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Abstract
For any ring 𝐴 and a small, pre-additive, Hom-finite,
and locally bounded category 𝑄 that has a Serre functor
and satisfies the (strong) retraction property, we show
that the category of additive functors 𝑄 → 𝐴Mod has
a projective and an injective model structure. These
model structures have the same trivial objects and weak
equivalences, which in most cases can be naturally
characterized in terms of certain (co)homology func-
tors introduced in this paper. The associated homotopy
category, which is triangulated, is called the 𝑄-shaped
derived category of𝐴. The usual derived category of𝐴 is
one example;more general examples arise by taking𝑄 to
be themesh category of a suitably nice stable translation
quiver. This paper builds upon, and generalizes, works
of Enochs, Estrada, and García-Rozas (Math. Nachr. 281
(2008), no. 4, 525–540) and Dell’Ambrogio, Stevenson,
and Šťovíček (Math. Z. 287 (2017), no. 3-4, 1109–1155).
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1 INTRODUCTION

Let  and be categories, where  is small. It is well known that in some cases — for example,
if is a direct, an inverse, or a Reedy category— amodel structure on, in the sense of Quillen
[35], induces a model structure on the category Fun(,) of functors from  to . The cate-
gory  = 𝐴Mod of left modules over a ring 𝐴 does not, in general, have any non-trivial model
structures (unless𝐴 is special, for example, Gorenstein). Nevertheless, we show in this paper that
if  = 𝑄 is a suitably nice pre-additive category, then the category 𝑄,𝐴Mod of additive functors
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3264 HOLM and JØRGENSEN

𝑄 → 𝐴Mod does always have two interesting model structures, the so-called projective and injec-
tive model structures. These model structures have the same weak equivalences and hence the
same homotopy category,

𝑄(𝐴) ∶= Ho(𝑄,𝐴Mod) = {weak equivalences}−1(𝑄,𝐴Mod) ,

which we call 𝑄-shaped derived category of𝐴. This terminology is inspired by the situation where
𝑄 is the mesh category of the repetitive quiver of �⃗�2 = ∙ → ∙ . Indeed, in this case, 𝑄,𝐴Mod is
equivalent to the category Ch𝐴 of chain complexes of left 𝐴-modules and the 𝑄-shaped derived
category is the ordinary derived category of 𝐴 (see Example 8.13). However, the theory developed
in this paper applies to many other types of categories as well; for example, let 𝑄 be the path
category of the quiver

modulo the (mesh) relations 𝑎∗1𝑎1 = 0, 𝑎1𝑎
∗
1 + 𝑎∗2𝑎2 = 0, and 𝑎2𝑎

∗
2 = 0. Also in this case, there is a

𝑄-shaped derived category of any ring𝐴 (and Propositions 7.27 and 8.18 yield explicit descriptions
of the weak equivalences). More examples can be found in Section 8.
The precise statements about the model structures we construct on 𝑄,𝐴Mod are contained in

the next result, which is a special case of Theorem 6.1 and Proposition 6.3 with 𝕜 = ℤ.

Theorem A. Let 𝑄 be a small pre-additive category which is Hom-finite, locally bounded, has a
Serre functor and has the Retraction Property (Setup 2.5). For any ring 𝐴, there is a class E of exact
objects in 𝑄,𝐴Mod (Definition 4.1) and two model structures as follows.

∙ The projective model structure on 𝑄,𝐴Mod, where ⟂E is the class of cofibrant objects, E is the class
of trivial objects, and every object is fibrant.

∙ The injective model structure on 𝑄,𝐴Mod, where E ⟂ is the class of fibrant objects, E is the class of
trivial objects, and every object is cofibrant.

These two model categories have the same weak equivalences.

To prove Theorem A, we apply Hovey’s theory [29] for abelian model categories, which in
this case boils down to demonstrating that we have complete hereditary cotorsion pairs (⟂E ,E )
and (E ,E ⟂) in 𝑄,𝐴Mod such that ⟂E ∩ E = 𝑄,𝐴 Prj and E ∩ E ⟂ = 𝑄,𝐴 Inj; here 𝑄,𝐴 Prj and 𝑄,𝐴 Inj
denote the classes of projective and injective objects in 𝑄,𝐴Mod. These arguments take up Sec-
tions 4 and 5 and Appendix A. In fact, for the cotorsion pair (E ,E ⟂), we show in Theorem 5.9 an
even stronger result:

Theorem B. Let 𝑄 be as in Theorem A. The cotorsion pair (E ,E ⟂) in 𝑄,𝐴Mod is perfect meaning
that every object in 𝑄,𝐴Mod has an E -cover and an E ⟂-envelope.

Let us again consider the special casewhere𝑄 is themesh category of the repetitive quiver of �⃗�2

and 𝑄,𝐴Mod is the category of chain complexes of left𝐴-modules. In this case, completeness of the
cotorsion pairs (⟂E ,E ) and (E ,E ⟂) means that every chain complex has an epic DG-projective
and a monic DG-injective resolution. This is of course well known and goes back to Spaltenstein
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3265

[39]. TheoremB asserts in this case that every chain complex has an exact cover and aDG-injective
envelope; this is also well known and can be found in [15] by Enochs, Jenda, and Xu.
Once the complete hereditary cotorsion pairs (⟂E ,E ) and (E ,E ⟂) in 𝑄,𝐴Mod have been estab-

lished, the general theory of abelianmodel categories provides us with rich information about the
homotopy category of 𝑄,𝐴Mod. For example, an application of main results from [21] by Gillespie
yields the following, which is contained in Theorem 6.5.

Theorem C. Let 𝑄 be as in Theorem A. There are equivalences of categories,

⟂E

𝑄,𝐴 Prj
≃ 𝑄(𝐴) ≃

E ⟂

𝑄,𝐴 Inj
.

Here the leftmost, respectively, rightmost, category is the stable category of the Frobenius category ⟂E ,
respectively, E ⟂. In particular,𝑄(𝐴) is triangulated.

The goal of Section 7 is to obtain (co)homological characterizations of the trivial objects and
the weak equivalences in the projective/injective model structure on 𝑄,𝐴Mod. To that end, we
consider a category 𝑄 as in Theorem A, only the Retraction Property (condition (4) in Setup 2.5)
must now be replaced with the Strong Retraction Property (condition (4∗) in Definition 7.3). This
slightly stronger assumption on 𝑄 does not exclude any examples of interest to us. The power of
the Strong Retraction Property is that it allows one to define the pseudo-radical ideal 𝔯 of 𝑄 and
certain (co)homology functors,

ℍ𝑖
[𝑞], ℍ

[𝑞]
𝑖
∶ 𝑄,𝐴Mod⟶ 𝐴Mod ,

for every object 𝑞 ∈ 𝑄 and 𝑖 ⩾ 0. The next result is a special case of Theorems 7.1 and 7.2 (it also
explains the terminology ‘exact’ for the objects in E , introduced in Theorem A).

Theorem D. Let 𝑄 be a small pre-additive category which is Hom-finite, locally bounded, has a
Serre functor and has the Strong Retraction Property. Assume that the pseudo-radical 𝔯 is nilpotent,
that is, 𝔯𝑁 = 0 for some𝑁 ∈ ℕ. Finally, let 𝐴 be any ring.
For every object 𝑋 in 𝑄,𝐴Mod, the following conditions are equivalent.

(i) 𝑋 ∈ E .
(ii) ℍ𝑖

[𝑞](𝑋) = 0 for every 𝑞 ∈ 𝑄 and 𝑖 > 0.

(iii) ℍ
[𝑞]
𝑖
(𝑋) = 0 for every 𝑞 ∈ 𝑄 and 𝑖 > 0.

For every morphism 𝜑 in 𝑄,𝐴Mod, the following conditions are equivalent.

(i) 𝜑 is a weak equivalence.
(ii) ℍ𝑖

[𝑞](𝜑) is an isomorphism for every 𝑞 ∈ 𝑄 and 𝑖 > 0.

(iii) ℍ
[𝑞]
𝑖
(𝜑) is an isomorphism for every 𝑞 ∈ 𝑄 and 𝑖 > 0.

By definition, ℍ𝑖
[𝑞], respectively, ℍ

[𝑞]
𝑖
, is the 𝑖th right, respectively, left, derived of a certain func-

tor 𝐾𝑞, respectively, 𝐶𝑞, which is treated in Propositions 7.15 and 7.18. Together with the class E ,
the functors 𝐶𝑞 and 𝐾𝑞 provide useful characterizations of the projective and injective objects in
𝑄,𝐴Mod. The following is a special case of Theorem 7.29.
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3266 HOLM and JØRGENSEN

Theorem E. Let 𝑄 be as in Theorem D and 𝐴 be any ring. For every 𝑋 ∈ 𝑄,𝐴Mod, one has:

(a) 𝑋 ∈ 𝑄,𝐴 Prj if and only if 𝑋 ∈ E and the 𝐴-module 𝐶𝑞(𝑋) is projective for all 𝑞 ∈ 𝑄.
(b) 𝑋 ∈ 𝑄,𝐴 Inj if and only if 𝑋 ∈ E and the 𝐴-module 𝐾𝑞(𝑋) is injective for all 𝑞 ∈ 𝑄.

In the special case where 𝑄 is the mesh category of the repetitive quiver of �⃗�2, and hence
𝑄,𝐴Mod ≃ Ch𝐴, Theorem E asserts that a chain complex (𝑋, 𝜕) is projective, respectively, injec-
tive, if and only if 𝑋 is exact and each cokernel Cok 𝜕𝑞, respectively, kernel Ker 𝜕𝑞, is a projective,
respectively, an injective,𝐴-module. These characterizations of the projective and injective objects
in the category Ch𝐴 are of course well known.
In Section 8, we study some concrete examples of pre-additive categories 𝑄 that satisfy the

assumptions in Theorem D (and thus all the theorems in this Introduction apply to 𝑄). More pre-
cisely, we consider the casewhere𝑄 is the (integral)mesh category𝑄mesh(Γ) of a stable translation
quiver Γ. We prove in Theorems 8.8 and 8.11 that if Γ is the double quiver or the repetitive quiver
of �⃗�𝑛, then its mesh category does, in fact, fulfill the requirements in Theorem D. We expect the
same to be true if �⃗�𝑛 is replaced by, for example, �⃗�𝑛.
For the mesh category𝑄 = 𝑄mesh(Γ) of a normal stable translation quiver Γ, we show in Propo-

sition 8.18 that the homology functor ℍ[∗]1 from Section 7 agrees with the mesh homology H∗.
Combined with Theorem 7.1, this gives a hands-on description of the trivial (= exact) objects
in 𝑄,𝐴Mod. As shown in Theorems 8.16 and 8.17, the double quiver and the repetitive quiver of
�⃗�𝑛 are, in fact, normal, and we expect the same to be true if �⃗�𝑛 is replaced by, for example,
�⃗�𝑛.
We end this Introduction by explaining how our work is related to the existing literature. First

of all, the entire theory developed in this paper is relative to a commutative base ring 𝕜. Thismeans
that 𝑄 is actually a 𝕜-preadditive category,𝐴 is a 𝕜-algebra, and 𝑄,𝐴Mod is the category of 𝕜-linear
functors 𝑄 → 𝐴Mod, but in this Introduction we have focused on the special case 𝕜 = ℤ. In this
generality, the assumptions needed on the 𝕜-algebra 𝐴 in Theorems A–C are that 𝕜 is Gorenstein
and 𝐴 has finite projective/injective dimension over 𝕜; in Theorems D and E, the ring 𝕜must be
Noetherian and hereditary but 𝐴 can be any 𝕜-algebra. All these assumptions are satisfied if we
take 𝕜 to be ℤ.
We emphasize that the conditions in Setup 2.5 (which are the assumptions on𝑄 in TheoremsA–

C) come from the paper [8] by Dell’Ambrogio, Stevenson, and Šťovíček. If 𝕜 is arbitrary and 𝐴
is Gorenstein, then [8, Theorem 4.6] shows† that for a 𝕜-preadditive category 𝑄 that satisfies
Setup 2.5, the abelian category 𝑄,𝐴Mod is locally Gorenstein in the sense of Enochs, Estrada, and
García-Rozas [10, Definition 2.18] (see also Definition 2.1). Being a locally Gorenstein category
with enough projectives, 𝑄,𝐴Mod has by [10, Theorem 2.32] both a projective and an injective
model structure; thus Theorem A is known in this case.
In the case where 𝕜 is a field and 𝐴 is any 𝕜-algebra, some results in this paper follow from

our previous work [27]. Indeed, if 𝕜 is a field one can apply [27, Theorem 3.2], combined with
Theorem E, to obtain the previously mentioned hereditary cotorsion pairs (⟂E ,E ) and (E ,E ⟂)
in 𝑄,𝐴Mod such that ⟂E ∩ E = 𝑄,𝐴 Prj and E ∩ E ⟂ = 𝑄,𝐴 Inj. It follows from [27, Theorem 3.3(i)]
that the cotorsion pair (⟂E ,E ) is complete, and hence one gets the projective model structure on
𝑄,𝐴Mod (cf. the proof of Theorem 6.1). However, completeness of the other cotorsion pair (E ,E ⟂),

†More precisely, the assertion in [8, Theorem 4.6] is that the 𝕜-preadditive category𝐴⊗𝑄, that is, the extension of𝑄 by𝐴,
is Gorenstein, which by [8, Definition 2.1] means that the category 𝐴⊗𝑄 Mod of 𝕜-linear functors𝐴⊗𝑄 → 𝕜 Mod is locally
Gorenstein. However, it is easy to see that 𝐴⊗𝑄 Mod is equivalent to the category 𝑄,𝐴Mod of 𝕜-linear functors 𝑄 → 𝐴Mod.
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3267

and hence the existence of the injectivemodel structure on 𝑄,𝐴Mod, was only proved under special
circumstances in [27, Theorem 3.3(ii)].
The reader should notice that condition (3) in Setup 2.5, that is, existence of a Serre functor,

and Definition 8.15, that is, normality of a stable translation quiver, depend on the base ring 𝕜.
If 𝕜 is a field and Γ is the Auslander–Reiten quiver of a suitable 𝕜-linear category , then the
Auslander–Reiten theory of  can be used easily to prove that Γ is normal and that the mesh
category𝑄 = 𝑄mesh(Γ) has a Serre functor. However, this approach is not available if 𝕜 is a general
commutative ring (and we are mainly interested in the case 𝕜 = ℤ). This is why we have provided
proofs of Theorems 8.8 and 8.16, which yield normality of the double quiver of �⃗�𝑛 and the existence
of a Serre functor on its mesh category relative to any commutative base ring 𝕜. The proofs are
hands-on, but technical, so in order not to interrupt the flow of the paper, they have been relegated
to Appendix B. Theorems 8.11 and 8.17 — which yield normality of the repetitive quiver of �⃗�𝑛 and
the existence of a Serre functor on its mesh category relative to any commutative base ring 𝕜—
have similar (but easier) proofs, which are left to the reader.
As already pointed out, Theorems A–E in this Introduction hold for any ring𝐴 (corresponding

to the case 𝕜 = ℤ). On the one hand, Theorem A generalizes the results from [8] and [10] men-
tioned above; on the other hand, these results play an important role in our arguments and even in
the very definition of the class E of exact objects (see Definition 4.1). Nevertheless, existence and
completeness of the cotorsion pairs (⟂E ,E ) and (E ,E ⟂) in 𝑄,𝐴Mod are far from automatic when𝐴
is a general ring, and the proofs require amix of known and new techniques. The (co)homological
theory developed in Section 7 and the systematic treatment of examples found in Section 8 are
new; however, the ideas go back to [27] (which only treats the easier special case where 𝐴 is an
algebra over a field).
Finally, we mention a related paper [22] by Gillespie and Hovey which also studies generaliza-

tions of the derived category of a ring. In Theorem 4.1 in [22], it is shown that if 𝕜 is a commutative
ring of finite global dimension, Λ is a ℤ-graded Gorenstein 𝕜-algebra that is flat over 𝕜, and 𝐴
is any 𝕜-algebra, then the category Λ⊗𝕜𝐴

GrMod of graded left modules over Λ⊗𝕜 𝐴 has a nat-
ural projective model structure. Gillespie and Hovey write Λ(𝐴) for the associated homotopy
category, Ho(Λ⊗𝕜𝐴

GrMod), which could be called the derived category of 𝐴 with respect to Λ.
For 𝕜 = ℤ and Λ = ℤ[𝑥]∕(𝑥2), one has Λ⊗𝕜 𝐴 = 𝐴[𝑥]∕(𝑥2), and in this case Λ(𝐴) is just the
ordinary derived category of 𝐴. We point out that the present paper has some overlap with [22];
for example, the theories developed in this work and in [22] both apply to construct the derived
category of 𝑁-complexes, which has also been studied by Iyama, Kato, and Miyachi [30].

2 PRELIMINARIES AND NOTATION

Let be an abelian category and  be a class of objects in. If has enough projectives (respec-
tively, enough injectives), then  is called resolving (respectively, coresolving) if it contains all
projective (respectively, all injective) objects in  and is closed under extensions and kernels of
epimorphisms (respectively, extensions and cokernels of monomorphisms). We set

⟂ = {𝑋 ∈  | Ext1(𝑋, 𝐶) = 0 for all 𝐶 ∈ } and

⟂ = {𝑋 ∈  | Ext1(𝐶, 𝑋) = 0 for all 𝐶 ∈ } .
A cotorsion pair in  consists of a pair (,) of classes of objects in  such that ⟂ =  and
 = ⟂. A cotorsion pair (,) is hereditary if Ext𝑖(𝐶, 𝐷) = 0 for all 𝐶 ∈ , 𝐷 ∈ , and 𝑖 > 0.
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3268 HOLM and JØRGENSEN

If  has enough projectives (respectively, enough injectives), then a cotorsion pair (,) is
hereditary if and only if  is resolving (respectively, is coresolving); see (the proof of) [18, Theo-
rem 1.2.10] or [23, Lemma 2.2.10]. A cotorsion pair (,) is complete if it satisfies the following two
conditions.

(i) For every 𝑋 ∈ , there is an exact sequence 0 → 𝐷 → 𝐶 → 𝑋 → 0 with 𝐶 ∈ , 𝐷 ∈ .
(ii) For every 𝑋 ∈ , there is an exact sequence 0 → 𝑋 → 𝐷 → 𝐶 → 0 with 𝐶 ∈ , 𝐷 ∈ .
By Salce’s lemma, onehas (i) ⇒ (ii) if the categoryhas enough injectives, and similarly (ii)⇒ (i)
holds if has enough projectives; see [23, (proof of) Lemma 2.2.6].
We write pd 𝑋 and id 𝑋 for the projective and injective dimensions of an object 𝑋 in. The

finitistic projective and finitistic injective dimensions of are defined as usual:

FPD() = sup{pd 𝑋 | 𝑋 ∈  with pd 𝑋 < ∞} and

FID() = sup{id 𝑋 | 𝑋 ∈  with id 𝑋 < ∞} .

The next definition is due to Enochs, Estrada, and García-Rozas [10].

Definition 2.1 [10, Definition 2.18]. A Grothendieck category  is said to be locally Gorenstein†
if it satisfies the following conditions.

(1) For every object 𝑋 in, one has pd 𝑋 < ∞ if and only if id 𝑋 < ∞.
(2) FPD() and FID() are both finite.
(3)  has a generator of finite projective dimension.

In this situation, one sets () = {𝑋 ∈  | pd 𝑋 < ∞} = {𝑋 ∈  | id 𝑋 < ∞}.

Note that in the definition above, the category  is not assumed to have enough projectives.
Thus, the projective dimension of an object 𝑋 in is defined in terms of vanishing of Ext∗(𝑋, −)
and not in terms of a projective resolution of 𝑋. However, the Grothendieck categories of interest
in this paper do have enough projectives.
The following is a recap of some main results by Enochs, Estrada, and García-Rozas [10]. The

definition of Gorenstein projective and Gorenstein injective objects in abelian categories can
be found in García Rozas [18, Definition 1.2.8]. Gorenstein projective and Gorenstein injective
modules over a ring were introduced and studied by Enochs and Jenda [13].

Theorem2.2 [10, Theorems 2.25, 2.26, and 2.28]. Let be a locally Gorenstein categorywith enough
projectives. There exist two complete and hereditary cotorsions pairs,

(GPrj(),()) and ((), GInj()) ,

where GPrj() and GInj() are the classes of Gorenstein projective and Gorenstein injective objects
in. Moreover, there is an equality FPD() = FID().†

† The authors of [10] simply use the term Gorenstein for such a category, but we have adopted the term locally Gorenstein
from Dell’Ambrogio, Stevenson, and Šťovíček [8, Definition 2.1]. See 2.3 for further details.
† The number FPD() = FID() also coincides with the global Gorenstein projective dimension glGpd() and the global
Gorenstein injective dimension glGid(); however, this is not important to us.
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3269

2.3

In the situation of Theorem 2.2, Dell’Ambrogio, Stevenson, and Šťovíček [8, Definition 2.5] refer
to  as a locally 𝑛-Gorenstein category, where 𝑛 = FPD() = FID(). They reserve the term 𝑛-
Gorenstein for the following situation.
Let 𝕜 be a non-trivial commutative ring and𝑄 be a small 𝕜-pre-additive category (also just called

a 𝕜-category), that is, 𝑄 is a category enriched over the symmetric monoidal category 𝕜 Mod of 𝕜-
modules. Consider the Grothendieck category = Mod𝑄 of right𝑄-modules, that is, the category
of 𝕜-linear functors 𝑄op → 𝕜Mod. In the terminology of [8, Definition 2.1], the 𝕜-pre-additive 𝑄
is called (𝑛-)Gorenstein if the associated Grothendieck categoryMod𝑄 is locally (𝑛-)Gorenstein in
the sense of Definition 2.1.
Recall that a commutative ring 𝕜 is said to be 𝑛-Gorenstein if it is Noetherian with self-injective

dimension 𝑛. One says that 𝕜 is Gorenstein if it 𝑛-Gorenstein for some 𝑛 ∈ ℕ0.
A main result in [8] by Dell’Ambrogio, Stevenson, and Šťovíček is the following.

Theorem 2.4 [8, Theorem 1.6 / 4.6]. Assume that a small 𝕜-pre-additive category 𝑄 satisfies the
conditions in Setup 2.5 and that 𝕜 is 𝑛-Gorenstein. In this case, 𝑄 is 𝑛-Gorenstein, that is, the
Grothendieck categoryMod𝑄 is locally 𝑛-Gorenstein (as in Definition 2.1).

Actually the result mentioned above is the special case of [8, Theorem 4.6] where 𝑅 = 𝕜. See
Section 1 for further details.

Setup 2.5. Throughout this paper, 𝕜 denotes a non-trivial commutative ring and 𝑄 a small 𝕜-
pre-additive category which may or may not satisfy the following conditions coming from [8,
Definitions 4.1 and 4.5 and Remark 4.7].

(1) Hom-finiteness: Each hom 𝕜-module 𝑄(𝑝, 𝑞) is finitely generated and projective.
(2) Local Boundedness: For each 𝑞 ∈ 𝑄, there are only finitely many objects in 𝑄 mapping non-

trivially into or out of 𝑞, that is, the following sets are finite:

N−(𝑞) = {𝑝 ∈ 𝑄 |𝑄(𝑝, 𝑞) ≠ 0} and N+(𝑞) = {𝑟 ∈ 𝑄 |𝑄(𝑞, 𝑟) ≠ 0} .

(3) Existence of a Serre Functor (relative to 𝕜): There exists a 𝕜-linear auto-equivalence 𝕊∶ 𝑄 → 𝑄
and a natural isomorphism 𝑄(𝑝, 𝑞) ≅ Hom𝕜(𝑄(𝑞, 𝕊(𝑝)), 𝕜).

(4) Retraction Property: For each 𝑞 ∈ 𝑄, the unit map 𝕜 → 𝑄(𝑞, 𝑞) given by 𝑥 ↦ 𝑥 ⋅ id𝑞 has a 𝕜-
module retraction; whence there is a 𝕜-module decomposition:

𝑄(𝑞, 𝑞) = (𝕜 ⋅ id𝑞) ⊕ 𝔯𝑞 .

Note that the defining properties of a Serre functor depend on the base ring 𝕜. Also note that
in part (4) of Setup 2.5, the complement, 𝔯𝑞, of 𝕜 ⋅ id𝑞 in 𝑄(𝑞, 𝑞) is not unique; see Remark 7.4 and
Example 7.5 for further details.

Remark 2.6. The conditions in Setup 2.5 are self-dual, that is, if𝑄 satisfies these conditions, then so
does its opposite category𝑄op (for example, if 𝕊 is a Serre functor for𝑄, then 𝕊−1 is a Serre functor
for𝑄op). Thus, if𝑄 satisfies the conditions in Setup 2.5 and 𝕜 is aGorenstein ring, thenTheorem2.4
yields that both 𝑄 Mod andMod𝑄 are locally Gorenstein categories. Here 𝑄 Mod = Mod𝑄op is the
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3270 HOLM and JØRGENSEN

category of left 𝑄-modules, that is, the category of 𝕜-linear functors 𝑄 → 𝕜Mod. In this paper, we
shall favour the category 𝑄 Mod overMod𝑄.

The final result we will need from [8] is the following.

Theorem 2.7 [8, Corollary 4.8]. Assume that 𝑄 satisfies the conditions in Setup 2.5 and that 𝕜
is Gorenstein. An object 𝑋 ∈ 𝑄Mod is Gorenstein projective (respectively, Gorenstein injective) if
and only if the 𝕜-module 𝑋(𝑞) is Gorenstein projective (respectively, Gorenstein injective) for every
𝑞 ∈ 𝑄.

In the special case where𝑄 is themesh category of the repetitive quiver of �⃗�2, and hence 𝑄 Mod
is the category Ch𝕜 of chain complexes of 𝕜-modules (see Example 8.13), the result above is due
to Enochs and García-Rozas [11, Theorems 2.7 and 4.5].

3 THE CATEGORY 𝑸,𝑨𝐌𝐨𝐝

In the rest of this paper, 𝐴 is any 𝕜-algebra and 𝐴 Mod is the category of left 𝐴-modules.

Definition 3.1. We introduce the following 𝕜-pre-additive categories.†

𝑄,𝐴Mod = the category of 𝕜-linear functors 𝑄 → 𝐴Mod.

𝑄,𝐴 (G)Prj = the category of (Gorenstein) projective objects in 𝑄,𝐴Mod.

𝑄,𝐴 (G)Inj = the category of (Gorenstein) injective objects in 𝑄,𝐴Mod .

The hom set (𝕜-module) in the category 𝑄,𝐴Mod is written Hom𝑄,𝐴 and its right derived func-
tors are denoted by Ext𝑖𝑄,𝐴. For the projective and injective dimensions of 𝑋 ∈ 𝑄,𝐴Mod, we write
pd𝑄,𝐴 𝑋 and id𝑄,𝐴 𝑋.
In the case where 𝐴 = 𝕜, we drop the subscript 𝐴 in the definitions above, that is, we

write, for example, 𝑄 Mod, 𝑄 GPrj, Ext𝑖𝑄, and pd𝑄 𝑋 instead of 𝑄,𝕜 Mod, 𝑄,𝕜 GPrj, Ext𝑖𝑄,𝕜, and
pd𝑄,𝕜 𝑋.
Beware that Ext0𝑄 = Hom𝑄 is the hom set in the category 𝑄 Mod and not the hom set in 𝑄; the

latter is written 𝑄(−,−) as indicated in Setup 2.5.

Definition 3.2. We use the (same) symbol (−)♮ for the forgetful functors,

(−)♮ ∶ 𝐴 Mod⟶ 𝕜Mod and (−)♮ ∶ 𝑄,𝐴Mod⟶ 𝑄Mod .

Remark 3.3. Let  = 𝕜Mod be the bicomplete closed symmetric monoidal category of 𝕜-modules.
In the language of enriched category theory,𝑄 and 𝐴 Mod are both-categories and 𝑄,𝐴Mod is the
-category of-functors𝑄 → 𝐴Mod. Thus, by Kelly [32, equation (2.10)], the hom set (𝕜-module)

† The notation introduced here is in slight conflict with some of the notation introduced in Section 2. For example, accord-
ing to Theorem 2.2, we could use the notation GPrj(𝑄,𝐴Mod) for the category of Gorenstein projective objects in 𝑄,𝐴Mod,
however, the shorthand notation 𝑄,𝐴 GPrj is much more convenient.
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3271

in 𝑄,𝐴Mod can be expressed by the following end in 𝕜 Mod:

Hom𝑄,𝐴(𝑋, 𝑌) = ∫𝑞∈𝑄 Hom𝐴(𝑋(𝑞), 𝑌(𝑞)) . (♯1)

Proposition 3.4. For every𝑀 ∈ 𝐴Mod and𝑁 ∈ Mod𝐴, there are the following adjunctions, where
the left adjoints are displayed in the top of the diagrams:

(These functors are defined objectwise, for example, for 𝑈 ∈ 𝑄Mod the functor 𝑈 ⊗𝕜 𝑀 is given by
(𝑈 ⊗𝕜 𝑀)(𝑞) = 𝑈(𝑞) ⊗𝕜 𝑀 for 𝑞 ∈ 𝑄.)

Proof. For 𝑈 ∈ 𝑄Mod and 𝑋 ∈ 𝑄,𝐴Mod, there are by (♯1) isomorphisms:

Hom𝑄,𝐴(𝑈 ⊗𝕜 𝑀,𝑋) ≅ ∫𝑞∈𝑄 Hom𝐴(𝑈(𝑞) ⊗𝕜 𝑀,𝑋(𝑞))

≅ ∫𝑞∈𝑄 Hom𝕜(𝑈(𝑞),Hom𝐴(𝑀,𝑋(𝑞)))

≅ Hom𝑄(𝑈,Hom𝐴(𝑀,𝑋)) .

This establishes the first adjunction; the other adjuntion is proved similarly. □

Corollary 3.5. There is an adjoint triple (− ⊗𝕜 𝐴, (−)
♮, Hom𝕜(𝐴,−)) as follows:

Proof. Apply Proposition 3.4 with𝑀 = 𝐴𝐴 and𝑁 = 𝐴𝐴 and note thatHom𝐴(𝑀,−) and𝑁 ⊗𝐴 −
are both naturally isomorphic to the forgetful functor (−)♮ ∶ 𝑄,𝐴Mod → 𝑄Mod. □

Remark 3.6. As in Remark 3.3, set  = 𝕜Mod. The -category 𝐴 Mod is both cotensored and
tensored, and the cotensor and tensor products are given by

𝑉 ⋔ 𝑀 = Hom𝕜(𝑉,𝑀) ∈ 𝐴 Mod and 𝑉 ⊙𝑀 = 𝑉 ⊗𝕜 𝑀 ∈ 𝐴Mod

for 𝑉 ∈ 𝕜 Mod and 𝑀 ∈ 𝐴Mod. Indeed, the required/defining isomorphisms, see Kelly [32,
equation (3.42) and (3.44)], in this case take the form

Hom𝐴(𝑁,Hom𝕜(𝑉,𝑀)) ≅ Hom𝕜(𝑉,Hom𝐴(𝑁,𝑀)) and

Hom𝐴(𝑉 ⊗𝕜 𝑀,𝑁) ≅ Hom𝕜(𝑉,Hom𝐴(𝑀,𝑁)) ,

which are the well-known swap and adjointness isomorphims from [6, (A.2.8) and (A.2.9)].
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3272 HOLM and JØRGENSEN

Now, consider objects 𝑈 ∈ 𝑄Mod,𝑊 ∈ Mod𝑄, and 𝑋 ∈ 𝑄,𝐴Mod, that is, -functors 𝑈∶ 𝑄 →

𝕜Mod,𝑊∶ 𝑄op → 𝕜 Mod, and 𝑋∶ 𝑄 → 𝐴Mod. As in [32, §3.1], we write

{𝑈, 𝑋} ∈ 𝐴 Mod for the limit of 𝑋 indexed (or weighted) by 𝑈, and
𝑊 ⋆𝑋 ∈ 𝐴Mod for the colimit of 𝑋 indexed (or weighted) by𝑊.

It follows from [32, equation (3.69) and (3.70)] that the indexed (or weighted) limit and colimit
can be computed by the following end and coend in 𝐴 Mod.

{𝑈, 𝑋} = ∫𝑞∈𝑄 Hom𝕜(𝑈(𝑞), 𝑋(𝑞)) = Hom𝑄(𝑈,𝑋) (♯2)

𝑊 ⋆𝑋 = ∫
𝑞∈𝑄

𝑊(𝑞) ⊗𝕜 𝑋(𝑞) = 𝑊 ⊗𝑄 𝑋. (♯3)

The last equality in (♯2) follows from (♯1). The last equality in (♯3) can be taken as a definition of
the symbol ‘⊗𝑄’, however, it is precisely the tensor product of 𝕜-linear functors studied by Oberst
and Röhrl [34, p. 93], where the same symbol, ‘⊗𝑄’, is used.

Lemma 3.7. For𝑊 ∈ Mod𝑄,𝑈 ∈ 𝑄Mod, and𝑀 ∈ 𝐴Mod, there is an isomorphism,

𝑊⊗𝑄 (𝑈 ⊗𝕜 𝑀) ≅ (𝑊 ⊗𝑄 𝑈) ⊗𝕜 𝑀 .

Proof. The asserted isomorphism in 𝐴 Mod follows from the formula (♯3) and the fact that the
functor −⊗𝕜 𝑀 preserves colimits (in particular, coends). □

Proposition 3.8. For every𝑈 ∈ 𝑄Mod and𝑊 ∈ Mod𝑄, there are the following adjunctions, where
the left adjoints are displayed in the top of the diagrams:

Proof. For𝑀 ∈ 𝐴Mod and 𝑋 ∈ 𝑄,𝐴Mod, there are by (♯1) and (♯2) isomorphisms:

Hom𝑄,𝐴(𝑈 ⊗𝕜 𝑀,𝑋) ≅ ∫𝑞∈𝑄 Hom𝐴(𝑈(𝑞) ⊗𝕜 𝑀,𝑋(𝑞))

≅ ∫𝑞∈𝑄 Hom𝐴(𝑀,Hom𝕜(𝑈(𝑞), 𝑋(𝑞)))

≅ Hom𝐴

(
𝑀,∫𝑞∈𝑄 Hom𝕜(𝑈(𝑞), 𝑋(𝑞))

)
≅ Hom𝐴(𝑀,Hom𝑄(𝑈,𝑋)) ,

where the third isomorphism holds as the functor Hom𝐴(𝑀,−) preserves limits (in particular,
ends). This proves the first adjunction, and the other is shown similarly. □
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3273

Corollary 3.9. For every 𝑞 ∈ 𝑄, there is an adjoint triple (𝐹𝑞, 𝐸𝑞, 𝐺𝑞) as follows:

Moreover, the following assertions hold.

(a) The functor 𝐹𝑞 is exact if the 𝕜-module 𝑄(𝑞, 𝑟) is flat for every 𝑟 ∈ 𝑄.
(b) The functor 𝐺𝑞 is exact if the 𝕜-module 𝑄(𝑝, 𝑞) is projective for every 𝑝 ∈ 𝑄.

Proof. Apply Proposition 3.8 with 𝑈 = 𝑄(𝑞,−) and 𝑊 = 𝑄(−, 𝑞). In this case, both functors
Hom𝑄(𝑈, ?) = Hom𝑄(𝑄(𝑞, −), ?) and 𝑊 ⊗𝑄 ? = 𝑄(−, 𝑞) ⊗𝑄 ? are naturally isomorphic to the
evaluation functor 𝐸𝑞(?) by the Yoneda isomorphisms [32, equation (3.10)] and (♯2), (♯3). By the
way, the isomorphism 𝑄(−, 𝑞) ⊗𝑄 ? ≅ 𝐸𝑞(?) is also established in [34, §1, p. 93]. The assertions in
(a) and (b) follow directly from the formulae for 𝐹𝑞 and 𝐺𝑞. □

Example 3.10. In Section 8, we study the case where 𝑄 = 𝑄mesh(Γ) is the mesh category of a
stable translation quiver Γ. If Γ = (�⃗�2)

rep is the repetitive quiver of �⃗�2 = ∙ → ∙ , then 𝑄,𝐴Mod
is equivalent to the category Ch𝐴 of chain complexes of left 𝐴-modules (Example 8.13), and the
adjoint triple from Corollary 3.9 takes, for 𝑞 ∈ ℤ, the form:

Here (−)𝑞 is the functor that maps a chain complex 𝑋 to the module 𝑋𝑞 in degree 𝑞, and 𝐷𝑞 is the

functor that maps a module𝑀 to the (disk) complex𝐷𝑞(𝑀) = 0 → 𝑀
=
→ 𝑀 → 0 concentrated in

homological degrees 𝑞 and 𝑞 − 1.

Lemma 3.11. Each functor 𝐹𝑞 preserves projective objects and finitely presentable objects. Each
functor 𝐺𝑞 preserves injective objects.

Proof. For every object 𝑀 in 𝐴 Mod there is a natural isomorphism Hom𝑄,𝐴(𝐹𝑞(𝑀), −) ≅
Hom𝐴(𝑀, 𝐸𝑞(−)) by Corollary 3.9. The first assertion now follows as the functor 𝐸𝑞 is exact
and preserves direct limits. The second assertion follows from the natural isomorphism
Hom𝑄,𝐴(−, 𝐺𝑞(𝑀)) ≅ Hom𝐴(𝐸𝑞(−),𝑀) and exactness of the functor 𝐸𝑞. □

Proposition 3.12. The category 𝑄,𝐴Mod is Grothendieck and locally finitely presentable.

(a) The objects𝐹𝑞(𝐴) = 𝑄(𝑞, −) ⊗𝕜 𝐴, where 𝑞 ∈ 𝑄, are projective and finitely presentable and they
generate 𝑄,𝐴Mod.

(b) The objects 𝐺𝑞(𝐼) = Hom𝕜(𝑄(−, 𝑞), 𝐼), where 𝑞 ∈ 𝑄 and 𝐼 is any (fixed) faithfully injective left
𝐴-module, are injective and they cogenerate 𝑄,𝐴Mod.
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3274 HOLM and JØRGENSEN

Proof.

(a) By Lemma 3.11, each object 𝐹𝑞(𝐴) is projective and finitely presentable. To see that these
objects generate 𝑄,𝐴Mod, let 𝜏 be any morphism in this category. By Corollary 3.9, we
have Hom𝑄,𝐴(𝐹𝑞(𝐴), 𝜏) ≅ Hom𝐴(𝐴, 𝜏(𝑞)). Since 𝐴 is a faithfully projective left 𝐴-module, it
follows that if Hom𝑄,𝐴(𝐹𝑞(𝐴), 𝜏) = 0 holds for every 𝑞 ∈ 𝑄, then 𝜏 = 0.

(b) Dual to the proof of part (a).

It is well known that 𝑄,𝐴Mod is a Grothendieck category. By (a), the category 𝑄,𝐴Mod even
has a projective generator. Part (a) shows that 𝑄,𝐴Mod is generated by a set of finitely presentable
objects, so it is a locally finitely presentable Grothendieck category in the sense of Breitsprecher
[5, Definition (1.1)]. Hence, it is also a locally finitely presentable category in the usual sense of
Crawley–Boevey [7, §1] or Adámek and Rosický [1, Definition 1.17 with 𝜆 = ℵ0] (cf. Appendix A).
This follows from [5, Satz (1.5)] and is also pointed out in [7, (2.4)]. □

4 EXISTENCE ANDHEREDITY OF THE COTORSION PAIRS (⟂E ,E )
AND (E ,E ⟂)

Recall fromDefinition 3.2 thatwewrite (−)♮ for the forgetful functor. The next is the key definition
in this paper.

Definition 4.1. Let 𝑄 satisfy the conditions in Setup 2.5 and let 𝕜 be Gorenstein. We set

𝑄 = {𝑋 ∈ 𝑄 Mod | pd𝑄 𝑋 < ∞} = {𝑋 ∈ 𝑄 Mod | id𝑄 𝑋 < ∞} ,

where the last equality holds by Theorem 2.4 / Remark 2.6 and Definition 2.1. We also set

E = {𝑋 ∈ 𝑄,𝐴Mod |𝑋♮ ∈ 𝑄} .
The objects in E are said to be exact; this terminology is justified by Theorem 7.1.

Our first goal is to investigate when there exist (hereditary) cotorsion pairs (⟂E ,E ) and (E ,E ⟂)
in 𝑄,𝐴Mod. As the next remark shows, a necessary condition for the existence of such cotorsion
pairs is that𝐴 has finite projective/injective dimension as a 𝕜-module. As proved in Theorem 4.4,
this condition is (perhaps surprisingly) also sufficient.

Remark 4.2. We claim that if there exists a cotorsion pair of the form (E ,E ⟂) in 𝑄,𝐴Mod and 𝑄 is
not empty, then 𝐴must have finite projective/injective dimension as a 𝕜-module.
To see this, choose any 𝑞 ∈ 𝑄. As 𝑋 = 𝑄(𝑞, −) ⊗𝕜 𝐴 is in 𝑄,𝐴 Prj, see Proposition 3.12, it

belongs to the left half, E , of the assumed cotorsion pair. By Definition 4.1, this means that
𝑋♮ = 𝑄(𝑞, −) ⊗𝕜 𝐴

♮ belongs to 𝑄, that is, 𝑋♮ has finite projective dimension in 𝑄 Mod. Let
0 → 𝑃𝑛 → ⋯ → 𝑃0 → 𝑋♮ → 0 be an augmented projective resolution of 𝑋♮ in 𝑄 Mod. The eva-
lution functor 𝐸𝑞 ∶ 𝑄 Mod → 𝕜Mod has by Corollary 3.9 (with 𝐴 = 𝕜) a right adjoint 𝐺𝑞. By
Corollary 3.9(b) and condition (1) in Setup 2.5, the functor𝐺𝑞 is exact; whence𝐸𝑞 preserves projec-
tive objects. As 𝐸𝑞 is also exact, 0 → 𝑃𝑛(𝑞) → ⋯ → 𝑃0(𝑞) → 𝑋♮(𝑞) → 0 is a projective resolution
of 𝑋♮(𝑞) in 𝕜 Mod. Thus, the 𝕜-module 𝑋♮(𝑞) = 𝑄(𝑞, 𝑞) ⊗𝕜 𝐴

♮ has finite projective (equivalently,
finite injective) dimension. By condition (4) in Setup 2.5, the 𝕜-module 𝑄(𝑞, 𝑞) has a direct
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3275

summand isomorphic to 𝕜, and thus𝑄(𝑞, 𝑞) ⊗𝕜 𝐴
♮ has a direct summand isomorphic to 𝕜 ⊗𝕜 𝐴

♮ ≅
𝐴♮. Hence also 𝐴♮ has finite projective dimension.

Lemma 4.3. Assume that 𝑄 satisfies the conditions in Setup 2.5, 𝕜 is Gorenstein, and 𝐴 has finite
projective/injective dimension as a 𝕜-module. For every 𝑋 ∈ 𝑄,𝐴Mod, there are isomorphisms of 𝕜-
modules.

(a) Ext𝑖𝑄,𝐴(𝐺 ⊗𝕜 𝐴,𝑋) ≅ Ext𝑖𝑄(𝐺, 𝑋
♮) for every 𝐺 ∈ 𝑄 GPrj and 𝑖 ⩾ 0.

(b) Ext𝑖𝑄,𝐴(𝑋,Hom𝕜(𝐴,𝐻)) ≅ Ext𝑖𝑄(𝑋
♮,𝐻) for every𝐻 ∈ 𝑄 GInj and 𝑖 ⩾ 0.

Proof.

(a) Let𝐺 be in 𝑄 GPrj and let 𝑃∙ = ⋯ → 𝑃1 → 𝑃0 → 0 be a projective of resolution of𝐺 in 𝑄 Mod.
We show that 𝑃∙ ⊗𝕜 𝐴 is a projective resolution of 𝐺 ⊗𝕜 𝐴 in 𝑄,𝐴Mod.
By Corollary 3.5, the functor −⊗𝕜 𝐴∶ 𝑄 Mod → 𝑄,𝐴Mod has a right adjoint, namely the

forgetful functor (−)♮, which is exact. Hence the functor −⊗𝕜 𝐴 preserves projective objects,
so each 𝑃𝑖 ⊗𝕜 𝐴 is a projective object in 𝑄,𝐴Mod. It remains to see that the sequence ⋯ →
𝑃1 ⊗𝕜 𝐴 → 𝑃0 ⊗𝕜 𝐴 → 𝐺 ⊗𝕜 𝐴 → 0 is exact, that is, that

⋯ ⟶𝑃1(𝑞) ⊗𝕜 𝐴 ⟶ 𝑃0(𝑞) ⊗𝕜 𝐴 ⟶ 𝐺(𝑞) ⊗𝕜 𝐴 ⟶ 0 (♯4)

is an exact sequence of modules for every 𝑞 ∈ 𝑄. We know that the sequence

⋯ ⟶𝑃1(𝑞)⟶ 𝑃0(𝑞)⟶ 𝐺(𝑞)⟶ 0 (♯5)

is exact. As noted in Remark 4.2, each 𝕜-module 𝑃𝑖(𝑞) is projective, so (♯5) is an augmented
projective resolution of 𝐺(𝑞) in 𝕜 Mod. Since the 𝕜-module 𝐺(𝑞) is Gorenstein projective by
Theorem 2.7 and one has id𝕜 𝐴 < ∞ by assumption, we have Tor𝕜𝑖 (𝐺(𝑞), 𝐴) = 0 for all 𝑖 > 0
by [14, Corollary 10.3.10 and Theorem 10.3.8, (1)⇔ (9)]. Hence (♯4) is exact.
The asserted isomorphism now follows from the computation below, where the first and

last isomorphisms hold by the definition of Ext and the middle isomorphism holds as (−)♮ is
the right adjoint of −⊗𝕜 𝐴 by Corollary 3.5,

Ext𝑖𝑄,𝐴(𝐺 ⊗𝕜 𝐴,𝑋) ≅ H𝑖 Hom𝑄,𝐴(𝑃∙ ⊗𝕜 𝐴,𝑋) ≅ H𝑖 Hom𝑄(𝑃∙, 𝑋
♮) ≅ Ext𝑖𝑄(𝐺, 𝑋

♮) .

(b) Dual to the proof of part (a). □

Theorem 4.4. Assume that 𝑄 satisfies the conditions in Setup 2.5, 𝕜 is Gorenstein, and𝐴 has finite
projective/injective dimension as a 𝕜-module. The following assertions hold.

(a) (⟂E ,E ) is a cotorsion pair in 𝑄,𝐴Mod; in fact, it is the cotorsion pair generated by {𝐺 ⊗𝕜 𝐴 |𝐺 ∈

𝑄 GPrj}, that is, {𝐺 ⊗𝕜 𝐴 |𝐺 ∈ 𝑄 GPrj}
⟂ = E .

Moreover, the cotorsion pair (⟂E ,E ) is hereditary and one has ⟂E ∩ E = 𝑄,𝐴 Prj.
(b) (E ,E ⟂) is a cotorsion pair in 𝑄,𝐴Mod; in fact, it is the cotorsion pair cogenerated by

{Hom𝕜(𝐴,𝐻) |𝐻 ∈ 𝑄 GInj}, that is, ⟂{Hom𝕜(𝐴,𝐻) |𝐻 ∈ 𝑄 GInj} = E .
Moreover, the cotorsion pair (E ,E ⟂) is hereditary and one has E ∩ E ⟂ = 𝑄,𝐴 Inj.

Furthermore, the class E is thick, that is, it is closed under direct summands and if two out of
three objects in a short exact sequence 0 → 𝑋′ → 𝑋 → 𝑋′′ → 0 in 𝑄,𝐴Mod belong to E , then so does
the third.
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3276 HOLM and JØRGENSEN

Proof. The final assertion in the theorem follows directly from Definition 4.1 and the well-known
fact that 𝑄 is a thick subcategory of 𝑄 Mod.

(a) The equality {𝐺 ⊗𝕜 𝐴 |𝐺 ∈ 𝑄 GPrj}
⟂ = E follows from Lemma 4.3(a), the fact that

(𝑄 GPrj, 𝑄) is a cotorsion pair in 𝑄 Mod (see Theorem 2.4 / Remark 2.6 and Theorem 2.2),
and the definition of the class E (see Definition 4.1).
To see that (⟂E ,E ) is hereditary, wemust argue that the class E in the right half of the cotor-

sion pair is coresolving. However, this is a special case of the final assertion in the theorem,
which has already been proved. We now prove the equality ⟂E ∩ E = 𝑄,𝐴 Prj.
‘⊇’: Evidently, ⟂E ⊇ 𝑄,𝐴 Prj. To prove E ⊇ 𝑄,𝐴 Prj, it suffices by Proposition 3.12(a) to show

that 𝐹𝑞(𝐴) = 𝑄(𝑞, −) ⊗𝕜 𝐴 is in E for every 𝑞 ∈ 𝑄. Thus we must argue that the object
𝐹𝑞(𝐴)

♮ = 𝑄(𝑞, −) ⊗𝕜 𝐴
♮ = 𝐹𝑞(𝐴

♮) has finite projective dimension in 𝑄 Mod (here the first
𝐹𝑞 is viewed as a functor 𝐴 Mod → 𝑄,𝐴Mod and the second as a functor 𝕜 Mod → 𝑄Mod).
By assumption, 𝐴♮ has finite projective dimension in 𝕜 Mod. Since 𝐹𝑞 ∶ 𝕜 Mod → 𝑄Mod is
exact and preserves projective objects, see Corollary 3.9(a) (and condition (1) in Setup 2.5)
and Lemma 3.11, it follows that 𝐹𝑞(𝐴♮) has finite projective dimension in 𝑄 Mod.
‘⊆’: Assume that 𝑋 belongs to ⟂E ∩ E . Take an exact sequence 0 → 𝑌 → 𝑃 → 𝑋 → 0 in

𝑄,𝐴Mod with 𝑃 projective. As argued above, one has 𝑃 ∈ E . Since 𝑋 ∈ E by assumption, it
follows from the final assertion in the theorem that 𝑌 ∈ E as well. We also have 𝑋 ∈ ⟂E ;
consequently Ext1𝑄,𝐴(𝑋, 𝑌) = 0 and the sequence 0 → 𝑌 → 𝑃 → 𝑋 → 0 splits. Hence 𝑋 is a
direct summand of the projective object 𝑃, so 𝑋 is projective too.

(b) Dual to the proof of part (a). □

5 COMPLETENESS OF THE COTORSION PAIRS (⟂E ,E ) AND (E ,E ⟂)

In this section, we prove completeness of the cotorsion pairs established in Theorem 4.4 (see The-
orems 5.5 and 5.9 below). This completeness relies, in part, on some general properties of the class
of objects of injective dimension⩽ 𝑛 (for some fixed 𝑛 ∈ ℕ0) in a locally Noetherian Grothendieck
category, which we now establish.

Definition 5.1. For a Grothendieck category and a natural number 𝑛 ∈ ℕ0, we set

𝑛 = 𝑛() = {𝑋 ∈  | id 𝑋 ⩽ 𝑛} .

Lemma 5.2. Let  be a locally finitely presented Grothendieck category. For 𝑋 ∈  and 𝑛 ∈ ℕ0,
one has 𝑋 ∈ 𝑛 if and only if Ext𝑛+1 (𝐹, 𝑋) = 0 for every finitely generated 𝐹 ∈ .
Proof. Let 0 → 𝑋 → 𝐼0 → 𝐼1 → ⋯ be an augmented injective resolution of𝑋 in. WriteΩ𝑖(𝑋) =
Ker(𝐼𝑖 → 𝐼𝑖+1) for the 𝑖th cosyzygy of 𝑋. Note that 𝑋 ∈ 𝑛 if and only if Ω𝑛(𝑋) is injective. By
Baer’s criterion in, see Krause [33, Lemma 2.5], and by dimension shifting, this happens if and
only if Ext𝑛+1 (𝐹, 𝑋) ≅ Ext1(𝐹,Ω𝑛(𝑋)) = 0 for every finitely generated object 𝐹 ∈ . □

In the special case where  is the category of modules over a (Noetherian) ring, parts (a) and
(b) in the next result can be found in [23, Theorem 4.1.7] and [14, Lemma 9.1.5].

Proposition 5.3. Let be a locally finitely presented Grothendieck category and 𝑛 ∈ ℕ0.
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3277

(a) If has enough projectives, then (⟂𝑛,𝑛) is a hereditary cotorsion pair in; this cotorsion pair
is generated by a set and hence it is complete.

(b) If is generated by a set of projective noetherian objects, then 𝑛 is closed under pure subobjects
and pure quotients. This means that for every pure exact sequence 0 → 𝑋′ → 𝑋 → 𝑋′′ → 0 in
 (see A.1) with 𝑋 ∈ 𝑛, one has 𝑋′, 𝑋′′ ∈ 𝑛.

Proof.

(a) By assumption,  is generated by a set  of finitely presented (and hence finitely gener-
ated) objects. An object in  is finitely generated if and only if it is a quotient of a finite
direct sum of objects from  , see, for example, Breitsprecher [5, Satz (1.6)]. Thus, up to
isomorphism, there is only a set,  , of finitely generated objects in . As  has enough
projectives, we can choose for every 𝐹 ∈  a projective resolution⋯ → 𝑃𝐹1 → 𝑃𝐹0 → 𝐹 → 0.
Let Ω𝑖(𝐹) = Cok(𝑃𝐹

𝑖+1
→ 𝑃𝐹

𝑖
) be the 𝑖th syzygy of 𝐹 in this resolution. For 𝑋 ∈ , one has

Ext𝑛+1 (𝐹, 𝑋) ≅ Ext1(Ω𝑛(𝐹), 𝑋) by dimension shifting. In view of this and Lemma 5.2, it
follows that the set Ω𝑛() = {Ω𝑛(𝐹) |𝐹 ∈  } satisfies Ω𝑛()⟂ = 𝑛. Thus (⟂𝑛,𝑛) is the
cotorsion pair generated by the set Ω𝑛(). Hence Saorín and Šťovíček [37, Corollary 2.15(3)]
yields that (⟂𝑛,𝑛) is complete. Evidently 𝑛 is coresolving so (⟂𝑛,𝑛) is hereditary.

(b) Since  is generated by a set of projective Noetherian objects, we may assume that all the
projective objects 𝑃𝐹

𝑖
and all the syzygies Ω𝑖(𝐹) in the proof of part (a) are finitely presented

(= finitely generated = Noetherian, as the category  is locally Noetherian). Let 𝐹 ∈  be
given. Applying the functor Hom(Ω𝑛(𝐹), −) to the given pure exact sequence, we get an
exact sequence

Hom(Ω𝑛(𝐹), 𝑋) ↠ Hom(Ω𝑛(𝐹), 𝑋
′′) → Ext1(Ω𝑛(𝐹), 𝑋

′) → Ext1(Ω𝑛(𝐹), 𝑋) = 0 .

In this exact sequence, the first homomorphism is surjective as 0 → 𝑋′ → 𝑋 → 𝑋′′ → 0 is
pure exact and Ω𝑛(𝐹) is finitely presented. Furthermore, Ext1(Ω𝑛(𝐹), 𝑋) = 0 as 𝑋 ∈ 𝑛,
cf. the proof of part (a). It follows that Ext1(Ω𝑛(𝐹), 𝑋

′) = 0 and hence 𝑋′ ∈ 𝑛. Since 𝑛 is
coresolving we also get 𝑋′′ ∈ 𝑛. □

In a locally Noetherian Grothendieck category, the class of injective objects is closed under
coproducts; see Gabriel [17, Chapter IV, § 2, Proposition 6, p. 387] or Stenström [40, V§ 4, Propo-
sition 4.3]. It follows from Roos [36, Theorem 1, p. 201] that has a strict cogenerator, so Simson
[38] yields the next result, which also follows easily from Proposition 5.3(b).

Theorem 5.4 [38, Corollary, p. 163]. Let be a locally Noetherian Grothendieck category and let
𝑛 ∈ ℕ0. The subcategory 𝑛 is closed under direct limits.
Theorem 5.5. Assume that 𝑄 satisfies the conditions in Setup 2.5, 𝕜 is Gorenstein, and 𝐴 has
finite projective/injective dimension as a 𝕜-module. The cotorsion pair (⟂E ,E ) in 𝑄,𝐴Mod from
Theorem 4.4(a) is generated by a set; whence it is complete.

Proof. Note that Proposition 5.3(a) applies to = 𝑄Mod by Proposition 3.12 (with 𝐴 = 𝕜). Let 𝑛
be the finitistic injective dimension of this category, which is finite by Definition 2.1 and Theo-
rem 2.4/Remark 2.6. Now the class 𝑛 is equal to 𝑄 = {𝑋 ∈ 𝑄 Mod | id𝑄 𝑋 < ∞}, so the cotorsion
pairs (⟂𝑛,𝑛) and (𝑄 GPrj, 𝑄) (see Theorem 2.2) in 𝑄 Mod coincide. By Proposition 5.3(a), there
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3278 HOLM and JØRGENSEN

is a set  ⊆ 𝑄 GPrjwith ⟂ = 𝑄. It follows from Lemma 4.3(a) that one has {𝐺 ⊗𝕜 𝐴 |𝐺 ∈ }⟂ =
E in 𝑄,𝐴Mod, cf. the proof of Theorem 4.4(a), so the cotorsion pair (⟂E ,E ) in 𝑄,𝐴Mod is generated
by the set {𝐺 ⊗𝕜 𝐴 |𝐺 ∈ }. Hence [37, Corollary 2.15(3)] yields completeness of the cotorsion pair
(⟂E ,E ). □

In the language of relative homological algebra, the result above shows that ⟂E is special pre-
covering and E is special pre-enveloping in 𝑄,𝐴Mod. In general, ⟂E is not covering and E is not
enveloping, see [12, Theorem 3.4] by Enochs and García Rozas.

Lemma 5.6. Assume that a 𝕜-pre-additive category 𝑄 satisfies the following requirements.

(1) Each 𝕜-module 𝑄(𝑞, 𝑟) is finitely generated.
(2) For every 𝑞 ∈ 𝑄, the set N+(𝑞) = {𝑟 ∈ 𝑄 |𝑄(𝑞, 𝑟) ≠ 0} is finite.
(3) The ring 𝕜 is Noetherian.

In this situation, every 𝑄(𝑞, −) is a Noetherian object in 𝑄 Mod. In particular, the category 𝑄 Mod is
generated by a set of projective Noetherian objects.

Proof. Let 𝑞 ∈ 𝑄 be given. We must show that every subobject 𝐼 of 𝑄(𝑞, −) is finitely generated;
see [40, Chapter V, § 4, Proposition 4.1]. Such a subobject 𝐼 is the same as a left ideal in the the
category𝑄 at 𝑞, that is, each 𝐼(𝑟) is a 𝕜-submodule of𝑄(𝑞, 𝑟) and for every ℎ ∈ 𝑄(𝑟, 𝑝) and g ∈ 𝐼(𝑟),
one has ℎg ∈ 𝐼(𝑝). By (2), the set N+(𝑞) is finite, say, N+(𝑞) = {𝑟1, … , 𝑟𝑛}. By (1), each 𝕜-module
𝑄(𝑞, 𝑟𝑖) is finitely generated, and as 𝕜 is Noetherian by (3), the 𝕜-submodule 𝐼(𝑟𝑖) ⊆ 𝑄(𝑞, 𝑟𝑖) is
finitely generated as well, say, 𝐼(𝑟𝑖) = 𝕜g𝑖1 +⋯ + 𝕜g𝑖𝓁(𝑖). Consider the morphism

𝜏∶
⨁𝑛

𝑖=1

⨁𝓁(𝑖)
𝑗=1

𝑄(𝑟𝑖, −)⟶ 𝑄(𝑞,−)

given by 𝑄(g𝑖𝑗, −)∶ 𝑄(𝑟𝑖, −) → 𝑄(𝑞, −) on the component corresponding to 𝑖 ∈ {1, … , 𝑛} and 𝑗 ∈
{1, … ,𝓁(𝑖)}. We will show that Im 𝜏 = 𝐼, and hence 𝐼 is finitely generated by [40, Chapter V, § 3,
Lemma 3.1] as each of the finitely many objects𝑄(𝑟𝑖, −) is finitely generated. To prove the equality
Im 𝜏 = 𝐼, we must show that for every 𝑝 ∈ 𝑄 one has∑𝑛

𝑖=1

∑𝓁(𝑖)
𝑗=1

Im𝑄(g𝑖𝑗, 𝑝) = 𝐼(𝑝) . (♯6)

Let 𝑝 ∈ 𝑄 be given. To prove the equality displayed above, we argue as follows.
‘⊆’: Consider any of themorphisms𝑄(g𝑖𝑗, 𝑝)∶ 𝑄(𝑟𝑖, 𝑝) → 𝑄(𝑞, 𝑝). For any ℎ ∈ 𝑄(𝑟𝑖, 𝑝), one has

𝑄(g𝑖𝑗, 𝑝)(ℎ) = ℎg𝑖𝑗 , which belongs to 𝐼(𝑝) as g𝑖𝑗 is in 𝐼(𝑟𝑖) and 𝐼 is a left ideal.
‘⊇’: If 𝑝 ∉ N+(𝑞), then𝑄(𝑞, 𝑝) = 0 and hence 𝐼(𝑝) = 0. So we may assume that 𝑝 = 𝑟𝑖 for some

𝑖 ∈ {1, … , 𝑛}. To prove that 𝐼(𝑝) = 𝐼(𝑟𝑖) is contained in the left-hand side of (♯6) (with 𝑝 = 𝑟𝑖), it
suffices to show that every generator g𝑖1, … , g𝑖𝓁(𝑖) of 𝐼(𝑟𝑖) is in the left-hand side. But g𝑖𝑗 is in the
image of 𝑄(g𝑖𝑗, 𝑟𝑖)∶ 𝑄(𝑟𝑖, 𝑟𝑖) → 𝑄(𝑞, 𝑟𝑖) as 𝑄(g𝑖𝑗, 𝑟𝑖)(id𝑟𝑖 ) = g𝑖𝑗 . □

Lemma 5.7. The forgetful functor (−)♮ ∶ 𝑄,𝐴Mod → 𝑄Mod preserves colimits and pure exact
sequences (see A.1).

Proof. The forgetful functor (−)♮ is a left adjoint by Corollary 3.5, so it preserves colimits. By
[2, Proposition 3] (with 𝜆 = ℵ0) the pure exact sequences are precisely the sequences that are
direct limits of split exact sequences. As (−)♮ preserves direct limits and split exact sequences,
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3279

it preserves pure exact sequences as well. Here is a more direct argument, which does not use
[2, Proposition 3]: Let 𝜉 = 0 → 𝑋′ → 𝑋 → 𝑋′′ → 0 be a pure exact sequence in 𝑄,𝐴Mod and let
𝐹 ∈ 𝑄 Mod be finitely presented. Note that 𝐹 ⊗𝕜 𝐴 is finitely presented in 𝑄,𝐴Mod as the functor
Hom𝑄,𝐴(𝐹 ⊗𝕜 𝐴,−) ≅ Hom𝑄(𝐹, (−)

♮) preserves direct limits. Thus, the sequence Hom𝑄,𝐴(𝐹 ⊗𝕜

𝐴, 𝜉) ≅ Hom𝑄(𝐹, 𝜉
♮) is exact, so 𝜉♮ is pure exact in 𝑄 Mod. □

The results in [3] by Aldrich, Enochs, García Rozas, and Oyonarte are valid for a Grothendieck
category with enough projectives (see the Introduction of [3]). In view of the definition of a (min-
imal) generator of Ext, see [3, Definition 2.8], the following is simply a reformulation of [3,
Theorem 2.9] in the language of relative homological algebra.

Theorem 5.8 [3, Theorem 2.9]. Let  be a Grothendieck category with enough projectives and 
be a class of objects in. If  is closed under well-ordered direct limits and every object in has a
special ⟂-pre-envelope, then every object in has an ⟂-envelope.

Theorem 5.9. Assume that 𝑄 satisfies the conditions in Setup 2.5, 𝕜 is Gorenstein, and𝐴 has finite
projective/injective dimension as a 𝕜-module. The cotorsion pair (E ,E ⟂) in 𝑄,𝐴Mod from Theo-
rem 4.4(b) is complete, in fact, it is perfect, meaning that every object in 𝑄,𝐴Mod has an E -cover
and an E ⟂-envelope.

Proof. We start by proving the following assertions.

(∗) 𝑄 is closed under pure subobjects and pure quotients in 𝑄 Mod.
(∗∗) 𝑄 is closed under direct limits in 𝑄 Mod.

Ad (∗): As in the proof of Theorem 5.5, we have𝑛 = 𝑄where𝑛 is the finitistic injective dimen-
sion of 𝑄 Mod. By Lemma 5.6 (and Setup 2.5), the category  = 𝑄Mod is generated by a set of
projective Noetherian objects, so Proposition 5.3(b) yields the conclusion.
Ad (∗∗): By applying Theorem 5.4 to = 𝑄Mod (which is locally Noetherian, as just noted), it

follows that the class 𝑛 = 𝑄 is closed under direct limits.
Next note that = 𝑄,𝐴Mod is a locally finitely presented Grothendieck category by Proposi-

tion 3.12. We show that  = E satisfies the requirements (1) and (2) in Theorem A.3.
Ad (1): It follows from (∗) above, Definition 4.1, and Lemma 5.7, that E is closed under pure

subobjects and pure quotients in 𝑄,𝐴Mod.
Ad (2): The class E contains all projective objects in 𝑄,𝐴Mod and hence also a projective gener-

ator of 𝑄,𝐴Mod, which exists by Proposition 3.12(a). It follows from (∗∗) above, Definition 4.1, and
Lemma 5.7 that E is closed under direct limits (and hence coproducts).
We conclude from Theorem A.3 that the cotorsion pair (E ,E ⟂) in 𝑄,𝐴Mod is complete and that

every object in 𝑄,𝐴Mod has an E -cover. It remains to prove that every object has an E ⟂-envelope,
however, this follows immediately from Theorem 5.8 applied to  = E . □

6 THE PROJECTIVE AND INJECTIVEMODEL STRUCTURES

We show that for any category 𝑄 satisfying the conditions in Setup 2.5 and any ring 𝐴, the cat-
egory 𝑄,𝐴Mod from Definition 3.1 has two different model structures with the same homotopy
category 𝑄(𝐴) ∶= Ho(𝑄,𝐴Mod). Indeed, this is a special case of Theorem 6.1 with 𝕜 = ℤ. The
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3280 HOLM and JØRGENSEN

proof is easy: we essentially just have to combine results from the previous Sections 4 and 5 with
Gillespie/Hovey’s theory of abelian model categories [21, 29].
To parse the next result, recall that E denotes the class of exact objects in 𝑄,𝐴Mod in the sense

of Definition 4.1.

Theorem 6.1. Assume that 𝑄 satisfies the conditions in Setup 2.5, 𝕜 is Gorenstein, and 𝐴 has finite
projective/injective dimension as a 𝕜-module (for example, 𝕜 = ℤ and 𝐴 is any ring).

(a) There exists an abelian model structure on 𝑄,𝐴Mod where ⟂E is the class of cofibrant objects, E
is the class of trivial objects, and every object is fibrant.

(b) There exists an abelian model structure on 𝑄,𝐴Mod where E ⟂ is the class of fibrant objects, E is
the class of trivial objects, and every object is cofibrant.

Proof.

(a) We claim that (, ,) = (⟂E ,E , 𝑄,𝐴Mod) is a Hovey triple in 𝑄,𝐴Mod.
∙ The class = E is thick by the last assertion in Theorem 4.4.
∙ By Theorem 4.4(a), one has ( ∩ ,) = (⟂E ∩ E , 𝑄,𝐴Mod) = (𝑄,𝐴 Prj, 𝑄,𝐴Mod). It is a
complete cotorsion pair as 𝑄,𝐴Mod has enough projectives by Proposition 3.12(a).

∙ Clearly, (, ∩ ) = (⟂E ,E ). This is a complete cotorsion pair by Theorem 5.5.
The desired conclusion now follows from Hovey [29, Theorem 2.2].

(b) By arguing as above, it follows from Theorems 4.4(b) and 5.9 that (, ,) =
(𝑄,𝐴Mod,E ,E ⟂) is a Hovey triple in 𝑄,𝐴Mod. Now apply [29, Theorem 2.2] once more. □

Definition 6.2. Following the terminology in [20, Definition 4.5 and Lemma 4.6] by Gillespie,
we refer to the model structures on 𝑄,𝐴Mod established in parts (a) and (b) in Theorem 6.1 as the
projective model structure and the injective model structure.

Having established the model structures above, the general theory of abelian model categories
provides us with rich information about the associated homotopy categories. We recall (with
appropriate references) the most important facts below.

Proposition 6.3. Assume that 𝑄 satisfies the conditions in Setup 2.5, 𝕜 is Gorenstein, and 𝐴 has
finite projective/injective dimension as a 𝕜-module. The two model categories

(𝑄,𝐴Mod, projective model structure) and (𝑄,𝐴Mod, injective model structure)

have the same weak equivalences, in fact, a morphism 𝜑 in 𝑄,𝐴Mod is a weak equivalence in either
of the two model structures if and only if it satisfies the next equivalent conditions.

(i) 𝜑 = 𝜋𝜄 where 𝜄 is monic with Cok 𝜄 ∈ E and 𝜋 is epic with Ker𝜋 ∈ E .
(ii) 𝜑 = 𝜋𝜄 where 𝜄 is monic with Cok 𝜄 ∈ 𝑄,𝐴 Prj and 𝜋 is epic with Ker𝜋 ∈ E .
(iii) 𝜑 = 𝜋𝜄 where 𝜄 is monic with Cok 𝜄 ∈ E and 𝜋 is epic with Ker𝜋 ∈ 𝑄,𝐴 Inj.

Proof. As seen in the proof of Theorem 6.1, the projective model structure on 𝑄,𝐴Mod is given
by the Hovey triple (p,p,p) = (⟂E ,E , 𝑄,𝐴Mod), and the injective model structure is given
by (i,i,i) = (𝑄,𝐴Mod,E ,E ⟂). Thus by definition, see [29, Definition 5.1], the morphisms
described in (ii), respectively, (iii), are precisely the weak equivalences in the projective, respec-
tively, injective, model structure on 𝑄,𝐴Mod. Evidently, one has (ii)⇒(i) and (iii)⇒ (i) as 𝑄,𝐴 Prj ⊆
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3281

E and 𝑄,𝐴 Inj ⊆ E . By [29, Lemma 5.8], a monic with cokernel inp = E = i is a weak equiva-
lence in both model structures and so is an epic with kernel in E . Hence, if (i) holds, then 𝜑 is a
composition of weak two equivalences in either model structure, and as already noted this means
that (ii) and (iii) hold. □

Definition 6.4. Assume that 𝑄 satisfies the conditions in Setup 2.5, 𝕜 is Gorenstein, and 𝐴 has
finite projective/injective dimension as a 𝕜-module. The𝑄-shaped derived category of𝐴 is defined
to be the homotopy category of themodel category 𝑄,𝐴Mod (see Theorem 6.1 and Proposition 6.3),
that is,

𝑄(𝐴) ∶= Ho(𝑄,𝐴Mod) = {weak equivalences}−1(𝑄,𝐴Mod) .

Theorem 6.5. Assume that 𝑄 satisfies the conditions in Setup 2.5, 𝕜 is Gorenstein, and 𝐴 has
finite projective/injective dimension as a 𝕜-module. The category ⟂E , respectively, E ⟂, is Frobenius
with 𝑄,𝐴 Prj, respectively, 𝑄,𝐴 Inj, as the class of pro-injective objects, and there are equivalences of
categories,

⟂E

𝑄,𝐴 Prj
≃ 𝑄(𝐴) ≃

E ⟂

𝑄,𝐴 Inj
.

Here the leftmost, respectively, rightmost, category is the stable category of the Frobenius category ⟂E ,
respectively, E ⟂. In particular,𝑄(𝐴) is triangulated.

Proof. The cotorsion pairs associated with the Hovey triples that define the projective and injec-
tive model structures (see the proof of Theorem 6.1) are hereditary by Theorem 4.4. Hence the
assertions follow from Gillespie [21, Proposition 4.2 and Theorem 4.3]. □

7 (CO)HOMOLOGY

Our goal in this section is to obtain tractable descriptions of the trivial objects and theweak equiva-
lences in the projective and injectivemodel structures on 𝑄,𝐴Mod. At this point, the only available
descriptions of these objects and morphisms come fromDefinition 4.1 and Proposition 6.3, which
are not particularly enlightening.
Condition (4) in Setup 2.5 is called the Retraction Property. In Definition 7.3, we introduce a

stronger condition, called the Strong Retraction Property, which holds in most natural examples.
This property allows us to define the pseudo-radical 𝔯 (Lemma 7.7) and (co)homology functors
ℍ𝑖
[𝑞] and ℍ

[𝑞]
𝑖

for every 𝑞 ∈ 𝑄 and 𝑖 ⩾ 0 (Definition 7.11). The main results in this section are The-
orems 7.1 and 7.2. The first result characterizes the trivial (= exact) objects as the objects with
vanishing (co)homology; the second one characterizes the weak equivalences as the morphisms
that are isomorphisms in (co)homology.
The proofs of these theorems require preparations that take up most of this section.

Theorems 7.1 and 7.2 themselves are proved towards the end of the section.

Theorem 7.1. Assume that the following hold.

∙ 𝑄 satisfies conditions (1)–(3) in Setup 2.5 and condition (4∗) in Definition 7.3.
∙ The pseudo-radical 𝔯 is nilpotent, that is, 𝔯𝑁 = 0 for some𝑁 ∈ ℕ.
∙ The ring 𝕜 is Noetherian and hereditary (for example, 𝕜 = ℤ).
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3282 HOLM and JØRGENSEN

For every 𝕜-algebra 𝐴 and object 𝑋 ∈ 𝑄,𝐴Mod, the following conditions are equivalent.

(i) 𝑋 ∈ E .
(ii) ℍ𝑖

[𝑞](𝑋) = 0 for every 𝑞 ∈ 𝑄 and 𝑖 > 0.
(ii’) ℍ1

[𝑞](𝑋) = 0 for every 𝑞 ∈ 𝑄.

(iii) ℍ
[𝑞]
𝑖
(𝑋) = 0 for every 𝑞 ∈ 𝑄 and 𝑖 > 0.

(iii’) ℍ
[𝑞]
1 (𝑋) = 0 for every 𝑞 ∈ 𝑄.

Theorem 7.2. Adopt the setup of Theorem 7.1. For every 𝕜-algebra 𝐴 and morphism 𝜑 in 𝑄,𝐴Mod,
the following conditions are equivalent.

(i) 𝜑 is a weak equivalence.
(ii) ℍ𝑖

[𝑞](𝜑) is an isomorphism for every 𝑞 ∈ 𝑄 and 𝑖 > 0.
(ii’) ℍ1

[𝑞](𝜑) and ℍ
2
[𝑞](𝜑) are isomorphisms for every 𝑞 ∈ 𝑄.

(iii) ℍ
[𝑞]
𝑖
(𝜑) is an isomorphism for every 𝑞 ∈ 𝑄 and 𝑖 > 0.

(iii’) ℍ
[𝑞]
1 (𝜑) and ℍ[𝑞]2 (𝜑) are isomorphisms for every 𝑞 ∈ 𝑄.

Looking at Theorem 7.2 (in comparison with Theorem 7.1), one may wonder if a morphism
𝜑 for which ℍ1

[𝑞](𝜑) (or ℍ
[𝑞]
1 (𝜑)) is an isomorphism for every 𝑞 ∈ 𝑄 necessarily must be a weak

equivalence. In general, this is not the case; a counterexample is given in Example 8.21. However,
it is true under the assumption 𝔯2 = 0, see Proposition 7.27.

Definition 7.3. For a small 𝕜-preadditive category 𝑄, we consider the condition below.

(4∗) Strong Retraction Property: For every object 𝑞 ∈ 𝑄, the unit map 𝕜 → 𝑄(𝑞, 𝑞), given by 𝑥 ↦
𝑥 ⋅ id𝑞, has a 𝕜-module retraction and there exists a collection {𝔯𝑞}𝑞∈𝑄 of complements, that
is, 𝕜-modules 𝔯𝑞 such that

𝑄(𝑞, 𝑞) = (𝕜 ⋅ id𝑞) ⊕ 𝔯𝑞 ,

compatible with composition in 𝑄 in the following sense:
(†) 𝔯𝑞 ◦ 𝔯𝑞 ⊆ 𝔯𝑞 for all 𝑞 ∈ 𝑄.
(‡) 𝑄(𝑞, 𝑝) ◦𝑄(𝑝, 𝑞) ⊆ 𝔯𝑝 for all 𝑝 ≠ 𝑞 in 𝑄.

Remark 7.4. If the unitmap 𝕜 → 𝑄(𝑞, 𝑞) given by 𝑥 ↦ 𝑥 ⋅ id𝑞 has a 𝕜-module retraction, then there
exists a 𝕜-module decomposition 𝑄(𝑞, 𝑞) = (𝕜 ⋅ id𝑞) ⊕ 𝔯𝑞, but the complement 𝔯𝑞 it is not unique!
Indeed, for every retraction (that is, left inverse) 𝜏 of the unit map, the kernel Ker 𝜏 is a comple-
ment of 𝕜 ⋅ id𝑞 in 𝑄(𝑞, 𝑞). The content of the Strong Retraction Property is that one can choose
a collection {𝔯𝑞}𝑞∈𝑄 of 𝕜-submodules, where each 𝔯𝑞 is a complement of 𝕜 ⋅ id𝑞 in 𝑄(𝑞, 𝑞), which
is compatible with composition in 𝑄 as described in (†) and (‡). As the next example shows, this
is not always possible, that is, the Strong Retraction Property does not always hold. When it does
hold there may be more than one possible choice of such a compatible collection {𝔯𝑞}𝑞∈𝑄. In this
section, we consider the situation where 𝑄 satisfies the Strong Retraction Property (Setup 7.13),
and we tacitly assume that some fixed choice of a compatible collection {𝔯𝑞}𝑞∈𝑄 has been made.
Note that the pseudo-radical 𝔯 (Lemma 7.7), the stalk functors 𝑆⟨𝑞⟩, 𝑆{𝑞} (Definition 7.9), and
the (co)homology functors ℍ𝑖

[𝑞], ℍ
𝑖
[𝑞] (Definition 7.11) all depend on this fixed choice. Of course,

Theorems 7.1 and 7.2 are true no matter which choice is made.
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3283

Example 7.5. Even in the presence of the conditions Hom-finiteness, Local Boundedness, and
Existence of a Serre Functor (conditions (1)–(3) in Setup 2.5), the Retraction Property (condi-
tion (4) in Setup 2.5) is strictly weaker than the Strong Retraction Property (condition (4∗) in
Definition 7.3).
Indeed, let 𝕜 = ℝ and let 𝑄 be the ℝ-pre-additive category with one object, ∗, and hom set

𝑄(∗, ∗) = ℂ. Composition in 𝑄 is given by multiplication of complex numbers. This category
satisfies all four conditions in Setup 2.5 (the Serre functor is given by 𝕊(∗) =∗). The unit map
ℝ → 𝑄(∗, ∗) = ℂ is just the inclusion map and any ℝ-linear retraction of this map has the
form 𝜏𝑎 ∶ ℂ → ℝ given by 𝑥 + 𝑖𝑦 ↦ 𝑥 − 𝑎𝑦 for some 𝑎 ∈ ℝ. The complement of ℝ in ℂ cor-
responding to this retraction is 𝔯𝑎 = Ker(𝜏𝑎) = spanℝ{𝑎 + 𝑖} ⊆ ℂ. For every 𝑎 ∈ ℝ, we have
(𝑎 + 𝑖)2 ∉ spanℝ{𝑎 + 𝑖} and hence 𝔯𝑎 ◦ 𝔯𝑎 ⊈ 𝔯𝑎. Thus, 𝑄 does not satisfy the Strong Retrac-
tion Property.
From our viewpoint, this example is a bit ‘exotic’, and as we shall see in Theorems 8.8 and 8.11,

the Strong Retraction Property does hold in more ‘natural’ examples.

Remark 7.6. The Strong Retraction Property (condition (4∗) in Definition 7.3) implies that if two
objects 𝑝, 𝑞 ∈ 𝑄 are isomorphic, then they are equal. Indeed, suppose for contradiction that there
exists an isomorphism 𝑓∶ 𝑝 → 𝑞 with 𝑝 ≠ 𝑞. By (‡), one has id𝑝 = 𝑓−1𝑓 ∈ 𝔯𝑝, and clearly id𝑝 ∈
𝕜 ⋅ id𝑝. By assumption, we have (𝕜 ⋅ id𝑝) ∩ 𝔯𝑝 = 0, and hence id𝑝 = 0. But this is impossible as the
map 𝑥 ↦ 𝑥 ⋅ id𝑝 is (even split) monic.

Lemma 7.7. Assume that 𝑄 satisfies condition (4∗) in Definition 7.3. The 𝕜-modules

𝔯(𝑝, 𝑞) =

{
𝔯𝑞 if 𝑝 = 𝑞

𝑄(𝑝, 𝑞) if 𝑝 ≠ 𝑞
(𝑝, 𝑞 ∈ 𝑄)

constitute an ideal 𝔯 in 𝑄; this ideal is called the pseudo-radical of 𝑄.

Proof. We must prove the inclusions 𝑄(𝑞, 𝑟) ◦ 𝔯(𝑝, 𝑞) ⊆ 𝔯(𝑝, 𝑟) and 𝔯(𝑞, 𝑟) ◦𝑄(𝑝, 𝑞) ⊆ 𝔯(𝑝, 𝑟) for
all 𝑝, 𝑞, 𝑟 ∈ 𝑄. For 𝑝 ≠ 𝑟, we have 𝔯(𝑝, 𝑟) = 𝑄(𝑝, 𝑟) and the inclusions are trivial. For 𝑝 = 𝑟, the
inclusions read 𝑄(𝑞, 𝑝) ◦ 𝔯(𝑝, 𝑞) ⊆ 𝔯𝑝 and 𝔯(𝑞, 𝑝) ◦𝑄(𝑝, 𝑞) ⊆ 𝔯𝑝. These inclusions hold for 𝑝 ≠ 𝑞
by (‡). For 𝑝 = 𝑞, the inclusions read𝑄(𝑞, 𝑞) ◦ 𝔯𝑞 ⊆ 𝔯𝑞 and 𝔯𝑞 ◦𝑄(𝑞, 𝑞) ⊆ 𝔯𝑞. By using the equality
𝑄(𝑞, 𝑞) = (𝕜 ⋅ id𝑞) ⊕ 𝔯𝑞 both inclusions become 𝕜 ⋅ 𝔯𝑞 + (𝔯𝑞 ◦ 𝔯𝑞) ⊆ 𝔯𝑞, and this inclusion holds by
(†). □

Example 7.8. Assume that 𝕜 is a field and that each endomorphism 𝕜-algebra𝑄(𝑞, 𝑞) is local with
Jacobson radical 𝔯𝑞 ∶= rad𝑄(𝑞, 𝑞). With this choice of 𝔯𝑞 (𝑞 ∈ 𝑄), the requirements in the Strong
Retraction Property are met and the ideal 𝔯 defined in Lemma 7.7 is precisely the radical, rad𝑄,
of the category 𝑄 in the sense of Kelly [31]. See, for example, Assem, Simson, and Skowroński
[4, Appendix A.3, Proposition 3.5] for details. In more general situations, 𝔯 need not be the rad-
ical of 𝑄, however, our terminology pseudo-radical for the ideal 𝔯 is inspired by the situation
just mentioned.

Definition 7.9. Assume that 𝑄 satisfies condition (4∗) in Definition 7.3. The stalk functors (this
name is explained by Lemma 7.10) at an object 𝑞 ∈ 𝑄 are defined to be

𝑆⟨𝑞⟩ = 𝑄(𝑞, −)∕𝔯(𝑞, −) ∈ 𝑄 Mod and 𝑆{𝑞} = 𝑄(−, 𝑞)∕𝔯(−, 𝑞) ∈ Mod𝑄 .
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Note that these stalk functors generalize the functors introduced in [27, Setup 3.1].

Lemma 7.10. Assume that𝑄 satisfies condition (4∗) in Definition 7.3. Let 𝑞 ∈ 𝑄 be given. For every
object 𝑝 ∈ 𝑄, one has

𝑆⟨𝑞⟩(𝑝) = {
𝕜 if 𝑝 = 𝑞

0 if 𝑝 ≠ 𝑞 .

For every morphism 𝑓 in 𝑄, one has

𝑆⟨𝑞⟩(𝑓) = {
𝑥 ⋅ id𝕜 if 𝑓 = 𝑥 ⋅ id𝑞 + g ∈ (𝕜 ⋅ id𝑞) ⊕ 𝔯𝑞 = 𝑄(𝑞, 𝑞)

0 otherwise .

The (contravariant) functor 𝑆{𝑞} can be described similarly.

Proof. The assertions follow from the definition, 7.9, of the stalk functors. Note that one has
𝑆⟨𝑞⟩(𝑞) = 𝑄(𝑞, 𝑞)∕𝔯𝑞 ≅ 𝕜 by the 𝕜-module decomposition 𝑄(𝑞, 𝑞) = (𝕜 ⋅ id𝑞) ⊕ 𝔯𝑞. □

The stalk functors allow us to define a notion of (co)homology for objects in 𝑄,𝐴Mod.

Definition 7.11. Assume that 𝑄 satisfies condition (4∗) in Definition 7.3. Let 𝑋 ∈ 𝑄,𝐴Mod. For
𝑞 ∈ 𝑄 and 𝑖 ⩾ 0, we define the 𝑖th (co)homology of 𝑋 at 𝑞 as follows:

ℍ𝑖
[𝑞](𝑋) = Ext𝑖𝑄(𝑆⟨𝑞⟩, 𝑋) and ℍ

[𝑞]
𝑖
(𝑋) = Tor𝑄

𝑖
(𝑆{𝑞}, 𝑋) .

Note that ℍ𝑖
[𝑞] and ℍ

[𝑞]
𝑖

are functors 𝑄,𝐴Mod → 𝐴Mod.

Remark 7.12. The Ext and Tor functors in the definition above are the right and left derived
functors of Hom𝑄 and ⊗𝑄 from (♯2) and (♯3), and the functors ℍ∗

[𝑞] = Ext∗𝑄(𝑆⟨𝑞⟩, −) and ℍ
[𝑞]
∗ =

Tor𝑄∗ (𝑆{𝑞}, −) are computed via projective resolutions of 𝑆⟨𝑞⟩ ∈ 𝑄Mod and 𝑆{𝑞} ∈ Mod𝑄. Note
that we can also consider Definition 7.11 in the special case where 𝐴 = 𝕜. It follows that for
𝑋 ∈ 𝑄,𝐴Mod, one has

ℍ𝑖
[𝑞](𝑋)

♮ = Ext𝑖𝑄(𝑆⟨𝑞⟩, 𝑋)♮ = Ext𝑖𝑄(𝑆⟨𝑞⟩, 𝑋♮) = ℍ𝑖
[𝑞](𝑋

♮) ,

and similarly, ℍ[𝑞]
𝑖
(𝑋)♮ = ℍ

[𝑞]
𝑖
(𝑋♮). So (co)homology commutes with the forgetful functor.

Setup 7.13. Throughout this section, we assume without further mention that the 𝕜-pre-additive
category 𝑄 satisfies the Strong Retraction Property (condition (4∗) in Definition 7.3) such that the
pseudo-radical 𝔯 (Lemma 7.7), the stalk functors 𝑆⟨𝑞⟩, 𝑆{𝑞} (Definition 7.9), and the (co)homology
functors ℍ𝑖

[𝑞], ℍ
[𝑞]
𝑖

(Definition 7.11) are defined. If further conditions (for example, the ones from
Setup 2.5) need to be imposed on 𝑄, this will be explicitly mentioned.

Recall the functors 𝐹𝑞 and 𝐺𝑞 from Corollary 3.9. The following result provides examples of
objects in 𝑄,𝐴Mod with trivial (co)homology.
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Lemma 7.14. Assume that the category 𝑄 satisfies condition (1) in Setup 2.5. For every 𝑝 ∈ 𝑄 and
𝑀 ∈ 𝐴Mod, one has:

(a) ℍ
[𝑞]
𝑖
(𝐹𝑝(𝑀)) = 0 for every 𝑞 ∈ 𝑄 and 𝑖 > 0;

(b) ℍ𝑖
[𝑞](𝐺𝑝(𝑀)) = 0 for every 𝑞 ∈ 𝑄 and 𝑖 > 0.

Proof.

(a) Let 𝑃∙ = ⋯ → 𝑃1 → 𝑃0 → 0 be a projective of resolution of 𝑆{𝑞} in 𝑄 Mod. By Definition 7.11,
the homology of the complex 𝑃∙ ⊗𝑄 𝐹𝑝(𝑀) computes ℍ[𝑞]∗ (𝐹𝑝(𝑀)). In the following com-
putation, the first isomorphism holds by the definition of the functor 𝐹𝑝, the middle
isomorphism follows from Lemma 3.7, and the last isomorphism is established in the proof of
Corollary 3.9:

𝑃∙ ⊗𝑄 𝐹𝑝(𝑀) ≅ 𝑃∙ ⊗𝑄 (𝑄(𝑝,−) ⊗𝕜 𝑀) ≅ (𝑃∙ ⊗𝑄 𝑄(𝑝,−)) ⊗𝕜 𝑀 ≅ 𝑃∙(𝑝) ⊗𝕜 𝑀 .

The evaluation functor 𝐸𝑝 is exact. Its right adjoint 𝐺𝑝 is also exact by Corollary 3.9(b), as
𝑄 satisfies condition (1) in Setup 2.5, so 𝐸𝑝 preserves projective objects. Hence the com-
plex 𝐸𝑝(𝑃∙) = 𝑃∙(𝑝) is a projective resolution of the 𝕜-module 𝐸𝑝(𝑆{𝑞}) = 𝑆{𝑞}(𝑝). But this
𝕜-module is projective, as it is either 𝕜 or 0 by Lemma 7.10, and thus the complex 𝑃∙(𝑝) is
homotopy equivalent to either 𝕜 or 0. Thus, the complex 𝑃∙(𝑝) ⊗𝕜 𝑀 is homotopy equivalent
to either𝑀 or 0, in particular, it has zero homology in all degrees 𝑖 > 0.

(b) Dual to the proof of part (a). □

Proposition 7.15. For every 𝑞 ∈ 𝑄, there is an adjoint triple (𝐶𝑞, 𝑆𝑞, 𝐾𝑞) as follows:

Proof. Apply Proposition 3.8 with 𝑈 = 𝑆⟨𝑞⟩ and𝑊 = 𝑆{𝑞}. As 𝑆𝑞 = 𝑆⟨𝑞⟩⊗𝕜 −, its right adjoint
is Hom𝑄(𝑆⟨𝑞⟩, −). From the descriptions of 𝑆⟨𝑞⟩ and 𝑆{𝑞} in Lemma 7.10, we see that 𝑆𝑞 is also
given by 𝑆𝑞 ≅ Hom𝕜(𝑆{𝑞}, −), so its left adjoint is 𝑆{𝑞} ⊗𝑄 −. □

Note that ℍ𝑖
[𝑞] is the 𝑖th right derived functor of 𝐾𝑞 and ℍ

[𝑞]
𝑖
is the 𝑖th left derived functor of 𝐶𝑞;

see Definition 7.11. We wish to give more hands-on descriptions of the functors 𝐾𝑞 and 𝐶𝑞, and to
this end, we first find concrete projective presentations of 𝑆⟨𝑞⟩ and 𝑆{𝑞}.
Definition 7.16. For each 𝑞 ∈ 𝑄, we define sets of morphisms in 𝑄 as follows:

𝐽𝑞 =
⋃

𝑟 ∈𝑄 𝔯(𝑞, 𝑟) and 𝐼𝑞 =
⋃

𝑝∈𝑄 𝔯(𝑝, 𝑞) .

So 𝐽𝑞, respectively, 𝐼𝑞, contains all morphisms in 𝔯 with domain, respectively, codomain, 𝑞.
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Lemma 7.17. For every 𝑞 ∈ 𝑄, there are two exact sequences:

(♯7)

(♯8)

Here𝜓𝑞 is the uniquemorphism in𝑄 Mod given by𝑄(g , −) on the component corresponding to g ∈ 𝐽𝑞
and𝜑𝑞 is the uniquemorphism inMod𝑄 given by𝑄(−, 𝑓) on the component corresponding to𝑓 ∈ 𝐼𝑞 .

Proof. We only show exactness of the sequence (♯7) as exactness of (♯8) is proved similarly. By the
definition, 7.9, of 𝑆⟨𝑞⟩ we must argue that one has Im𝜓𝑞 = 𝔯(𝑞, −), and by the definition of 𝜓𝑞
this is equivalent to proving that for every 𝑟 ∈ 𝑄, one has∑

g ∈𝐽𝑞
Im𝑄(g , 𝑟) = 𝔯(𝑞, 𝑟) . (♯9)

‘⊆’: For every g ∈ 𝐽𝑞, one has Im𝑄(g , 𝑟) ⊆ 𝔯(𝑞, 𝑟). Indeed, for anyℎ ∈ 𝑄(codg , 𝑟), themorphism
𝑄(g , 𝑟)(ℎ) = ℎg is in 𝔯(𝑞, 𝑟) as g belongs to 𝔯(𝑞, codg) and 𝔯 is an ideal.
‘⊇’: If ℎ ∈ 𝔯(𝑞, 𝑟), then ℎ is in 𝐽𝑞 and hence Im𝑄(ℎ, 𝑟) is contained in the left-hand side of (♯9).

Clearly, ℎ is in the image of 𝑄(ℎ, 𝑟)∶ 𝑄(𝑟, 𝑟) → 𝑄(𝑞, 𝑟) as 𝑄(ℎ, 𝑟)(id𝑟) = ℎ. □

We now give some explicit formulae for the functors 𝐾𝑞 and 𝐶𝑞 from Proposition 7.15.

Proposition 7.18. For every 𝑞 ∈ 𝑄 and 𝑋 ∈ 𝑄,𝐴Mod, there are isomorphisms:

𝐾𝑞(𝑋) ≅ Ker

(
𝑋(𝑞)

Ψ𝑋
𝑞

���→
∏

g ∈𝐽𝑞
𝑋(codg)

)
=

⋂
g ∈𝐽𝑞

Ker𝑋(g) (♯10)

𝐶𝑞(𝑋) ≅ Cok

(⨁
𝑓 ∈ 𝐼𝑞

𝑋(dom𝑓)
Φ𝑋
𝑞

���→ 𝑋(𝑞)

)
= 𝑋(𝑞)

/(∑
𝑓 ∈ 𝐼𝑞

Im𝑋(𝑓)
)
. (♯11)

Here Ψ𝑋
𝑞 is the unique morphism whose coordinate map corresponding to g ∈ 𝐽𝑞 is 𝑋(g), and Φ𝑋

𝑞 is
the unique morphism given by 𝑋(𝑓) on the component corresponding to 𝑓 ∈ 𝐼𝑞 .

Proof. The last equalities in (♯10) and (♯11) are evident from the definitions ofΨ𝑋
𝑞 andΦ

𝑋
𝑞 . To show

the first isomorphism in (♯10), apply the left exact functor Hom𝑄(?, 𝑋) to the exact sequence (♯7)
to obtain the exact sequence

The functorHom𝑄(?, 𝑋) converts coproducts to products. Furthermore, for every 𝑝 ∈ 𝑄, one has
Hom𝑄(𝑄(𝑝,−), 𝑋) ≅ 𝑋(𝑝) by Yoneda’s lemma. In view of this and the definition, 7.15, of the
functor 𝐾𝑞, it follows that the sequence above is isomorphic to
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Thus one has 𝐾𝑞(𝑋) ≅ KerΨ𝑋
𝑞 , as claimed. Similarly, by applying the right exact functor ? ⊗𝑄 𝑋,

which preserves coproducts, to the exact sequence (♯8) and using the isomorphism 𝑄(−, 𝑝) ⊗𝑄

𝑋 ≅ 𝑋(𝑝) (see the proof of Corollary 3.9), it follows that 𝐶𝑞(𝑋) ≅ CokΦ𝑋
𝑞 . □

Next we give a useful criterion to check if an object in 𝑄,𝐴Mod is zero.

Proposition 7.19. Assume that the pseudo-radical 𝔯 is nilpotent, that is, 𝔯𝑁 = 0 for some 𝑁 ∈ ℕ.
For every 𝑋 ∈ 𝑄,𝐴Mod, the following conditions are equivalent.

(i) 𝑋 = 0, that is, 𝑋(𝑞) = 0 for every 𝑞 ∈ 𝑄.
(ii) 𝐾𝑞(𝑋) = 0 for every 𝑞 ∈ 𝑄.
(iii) 𝐶𝑞(𝑋) = 0 for every 𝑞 ∈ 𝑄.

Proof. As 𝐾𝑞(𝑋) is a submodule and 𝐶𝑞(𝑋) is a quotient module of 𝑋(𝑞), see Proposition 7.18, it
is clear that (i) implies both (ii) and (iii). We now show that (ii) ⇒ (i); the proof of (iii) ⇒ (i) is
similar. Assume (ii) and suppose for contradiction that 𝑋 ≠ 0. Choose any 𝑞1 ∈ 𝑄 with 𝑋(𝑞1) ≠
0. Since 𝐾𝑞1

(𝑋) = 0, we have 𝑋(𝑞1) ⊈ 𝐾𝑞1
(𝑋) =

⋂
g ∈𝐽𝑞1

Ker𝑋(g), so there exists some mor-
phism g1 ∶ 𝑞1 → 𝑞2 in 𝔯 for which 𝑋(𝑞1) ⊈ Ker𝑋(g1). This means that the map 𝑋(g1)∶ 𝑋(𝑞1) →
𝑋(𝑞2) is non-zero. Since 0 ≠ Im𝑋(g1) ⊆ 𝑋(𝑞2) and 𝐾𝑞2

(𝑋) = 0 we have Im𝑋(g1) ⊈ 𝐾𝑞2
(𝑋) =⋂

g ∈𝐽𝑞2
Ker𝑋(g), so there exists some g2 ∶ 𝑞2 → 𝑞3 in 𝔯 for which Im𝑋(g1) ⊈ Ker𝑋(g2). This

means that𝑋(g2)𝑋(g1) = 𝑋(g2g1) is non-zero. By continuing in thismanner, we obtain a sequence
of morphisms,

where each g𝑖 is in 𝔯 and 𝑋(g1), 𝑋(g2g1), 𝑋(g3g2g1), … are all non-zero. But g𝑁 ⋯ g2g1 is in 𝔯𝑁 = 0;
in particular, 𝑋(g𝑁 ⋯ g2g1) = 0, which is a contradiction. □

Proposition 7.20. For every 𝑋 ∈ 𝑄,𝐴Mod, the following assertions hold.

(a) There is a short exact sequence in 𝑄,𝐴Mod,

0⟶
⨁

𝑞∈𝑄 𝑆𝑞𝐾𝑞(𝑋)⟶ 𝑋 ⟶𝑋′ ⟶ 0 .

Now assume that the next conditions are satisfied.
∙ Each hom 𝕜-module 𝑄(𝑞, 𝑟) is finitely generated.
∙ For every 𝑞 ∈ 𝑄, the set N+(𝑞) = {𝑟 ∈ 𝑄 |𝑄(𝑞, 𝑟) ≠ 0} is finite.
∙  is a class of left 𝐴-modules closed under extensions and submodules.
If 𝑋(𝑞) ∈  for every 𝑞 ∈ 𝑄, then 𝐾𝑞(𝑋), 𝑋

′(𝑞) ∈  for every 𝑞 ∈ 𝑄.
(b) There is a short exact sequence in 𝑄,𝐴Mod,

0⟶ 𝑋′′ ⟶ 𝑋 ⟶
∏

𝑞∈𝑄 𝑆𝑞𝐶𝑞(𝑋)⟶ 0 .

Now assume that the next conditions are satisfied.
∙ Each hom 𝕜-module 𝑄(𝑝, 𝑞) is finitely generated.
∙ For every 𝑞 ∈ 𝑄, the set N−(𝑞) = {𝑝 ∈ 𝑄 |𝑄(𝑝, 𝑞) ≠ 0} is finite.
∙  is a class of left 𝐴-modules closed under extensions and quotient modules.
If 𝑋(𝑞) ∈  for every 𝑞 ∈ 𝑄, then 𝐶𝑞(𝑋), 𝑋′′(𝑞) ∈  for every 𝑞 ∈ 𝑄.
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Proof.

(a) For 𝑞 ∈ 𝑄, we consider the counit 𝜂𝑋𝑞 ∶ 𝑆𝑞𝐾𝑞(𝑋) → 𝑋 of the adjunction (𝑆𝑞, 𝐾𝑞) from
Proposition 7.15. By the universal property of the coproduct, we get an induced mor-
phism 𝜂𝑋 ∶

⨁
𝑞∈𝑄 𝑆𝑞𝐾𝑞(𝑋) → 𝑋 whose cokernel we denote by𝑋′ = Cok 𝜂𝑋 . To establish the

asserted short exact sequence, we need to show that 𝜂𝑋 is monic. For 𝑝 ∈ 𝑄, we have

𝑆𝑞𝐾𝑞(𝑋)(𝑝) = 𝑆⟨𝑞⟩(𝑝) ⊗𝕜 𝐾𝑞(𝑋) =

{
𝐾𝑝(𝑋) if 𝑝 = 𝑞

0 if 𝑝 ≠ 𝑞

by the definitions of 𝑆𝑞 and 𝑆⟨𝑞⟩; see Proposition 7.15 and Lemma 7.10. Hence 𝜂𝑋(𝑝) is the
canonical map 𝐾𝑝(𝑋) → 𝑋(𝑝), which is monic by Proposition 7.18. Thus, 𝜂𝑋 is monic.
Next assume that the three conditions (markedwith bullets in the Proposition) are satisfied

and that 𝑋(𝑞) ∈  for every 𝑞 ∈ 𝑄.
Proposition 7.18 shows that 𝐾𝑞(𝑋) is a submodule of 𝑋(𝑞). Since one has 𝑋(𝑞) ∈  and  is

closed under submodules, it follows that 𝐾𝑞(𝑋) ∈ .
To prove 𝑋′(𝑞) ∈  for every 𝑞 ∈ 𝑄, we argue as follows. Fix 𝑞 ∈ 𝑄. The setN+(𝑞) is finite,

say,N+(𝑞) = {𝑟1, … , 𝑟𝑚}. In particular, 𝔯(𝑞, 𝑟) = 0 if 𝑟 ∉ {𝑟1, … , 𝑟𝑚}. Thus, from the definition,
7.16, of the set 𝐽𝑞 and the formula for 𝐾𝑞(𝑋) given in Proposition 7.18, we get

𝐾𝑞(𝑋) =
⋂

g ∈𝐽𝑞
Ker𝑋(g) =

(⋂
g ∈𝔯(𝑞,𝑟1)

Ker𝑋(g)
)
∩ … ∩

(⋂
g ∈𝔯(𝑞,𝑟𝑚)

Ker𝑋(g)
)
. (♯12)

Each 𝕜-module𝑄(𝑞, 𝑟𝑖) is finitely generated. Since 𝔯(𝑞, 𝑟𝑖) is a direct summand in 𝑄(𝑞, 𝑟𝑖), see
Lemma 7.7 and condition (4∗) in Definition 7.3, it follows that 𝔯(𝑞, 𝑟𝑖) is finitely generated as
well, say, 𝔯(𝑞, 𝑟𝑖) = 𝕜g𝑖1 +⋯ + 𝕜g𝑖𝓁(𝑖). Evidently, one now has⋂

g ∈𝔯(𝑞,𝑟𝑖)
Ker𝑋(g) = Ker𝑋(g𝑖1) ∩ … ∩ Ker𝑋(g𝑖𝓁(𝑖)) . (♯13)

Combining (♯12) and (♯13), we see that there exist finitely many morphisms g𝑗 ∶ 𝑞 → codg𝑗 ,
𝑗 = 1,… , 𝑛, in the ideal 𝔯 such that 𝐾𝑞(𝑋) = Ker𝑋(g1) ∩ … ∩ Ker𝑋(g𝑛), and hence

𝑋′(𝑞) = 𝑋(𝑞)
/
𝐾𝑞(𝑋) = 𝑋(𝑞)

/
(Ker𝑋(g1) ∩ … ∩ Ker𝑋(g𝑛)) ,

where the first equality follows from the definition of 𝑋′; cf. the first part of the proof. To
finish the proof, we argue that given finitely many morphisms g𝑗 ∶ 𝑞 → codg𝑗 , 𝑗 = 1,… , 𝑛, in
𝑄 (they need not belong to the ideal 𝔯), the module

𝑋(𝑞)
/
(Ker𝑋(g1) ∩ … ∩ Ker𝑋(g𝑛)) (♯14)

belongs to . We use induction on 𝑛. For 𝑛 = 0, the intersection Ker𝑋(g1) ∩ … ∩ Ker𝑋(g𝑛) is
taken over the empty set, so the module in (♯14) is the zero module, which is in .
Next let 𝑛 > 0 and set 𝐿 = Ker𝑋(g1) ∩ … ∩ Ker𝑋(g𝑛−1). By the induction hypothesis, we

have𝑋(𝑞)∕𝐿 ∈ .Wemust show that𝑋(𝑞)∕(𝐿 ∩ Ker𝑋(g𝑛)) belongs to. To this end, consider
the short exact sequence

0⟶
Ker𝑋(g𝑛)

𝐿 ∩ Ker𝑋(g𝑛)
⟶

𝑋(𝑞)

𝐿 ∩ Ker𝑋(g𝑛)
⟶

𝑋(𝑞)

Ker𝑋(g𝑛)
⟶ 0 . (♯15)

The module 𝑋(𝑞)∕Ker𝑋(g𝑛) is isomorphic to the submodule Im𝑋(g𝑛) of 𝑋(codg𝑛). Since
𝑋(codg𝑛) ∈  and  is closed under submodules, it follows that 𝑋(𝑞)∕Ker𝑋(g𝑛) ∈ .
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Noether’s second isomorphism theorem shows that Ker𝑋(g𝑛)∕(𝐿 ∩ Ker𝑋(g𝑛)) is isomor-
phic to (𝐿 + Ker𝑋(g𝑛))∕𝐿, which is a submodule of 𝑋(𝑞)∕𝐿. Since 𝑋(𝑞)∕𝐿 belongs to ,
so does Ker𝑋(g𝑛)∕(𝐿 ∩ Ker𝑋(g𝑛)). Consequently, the short exact sequence (♯15) shows that
𝑋(𝑞)∕(𝐿 ∩ Ker𝑋(g𝑛)) is an extension of modules from , and as  is closed under extensions,
we get 𝑋(𝑞)∕(𝐿 ∩ Ker𝑋(g𝑛)) ∈ .

(b) Dual to the proof of part (a). □

We will apply Proposition 7.20 successively in the following construction.

Construction 7.21. Let 𝑋 ∈ 𝑄,𝐴Mod be given.

(a) Define 𝑋0, 𝑋1, 𝑋2, … in 𝑄,𝐴Mod as follows. Set 𝑋0 = 𝑋. Having defined 𝑋𝓁 , let 𝑋𝓁+1 be the
third term in the next short exact sequence coming from Proposition 7.20(a):

0⟶
⨁

𝑞∈𝑄 𝑆𝑞𝐾𝑞(𝑋
𝓁)⟶ 𝑋𝓁 ⟶𝑋𝓁+1 ⟶ 0.

(b) Define 𝑋0, 𝑋1, 𝑋2, … in 𝑄,𝐴Mod as follows. Set 𝑋0 = 𝑋. Having defined 𝑋𝓁 , let 𝑋𝓁+1 be the
first term in the next short exact sequence coming from Proposition 7.20(b):

0⟶ 𝑋𝓁+1 ⟶ 𝑋𝓁 ⟶
∏

𝑞∈𝑄 𝑆𝑞𝐶𝑞(𝑋𝓁)⟶ 0 .

Note that in (a) we use superscripts but in (b) we use subscripts on the constructed objects.

Consider the sequence of objects𝑋0, 𝑋1, 𝑋2, … from part (a) in the construction above. For each
𝑞 ∈ 𝑄 and 𝓁 ⩾ 0, we can consider the modules 𝑋𝓁(𝑞) and 𝐾𝑞(𝑋

𝓁). Below we show how these
modules can be computed directly from 𝑋0 = 𝑋 (and from 𝑞 and 𝓁).

Definition 7.22. For 𝓁 ⩾ 0, let 𝔯𝓁 be the 𝓁th power of the pseudo-radical ideal 𝔯. We set

𝐽𝓁𝑞 =
⋃

𝑟 ∈𝑄 𝔯𝓁(𝑞, 𝑟) and 𝐼𝓁𝑞 =
⋃

𝑝∈𝑄 𝔯𝓁(𝑝, 𝑞) .

For 𝑋 ∈ 𝑄,𝐴Mod, we also set

𝐾𝓁
𝑞 (𝑋) =

⋂
g ∈𝐽𝓁𝑞

Ker𝑋(g) and 𝐶𝓁
𝑞 (𝑋) = 𝑋(𝑞)

/(∑
𝑓 ∈ 𝐼𝓁𝑞

Im𝑋(𝑓)
)
.

Remark 7.23. For the sets 𝐽𝓁𝑞 and the functors 𝐾
𝓁
𝑞 , we observe the following:

∙ 𝐽0𝑞 ⊇ 𝐽1𝑞 ⊇ 𝐽2𝑞 ⊇ ⋯ and hence 𝐾0
𝑞(𝑋) ↣ 𝐾1

𝑞(𝑋) ↣ 𝐾2
𝑞(𝑋) ↣ ⋯ ↣ 𝑋(𝑞).

∙ As 𝔯0(−,−) = 𝑄(−,−), we have id𝑞 ∈ 𝐽0𝑞 and hence 𝐾
0
𝑞 = 0.

∙ 𝐽1𝑞 = 𝐽𝑞 (see Definition 7.16) and 𝐾1
𝑞 = 𝐾𝑞 (see Proposition 7.18).

Dually, for the sets 𝐼𝓁𝑞 and the functors 𝐶
𝓁
𝑞 , one has:

∙ 𝐼0𝑞 ⊇ 𝐼1𝑞 ⊇ 𝐼2𝑞 ⊇ ⋯ and hence 𝑋(𝑞) ↠ ⋯ ↠ 𝐶2
𝑞(𝑋) ↠ 𝐶1

𝑞(𝑋) ↠ 𝐶0
𝑞(𝑋);

∙ 𝐶0
𝑞 = 0;

∙ 𝐼1𝑞 = 𝐼𝑞 and 𝐶1
𝑞 = 𝐶𝑞.
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Lemma 7.24. Adopt the notation from Construction 7.21. For all 𝑞 ∈ 𝑄 and 𝓁 ⩾ 0, one has:

(a) 𝑋𝓁(𝑞) = Cok(𝐾𝓁
𝑞 (𝑋) ↣ 𝑋(𝑞)) and 𝐾𝑞(𝑋

𝓁) = Cok(𝐾𝓁
𝑞 (𝑋) ↣ 𝐾𝓁+1

𝑞 (𝑋));
(b) 𝑋𝓁(𝑞) = Ker(𝑋(𝑞) ↠ 𝐶𝓁

𝑞 (𝑋)) and 𝐶𝑞(𝑋𝓁) = Ker(𝐶𝓁+1
𝑞 (𝑋) ↠ 𝐶𝓁

𝑞 (𝑋)).

Proof.

(a) By induction on 𝓁. As 𝑋0 = 𝑋, 𝐾0
𝑞 = 0, and 𝐾1

𝑞 = 𝐾𝑞, see Remark 7.23, the formulae hold for
𝓁 = 0. Assume that they hold for some 𝓁. In the next commutative diagram, the upper row is
exact by the induction hypothesis 𝐾𝑞(𝑋

𝓁) = Cok(𝐾𝓁
𝑞 (𝑋) ↣ 𝐾𝓁+1

𝑞 (𝑋)).

Applying the Snake Lemma and the induction hypothesis 𝑋𝓁(𝑞) = Cok(𝐾𝓁
𝑞 (𝑋) ↣ 𝑋(𝑞)) to

this diagram, we get the short exact sequence

0⟶ 𝐾𝑞(𝑋
𝓁)⟶ 𝑋𝓁(𝑞)⟶ Cok(𝐾𝓁+1

𝑞 (𝑋) ↣ 𝑋(𝑞))⟶ 0 .

By definition of 𝑋𝓁+1 (see also the first part of the proof of Proposition 7.20), the module
𝑋𝓁+1(𝑞) is precisely the cokernel of the homomorphism 𝐾𝑞(𝑋

𝓁) ↣ 𝑋𝓁(𝑞), so we conclude
that 𝑋𝓁+1(𝑞) = Cok(𝐾𝓁+1

𝑞 (𝑋) ↣ 𝑋(𝑞)). Hence, the first of the asserted formulae hold for 𝓁 +
1. For a morphism g ∶ 𝑞 → codg in 𝑄 the homomorphism

is induced by 𝑋(g)∶ 𝑋(𝑞) → 𝑋(codg). Consequently, there is an equality

Ker𝑋𝓁+1(g) =
(
𝑋(g)−1

(
𝐾𝓁+1
codg

(𝑋)
))/

𝐾𝓁+1
𝑞 (𝑋) .

It follows that

𝐾𝑞(𝑋
𝓁+1) =

⋂
g ∈𝐽𝑞

Ker𝑋𝓁+1(g) =
(⋂

g ∈𝐽𝑞
𝑋(g)−1

(
𝐾𝓁+1
codg

(𝑋)
))/

𝐾𝓁+1
𝑞 (𝑋) .

To finish the proof, we must show that the numerator in the last expression above is equal to
𝐾𝓁+2
𝑞 (𝑋). To this end, consider the following computation:

⋂
g ∈𝐽𝑞

𝑋(g)−1
(
𝐾𝓁+1
codg

(𝑋)
)
=

⋂
g ∈𝐽𝑞

𝑋(g)−1
(⋂

ℎ∈ 𝐽𝓁+1
codg

Ker𝑋(ℎ)

)
=

⋂
g ∈𝐽𝑞

⋂
ℎ∈ 𝐽𝓁+1

codg
𝑋(g)−1(Ker𝑋(ℎ))

=
⋂

g ∈𝐽𝑞

⋂
ℎ∈ 𝐽𝓁+1

codg
Ker𝑋(ℎg) =∶ 𝑀 .
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For g ∈ 𝐽𝑞 and ℎ ∈ 𝐽𝓁+1
codg

, we have by definition g ∈ 𝔯(𝑞, codg) and ℎ ∈ 𝔯𝓁+1(codg , codℎ) and
thus ℎg ∈ 𝔯𝓁+2(𝑞, codℎ), that is, ℎg ∈ 𝐽𝓁+2𝑞 . Hence there is an inclusion,

𝑀 ⊇
⋂

𝑘 ∈ 𝐽𝓁+2𝑞
Ker𝑋(𝑘) = 𝐾𝓁+2

𝑞 (𝑋) . (♯16)

On the other hand, every morphism 𝑘 ∈ 𝐽𝓁+2𝑞 belongs to 𝔯𝓁+2(𝑞, 𝑟) for some 𝑟 ∈ 𝑄. By defi-
nition of the ideal 𝔯𝓁+2, the morphism 𝑘 is therefore a 𝕜-linear combination of morphisms of
the form g𝓁+2⋯ g2g1, that is, compositions,

where each morphism g𝑖 is in 𝔯. With ℎ = g𝓁+2⋯ g2 and g = g1, we have g𝓁+2⋯ g2g1 = ℎg
where g ∈ 𝐽𝑞 and ℎ ∈ 𝐽𝓁+1𝑝1

= 𝐽𝓁+1
codg

. Therefore, 𝑘 is a 𝕜-linear combination of morphisms of
the form ℎg where g ∈ 𝐽𝑞 and ℎ ∈ 𝐽𝓁+1

codg
. Thus, equality holds in (♯16), as desired.

(b) Dual to the proof of part (a). □

Theorem 7.25. Assume that the following hold.

∙ 𝑄 satisfies condition (1)–(3) in Setup 2.5 and condition (4∗) in Definition 7.3.
∙ The pseudo-radical 𝔯 is nilpotent, that is, 𝔯𝑁 = 0 for some𝑁 ∈ ℕ.
∙ The ring 𝕜 is 1-Gorenstein, that is, 𝕜 is Noetherian and id𝕜 𝕜 ⩽ 1.
∙ The 𝕜-algebra 𝐴 has finite projective/injective dimension as a 𝕜-module.

For every 𝑋 ∈ 𝑄,𝐴Mod the following conditions are equivalent.

(i) 𝑋 ∈ E (see Definition 4.1).
(ii) Ext𝑖𝑄(𝑆𝑞(𝐺), 𝑋

♮) = 0 for every 𝐺 ∈ 𝕜 GPrj, 𝑞 ∈ 𝑄, and 𝑖 > 0.
(ii’) Ext1𝑄(𝑆𝑞(𝐺), 𝑋

♮) = 0 for every 𝐺 ∈ 𝕜 GPrj and 𝑞 ∈ 𝑄.
(iii) Ext𝑖𝑄(𝑋

♮, 𝑆𝑞(𝐻)) = 0 for every𝐻 ∈ 𝕜 GInj, 𝑞 ∈ 𝑄, and 𝑖 > 0.
(iii’) Ext1𝑄(𝑋

♮, 𝑆𝑞(𝐻)) = 0 for every𝐻 ∈ 𝕜 GInj and 𝑞 ∈ 𝑄.

Proof. Let  be the class of 𝑌 ∈ 𝑄Mod for which the 𝕜-module 𝑌(𝑞) is Gorenstein projective for
every 𝑞 ∈ 𝑄. By our assumptions and Theorem 2.7, we have  = 𝑄 GPrj, so ( , 𝑄) is a heredi-
tary cotorsion pair in 𝑄 Mod by Theorem 2.4 / Remark 2.6 and Theorem 2.2. We now prove the
equivalence between (i), (ii), and (ii’) in the theorem.
(i) ⇒ (ii): If𝑋 ∈ E then, byDefinition 4.1, one has𝑋♮ ∈ 𝑄. As ( , 𝑄) is a hereditary cotorsion

pair, this means that Ext𝑖𝑄(𝑌, 𝑋
♮) = 0 for every 𝑌 ∈  and 𝑖 > 0. Since 𝑆𝑞(𝐺) ∈  for every 𝐺 ∈

𝕜 GPrj, we conclude that (ii) holds.
(ii) ⇒ (ii’): This implication is trivial.
(ii’) ⇒ (i): Since ( , 𝑄) is a cotorsion pair, we know that ⟂ = 𝑄. The assumption in (ii’)

is that 𝑋♮ is in { 𝑆𝑞(𝐺) | 𝐺 ∈ 𝕜 GPrj }
⟂. We need to show 𝑋 ∈ E , that is, 𝑋♮ ∈ 𝑄, so the desired

implication follows if we can prove the next inclusion in 𝑄 Mod:

{ 𝑆𝑞(𝐺) | 𝐺 ∈ 𝕜 GPrj }
⟂ ⊆ ⟂ . (♯17)
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To this end, consider any𝑌 ∈  . Applying Construction 7.21(a) (with𝐴 = 𝕜) to this object, we get
objects 𝑌0, 𝑌1, 𝑌2, … with 𝑌0 = 𝑌 and short exact sequences in 𝑄 Mod,

As 𝕜 is 1-Gorenstein, the class  = 𝕜 GPrj is closed under submodules. Indeed, by [14, Theo-
rem 10.2.14], every 𝕜-module has Gorenstein projective dimension ⩽ 1, so the claim follows from
[25, Theorem2.20]. The class = 𝕜 GPrj is always closed under extensions by [25, Theorem2.5]. By
assumption, 𝑌(𝑞) ∈ 𝕜 GPrj for every 𝑞 ∈ 𝑄, so it follows from successive applications of Proposi-
tion 7.20(a) that 𝐾𝑞(𝑌

𝓁), 𝑌𝓁(𝑞) ∈ 𝕜 GPrj for every 𝑞 ∈ 𝑄 and 𝓁 ⩾ 0. In particular, every 𝑆𝑞𝐾𝑞(𝑌
𝓁)

belongs to the class { 𝑆𝑞(𝐺) | 𝐺 ∈ 𝕜 GPrj }.
Consider the sets 𝐽𝓁𝑞 and the functors𝐾

𝓁
𝑞 fromDefinition 7.22.As 𝔯𝑁 = 0, it follows that for every

𝓁 ⩾ 𝑁 the set 𝐽𝓁𝑞 consists of all zero morphisms in 𝑄with domain 𝑞, and therefore𝐾𝓁
𝑞 (𝑌) = 𝑌(𝑞).

Thus, Lemma 7.24(a) yields that for every 𝑞 ∈ 𝑄 one has:

𝐾𝑞(𝑌
𝑁) = Cok(𝐾𝑁

𝑞 (𝑌) ↣ 𝐾𝑁+1
𝑞 (𝑌)) = Cok(𝑌(𝑞)

id
��→ 𝑌(𝑞)) = 0 .

Now Proposition 7.19 implies 𝑌𝑁 = 0 and thus the short exact sequence number (𝑁 − 1) in the
display above shows that

⨁
𝑞∈𝑄 𝑆𝑞𝐾𝑞(𝑌

𝑁−1) ≅ 𝑌𝑁−1. Consequently, the short exact sequence
number (𝑁 − 2) reads

As already mentioned, every 𝑆𝑞𝐾𝑞(𝑌
𝓁) belongs to the class { 𝑆𝑞(𝐺) | 𝐺 ∈ 𝕜 GPrj }. Hence, if an

object 𝑈 ∈ 𝑄Mod belongs to the left-hand side in (♯17), then

Ext1𝑄(
⨁

𝑞∈𝑄 𝑆𝑞𝐾𝑞(𝑌
𝓁), 𝑈) =

∏
𝑞∈𝑄 Ext

1
𝑄(𝑆𝑞𝐾𝑞(𝑌

𝓁), 𝑈) = 0

for all 𝓁 ⩾ 0. Thus the short exact sequence number (𝑁 − 2) shows that Ext1𝑄(𝑌
𝑁−2,𝑈) = 0. Then

the short exact sequence number (𝑁 − 3) shows that Ext1𝑄(𝑌
𝑁−3,𝑈) = 0. Continuing in this way,

we arrive at the conclusion thatExt1𝑄(𝑌
0,𝑈) = 0; and since𝑌0 = 𝑌, whichwas an arbitrary object

in  , we get 𝑈 ∈ ⟂. This proves the desired inclusion (♯17).
The equivalence between (i), (iii), and (iii’) is proved by arguments dual to the ones above,

using Propositions 7.19 and 7.20(b), Construction 7.21(b), and Lemma 7.24(b). In this case, one
needs to know that the class  = 𝕜 GInj is closed under quotient modules. As 𝕜 is 1-Gorenstein
this follows from [14, Theorem 10.1.13(1)] and [25, Theorem 2.22]. The class  = 𝕜 GInj is closed
under extensions by [25, Theorem 2.6] (see also [14, Theorem 10.1.4]). □

At this point, we are finally ready to prove the main theorems of this section.

Proof of Theorem 7.1. As 𝕜 is Noetherian and hereditary it is, in particular, 1-Gorenstein and𝐴 has
projective/injective dimension at most 1 as a 𝕜-module. Thus we can apply Theorem 7.25. Fur-
thermore, in this case the class 𝕜 GPrj (respectively, 𝕜 GInj) of Gorenstein projective (respectively,
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Gorenstein injective) 𝕜-modules coincides with the class 𝕜 Prj (respectively, 𝕜 Inj) of projective
(respectively, injective) 𝕜-modules by [14, Propositions 10.2.3 and 10.1.2]. By Proposition 7.15 and
its proof, we have 𝑆𝑞 = 𝑆⟨𝑞⟩⊗𝕜 − ≅ Hom𝕜(𝑆{𝑞}, −), and thus conditions (ii), (ii’), (iii), and (iii’)
in Theorem 7.25 take the form.

(ii∗) Ext𝑖𝑄(𝑆⟨𝑞⟩⊗𝕜 𝑃,𝑋
♮) = 0 for every 𝑃 ∈ 𝕜 Prj, 𝑞 ∈ 𝑄, and 𝑖 > 0.

(ii’∗) Ext1𝑄(𝑆⟨𝑞⟩⊗𝕜 𝑃,𝑋
♮) = 0 for every 𝑃 ∈ 𝕜 Prj and 𝑞 ∈ 𝑄.

(iii∗) Ext𝑖𝑄(𝑋
♮,Hom𝕜(𝑆{𝑞}, 𝐼)) = 0 for every 𝐼 ∈ 𝕜 Inj, 𝑞 ∈ 𝑄, and 𝑖 > 0.

(iii’∗) Ext1𝑄(𝑋
♮,Hom𝕜(𝑆{𝑞}, 𝐼)) = 0 for every 𝐼 ∈ 𝕜 Inj and 𝑞 ∈ 𝑄.

As every projective 𝕜-module 𝑃 is a direct summand in a coproduct of copies of 𝕜, it follows that,
for fixed 𝑞 ∈ 𝑄 and 𝑖 > 0, the vanishing of Ext𝑖𝑄(𝑆⟨𝑞⟩⊗𝕜 𝑃,𝑋

♮) for every projective 𝕜-module 𝑃 is
equivalent to the vanishing of

Ext𝑖𝑄(𝑆⟨𝑞⟩⊗𝕜 𝕜, 𝑋
♮) ≅ ℍ𝑖

[𝑞](𝑋
♮) = ℍ𝑖

[𝑞](𝑋)
♮ ;

cf. Definition 7.11 and Remark 7.12. Hence conditions (ii’∗) and (ii’∗) above are equivalent to
conditions (ii) and (ii’) in the theorem we are proving.
For every injective 𝕜-module 𝐼, 𝑞 ∈ 𝑄, and 𝑖 > 0, there are isomorphisms

Ext𝑖𝑄(𝑋
♮,Hom𝕜(𝑆{𝑞}, 𝐼)) ≅ Hom𝕜(Tor

𝑄
𝑖
(𝑆{𝑞}, 𝑋♮), 𝐼) = Hom𝕜(ℍ

[𝑞]
𝑖
(𝑋)♮, 𝐼) ,

so conditions (iii’∗) and (iii’∗) above are equivalent to (iii) and (iii’) in this theorem. □

Proof of Theorem 7.2. We start by proving the equivalence between (i), (ii), and (ii’).
(i) ⇒ (ii): Assume that 𝜑∶ 𝑋 → 𝑌 is a weak equivalence. By Proposition 6.3, there exists a

factorization 𝜑 = 𝜋𝜄 where 𝜄 ∶ 𝑋 ↣ 𝑍 is monic with Cok 𝜄 ∈ 𝑄,𝐴 Prj and 𝜋∶ 𝑍 ↠ 𝑌 is epic with

Ker𝜋 ∈ E . The short exact sequence 0 → 𝑋
𝜄
�→ 𝑍 → Cok 𝜄 → 0 is split exact, and hence so is the

sequence

for every 𝑞 ∈ 𝑄 and 𝑖 > 0. As Cok 𝜄 ∈ 𝑄,𝐴 Prj ⊆ E , we have ℍ𝑖
[𝑞](Cok 𝜄) = 0 by Theorem 7.1, so

the short exact sequence above shows that ℍ𝑖
[𝑞](𝜄) is an isomorphism. The short exact sequence

0 → Ker𝜋 → 𝑍
𝜋
�→ 𝑌 → 0 induces a long exact Ext-sequence,

For 𝑞 ∈ 𝑄 and 𝑖 > 0, we have ℍ𝑖
[𝑞](Ker 𝜋) = 0 by Theorem 7.1 as Ker𝜋 ∈ E , so the long exact

sequence shows that ℍ𝑖
[𝑞](𝜋) is an isomorphism. Having proved that ℍ𝑖

[𝑞](𝜄) and ℍ𝑖
[𝑞](𝜋) are

isomorphisms, it follows that ℍ𝑖
[𝑞](𝜑) = ℍ𝑖

[𝑞](𝜋)ℍ
𝑖
[𝑞](𝜄) is an isomorphism too.

(ii) ⇒ (ii’): This implication is trivial.
(ii’) ⇒ (i): Let 𝜑∶ 𝑋 → 𝑌 be a morphism in 𝑄,𝐴Mod such that ℍ𝑖

[𝑞](𝜑) is an isomorphism for
every 𝑞 ∈ 𝑄 and 𝑖 = 1, 2. As the factorization axiom [28, Definition 1.1.3] holds in any model cat-
egory, 𝜑 admits a factorization 𝜑 = 𝜋𝜄 where 𝜄 ∶ 𝑋 ↣ 𝑍 is a cofibration and 𝜋∶ 𝑍 ↠ 𝑌 is a trivial
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3294 HOLM and JØRGENSEN

fibration.Wewill show that 𝜄 is aweak equivalence (and hence a trivial cofibration), as this implies
that the composite 𝜑 = 𝜋𝜄 is a weak equivalence.
By assumption,ℍ𝑖

[𝑞](𝜑) is an isomorphism for every 𝑞 ∈ 𝑄 and 𝑖 = 1, 2. The already established
implication (i) ⇒ (ii), applied to the weak equivalence 𝜋, yields that ℍ𝑖

[𝑞](𝜋) is an isomorphism
for every 𝑞 ∈ 𝑄 and 𝑖 > 0. By the identity ℍ𝑖

[𝑞](𝜑) = ℍ𝑖
[𝑞](𝜋)ℍ

𝑖
[𝑞](𝜄), it thus follows that ℍ

𝑖
[𝑞](𝜄) is an

isomorphism every 𝑞 ∈ 𝑄 and 𝑖 = 1, 2. As 𝜄 is an monomorphism (the cofibrations in any abelian
model structure are, in particular, monomorphisms by [29, Definition 5.1]), it follows from [29,
Lemma5.8] that 𝜄 is aweak equivalence if and only ifCok 𝜄 belongs toE , equivalently,ℍ1

[𝑞](Cok 𝜄) =

0 for every 𝑞 ∈ 𝑄 by Theorem 7.1. To show this, we consider the following part of the long exact
Ext-sequence induced by the short exact sequence 0 → 𝑋

𝜄
�→ 𝑌 → Cok 𝜄 → 0,

As ℍ1
[𝑞](𝜄) and ℍ

2
[𝑞](𝜄) are isomorphisms, we get ℍ

1
[𝑞](Cok 𝜄) = 0 as desired.

The equivalence between (i), (iii), and (iii’) is proved similarly. □

This concludes the proofs of the main results, Theorems 7.1 and 7.2, of this section; note that
Theorem D in the Introduction is a special case of these results. We end this section with a
strengthening of Theorem 7.2 in the special case where the pseudo-radical squared is zero, see
Proposition 7.27; we also prove Theorem E from the Introduction, see Theorem 7.29.
It follows fromLemma 7.10 that a necessary condition for𝑋 ∈ 𝑄Mod to be a coproduct of copies

of stalk functors 𝑆⟨∗⟩ is that the functor 𝑋 takes values in the (sub)category of free 𝕜-modules. In
some cases, this condition is also sufficient, as the next result shows.

Lemma 7.26. Let 𝓁 ⩾ 0. Assume that the 𝕜-module (𝔯𝓁∕𝔯𝓁+1)(𝑝, 𝑞) is free for all 𝑝, 𝑞 ∈ 𝑄. Then
the following assertions hold.

(a) For every 𝑝 ∈ 𝑄, there exists a collection {𝑈(𝑞)}𝑞∈𝑄 of index sets and an isomorphism
(𝔯𝓁∕𝔯𝓁+1)(𝑝, −) ≅

⨁
𝑞∈𝑄 𝑆⟨𝑞⟩(𝑈(𝑞)) in 𝑄 Mod.

(b) For every 𝑞 ∈ 𝑄, there exists a collection {𝑉(𝑝)}𝑝∈𝑄 of index sets and an isomorphism
(𝔯𝓁∕𝔯𝓁+1)(−, 𝑞) ≅

⨁
𝑝∈𝑄 𝑆{𝑝}

(𝑉(𝑝)) inMod𝑄.

Proof.

(a) Fix 𝑝 ∈ 𝑄. For every 𝑞 ∈ 𝑄, let {𝜀𝑞,𝑢}𝑢∈𝑈(𝑞) be a subset of 𝔯𝓁(𝑝, 𝑞) such that {𝜀𝑞,𝑢}𝑢∈𝑈(𝑞)
is a basis of the free 𝕜-module (𝔯𝓁∕𝔯𝓁+1)(𝑝, 𝑞); here 𝜀𝑞,𝑢 denotes the image of 𝜀𝑞,𝑢 in
(𝔯𝓁∕𝔯𝓁+1)(𝑝, 𝑞). As 𝔯𝓁 is an ideal in𝑄 containing 𝜀𝑞,𝑢, the image of the natural transformation
𝑄(𝜀𝑞,𝑢, −)∶ 𝑄(𝑞, −) → 𝑄(𝑝,−) is contained in 𝔯𝓁(𝑝, −) and 𝑄(𝜀𝑞,𝑢, −) maps the subfunctor
𝔯(𝑞, −) to 𝔯𝓁+1(𝑝, −). Thus, 𝑄(𝜀𝑞,𝑢, −) induces a natural transformation,

By the universal property of the coproduct, we get an induced natural transformation,
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We claim that 𝜏 is an isomorphism, that is, for every 𝑟 ∈ 𝑄 the 𝕜-module homomorphism
below is an isomorphism (the equalities in this display follow from Lemma 7.10),

Indeed, by definition, 𝜏𝑟 maps an element (𝑥𝑢)𝑢∈𝑈(𝑟) in 𝕜(𝑈(𝑟)) to the sum
∑

𝑢∈𝑈(𝑟) 𝑥𝑢𝜀𝑟,𝑢, and
this map is an isomorphism by construction.

(b) Similar to the proof of part (a). □

Proposition 7.27. Adopt the setup of Theorem 7.1 but assume that 𝑁 = 2, that is, 𝔯2 = 0, and that
𝕜 is a PID (for example, 𝕜 = ℤ). For every 𝕜-algebra 𝐴 and morphism 𝜑 in 𝑄,𝐴Mod, the following
conditions are equivalent.

(i) 𝜑 is a weak equivalence.
(ii) ℍ1

[𝑞](𝜑) is an isomorphism for every 𝑞 ∈ 𝑄.

(iii) ℍ
[𝑞]
1 (𝜑) is an isomorphism for every 𝑞 ∈ 𝑄.

Proof. We know from Theorem 7.2 that (i) implies both (ii) and (iii).
(ii) ⇒ (i): By Theorem 7.2, it suffices to show that also ℍ2

[𝑞](𝜑) is an isomorphism for every
𝑞 ∈ 𝑄. For every 𝑝, 𝑞 ∈ 𝑄, the 𝕜-module 𝑄(𝑝, 𝑞) is projective (= free, as 𝕜 is a PID) by condition
(1) in Setup 2.5, andhence so is the submodule 𝔯(𝑝, 𝑞). Since 𝔯2 = 0, we have (𝔯∕𝔯2)(𝑝, 𝑞) = 𝔯(𝑝, 𝑞),
so we can apply Lemma 7.26(a) with 𝓁 = 1 to get an isomorphism 𝔯(𝑞, −) ≅

⨁
𝑟∈𝑄 𝑆⟨𝑟⟩(𝑈(𝑟)) in

𝑄 Mod for suitable index sets𝑈(𝑟). This yields the third equality below; the first and last equalities
holds by Definition 7.11, and the second equality holds by dimension shifting, as 𝔯(𝑞, −) is a first
syzygy of 𝑆⟨𝑞⟩ by Definition 7.9.

ℍ2
[𝑞](?) = Ext2𝑄(𝑆⟨𝑞⟩, ?) = Ext1𝑄(𝔯(𝑞, −), ?) =

∏
𝑟∈𝑄 Ext

1
𝑄(𝑆⟨𝑟⟩, ?)𝑈(𝑟) = ∏

𝑟∈𝑄 ℍ
1
[𝑟](?)

𝑈(𝑟)

From this identity, we see that if ℍ1
[𝑟](𝜑) is an ismorphism for every 𝑟 ∈ 𝑄, then ℍ2

[𝑞](𝜑) is also an
ismorphism for every 𝑞 ∈ 𝑄, as desired.
(iii) ⇒ (i): Similar to the proof of the implication (ii)⇒ (i). □

We end this section by proving Theorem 7.29, which gives a useful characterization of the pro-
jective and injective objects in 𝑄,𝐴Mod. Recall fromCorollary 3.9, the functors𝐹𝑞 and𝐺𝑞 and from
Proposition 7.15 the functors 𝐶𝑞 and 𝐾𝑞.

Lemma 7.28. For every 𝑝, 𝑞 ∈ 𝑄, the following assertions hold.

(a) 𝐶𝑝𝐹𝑝 = id and 𝐶𝑝𝐹𝑞 = 0 if 𝑝 ≠ 𝑞.
(b) 𝐾𝑝𝐺𝑝 = id and 𝐾𝑝𝐺𝑞 = 0 if 𝑝 ≠ 𝑞.

Here ‘id’ denotes the identity functor on 𝐴 Mod.

Proof.

(a) In the computation below, the first isomorphism holds by the definitions of 𝐶𝑝 and 𝐹𝑞, the
middle isomorphism follows fromLemma 3.7, and the last isomorphism is alreadymentioned
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3296 HOLM and JØRGENSEN

in the proof of Corollary 3.9.

𝐶𝑝𝐹𝑞(?) ≅ 𝑆{𝑝} ⊗𝑄 (𝑄(𝑞, −) ⊗𝕜 ?) ≅ (𝑆{𝑝} ⊗𝑄 𝑄(𝑞, −)) ⊗𝕜 ? ≅ 𝑆{𝑝}(𝑞) ⊗𝕜 ?

The desired conclusion now follows from Lemma 7.10.
(b) Similar to the proof of part (a). □

Theorem 7.29. Assume that 𝑄 satisfies condition (1) in Setup 2.5 and that the pseudo-radical 𝔯 is
nilpotent, that is, 𝔯𝑁 = 0 for some𝑁 ∈ ℕ. For every 𝑋 ∈ 𝑄,𝐴Mod, one has:

(a) 𝑋 ∈ 𝑄,𝐴 Prj if and only if ℍ
[𝑞]
1 (𝑋) = 0 and 𝐶𝑞(𝑋) ∈ 𝐴 Prj for every 𝑞 ∈ 𝑄.

(b) 𝑋 ∈ 𝑄,𝐴 Inj if and only if ℍ1
[𝑞](𝑋) = 0 and 𝐾𝑞(𝑋) ∈ 𝐴 Inj for every 𝑞 ∈ 𝑄.

Proof.

(a) ‘Only if’: It is immediate from Definition 7.11 and Proposition 7.15 that the functors ℍ[𝑞]1 and
𝐶𝑞 preserve coproducts. Thus, to show the ‘only if’ part, we can by Proposition 3.12(a) assume
that𝑋 has the form𝑋 = 𝐹𝑝(𝐴) for some𝑝 ∈ 𝑄. In this case, we have𝐶𝑞(𝑋) = 𝐶𝑞𝐹𝑝(𝐴), which
is either 𝐴 or 0 by Lemma 7.28(a); in particular, this 𝐴-module belongs to 𝐴 Prj. We also have
ℍ
[𝑞]
1 (𝑋) = ℍ

[𝑞]
1 (𝐹𝑝(𝐴)) = 0 by Lemma 7.14(a).

‘If’: Let 𝑞 ∈ 𝑄. Consider the canonical epimorphism 𝜋𝑋𝑞 ∶ 𝑋(𝑞) ↠ 𝐶𝑞(𝑋), see Proposi-
tion 7.18 (and its proof). Since the 𝐴-module 𝐶𝑞(𝑋) is projective, 𝜋𝑋𝑞 has a right inverse, say,
𝜄𝑞 ∶ 𝐶𝑞(𝑋) ↣ 𝑋(𝑞). We define 𝜑𝑞 be the composite

where 𝜀𝑋𝑞 is the counit of the adjunction (𝐹𝑞, 𝐸𝑞) from Corollary 3.9. Note that 𝐶𝑞(𝜀𝑋𝑞 ) = 𝜋𝑋𝑞
and 𝐶𝑞𝐹𝑞(𝜄𝑞) = 𝜄𝑞, see Lemma 7.28(a), and thus 𝐶𝑞(𝜑𝑞) = 𝜋𝑋𝑞 𝜄𝑞 = id𝐶𝑞(𝑋). By the universal
property of the coproduct, there is a unique morphism,

𝜑∶
⨁

𝑞∈𝑄 𝐹𝑞𝐶𝑞(𝑋)⟶ 𝑋,

induced by the family {𝜑𝑞}𝑞∈𝑄. For every 𝑝 ∈ 𝑄 the functor 𝐶𝑝 is a left adjoint by Proposi-
tion 7.15, so it preserves coproducts. By Lemma 7.28(a) and the fact that 𝐶𝑝(𝜑𝑝) = id𝐶𝑝(𝑋), it
follows that 𝐶𝑝(𝜑) is an isomorphism, in fact, it is the identity on 𝐶𝑝(𝑋).
Now, applying the right exact functor 𝐶𝑝 to the exact sequence

and using that 𝐶𝑝(𝜑) is surjective, it follows that 𝐶𝑝(Cok𝜑) for every 𝑝 ∈ 𝑄, and therefore
Cok𝜑 = 0 by Proposition 7.19. Thus there is a short exact sequence,

(♯18)

For every 𝑝 ∈ 𝑄, one has 𝐶𝑝 = 𝑆{𝑝} ⊗𝑄 − andℍ[𝑝]1 = Tor𝑄1 (𝑆{𝑝}, −), and as it is assumed that
ℍ
[𝑝]
1 (𝑋) = 0, the functor 𝐶𝑝 leaves the sequence (♯18) exact. As the homomorphism 𝐶𝑝(𝜑) is
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3297

injective, we get𝐶𝑝(Ker 𝜑) = 0 for every 𝑝 ∈ 𝑄, and thusKer 𝜑 = 0; again by Proposition 7.19.
We have now shown that 𝜑 is an isomorphism. Since

⨁
𝑞∈𝑄 𝐹𝑞𝐶𝑞(𝑋) is a projective object in

𝑄,𝐴Mod by Lemma 3.11, we conclude that 𝑋 is projective too.
(b) Dual to the proof of part (a). □

8 STABLE TRANSLATION QUIVERS

In this section, we investigate natural examples of (small) 𝕜-pre-additive categories that satisfy
conditions (1)–(3) in Setup 2.5 and condition (4∗) in Definition 7.3 with a nilpotent pseudo-radical.
Recall that for such a category, 𝑄, Theorems 6.1, 7.1, and 7.2 show that for any ring 𝐴 (if we take
𝕜 = ℤ), the category 𝑄,𝐴Mod has two different model structures where the trivial objects and
the weak equivalences can be naturally characterized by the (co)homology functors from Defini-
tion 7.11. The examples we have in mind are mesh categories of (suitably nice) stable translation
quivers.
Recall that a stable translation quiver is a triple (Γ, 𝜏, 𝜎) where Γ = (Γ0, Γ1) is a quiver and

𝜏∶ Γ0 → Γ0 (the translation) and 𝜎∶ Γ1 → Γ1 (the semitranslation) are bijections such that for
every arrow 𝑎∶ 𝑝 → 𝑞 in Γ the arrow 𝜎(𝑎)∶ 𝜏(𝑞) → 𝑝 goes from 𝜏(𝑞) to 𝑝. The sets Γ0 and Γ1may
be infinite (this will always be the case in Example 8.2 ifΔ0 andΔ1 are non-empty), but we assume
that Γ is locally finite, that is, for every vertex 𝑞 ∈ Γ0 there are only finitely many arrows with tar-
get 𝑞. Note that Γmay have oriented cycles, that is, paths of length ⩾ 1 starting and ending at the
same vertex; an oriented cycle of length one is called a loop (in fact, the stable translation quivers
arising from Example 8.1 will always have oriented cycles of length > 1 if Δ1 is non-empty).
For every 𝑞 ∈ Γ0, themesh associated with 𝑞 is the diagram:

(♯19)

where 𝑎1, … , 𝑎𝑛 are all the finitely many different arrows in Γ with target 𝑞. It follows that
𝜎(𝑎1), … , 𝜎(𝑎𝑛) are all the arrows in Γ with source 𝜏(𝑞).
There are a couple of standard ways to obtain a stable translation quiver from an ordinary

quiver, which we now describe.

Example 8.1 (the double quiver). Let Δ = (Δ0, Δ1) be a quiver. The double quiver Γ = Δdou of Δ
has the same vertices as Δ, that is, Γ0 = Δ0, but twice as many arrows. More precisely, Γ has all
the original arrows of Δ but also an arrow 𝑥∗ ∶ 𝑞 → 𝑝 for every arrow 𝑥∶ 𝑝 → 𝑞 in Δ (note that
𝑥∗ goes in the opposite direction of 𝑥); in symbols:

Γ1 = Δ1 ⊎ {𝑥∗ ∶ 𝑞 → 𝑝 | (𝑥∶ 𝑝 → 𝑞) ∈ Δ1} .

The double quiver Γ = Δdou is a stable translation quiver: The translation 𝜏∶ Γ0 → Γ0 is the iden-
tity and the semitranslation 𝜎∶ Γ1 → Γ1 is given by 𝜎(𝑥) = 𝑥∗ and 𝜎(𝑥∗) = 𝑥 for every arrow 𝑥 in
Δ.

 14697750, 2022, 4, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s.12662 by D

et K
ongelige, W

iley O
nline L

ibrary on [12/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



3298 HOLM and JØRGENSEN

Example 8.2 (the repetitive quiver). Let Δ = (Δ0, Δ1) be a quiver. The repetitive quiver Γ = Δrep

(even though the symbol ℤΔ is commonly used for this quiver, we avoid it in this paper) of Δ has
the vertex set Γ0 = Δ0 × ℤ and arrows

𝑥𝑖 ∶ (𝑝, 𝑖)⟶ (𝑞, 𝑖) and 𝑥∗𝑖 ∶ (𝑞, 𝑖)⟶ (𝑝, 𝑖 − 1)

for every arrow 𝑥∶ 𝑝 → 𝑞 in Δ. The repetitive quiver Γ = Δrep is a stable translation quiver with
translation 𝜏∶ Γ0 → Γ0 given by 𝜏(𝑞, 𝑖) = (𝑞, 𝑖 + 1) for (𝑞, 𝑖) ∈ Γ0 = Δ0 × ℤ and semitranslation
𝜎∶ Γ1 → Γ1 given by 𝜎(𝑥𝑖) = 𝑥∗

𝑖+1
and 𝜎(𝑥∗

𝑖
) = 𝑥𝑖 for every arrow 𝑥 in Δ.

Remark 8.3. A graph 𝐺 can be turned it into a quiver, Δ = �⃗�, by choosing some orientation of its
vertices. If𝐺 is a tree, that is, any two vertices in𝐺 are connected by exactly one path (equivalently,
𝐺 is a connected acyclic graph), then the repetitive quiver Δrep = (�⃗�)rep does not depend (up to
isomorphism of stable translation quivers) on the chosen orientation of 𝐺; see Happel [24, p. 53].
The same it true for for the double quiver Δdou = (�⃗�)dou.

The following definitions are standard.

Definition 8.4. Let (Γ, 𝜏, 𝜎) be a stable translation quiver and 𝕜 be a commutative ring.
The path category of Γ over 𝕜 is the 𝕜-pre-additive category 𝕜Γ whose objects are the vertices of

Γ and whose hom sets 𝕜Γ(𝑝, 𝑞) are the free 𝕜-modules with basis the set of paths in Γ from 𝑝 to 𝑞.
(Of course, this definition works for any quiver Γ.)
The mesh relation associated with a vertex 𝑞 in Γ is the (formal) sum 𝜇𝑞 below of paths from

𝜏(𝑞) to 𝑞, cf. (♯19). Note that 𝜇𝑞 ∶ 𝜏(𝑞) → 𝑞 is a morphism in the path category 𝕜Γ.

𝜇𝑞 = 𝑎1 𝜎(𝑎1) +⋯ + 𝑎𝑛 𝜎(𝑎𝑛).

Let𝔪 be themesh ideal, that is, the two-sided ideal in the 𝕜-pre-additive category 𝕜Γ generated
by all mesh relations; in symbols,𝔪 = ⟨𝜇𝑞 | 𝑞 ∈ Γ0 ⟩. Themesh category of Γ over 𝕜 is the quotient
category:

𝑄mesh(Γ) = (𝕜Γ)∕𝔪 .

Remark 8.5. Note that for 𝑄 = 𝑄mesh(Γ), the category 𝑄,𝐴Mod is equivalent to the category of
𝐴 Mod-valued representations of Γ that satisfy the mesh relations.

As we now prove, the mesh category of a stable translation quiver always satisfies the Strong
Retraction Property. In general, the associated pseudo-radical 𝔯 need not be nilpotent (as assumed
in Theorems 7.1 and 7.2); however, in several natural examples (see Theorems 8.8 and 8.11), it will
be.

Lemma 8.6. Themesh category𝑄 = 𝑄mesh(Γ), over any commutative ring 𝕜, of a stable translation
quiver Γ satisfies condition (4∗) in Definition 7.3. The arrow ideal, that is, the ideal in 𝑄 generated
by all arrows in Γ, serves as a pseudo-radical.
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3299

Proof. Let 𝑃 = 𝕜Γ be the path category of Γ. For every 𝓁 ⩾ 0, let 𝑃𝓁(𝑝, 𝑞) and 𝑄𝓁(𝑝, 𝑞) the 𝕜-
submodules of 𝑃(𝑝, 𝑞) and 𝑄(𝑝, 𝑞) generated by all paths in Γ of length 𝓁; here we have included
the trivial paths id𝑞 for 𝑞 ∈ Γ0, which have length 𝓁 = 0. There is a direct sum decomposition of
𝕜-modules, 𝑃(𝑝, 𝑞) =

⨁
𝓁⩾0 𝑃

𝓁(𝑝, 𝑞), and as the mesh relations are homogeneous (of degree two)
and only involve unit coefficients ±1 ∈ 𝕜, we get an induced direct sum decomposition for the
quotient category 𝑄 = 𝑃∕𝔪, that is,

𝑄(𝑝, 𝑞) =
⨁
𝓁⩾0

𝑄𝓁(𝑝, 𝑞). (♯20)

Let 𝔯 be the arrow ideal in 𝑄; thus 𝔯(𝑝, 𝑞) is the 𝕜-submodule of 𝑄(𝑝, 𝑞) generated by all paths in
Γ of length ⩾ 1. That is, 𝔯(𝑝, 𝑞) =

⨁
𝓁⩾1 𝑄

𝓁(𝑝, 𝑞), and hence

𝑄(𝑝, 𝑞) = 𝑄0(𝑝, 𝑞) ⊕ 𝔯(𝑝, 𝑞) =

{
(𝕜 ⋅ id𝑞) ⊕ 𝔯(𝑞, 𝑞) if 𝑝 = 𝑞

𝔯(𝑝, 𝑞) if 𝑝 ≠ 𝑞

in view of (♯20). It is evident that the 𝕜-submodules 𝔯𝑞 ∶= 𝔯(𝑞, 𝑞) satisfy the requirements in con-
dition (4∗) in Definition 7.3, and the pseudo-radical associated to these 𝕜-submodules, in the sense
of Lemma 7.7, is precisely the arrow ideal 𝔯 we started with. □

For 𝑛 ⩾ 2, we now consider the Dynkin graph 𝐺 = 𝔸𝑛 with linear orientation, that is,

(♯21)

Below we study the double quiver (�⃗�𝑛)
dou and the repetitive quiver (�⃗�𝑛)

dou of �⃗�𝑛. As noted in
Remark 8.3, these stable translation quivers do not depend on the chosen orientation.

Example 8.7. Consider the double quiver of �⃗�𝑛 from (♯21), that is,

By Definition 8.4, the mesh relations are

𝜇1 = 𝑎∗1𝑎1 , 𝜇𝑞 = 𝑎𝑞−1𝑎
∗
𝑞−1 + 𝑎∗𝑞𝑎𝑞 for 1 < 𝑞 < 𝑛 , and 𝜇𝑛 = 𝑎𝑛−1𝑎

∗
𝑛−1.

Theorem 8.8. Let 𝕜 be any commutative ring. The mesh category

𝑄 = 𝑄mesh((�⃗�𝑛)
dou)

over 𝕜 of the double quiver of �⃗�𝑛 satisfies conditions (1)–(3) in Setup 2.5 and condition (4∗) in
Definition 7.3. More precisely, the following assertions hold.

(a) Every hom 𝕜-module 𝑄(𝑝, 𝑞) is free of dimension

𝑑(𝑝, 𝑞) = min{𝑝, 𝑞, 𝑛 + 1 − 𝑝, 𝑛 + 1 − 𝑞} ∈ ℕ.

(b) The Serre functor is given by 𝕊(𝑞) = 𝑛 + 1 − 𝑞 on objects and its action on morphisms is
determined by the formulae 𝕊(𝑎𝑞) = (−1)𝑞𝑎∗𝑛−𝑞 and 𝕊(𝑎

∗
𝑞) = (−1)𝑛−𝑞𝑎𝑛−𝑞 .
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3300 HOLM and JØRGENSEN

Moreover, the arrow ideal 𝔯 (which by Lemma 8.6 is the pseudo-radical in𝑄) is nilpotent; in fact, one
has 𝔯𝑛 = 0.

Proof. See Appendix B. □

Corollary 8.9. Let 𝐴 be any ring. Consider the category of 𝐴 Mod-valued representations of
the double quiver of �⃗�𝑛 that satisfy the mesh relations. This category has two different abelian
model structures where the trivial objects and the weak equivalences can be characterized by the
(co)homology functors ℍ𝑖

[𝑞] and ℍ
[𝑞]
𝑖
as in Theorems 7.1 and 7.2.

Proof. Set 𝕜 = ℤ. As noted in Remark 8.5, the category in question is nothing but 𝑄,𝐴Mod where
𝑄 = 𝑄mesh((�⃗�𝑛)

dou). By Theorem 8.8, this 𝑄 satisfies conditions (1)–(3) in Setup 2.5 and condition
(4∗) inDefinition 7.3with a nilpotent pseudo-radical. The assertion therefore follows directly from
Theorems 6.1, 7.1, and 7.2. □

Example 8.10. We consider the repetitive quiver (�⃗�𝑛)
rep of the quiver �⃗�𝑛 from (♯21). For, for

example, 𝑛 = 5 it looks as follows (where the bullets have been left out):

By Definition 8.4, the mesh relations are, for every 𝑖 ∈ ℤ,

𝜇(1,𝑖) = 𝑎∗1,𝑖+1 𝑎1,𝑖+1,

𝜇(𝑞,𝑖) = 𝑎𝑞−1,𝑖 𝑎
∗
𝑞−1,𝑖+1 + 𝑎∗𝑞,𝑖+1 𝑎𝑞,𝑖+1 for 1 < 𝑞 < 𝑛, and

𝜇(𝑛,𝑖) = 𝑎𝑛−1,𝑖 𝑎
∗
𝑛−1,𝑖+1.

Theorem 8.11. Let 𝕜 be any commutative ring. The mesh category

𝑄 = 𝑄mesh((�⃗�𝑛)
rep)

over 𝕜 of the repetitive quiver of �⃗�𝑛 satisfies conditions (1)–(3) in Setup 2.5 and condition (4∗) in
Definition 7.3. More precisely, the following assertions hold.

(a) Each hom 𝕜-module𝑄((𝑝, 𝑖), (𝑞, 𝑗)) is either zero or free of dimension 1. The latter happens if and
only if the point (𝑞, 𝑗) lies in, or on the boundary of, the rectangle 𝑅𝑝,𝑖 spanned by the following
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3301

four vertices†, where 𝕊(𝑝, 𝑖) = (𝑛 + 1 − 𝑝, 𝑖 + 1 − 𝑝):

(b) The Serre functor is given by 𝕊(𝑞, 𝑖) = (𝑛 + 1 − 𝑞, 𝑖 + 1 − 𝑞) on objects, and on morphisms it is
determined by 𝕊(𝑎

𝑞,𝑖
) = (−1)𝑞𝑎∗

𝑛−𝑞,𝑖+1−𝑞
and 𝕊(𝑎∗

𝑞,𝑖
) = (−1)𝑛−𝑞𝑎

𝑛−𝑞,𝑖−𝑞
.

Moreover, the arrow ideal 𝔯 (which by Lemma 8.6 is the pseudo-radical in𝑄) is nilpotent; in fact, one
has 𝔯𝑛 = 0.

Proof. Similar to, but easier than, the proof of Theorem 8.8. □

Corollary 8.12. Let 𝐴 be any ring. Consider the category of 𝐴 Mod-valued representations of
the repetitive quiver of �⃗�𝑛 that satisfy the mesh relations. This category has two different abelian
model structures where the trivial objects and the weak equivalences can be characterized by the
(co)homology functors ℍ𝑖

[𝑞] and ℍ
[𝑞]
𝑖
as in Theorems 7.1 and 7.2.

Proof. Set 𝕜 = ℤ. As noted in Remark 8.5, the category in question is nothing but 𝑄,𝐴Mod where
𝑄 = 𝑄mesh((�⃗�𝑛)

rep). By Theorem 8.11, this𝑄 satisfies conditions (1)–(3) in Setup 2.5 and condition
(4∗) inDefinition 7.3with a nilpotent pseudo-radical. The assertion therefore follows directly from
Theorems 6.1, 7.1, and 7.2. □

Example 8.13. The category of 𝐴 Mod-valued representations of the repetitive quiver of �⃗�2 that
satisfy the mesh relations is nothing but the category Ch𝐴 of chain complexes of left 𝐴-modules.
The model structures on this category provided by Corollary 8.12 are classic and well known, see,
for example, Hovey [28, Theorems 2.3.11 and 2.3.13], and the associated homotopy category from
Definition 6.4 is the usual derived category(𝐴).
In the context of stable translation quivers, it is possible to give very concrete descriptions of

the (co)homology functors ℍ1
[𝑞] and ℍ

[𝑞]
1 . This is our goal for the rest of this section.

For representations of a stable translations quiver that satisfy the mesh relations, there is a
natural notion of homology:

Definition 8.14. Let Γ be a stable translation quiver and set 𝑄 = 𝑄mesh(Γ). Consider the mesh
(♯19) associated with 𝑞 ∈ Γ0. Since one has 𝑎1 𝜎(𝑎1) +⋯ + 𝑎𝑛 𝜎(𝑎𝑛) = 0 in 𝑄, every 𝑋 ∈ 𝑄,𝐴Mod

† The picture of 𝑅𝑝,𝑖 should be compared with the diagram in Example 8.10. Note that in the picture of 𝑅𝑝,𝑖 the vertex
(𝑝, 𝑖) is located higher than 𝕊(𝑝, 𝑖), which of course is only the case if 𝑝 is smaller than 𝑛+1

2
. For 𝑝 = 1, the ‘rectangle’ 𝑅𝑝,𝑖

is actually the line (with negative slope) from (1, 𝑖) to 𝕊(1, 𝑖) = (𝑛, 𝑖), and for 𝑝 = 𝑛 it is the line (with positive slope) from
(𝑛, 𝑖) to 𝕊(𝑛, 𝑖) = (1, 𝑖 + 1 − 𝑛).
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3302 HOLM and JØRGENSEN

induces a three term complex of left 𝐴-modules,

We write H𝑞(𝑋) for the homology of this three term complex and call it themesh homology of 𝑋
at 𝑞.

Definition 8.15. LetΓ be a stable translation quiver and set𝑄 = 𝑄mesh(Γ).We say thatΓ is normal
(relative to 𝕜) if one hasH𝑞(𝑄(𝑝, −)) = 0 for all 𝑝, 𝑞 ∈ Γ0 (equivalently, every projective object in
𝑄 Mod has vanishing mesh homology).

Note that the definition of normality depends on the base ring 𝕜. As far as we know,most stable
translation quivers are normal. Here we just note the following two results.

Theorem 8.16. The stable translation quiver (�⃗�𝑛)
dou from Example 8.7 is normal.

Proof. See Appendix B. □

Theorem 8.17. The stable translation quiver (�⃗�𝑛)
rep from Example 8.10 is normal.

Proof. Similar to, but easier than, the proof of Theorem 8.16. □

The next result and Remark 8.19 compare the mesh homologyH∗ defined above with the first
(co)homology functors ℍ1

[∗] and ℍ
[∗]
1 from Definition 7.11.

Proposition 8.18. Let Γ be a stable translation quiver with mesh category 𝑄 = 𝑄mesh(Γ). If Γ is
normal, then for every 𝑋 ∈ 𝑄,𝐴Mod and 𝑞 ∈ Γ0 there is a natural isomorphism,

ℍ
[𝑞]
1 (𝑋) ≅ H𝑞(𝑋) .

Proof. By Lemma 8.6, the Strong Retraction Property holds for 𝑄 and the arrow ideal 𝔯 serves
as the pseudo-radical. In particular, it makes sense to consider 𝑆{𝑞} ∈ Mod𝑄 from Definition 7.9.
Consider the mesh (♯19) associated with the vertex 𝑞. We claim that there is an exact sequence in
Mod𝑄,

Indeed, exactness at 𝑄(−, 𝑝1) ⊕⋯⊕𝑄(−, 𝑝𝑛) follows as H𝑞(𝑄(𝑟, −)) = 0 for all 𝑟 ∈ Γ0, as Γ is
assumed to be normal. To prove exactness at 𝑄(−, 𝑞) and at 𝑆{𝑞} it suffices, by the definition of
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3303

𝑆{𝑞}, to show that one has

Im (𝑄(−, 𝑎1)⋯𝑄(−, 𝑎𝑛)) = 𝔯(−, 𝑞) .

However, this equality follows from the fact that 𝔯 is the arrow ideal and 𝑎1, … , 𝑎𝑛 is the com-
plete list of arrows in Γ with target 𝑞. Consequently, the sequence displayed above, which we
write as 𝑃2 → 𝑃1 → 𝑃0 → 𝑆{𝑞} → 0, is part of an augmented projective resolution of 𝑆{𝑞} in
Mod𝑄. It follows that the left 𝐴-module ℍ

[𝑞]
1 (𝑋) = Tor𝑄1 (𝑆{𝑞}, 𝑋) can be computed as the homol-

ogy of the three term complex 𝑃2 ⊗𝑄 𝑋 → 𝑃1 ⊗𝑄 𝑋 → 𝑃0 ⊗𝑄 𝑋. For every object 𝑟 ∈ 𝑄, one has
𝑄(−, 𝑟) ⊗𝑄 𝑋 ≅ 𝑋(𝑟), see the proof of Corollary 3.9, and hence the three term complex𝑃2 ⊗𝑄 𝑋 →
𝑃1 ⊗𝑄 𝑋 → 𝑃0 ⊗𝑄 𝑋 is isomorphic to the three term complex in Definition 8.14, whose homology
is H𝑞(𝑋) by definition. □

Remark 8.19. In Definition 8.14, we could evidently also have defined the mesh homologyH𝑞(𝑌)
for 𝑌 ∈ 𝐴Mod𝑄, that is, for contravariant 𝕜-linear functors 𝑌∶ 𝑄 → 𝐴Mod. If one extends the
definition, 8.15, of normality to mean thatH𝑞(𝑄(𝑝, −)) = 0 = H𝑞(𝑄(−, 𝑝)) for all 𝑝, 𝑞 ∈ Γ0, then
one can also easily extend Proposition 8.18 (and its proof) to get isomorphismsℍ[𝑞]1 (𝑋) ≅ H𝑞(𝑋) ≅

ℍ1
[𝜏(𝑞)](𝑋) for every 𝑋 ∈ 𝑄,𝐴Mod. The stable translation quivers (�⃗�𝑛)

dou and (�⃗�𝑛)
rep are also

normal in this stronger sense, but this is not important.

By Theorems 8.8, 8.11, 8.16, and 8.17, the next result applies, for example, to the stable translation
quivers (�⃗�𝑛)

dou and (�⃗�𝑛)
rep.

Corollary 8.20. Let Γ be a stable translation quiver with mesh category 𝑄 = 𝑄mesh(Γ) over any
commutative ring 𝕜 and assume that the following conditions hold.

∙ 𝑄 satisfies conditions (1)–(3) in Setup 2.5.
∙ The arrow ideal 𝔯 is nilpotent, that is, 𝔯𝑁 = 0 for some𝑁 ∈ ℕ.
∙ The ring 𝕜 is Noetherian and hereditary (for example, 𝕜 = ℤ).
∙ Γ is normal (Definition 8.15).

For any 𝕜-algebra 𝐴, the class E of exact objects in 𝑄,𝐴Mod from Definition 4.1 satisfies

E = {𝑋 ∈ 𝑄,𝐴Mod | H𝑞(𝑋) = 0 for every 𝑞 ∈ Γ0 }.

Proof. The hypotheses in Theorem 7.1 are satisfied by Lemma 8.6 and the assumptions made in
the present result, and hence E = {𝑋 ∈ 𝑄,𝐴Mod | ℍ[𝑞]1 (𝑋) = 0 for every 𝑞 ∈ Γ0 }. The assertion
now follows from Proposition 8.18 as Γ is assumed to be normal. □

Example 8.21. Let 𝑄 be the category 𝑄mesh((�⃗�3)
rep). The category 𝑄 Mod is the same as the

category of 𝕜 Mod-valued representations of the quiver (�⃗�3)
rep that satisfy the mesh relations;

see Remark 8.5. Moreover, in 𝑄 Mod the abstract homology functors ℍ[∗]1 agree with the mesh
homology functorsH∗ by Theorem 8.17 and Proposition 8.18.
We give an elementary example of a morphism 𝜑∶ 𝑋 → 𝑌 in 𝑄 Mod such that H∗(𝜑) is an

isomorphism but 𝜑 is not a weak equivalence in the projective/injective model structure. Note
that for the category 𝑄 one has 𝔯3 = 0 but 𝔯2 ≠ 0; thus our example shows that the conditions
(i)–(iii) in Proposition 7.27 are, in general, not equivalent unless 𝔯2 = 0.
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3304 HOLM and JØRGENSEN

Now, let 𝑋 and 𝑌 be the representations:

and

where the subscripts 1 … , 4 just refer to four specific vertices in (�⃗�3)
rep with those labels. Let 𝜑

be the morphism from 𝑋 to 𝑌 where 𝜑(1)∶ 𝑋(1) → 𝑌(1) is the identity on 𝕜 and 𝜑(𝑞) = 0 for all
vertices 𝑞 ≠ 1. Note that H𝑞(𝑋) = 0 = H𝑞(𝑌) for all 𝑞 ≠ 3 and

H3(𝑋) = Ker

(
𝕜 ⊕ 𝕜

(1 1)
�����→ 𝕜

)
and H3(𝑌) = Ker(𝕜 ⟶ 0) .

The map H3(𝜑) sends (𝑥, −𝑥) to 𝑥, so it is clearly an isomorphism.
To see that 𝜑 is not a weak equivalence, note that 𝜑 is an epimorphism and that its kernel

satisfies H4(Ker 𝜑) = 𝕜 ≠ 0. Thus, Ker 𝜑 does not belong to E , see Corollary 8.20, and hence 𝜑
cannot be a weak equivalence by [29, Lemma 5.8].

APPENDIX A: PURITY AND KAPLANSKY CLASSES

In this section,  denotes a Grothendieck category which is locally finitely presentable in the
sense of Crawley–Boevey [7, §1] or Adámek and Rosický [1, Definition 1.17 with 𝜆 = ℵ0].

A.1 Purity

A short exact sequence 0 → 𝑀′ → 𝑀 → 𝑀′′ → 0 in is called pure exact if it stays exact under
the functor Hom(𝐾, −) for every finitely presentable object 𝐾 in.
The definition above can be found in [7, §3]. Themore general concept of 𝜆-pure exact sequences

has been studied by Adámek and Rosický in [2] and [1, Chapter 2.D] (the situation above
corresponds to 𝜆 = ℵ0).
To parse the next definition recall from [1, Definitions 1.13 and 1.67], the definitions of

𝜅-presentable and 𝜅-generated objects, where 𝜅 is any regular cardinal.

A.2 Kaplansky classes

A class  of objects in  is said to be 𝜅-Kaplansky if for every 𝐹 ∈  and every 𝜅-generated
subobject𝑋 ⊆ 𝐹, there exists a 𝜅-presentable subobject𝑌 of𝐹 such that𝑋 ⊆ 𝑌 ⊆ 𝐹 and𝑌, 𝐹∕𝑌 ∈
 . One says that  is a Kaplansky class, if it is 𝜅-Kaplansky for some regular cardinal 𝜅.
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3305

In this generality the definition is due to Gillespie [19, Definition 4.9]; see also Šťovíček [41,
Definition 2.6]. Kaplansky classes were introduced and studied by Enochs and López-Ramos [16]
in the special case where is the category of (left) modules over a ring.
In the special case where is the category of (left) modules over a ring, the next result follows

from [26, Theorem 3.4]. Note that the assumption in [26, Theorem 3.4] that  should be closed
under extensions is superfluous, indeed, it follows from the proof of TheoremA.3 below that under
the hypotheses in that theorem, the class  is deconstructible, and such a class is automatically
closed under extensions by Šťovíček [41, Lemma 1.6].

Theorem A.3. Let  be a class of objects in that satisfies the following conditions.

(1)  is closed under pure subobjects and pure quotients, meaning that for every pure exact sequence
0 → 𝑀′ → 𝑀 → 𝑀′′ → 0 in with𝑀 ∈  , one has𝑀′,𝑀′′ ∈  .

(2)  contains a generator of and is closed under coproducts in.

Then ( ,⟂) is a complete cotorsion pair. In fact, every object in even has an  -cover.
Proof. We start by showing that condition (1) implies that  is a Kaplansky class.
By assumption, is locally finitely presentable (as is also cocomplete, this is the same as

being finitely accessible, see [1, Example 2.3(1)]), so wemay apply [1, Theorem 2.33 and its Remark]
with 𝜆 = ℵ0. The conclusion provided by this result holds for arbitrary large regular cardinals 𝛾
sharply greater than 𝜆 = ℵ0 (in symbols: 𝛾 ⊳ ℵ0, see [1, Definition 2.12]) —which just means that
𝛾 is an uncountable regular cardinal, see [1, Example 2.13(1)] — but for our purpose it suffices to
know that the conclusion holds for some regular cardinal 𝛾. We let 𝛾 be any such cardinal and we
will show that  is a 𝛾-Kaplansky class.
Let 𝐹 ∈  and 𝑋 ⊆ 𝐹 be a 𝛾-generated subobject. Since is also locally 𝛾-presentable, see [1,

Remark after Theorem 1.20], there is by [1, Proposition 1.69(ii)] an epimorphism 𝑓∶ 𝐾 ↠ 𝑋where
𝐾 is 𝛾-presentable (this also follows from [41, Lemma A.3(1)] and [1, Proposition 1.16]). Applying
[1, Theorem 2.33 and its Remark] to the compositemorphism𝐾 ↠ 𝑋 ↣ 𝐹, we get a factorization

where �̄� is 𝛾-presentable and 𝑓 is a ℵ0-pure (mono)morphism in the sense of [1, Definition 2.27
(see also Proposition 2.29)]. By [2, Proposition 5(b) and Definition 1] this means that that the exact
sequence

is pure exact in the sense of A.1. If we set𝑌 = Im𝑓, then the sequence above is isomorphic to 0 →
𝑌 → 𝐹 → 𝐹∕𝑌 → 0, which is therefore also pure exact. As 𝐹 ∈  , we get 𝑌, 𝐹∕𝑌 ∈  because 
is closed under pure subobjects and pure quotients. Finally, note that 𝑌 ≅ �̄� is 𝛾-presentable and
that one has 𝑋 ⊆ 𝑌, indeed, 𝑋 = Im𝑓 = Im(𝑓 ◦ g) ⊆ Im𝑓 = 𝑌.
To finish the proof, note that for any 𝐼-direct system {𝑀𝑖 → 𝑀𝑗} in , the canonical map⨁
𝑖∈𝐼 𝑀𝑖 ↠ lim

��→𝑖∈𝐼
𝑀𝑖 is a pure epimorphism. As  is assumed to be closed under pure quotients

and coproducts, it follows that  is closed under direct limits as well. We have seen that  is a
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3306 HOLM and JØRGENSEN

Kaplansky class; thus Šťovíček [41, Corollary 2.7(2)] implies that is deconstructible. As every split
exact sequence is pure exact,  is also closed under direct summands. By assumption,  contains
a generator, and thus Šťovíček [42, Corollary 5.17] yields that ( ,⟂) is a (functorially) complete
cotorsion pair.
As noted above,  is closed under direct limits. As the cotorsion pair ( ,⟂) is complete, every

object in has a (special)  -precover. Thus, El Bashir [9, Theorem 1.2] shows that every object
in has an  -cover. □

APPENDIX B: PROOFS OF THEOREMS 8.8 AND 8.16

Recall that we consider the double quiver (�⃗�𝑛)
dou from Example 8.7. For the path and mesh

categories of this stable translation quiver, we write

𝑃 = 𝕜(�⃗�𝑛)
dou and 𝑄 = 𝑄mesh((�⃗�𝑛)

dou) .

For vertices 𝑝, 𝑞 in (�⃗�𝑛)
dou and 𝓁 ⩾ 0 denote by 𝑃𝓁(𝑝, 𝑞) and𝑄𝓁(𝑝, 𝑞) the 𝕜-submodules of 𝑃(𝑝, 𝑞)

and 𝑄(𝑝, 𝑞) generated by all paths in (�⃗�𝑛)
dou of length 𝓁; here we include the trivial paths id𝑞,

which have length 𝓁 = 0. As we have seen in the proof of Lemma 8.6, there is a direct sum
decomposition (♯20).
To keep track of all the possible paths in the quiver (�⃗�𝑛)

dou, it is convenient to draw multiple
copies of the vertices and arrows in (�⃗�𝑛)

dou as follows (for, for example, 𝑛 = 5):

(♯22)

From this diagram, it is evident that one has

𝑃𝓁(𝑝, 𝑞) ≠ 0 ⟺ 𝓁 = |𝑝 − 𝑞| + 2𝑡 where 𝑡 ∈ ℕ0. (♯23)

We now take into account the mesh relations, that is, we consider (♯22) as a diagram in 𝑄.

( ◦ ) The mesh relations 𝜇1 and 𝜇𝑛 mean that 𝑎∗1𝑎1 = 0 and 𝑎𝑛−1𝑎
∗
𝑛−1 = 0 hold in 𝑄.

(◊) The mesh relations 𝜇2, … , 𝜇𝑛−1 mean that every square
∙

↗ ↘
∙ ∙
↘ ↗
∙

is anticommutative.

Given vertices 𝑝, 𝑞 and 𝓁 ⩾ 0, it follows from (◊) and (♯22) that in𝑄, all paths from 𝑝 to 𝑞 of length
𝓁 (of course, there might not exist such a path) are equal up to a sign. Thus:

if 𝑄𝓁(𝑝, 𝑞) ≠ 0, then 𝑄𝓁(𝑝, 𝑞) is a free 𝕜-module of dimension 1. (♯24)
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3307

If 𝑄𝓁(𝑝, 𝑞) ≠ 0, then a basis for the 1-dimensional free 𝕜-module 𝑄𝓁(𝑝, 𝑞) is, for example, {𝜋} or
{−𝜋} where 𝜋 is any (possibly trivial) path in (�⃗�𝑛)

dou from 𝑝 to 𝑞 of length 𝓁.
Given vertices 𝑝 and 𝑞, we now seek to determine which numbers 𝓁 satisfy 𝑄𝓁(𝑝, 𝑞) ≠ 0.

Proposition B.1. With 𝑑(𝑝, 𝑞) = min{𝑝, 𝑞, 𝑛 + 1 − 𝑝, 𝑛 + 1 − 𝑞} ∈ ℕ, one has:

𝑄𝓁(𝑝, 𝑞) ≠ 0 ⟺ 𝓁 = |𝑝 − 𝑞| + 2𝑡 where 0 ⩽ 𝑡 < 𝑑(𝑝, 𝑞) .

Proof. Certainly a necessary condition for𝑄𝓁(𝑝, 𝑞) ≠ 0 is that 𝑃𝓁(𝑝, 𝑞) ≠ 0, which by (♯23) means
that 𝓁 has the form 𝓁 = |𝑝 − 𝑞| + 2𝑡 for some 𝑡 ∈ ℕ0. If 𝑡 ⩾ min{𝑝, 𝑞}, then there exists a path
from 𝑝 to 𝑞 of length 𝓁 = |𝑝 − 𝑞| + 2𝑡 that contains at least one copy of the product 𝑎∗1𝑎1, namely
the following path with 𝑡 − min{𝑝, 𝑞} + 1 > 0 copies of 𝑎∗1𝑎1:

(𝑎𝑞−1⋯𝑎1)(𝑎
∗
1𝑎1)⋯ (𝑎∗1𝑎1)(𝑎

∗
1 ⋯𝑎∗𝑝−1) .

Here we have used that (𝑞 − 1) + 2(𝑡 − min{𝑝, 𝑞} + 1) + (𝑝 − 1) is equal to 𝓁 = |𝑝 − 𝑞| + 2𝑡. In
this case, one has 𝑄𝓁(𝑝, 𝑞) = 0 by ( ◦ ) above. Conversely, if 𝑡 < min{𝑝, 𝑞}, then there is no path
from 𝑝 to 𝑞 of length 𝓁 = |𝑝 − 𝑞| + 2𝑡 that contains a copy of the product 𝑎∗1𝑎1.
Similarly, if 𝑡 ⩾ min{𝑛 + 1 − 𝑝, 𝑛 + 1 − 𝑞}, then there exists a path from 𝑝 to 𝑞 of length 𝓁 =|𝑝 − 𝑞| + 2𝑡 that contains at least one copy of the product 𝑎𝑛−1𝑎

∗
𝑛−1, namely the following path

with 𝑡 − min{𝑛 + 1 − 𝑝, 𝑛 + 1 − 𝑞} + 1 > 0 copies of 𝑎𝑛−1𝑎
∗
𝑛−1:

(𝑎∗𝑞 ⋯𝑎∗𝑛−1)(𝑎𝑛−1𝑎
∗
𝑛−1)⋯ (𝑎𝑛−1𝑎

∗
𝑛−1)(𝑎𝑛−1⋯𝑎𝑝) .

Here we have used that (𝑛 − 𝑞) + 2(𝑡 − min{𝑛 + 1 − 𝑝, 𝑛 + 1 − 𝑞} + 1) + (𝑛 − 𝑝) is equal to 𝓁 =|𝑝 − 𝑞| + 2𝑡. In this case, one has 𝑄𝓁(𝑝, 𝑞) = 0 by ( ◦ ) above. Conversely, if one has 𝑡 < min{𝑛 +
1 − 𝑝, 𝑛 + 1 − 𝑞}, then there is no path from 𝑝 to 𝑞 of length 𝓁 = |𝑝 − 𝑞| + 2𝑡 that contains a copy
of the product 𝑎𝑛−1𝑎

∗
𝑛−1.

Thus, if both 𝑡 < min{𝑝, 𝑞} and 𝑡 < min{𝑛 + 1 − 𝑝, 𝑛 + 1 − 𝑞}, equivalently, 𝑡 < 𝑑(𝑝, 𝑞), then
no path from 𝑝 to 𝑞 of length 𝓁 = |𝑝 − 𝑞| + 2𝑡 contains 𝑎∗1𝑎1 or 𝑎𝑛−1𝑎

∗
𝑛−1, and hence one has

𝑄𝓁(𝑝, 𝑞) ≠ 0. □

Corollary B.2. 𝑄(𝑝, 𝑞) is a free 𝕜-module of dimension 𝑑(𝑝, 𝑞) ∈ ℕ for every 𝑝, 𝑞 ∈ 𝑄.

Proof. This follows immediately by combining the direct sum decomposition (♯20) with the
assertion (♯24) and Proposition B.1. □

Corollary B.3. For every 𝑝, 𝑞 ∈ 𝑄, there is a strict inequality, |𝑝 − 𝑞| + 2(𝑑(𝑝, 𝑞) − 1) < 𝑛. In
particular, one has 𝑄𝓁(𝑝, 𝑞) = 0 for all 𝓁 ⩾ 𝑛.

Proof. The strict inequality is not hard to prove, and the last assertion now follows from
Proposition B.1. □

Corollary B.4. Let 𝑝, 𝑞 ∈ 𝑄 and set 𝕊(𝑝) = 𝑛 + 1 − 𝑝. For every 0 ⩽ 𝓁 < 𝑛, one has

𝑄𝓁(𝑝, 𝑞) ≠ 0 ⟺ 𝑄𝑛−1−𝓁(𝑞, 𝕊(𝑝)) ≠ 0 .
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3308 HOLM and JØRGENSEN

Proof. It follows from the definitions that 𝑑(𝑞, 𝕊(𝑝)) = 𝑑(𝑝, 𝑞); denote this number by 𝛿. It is not
hard to prove the identity: |𝑝 − 𝑞| + |𝑞 − 𝕊(𝑝)| + 2𝛿 = 𝑛 + 1. (♯25)

To prove the equivalence, we need by Proposition B.1 to argue that one has 𝓁 = |𝑝 − 𝑞| + 2𝑡 for
some 0 ⩽ 𝑡 < 𝛿 if and only if 𝑛 − 1 − 𝓁 = |𝑞 − 𝕊(𝑝)| + 2𝑠 for some 0 ⩽ 𝑠 < 𝛿. If 𝓁 has the form
𝓁 = |𝑝 − 𝑞| + 2𝑡 for some 0 ⩽ 𝑡 < 𝛿, then 𝑠 = 𝛿 − 𝑡 − 1 satisfies 0 ⩽ 𝑠 < 𝛿 and it follows from (♯25)
that 𝑛 − 1 − 𝓁 = |𝑞 − 𝕊(𝑝)| + 2𝑠. Conversely, if 𝑛 − 1 − 𝓁 = |𝑞 − 𝕊(𝑝)| + 2𝑠 for some 0 ⩽ 𝑠 < 𝛿,
then 𝑡 = 𝛿 − 𝑠 − 1 satisfies 0 ⩽ 𝑡 < 𝛿 and 𝓁 = |𝑝 − 𝑞| + 2𝑡. □

Remark B.5. By Corollary B.3, one has 𝑄𝓁(𝑝, 𝑞) = 0 for every 𝓁 ⩾ 𝑛. Hence, if we define
𝑄𝓁(𝑝, 𝑞) ∶= 0 for all 𝓁 < 0, then the equivalence in Corollary B.4 holds for all 𝓁 ∈ ℤ.

There is a (kind of) canonicalway to choose a basis for the 1-dimensional free 𝕜-module𝑄𝓁(𝑝, 𝑞)
in the case where it is non-zero, cf. (♯24). Namely, consider the diagram obtained from (♯22) by
replacing all occurrences of 𝑎𝑞 with (−1)

𝑞𝑎𝑞. For 𝑛 = 5, it looks like this:

(♯26)

Note that by the mesh relations this diagram is now commutative(!) in 𝑄.

Definition B.6. For every combination of 𝑝, 𝑞, and 𝓁 where𝑄𝓁(𝑝, 𝑞) ≠ 0 (see Proposition B.1 for
a precise criterion), we let 𝜉𝓁𝑝,𝑞 be the unique signed path (by which we just mean a morphism in
𝑄 of the form ± a path in the quiver (�⃗�𝑛)

dou) from 𝑝 to 𝑞 of length 𝓁 determined by the diagram
(♯26). When 𝓁 = 0, and hence 𝑝 = 𝑞, we set 𝜉0𝑞,𝑞 = id𝑞.
As noted after (♯24), the singleton set {𝜉𝓁𝑝,𝑞} is a basis of 𝑄

𝓁(𝑝, 𝑞) ≠ 0.

For example, one has 𝜉01,1 = id1, 𝜉11,2 = −𝑎1, 𝜉
2
1,3 = −𝑎2𝑎1, and 𝜉

3
1,4 = 𝑎3𝑎2𝑎1.

Remark B.7. It is clear from Definition B.6 above that multiplication with 𝑎𝑞 and 𝑎
∗
𝑞 on the basis

elements 𝜉𝓁.,. acts as follows.

(a) 𝑎𝑞 𝜉
𝓁
𝑝,𝑞 = (−1)𝑞 𝜉𝓁+1𝑝,𝑞+1 provided that 𝑄

𝓁(𝑝, 𝑞) ≠ 0 and 𝑄𝓁+1(𝑝, 𝑞 + 1) ≠ 0.
(b) 𝜉𝓁𝑞+1,𝑟 𝑎𝑞 = (−1)𝑞 𝜉𝓁+1𝑞,𝑟 provided that 𝑄𝓁(𝑞 + 1, 𝑟) ≠ 0 and 𝑄𝓁+1(𝑞, 𝑟) ≠ 0.
(c) 𝑎∗𝑞 𝜉

𝓁
𝑝,𝑞+1 = 𝜉𝓁+1𝑝,𝑞 provided that 𝑄𝓁(𝑝, 𝑞 + 1) ≠ 0 and 𝑄𝓁+1(𝑝, 𝑞) ≠ 0.

(d) 𝜉𝓁𝑞,𝑟 𝑎
∗
𝑞 = 𝜉𝓁+1𝑞+1,𝑟 provided that 𝑄

𝓁(𝑞, 𝑟) ≠ 0 and 𝑄𝓁+1(𝑞 + 1, 𝑟) ≠ 0.

A more refined version of part (a) can be found in Lemma B.9. Of course, it is also possible to
make similar refined versions of (b)–(d).
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3309

Proof of Theorem 8.8. We know fromCorollary B.2 that𝑄 satisfies condition (1) in Setup 2.5 (Hom-
finiteness), indeed, it even satisfies the stronger condition mentioned in 8.8(a).
It is evident that𝑄 satisfies condition (2) in Setup 2.5 (Local Boundedness) as𝑄 only has finitely

many objects.
It is known from Lemma 8.6 that 𝑄 satisfies condition (4∗) in Definition 7.3 (the Strong Retrac-

tion Property) and that the arrow ideal 𝔯 serves as the pseudo-radical in 𝑄. That one has 𝔯𝑛 = 0,
as asserted last in Theorem 8.8, is immediate from Corollary B.3.
It remains to argue that 𝑄 satisfies condition (3) in Setup 2.5, that is, that 𝑄 has a Serre functor,

which is given by the formulae in 8.8(b). The arguments take up the rest of the proof.
By the universal property of the path category 𝑃, we can well define a unique 𝕜-linear endo-

functor 𝕊∶ 𝑃 → 𝑃 by setting 𝕊(𝑞) = 𝑛 + 1 − 𝑞 for 1 ⩽ 𝑞 ⩽ 𝑛 and 𝕊(𝑎𝑞) = (−1)𝑞𝑎∗𝑛−𝑞 and 𝕊(𝑎
∗
𝑞) =

(−1)𝑛−𝑞𝑎𝑛−𝑞 for 1 ⩽ 𝑞 < 𝑛; the same formulae as in 8.8(b). This functor is an involution, that is, an
automorphism with 𝕊−1 = 𝕊, as one has 𝕊(𝕊(𝑞)) = 𝑞 and 𝕊(𝕊(𝑎𝑞)) = 𝑎𝑞 and 𝕊(𝕊(𝑎∗𝑞)) = 𝑎∗𝑞 . For
the mesh relations 𝜇1, … , 𝜇𝑛, an easy computation shows that the identity 𝕊(𝜇𝑞) = (−1)𝑛𝜇𝑛+1−𝑞
holds for all 1 ⩽ 𝑞 ⩽ 𝑛. Hence 𝕊 preserves the mesh ideal 𝔪 = ⟨𝜇1, … , 𝜇𝑛⟩, so by the univer-
sal property of the quotient (mesh) category 𝑄 = 𝑃∕𝔪, it follows that 𝕊 induces a 𝕜-linear
automorphism 𝕊∶ 𝑄 → 𝑄.
It remains to prove that this automorphism 𝕊 satisfies the defining property of a Serre functor,

that is, we must establish an isomorphism of 𝕜-modules,

Ξ𝑝,𝑞 ∶ 𝑄(𝑝, 𝑞)
≅
⟶ Hom𝕜(𝑄(𝑞, 𝕊(𝑝)), 𝕜), (♯27)

which is natural in 𝑝, 𝑞 ∈ 𝑄. It follows from Corollary B.3 that the direct sum in (♯20) is finite, in
fact, one has

𝑄(𝑝, 𝑞) = 𝑄0(𝑝, 𝑞) ⊕⋯⊕𝑄𝑛−1(𝑝, 𝑞)

(of course, some of these direct summands are zero by Proposition B.1), and hence also

Hom𝕜(𝑄(𝑞, 𝕊(𝑝)), 𝕜) = Hom𝕜(𝑄
𝑛−1(𝑞, 𝕊(𝑝)), 𝕜) ⊕⋯⊕Hom𝕜(𝑄

0(𝑞, 𝕊(𝑝)), 𝕜) .

Thus, to construct an isomorphism Ξ𝑝,𝑞 as in (♯27), it suffices to construct an isomorphism

Ξ𝓁
𝑝,𝑞 ∶ 𝑄𝓁(𝑝, 𝑞)

≅
⟶ Hom𝕜(𝑄

𝑛−1−𝓁(𝑞, 𝕊(𝑝)), 𝕜) (♯28)

for every 𝓁 ∈ ℤ; here 𝑄𝓁(𝑝, 𝑞) = 0 for 𝓁 < 0 as in Remark B.5. Indeed, having constructed
isomorphisms Ξ𝓁

𝑝,𝑞 for 𝓁 ∈ ℤ we simply define Ξ𝑝,𝑞 =
⨁

𝓁∈ℤ Ξ𝓁
𝑝,𝑞 =

⨁𝑛−1
𝓁=0 Ξ

𝓁
𝑝,𝑞 .

To define Ξ𝓁
𝑝,𝑞 note that the 𝕜-modules 𝑄

𝓁(𝑝, 𝑞) and 𝑄𝑛−1−𝓁(𝑞, 𝕊(𝑝)) are simultaneously zero
by Corollary B.4 and Remark B.5, and in all such cases we set Ξ𝓁

𝑝,𝑞 = 0.
For combinations of 𝑝, 𝑞, and 𝓁 where 𝑄𝓁(𝑝, 𝑞) ≠ 0, and hence also 𝑄𝑛−1−𝓁(𝑞, 𝕊(𝑝)) ≠ 0, both

𝑄𝓁(𝑝, 𝑞) andHom𝕜(𝑄
𝑛−1−𝓁(𝑞, 𝕊(𝑝)), 𝕜) are 1-dimensional free 𝕜-modules by (♯24), and hence they

are, at least, non-canonically isomorphic. However, to obtain a natural isomorphism, we have to
be more careful:
In the situation where 𝑄𝓁(𝑝, 𝑞) ≠ 0, we have already chosen a basis {𝜉𝓁𝑝,𝑞} for this module, see

Definition B.6. As a basis of Hom𝕜(𝑄
𝓁(𝑝, 𝑞), 𝕜), we now take the dual of this basis, that is, {�̌�𝓁𝑝,𝑞}
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3310 HOLM and JØRGENSEN

where �̌�𝓁𝑝,𝑞 ∶ 𝑄𝓁(𝑝, 𝑞) → 𝕜 is the 𝕜-linear map given by 𝜉𝓁𝑝,𝑞 ↦ 1. Now let

Ξ𝓁
𝑝,𝑞 be the 𝕜-isomorphism given by 𝜉𝓁𝑝,𝑞 ⟼ �̌�𝑛−1−𝓁

𝑞,𝕊(𝑝)
.

It remains to prove that the hereby obtained isomorphism Ξ𝑝,𝑞 =
⨁

𝓁 Ξ
𝓁
𝑝,𝑞, see (♯27), is natural

in 𝑝 and 𝑞. Naturality in the variable 𝑞 means that for every morphism 𝛽∶ 𝑞′ → 𝑞′′ in 𝑄, the
following diagram should be commutative,

Evidently, it is enough to check this in the case where 𝛽 = 𝑎𝑞 or 𝛽 = 𝑎∗𝑞 for some 1 ⩽ 𝑞 < 𝑛. We
only consider the first case, as the second case can be dealt with similarly. By definition, Ξ𝑝,𝑞 is
the direct sum

⨁
𝓁 Ξ

𝓁
𝑝,𝑞, so it suffices to argue that for every 𝓁, the diagram

(♯29)

is commutative. As already mentioned (see Corollary B.4 and Remark B.5), the domain and
codomain of Ξ𝓁

𝑝,𝑞 are simultaneously zero, and so are the domain and codomain of Ξ
𝓁+1
𝑝,𝑞+1. Thus

we may assume that all four modules that appear in the diagram above are non-zero (otherwise
the diagram is trivially commutative), in which case the basis elements

𝜉𝓁𝑝,𝑞 , 𝜉
𝑛−1−𝓁
𝑞,𝕊(𝑝)

, �̌�𝑛−1−𝓁
𝑞,𝕊(𝑝)

and 𝜉𝓁+1𝑝,𝑞+1 , 𝜉
𝑛−2−𝓁
𝑞+1,𝕊(𝑝)

, �̌�𝑛−2−𝓁
𝑞+1,𝕊(𝑝)

exist. To see that the diagram (♯29) is commutative, it must be shown that the maps

Ξ𝓁
𝑝,𝑞(𝜉

𝓁
𝑝,𝑞) ◦𝑄(𝑎𝑞, 𝕊(𝑝)) and Ξ𝓁+1

𝑝,𝑞+1(𝑎𝑞 𝜉
𝓁
𝑝,𝑞)

are identical. Using the definition of Ξ𝓁
𝑝,𝑞 and Remark B.7(a), we get

Ξ𝓁
𝑝,𝑞(𝜉

𝓁
𝑝,𝑞) ◦𝑄(𝑎𝑞, 𝕊(𝑝)) = �̌�𝑛−1−𝓁

𝑞,𝕊(𝑝)
◦𝑄(𝑎𝑞, 𝕊(𝑝)) and

Ξ𝓁+1
𝑝,𝑞+1(𝑎𝑞 𝜉

𝓁
𝑝,𝑞) = (−1)𝑞 Ξ𝓁+1

𝑝,𝑞+1(𝜉
𝓁+1
𝑝,𝑞+1) = (−1)𝑞 �̌�𝑛−2−𝓁

𝑞+1,𝕊(𝑝)
.

To prove that these two 𝕜-linear maps𝑄𝑛−2−𝓁(𝑞 + 1, 𝕊(𝑝)) → 𝕜 are identical, it suffices to see that
they agree on 𝜉𝑛−2−𝓁

𝑞+1,𝕊(𝑝)
. By Remark B.7(b) and the definition of dual bases, we get for the first map

above: (
�̌�𝑛−1−𝓁
𝑞,𝕊(𝑝)

◦𝑄(𝑎𝑞, 𝕊(𝑝))
)
(𝜉𝑛−2−𝓁
𝑞+1,𝕊(𝑝)

) = �̌�𝑛−1−𝓁
𝑞,𝕊(𝑝)

(𝜉𝑛−2−𝓁
𝑞+1,𝕊(𝑝)

𝑎𝑞)

= (−1)𝑞 �̌�𝑛−1−𝓁
𝑞,𝕊(𝑝)

(𝜉𝑛−1−𝓁
𝑞,𝕊(𝑝)

) = (−1)𝑞 .

And for the second map we obviously also have (−1)𝑞 �̌�𝑛−2−𝓁
𝑞+1,𝕊(𝑝)

(𝜉𝑛−2−𝓁
𝑞+1,𝕊(𝑝)

) = (−1)𝑞.
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3311

These arguments show that the isomorphism Ξ𝑝,𝑞 is natural in 𝑞. A similar argument shows
that it is natural in 𝑝, and consequently the proof is concluded. □

Definition B.8. For every 𝑝, 𝑞 ∈ 𝑄, we consider the (ordered) set

𝐵𝑝,𝑞 =
{
𝜉|𝑝−𝑞|𝑝,𝑞 , 𝜉|𝑝−𝑞|+2𝑝,𝑞 , 𝜉|𝑝−𝑞|+4𝑝,𝑞 , … , 𝜉|𝑝−𝑞|+2(𝑑(𝑝,𝑞)−1)𝑝,𝑞

}
,

which is a basis of the 𝑑(𝑝, 𝑞)-dimensional free 𝕜-module 𝑄(𝑝, 𝑞); see the direct sum decomposi-
tion (♯20), Proposition B.1, and Definition B.6.
For every 1 ⩽ 𝑝 ⩽ 𝑛 and 1 ⩽ 𝑞 < 𝑛 we let 𝑇𝑝,𝑞 and 𝑇

∗
𝑝,𝑞 be the matrices given by

where the vertical isomorphisms are induced by the bases𝐵𝑝,𝑞 and 𝐵𝑝,𝑞+1. Here we view elements
in 𝕜𝑚 as a column vectors, so the matrices 𝑇𝑝,𝑞 and 𝑇

∗
𝑝,𝑞 act from the left and have sizes 𝑑(𝑝, 𝑞 +

1) × 𝑑(𝑝, 𝑞) and 𝑑(𝑝, 𝑞) × 𝑑(𝑝, 𝑞 + 1), respectively.

Our next goal is to find explicit descriptions of the matrices 𝑇𝑝,𝑞 and 𝑇
∗
𝑝,𝑞.

Lemma B.9. Let 1 ⩽ 𝑝 ⩽ 𝑛 and 1 ⩽ 𝑞 < 𝑛 be given. For every 0 ⩽ 𝑡 < 𝑑(𝑝, 𝑞), set

𝑘𝑝,𝑞(𝑡) =

{
𝑡 if 𝑝 ⩽ 𝑞

𝑡 + 1 if 𝑝 > 𝑞 .

The following formula holds:

𝑎𝑞 𝜉
|𝑝−𝑞|+2𝑡
𝑝,𝑞 =

⎧⎪⎨⎪⎩
(−1)𝑞 𝜉

|𝑝−(𝑞+1)|+2𝑘𝑝,𝑞(𝑡)
𝑝,𝑞+1 if 𝑘𝑝,𝑞(𝑡) < 𝑑(𝑝, 𝑞 + 1)

0 otherwise .

Proof. As 𝑎𝑞 𝜉
|𝑝−𝑞|+2𝑡
𝑝,𝑞 is a (signed) path from 𝑝 to 𝑞 + 1 of length 𝓁 = |𝑝 − 𝑞| + 2𝑡 + 1, we know

fromProposition B.1 that it is non-zero if and only if 𝓁 has the form |𝑝 − (𝑞 + 1)| + 2𝑠 for some 0 ⩽
𝑠 < 𝑑(𝑝, 𝑞 + 1). Note that the equation |𝑝 − 𝑞| + 2𝑡 + 1 = 𝓁 = |𝑝 − (𝑞 + 1)| + 2𝑠 implies that 𝑠 is
equal to 𝑘𝑝,𝑞(𝑡), so the desired conclusion follows from Definition B.6 (see also Remark B.7). □

In the next result, 𝐼𝑚 denotes the𝑚 ×𝑚 identity matrix; for𝑚 = 0 it is the empty matrix.

Proposition B.10. For every 1 ⩽ 𝑝 ⩽ 𝑛 and 1 ⩽ 𝑞 < 𝑛, the following assertions hold.

(a) If 𝑝 + 𝑞 < 𝑛 + 1 and 𝑝 ⩽ 𝑞, then 𝑇𝑝,𝑞 is the following 𝑝 × 𝑝 matrix:

𝑇𝑝,𝑞 = (−1)𝑞 ⋅ 𝐼𝑝 .
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3312 HOLM and JØRGENSEN

(b) If 𝑝 + 𝑞 < 𝑛 + 1 and 𝑝 > 𝑞, then 𝑇𝑝,𝑞 is the following (𝑞 + 1) × 𝑞 matrix:

𝑇𝑝,𝑞 = (−1)𝑞 ⋅

(
0

𝐼𝑞

)
.

(c) If 𝑝 + 𝑞 ⩾ 𝑛 + 1 and 𝑝 ⩽ 𝑞, then 𝑇𝑝,𝑞 is the following (𝑛 − 𝑞) × (𝑛 + 1 − 𝑞)matrix:

𝑇𝑝,𝑞 = (−1)𝑞 ⋅
(
𝐼𝑛−𝑞 || 0 ) .

(d) If 𝑝 + 𝑞 ⩾ 𝑛 + 1 and 𝑝 > 𝑞, then 𝑇𝑝,𝑞 is the following (𝑛 + 1 − 𝑝) × (𝑛 + 1 − 𝑝)matrix:

𝑇𝑝,𝑞 = (−1)𝑞 ⋅

(
0 0

𝐼𝑛−𝑝 0

)
.

Proof. We only prove parts (b) and (c) as the remaining two parts are proved similarly. Recall from
Proposition B.1 that the function 𝑑 is given by that

𝑑(𝑝, 𝑞) = min{𝑝, 𝑞, 𝑛 + 1 − 𝑝, 𝑛 + 1 − 𝑞} and hence

𝑑(𝑝, 𝑞 + 1) = min{𝑝, 𝑞 + 1, 𝑛 + 1 − 𝑝, 𝑛 − 𝑞} .

(b) Clearly one has 𝑑(𝑝, 𝑞) = 𝑞 and 𝑑(𝑝, 𝑞 + 1) = 𝑞 + 1 under the given assumptions on 𝑝 and 𝑞.
In this case, 𝑘𝑝,𝑞(𝑡) = 𝑡 + 1 and Lemma B.9 implies

𝑎𝑞 𝜉
|𝑝−𝑞|+2𝑡
𝑝,𝑞 = (−1)𝑞 𝜉|𝑝−(𝑞+1)|+2(𝑡+1)𝑝,𝑞+1 for every 0 ⩽ 𝑡 < 𝑞 .

This shows that the matrix 𝑇𝑝,𝑞 has the asserted form.
(c) Clearly one has 𝑑(𝑝, 𝑞) = 𝑛 + 1 − 𝑞 and 𝑑(𝑝, 𝑞 + 1) = 𝑛 − 𝑞 under the given assumptions on

𝑝 and 𝑞. In this case, 𝑘𝑝,𝑞(𝑡) = 𝑡 and Lemma B.9 implies that

𝑎𝑞 𝜉
|𝑝−𝑞|+2𝑡
𝑝,𝑞 =

{
(−1)𝑞 𝜉|𝑝−(𝑞+1)|+2𝑡𝑝,𝑞+1 if 0 ⩽ 𝑡 < 𝑛 − 𝑞

0 if 𝑡 = 𝑛 − 𝑞 .

This shows that the matrix 𝑇𝑝,𝑞 has the asserted form. □

Proposition B.11. For every 1 ⩽ 𝑝 ⩽ 𝑛 and 1 ⩽ 𝑞 < 𝑛, the following assertions hold.

(a) If 𝑝 + 𝑞 < 𝑛 + 1 and 𝑝 ⩽ 𝑞, then 𝑇∗𝑝,𝑞 is the following 𝑝 × 𝑝 matrix:

𝑇∗𝑝,𝑞 =

(
0 0

𝐼𝑝−1 0

)
.

(b) If 𝑝 + 𝑞 < 𝑛 + 1 and 𝑝 > 𝑞, then 𝑇∗𝑝,𝑞 is the following 𝑞 × (𝑞 + 1)matrix:

𝑇∗𝑝,𝑞 =
(
𝐼𝑞 || 0 ) .
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THE 𝑄-SHAPED DERIVED CATEGORY OF A RING 3313

(c) If 𝑝 + 𝑞 ⩾ 𝑛 + 1 and 𝑝 ⩽ 𝑞, then 𝑇∗𝑝,𝑞 is the following (𝑛 + 1 − 𝑞) × (𝑛 − 𝑞)matrix:

𝑇∗𝑝,𝑞 =

(
0

𝐼𝑛−𝑞

)
.

(d) If 𝑝 + 𝑞 ⩾ 𝑛 + 1 and 𝑝 > 𝑞, then 𝑇∗𝑝,𝑞 is the following (𝑛 + 1 − 𝑝) × (𝑛 + 1 − 𝑝)matrix:

𝑇∗𝑝,𝑞 = 𝐼𝑛+1−𝑝 .

Proof. Similar to the proof of Proposition B.10. □

Proof of Theorem 8.16. Let 1 ⩽ 𝑝, 𝑞 ⩽ 𝑛 be given. We must show thatH𝑞(𝑄(𝑝, −)) = 0. The proof
is divided into three different cases: 𝑞 = 1, (1 < 𝑞 < 𝑛), and 𝑞 = 𝑛. We start with the case 𝑞 = 1;
the case 𝑞 = 𝑛 is handled similarly and therefore left to the reader.
The mesh (♯19) associated to 𝑞 = 1 is:

It must be shown that the sequence

is exact. By Definition B.8, this sequence is isomorphic to

For 𝑝 = 1, (1 < 𝑝 < 𝑛), and 𝑝 = 𝑛, we get from parts (a)–(d) in Propositions B.10 and B.11 that this
sequence is

so evidently the sequence is exact in all three cases.
It remains to consider the mesh at 1 < 𝑞 < 𝑛, which is

It must be shown that the sequence
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is exact. By Definition B.8, this sequence is isomorphic to

(♯30)

There are now four cases to check: (a)–(d), corresponding to the four cases in Propositions B.10
and B.11. We only consider the first case as the remaining three cases are handled similarly.
Thus, assume that the pair (𝑝, 𝑞) satisfies 𝑝 + 𝑞 < 𝑛 + 1 and 𝑝 ⩽ 𝑞. In this case, part (a) in

Propositions B.10 and B.11 yields expressions for the matrices 𝑇𝑝,𝑞 and 𝑇
∗
𝑝,𝑞. If 𝑝 < 𝑞, then the pair

(𝑝, 𝑞 − 1) satisfies 𝑝 + (𝑞 − 1) < 𝑛 + 1 and 𝑝 ⩽ 𝑞 − 1, however, if 𝑝 = 𝑞, then 𝑝 + (𝑞 − 1) < 𝑛 + 1
and 𝑝 > 𝑞 − 1. Thus depending on the situation 𝑝 < 𝑞 or 𝑝 = 𝑞 we can use either part (a) or (b)
in Propositions B.10 and B.11 to find expressions for the matrices 𝑇𝑝,𝑞−1 and 𝑇

∗
𝑝,𝑞−1. Explicitly, if

𝑝 < 𝑞, then the block matrices in (♯30) are

𝑀𝑝,𝑞 =

⎛⎜⎜⎜⎜⎜⎝

0 0

𝐼𝑝−1 0

(−1)𝑞𝐼𝑝−1 0

0 (−1)𝑞

⎞⎟⎟⎟⎟⎟⎠
and 𝑁𝑝,𝑞 =

(
(−1)𝑞−1 0 0 0

0 (−1)𝑞−1𝐼𝑝−1 𝐼𝑝−1 0

)

of sizes 2𝑝 × 𝑝 and 𝑝 × 2𝑝, and if 𝑝 = 𝑞 they are

𝑀𝑞,𝑞 =

⎛⎜⎜⎜⎝
𝐼𝑞−1 0

(−1)𝑞𝐼𝑞−1 0

0 (−1)𝑞

⎞⎟⎟⎟⎠ and 𝑁𝑞,𝑞 =

(
0 0 0

(−1)𝑞−1𝐼𝑞−1 𝐼𝑞−1 0

)

of sizes (2𝑞 − 1) × 𝑞 and 𝑞 × (2𝑞 − 1). In both cases, the sequence (♯30) is clearly exact. □
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