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1. Introduction

Let R be a commutative local Cohen–Macaulay ring with Krull dimension d.
Suppose that R has finite CM-type; this means that, up to isomorphism, R ad-
mits only finitely many indecomposable maximal Cohen–Macaulay modules
X1, . . . , Xn. In this case, the category MCM of maximal Cohen–Macaulay
R-modules has a representation generator, i.e., a module X ∈ MCM that
contains as direct summands all indecomposable maximal Cohen–Macaulay
R-modules (for example, X = X1 ⊕ · · · ⊕ Xn would be such a module). A
result, proved independently by Iyama [12] and Leuschke [14], shows that the
endomorphism ring E = EndR(X) has global dimension � max{2, d}, and
that equality holds if d � 2.

If R does not have finite CM-type, then MCM has no representation gen-
erator and there is a priori no endomorphism ring E to consider. However, re-
gardless of CM-type, one can always view the entire category MCM as a “ring
with several objects”1 and then study its (finitely presented) left/right “mod-
ules”, i.e., covariant/contravariant additive functors from MCM to abelian
groups. The category MCM-mod of finitely presented left modules over the
“several object ring” MCM is the natural object to investigate in the general
case. Indeed, if R has finite CM-type, then this category is equivalent to the

1 In Sect. 3, we recapitulate a few points from the theory of rings with several objects. The

classic references for this theory are Freyd [9,10] and Mitchell [15]. In [2, §2], Auslander
uses the terminology “uncoordinized ring” for a ring with several objects.

http://crossmark.crossref.org/dialog/?doi=10.1007/s00009-015-0557-8&domain=pdf
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category E-mod of finitely generated left E-modules, where E is the endo-
morphism ring introduced above. It turns out that MCM-mod and mod-MCM,
i.e., the categories of finitely presented left and right modules over MCM, are
abelian with enough projectives. Thus, one can naturally speak of the global
dimensions of these categories; they are called the left and right global di-
mensions of MCM, and they are denoted l. gldim (MCM) and r. gldim (MCM).
We show that there is an equality l. gldim (MCM) = r. gldim (MCM); this
number is simply called the global dimension of MCM, and it is denoted
by gldim (MCM). Our first main result, Theorem 4.10, shows that there are
inequalities,

d � gldim (MCM) � max{2, d}, (∗)

and thus it extends Iyama’s and Leuschke’s theorem to the case of arbitrary
CM-type. We prove the left inequality in (∗) by showing that MCM always
admits a finitely presented module with projective dimension d. Actually,
we show that if M is any Cohen–Macaulay R-module of dimension t, then
Extd−t

R (M,−) is a finitely presented left MCM-module and HomR(−,M) is a
finitely presented right MCM-module both with projective dimension equal
to d − t. Our second main result, Theorem 4.15, shows that if d = 0, 1, then
the left inequality in (∗) is an equality if and only if R is regular, that is,
there are equivalences:

gldim (MCM) = 0 ⇐⇒ R is a field.

gldim (MCM) = 1 ⇐⇒ R is a discrete valuation ring.

Note that, for an Artin algebra or a (possibly non-commutative) order R
over a complete regular local ring, the results in this paper were established
by Iyama [13, Thm. 3.6.2] (if, in addition, R is an isolated singularity, then
the results go back to Auslander [2, Thm. A.1]). The present paper employs
nothing, but elementary techniques from commutative algebra.

2. Preliminaries

2.1. Setup

Throughout, (R,m, k) is a commutative noetherian local Cohen–Macaulay
ring with Krull dimension d. It is assumed that R has a dualizing (or canon-
ical) module Ω.

The category of finitely generated projective R-modules is denoted proj;
the category of maximal Cohen–Macaulay R-modules (defined below) is de-
noted MCM; and the category of all finitely generated R-modules is denoted
mod.

The depth of a finitely generated R-module M �= 0, denoted depthR M ,
is the supremum of the lengths of all M -regular sequences x1, . . . , xn ∈ m.
This numerical invariant can be computed homologically as follows:

depthR M = inf{ i ∈ Z | Exti
R(k,M) �= 0 }.
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By definition, depthR 0 = inf ∅ = +∞. For a finitely generated R-module
M �= 0, one always has depthR M � d, and M is called maximal Cohen–
Macaulay if equality holds. The zero module is also considered to be max-
imal Cohen–Macaulay; thus an arbitrary finitely generated R-module M is
maximal Cohen–Macaulay if and only if depthR M � d.

2.2 It is well-known that the dualizing module Ω gives rise to a duality on
the category of maximal Cohen–Macaulay modules; more precisely, there is
an equivalence of categories:

MCM
HomR(−,Ω)

��
MCMop.

HomR(−,Ω)
��

We use the shorthand notation (−)† for the functor HomR(−,Ω). For any fi-
nitely generated R-module M , there is a canonical homomorphism δM : M →
M††, which is natural in M , and because of the equivalence above, δM is an
isomorphism if M belongs to MCM.

We will need the following results about depth; they are folklore and
easily proved.2

Lemma 2.1. Let n � 0 be an integer and let 0 → Xn → · · · → X0 → M →
0 be an exact sequence of finitely generated R-modules. If X0, . . . , Xn are
maximal Cohen–Macaulay, then one has depthR M � d − n.

Lemma 2.2. Let m � 0 be an integer and let 0 → Km → Xm−1 → · · · →
X0 → M → 0 be an exact sequence of finitely generated R-modules. If
X0, . . . , Xm−1 are maximal Cohen–Macaulay, then one has depthR Km �
min{d,depthR M + m}. In particular, if m � d then the R-module Km is
maximal Cohen–Macaulay.

We will also need a few notions from relative homological algebra.

Definition 2.3. Let A be a full subcategory of a category M. Following Enochs
and Jenda [8, def. 5.1.1], we say that A is precovering (or contravariantly
finite) in M if every M ∈ M has an A-precover (or a right A-approximation);
that is, a morphism π : A → M with A ∈ A such that every other morphism
π′ : A′ → M with A′ ∈ A factors through π, as illustrated by the following
diagram:

A′

��
�
�
�
� π′

��������

M

A
π

��������

The notion of A-preenvelopes (or left A-approximations) is categorically dual
to the notion defined above. The subcategory A is said to be preenveloping
(or covariantly finite) in M if every M ∈ M has an A-preenvelope.

2 One way to prove Lemmas 2.1 and 2.2 is by induction on n and m, using the behavior
of depth on short exact sequences recorded in Bruns and Herzog [5, Prop. 1.2.9].
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The following result is a consequence of Auslander and Buchweitz’s
maximal Cohen–Macaulay approximations.

Theorem 2.4. Every finitely generated R-module has an MCM-precover.

Proof. By [3, Thm. A], any finitely generated R-module M has a maximal
Cohen–Macaulay approximation, that is, a short exact sequence,

0 −→ I −→ X
π−→ M −→ 0,

where X is maximal Cohen–Macaulay and I has finite injective dimension.
A classic result of Ischebeck [11] (see also [5, Exerc. 3.1.24]) shows that
Ext1R(X ′, I) = 0 for every X ′ in MCM, and hence HomR(X ′, π) :
HomR(X ′,X) → HomR(X ′,M) is surjective. �

3. Rings with Several Objects

The classic references for the theory of rings with several objects are Freyd
[9,10] and Mitchell [15]. Below, we recapitulate a few definitions and results
that we need.

A ring A can be viewed as a preadditive category Ā with a single object
∗ whose endo hom-set HomĀ(∗, ∗) is A, and where composition is given by
ring multiplication. The category (Ā,Ab) of additive covariant functors from
Ā to the category Ab of abelian groups is naturally equivalent to the category
A-Mod of left A-modules. Indeed, an additive functor F : Ā → Ab yields a
left A-module whose underlying abelian group is M = F (∗) and where left
A-multiplication is given by am = F (a)(m) for a ∈ A = HomĀ(∗, ∗) and m ∈
M = F (∗). Note that, the preadditive category associated to the opposite
ring Ao of A is the opposite (or dual) category of Ā; in symbols: Ao = Ā op. It
follows that the category (Ā op,Ab) of additive covariant functors Ā op → Ab
(which correspond to additive contravariant functors Ā → Ab) is naturally
equivalent to the category Mod-A of right A-modules.

These considerations justify the well-known viewpoint that any skele-
tally small preadditive category A may be thought of as a ring with several
objects. A left A-module is an additive covariant functor A → Ab, and the
category of all such is denoted by A-Mod. Similarly, a right A-module is an
additive covariant functor Aop → Ab (which corresponds to an additive con-
travariant functor A → Ab), and the category of all such is denoted Mod-A.

From this point, we assume for simplicity that A is a skeletally small ad-
ditive category which is closed under direct summands (i.e., every idempotent
splits). The category A-Mod is a Grothendieck category, see [9, prop. 5.21],
with enough projectives. In fact, it follows from Yoneda’s lemma that the
representable functors A(A,−), where A is in A, constitute a generating set
of projective objects in A-Mod. A left A-module F is called finitely generated,
respectively, finitely presented (or coherent), if there exists an exact sequence
A(A,−) → F → 0, respectively, A(B,−) → A(A,−) → F → 0, for some
A,B ∈ A.3 The category of finitely presented left A-modules is denoted by

3 If the category A is only assumed to be preadditive, then one would have to modify
the definitions of finitely generated/presented accordingly. For example, in this case, a
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A-mod. The Yoneda functor,

Aop −→ A-Mod given by A �−→ A(A,−),

is fully faithful, see [9, thm. 5.36]. Moreover, this functor identifies the objects
in A with the finitely generated projective left A-modules, that is, a finitely
generated left A-module is projective if and only if it is isomorphic to A(A,−)
for some A ∈ A; cf. [9, exerc. 5-G].

Here is a well-known, but important, example:

Example 3.1. Let A be any ring and let A = A-proj be the category of
all finitely generated projective left A-modules. In this case, the category
A-mod = (A-proj)-mod is equivalent to the category mod-A of finitely pre-
sented right A-modules. Let us explain why:

Let F be a left (A-proj)-module, that is, an additive covariant functor
F : A-proj → Ab. For a ∈ A, the homothety map χa : A → A given by b �→ ba
is left A-linear and so it induces an endomorphism F (χa) of the abelian
group F (A). Thus, F (A) has a natural structure of a right A-module given
by xa = F (χa)(x) for a ∈ A and x ∈ F (A). This right A-module is denoted
e(F ), and we get a functor e, called evaluation, displayed in the diagram
below. The other functor f in the diagram, called functorfication, is given by
f(M) = M ⊗A − (restricted to A-proj) for a right A-module M .

(A-proj)-Mod
e

��
Mod-A

f
��

The functors e and f yield an equivalence of categories: For every right A-
module M , there is obviously an isomorphism (e◦ f)(M) = M ⊗A A ∼= M . We
must also show that every left (A-proj)-module F is isomorphic to (f◦e)(F ) =
F (A)⊗A−. For every P ∈ A-proj and y ∈ P the left A-linear map μy

P : A → P
given by a �→ ay induces a group homomorphism F (μy

P ) : F (A) → F (P ),
and thus one has a group homomorphism τP : F (A) ⊗A P → F (P ) given
by x ⊗ y �→ F (μy

P )(x). It is straightforward to verify that τ is a natural
transformation. To prove that τP is an isomorphism for every P ∈ A-proj it
suffices, since the functors F (A)⊗A − and F are both additive, to check that
τA : F (A) ⊗A A → F (A) is an isomorphism. However, this is evident.

It is not hard to verify that the functors e and f restrict to an equivalence
between finitely presented objects, as claimed.

Observation 3.2. Example 3.1 shows that for any ring A, the category
(A-proj)-mod is equivalent to mod-A. Since there is an equivalence of cat-
egories,

A-proj
HomA(−,A)

�� (proj-A)op,
HomAo (−,A)

��

Footnote 3 continued

left A-module F is called finitely generated if there is an exact sequence of the form
⊕n

i=1 A(Ai,−) → F → 0 for some A1, . . . , An ∈ A.
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it follows4 that (A-proj)-mod is further equivalent to ((proj-A)op)-mod, which
is the same as mod-(proj-A). In conclusion, there are equivalences of cate-
gories:

(A-proj)-mod � mod-A � mod-(proj-A).

Of course, by applying this to the opposite ring Ao, one obtains equivalences:

(proj-A)-mod � A-mod � mod-(A-proj).

In general, the category A-mod of finitely presented left A-modules is
an additive category with cokernels, but it is not necessarily an abelian sub-
category of A-Mod. A classic result of Freyd describes the categories A for
which A-mod is abelian. This result is stated in Theorem 3.4 below, but first
we explain some terminology.

A pseudo-kernel (also called a weak kernel) of a morphism β : B → C
in A is a morphism α : A → B such that the sequence

A(−, A)
A(−,α)

�� A(−, B)
A(−,β)

�� A(−, C)

is exact in Mod-A. Equivalently, one has βα = 0 and for every morphism
α′ : A′ → B with βα′ = 0 there is a (not necessarily unique!) morphism
θ : A′ → A with αθ = α′.

A

α
��

��
��

��
��

� 0

��

B
β

�� C

A′

θ

���
�
�
�
�
�
�

α′
		��������

0

		

We say that the category A has pseudo-kernels is every morphism in A has
a pseudo-kernel.

Pseudo-cokernels (also called weak cokernels) are defined dually.

Observation 3.3. Suppose that A is a full subcategory of an abelian cate-
gory M.

If A is precovering in M, see Definition 2.3, then A has pseudo-kernels.
Indeed, given a morphism β : B → C in A it has a kernel ι : M → B in
the abelian category M; and it is easily verified that if π : A → M is any
A-precover of M , then α = ιπ : A → B is a pseudo-kernel in A of β.

A similar argument shows that if A is preenveloping in M, then A has
pseudo-cokernels.

Theorem 3.4. The category mod-A (respectively, A-mod) of finitely presented
right (respectively, left) A-modules is an abelian subcategory of Mod-A (re-
spectively, A-Mod) if and only if A has pseudo-kernels (respectively, has
pseudo-cokernels).

Proof. See Freyd [10, thm. 1.4] or Auslander and Reiten [4, prop. 1.3]. �
4 cf. the proof of Proposition 4.4.
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Example 3.5. Let A be a left and right noetherian ring. As A is left noether-
ian, the category M = A-mod of finitely presented left A-modules is abelian,
and evidently A = A-proj is precovering herein. As A is right noetherian,
A-proj is also preenveloping in A-mod; cf. [8, Exa. 8.3.10]. It follows from Ob-
servation 3.3 that A-proj has both pseudo-kernels and pseudo-cokernels, and
therefore the categories mod-(A-proj) and (A-proj)-mod are abelian by Theo-
rem 3.4. Of course, this also follows directly from Observation 3.2 which shows
that mod-(A-proj) and (A-proj)-mod are equivalent to A-mod and mod-A, re-
spectively.

Note that if A-mod is abelian, i.e., if A has pseudo-cokernels, then every
finitely presented left A-module F admits a projective resolution in A-mod,
that is, an exact sequence

· · · −→ A(A1,−) −→ A(A0,−) −→ F −→ 0

where A0, A1, . . . belong to A. Thus, one can naturally speak of the projective
dimension of F (i.e., the length, possibly infinite, of the shortest projective
resolution of F in A-mod) and of the global dimension of the category A-mod
(i.e., the supremum of projective dimensions of all objects in A-mod).

Definition 3.6. In the case where the category A-mod (respectively, mod-A)
is abelian, then its global dimension is called the left (respectively, right)
global dimension of A, and it is denoted l. gldim A (respectively, r. gldim A).

Note that, l. gldim (Aop) is the same as r. gldim A (when these numbers
make sense).

Example 3.7. Let A be a left and right noetherian ring whose global di-
mension5 we denote gldim A. Recall that gldim A can be computed as the
supremum of projective dimensions of all finitely generated (left or right)
A-modules. It follows from Observation 3.2 that

l. gldim (A-proj) = gldim A = r. gldim (A-proj).

4. The Global Dimension of the Category MCM

We are now in a position to prove the results announced in the Introduction.

Example 4.1. Suppose that R has finite CM-type and let X be any rep-
resentation generator of the category MCM, cf. Sect. 1. This means that
MCM = addRX where addRX denotes the category of direct summands of
finite direct sums of copies of X. Write E = EndR(X) for the endomorphism
ring of X; this R-algebra is often referred to as the Auslander algebra. Note
that, X has a canonical structure as a left-R–left-E–bimodule R,EX. It is eas-
ily verified that there is an equivalence, known as Auslander’s projectivization,
given by:

MCM = addRX
HomR(X,−)

�� proj-E.
−⊗EX

��

5 Recall that for a ring which is both left and right noetherian, the left and right global
dimensions are equal; indeed, they both coincide with the weak global dimension.
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It now follows from Observation 3.2 that there are equivalences of categories:

MCM-mod � (proj-E)-mod � E-mod.

Similarly, there is an equivalence of categories: mod-MCM � mod-E.

Proposition 4.2. The category MCM has pseudo-kernels and pseudo-cokernels.

Proof. As MCM is precovering in the abelian category mod, see Theorem 2.4,
we get from Observation 3.3 that MCM has pseudo-kernels. To prove that
MCM has pseudo-cokernels, let α : X → Y be any homomorphism between
maximal Cohen–Macaulay R-modules. With the notation from 2.2 we let
ι : Z → Y † be a pseudo-kernel in MCM of α† : Y † → X†. We claim that
ι†δY : Y → Z† is a pseudo-cokernel of α, i.e., that the sequence

HomR(Z†, U)
HomR(ι†δY ,U)

�� HomR(Y,U)
HomR(α,U)

�� HomR(X,U) (1)

is exact for every U ∈ MCM. From the commutative diagram

X

δX
∼=

��

α
�� Y

δY
∼=

��

ι†δY
�� Z†

X†† α††
�� Y †† ι†

�� Z†

it follows that the sequence (1) is isomorphic to

HomR(Z†, U)
HomR(ι†,U)

�� HomR(Y ††, U)
HomR(α††,U)

�� HomR(X††, U) . (2)

Recall from 2.2 that there is an isomorphism U ∼= U††. From this fact and
from the “swap” isomorphism [7, (A.2.9)], it follows that the sequence (2) is
isomorphic to

HomR(U†, Z††)
HomR(U†,ι††)

�� HomR(U†, Y †††)
HomR(U†,α†††)

�� HomR(U†, X†††) . (3)

Finally, the commutative diagram

Z

δZ
∼=

��

ι
�� Y †

δ
Y †∼=

��

α†
�� X†

δ
X†∼=

��

Z†† ι††
�� Y ††† α†††

�� X†††

shows that the sequence (3) is isomorphic to

HomR(U†, Z)
HomR(U†,ι)

�� HomR(U†, Y †)
HomR(U†,α†)

�� HomR(U†,X†) ,

which is exact since ι : Z → Y † is a pseudo-kernel of α† : Y † → X†. �

We shall find the following notation useful.

Definition 4.3. For an R-module M , we use the notation (M,−) for the
left MCM-module HomR(M,−)|MCM, and (−,M) for the right MCM-module
HomR(−,M)|MCM.
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Theorem 3.4 and Proposition 4.2 show that MCM-mod and mod-MCM
are abelian, and hence the left and right global dimensions of the category
MCM are both well defined; see Definition 3.6. In fact, they are equal:

Proposition 4.4. The left and right global dimensions of MCM coincide,
that is,

l. gldim (MCM) = r. gldim (MCM).

This number is called the global dimension of MCM, and it is denoted
gldim (MCM). �

Proof. The equivalence in 2.2 induces an equivalence between the abelian
categories of (all) left and right MCM-modules given by:

MCM-Mod
F �→ F ◦ (−)†

��
Mod-MCM.

G ◦ (−)† �→G
�� (4)

These functors preserve finitely generated projective modules. Indeed, if P =
(X,−) with X ∈ MCM is a finitely generated projective left MCM-module,
then the right MCM-module P ◦ (−)† = (X, (−)†) is isomorphic to (−,X†),
which is finitely generated projective. Similarly, if Q = (−, Y ) with Y ∈
MCM is a finitely generated projective right MCM-module, then Q ◦ (−)† =
((−)†, Y ) is isomorphic to (Y †,−), which is finitely generated projective.

Since the functors in (4) are exact and preserve finitely generated pro-
jective modules, they restrict to an equivalence between finitely presented
objects, that is, MCM-mod and mod-MCM are equivalent. It follows that
MCM-mod and mod-MCM have the same global dimension, i.e., the left and
right global dimensions of MCM coincide. �

We begin our study of gldim (MCM) with a couple of easy examples.

Example 4.5. If R is regular, in which case the global dimension of R is
equal to d, then one has MCM = proj, and it follows from Example 3.7 that
gldim (MCM) = d.

Example 4.6. Assume that R has finite CM-type and denote the Auslander
algebra by E. It follows from Example 4.1 that gldim (MCM) = gldim E.

We turn our attention to projective dimensions of representable right
MCM-modules.

Proposition 4.7. Let M be a finitely generated R-module. Then, (−,M) is
a finitely presented right MCM-module with projective dimension equal to
d − depthR M .

Proof. First, we argue that (−,M) is finitely presented. By Theorem 2.4,
there is an MCM-precover π : X → M , which by definition yields an epi-
morphism (−, π) : (−,X) � (−,M). Hence, (−,M) is finitely generated. As
the Hom functor is left exact, the kernel of (−, π) is the functor (−,Ker π).
Since Ker π is a finitely generated R-module, the argument above shows that
(−,Ker π) is finitely generated, and therefore (−,M) is finitely presented.
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If M = 0, then (−,M) is the zero functor which has projective di-
mension d − depthR M = −∞. Thus, we can assume that M is non-zero
such that m := d − depthR M is an integer. By successively taking MCM-
precovers, whose existence is guaranteed by Theorem 2.4, we construct an ex-
act sequence of R-modules, 0 → Km → Xm−1 → · · · → X1 → X0 → M → 0,
where X0, . . . , Xm−1 are maximal Cohen–Macaulay and Km = Ker(Xm−1 →
Xm−2), such that the sequence

0 �� (−,Km) �� (−,Xm−1) �� · · · �� (−,X1) �� (−,X0) �� (−,M) �� 0

in mod-MCM is exact. Lemma 2.2 shows that depthR Km � min{d,depthR

M +m} = d, and hence Km is maximal Cohen–Macaulay. Thus, exactness of
the sequence displayed above shows that the projective dimension of (−,M)
is � m.

To prove that the projective dimension of (−,M) is � m, we must show
that if

0 �� (−, Yn)
τn

�� · · · �� (−, Y1)
τ1

�� (−, Y0)
τ0

�� (−,M) �� 0

is any exact sequence in mod-MCM, where Y0, . . . , Yn are maximal Cohen–
Macaulay, then n � m. By Yoneda’s lemma, each τi has the form τi = (−, βi)
for some homomorphism βi : Yi → Yi−1 when 1 � i � n and β0 : Y0 → M .
By evaluating the sequence on the maximal Cohen–Macaulay module R, it
follows that the sequence of R-modules,

0 �� Yn
βn

�� · · · �� Y1
β1

�� Y0
β0

�� M �� 0 ,

is exact. Thus, Lemma 2.1 yields depthR M � d − n, that is, n � m. �

In contrast to what is the case for representable right MCM-modules,
representable left MCM-modules are “often” zero. For example, if d > 0
then HomR(k,X) = 0 for every maximal Cohen–Macaulay R-module X, and
hence (k,−) is the zero functor. In particular, the projective dimension of a
representable left MCM-module is typically not very interesting. Proposition
4.9 below gives concrete examples of finitely presented left MCM-modules
that do have interesting projective dimension.

Lemma 4.8. For every Cohen–Macaulay R-module M of dimension t there is
the following natural isomorphism of functors MCM → Ab,

HomR((−)†,Extd−t
R (M,Ω)) ∼= Extd−t

R (M,−).

Proof. Since M is Cohen–Macaulay of dimension t one has Exti
R(M,Ω) = 0

for i �= d − t; see [5, Thm. 3.3.10]. Thus, there is an isomorphism in the
derived category of R,

Extd−t
R (M,Ω) ∼= Σd−tRHomR(M,Ω).

In particular, there is an isomorphism X† = HomR(X,Ω) ∼= RHomR(X,Ω)
for X ∈ MCM. This explains the first isomorphism below. The second iso-
morphism is trivial, the third one is by “swap” [7, (A.4.22)], and the fourth
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one follows as Ω is a dualizing R-module.

RHomR(X†,Extd−t
R (M,Ω)) ∼= RHomR(RHomR(X,Ω),Σd−tRHomR(M,Ω))

∼= Σd−tRHomR(RHomR(X,Ω),RHomR(M,Ω))

∼= Σd−tRHomR(M,RHomR(RHomR(X,Ω),Ω))

∼= Σd−tRHomR(M,X).

The assertion now follows by taking the zeroth homology group H0. �

Proposition 4.9. If M is any Cohen–Macaulay R-module of dimension t, then
the functor Extd−t

R (M,−)|MCM is a finitely presented left MCM-module with
projective dimension equal to d − t.

Proof. As M is Cohen–Macaulay of dimension t, so is Extd−t
R (M,Ω); see [5,

Thm. 3.3.10]. Proposition 4.7 shows that HomR(−,Extd−t
R (M,Ω))|MCM is a

finitely presented right MCM-module with projective dimension equal to d−t.
The proof of Proposition 4.4 now gives that

HomR((−)†,Extd−t
R (M,Ω))|MCM

is a finitely presented left MCM-module with projective dimension d − t, and
Lemma 4.8 finishes the proof. �

Theorem 4.10. The category MCM has finite global dimension. In fact, one
has

d � gldim (MCM) � max{2, d}.

In particular, if d � 2 then there is an equality gldim (MCM) = d.

Proof. The residue field k of R is a finitely generated R-module with depth
0. Thus, Proposition 4.7 shows that (−, k) is finitely presented right MCM-
module with projective dimension d. Consequently, we must have d �
gldim (MCM).

To prove the other inequality, set m = max{2, d} and let G be any
finitely presented right MCM-module. Take any exact sequence in mod-MCM,

(−,Xm−1)
τm−1

�� · · · �� (−,X1)
τ1

�� (−,X0)
ε

�� G �� 0 , (5)

where X0,X1, . . . , Xm−1 are in MCM. Note that, since m � 2 there is at
least one “τ” in this sequence. By Yoneda’s lemma, every τi has the form
τi = (−, αi) for some homomorphism αi : Xi → Xi−1. By evaluating (5) on
R, we get an exact sequence of R-modules:

Xm−1
αm−1

�� · · · �� X1
α1

�� X0 .

Since m � d it follows from Lemma 2.2 that the module Xm = Ker αm−1

is maximal Cohen–Macaulay. As the Hom functor is left exact, we see that
0 → (−,Xm) → (−,Xm−1) is exact. This sequence, together with (5), shows
that G has projective dimension � m. �

In view of Example 4.6 and Theorem 4.10, we immediately get the
following result due to Iyama [12, Thm. 1.4.1] and Leuschke [14, Thm. 6].
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Corollary 4.11. Assume that R has finite CM-type and let X be any repre-
sentation generator of MCM with Auslander algebra E = EndR(X). There
are inequalities,

d � gldim E � max{2, d}.

In particular, if d � 2 then there is an equality gldim E = d. �

Example 4.12. If d = 0 then MCM = mod and hence gldim (MCM) =
gldim (mod). Since mod is abelian, it is a well-known result of Auslander
[1] that the latter number must be either 0 or 2 (surprisingly, it can not be
1). Thus, one of the inequalities in Theorem 4.10 is actually an equality. If,
for example, R = k[x]/(x2) where k is a field, then gldim (mod) = 2.

Example 4.13. If d = 1 then Theorem 4.10 shows that gldim (MCM) = 1, 2.
The 1-dimensional Cohen–Macaulay ring R = k[[x, y]]/(x2) does not have
finite CM-type,6 and since it is not regular, it follows from Theorem 4.15
below that gldim (MCM) = 2.

Recall that in any abelian category with enough projectives (such as
mod-A in the case where A has pseudo-kernels) one can well-define and com-
pute Ext in the usual way.

Lemma 4.14. Assume that A is precovering in an abelian category M (in
which case, the category mod-A is abelian by Observation 3.3 and Theorem
3.4). Let

0 −→ A′ α′
−→ A

α−→ A′′

be an exact sequence in M where A, A′, A′′ belong to A. Consider the fi-
nitely presented right A-module G = Coker A(−, α), that is, G is defined by
exactness of the sequence

A(−, A)
A(−,α)

�� A(−, A′′) �� G �� 0 .

For any finitely presented right A-module H, there is an isomorphism of
abelian groups,

Ext2mod-A(G,H) ∼= Coker H(α′).

Proof. By the definition of G and left exactness of the Hom functor, the chain
complex

0 �� A(−, A′)
A(−,α′)

�� A(−, A)
A(−,α)

�� A(−, A′′) �� 0 , (6)

is a non-augmented projective resolution in mod-A of G. To compute
Ext2mod-A(G,H), we must first apply the functor (mod-A)(?,H) to (6) and
then take the second cohomology group of the resulting cochain complex. By
Yoneda’s lemma, there is a natural isomorphism

(mod-A)(A(−, B),H) ∼= H(B)

6 See Buchweitz et al. [6, Prop. 4.1] for a complete list of the indecomposable maximal
Cohen–Macaulay modules over this ring.
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for any B ∈ A; hence application of (mod-A)(?,H) to (6) yields the cochain
complex

0 �� H(A′′)
H(α)

�� H(A)
H(α′)

�� H(A′) �� 0 .

The second cohomology group of this cochain complex is Coker H(α′). �

Recall that a commutative ring is called a discrete valuation ring (DVR)
if it is a principal ideal domain with exactly one non-zero maximal ideal.
There are of course many other equivalent characterizations of such rings.

Theorem 4.15. If gldim (MCM) � 1, then R is regular. In particular, one has

gldim (MCM) = 0 ⇐⇒ R is a field.

gldim (MCM) = 1 ⇐⇒ R is a discrete valuation ring.

Proof. Assume that gldim (MCM) � 1. Let X be any maximal
Cohen–Macaulay R-module and let π : L � X be an epimorphism where
L is finitely generated and free. Note that Y = Ker π is also maximal Cohen–
Macaulay by Lemma 2.2, so we have an exact sequence,

0 −→ Y
ι−→ L

π−→ X −→ 0,

of maximal Cohen–Macaulay R-modules. With G = Coker(−, π) and H =
(−, Y ), we have

Coker(ι, Y ) ∼= Ext2mod-MCM(G,H) ∼= 0;

here, the first isomorphism comes from Lemma 4.14, and the second iso-
morphism follows from the assumption that gldim (MCM) � 1. Hence, the
homomorphism

HomR(L, Y )
HomR(ι,Y )

�� HomR(Y, Y )

is surjective. Thus, ι has a left inverse and X becomes a direct summand of
the free module L. Therefore, every maximal Cohen–Macaulay R-module is
projective, so R is regular.

The displayed equivalences now follows in view of Example 4.5 and the
fact that a regular local ring has Krull dimension 0, respectively, 1, if and
only if it is a field, respectively, a discrete valuation ring. �

As as corollary, we get the following addendum to Corollary 4.11.

Corollary 4.16. Assume that R has finite CM-type and let X be any rep-
resentation generator of MCM with Auslander algebra E = EndR(X). If
gldim E � 1, then R is regular. �
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