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Abstract Several authors have studied the filtered colimit closure lim−→B of a class
B of finitely presented modules. Lenzing called lim−→B the category of modules with
support in B, and proved that it is equivalent to the category of flat objects in
the functor category (Bop,Ab). In this paper, we study the category (Mod-R)B of
modules with cosupport in B. We show that (Mod-R)B is equivalent to the category
of injective objects in (B,Ab), and thus recover a classical result by Jensen-Lenzing
on pure injective modules. Works of Angeleri-Hügel, Enochs, Krause, Rada, and
Saorín make it easy to discuss covering and enveloping properties of (Mod-R)B,
and furthermore we compare the naturally associated notions of B-coherence and
B-noetherianness. Finally, we prove a number of stability results for lim−→B and
(Mod-R)B. Our applications include a generalization of a result by Gruson-Jensen
and Enochs on pure injective envelopes of flat modules.
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1 Introduction

Let B be a finitely presented left module over a ring R, and let � be its endo-
morphism ring. Since B is a left-�-left-R-bimodule, one can consider the functors

R-Mod

HomR(B,−)

��
Mod-�.

−⊗� B

��

An important observation in Auslander’s work on representation theory for Artin
algebras is that these functors give an equivalence between add B and proj-�; see
Notation 2.2. Actually, it follows by Lazard [35] that the functors above also induce
an equivalence between lim−→(add B) and Flat-�. In [36] Lenzing generalizes this result
even further by proving that for any additive category B of finitely presented left R-
modules, the Yoneda functor,

R-Mod −→ (Bop,Ab) , M �−→ HomR(−, M)|B
restricts to an equivalence between lim−→B and the category Flat(Bop,Ab) of flat
functors in the sense of Oberst-Röhrl [39] and Stenström [42]. The category lim−→ B
has several nice properties, and it has been studied in great detail by e.g. the authors
of [3–5, 13, 15, 34], and [36].

In this paper, we study the category of modules with cosupport in B,

(Mod-R)B = Prod{HomZ(B, Q/Z) | B ∈ B}.
The main theorem of Section 3 is a result dual to that of Lenzing [36, prop. 2.4].

Theorem 1.1 The tensor evaluation functor,

Mod-R −→ (B,Ab) , N �−→ (N ⊗R −)|B
restricts to an equivalence between (Mod-R)B and Inj(B,Ab).

Two special cases of Theorem 1.1 are worth mentioning: If B = add B for some
finitely presented module B with endomorphism ring �, it follows that the functors

Mod-R

−⊗R B
��

�-Mod
Hom�(B,−)

��

induce an equivalence between Prod{HomZ(B, Q/Z)} and �-Inj. For B = R-mod
we get an equivalence between the category of pure injective right R-modules and
Inj(R-mod,Ab). We refer to Jensen-Lenzing [30, thm. B.16]1 for this classical result.

1Unfortunately, the proof of Jensen-Lenzing [30, thm. B.16] does not apply to give a proof of
Theorem 1.1, as one key ingredient in their argument is the fact that the tensor evaluation functor

Mod-R −→ (R-mod,Ab) , N �−→ (N ⊗R −)|R-mod

is fully faithful. If R /∈ B the tensor evaluation functor in Theorem 1.1 is, in general, neither full nor
faithful as Example 3.3 shows. Our proof of Theorem 1.1 uses techniques—such as tensor products
of functors—different from those found in the proof of [30, thm. B.16].
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In Section 4 we investigate enveloping and covering properties of (Mod-R)B. One
easy consequence of Theorem 1.1 is the following:

Theorem 1.2 The class (Mod-R)B is enveloping in Mod-R. In addition, for a homo-
morphism h : N −→ I with I in (Mod-R)B, the following conditions are equivalent:

(i) h is a (Mod-R)B-envelope;
(ii) h is an essential B-monomorphism, cf. Definition 4.4.

Theorem 1.2 is not new, but it does cover several references in the literature:
That (Mod-R)B is enveloping also follows from Enochs-Jenda-Xu [19, thm. 2.1] and
Krause [32, cor. 3.15]. In the case where R is in B, the class of short (− ⊗R B)-exact
sequences constitutes a proper class in the sense of Stenström [41, §2], and hence
Theorem 1.2 also contains [41, prop. 4.5].

We stress that the hard parts of the proof of Theorem 1.3 below follow from refe-
rences to works of Angeleri-Hügel, Krause, Rada and Saorín, [2, 32, 33, 40].

Theorem 1.3 For the full subcategory (Mod-R)B of Mod-R, the following conditions
are equivalent:

(i) It is closed under coproducts;
(ii) It is closed under direct limits;

(iii) It is precovering;
(iv) It is covering;
(v) It is closed under pure submodules;

(vi) It is closed under pure submodules, pure quotients, and pure extensions;
(vii) It equals Add E for some right R-module E.

If the equivalent conditions in Theorem 1.3 are satisfied, R is called B-noetherian.
In Definition 4.2 we define what it means for R to be B-coherent. Using this
terminology, we end Section 4 by addressing the question of when a cotorsion pair
(M, (Mod-R)B) of finite type exists.

In Section 5 we prove stability results for modules with (co)support in B, e.g.

Theorem 1.4 A module F is in lim−→B if and only if HomZ(F, Q/Z) is in (Mod-R)B.

Theorem 1.5 Assume that R is in B. Then R is B-noetherian if and only if

(1) R is B-coherent, and
(2) Any right R-module E is in (Mod-R)B if only if HomZ(E, Q/Z) is in lim−→B.

We point out a couple of applications of the stability theorems above:
Corollary 5.3 gives conditions on a class E which ensure that E ∩ PureInj-R has the

form (Mod-R)B. In Example 2.6 we apply 5.3 to describe the modules with cosupport
in the category of G-dimension zero modules over a Gorenstein ring.

Corollary 5.7 generalizes a result by Gruson-Jensen [27] and Enochs [16] which
asserts that over a coherent ring, the pure injective envelope of a flat module is flat.

The paper ends with Appendix A where we show two results on injective and flat
functors. These results are needed to prove the stability theorems in Section 5.
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2 Preliminaries

In this preliminary section, we introduce our notation, define modules with cosupp-
port in B, and briefly present some relevant background material.

Setup 2.1 Throughout this paper, R is any unital ring and B denotes any additive full
subcategory of the category of finitely presented left R-modules.

Notation 2.2 We write R-Mod/Mod-R for the category of left/right R-modules, and
Ab for the category of abelian groups. As in Krause-Solberg [34], we define for
C ⊆ R-Mod four full subcategories of R-Mod by specifying their objects as below.

• add C – direct summands of finite (co)products of modules from C;
• Add C – direct summands of arbitrary coproducts of modules from C;
• Prod C – direct summands of arbitrary products of modules from C;
• lim−→ C – filtered colimits, cf. [37, IX.§1], of modules from C.

Some authors [4, 5, 34] use the notation lim−→ C—others [3], [13, §4] write 	C. The
following specific categories of modules play a central role in our examples.

• mod – finitely presented modules;
• proj – finitely generated projective modules;
• Flat/Inj/Proj – flat/injective/projective modules;
• PureInj – pure injective modules.

Definition 2.3 Modules with support in B were defined by Lenzing [36],

(R-Mod)B = lim−→B.

In this paper we study the category of right R-modules with cosupport in B,

(Mod-R)B = Prod{HomZ(B, Q/Z) | B ∈ B}.

Example 2.4 The following is well-known.

(a) If B = R-proj then (Mod-R)B = Inj-R.
(b) If B = R-mod then (Mod-R)B = PureInj-R.

Example 2.5 Let R be commutative and noetherian, let C be a semidualizing2

R-module, and let B = addC. Combining Example 2.4(a) with the isomorphism

HomZ(C, Q/Z) ∼= HomR(C, HomZ(R, Q/Z)),

it is easily seen that (Mod-R)B consists exactly of modules of the form HomR(C, E),
where E is injective. These modules play a central role in e.g. [20, 21], and [29].

2A finitely generated module is semidualizing if the homothety map R −→ HomR(C, C) is an
isomorphism. Semidualizing modules have been studied under different names by Foxby [22] (PG-
modules of rank one), Golod [26] (suitable modules), and Vasconcelos [43] (spherical modules).
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Above it was tacitly used that if M is a direct summand of HomR(C, E), where E
is injective, then M also has this form. In fact, as C ⊗R HomR(C, E) ∼= E it follows
that C ⊗R M is injective, and it is not hard to see that HomR(C, C ⊗R M) ∼= M.

Example 2.6 Assume that R is Iwanaga-Gorenstein, that is, R is two-sided
noetherian and has finite injective dimension from both sides. Consider:

– The class B of G-dimension zero3 left R-modules, cf. Auslander-Bridger [7];
– The class E of Gorenstein injective4 right R-modules, cf. Enochs-Jenda [17].

Then there is an equality (Mod-R)B = E ∩ PureInj-R.

Proof We apply Corollary 5.3. By [28, thm. 2.6] the class E is closed under products
and direct summands. Condition 5.3(1) holds by [12, prop. 3.8] and [28, thm. 3.6]; and
condition 5.3(2) holds by [18, cor. 10.3.9] and [18, thm. 10.3.8]. 
�

Functor categories 2.7 Let C be any additive and skeletally small category, for
example C = B from Setup 2.1. We adopt the notation of [13, 34] and write (C,Ab)
for the category of all additive covariant functors C −→ Ab.

It is well-known, cf. [24, II.§1] that (C,Ab) is an abelian category with small
Hom-sets, and that (C,Ab) admits the same categorical constructions (such as exact
direct limits) as Ab does. The representable functors C(C,−) are projective objects,
and they constitute a generating set. Thus (C,Ab) has injective hulls in the sense of
[24, II.§5, §6]. We write Inj(C,Ab) for the category of injective objects in (C,Ab).

A functor F is finitely generated if there is an exact sequence C(C,−) → F → 0
for some C ∈ C. Similarly, F is finitely presented if there exists an exact sequence
C(C1,−) → C(C0,−) → F → 0 with C0, C1 ∈ C.

Flat functors 2.8 Oberst-Röhrl [39, §1] and Stenström [42, §3] construct over any
preadditive and skeletally small category C a right exact tensor product,

(Cop,Ab) × (C,Ab) −→ Ab , (F, G) �−→ F ⊗C G

which has the following properties for all F and G as above, and all A ∈ Ab.

(a) HomZ(F ⊗C G, A) ∼= (C,Ab)(G, HomZ(F, A)) ∼= (Cop,Ab)(F, HomZ(G, A)).
(b) F ⊗C C(C,−) ∼= FC and C(−, C) ⊗C G ∼= GC.

A functor F in (Cop,Ab) is flat if F ⊗C − is exact, however, [13, thm. (1.3)],
[39, thm. (3.2)], and [42, thm. 3] contain several equivalent characterizations of
flatness.

We write Flat(Cop,Ab) for the category of flat functors in (Cop,Ab).

3A f.g. R-module B is of G-dimension zero if Ext�1(B, R) = 0 = Ext�1(Hom(B, R), R) and if the
biduality homomorphism B −→ Hom(Hom(B, R), R) is an isomorphism.
4 M is Gorenstein injective if there is an exact sequence E = · · · → E1 → E0 → E−1 → · · · of
injective modules such that Hom(I, E) is exact for all injective I and M ∼= Ker(E0 → E−1).
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3 An Equivalence Between Two Categories

In this section, we prove that the category (Mod-R)B of modules with cosupport in B
is equivalent to the category of injective objects in the functor category (B,Ab).

Definition 3.1 The tensor evaluation functor with respect to B is defined as

Mod-R −→ (B,Ab) , N �−→ (N ⊗R −)|B.

Remark 3.2 For B = R-mod the tensor evaluation functor is studied in e.g. [6, 25, 30,
32]. In this case, the tensor evaluation is fully faithful, as the inverse of

HomRop(M, N)
∼=−→ (B,Ab)

(
(M ⊗R −)|B, (N ⊗R −)|B

)

is given by evaluating a natural transformation on the ground ring R.

Example 3.3 For general B, the tensor evaluation functor is neither full nor faithful.
To see this, let R = Z, let p �= q be prime numbers and set B = addZ/(p).

(a) As Z/(p) ⊗Z Z/(p) ∼= Z/(p) the functors (Z/(p) ⊗Z −)|B and (Z ⊗Z −)|B are
equivalent, and since HomZ(Z/(p), Z) ∼= 0, the tensor evaluation is not full.

(b) As Z/(q) ⊗Z Z/(p) ∼= 0 we get (Z/(q) ⊗Z −)|B = 0, so from the isomorphism
HomZ(Z/(q), Z/(q)) ∼= Z/(q), the tensor evaluation cannot be faithful.

Part (d) of the next result shows that the tensor evaluation functor does become
fully faithful when appropriately restricted.

Proposition 3.4 The following conclusions hold:

(a) The tensor evaluation functor, cf. Definition 3.1, is additive and commutes with
small filtered colimits and products.

(b) For B ∈ B there is a natural equivalence of functors B −→ Ab,

(HomZ(B, Q/Z) ⊗R −)|B ∼= HomZ(B(−, B), Q/Z).

(c) For F ∈ (B,Ab) and B ∈ B there is a natural isomorphism of abelian groups,

HomZ(FB, Q/Z)
∼=−→ (B,Ab)

(
F, (HomZ(B, Q/Z) ⊗R −)|B

)
.

(d) Let N and I be right R-modules with I in (Mod-R)B. The homomorphism in Ab
induced by the tensor evaluation functor is then an isomorphism,

HomRop(N, I)
∼=−→ (B,Ab)

(
(N ⊗R −)|B, (I ⊗R −)|B

)
.

Proof

“(a)”: Clearly, the tensor evaluation functor is additive. It commutes with filtered
colimits by [44, cor. 2.6.17], and with products by [18, thm. 3.2.22].

“(b)”: As B consists of finitely presented modules, [9, prop. VI.5.3] gives that

(HomZ(B, Q/Z) ⊗R −)|B ∼= HomZ(HomR(−, B), Q/Z)|B
∼= HomZ(B(−, B), Q/Z).
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“(c)”: By part (b) we get the first isomorphism in:

(B,Ab)(F, (HomZ(B, Q/Z) ⊗R −)|B) ∼= (B,Ab)(F, HomZ(B(−, B), Q/Z))

∼= HomZ(B(−, B) ⊗B F, Q/Z)

∼= HomZ(FB, Q/Z).

The second and third isomorphisms are by 2.8(a) and (b), respectively.
“(d)”: By Definition 2.3, I is a direct summand of a product of modules of

the form HomZ(B, Q/Z) where B ∈ B. Thus, since the tensor evaluation
functor and the covariant Hom-functors HomRop(N,−) and (B,Ab)((N ⊗R

−)|B, ?) are additive and commute with products, we may assume that I =
HomZ(B, Q/Z) with B ∈ B. We then apply part (c) with F = (N ⊗R −)|B to
get the first isomorphism in:

(B,Ab)((N ⊗R −)|B, (I ⊗R −)|B) ∼= HomZ(N ⊗R B, Q/Z)

∼= HomRop(N, I).

The second isomorphism is by adjunction [9, prop. II.5.2] and by definition of I. 
�

Definition 3.5 A homomorphism of right R-modules h : M −→ N is called a
B-monomorphism if h ⊗R B is a monomorphism for all B in B.

Lemma 3.6 If I has cosupport in B and h : I −→ N is a B-monomorphism, then h is
a split monomorphism.

Proof By our assumptions and by the isomorphism,

HomRop(h, HomZ(B, Q/Z)) ∼= HomZ(h ⊗R B, Q/Z),

it follows that HomRop(h, HomZ(B, Q/Z)) is surjective for every B in B. Combining
this with Definition 2.3, we see that HomRop(h, J) is surjective for all J with cosupport
in B, that is, every homomorphism I −→ J factors through h. If I has cosupport in
B, we apply this to id : I −→ I to get the desired conclusion. 
�

Once we have proved Theorem 1.1, the following Lemmas 3.7 and 3.8 will be
superfluous. These lemmas are the key ingredients in proving essential surjectivity of
the tensor evaluation when viewed as a functor from (Mod-R)B to Inj (B,Ab).

Lemma 3.7 Every functor F in (B,Ab) can be embedded into a functor of the form
(I ⊗R −)|B where I has cosupport in B.

Proof Applying Gabriel’s result [24, (proof of) II.§1 prop. 3] to HomZ(F, Q/Z) we
get a family of index sets {UB}B∈B and an exact sequence in (Bop,Ab) of the form,

∐
B∈BB(−, B)(UB) −→ HomZ(F, Q/Z) −→ 0.

Applying HomZ(−, Q/Z) to this sequence, we get an exact sequence in (B,Ab),

0 −→ HomZ(HomZ(F, Q/Z), Q/Z) −→ HomZ

(∐
B∈BB(−, B)(UB), Q/Z

)
.
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The module I defined by
∏

B∈B HomZ(B, Q/Z)UB has cosupport in B, and we have a
natural equivalence for the latter functor above:

HomZ

(∐
B∈BB(−, B)(UB), Q/Z

) ∼= ∏
B∈B HomZ(B(−, B), Q/Z)UB

∼= ∏
B∈B(HomZ(B, Q/Z) ⊗R −)| UB

B
∼= (I ⊗R −)|B.

The second isomorphism follows by Proposition 3.4(b), and the third one since the
tensor evaluation functor commutes with products. To finish the proof, note that F
embeds into its double Pontryagin dual HomZ(HomZ(F, Q/Z), Q/Z). 
�

The author thanks the anonymous referee for making the following elegant proof
of Lemma 3.8 available. The author’s original proof used Eilenberg’s swindle and
was more elaborate.

Lemma 3.8 If a functor F in (B,Ab) is a direct summand of (I ⊗R −)|B where I has
cosupport in B, then F(−) ∼= (J ⊗R −)|B for some J with cosupport in B.

Proof If F is a direct summand of (I ⊗R −)|B, then there is a corresponding
idempotent e in the endomorphism ring End

(
(I ⊗R −)|B

)
. By Proposition 3.4(d), e

lifts to an idempotent e′ in EndR(I) which, in turn, corresponds to a direct summand
J of I. It is straightforward to check that F(−) ∼= (J ⊗R −)|B. 
�

We are now ready to prove Theorem 1.1 from the Introduction. Note that this
result is well-known in the case where B = R-mod, see for example [30, thm. B.16].

Proof of Theorem 1.1 First we must argue that the functor (I ⊗R −)|B is injective if
I has cosupport in B. By Definition 2.3 and Proposition 3.4(a) we may assume that I
has the form HomZ(B, Q/Z) for some B in B. Now, let

� = 0 −→ F ′ −→ F −→ F ′′ −→ 0

be a short exact sequence in (B,Ab), in particular,

0 −→ HomZ(F ′′ B, Q/Z) −→ HomZ(FB, Q/Z) −→ HomZ(F ′ B, Q/Z) −→ 0 (†)

is exact in Ab. By Proposition 3.4(c), the sequence (†) is isomorphic to

(B,Ab)
(
�, (HomZ(B, Q/Z) ⊗R −)|B

) = (B,Ab)
(
�, (I ⊗R −)|B

)
, (‡)

and since Eq. (†) is exact, so is Eq. (‡). Thus, (I ⊗R −)|B is injective in (B,Ab).
To show that the tensor evaluation functor gives the claimed equivalence, we

argue that it is fully faithful and essentially surjective when viewed as a functor from
(Mod-R)B to Inj(B,Ab).

By Proposition 3.4(d), the restriction of the tensor evaluation functor to (Mod-R)B

is fully faithful, and essential surjectivity follows from Lemmas 3.7 and 3.8. 
�

Remark 3.9 By Theorem 1.1, every F in Inj(B,Ab) has the form F ∼= (I ⊗R −)|B for
a unique (up to isomorphism) module I with cosupport in B. However, if the functor
(I ⊗R −)|B is injective, I need not have cosupport in B.
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For example, if as in Example 3.3 we let R = Z and B = addZ/(p), it follows from
the isomorphism HomZ(Z/(p), Q/Z) ∼= Z/(p) that Z/(q) does not have cosupport in
B. However, (Z/(q) ⊗Z −)|B is the zero functor and thus it is injective.

Proposition 3.10 Let N be in Mod-R. Then (N ⊗R −)|B is in Inj(B,Ab) if and only if
there exists I in (Mod-R)B and a (− ⊗R B)-isomorphism N −→ I.

Thus, if R is in B then (N ⊗R −)|B ∈ Inj(B,Ab) if and only if N ∈ (Mod-R)B.

Proof The first assertion is clear from Proposition 3.4(d) and Theorem 1.1. For the
last assertion we note that if ϕ is a (− ⊗R B)-isomorphism and R is in B, then ϕ is an
isomorphism. 
�

Proposition 3.11 Let M be in R-Mod. Then HomR(−, M)|B is in Flat(Bop,Ab) if and
only if there exists F in lim−→B and a HomR(B,−)-isomorphism F −→ M.

Thus, if R ∈ B then HomR(−, M)|B ∈ Flat(Bop,Ab) if and only if M ∈ lim−→B.

Proof By the proof of [36, Proposition 2.4], the homomorphism of abelian groups,

HomR(F, M) −→ (Bop,Ab)(HomR(−, F)|B, HomR(−, M)|B),

induced by the Yoneda functor R-Mod −→ (Bop,Ab) is an isomorphism for all F in
lim−→B. From this fact and from [36, Proposition 2.4] the first assertion follows.

For the last assertion we note that if ϕ is a HomR(B,−)-isomorphism and R is in
B, then ϕ is an isomorphism. 
�

4 Covers and Envelopes by Modules with (Co)support

The reader is assumed to be familiar with the notions of precovering (contravariantly
finite), preenveloping (covariantly finite), covering, and enveloping subcategories.
We refer to e.g. [18, chap. 5.1 and 6.1] for the relevant definitions.

By El Bashir [15, thm. 3.2] the class lim−→B is covering, in particular, it is closed
under coproducts in R-Mod. The next result due to Crawley-Boevey [13, thm.(4.2)]
and Krause [32, prop. 3.11] characterizes when lim−→B is closed under products.

Theorem 4.1 The following conditions are equivalent:

(i) lim−→B is closed under products in R-Mod;
(ii) lim−→B is preenveloping in R-Mod;

(iii) B is preenveloping in R-mod;
(iv) lim−→B is definable.

Definition 4.2 R is called B-coherent if the conditions in Theorem 4.1 are satisfied.

Example 4.3 The following conclusions hold.

(a) If B = R-proj then lim−→B = R-Flat by Lazard [35], so by Chase [10, thm. 2.1], R
is B-coherent if and only if it is right coherent in the classical sense.

(b) If B = R-mod then lim−→B = R-Mod by [30, (7.15)], so all rings are B-coherent.
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As an easy application of Theorem 1.1, we now prove Theorem 1.2. In view of
Example 2.4, Theorem 1.2 implies the existence of injective hulls and pure injective
envelopes. The first of these classical results was proved by Eckmann and Schopf
[14], and the second one by Fuchs [23] and Kiełpiński [31].

Definition 4.4 A homomorphism h : N −→ M of right R-modules is called an essen-
tial B-monomorphism if it is a B-monomorphism in the sense of Definition 3.5 and if
any homomorphism g : M −→ L is a B-monomorphism if g ◦ h is so.

Proof of Theorem 1.2 Since an envelope is unique up to isomorphism, cf. [45,
prop. 1.2.1], it suffices to argue that every N admits an essential B-monomorphism
h : N −→ I with I in (Mod-R)B, and that every such map is a (Mod-R)B-envelope.

To this end, let u : (N ⊗R −)|B −→ U be an injective hull in (B,Ab), see Functor
categories 2.7. By Theorem 1.1, the functor U has the form (I ⊗R −)|B for an I
with cosupport in B, and by Proposition 3.4(d), u is induced by a homomorphism
h : N −→ I. It is easily seen that h is an essential B-monomorphism. Another
application of Theorem 1.1, combined with [24, II.§5, prop. 8], gives that if h is an
essential B-monomorphism then it is also a (Mod-R)B-envelope. 
�

We are now ready to prove Theorem 1.3, which characterizes when (Mod-R)B is
closed under coproducts. The hard parts of the proof of Theorem 1.3 follow from
references to work of Angeleri-Hügel, Krause, Rada, and Saorín, [2, 32, 33, 40].

Proof of Theorem 1.3 It suffices to prove the implications:

(iii) �� (i)

��

(ii)��

(vi)

�� ������

(iv)

��

(vii)�� �� (v)

		��� ���

“(i) ⇒ (vii)”: Note that (Mod-R)B = Prod J, where J is
∏

α∈A HomZ(Bα,

Q/Z) and {Bα}α∈A is a set of representatives for the isomor-
phism classes in B. By Definition 2.3, all modules in (Mod-R)B

are pure injective. Hence (i) implies that J is �-pure-injective,
and the proof of [2, prop. 6.10] gives the desired conclusion.

“(vii) ⇒ (iv)”: If (vii) holds then E is product complete, cf. [33, §3], and it
follows by [33, cor. 3.6] that (Mod-R)B is closed under direct
limits. By [40, cor. 3.7(a)], the class (Mod-R)B is also precov-
ering, and hence it is covering by [45, thm. 2.2.8].

“(iv) ⇒ (iii) ⇒ (i)”: The first implicaton is trivial, and the latter is a consequence of
[40, thm. 3.4] since (Mod-R)B is closed under direct summands.

“(vii) ⇒ (v)”: By [32, thm. 6.7], the assumption (vii) ensures that (Mod-R)B

is definable, in particular, it is closed under pure submodules,
cf. [32, thm. 2.1].

“(v) ⇒ (vi)”: Let η = 0 → N′ → N → N′′ → 0 be pure exact. If N′ and N′′
are in (Mod-R)B then, as N′ is pure injective, η splits and
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N ∼= N′ ⊕ N′′ ∈ (Mod-R)B. If N is in (Mod-R)B, the assump-
tion (v) gives that N′ is in (Mod-R)B. As before, the sequence
splits, and N′′ is in (Mod-R)B since it is a direct summand
of N.

“(vi) ⇒ (ii)”: Let ϕμλ : Iλ −→ Iμ be a direct system of modules from
(Mod-R)B. As

∏
Eλ is in (Mod-R)B, as

∐
Eλ −→ ∏

Eλ is
a pure monomorphism, and since

∐
Eλ −→ lim−→ Eλ is a pure

epimorphism, we conclude that lim−→ Eλ is in (Mod-R)B.
“(ii) ⇒ (i)”: A coproduct is the direct limit of its finite sub-coproducts. 
�

Definition 4.5 R is B-noetherian if the conditions in Theorem 1.3 are satisfied.

Example 4.6 The following conclusions hold.

(a) If B = R-proj then (Mod-R)B = Inj-R cf. 2.4(a), so by Bass [8, thm. 1.1], R is
B-noetherian if and only if it is right noetherian in the classical sense.

(b) If B = R-mod then (Mod-R)B = PureInj-R cf. 2.4(b), so by [30, thm. B.18], R is
B-noetherian if and only if it is right pure semi-simple.

Corollary 4.7 Assume that B ⊆ B′ are two additive full subcategories of R-mod. If the
ring R is B′-noetherian then it is also B-noetherian.

Proof Assume that R is B′-noetherian and let {Eλ} be a family in (Mod-R)B. By our
assumptions, (Mod-R)B ⊆ (Mod-R)B

′
, and the latter is closed under coproducts. It

follows that
∐

Eλ belongs to (Mod-R)B
′

and, in particular,
∐

Eλ is pure injective.
Thus, the pure monomorphism

∐
Eλ −→ ∏

Eλ is split, and since
∏

Eλ belongs to
(Mod-R)B then so does

∐
Eλ. Thus R is B-noetherian by Theorem 1.3. 
�

Recall that if M ⊆ Mod-R then (M, (Mod-R)B) is a cotorsion pair if

Ker Ext1Rop(M,−) = (Mod-R)B and M = Ker Ext1Rop

(−, (Mod-R)B
)
.

If a cotorsion pair (M, (Mod-R)B) exists, then it is said to be of finite type provided
that there is a set S ⊆ mod-R such that Ker Ext1Rop(S, −) = (Mod-R)B.

Note that if R is right coherent and (M, (Mod-R)B) is a cotorsion pair of finite
type, then (Mod-R)B is closed under coproducts, that is, R is B-noetherian. In
Example 4.8 and Corollary 4.10 below we give examples of situations where
B-noetherianness of R is enough to ensure the existence of a cotorsion pair
(M, (Mod-R)B) of finite type.

Example 4.8 The following is well-known, however, it also follows from
Proposition 4.9.

(a) If B = R-proj then (Mod-R)B = Inj-R, cf. 2.4(a). Clearly (Mod-R, Inj-R) is a
cotorsion pair. If R is right noetherian—equivalently, B-noetherian by 4.6(a)—
then this cotorsion pair is of finite type by Baer’s Criterion.

(b) If B = R-mod then (Mod-R)B = PureInj-R, cf. 2.4(b). In general, there does
not exist a cotorsion pair of the form (M,PureInj-R). If R is right pure semi-
simple—equivalently, B-noetherian by 4.6(b)—then PureInj-R equals Mod-R,
and hence (Proj-R,PureInj-R) is a cotorsion pair of finite type.
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Proposition 4.9 Assume that B satisfies the following two conditions:

(1) R is B-noetherian, and
(2) If TorR

1 (M, F) = 0 for all M in Ker TorR
1 (−,B) ∩mod-R then F is in lim−→B.

Then (M, (Mod-R)B) is a cotorsion pair of finite type, where M = Ker TorR
1 (−,B).

Proof By the isomorphism [9, VI.§5],

HomZ

(
TorR

1 (−, B), Q/Z
) ∼= Ext1Rop(−, HomZ(B, Q/Z)),

it follows that M = Ker TorR
1 (−,B) = Ker Ext1Rop(−, (Mod-R)B). To establish that

(M, (Mod-R)B) is a cotorsion pair of finite type, we will show that E is in (Mod-R)B

provided that Ext1Rop(M ∩mod-R, E) = 0.
First we argue that R is right noetherian: By (2) it follows that R-proj is contained

in lim−→B, and hence also in B, as (lim−→B) ∩ R-mod = B. By (1) and Corollary 4.7
we then conclude that R is (R-proj)-noetherian, that is, R is right noetherian by
Example 4.6(a). Now, since R is right noetherian, [9, prop. VI.5.3] gives that

TorR
1 (M, HomZ(E, Q/Z)) ∼= HomZ

(
Ext1Rop(M, E), Q/Z

)
(†)

for all M in mod-R. It follows by Eq. (†) and (2) that if Ext1Rop(M ∩mod-R, E) = 0
then HomZ(E, Q/Z) is in lim−→B. Thus, by (1) and Theorem 1.5 (the latter is proved in
the next section), we conclude that the module E belongs to (Mod-R)B. 
�

Corollary 4.10 Assume that R is commutative, noetherian, local, and Gorenstein. As
in Example 2.6, let B be the class of R-modules with G-dimension zero. If R is
B-noetherian then there exists a cotorsion pair (M, (Mod-R)B) of finite type.

Proof It suffices to prove that B satisfies 4.9(2). By [18, thm. 10.3.8], lim−→B is the
class of Gorenstein flat R-modules, and thus it follows by [18, prop. 11.5.9] that
M = Ker TorR

1 (−,B) is the class of R-modules with finite projective dimension.
Hence in order to prove 4.9(2), we need to argue that an R-module F is Gorenstein
flat if TorR

1 (M, F) = 0 for all finitely generated R-modules M with finite projective
dimension. By considering an exact sequence 0 → M′ → P → M → 0 where P is
finitely generated free, the latter condition is easily seen to imply TorR

�1(M, F) = 0 for
all finitely generated R-modules M with finite projective dimension. Now it follows
by [11, cor. (3.3)] and [28, thm. 3.19] that F is Gorenstein flat. 
�

5 Stability Results

In this section we prove a number of stability results for modules with (co)support in
B, and we also present some applications. The terminology in Definitions 4.2 and 4.5
plays a central role in this section.
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Injective structures 5.1 Maranda [38] defines an injective structure as a pair (H,Q)

where H is a class of homomorphisms and Q is a class of modules satisfying:

(1) Q ∈ Q if and only if HomR(h, Q) is surjective for all h ∈ H;
(2) h ∈ H if and only if HomR(h, Q) is surjective for all Q ∈ Q;
(3) For every R-module M there exists h : M −→ Q where h ∈ H and Q ∈ Q.

Given (2), condition (3) means exactly that Q is preenveloping in Mod-R.
Enochs-Jenda-Xu [19, thm. 2.1] prove that if H is the class of B-monomorphisms,

cf. Definition 3.5, then (H, (Mod-R)B) is an injective structure, and (Mod-R)B is
enveloping (not just preenveloping). The last fact also follows from Theorem 1.2.

Lemma 5.2 Let ξ be a complex of left R-modules, and let η be a complex of right
R-modules. Then the following conclusions hold:

(a) ξ is HomR(B,−)-exact if and only if HomZ(ξ, Q/Z) is (− ⊗R B)-exact.
(b) η is (− ⊗R B)-exact if and only if HomZ(η, Q/Z) is HomR(B,−)-exact.

Proof For a finitely presented left R-module B, there are natural isomorphisms,

HomZ(HomR(B, ξ), Q/Z) ∼= HomZ(ξ, Q/Z) ⊗R B,

HomZ(η ⊗R B, Q/Z) ∼= HomR(B, HomZ(η, Q/Z)),

see [9, prop. VI.5.3] and [9, prop. II.5.2]. From these the lemma easily follows. 
�

Proof of Theorem 1.4 “Only if”: If F ∈ lim−→B and h is a B-monomorphism, then
h ⊗R F is injective since ⊗ commutes with lim−→ by [44, cor. 2.6.17]. Thus

HomRop(h, HomZ(F, Q/Z)) ∼= HomZ(h ⊗R F, Q/Z)

is surjective, and it follows from Injective structures 5.1 that HomZ(F, Q/Z) belongs
to (Mod-R)B.

“If”: By [40, cor. 3.7(a)] the class of modules consisting of coproducts of modules
from B is precovering. Hence there is a left-exact and HomR(B,−)-exact sequence,

ξ = 0 −→ K −→ P
π−→ F −→ 0,

where P is a set-indexed coproduct of modules from B. A priori we do not know if
ξ is exact at F, but we will argue that ξ is, in fact, pure exact. Having showed this, it
will follow from [36, prop. 2.1] that F belongs to lim−→B, as desired.

Exactness and pure exactness of ξ can be proved simultaneously by showing that
HomZ(π, Q/Z) is a split monomorphism, cf. [30, thm. 6.4]. As HomZ(F, Q/Z) is in
(Mod-R)B, it suffices by Lemma 3.6 to see that HomZ(π, Q/Z) is a B-monomorphism,
but this follows from Lemma 5.2(a) and HomR(B,−)-surjectivity of π . 
�

Corollary 5.3 Assume that E is a class of right R-modules that is closed under direct
summands and products in Mod-R and satisfies the two conditions:

(1) HomZ(B, Q/Z) belongs to E for every B ∈ B;
(2) HomZ(E, Q/Z) belongs to lim−→B for every E ∈ E .

Then there is an equality (Mod-R)B = E ∩ PureInj-R.
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Proof The inclusion “⊆” is clear from (1). To prove “⊇” we assume that E ∈ E is
pure injective. As E is in E , it follows by (2) and Theorem 1.4 that the module D(E)

defined by HomZ(HomZ(E, Q/Z), Q/Z) belongs to (Mod-R)B. As the canonical
homomorphism E −→ D(E) is a pure monomorphism, and since E is pure injective,
E is a direct summand of D(E). Consequently, E belongs to (Mod-R)B. 
�

Applying 3.6, 5.1, 5.2, and Theorem 1.4, it is easy to prove the following properties
for modules with support in B. Corollary 5.4 is not new, in fact, it is not hard to see
that part (b) also follows from Lenzing [36, prop. 2.2].

Corollary 5.4 The following conclusions hold:

(a) A left R-module F belongs to lim−→B if and only if h ⊗R F is a monomorphism for
every B-monomorphism h.

(b) If 0 → F ′ → F → F ′′ → 0 is an exact and HomR(B,−)-exact sequence with F ′′
in lim−→B, then F ′ is in lim−→B if and only if F is in lim−→B. 
�

Observation 5.5 Note that if R ∈ B, Proposition 3.11/3.10 implies that the ring R is
B-coherent/-noetherian in the sense of Definition 4.2/4.5 if and only if the category B
is left coherent/noetherian in the sense of Definition 5.10.

Theorem 5.6 Assume that R is in B and that R is B-coherent. Then a right R-module
E is in (Mod-R)B only if HomZ(E, Q/Z) is in lim−→B.

Proof We have the following implications,

E is in (Mod-R)B ⇐⇒ (E ⊗R −)|B is in Inj(B,Ab)

=⇒ HomZ((E ⊗R −)|B, Q/Z) is in Flat(Bop,Ab)

⇐⇒ HomR(−, HomZ(E, Q/Z))|B is in Flat(Bop,Ab)

⇐⇒ HomZ(E, Q/Z) is in lim−→B.

The first and last equivalence follows from Propositions 3.10 and 3.11, and the
penultimate equivalence is by adjunction. The implication in the second line is
immediate by Observation 5.5 and Proposition 5.12(a).

A result by Gruson-Jensen [27] and Enochs [16, lem. 1.1] asserts that over a right
coherent ring, the pure injective envelope of a flat left R-module is again flat. In view
of Example 4.3(b), we have the following generalization.

Corollary 5.7 Assume that R is in B, and that R is B-coherent. If F is in lim−→B then its
pure injective envelope PE(F) and the quotient PE(F)/F are in lim−→B.

Proof We have a pure monomorphism F −→ D(F) = HomZ(HomZ(F, Q/Z), Q/Z),
and since D(F) is pure injective it contains PE(F) as a direct summand. Theorems
1.4 and 5.6 imply that D(F) is in lim−→B, and we conclude that PE(F) is in lim−→B. That
PE(F)/F is in lim−→B now follows from [36, prop. 2.2].
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Proof of Theorem 1.5 In view of the proof of Theorem 5.6, Theorem 1.5 is an
immediate consequence of Observation 5.5 and Proposition 5.13.
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particular, the author is grateful to the referee for correcting a number of misprints, for pointing out
a mistake in the original formulation of Proposition 5.12, and for simplifying the proof of Lemma 3.8.

Appendix A: Two Results on Flat and Injective Functors

Propositions 5.12 and 5.13 below play a central role in the proofs of Theorems 5.6
and 1.5. Since we have not been able to find proofs of 5.12 or 5.13 in the literature,
they are included in this Appendix.

Lemma 5.8 For F, G ∈ (B,Ab) and A ∈ Ab there is a canonical homomorphism,

HomZ(G, A) ⊗B F
ωGAF

�� HomZ((B,Ab)(F, G), A).

If A is injective (divisible) and F is finitely presented then ωGAF is an isomorphism.

Proof For each B in B there is a canonical homomorphism of abelian groups,

HomZ(GB, A)
�B

�� HomZ(FB, HomZ((B,Ab)(F, G), A)),

It is given by �B( f )(x)(θ) = ( f ◦ θB)(x) where f : GB −→ A is a homomorphism,
x ∈ FB is an element, and θ : F −→ G is a natural transformation. It is easily seen
that � is a natural transformation of functors Bop −→ Ab. By applying 2.8(a),

� ∈ (Bop,Ab)
(

HomZ(G, A), HomZ(F, HomZ((B,Ab)(F, G), A))
)

∼= HomZ

(
HomZ(G, A) ⊗B F, HomZ((B,Ab)(F, G), A)

)
,

it follows that � corresponds to the homomorphism which is denoted by ω in the
lemma. It is straightforward to verify that ω is natural in F, G, and A.

To see that ωGAF is an isomorphism when A is injective and F is finitely presented,
note that ωGA? is a natural transformation between right exact and additive functors
(B,Ab) −→ Ab. As every finitely presented F fits into an exact sequence,

B(B1, −) −→ B(B0, −) −→ F(−) −→ 0,

it suffices, by the five-lemma, to check that ωG,A,B(B,−) is an isomorphism. However,
this homomorphism is the composite of the following two isomorphisms:

HomZ(G, A) ⊗B B(B,−)
∼=−→ HomZ(GB, A)

∼=−→ HomZ((B,Ab)(B(B,−), G), A),

where the left-hand isomorphism is by 2.8(b), and the right-hand isomorphism is by
Yoneda’s Lemma, cf. [37, III.§2]. This finishes the proof. 
�
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Remark 5.9 By Oberst-Röhrl [39, (proof of) thm. (3.2)] a functor T in (Bop,Ab) is
flat if for every finitely generated additive subfunctor F of a representable functor
B(B,−), one has exactness of the sequence:

0 −→ T ⊗B F −→ T ⊗B B(B, −).

Although the author was not able to find a reference, it is well-known that Baer’s
Criterion holds in functor categories5, that is, E in (B,Ab) is injective if for every
additive subfunctor G of B(B,−), one has exactness of the sequence:

(B,Ab)(B(B,−), E) −→ (B,Ab)(G, E) −→ 0.

Definition 5.10 The category B is left coherent if Flat(Bop,Ab) is closed under
products in (Bop,Ab); and B is right coherent if Bop is left coherent.

The category B is left noetherian if Inj(B,Ab) is closed under coproducts in
(B,Ab); and B is right noetherian if Bop is left noetherian.

Remark 5.11 The references Jensen-Lenzing [30, thm. B.17] and Oberst-Röhrl [39,
thm. (4.1)] contain several equivalent characterizations of the notions above. For
example, B if left coherent if and only if every finitely generated additive subfunctor
of B(B, −) is finitely presented; and B if left noetherian if and only if every additive
subfunctor of B(B, −) is finitely generated (and thus, finitely presented).

Proposition 5.12 For every E in (B,Ab) the following hold:

(a) If E ∈ Inj(B,Ab) and B is left coherent then HomZ(E, Q/Z) ∈ Flat(Bop,Ab).
(b) If HomZ(E, Q/Z) ∈ Flat(Bop,Ab) and B is left noetherian then E ∈ Inj(B,Ab).

Proof Let F be a finitely presented additive subfunctor of a representable functor
B(B,−). By Lemma 5.8 there is a commutative diagram in Ab, where the vertical
homomorphisms are isomorphisms:

HomZ(E, Q/Z) ⊗B F ��

∼=




HomZ(E, Q/Z) ⊗B B(B,−)

∼=




HomZ((B,Ab)(F, E), Q/Z) �� HomZ((B,Ab)(B(B,−), E), Q/Z).

The desired conclusions now follow from Remarks 5.9 and 5.11. 
�

Proposition 5.13 The category B is left noetherian if and only if it satisfies:

(1) B is left coherent, and
(2) Any functor E is in Inj(B,Ab) if only if HomZ(E, Q/Z) is in Flat(Bop,Ab).

5One way to prove this is by combining the proof of Anderson-Fuller [1, prop. 16.13] with the first
sentence in the proof of Lemma 3.7.
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Proof “If”: Let {Eλ} be a family in Inj(B,Ab). Combining the isomorphism

HomZ

(∐
Eλ, Q/Z

) ∼= ∏
HomZ(Eλ, Q/Z)

with (1) and (2), it follows by Definition 5.10 that B is left noetherian.
“Only if”: If B is left noetherian then (1) holds by Remark 5.11, and hence part

(2) follows from Proposition 5.12.
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