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Abstract

It was proved by Beligiannis and Krause that over certain Artin algebras, there are Gorenstein
flat modules which are not direct limits of finitely generated Gorenstein projective modules. That
is, these algebras have no Gorenstein analogue of the Govorov–Lazard theorem. We show that,
in fact, there is a large class of rings without such an analogue. Namely, let R be a commutative
local noetherian ring. Then the analogue fails for R if it has a dualizing complex, is henselian,
not Gorenstein, and has a finitely generated Gorenstein projective module which is not free. The
proof is based on a theory of Gorenstein projective preenvelopes. We show, among other things,
that the finitely generated Gorenstein projective modules form an enveloping class in mod R if
and only if R is Gorenstein or has the property that each finitely generated Gorenstein projective
module is free. This is analogous to a recent result on covers by Christensen, Piepmeyer, Striuli
and Takahashi, and their methods are an important input to our work.

Introduction

Gorenstein homological algebra was founded by Auslander and Bridger in [1]. Some of its main
concepts are the so-called Gorenstein projective and Gorenstein flat modules, see [10, 12]. These
modules inhabit a theory parallel to classical homological algebra. For instance, just as projective
modules can be used to define projective dimension, so Gorenstein projective modules can be used
to define Gorenstein projective dimension. A commutative local noetherian ring is Gorenstein if and
only if all its modules have finite Gorenstein projective dimension. A good introduction is given in
[5]; in particular, the definitions of Gorenstein projective and Gorenstein flat modules can be found
in [5, (4.2.1) and (5.1.1)].

The Govorov–Lazard theorem says that the closure under direct limits of the class of finitely
generated projective modules is equal to the class of flat modules; see [15, 16, Theorem 1.2]. It is
natural to ask if this has a Gorenstein analogue. Namely, if G denotes the class of finitely generated
Gorenstein projective modules, is lim−→ G equal to the class of Gorenstein flat modules? In some cases
the answer is yes, for instance over a ring which is Gorenstein in a suitable sense; this was established
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by Enochs and Jenda in [11, Theorem 10.3.8]. However, Beligiannis and Krause proved in [2, 4.2
and 4.3] that for certain Artin algebras, the answer is no.

We show for a considerably larger class of rings that there is no Gorenstein analogue of the
Govorov–Lazard theorem. Namely, let R be a commutative local noetherian ring and let F be the
class of finitely generated free modules. The following is our Theorem 2.7.

THEOREM A If R has a dualizing complex, is henselian, not Gorenstein, and has G �= F , then lim−→ G
is strictly contained in the class of Gorenstein flat modules.

The proof is based on a theory of G -preenvelopes, the development of which takes up most of the
paper. The background is that the existence of G -precovers has been considered at length. That is, if

M is a finitely generated module, does there exist a homomorphism G
γ→ M with G in G such that

any other homomorphism G′ → M with G′ in G factors through γ ? A breakthrough was achieved
recently in [7] by Christensen et al. who proved, among other things, that if R is henselian, then
G -precovers exist for all finitely generated modules in precisely two cases: if R is Gorenstein, or if
G = F .

We will consider the dual question: Existence of G -preenvelopes. That is, if M is a finitely generated
module, does there exist a homomorphism M

μ→ G with G in G such that any other homomorphism
M → G′ with G′ in G factors through μ? We give criteria for the existence of various types of
G -preenvelopes in Theorem 2.5. One aspect is the following precise analogue of the precovering case.

THEOREM B If R is henselian then all finitely generated R-modules have G -preenvelopes if and only
if R is Gorenstein or G = F .

Note that the methods and results of [7] are an important input to our proof.

The paper is organized as follows: Section 1 prepares the ground by examining the connections
between G -precovers and G -preenvelopes which are induced by the algebraic duality functor (−)∗ =
HomR(−, R). Section 2 proves Theorems A and B, among other things. Section 3 shows a method
for constructing a Gorenstein flat module outside lim−→ G .

1. Algebraic duals of precovers and preenvelopes

This section proves Theorems 1.6 and 1.7 by which algebraic duals of various types of G -precovers
give the corresponding types of G -preenvelopes, and vice versa.

SETUP 1.1 Throughout the paper, R is a commutative noetherian ring.

We denote the category of finitely generated R-modules by mod R. Recall that F is the class
of finitely generated free R-modules and G is the class of finitely generated Gorenstein projective
R-modules.

REMARK 1.2 The following properties of G will be used below.

(i) Ext�1
R (G , R) = 0.

(ii) R is in G .
(iii) The class G is closed under the algebraic duality functor (−)∗ = HomR(−, R).
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(iv) The biduality homomorphism G
δG−→ G∗∗, as defined in [5, (1.1.1)], is an isomorphism for

each G in G .
(v) Each module in G is isomorphic to a module G∗ where G is in G .

Here (i) and (iv) are part of the definition of G , see [5, Definition (1.1.2)]. Property (ii) is by
[5, Remark (1.1.3)] and (iii) is by [5, Observation (1.1.7)]. Property (v) is immediate from (iii) and (iv).

LEMMA 1.3 If C is an R-module satisfying Ext1
R(C, R) = 0, then Ext1

R(G, C∗) ∼= Ext1
R(C, G∗) for

each G in G .

Proof . We have
H<0RHom(C, R) = 0, (1)

so RHom(C, R) can be represented in the derived category D(R) by a complex concentrated in
non-negative cohomological degrees. Hence, there is a canonical morphism in D(R) from the zeroth
cohomology H0RHom(C, R) ∼= C∗ to RHom(C, R). Complete it to a distinguished triangle,

C∗ χ−→ RHom(C, R) −→ M −→, (2)

and consider the long exact cohomology sequence which consists of pieces

Hi (C∗)
Hiχ−→ HiRHom(C, R) −→ HiM.

Since C∗ is a module, Hi (C∗) = 0 for i �= 0. Combined with equation (1), the long exact sequence
hence implies H�−2M = 0.

Moreover, H0χ is an isomorphism by the construction of χ , and by assumption, H1RHom(C, R) =
Ext1(C, R) = 0. So in fact, the long exact sequence also implies H−1M = H0M = H1M = 0.

Consequently, the complex M admits an injective resolution of the form I = · · · → 0 → I 2 →
I 3 → · · · , and in particular,

H�1RHom(G, M) ∼= H�1Hom(G, I) = 0 (3)

for each R-module G.

Now let G be in G . It follows from Remark 1.2(i) that there is an isomorphism RHom(G, R) ∼= G∗
in D(R), and hence by ‘swap’, [5, (A.4.22)], we get

RHom(G, RHom(C, R)) ∼= RHom(C, RHom(G, R)) ∼= RHom(C, G∗).

Thus, by applying RHom(G, −) to the distinguished triangle (2) we obtain

RHom(G, C∗) −→ RHom(C, G∗) −→ RHom(G, M) −→ .

Combining the long exact cohomology sequence of this with equation (3) proves the lemma.

REMARK 1.4 We thank the referee for pointing out the following generalization: if ExtiR(C, R) = 0 for
1 ≤ i ≤ n, then ExtiR(G, C∗) ∼= ExtiR(C, G∗) for each 0 ≤ i ≤ n (sic) andG inG . It is straightforward
to adapt the proof of the lemma to show this.
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LEMMA 1.5 Let C be an R-module.

(i) If Ext1
R(C, G ) = 0 then Ext1

R(G , C∗) = 0.
(ii) If Ext1

R(C, R) = 0 and Ext1
R(G , C∗) = 0, then Ext1

R(C, G ) = 0.

Proof . Combine Lemma 1.3 with Remark 1.2, parts (ii) and (iii), respectively, part (v).

Let G
γ→ N be a G -precover. For the following theorems, recall that γ is called a special G -

precover if Ext1
R(G , Ker γ ) = 0, and that γ is called a cover if each endomorphism G

ϕ→ G with
γ ϕ = γ is an automorphism. Special G -preenvelopes and G -envelopes are defined dually.

THEOREM 1.6 Let M be in mod R, let G be in G , and let G
γ→ M∗ be a homomorphism. Consider

the composition

M
δM−→ M∗∗ γ ∗−→ G∗,

where δ denotes the biduality homomorphism again. Then

(i) If γ is a G -precover then γ ∗δM is a G -preenvelope.
(ii) If γ is a special G -precover then γ ∗δM is a special G -preenvelope.

(iii) If γ is a G -cover then γ ∗δM is a G -envelope.

Proof . There is a commutative diagram

G

∼=δG

��

γ
�� M∗

� �

δM∗

��
G∗∗

γ ∗∗
�� M∗∗∗

(δM)∗
���� (1) δM∗γ = γ ∗∗δG,

(2) γ = (δM)∗γ ∗∗δG.

Here (1) just says that the biduality homomorphism is natural. By the proof of [5, Proposition (1.1.9)]
we have (δM)∗δM∗ = 1M∗ , so δM∗ is (split) injective, (δM)∗ (split) surjective. Now (2) follows from
δM∗(δM)∗γ ∗∗δG = δM∗(δM)∗δM∗γ = δM∗γ since δM∗ is injective.

(i) Suppose that γ is a G -precover and let G̃ be in G . Remark 1.2(iv) and ‘swap’ in the form
[3, II. Exercise 4] give the following natural equivalences of functors,

Hom(−, G̃) � Hom(−, G̃∗∗) � Hom(G̃∗, (−)∗).

This gives the (top) two squares of the commutative diagram below, where we have abbreviated
Hom(−, −) to (−, −). The (bottom) commutative triangle comes from applying Hom(G̃∗, −) to
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part (2) from the beginning of the proof.

(G∗, G̃)

∼=
��

(γ ∗,G̃)
�� (M∗∗, G̃)

∼=
��

(δM ,G̃)
�� (M, G̃)

∼=
��

(G̃∗, G∗∗)
(G̃∗,γ ∗∗)

�� (G̃∗, M∗∗∗)
(G̃∗,(δM)∗)

�� (G̃∗, M∗)

(G̃∗, G)

∼=

(G̃∗,δG)

�������������� (G̃∗,γ )

�� ��������������

Since G̃∗ is in G by Remark 1.2(iii), the map Hom(G̃∗, γ ) is surjective, and the diagram implies that
so is Hom(δM, G̃) ◦ Hom(γ ∗, G̃) = Hom(γ ∗δM, G̃). Hence γ ∗δM is a G -preenvelope.

(ii) Suppose that γ is a special G -precover; in particular we have Ext1(G , Ker γ ) = 0. Part (i) says
that γ ∗δM is a G -preenvelope, and it remains to show Ext1(C, G ) = 0 where C = Coker(γ ∗δM). To
prove this we use Lemma 1.5(ii). Thus, we need to show that Ext1(G , C∗) = 0 and Ext1(C, R) = 0.

Applying (−)∗ to the exact sequence M
γ ∗δM �� G∗ π �� C �� 0 gives the second exact

row in

G

∼=δG

��

γ
�� M∗

0 �� C∗
π∗

�� G∗∗
(δM)∗γ ∗∗

�� M∗

where the square is commutative by part (2) at the beginning of the proof. It follows that C∗ ∼= Ker γ ,
and hence Ext1(G , C∗) = 0.

To prove Ext1(C, R) = 0, we will argue that each short exact sequence 0 → R → E → C → 0
splits. Consider the diagram with exact rows,

M

μ

���
�
�
�

γ ∗δM �� G∗

ϕ

���
�

�
�

�
�

ν

���
�
�
�

π �� C

χ

���
�

�
�

�
�

�� 0

0 �� R
ρ

�� E
ε

�� C �� 0.

By Remark 1.2, (i) and (iii), we have Ext1(G∗, R) = 0, so the functor Hom(G∗, −) preserves the
exactness of the bottom row. In particular, there exists G∗ ν→ E with εν = π . By the universal
property of the kernel of ε, there exists a (unique) M

μ→ R with ρμ = νγ ∗δM .
Since γ ∗δM is a G -preenvelope and since R is in G by Remark 1.2(ii), there exists G∗ ϕ→ R

satisfying ϕγ ∗δM = μ. It follows that

(ν − ρϕ)γ ∗δM = νγ ∗δM − ρϕγ ∗δM = νγ ∗δM − ρμ = 0,
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so by the universal property of the cokernel of γ ∗δM , there exists a (unique) C
χ→ E with χπ =

ν − ρϕ. Consequently,

εχπ = ε(ν − ρϕ) = εν − ερϕ = π − 0 = idC π,

and since π is surjective we get εχ = idC . This proves that ε is a split epimorphism as desired.
(iii) Suppose that γ is a G -cover. Part (i) says that γ ∗δM is a G -preenvelope, and it remains to

show that each endomorphism G∗ ϕ→ G∗ with

ϕγ ∗δM = γ ∗δM (4)

is an automorphism. However, such an endomorphism has

γ δ−1
G ϕ∗ = (δM)∗γ ∗∗ϕ∗ = (δM)∗γ ∗∗ = γ δ−1

G

where the first and third = are by part (2) at the beginning of the proof while the second = is (−)∗
of equation (4). Hence γ (δ−1

G ϕ∗δG) = γ , and since γ is a G -cover and δ−1
G ϕ∗δG is an endomorphism

of G, it follows that δ−1
G ϕ∗δG is an automorphism.

Therefore ϕ∗, and hence also ϕ∗∗, is an automorphism. Applying Remark 1.2, (iii) and (iv), and
naturality of the biduality homomorphism gives ϕ = δ−1

G∗ ϕ∗∗δG∗ whence ϕ is an automorphism as
desired.

THEOREM 1.7 Let M be in mod R, let G be in G , and let M
μ→ G be a homomorphism. Consider the

algebraic dual G∗ μ∗→ M∗. Then

(i) If μ is a G -preenvelope then μ∗ is a G -precover.
(ii) If μ is a special G -preenvelope then μ∗ is a special G -precover.

(iii) If μ is a G -envelope then μ∗ is a G -cover.

Proof . (i) We have Hom(G, μ∗) ∼= Hom(μ, G∗) by ‘swap’, [3, II. Exercise 4], and combined with
Remark 1.2(iii) this implies the claim.

(ii) Suppose that μ is a special G -preenvelope; in particular we have Ext1(Coker μ, G ) = 0. Part
(i) says that μ∗ is a G -precover, and it remains to show Ext1(G , Ker(μ∗)) = 0. But this follows
from Lemma 1.5(i) because Ker(μ∗) ∼= (Coker μ)∗.

(iii) Suppose that μ is a G -envelope. Part (i) says that μ∗ is a G -precover, and it remains to show that
each G∗ ϕ→ G∗ with μ∗ϕ = μ∗ is an automorphism.

The biduality homomorphism is natural so δGμ = μ∗∗δM , and since δG is an isomorphism by
Remark 1.2(iv), it follows that μ = δ−1

G μ∗∗δM . Applying (−)∗ to μ∗ϕ = μ∗ gives ϕ∗μ∗∗ = μ∗∗.
Combining these gives

(δ−1
G ϕ∗δG)μ = (δ−1

G ϕ∗δG)(δ−1
G μ∗∗δM) = δ−1

G ϕ∗μ∗∗δM = δ−1
G μ∗∗δM = μ.

Since μ is a G -envelope and δ−1
G ϕ∗δG is an endomorphism of G, it follows that δ−1

G ϕ∗δG is an
automorphism.

The argument used at the end of the proof of Theorem 1.6 now shows that ϕ is an automorphism
as desired.
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2. Existence of preenvelopes and the Govorov–Lazard theorem

This section proves Theorems A and B of the introduction; see Theorems 2.7 and 2.5.

SETUP 2.1 In this section, the commutative noetherian ring R is assumed to be local with residue
class field k. We write d = depth R.

In the following lemma, the case d = 0 is trivial, d = 1 is closely inspired by a proof of Takahashi,
and d � 2 is classical. Recall that 
d(k) denotes the dth syzygy in a minimal free resolution of k

over R.

LEMMA 2.2 There exists an M in mod R such that 
d(k) is isomorphic to a direct summand of M∗.

Proof . d = 0. We can use M = k since 
d(k) = 
0(k) = k and since M∗ = Hom(k, R) ∼= ke with
e �= 0 because d = 0.

d = 1. We will show that M = 
d(k)∗ works here; in fact, we will show that the biduality
homomorphism for 
d(k) is an isomorphism so 
d(k) ∼= 
d(k)∗∗ = M∗.

There is a short exact sequence

0 −→ m
μ−→ R −→ k −→ 0, (5)

where m is the maximal ideal of R and μ is the inclusion, so 
d(k) = 
1(k) = m.
If R is regular then k has projective dimension 1 by the Auslander–Buchsbaum formula, so (5)

shows that m is projective whence the biduality homomorphism δm is an isomorphism as desired.
Assume that R is not regular. For reasons of clarity, we start by reproducing, in our notation, part

of Takahashi’s proof of [21, Theorem 2.8]. Applying (−)∗ and its derived functors to the short exact
sequence (5) gives a long exact sequence containing

0 −→ R∗ μ∗−→ m
∗ −→ ke −→ 0, (6)

where we have written ke instead of Ext1(k, R), and where e �= 0 since d = 1. Applying (−)∗ again

gives a left exact sequence 0 → (ke)∗ → m∗∗ μ∗∗→ R∗∗; here (ke)∗ = 0 because d = 1, so μ∗∗ is
injective.

Consider the commutative square

m
� �

μ
��

� �

δm

��

R

∼= δR

��
m∗∗ � �

μ∗∗
�� R∗∗

where δm is injective because δRμ is injective. There are inclusions

Im(μ∗∗δm) ⊆ Im(μ∗∗) ⊆ R∗∗. (7)

We have R∗∗/ Im(μ∗∗δm) = R∗∗/ Im(δRμ) ∼= R/ Im(μ) ∼= k where the first ∼= is because δR is an
isomorphism. This quotient is simple so one of the inclusions (7) must be an equality; this means that
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either μ∗∗ or δm is an isomorphism. Suppose that μ∗∗ is an isomorphism; we will prove a contradiction
whence δm is an isomorphism as desired.

To get the contradiction, we now depart from Takahashi’s proof. Since μ∗∗ is an isomorphism, so

is R∗∗∗ μ∗∗∗→ m∗∗∗, and so m∗∗∗ ∼= R. But (δm)∗δm∗ = idm∗ by the proof of [5, Proposition (1.1.9)], so

m∗ δm∗→ m∗∗∗ is a split monomorphism. It follows that m∗ is a direct summand of R, so m∗ is projective.
Hence, the exact sequence (6) gives a projective resolution of ke, and since e �= 0 it follows that is
gldim R � 1 contradicting that R is not regular.

d � 2. Here we have 
d(k) = 
2(
d−2(k)), so it is enough to show that a second syzygy of a
finitely generated module is a direct summand of some M∗. In fact, such a second syzygy 
2 is
isomorphic to an M∗. Namely, 
2 sits in a short exact sequence 0 → 
2 → P

π→ Q where P and Q

are finitely generated projective modules. Consider the right-exact sequence Q∗ π∗→ P ∗ → M → 0

and apply (−)∗ to get a left-exact sequence 0 → M∗ → P ∗∗ π∗∗→ Q∗∗. Since π∗∗ is isomorphic to π ,
we get 
2 ∼= M∗.

The following lemma is implicitly in [7], but it is handy to make it explicit for reference. Recall
from [7, Definition (2.1)] that if B is a full subcategory of mod R, then a B-approximation of an M in
mod R is a short exact sequence 0 → K → B → M → 0 where B is in B and Ext�1

R (B, K) = 0.

LEMMA 2.3 Consider a special G -precover and complete it with its kernel. The resulting short exact
sequence 0 → K → G → M → 0 is a G -approximation of M .

Proof . We know Ext1(G , K) = 0. By [5, Corollary (4.3.5)(a)] each G in G sits in a short exact
sequence 0 → G′ → P → G → 0 where P is a finitely generated projective module and G′ is in
G , and it follows by an easy induction that Ext�1(G , K) = 0 as desired.

REMARK 2.4 Let us give a brief summary of a part of [7].
Recall from [7, (1.1)] that if B is a full subcategory of mod R, then 〈B〉 denotes the closure under

direct summands and extensions. The class of finitely generated Gorenstein projective modules G is
a so-called reflexive subcategory of mod R by [7, Definition (2.6)]. It follows from [7, Proposition
(2.10)] that 〈R̂ ⊗R G 〉 is a reflexive subcategory of mod R̂.

Now suppose that there is an 〈R̂ ⊗R G 〉-cover of 
d

R̂
(k). The cover is an 〈R̂ ⊗R G 〉-approximation

by [7, (2.2)(b)]. But when such an approximation exists, the proof of [7, Theorem (3.4)] gives that
either, R̂ is Gorenstein, or 〈R̂ ⊗R G 〉 consists of free R̂-modules.

An important input to the proof of the next theorem are the methods and results developed by
Christensen et al. in [7].

THEOREM 2.5 The following three conditions are equivalent.

(i) Each module in mod R has a G -envelope.
(ii) Each module in mod R has a special G -preenvelope.

(iii) R is Gorenstein or G = F .

They imply the following condition.

(iv) Each module in mod R has a G -preenvelope.
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Moreover, if R is henselian then (iv) implies (i), (ii) and (iii).

Proof . (i)⇒(ii) Holds by Wakamatsu’s lemma, [24, Lemma 2.1.2].
(ii)⇒(iii) By Lemma 2.2, the module 
d

R(k) is a direct summand in a module of the form M∗
where M is in mod R. If (ii) holds then M has a special G -preenvelope, and by Theorem 1.7(ii) it
follows that M∗ has a special G -precover. Completing with the kernel gives a short exact sequence
0 → K → G → M∗ → 0 which is a G -approximation of M∗ by Lemma 2.3.

Tensoring the sequence with R̂ gives an 〈R̂ ⊗R G 〉-approximation of R̂ ⊗R M∗ by [7, Proposition
2.4]. In particular, there is an 〈R̂ ⊗R G 〉-precover of R̂ ⊗R M∗, and the same must hold for its direct
summand R̂ ⊗R 
d

R(k) ∼= 
d

R̂
(k). Hence, there is an 〈R̂ ⊗R G 〉-cover of 
d

R̂
(k) by [22, Corollary

2.5].
But now the results of [7] imply that either, R̂ is Gorenstein, or 〈R̂ ⊗R G 〉 consists of free R̂-

modules; see Remark 2.4. In the former case, R is Gorenstein by [18, Theorem 18.3]. In the latter
case, in particular, R̂ ⊗R G is a free R̂-module whenever G is in G . But then G is a free R-module
whence G = F ; cf. [18, Corollary on p. 53, Exercise 7.1 and (3), p. 63].

(iii)⇒(i) First, suppose that R is Gorenstein. Then each finitely generated R-module has a G -cover
by unpublished work of Auslander; see [13, Theorem 5.5]. Existence of G -envelopes now follows
from Theorem 1.6(iii).

Secondly, suppose G = F . Then each finitely generated R-module has an F -envelope by [23,
Proposition 2.3(3)], which does not need that paper’s assumption that the ring is henselian.

(i)⇒(iv) Trivial.
Now assume that R is henselian.
(iv)⇒(i) Suppose that (iv) holds. Then Theorem 1.7(i) implies that each R-module of the form M∗

with M in mod R has a G -precover. Since R is henselian, each M∗ has a G -cover by [22, Corollary
2.5], and so each M has a G -envelope by Theorem 1.6(iii).

REMARK 2.6 As a consequence, the following conditions are equivalent.

(i) Each module in mod R has a G -cover.
(ii) Each module in mod R has a special G -precover.

(iii) Each module in mod R has a G -envelope.
(iv) Each module in mod R has a special G -preenvelope.
(v) R is Gorenstein or G = F .

Namely, (i)⇒(ii) is by Wakamatsu’s lemma, [24, Lemma 2.1.1]. (ii)⇒(iv) follows from
Theorem 1.6(ii). Conditions (iii), (iv) and (v) are equivalent by Theorem 2.5. And (v)⇒(i) follows
from unpublished work by Auslander; see [13, Theorem 5.5].

Note that the equivalence of (i), (ii) and (v) was first established in [7], and that our proof depends
on that paper.

Now assume that R is henselian. Combining with a result of Crawley–Boevey shows that the
following conditions are also equivalent, where lim−→ G denotes the closure of G under direct limits.

(i) Each module in mod R has a G -precover.
(ii) Each module in mod R has a G -preenvelope.

(iii) R is Gorenstein or G = F .
(iv) lim−→ G is closed under set indexed direct products.
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Namely, (i)⇒(iii) holds by [7, (2.8) and Theorem (3.4)]. (iii)⇒(i) follows from unpublished work
by Auslander as above; see [13, Theorem 5.5]. (ii)⇔(iii) is by Theorem 2.5. And (ii)⇔(iv) holds by
[8, (4.2)].

THEOREM 2.7 If R has a dualizing complex, is henselian, not Gorenstein, and has G �= F , then lim−→ G
is strictly contained in the class of Gorenstein flat modules.

Proof . Each module in G is Gorenstein flat, cf. [5, Theorem (5.1.11)], and the class of Gorenstein
flat modules is closed under direct limits by [14], so lim−→ G is contained in the class of Gorenstein flat
modules.

The class of Gorenstein flat modules is closed under set indexed products by [6, Theorem 5.7].
On the other hand, by the last four conditions of Remark 2.6, the assumptions on R imply that lim−→ G
is not closed under set indexed products.

EXAMPLE 2.8 It is easy to find rings of the type required by Theorem 2.7. For instance, let us show
that the 1-dimensional ring

T = Q[[X, Y, Z, W ]]/(X2, Y 2, Z2, XY )

satisfies the conditions of the theorem.
First note that since T is complete, it has a dualizing complex and is henselian.
Next consider S = Q[[X, Y ]]/(X2, Y 2, XY ) which is not Gorenstein. The ring T is S[[Z, W ]]/(Z2);

that is, T is the ring of dual numbers over S[[W ]]. Since S is not Gorenstein, neither is S[[W ]] nor T .
Finally, let z be the image of Z in T . Since T is the ring of dual numbers over S[[W ]], the following

complex is a complete projective resolution.

· · · −→ T
z·−→ T

z·−→ T −→ · · ·

It shows that the non-projective module T/(z) is Gorenstein projective, so G �= F .

REMARK 2.9 Assume that R is artinian. Then it has a dualizing complex and is henselian (in fact, R

is complete). Moreover, it is easy to prove that each Gorenstein flat module is Gorenstein projective.
If R is not Gorenstein and has G �= F , then Theorem 2.7 shows that lim−→ G is strictly contained in

the class of Gorenstein projective modules. Hence [2, 4.2] shows that R is not a so-called virtually
Gorenstein ring.

3. A special Gorenstein flat module

This short section shows a method for constructing a Gorenstein flat module outside lim−→ G .

CONSTRUCTION 3.1 Let {Gi}i∈I be a set of representatives of the isomorphism classes of indecom-
posable modules in G . Let M be in mod R. For each i in I , view H(i) = HomR(M, Gi) as a set and
consider the direct product G

H(i)
i indexed by that set. Define

�(M) = ∏
i∈IG

H(i)
i .
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PROPOSITION 3.2 Assume that R has a dualizing complex. Let M be in mod R and suppose that M

does not have a G -preenvelope. Then �(M) is a Gorenstein flat module outside lim−→ G .

Proof . As in the proof of Theorem 2.7, the modules in G are Gorenstein flat and the class of Gorenstein
flat modules is closed under set indexed products, so �(M) is Gorenstein flat.

For each i in I , consider the homomorphism

M
μi−→ G

H(i)
i , m �−→ (h(m))h∈H(i).

Let �(M)
πi→ G

H(i)
i be the ith projection, and let M

μ→ �(M) be the unique homomorphism which

satisfies πiμ = μi for each i in I . Then each homomorphism M
η→ G with G in G factors through μ,

M

η

��

μ
�� �(M).

λ���
�

�
�

�

G

Namely, we may assume G = Gi for some i, since each G in G is isomorphic to a finite direct sum of
modules from the set {Gi}i∈I . But then η is an element of H(i), and we can let λ equal the composition
of the projections �(M)

πi→ G
H(i)
i → Gi where the second one is onto the ηth copy of Gi .

Now, M is finitely presented, so if �(M) were in lim−→ G then [17, Proposition 2.1] would give that

μ could be factored as M
μ̃→ G̃ → �(M) with G̃ in G . Since each homomorphism M

η→ G factors
through μ by the above, it would also factor through μ̃ which would hence be a G -preenvelope of
M . Since there is no such G -preenvelope, �(M) is outside lim−→ G .

REMARK 3.3 Let us end the paper with a remark about the approximation properties of some classes
of modules in Mod R, the category of all R-modules.

The class lim−→ G is precovering by [9, Theorem 3.2]. On the other hand, suppose that G is not
preenveloping in mod R. Then lim−→ G is not closed under set indexed products by [8, Theorem (4.2)].
Consequently lim−→ G is not preenveloping in Mod R by [20, Theorem 3.3].

The class P of all Gorenstein projective modules is precovering in Mod R if R has finite Krull
dimension by [19, Theorem 4.26]. On the other hand, P is not necessarily preenveloping. For a
counterexample, let R be regular and local with depth R ≥ 1. Since R is regular, P consists of the
projective modules only, and since depth R ≥ 1, it follows that R has no simple submodules, so
P is not closed under set indexed products by [4, Theorems 3.2 and 3.3]. Consequently P is not
preenveloping in Mod R by [20, Theorem 3.3] again.
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