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1. Introduction

Over an Iwanaga–Gorenstein ring A, that is, a ring which is noetherian and has fi-
nite injective dimension from both sides, the category MCM(A) of (finitely generated) 
maximal Cohen–Macaulay A-modules1 is a Frobenius category in which the projective–
injective objects are precisely the finitely generated projective A-modules. The associated 
stable category MCM(A) is therefore triangulated, and a classic result of Buchweitz 
[8, Thm. 4.4.1] shows that MCM(A) is triangulated equivalent to the singularity cate-
gory2 Dsg(A), which is an important mathematical object that has been studied by many 
authors; see [5,6,27,33].

If A is not Iwanaga–Gorenstein, then the category MCM(A) is, in general, not Frobe-
nius. However, over any ring A one can always consider the category GProj(A) of so-called 
Gorenstein projective modules (which are not assumed to be finitely generated); this cat-
egory is always Frobenius and the associated stable category GProj(A) is triangulated. 
In the case where A is Iwanaga–Gorenstein, an A-module is maximal Cohen–Macaulay if 
and only if it is finitely generated and Gorenstein projective, and hence MCM(A) can be 
identified with the finitely generated modules in GProj(A). This explains the interest in 
the category GProj(A) for general ring A. Its injective counterpart GInj(A), the stable 
category of Gorenstein injective A-modules, is equally important and has been studied 
in e.g. [7,26].

Our work is motivated by a recent result of Zheng and Huang [37] which asserts that 
for many rings A, the categories GProj(A) and GInj(A) are equivalent as triangulated 
categories. As it makes sense to consider the stable categories GProj(A) and GInj(A) for 
any bicomplete abelian category A with enough projectives and injectives (see Section 2
for details), the following question naturally arises:

Question. For which abelian categories A (assumed to be bicomplete with enough pro-
jectives and injectives) are GProj(A) and GInj(A) equivalent as triangulated categories?

Every Frobenius category E , in particular, GProj(A) and GInj(A), can be equipped 
with a canonical model structure which has the property that the associated homotopy 
category Ho(E) is equivalent to the stable category E ; see e.g. [18, Prop. 4.1]. Thus, if 
the Frobenius categories GProj(A) and GInj(A), equipped with these canonical model 
structures, happen to be Quillen equivalent, then we get an affirmative answer to the 

1 In the important special case where A is a quasi-Frobenius ring, for example, if A = kG is the group 
algebra of a finite group G with coefficients in a field k, the category MCM(A) is just the category mod(A)
of all finitely generated A-modules.
2 The singularity category Dsg(A) is defined to be the Verdier quotient Db(A)/Db

perf(A) of the bounded 
derived category Db(A), whose objects are complexes of A-modules with bounded and finitely generated 
homology, by the subcategory Db

perf(A), whose objects are isomorphic (in Db(A)) to a perfect complex, that 
is, to a bounded complex of finitely generated projective A-modules. The name singularity category and the 
symbol Dsg(A) seem to be the popular choices nowadays, however, in the work of Buchweitz [8, Def. 1.2.2], 
this category is called the stabilized derived category and denoted by Db(A), and in the work of Orlov [29], 
it is called the triangulated category of singularities and denoted by Dsg(A).
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question above. However, the model categories GProj(A) and GInj(A), and even the 
underlying ordinary categories, will rarely be (Quillen) equivalent. In this paper, we 
consider instead the categories

Uπ = {M ∈ A | GpdA(M) < ∞} and U ι = {N ∈ A | GidA(N) < ∞}

and show in Theorems 3.7 and 3.9 that Uπ and U ι can be equipped with model struc-
tures for which the associated homotopy categories Ho(Uπ) and Ho(U ι) are the stable 
categories GProj(A) and GInj(A). The advantage of having these realizations of the 
stable categories is that in several cases the model categories Uπ and U ι will be Quillen 
equivalent—even though GProj(A) and GInj(A) are not—and in such cases we therefore 
get an affirmative answer (for a strong reason) to the question above.3 To investigate 
when Uπ and U ι will be Quillen equivalent, we introduce the notion of a Sharp–Foxby 
adjunction (Definition 3.4). We prove in Theorem 3.11 and Corollary 3.12 that if A
admits such an adjunction, then Uπ and U ι will be Quillen equivalent:

Theorem A. A Sharp–Foxby adjunction (S, T ) on A induces a Quillen equivalence be-
tween the model categories Uπ and U ι. Thus the total (left/right) derived functors of S
and T yield an adjoint equivalence of the corresponding homotopy categories,

GProj(A) � Ho(Uπ)
LS

Ho(U ι) � GInj(A)
RT

.

In fact, this is an equivalence of triangulated categories.

The choice to work with the categories Uπ and U ι is historically motivated by clas-
sic results in commutative algebra by Sharp [31] and Foxby [14]. In the language of 
this paper, the results can be phrased as follows: If A is a Cohen–Macaulay ring with 
a dualizing module D, then the functors S = D ⊗A − and T = HomA(D, −) consti-
tute a Sharp–Foxby adjunction on A = Mod(A); see Example 3.6 for details. Thus, for 
such rings Theorem A improves the previously mentioned result of Zheng and Huang 
[37] to a triangulated equivalence between GProj(A) and GInj(A) induced by a Quillen 
equivalence.

In Section 4 we investigate to what extend a Sharp–Foxby adjunction on a category A
(and hence also a Quillen equivalence between the model categories Uπ and U ι, see 
Theorem A) transfers to the category of chain complexes in A. In 4.5 we obtain the 
following.

3 In general, we do not expect every (triangulated) equivalence between GProj(A) and GInj(A), if such 
an equivalence even exists, to be induced from a Quillen equivalence between model categories. Indeed, it is 
well-known that there are examples of non Quillen equivalent model categories with equivalent homotopy 
categories.
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Theorem B. Assume that (S, T ) is a Sharp–Foxby adjunction on A; in particular, 
GProj(A) and GInj(A) are equivalent as triangulated categories by Theorem A. Assume 
furthermore that the finitistic projective and the finitistic injective dimensions of A are 
finite.

If B = Ch(A), then degreewise application of S and T yields a Sharp–Foxby adjunction 
on B; in particular, GProj(B) and GInj(B) are equivalent as triangulated categories.

2. Preliminaries

Throughout this paper, A denotes any bicomplete abelian category with enough pro-
jectives and enough injectives.

Gorenstein projective and Gorenstein injective modules (over any ring) were defined 
by Enochs and Jenda [10, §2], but the definition works for objects in any abelian category:

Definition 2.1. An acyclic (= exact) complex P = · · · → P1 → P0 → P−1 → · · · of 
projective objects in A is called totally acyclic if for any projective object Q in A the 
complex

HomA(P,Q) = · · · −→ HomA(P−1, Q) −→ HomA(P0, Q) −→ HomA(P1, Q) −→ · · ·

is acyclic. An object G in A is called Gorenstein projective if it is a cycle of such a 
totally acyclic complex of projectives, that is, if G = Zj(P ) for some integer j. We 
write GProj(A) for the full subcategory of A consisting of all Gorenstein projective 
objects.

Dually, an acyclic complex I = · · · → I1 → I0 → I−1 → · · · of injective objects in A
is called totally acyclic if for any injective object E in A the complex

HomA(E, I) = · · · −→ HomA(E, I1) −→ HomA(E, I0) −→ HomA(E, I−1) −→ · · ·

is acyclic. An object H in A is called Gorenstein projective if it is a cycle of such a totally 
acyclic complex of injectives, that is, if H = Zj(I) for some integer j. We write GInj(A)
for the full subcategory of A consisting of all Gorenstein injective objects.

The Gorenstein projective dimension, GpdA(M), of an object M in A is defined by 
declaring that one has GpdA(M) � n (for n ∈ N0) if and only if there exists an exact 
sequence 0 → Gn → Gn−1 → · · · → G0 → M → 0 in A with G0, . . . , Gn ∈ GProj(A). 
The Gorenstein injective dimension, GidA(M), of M is defined analogously.

Recall that a Frobenius category is an exact category E with enough (relative) projec-
tives and enough (relative) injectives and where the classes of projectives and injectives 
coincide; such objects are called projective–injective (or just pro-injective) objects. The 
stable category E is the quotient category E/∼ where the relation “∼” is defined by 
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f ∼ g (here f and g are parallel morphisms in E) if f − g factors through a projective–
injective object. The category E is triangulated as described in Happel [21, Chap. I§2]
(see also 2.5).

The following result is well-known, but for completeness we include a short proof.

Proposition 2.2. The category GProj(A) is Frobenius and the projective–injective objects 
herein are the projective objects in A. Thus, the stable category GProj(A) is triangulated.

The category GInj(A) is Frobenius and the projective–injective objects herein are the 
injective objects in A. Thus, the stable category GInj(A) is triangulated.

Proof. We only show the claims about the category GProj(A), as the claims about 
GInj(A) are proved similarly. The proof only uses basic properties of Gorenstein projec-
tive objects. In the case of modules, that is, if A = Mod(A) for a ring A, these properties 
are recorded in [23], however, the reader easily verifies that the same properties hold for 
Gorenstein projective objects in any abelian category A with enough projectives.

First of all, by [23, Thm. 2.5] the class GProj(A) is an additive extension-closed 
subcategory of the abelian category A, and thus GProj(A) is an exact category. Clearly, 
every (categorical) projective object P in A is a (relative) projective object in GProj(A), 
but it is also (relative) injective since every short exact sequence 0 → P → G → G′ → 0
in A with G, G′ ∈ GProj(A) splits; indeed by [23, Prop. 2.3] one has Ext1A(G′, P ) = 0. 
By the definition of Gorenstein projective objects, every G ∈ GProj(A) fits into short 
exact sequences 0 → H → P → G → 0 and 0 → G → P ′ → H ′ → 0 in A where P, P ′

are (categorical) projective and H, H ′ are Gorenstein projective. It follows that if G is 
(relative) projective or (relative) injective, then G is a direct summand of a (categorical) 
projective object, P or P ′, and hence G is (categorical) projective. It also follows that 
GProj(A) has enough (relative) projectives and enough (relative) injectives. �

In Theorems 3.7 and 3.9 we construct certain model categories Uπ and U ι for which 
the associated homotopy categories Ho(Uπ) and Ho(U ι) are GProj(A) and GInj(A).

The standard references for the theory of cotorsion pairs are Enochs and Jenda [11]
and Göbel and Trlifaj [20]. Below we recall a few notions that we need.

2.3. A pair (X , Y) of classes of objects in A is a cotorsion pair if X⊥ = Y and X = ⊥Y. 
Here, given a class C of objects in A, the right orthogonal C⊥ is defined to be the class 
of all Y ∈ A such that Ext1A(C, Y ) = 0 for all C ∈ C. The left orthogonal ⊥C is defined 
similarly. A cotorsion pair (X , Y) is hereditary if ExtiA(X, Y ) = 0 for all X ∈ X , Y ∈ Y, 
and i � 1. A cotorsion pair (X , Y) is complete if it has enough projectives and enough 
injectives, i.e. for each A ∈ A there exist short exact sequences 0 −→ Y −→ X −→ A −→ 0
(enough projectives) and 0 −→ A −→ Y ′ −→ X ′ −→ 0 (enough injectives) with X, X ′ ∈ X
and Y, Y ′ ∈ Y.

In order for the above to make sense, the category A only needs to be exact (not 
necessarily abelian), so that one has a notion of “short exact sequences” (often called 
conflations) and hence also of (Yoneda) ExtA.
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Cotorsion pairs are related to relative homological algebra, see [11], and due to work 
of Hovey [25] they are also related to abelian (or exact) model category structures.

2.4. An abelian model structure on A, that is, a model structure on A which is compatible 
with the abelian structure in the sense of [25, Def. 2.1], corresponds by Thm. 2.2 in 
[25] to a triple (C, W, F) of classes of objects in A for which W is thick4 and (C ∩W, F)
and (C, W ∩ F) are complete cotorsion pairs in A. Such a triple (C, W, F) is called a 
Hovey triple in A. In the model structure on A determined by such a Hovey triple, C is 
precisely the class of cofibrant objects, F is precisely the class of fibrant objects, and 
W is precisely the class of trivial objects (that is, objects weakly equivalent to zero). 
A hereditary Hovey triple is a Hovey triple (C, W, F) for which the associated complete 
cotorsion pairs (C ∩W, F) and (C, W ∩F) are both hereditary (as defined in 2.3).

Gillespie extends in [17, Thm. 3.3] Hovey’s correspondence, mentioned above, from the 
realm of abelian categories to the realm of weakly idempotent complete exact categories. 
More precisely, if A is just an exact category (not necessarily abelian), then an exact 
model structure on A is a model structure on A which is compatible with the exact 
structure in the sense of [17, Def. 3.1]. If, in addition, A is weakly idempotent complete 
([17, Def. 2.2]), then exact model structures on A correspond precisely to Hovey triples 
(C, W, F) in A.

Recall from [24, Cor. 1.2.7 and Thm. 1.2.10(i)] that if C is any model category, then the 
inclusion Ccf → C induces an equivalence Ccf/∼ → Ho(C). Here Ccf is the full subcategory 
of C whose objects are both cofibrant and fibrant, “∼” is the (abstract) homotopy relation 
from [24, Def. 1.2.4], and Ho(C) is the homotopy category of the model category C (that 
is, the localization of C with respect to the collection of weak equivalences).

2.5. Let A be a weakly idempotent complete exact category equipped with an exact 
model structure coming from a hereditary Hovery triple (C, W, F) in A. As explained 
in 2.4, one has Acf = C ∩ F , which by [17, Prop. 5.2(4)] / [32, Thm. 6.21(1)] is a 
Frobenius category with C ∩ W ∩ F as the class of projective–injective objects. By [17, 
Prop. 4.4(5)] / [32, Lem. 6.16(3)] two parallel morphisms in Acf = C ∩ F are homotopic, 
in the (abstract) model categorical sense, if and only their difference factors through an 
object in C ∩W ∩ F . Thus, Acf/∼ is nothing but the stable category Acf of the Frobe-
nius category Acf (see the remarks preceding Proposition 2.2), so the category Acf/∼
carries a natural triangulated structure. As mentioned above, one has an equivalence 
of categories Ho(A) � Acf/∼, and via this equivalence the homotopy category Ho(A)
inherits a triangulated structure from Acf/∼. More precisely, the distinguished trian-
gles in Ho(A) are, up to isomorphism, the images in Ho(A) of distinguished triangles 
in Acf = Acf/∼ under the equivalence Acf/∼ → Ho(A). It is evident that when Ho(A)

4 Recall that a class W in an abelian (or, more generally, in an exact) category A is thick if it is closed 
under retracts and satisfies that whenever two out of three terms in a short exact sequence are in W, then 
so is the third.
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is equipped with this triangulated structure, then the equivalence Ho(A) � Acf/∼ (of 
ordinary categories a priori) becomes an equivalence of triangulated categories, that is, 
the functors Ho(A) � Acf/∼ are triangulated.

3. Sharp–Foxby adjunctions

Recall from the beginning of Section 2 that A always denotes any bicomplete abelian 
category with enough projectives and enough injectives. In this section, we give conditions 
on A which ensure that GProj(A) and GInj(A) are equivalent as triangulated categories.

Definition 3.1. Let Uπ be the full subcategory of A whose objects are given by

Uπ = {M ∈ A | GpdA(M) < ∞} .

Let and Cπ, Wπ, and Fπ be the following subclasses of Uπ:

Cπ = GProj(A) , Wπ = {M ∈ A | pdA(M) < ∞} , and Fπ = Uπ .

The classes Uπ, Cπ, Wπ, and Fπ depend on A, and if necessary we use the more detailed 
notation Uπ

A , Cπ
A , Wπ

A , and Fπ
A instead. (The superscript “π” is supposed to give the 

reader associations to the word “projective”.)

Definition 3.2. Let U ι be the full subcategory of A whose objects are given by

U ι = {N ∈ A | GidA(N) < ∞} .

Let and Cι, Wι, and F ι be the following subclasses of U ι:

Cι = U ι , Wι = {N ∈ A | idA(N) < ∞} , and F ι = GInj(A) .

The classes U ι, Cι, Wι, and F ι depend on A, and if necessary we use the more detailed 
notation U ι

A, Cι
A, Wι

A, and F ι
A instead. (The superscript “ι” is supposed to give the reader 

associations to the word “injective”.)

Lemma 3.3. The categories Uπ and U ι are additive and extension-closed subcategories 
of the abelian category A; hence they are exact categories. Furthermore, Uπ and U ι are 
closed under direct summands in A; hence they are idempotent complete.

Proof. In the case where A = Mod(A) for a ring A, the assertions follow from [23, 
Prop. 2.19 and Thm. 2.24] (and the dual statements about Gorenstein injective modules). 
By inspection, one verifies that the same proofs work in any bicomplete abelian category 
A with enough projectives and enough injectives. �
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We show in Theorems 3.7 and 3.9 that (Cπ, Wπ, Fπ) and (Cι, Wι, F ι) are Hovey triples 
(see 2.4) in the idempotent complete exact categories Uπ and U ι.

Definition 3.4. A Sharp–Foxby adjunction on A is an adjunction (S, T ) of endofunctors 
on A for which the following properties hold:

(SF1) S maps Uπ to U ι and it maps Wπ to Wι.
(SF2) The restriction of S to Uπ is exact: if 0 → X ′ → X → X ′′ → 0 is an exact sequence 

in A with X ′, X, X ′′ ∈ Uπ, then the sequence 0 → SX ′ → SX → SX ′′ → 0 is 
exact.

(SF3) T maps U ι to Uπ and it maps Wι to Wπ.
(SF4) The restriction of T to U ι is exact: if 0 → Y ′ → Y → Y ′′ → 0 is an exact sequence 

in A with Y ′, Y, Y ′′ ∈ U ι, then the sequence 0 → TY ′ → TY → TY ′′ → 0 is exact.
(SF5) The unit of adjunction ηX : X → TSX is an isomorphism for every X ∈ Uπ.
(SF6) The counit of adjunction εY : STY → Y is an isomorphism for every Y ∈ U ι.

Remark 3.5. By (SF1), (SF3), (SF5), and (SF6) a Sharp–Foxby adjunction S : A � A : T
restricts to adjoint equivalences of categories Uπ � U ι and Wπ � Wι. By Lemma 3.3 the 
categories Uπ and U ι have natural exact structures. Conditions (SF2) and (SF4) imply 
that the induced adjoint equivalence Uπ � U ι preserves the exact structure, i.e. the 
functors are exact; thus it is an adjoint equivalence of exact categories.5

The following example explains the terminology in Definition 3.4.

Example 3.6. Let A be a commutative noetherian local Cohen–Macaulay ring with a du-
alizing module D. Foxby considered in [14, §1] two classes A(A) and B(A) of A-modules6:

A module M is in A(A) if and only if TorAi (D, M) = 0 and ExtiA(D, D ⊗A M) = 0
for all i > 0 and the natural homomorphism ηM : M → HomA(D, D ⊗A M) is an 
isomorphism.

A module N is in B(A) if and only if ExtiA(D, N) = 0 and TorAi (D, HomA(D, N)) =
0 for all i > 0 and the natural homomorphism εN : D ⊗A HomA(D, N) → N is an 
isomorphism.

Foxby [14] proved that the adjunction (D ⊗A −, HomA(D, −)) on Mod(A) re-
stricts to an adjoint equivalence A(A) � B(A) and further to an adjoint equivalence 

5 If E and E′ are exact categories and F : E � E′ : G is an adjoint equivalence of the underlying (ordinary) 
categories, then it does not automatically follow that the functors F and G are exact. Indeed, if E and E′

have the same underlying category and the exact structure on E is coarser than that on E′ (that is, every 
sequence which is exact in E is also exact in E′ — for example, E could have the trivial exact structure, 
in which the only “exact” sequences are the split exact ones, whereas E′ could have any exact structure), 
then the identity functors E � E′ constitute an adjoint equivalence of the underlying categories where only 
E → E′ is exact (but E ← E′ is not).
6 In the literature, the classes A(A) and B(A) are referred to as Foxby classes. Sometimes, A(A) is called 

the Auslander class and B(A) is called the Bass class. Foxby himself [14] used the symbols ΦD and ΨD

for these classes, but in the paper [12] by Enochs, Jenda, and Xu they are denoted by G0 and J0. We have 
adopted the symbols A(A) and B(A) from the joint work of Avramov and Foxby; see for example [1, §3].
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Wπ
Mod(A) � Wι

Mod(A) (see Definitions 3.1 and 3.2). The latter is an extension of a result 
[31, Thm. (2.9)] by Sharp, which asserts that D ⊗A − and HomA(D, −) restrict to an 
adjoint equivalence between the categories of finitely generated A-modules with finite 
projective dimension and finitely generated A-modules with finite injective dimension. 
Note that it is evident from the definitions that the restriction of D ⊗A − to A(A) and 
of HomA(D, −) to B(A) are exact functors.

By Enochs, Jenda, and Xu [12, Cor. 2.4 and 2.6] an A-module belongs to A(A), re-
spectively, B(A), if and only if it has finite Gorenstein projective dimension, respectively, 
finite Gorenstein injective dimension. Thus, in the notation from 3.1 and 3.2 we have:

A(A) = Uπ
Mod(A) and B(A) = U ι

Mod(A).

Consequently, (S, T ) = (D ⊗A −, HomA(D, −)) is a Sharp–Foxby adjunction on Mod(A). 
In view of [9, Thms. 4.1 and 4.4] this remains to be true if A is any two-sided noetherian 
ring with a dualizing module D, that is, a dualizing complex concentrated in degree 
zero.

Theorem 3.7. Consider the idempotent complete exact category Uπ from Lemma 3.3. 
The triple (Cπ, Wπ, Fπ) from Definition 3.1 is a hereditary Hovey triple in Uπ (see 2.4). 
In particular, Uπ has an exact model structure for which:

– The cofibrant objects in Uπ are the Gorenstein projective objects in A.
– The trivial objects in Uπ are the objects in A with finite projective dimension.
– All objects in Uπ are fibrant.

The homotopy category of this model category is equivalent, as a triangulated category, 
to the stable category of Gorenstein projective objects in A; in symbols:

Ho(Uπ) � GProj(A) .

Remark 3.8. A number of fundamental properties of Gorenstein projective modules, i.e. 
Gorenstein projective objects in the category A = Mod(A) where A is a ring, are recorded 
in e.g. [9,23]. The results we need about Gorenstein projective objects in a general abelian 
category (still bicomplete with enough projectives and enough injectives) can be proved 
as it is done for modules. We leave it to the reader to inspect the relevant proofs.

Proof of Theorem 3.7. It is well-known that Wπ is a thick subcategory of A (and hence 
also of Uπ). By [23, Prop. 2.27] the intersection Cπ ∩ Wπ equals the class ProjA of 
projective objects in A. Thus the pair (Cπ ∩ Wπ, Fπ) is equal to (ProjA, Uπ), which 
we now argue is a complete hereditary cotorsion pair in Uπ. As Ext�1

A (P, A) = 0 for all 
P ∈ ProjA and all A ∈ Uπ (even all A ∈ A), we get that (ProjA)⊥ = Uπ (as the “⊥” 
is only calculated inside of Uπ) and that ProjA ⊆ ⊥Uπ. To show that ProjA ⊇ ⊥Uπ let 
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M ∈ ⊥Uπ (⊆ Uπ). By assumption, A has enough projectives, and hence there exists a 
short exact sequence in A,

0 −→ A −→ P −→ M −→ 0 , (�1)

where P is projective. As M belongs to Uπ, so does A by [23, Thm. 2.24]. By assumption, 
Ext1A(M, A) = 0, so (� 1) splits and hence M ∈ ProjA. This shows that (ProjA, Uπ) is a 
hereditary cotorsion pair. For completeness of this cotorsion pair, the sequence (� 1) shows 
that the pair has enough projectives. The trivial exact sequence 0 → M → M → 0 → 0
(for any M in Uπ) shows that the pair has enough injectives.

Next we show that (Cπ, Wπ∩Fπ) = (GProjA, Wπ) is a complete hereditary cotorsion 
pair in Uπ. By [23, Thm. 2.20] we have Ext�1

A (G, A) = 0 for all G ∈ GProjA and 
A ∈ Wπ, and hence we get GProjA ⊆ ⊥Wπ and (GProjA)⊥ ⊇ Wπ. To show that 
GProjA ⊇ ⊥Wπ, let M ∈ ⊥Wπ (⊆ Uπ). By [23, Thm 2.10] there exists a short exact 
sequence

0 −→ A −→ G −→ M −→ 0 (�2)

with G ∈ GProjA and A ∈ Wπ. By assumption, Ext1A(M, A) = 0, so (� 2) splits and 
hence M is a direct summand in G. By [23, Thm 2.5] (see also Prop. 1.4 in [23]) the 
class GProjA is closed under direct summands (here we use our assumption that A is 
cocomplete, or at least that A has countable coproducts), and it follows that M itself 
belongs to GProjA. To show (GProjA)⊥ ⊆ Wπ, assume that M ∈ (GProjA)⊥ (⊆ Uπ). 
By [9, Lem. 2.17] there is a short exact sequence

0 −→ M −→ A′ −→ G′ −→ 0 (�3)

where G′ ∈ GProjA and pdA(A′) = GpdA(M) < ∞, that is, A′ is in Wπ. By as-
sumption, Ext1A(G′, M) = 0, so (� 3) splits and hence M also belongs to Wπ (which is 
thick). Thus (GProjA, Wπ) is a hereditary cotorsion pair in Uπ, and the existence of 
the sequences (� 2) and (� 3) shows that this cotorsion pair is complete.

These arguments prove that (Cπ, Wπ, Fπ) is a hereditary Hovey triple in Uπ. In view 
of the equalities Cπ∩Fπ = GProjA and Cπ∩Wπ∩Fπ = ProjA, where the latter is by [23, 
Prop 2.27], the rest of the theorem now follows from 2.4 and 2.5 (and Proposition 2.2). �
Theorem 3.9. Consider the idempotent complete exact category U ι from Lemma 3.3. The 
triple (Cι, Wι, F ι) from Definition 3.2 is a hereditary Hovey triple in U ι (see 2.4). In par-
ticular, U ι has an exact model structure for which:

– All objects in U ι are cofibrant.
– The trivial objects in U ι are the objects in A with finite injective dimension.
– The fibrant objects in U ι are the Gorenstein injective objects in A.
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The homotopy category of this model category is equivalent, as a triangulated category, 
to the stable category of Gorenstein injective objects in A; in symbols:

Ho(U ι) � GInj(A) .

Proof. Dual to the proof of Theorem 3.1. �
Our next goal is to show that a Sharp–Foxby adjunction on A induces a Quillen 

equivalence between the model categories Uπ and U ι. To this end, the next result will 
be useful.

Proposition 3.10. Let M and M′ be two weakly idempotent complete exact model 
categories with associated Hovey triples (C, W, F) and (C′, W ′, F ′); see 2.4. Assume 
that (F, G) is a Quillen adjunction M � M′ where the functors F and G are exact 
and satisfy F (W) ⊆ W ′ and G(W ′) ⊆ W. Then (F, G) is a Quillen equivalence if and 
only if the unit ηX : X → GFX is a weak equivalence for every X ∈ C and the counit 
εY : FGY → Y is a weak equivalence for every Y ∈ F ′.

Proof. Write Q for the cofibrant replacement functor in M and qX : QX → X for 
the natural trivial fibration (X ∈ M). Similarly, write R for the fibrant replacement 
functor in M′ and rY : Y → RY for the natural trivial cofibration (Y ∈ M′). By [24, 
Prop. 1.3.13] we have that (F, G) is a Quillen equivalence if and only if the composite

X
ηX

GFX
GrFX

GRFX

is a weak equivalence for all X ∈ C and the composite

FQGY
FqGY

FGY
εY

Y

is a weak equivalence for all Y ∈ F ′. We claim that the morphisms GrFX and FqGY

are always weak equivalences for every X ∈ M and Y ∈ M′ (which proves the assertion 
by the 2-out-of-3 property for weak equivalences). We only show that GrFX is a weak 
equivalence. The fact that rFX : FX → RFX is a trivial cofibration means, by definition 
[17, Def. 3.1] of an exact model structure, that rFX is an admissible monomorphism with 
a trivially cofibrant cokernel, that is, one has a conflation (a short exact sequence)

FX �
rFX

RFX
π

C

in M′ where C is trivially cofibrant, that is, C ∈ C′∩W ′ (and RFX is of course fibrant). 
By applying the exact functor G to the sequence above, we get a conflation in M, which 
is the bottom row of the following pullback diagram:
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GFX
ι

� T
�

ϕ�

QGC

� qGC

GFX
GrFX

GRFX
Gπ

GC .

Note that this pullback diagram really exists; indeed, by definition of an exact category, 
any pullback of an admissible epimorphism exists and admissible epimorphisms are stable 
under pullbacks. In particular, � is an admissible epimorphism (and � has the same kernel 
as Gπ; cf. Freyd [15, Thm. 2.52]). Since C ∈ W ′ we have GC ∈ W by assumption. Since 
one always has Q(W) ⊆ W, it follows that QGC ∈ W, and hence QGC ∈ C ∩W (as QY

is always cofibrant). This means that ι is a trivial cofibration. In any model category, 
the class of trivial fibrations is stable under pullbacks by [25, Cor. 1.1.11]; thus the fact 
that qGC is a trivial fibration forces ϕ to be the same. As ι and ϕ are, in particular, weak 
equivalences, so is their composite GrFX = ϕ ◦ ι, as desired. �
Theorem 3.11. A Sharp–Foxby adjunction (S, T ) on A induces a Quillen equivalence 
between the model categories Uπ and U ι constructed in Theorems 3.7 and 3.9. Thus 
the total (left/right) derived functors of S and T yield an adjoint equivalence of the 
corresponding homotopy categories,

Ho(Uπ)
LS

Ho(U ι)
RT

. (�4)

In fact, this is an equivalence of triangulated categories.

Proof. As mentioned in Remark 3.5, a Sharp–Foxby adjunction (S, T ) on A induces 
an exact adjoint equivalence between Uπ and U ι with S(Wπ) ⊆ Wι and T (Wι) ⊆ Wπ. 
Hence the unit ηX : X → TSX is an isomorphism, and hence also a weak equivalence, for 
all X ∈ Uπ (in particular for X ∈ Cπ); and the counit εY : STY → Y is an isomorphism, 
and hence also a weak equivalence, for all Y ∈ U ι (in particular for Y ∈ F ι). Thus, 
if we can show that (S, T ) is a Quillen adjunction Uπ � U ι, then Proposition 3.10
will imply that it is in fact a Quillen equivalence (as claimed). To show this, it must 
be argued that S : Uπ → U ι is a left Quillen functor (see [24, Def. 1.3.1]), that is, we 
must argue that S maps (trivial) cofibrations in Uπ to (trivial) cofibrations in U ι. Let 
f be a (trivial) cofibration in Uπ, that is, f is an admissible monomorphism with a 
(trivially) cofibrant cokernel C (see [17, Def. 3.1]). Since S is exact, it follows that Sf
is an admissible monomorphism in U ι with cokernel SC . Hence, we only need to prove 
that S maps (trivially) cofibrant objects in Uπ to (trivially) cofibrant objects in U ι. 
However, this is clear as every object in U ι is cofibrant, see Theorem 3.9, and since we 
have S(Wπ) ⊆ Wι.

Having established that (S, T ) yields a Quillen equivalence Uπ � U ι, the adjoint 
equivalence of homotopy categories displayed in (� 4) follows from [24, Prop. 1.3.13].
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It remains to see that the functors LS and RT are triangulated. By [28, Lem. 5.3.6] it 
suffices to prove that LS is triangulated, because then its right adjoint RT will automat-
ically be triangulated as well. Recall from 2.5 that the distinguished triangles in Ho(Uπ)
are, up to isomorphism, the images in Ho(Uπ) of distinguished triangles in GProj(A)
under the equivalence GProj(A) → Ho(Uπ) (see also Theorem 3.7).

At this point we need to recall from [21, Chap. I§2.5] how the triangulated structure 
on the stable category GProj(A) is defined. For every morphism u : G → G′ in the 

Frobenius category GProj(A) choose a short exact sequence (a conflation) G 
i� P

p
� G̃

in GProj(A) where P is a projective–injective object, that is, P ∈ Proj(A). The object 
G̃ is the suspension of G; in symbols, G̃ = ΣG (the assignment G 
→ G̃ = ΣG is not 
functorial on GProj(A), but it is functorial on GProj(A)). Then consider the pushout 
diagram in GProj(A),

G

u

i
P

t

p
G̃

G′

pushout

v
G′′ w

G̃ .

(�5)

The diagram

G
u

G′ v
G′′ w

G̃ , (�6)

considered as a diagram in GProj(A), is called a standard triangle. By definition, a dis-
tinguished triangle in GProj(A) is a diagram in this category which is isomorphic 
to some standard triangle. The triangulated structure on GInj(A) is defined simi-
larly.

We must show that the functor LS maps every distinguished triangle Δ in Ho(Uπ)
to a distinguished triangle in Ho(U ι). By the considerations above, we may assume that 
Δ is the image in Ho(U ι) of a standard triangle (� 6) in GProj(A). By definition, see 
[24, Def. 1.3.6], the action of the functor LS on an object X in Ho(Uπ) is LS(X) =
SQX where QX is a cofibrant replacement of X. As the objects in (� 6) are already 
cofibrant in Uπ, see Theorem 3.7, the diagram LS(Δ) is nothing but

SG Su SG′ Sv SG′′ Sw
SG̃ , (�7)

which we must show is a distinguished triangle in Ho(U ι). Since the pair (Cι∩Wι, F ι) =
(Wι, GInjA) is a hereditary cotorsion pair in U ι, see Theorem 3.9 and Definition 3.2, it 
follows from [32, Lem. 6.20] that we can find a diagram in U ι,
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SG

h

Si SP

e

Sp
SG̃

h̃

H
i0

E
p0

H̃

J I J̃

(�8)

whose rows and columns are conflations, where H, E, H̃ are Gorenstein injective, and 
where J, I, J̃ have finite injective dimension. As P ∈ ProjA ⊆ Wπ we have SP ∈ Wι, 
that is, SP has finite injective dimension. It follows from the middle column in (� 8)
that E has finite injective dimension, and since E is also Gorenstein injective it must 
be injective (this is immediate from the definition, 2.1, of Gorenstein injective objects). 

Let SG′ h′

� H ′ � J ′ be a short exact sequence with H ′ ∈ GInjA and J ′ ∈ Wι. The 
morphism h : SG → H is a (special) Gorenstein injective preenvelope of SG since it 
is monic and its cokernel J ∈ Wι satisfies Ext1A(J, X) = 0 for all X ∈ GInj(A); see 
[34, Prop. 2.1.4]. Thus, the morphism h′Su : SG → H ′ ∈ GInj(A) lifts to a morphism 
u0 : H → H ′ such that u0h = h′Su. This gives commutativity of the left wall in the 
following diagram:

H

u0

i0
E

t0

p0
H̃

SG

h

Su

Si SP

e

St

Sp
SG̃

h̃

H ′ v0
H ′′ w0

H̃

SG′
h′

Sv
SG′′

h′′

Sw
SG̃

h̃

(�9)

The top wall in (� 9) is just the upper half of the commutative diagram (� 8). The back 

wall is the (commutative) pushout diagram of the morphisms H ′ u0← H
i0� E. The right 

wall is evidently commutative. The front wall in (� 9) is obtained by applying the exact 
functor S to the diagram (� 5). Since S is a left adjoint functor, it preserves colimits, so 
the front wall in (� 9) is (still) a pushout diagram. As (v0h

′)Su = v0u0h = t0i0h = (t0e)Si
and since SG′′ is the pushout of SG′ Su←− SG Si−→ SP, there exists a (unique) morphism 
h′′ : SG′′ → H ′′ such that h′′Sv = v0h

′ and h′′St = t0e. The first of these identities 
show that the left square in the bottom wall in (� 9) is commutative. It follows from 
the universal property of the pushout SG′′ that the right square in the bottom wall is 
commutative as well. By applying the Snake Lemma to this bottom wall, we see that 
h′′ is monic (as h′ and h̃ are so) and that the cokernel J ′′ of h′′ sits in a short exact 
sequence 0 → J ′ → J ′′ → J̃ → 0. Since J ′, J̃ ∈ Wι it follows that J ′′ ∈ Wι. Since h, h′, 
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h′′, and h̃ are (admissible) monomorphisms in U ι whose cokernels belong to Wι (which 
are the trivially cofibrant objects in U ι), they are trivial cofibrations in the exact model 
structure on U ι; see [17, Def. 3.1]. In particular, h, h′, h′′, and h̃ are weak equivalences 
in U ι and therefore isomorphisms in Ho(U ι). The commutative diagram (� 9) now shows 
that in the homotopy category Ho(U ι), the diagram (� 7) is isomorphic to

H
u0

H ′ v0
H ′′ w0

H̃ . (�10)

By definition, and by commutativity of the back wall in (� 9), the diagram (� 10) is 
a standard triangle in GInj(A), and consequently, (� 7) is a distinguished triangle in 
Ho(U ι). �
Corollary 3.12. If there exists a Sharp–Foxby adjunction (S, T ) on A, then there is an 
equivalence of triangulated categories, GProj(A) � GInj(A).

Proof. By Theorems 3.7, 3.11, and 3.9 there are the following equivalences of triangulated 
categories, GProj(A) � Ho(Uπ) � Ho(U ι) � GInj(A). �
Remark 3.13. Before closing this section, we record a biproduct of Proposition 3.10
concerning virtually Gorenstein rings, which should be well known. We recall from [3,4]
that an Artin algebra A is called virtually Gorenstein if (GProj(A))⊥ = ⊥(GInj(A)). 
The same notion for commutative rings has also been studied in [36]. In what follows, 
assume that A is an Artin algebra or a commutative noetherian ring with finite Krull 
dimension. In both cases, it is well known [4,19,26] that there are Hovey triples

(GProj(A), (GProj(A))⊥,Mod(A)) and (Mod(A),⊥(GInj(A)),GInj(A)).

Applying Proposition 3.10 in the case where F = G = IMod(A), we obtain that virtually 
Gorensteiness of A implies that the identity is a Quillen equivalence between the two 
model structures. Therefore the homotopy categories of these two models are, in fact, 
isomorphic. In case A is, in addition, commutative Gorenstein we recover the analogous 
statement for Gorenstein rings (see the comments after Theorem 8.6 in [25]).

4. The case of chain complexes

Recall from the beginning of Section 2 that A always denotes any bicomplete abelian 
category with enough projectives and enough injectives. In this section, we consider 
the abelian category Ch(A) of unbounded chain complexes in A and prove that, under 
suitable conditions, a Sharp–Foxby adjunction (S, T ) on A induces a Sharp–Foxby ad-
junction on Ch(A) by degreewise application of the functors S and T . First we recall 
the following.
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4.1. The finitistic projective dimension, FPD(A), of A is defined as

FPD(A) = sup{pdAM | M is an object in A with finite projective dimension}.

Dually, the finitistic injective dimension, FID(A), of A is

FID(A) = sup{idAM | M is an object in A with finite injective dimension}.

The finitistic Gorenstein projective dimension, FGPD(A), and the finitistic Gorenstein 
injective dimension, FGID(A), are defined similarly.

For most abelian categories that appear in applications, the finitistic dimensions de-
fined above turn out to be finite. As in [23, (proofs of) Thms. 2.28 and 2.29] one easily 
proves:

Lemma 4.2. There are equalities FGPD(A) = FPD(A) and FGID(A) = FID(A). Thus, if 
FPD(A), respectively, FID(A), is finite, then so is FGPD(A), respectively, FGID(A). �

In A we have the subcategories Uπ
A , Cπ

A , Wπ
A and Fπ

A from Definition 3.1. Similarly, in 
B = Ch(A) we have the subcategories Uπ

B , Cπ
B, Wπ

B and Fπ
B . The following result explains 

the relation between all these subcategories.

Proposition 4.3. Assume that FPD(A) < ∞ and let X = · · · → Xn+1 → Xn → Xn−1 →
· · · be an object in B := Ch(A). The following conclusions hold.

(i) X belongs to Uπ
B if and only if every Xn belongs to Uπ

A .
(ii) X belongs to Cπ

B if and only if every Xn belongs to Cπ
A .

(iii) X belongs to Wπ
B if and only if X is exact and every cycle Zn(X) belongs to Wπ

A .
(iv) X belongs to Fπ

B if and only if every Xn belongs to Fπ
A .

Proof. Part (ii) is proved in [35, Thm. 2.2] in the case A = Mod(A) where A is any ring, 
but the proof works in any abelian category (with enough projectives).

In view of (ii), the “only if” part in (i) is clear. To prove the “if” part in (i), assume 
that every Xn is in Uπ

A , that is, GpdA(Xn) < ∞. By our assumption FPD(A) < ∞ and 
by Lemma 4.2, it follows that s = sup{GpdA(Xn) | n ∈ Z} belongs to N0. The proof is 
now by induction on s. If s = 0, then X is even in Cπ

B ⊆ Uπ
B by part (ii). Now assume 

that s > 0. Choose any exact sequence

0 −→ K −→ P s−1 −→ · · · −→ P 1 −→ P 0 −→ X −→ 0

in B = Ch(A) where P 0, . . . , P s−1 are complexes consisting of projective objects in A. 
For each n ∈ Z we have an exact sequence 0 → Kn → P s−1

n → P 1
n → P 0

n → Xn → 0
in A, and since P 0

n , . . . , P
s−1
n are projectives and GpdA(Xn) � s, it follows that Kn is 
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Gorenstein projective; cf. [23, (proof of) Prop. 2.7]. Thus, K is a complex of Gorenstein 
projective objects in A, which by (ii) means that K is a Gorenstein projective object in 
B = Ch(A). So the exact sequence displayed above shows that GpdB(X) � s < ∞, that 
is, X ∈ Uπ

B .
To prove (iii), let X ∈ Wπ

B , which means that we have an exact sequence

0 −→ Pm −→ · · · −→ P 1 −→ P 0 −→ X −→ 0 (�11)

in B = Ch(A) where P 0, . . . , Pm are projective objects; i.e. each P i is a split exact 
complex of projective objects in A, and thus each cycle Zn(P i) is also projective in A. 
As the complexes P 0, . . . , Pm are, in particular, exact, so is X (and the same are all 
the kernel and cokernel complexes of the chain maps that appear in (� 11)). This implies 
that the functor Zn(−) leaves the sequence (� 11) exact, and the hereby obtained exact 
sequence

0 −→ Zn(Pm) −→ · · · −→ Zn(P 1) −→ Zn(P 0) −→ Zn(X) −→ 0

shows that Zn(X) has finite projective dimension in A, that is, Zn(X) belongs to Wπ
A .

The proof of the “if” part in (iii) is based on a standard construction; see (the dual of) 
[16, Thm. 3.1.3] (for this argument to work we make use the hypothesis FPD(A) < ∞).

Part (iv) is just a repetition of part (i) since Fπ
B = Uπ

B and Fπ
A = Uπ

A . �
In A we also have the subcategories U ι

A, Cι
A, Wι

A and F ι
A from Definition 3.2. Similarly, 

in B = Ch(A) we have the subcategories U ι
B, Cι

B, Wι
B and F ι

B. By an argument dual to 
the proof of Proposition 4.3, one shows the following result.

Proposition 4.4. Assume that FID(A) < ∞ and let Y = · · · → Yn+1 → Yn → Yn−1 → · · ·
be an object in B := Ch(A). The following conclusions hold.

(i) Y belongs to U ι
B if and only if every Yn belongs to U ι

A.
(ii) Y belongs to Cι

B if and only if every Yn belongs to Cι
A.

(iii) Y belongs to Wι
B if and only if Y is exact and every cycle Zn(Y ) belongs to Wι

A.
(iv) Y belongs to F ι

B if and only if every Yn belongs to F ι
A. �

We can now prove the main result of this section.

Theorem 4.5. Let (S, T ) be a Sharp–Foxby adjunction on A, in particular, GProj(A) and 
GInj(A) are equivalent as triangulated categories by Corollary 3.12. If FPD(A) < ∞ and 
FID(A) < ∞, then degreewise application of S and T yields a Sharp–Foxby adjunction on 
B = Ch(A), and hence GProj(B) and GInj(B) are equivalent as triangulated categories.

Proof. Write S̄ and T̄ for the endofunctors on B = Ch(A) that are given by degree-
wise application of S and T , and let η and ε be the unit and counit of the adjunction 
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(S, T ) on A. It is straightforward to verify that (S̄, T̄ ) is an adjunction on B with unit η̄
and counit ε̄ given by (η̄X)n = ηXn

and (ε̄X)n = εXn
, where X is a chain complex and 

n is an integer.
By assumption, S restricts to an exact functor S : Uπ

A → U ι
A which maps Wπ

A to Wι
A; 

see (SF1) and (SF2) in Definition 3.4. It therefore follows from Propositions 4.3 and 4.4
that S̄ restricts to an exact functor S̄ : Uπ

B → U ι
B which maps Wπ

B to Wι
B, that is, the 

adjunction (S̄, T̄ ) also satisfies conditions (SF1) and (SF2). A similar argument shows 
that this adjunction satisfies (SF3) and (SF4) as well. By (SF5) in Definition 3.4 we know 
that the unit ηA : A → TSA of (S, T ) is an isomorphism for A ∈ Uπ

A . From the definition 
of η̄ and from Proposition 4.3 it now follows that η̄X : X → T̄ S̄X is an isomorphism for 
X ∈ Uπ

B , that is, (S̄, T̄ ) satisfies (SF5). Similarly, (S̄, T̄ ) also satisfies condition (SF6). �
Corollary 4.6. Let (S, T ) be a Sharp–Foxby adjunction on A for which FPD(A) < ∞ and 
FID(A) < ∞. Then degreewise application of S and T yields a Sharp–Foxby adjunction 
on the category Ch2(A) of double complexes (also called bicomplexes) in A.

Proof. The category Ch2(A) of double complexes in A is naturally identified with the 
category Ch(Ch(A)). Thus, the desired conclusion follows by applying Theorem 4.5 to 
the category Ch(A) (in place of A). However, to do this we must first argue that the 
theorem’s hypothesis is satisfied, i.e. that the numbers FPD(Ch(A)) and FID(Ch(A))
are finite. But it is immediate from (the proofs of) Propositions 4.3(iii) and 4.4(iii) that 
these numbers agree with FPD(A) and FID(A), which are finite by assumption. �
Example 4.7. Let A be a commutative noetherian ring with a dualizing module. By Ex-
ample 3.6 there exists a Sharp–Foxby adjunction on Mod(A). The finitistic projective/in-
jective dimensions of Mod(A) are usually referred to as the finitistic projective/injective 
dimensions of the ring A, and they are denoted by FPD(A) and FID(A). These numbers 
are finite, indeed, one has FPD(A) = dim A � FID(A) by [30, Thm. II.(3.2.6) p. 84] and 
[2, Cor. 5.5], and dim A is finite by [22, Cor. V.7.2].

Theorem 4.5 and Corollary 4.6 now imply that the category Ch(A) of chain complexes 
and the category Ch2(A) of double complexes of A-modules both have Sharp–Foxby 
adjunctions. In particular, there are by Corollary 3.12 equivalences of triangulated cat-
egories,

GProj(Ch(A)) � GInj(Ch(A)) and GProj(Ch2(A)) � GInj(Ch2(A)) .

The key ingredient in the proof of Theorem 4.5 is that in the category B = Ch(A)
the Gorenstein projective/injective objects can be suitably described in terms of the 
Gorenstein projective/injective objects in A (as recorded in Propositions 4.3 and 4.4). 
This is also the case for the category B = Rep(Q, A) of A-valued representations of a 
left and right rooted quiver Q; see [13, Thm. 3.5.1]; thus by using the same methods as 
above one can prove:
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Theorem 4.8. Let (S, T ) be a Sharp–Foxby adjunction on A. If one has FPD(A) < ∞ and 
FID(A) < ∞, then vertexwise application of S and T yields a Sharp–Foxby adjunction on 
B = Rep(Q, A), so GProj(B) and GInj(B) are equivalent as triangulated categories. �
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