is a perfect cotorsion pair, in particular, GFC is
covering. Furthermore, GFS is preenveloping.

(b) The class GIS is covering and preenveloping.

For C = R and n = 0, Theorem B(a) asserts that the class of
Gorenstein flat modules is the left half of a perfect cotorsion pair,
and that it is preenveloping. The first of these results is proved by
Enochs and Lépez-Ramos [14, Corollary 2.11] and the other follows
immediately by combining [14, Prop. 2.10, Theorem 2.5 and Remark 3|
with [6, Theorem 5.7]. For C = R and n = 0, the second part of
Theorem B(b) asserts that the class of Gorenstein injective modules is
preenveloping. This is proved in [14, Corollary 2.7]. Actually, Krause
[24, Theorem 7.12] proves the existence of special Gorenstein injective
preenvelopes.

1. Preliminaries. In this section we introduce our terminology and
recall a few notions relevant for this paper.

(1.1) Setup. Throughout, R denotes a ring with identity, and
R° its opposite ring. Unless otherwise specified, all modules under
consideration are unitary left modules. Recall that a right R-module
can be identified with a left R°-module. We write Mod(R) for the
category of all (left) R-modules.

(1.2) Covers and envelopes. The following notions were coined by
Enochs [9].

Let M be any class of R-modules. An M-precover of an R-module N is
a homomorphism ¢: M — N, where M is in M, with the property that,
for every homomorphism ¢’: M’ — N, where M’ is in M, there exists a
(not necessarily unique) homomorphism ¢: M’ — M with ¢’ = .
An M-precover p: M — N is an M-cover if every homomorphism
Y: M — M satisfying ¢ = 1 is an automorphism. The class M is
called (pre)covering if every R-module has an M-(pre)cover.

The notion of an M-(pre)envelope is categorically dual to that of an
M-(pre) cover, and thus we will omit the definition here.
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(1.3) Cotorsion pairs. For a class M of R-modules one defines:

M = {X € Mod(R) | Extk(X, M) = 0 for all M € M},
ML = {Y € Mod(R) | Exth(M,Y) = 0 for all M € M}.

A cotorsion pair is a pair (M,N) of classes of R-modules with M = +N
and M+ = N. A cotorsion pair (M,N) is called perfect if M is covering
and N is enveloping. These notions go back to Salce [28].

(1.4) The derived category. We denote by D(R) the derived
category of the Abelian category Mod(R). We write Dy(R) for the
full subcategory of D(R) whose objects have bounded homology. The
right derived Hom functor and the left derived tensor product functor
are denoted by RHompg(—, —) and —®%—, respectively. The reader is
referred to Weibel [34, Chapter 10] for further details.

(1.5) Semidualizing complexes. The following is from Christensen
[7, Definition (2.1)].

Assume that R is commutative and Noetherian. A complex C' €
Dy (R) with degreewise finitely generated homology is semidualizing if
the natural homothety morphism R — RHompg(C,C) is an isomor-
phism in the derived category D(R).

(1.6) Auslander and Bass classes. Assume that R is commutative
and Noetherian, and let C be a semidualizing R-complex. The following
definitions are due to Avramov and Foxby [1, (3.1)] and Christensen
[7, (4.1)].

The Auslander class A®(R) consists of all M € Dy(R) such that
C®LM € Dy(R) and the canonical morphism M — RHomg(C,
C®L%M) in D(R) is an isomorphism.

The Bass class B¢ (R) consists of all N € Dy,(R) such that RHompg(C,
N) € Dy(R) and the canonical morphism C®%RHompg(C, N) — N in
D(R) is an isomorphism.

We write AS (R) and BS (R), or simply A§ and B if the ground ring
is understood, for the class of R-modules which, when considered as
objects in D(R), belong to A°(R) and BY(R), respectively.

(1.7) Remark. If C is a semidualizing R-module, then it is possible
to define A§ (R) and B§ (R) directly in Mod(R) without using D(R),
cf. [7, Observation (4.10)].
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(1.8) Homological dimensions. Let M be an arbitrary R-module.

We write fdg M and idg M for the flat and injective dimension of M.
These classical notions go back to Cartan and Eilenberg [4].

We write Gfdg M and Gidg M for the Gorenstein flat and Gorenstein
injective dimension of M. These notions were introduced by Enochs,
Jenda et al. [11, 13] and have subsequently been studied by several
authors.

When R is commutative and Noetherian, the definitions of Enochs,
Jenda et al. mentioned above have been extended in [22]: For a semi-
dualizing R-module C, cf. (1.5), [22] introduces a C-Gorenstein flat di-
mension C-Gfdr M and a C-Gorenstein injective dimension C-Gidg M.
For C' = R these invariants agree with GfdgM and GidgM, respec-
tively. The C-Gorenstein dimensions have been studied by, e.g., Sather-
Wagstaff, Sharif, and White [29-32].

(1.9) Depth and width. Assume that (R, m,k) is commutative
Noetherian local. The depth of a finitely generated R-module M # 0,
that is, the length of a maximal M -regular sequence, can be computed
as

depthr M = inf{m € Z | Ext'y (k, M) # 0}.

Foxby [16] defines the depth of an arbitrary R-module M by the
equality above, and Yassemi [36] studies the dual notion of width, which
is defined by

widthg M = inf{m € Z | TorZ (k, M) # 0}.

Note that depthgr0 = widthz0 = oo.

2. Duality pairs. In this section we define duality pairs and give
several examples. In the next section we will prove how suitable duality
pairs induce cotorsion pairs. For unexplained notions and notation, the
reader is referred to Section 1.

(2.1) Definition. A duality pair over R is a pair (M,C), where M
is a class of R-modules and C is a class of R°-modules, subject to the
following conditions:

(1) For an R-module M, one has M € M if and only if Homz(M, Q/
Z) e C.

(2) C is closed under direct summands and finite direct sums.
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A duality pair (M,C) is called (co)product-closed if the class M is
closed under (co)products in the category of all R-modules.

A duality pair (M,C) is called perfect if it is coproduct-closed, if M is
closed under extensions, and if R belongs to M.

(2.2) Example. Consider for each integer n > 0 the following module
classes:
F.={M € Mod(R) | f{dgM < n},

I, = {M € Mod(R°) | idg- M < n}.
The following examples of duality pairs are well-known.

(a) (Fn,l,) is a perfect duality pair. If R is right coherent, then this
pair is product-closed by a classical result of Chase [5, Theorem 2.1].

(b) If R is right Noetherian, then (I, F,,) is a product- and coproduct-
closed duality pair (over R°), cf. Xu [35, Lemma 3.1.4] and Bass [2,
Theorem 1.1].

(2.3) Example. Let B be a class of finitely presented R-modules.
Following Lenzing [26, Section 2] and [19, Definition 2.3], we consider
the class M of modules with support in B, and the class C of modules
with cosupport in B defined by:

M = lim B,
_>
C = Prod {Homgz(B,Q/Z) | B € B}.

Then (M,C) is a coproduct-closed duality pair by [26, Proposition 2.1]
and [19, Theorem 1.4]. For example, if B is the class of all finitely
generated projective R-modules, then (M,C) = (Fg,lp) by a classical
result of Lazard [25].

(2.4) Proposition. Assume that R is commutative and Noetherian,
and let C' be a semidualizing R-complex. Then one has:

(a) (Ag, Bg) is a perfect and product-closed duality pair.
(b) (BS,AS) is a product- and coproduct-closed duality pair.

Proof. That (AS,B§) and (B§,AS) are duality pairs follow from
(the proof of) [6, Lemma (3.2.9)]. That AS and BS are closed under
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products and coproducts follow from (the proof of) [8, Lemma 5.6].
The class AS clearly contains R, and it is closed under extensions by
(the proof of) [6, Lemma (3.1.13)]. o

(2.5) Lemma. Consider for each integer n > 0 the following module
classes:
GF,, = {M € Mod(R) | GfdgM < n},
Gl, = {M € Mod(R°) | Gidg- M < n}.
Then the following conclusions hold:

(a) If R is right coherent, then (GF,,Gl,) is a perfect duality pair.
If R is commutative Noetherian with a dualizing complex, then this
duality pair is product-closed.

(b) If R is commutative Noetherian with a dualizing complez, then
(Gl,, GF,,) is a product- and coproduct-closed duality pair (over R®).

Proof. (a) Since R is right coherent, it follows by [20, Proposition
3.11] that the given pair is a duality pair. The class GF,, is closed
under coproducts by [20, Proposition 3.13], and to see that GF, is
closed under extensions one applies [20, Theorems 3.14 and 3.15]. It is
clear that R belongs to GF,,.

If R is commutative and Noetherian with a dualizing complex, then
GF,, is closed under products by [8, Theorem 5.7].

(b) Since R is commutative with a dualizing complex, it follows by
(the proof of) [8, Proposition 5.1] that the given pair is a duality pair.
The class Gl,, is closed under products by [20, Theorem 2.6], and it is
closed under coproducts by [8, Theorem 6.9]. o

(2.6) Proposition. Assume that R is commutative and Noetherian,
and let C be a semidualizing R-module. Consider for each n > 0 the
following module classes:

GF¢ = {M € Mod(R) | C-Gfdg M
GIY = {M € Mod(R) | C-Gidg M

Then one has the following conclusions:

b
}.

<n
<n

(a) (GFC,GIY) is a perfect duality pair. If R has a dualizing complex
then this duality pair is product-closed.
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(b) If R has a dualizing complez, then (GIS,GFS) is a product- and
coproduct-closed duality pair.

Proof. (a) We denote by R x C the trivial extension of R by C, cf.
[3, subsection 3.3]. For any R-module M, it follows by [22, Theorem
2.16] that

(1) C-GfdgM = GfdgxcM and C-GidgpM = GidrxcM.
Combining this with [20, Proposition 3.11], one gets that

C—GidRHomz(M7 Q/Z) = GidecHomz(M, Q/Z)
= GfdrxcM
= C-GfdgM,

from which we conclude that (GFC,GI) is a duality pair. By Lemma
2.5(a), the class GF,, (R x (') is closed under coproducts and extensions;
and combining this with the first equality in (1), it follows that GFS
is closed under coproducts and extensions as well. Also note that R
belongs to GFC by [22, Example 2.8 (c)].

If R has a dualizing complex, then so has R X C, since it is a module
finite extension of R. Hence, GF, (R x () is closed under products by
Lemma 2.5(a), and by the first equality in () we then conclude that
GF,CLv is closed under products.

(b) Similar to the proof of part (a), but using the second equality in
(1) instead of the first, and using that for any R-module M one has:
C—GdeﬂomZ (M, Q/Z) = GdeKcHomZ (M, Q/Z)
= GidrxcM
= C-Gidg M.

The equalities above follow from (}) and (the proof of) [8, Proposition
5.1]. o

(2.7) Proposition. Let (R,m,k) be commutative Noetherian local.
Consider for each integer n > 0 the following module classes:
D, = {M € Mod(R) | depthg M > n},
W,, = {M € Mod(R) | widthgM > n}
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Then the following conclusions hold:

(a) (Dn,W,) is a product- and coproduct-closed duality pair. If
n < depth R, then this duality pair is perfect.

(b) (W,,Dy,) is a product- and coproduct-closed duality pair.

Proof. For every R-module M one has:

depthgrHomz (M, Q/Z) = widthg M,
WidthRHOmZ (M, Q/Z) = depthRM,

from which it follows that the pairs in (a) and (b) are duality pairs.
It is trivial from the definitions of depth and width, cf. (1.9), that D,
and W,, are closed under products, coproducts, direct summands and
extensions. O

We end this section by noting that the next easily proved result can
be applied to construct new duality pairs from existing ones.

(2.8) Proposition. Let (M, C,) be a family of duality pairs over R.
Then their intersection (WM, NC,,) is also a duality pair. Furthermore,
the following hold:

(a) If each (M, C,) is (co)product-closed then so is ("M, NC,,).
(b) If each (M, C,) is perfect, then so is (NM,,NC,,).

3. Existence of preenvelopes, covers, and cotorsion pairs.
The main result of this section, Theorem 3.1, shows that the left half
of a duality pair is “often” preenveloping and covering. We apply this
result to a few of the duality pairs found in Section 2.

(3.1) Theorem. Let (M, C) be a duality pair. Then M is closed under
pure submodules, pure quotients, and pure extensions. Furthermore, the
following hold:

(a) If (M,C) is product-closed, then M is preenveloping.
(b) If (M,C) is coproduct-closed, then M is covering.
(c) If (M,C) is perfect, then (M, M*) is a perfect cotorsion pair.
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Proof. First we prove that M is closed under pure submodules, pure
quotients, and pure extensions, that is, given a pure exact sequence of
R-modules,

0—M — M-— M'"—0,

then M is in M if and only if M, M are in M. Applying Homz(—, Q/Z)
to the sequence above, we get by Jensen and Lenzing [23, Theorem 6.4]
a split exact sequence,

0 — Homz(M",Q/Z) — Homgz(M,Q/Z)
— Homz(M',Q/Z) — 0.

By (2.1)(2) it follows that Homgz(M,Q/Z) is in C if and only if
Homgz(M’,Q/Z) and Homgz(M",Q/Z) both are in C. The desired
conclusion now follows by (2.1)(1).

(a) We have proved that M is closed under pure submodules. Since
M is also closed under products by assumption, it follows by Rada and
Saorin [27, Corollary 3.5 (c)] that M is preenveloping.

(b) We have proved that M is closed under pure quotients. By
assumption, M is also closed under coproducts, and therefore it follows
by [21, Theorem 2.5] that M is covering.

(c) We have proved that M is closed under pure submodules and
pure quotients. By assumption, M is also closed under coproducts and
extensions, and R belongs to M. Thus [21, Theorem 3.4] implies that
(M, ML) is a perfect cotorsion pair. O

As mentioned in the introduction, in the case where C is a semidu-
alizing module (as opposed to as semidualizing complez), the following
result, except the first assertion in part (b), is proved by Enochs et al.
[10].

(3.2) Theorem. Assume that R is commutative and Noetherian, and

let C be a semidualizing R-complex. Then the following conclusions
hold:

(a) (AS,(AS)Y) is a perfect cotorsion pair; in particular, the class
Ag s covering. Furthermore, AOC is preenveloping.

(b) The class BS is covering and preenveloping.
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Proof. (a) By Proposition 2.4(a), the class AS is the left half of a
perfect and product-closed duality pair. Thus, the conclusions follow
from Theorem 3.1 (c,a).

(b) By Proposition 2.4(b), the class BS is the left half of a product-
and coproduct-closed duality pair. The conclusions follow from Theo-
rem 3.1(a,b). o

(3.3) Theorem. Assume that R is commutative and Noetherian, let
C be a semidualizing R-module, and let n > 0 be an integer. Then one
has:

(a) (GFY,(GF9)Y) is a perfect cotorsion pair; in particular, GFS
is covering. If, in addition, R has a dualizing complex, then GFS 18
preenveloping.

(b) If R has a dualizing complex, then GIS is covering and preen-
veloping.

Proof. (a) By Proposition 2.6(a), the class GFS is the left half
of a perfect duality pair. Thus, the claimed perfect cotorsion pair
exists by Theorem 3.1(c). Under the assumption of the existence of a
dualizing R-complex, GFS is also product-closed by Proposition 2.6(a),
and therefore GF¢ is preenveloping by Theorem 3.1(a).

(b) If R has a dualizing complex, Proposition 2.6(b) gives that GIS
is the left half of a product- and coproduct-closed duality pair. Thus,
the assertions follow from Theorem 3.1(b,a). O
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